TecHNIcAL RESEARCH REPORT

Cell Loss Probabilities in Input Queueing Crossbar Switches
Via Light Traffic

by Y.B. Kim, A.M. MakowskKi

CSHCN T.R. 94-5
(ISR T.R. 94-72)

. CENTER FOR SATELLITE AND HYBRID
COMMUNICATION NETWORKS

The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the
University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/



Cell Loss Probabilities in Input Queueing Crossbar Switches Via
Light Traffic Derivatives

Young B. Kim and Armand M. Makowski
Institute for Systems Research, Center for Satellite and Hybrid Communication Networks,
and Department of Electrical Engineering
University of Maryland
College Park, MD 20742
(301) 405-6554

Abstract

Under most system assumptions, closed form solutions of performance measures for input queueing
crossbar switches are not available. In this paper, we present expressions and bounds for the derivatives of
cell loss probabilities with respect to the arrival rate evaluated at a zero arrival rate. These bounds are used
to give an approximation by Taylor expansion, thereby providing an economical way to estimate cell loss
probabilities in light traffic.

INTRODUCTION

The recent deployment by NASA of its advanced communication technology satellite (ACTS) represents
a key step in demonstrating the feasibility of packet—switched communications satellite with on-board pro-
cessing and spot-beam operation. In these advanced satellite systems, a reliable on-board fast packet switch
is essential for ensuring that packets are routed from different uplink beams to different downlink beams.
Although the on-board and terrestrial (ATM) switches share many similar features and capabilities, the
design of an on-board fast-packet switch needs to incorporate additional factors due to the unique satellite .
communication environment; these factors include size, power, reliability, fault-tolerance, multicasting and
congestion control, to name a few.

Several candidate architectures could possibly support on-board fast-packet switching. Noteworthy
among them are the various space-division switching fabrics developed in the past decade for terrestrial
ATM networks; in particular, we focus here on non-blocking crossbar switches with input buffering. Having
in mind satellite applications, we assume that the input buffers are finite, and typically small. In that
context, the key performance measure we wish to evaluate is the cell loss probability (CLP).

To carry out this evaluation, we consider a simple discrete-time model for a synchronous K x K non-
blocking crossbar switch where the input queues are of finite size b. Cells arrive at each input port according
to a Bernoulli process of rate A; cells that find a full queue are rejected. Output contention manifests
itself through head-of-the-line (HOL) blocking (Karol et al. 1987), and is resolved by a simple randomized
arbitration mechanism. Despite their simplicity, these rules of operation produce a very complex queueing
behavior as input queues become correlated over time. This explains why the performance analysis is
possible only under special conditions like infinite switch size and saturation assumptions (Karol et al.
1987). Therefore, under most model assumptions, closed form solutions of performance measures of interest
are not available, nor can they be expected. Worse perhaps, when evaluating CLP, Monte-Carlo simulation
techniques turn out to be of limited use owing to their vast computational cost as the desired CLP in ATM
networks, being usually in the range of 1076 to 1072, corresponds to rare events.

In this paper we address the problem of evaluating the CLP in light traffic, where light traffic refers
to the the system being lightly loaded, or equivalently to the situation A ~ 0. If Py()) denotes the CLP
when the arrival at each port is A, we show how to evaluate, at least in principle, the light traffic derivatives
f;;Pb(O+) = limy,0+ di;,,-Pb(/\) for various values of k. In particular, we show that j‘;;Pb(O-i-) = 0 for
k=0,1...,2b—1, and spend most of our efforts on evaluating the first two non-zero derivatives. These
formulae exploit the regenerative structure of a Markov chain associated with the queueing model. For lack



of space, we only state the results, and refer the reader to Kim 1995 and Kim and Makowski 1994a for a
complete discussion.

We then propose to approximate the CLP P,()), at least for small values of the arrival rate A, by a
Taylor series expansion of P,(A) near the origin, which here takes the form

1 a2t
Py()) ~ Z‘Q'b—),/\zbmpb(o'*‘)

1 2641 d2b+1
b+ 1)1 dxz

Py(0+), A=x~0.

This approximation works well for small values of A where the CLP is expected to be very small, a situation
often handled by variance reduction techniques such as importance sampling (Kim and Makowski 1994b).
The method proposed here thus provides a numerical alternative to these techniques, at least in light traffic.

In a next step, this light traffic information obtained here can be combined with medium to heavy traffic
information to produce a “light traffic interpolation” as in Simon et al. 1988 and 1989, thereby providing an
economical way to evaluate CLP in light traffic. This approach is taken in Kim 1995 and Kim and Makowski
1994a.

MODEL

All random variables (rvs) are assumed defined on a common probability triple (2, 7,P). Let K, the
switch size, and b, the common buffer size, be positive integers held fixed throughout the discussion. We begin
with 3K mutually independent collections of rvs {AF,;, t = 0,1,...}, {vf,;,t =0,1,...}, and {=f,,t =

1,...}, k=1,..., K, under the following assumptions:

1. For each k = 1,..., K, the rvs {4f ;, t =0,1,...} areiid. rvs with
PlAf, =1]=1-P[4f,;=0]=)t=0,1,..;

2. Foreach k =1,...,K, thervs {vf,,,t =0,1,...} areiid. rvs with
P[Vtk+1 =£] = %v £=1,...,K;t=0,1,..;

3. Foreachk:1,...,K,thervs{wf+l,t=0,1 .} arei.i.d. rvsw1thP[wt+l—€] % £=1,....

As the switching fabric operates in synchronous mode, we divide time into contiguous slots of unit length;
each such time slot is divided into two consecutive minislots. Loosely speaking, at each queue, new arrivals
are completed by the end of the first minislot, at which time the address of the HOL cell is determined,;
contention management is carried out at the beginning of the second minislot, and this is followed with
possible cell transmission across the switching fabric: Fix i = 1,...,K and t = 0,1,.... Let Q! and V{
respectively denote the number of cells present in the ith input queue and the destmatlon of the HOL cell
in that queue at the beginning of time slot [¢,¢ + 1); by convention Vi = 0if Q} = 0.

New cells which arrive into the system during a time slot are enqueued by the end of the first minislot,
if buffer space is available. More precisely, A}, cell arrives at the ith input port during time slot [t,t+1).
An arriving cell is accepted into the buffer and put at the end of the line only if it finds the ith queue to
be non—full, that is, if Q¢ < b; otherwise the cell is blocked and rejected. Therefore, at the end of the first
minislot in [t,¢ + 1), there are Q} + 1 [Q} < b] A}, cells in the i** queue, and the HOL cell amongst them
is eligible for transmission across the switch during the second minislot of the time slot [¢, ¢ + 1).

The addressing mechanism is random and uniform across input ports, and statistically independent of
the generation of arrivals. Hence, there is no loss of generality in taking the viewpoint that each cell declares
its destination address immediately upon reaching the head of line (at which time such a cell is called a fresh

cell) and keeps its address until it begins transmission across the switching fabric (at the start of the second
minislot of time slots). If V, (t+1)- denotes the address content of the HOL cell present in the i input queue

at the start of the second minislot in [¢,¢ + 1), then we have

V(it+1)- = A:+11 [Q; = O] ’/ti+1 +(1- i+11 [Q: = 0])Vti» i=1,...,K. (1)



At the beginning of the second minislot in slot [t,¢ + 1), the switch controller mediates potential output
contentions by randomly selecting one HOL cell amongst the HOL cells which have the same output address:
Let Gf +1 denote the set of input ports whose HOL cell has destination address £ at the beginning of the
second minislot, so that

Gta={ke{l,...,K}: Vi - =6 Qi+ 45, >0}, £=1,.. K (2)

and for convenience we set G0, ; = {k € {1,...,K}: QF + AF_, = 0}. Whenever |G/, ,| > 0, we define the
Gf,,-valued rv Of, by

Of, =j wp. jegl,, £=1,. K (3)

1
[ |
The rv Of 41 Selects an index in Gt +1 at random, thereby indicating the input port with index in the set
G!,,, whose HOL cell will be transmitted to output £. Defining the binary rvs Di,,i=1,...,K, by

K
=2 1[ieg]1[0f, =4, i=12.. . K (4)

we see that
Qs = Qi + A} +11 [Qt <b] - Di;, and Vii=(1~ D§+1)V(it+1)- + Diy1 [Qi+1 > 0] Wiy1-

1t is appropriate to view the pair X; = (V;,Q:) as the state of the system at the beginning of time slot
[t,t+1), with {0,1,...,b}f—valued rv Q; = (Q},...,QK) and {0,1,.. , K}¥—valued rv V; = (V! Lo VE)L
Under the enforced assumptions, the rvs {X;, ¢t = 0,1,...} form a Markov chain with finite state space
X={1,... ,K}¥x{0,1,...,5}¥.

The finite state Markov chain {X;, ¢t = 0,1, ...} is irreducible and aperiodic, thus ergodic and there exists
an {1,...,K}¥ x {0,1,...,b}¥-valued 1v X such that X; = Xo, (as t — oo) with = denoting weak
convergence By mvokmg BASTA (Bernoulli arrivals see time average), we see that the cell loss probability
P,()) is given by P,(\) = P,[Q, = b] (with Py standing for P if the arrival rate is A). The Markov process
{X;, t =0,1,...} is a regenerative process which is positive recurrent, with the empty state 0 acting as
regeneration state. The rv 7 = inf{t > 0 : Q¢ = 0} denotes the first return time to the empty state, and
can be interpreted as the length of a regeneration cycle when Qo = 0. As well known the steady-state
measure Py()) can be expressed as the ratio P,(A\) = ®()\)/¥()) with &(A) = E, [ 1[{Q} = b]] and

¥(\) = Ey[7].

If the system is initially empty at time ¢ = 0, then the process {X;, t =0,1,.. .} is uniquely determined
from the process {£:+1, t =0,1,...}, where we have set

€i+1 = (A1, V41, Opg1, @e41), 1=0,1,... (5)

With the processes {X;,t = 0,1,...} and {§,t = 1,2,...}, we associate the random elements X =
(Xo,...,X,) and E = (&,...,& ). Because the process {X;, t = 0,1,...} is uniquely determined from
the process {&41, t = 0,1,...}, there exist two functions v;(-) and g(-) such that

Vi=w(E) and Q:=q(E), t=1,...,7. (6)

If S,, denotes the set of all possible sample paths of = which have a cycle of length n, i. e.,
Sn={(51,---,8n) 1 qt(s1,---,8) #0, t =1,...,n — 1, and gn(s1,...,5n) = 0}, (N

then S = |J;. | S represents the set of all possible sample paths. For every sample path s in S, let ¢(s) and
#(s) denote the cycle length of s, and the number of cells generated in s, respectively.



Under the independence assumptions enforced on the arrival processes {AF k=1, ,K;t=0,1,.. .},
the probability Py [ = s] that a cycle is realized along the sample path s in S, can be expressed by

Py [E = 8] = c(s)A#(®) . (1 — \)KLS-#(5) ®)
where the coefficient ¢(s) is determined by the set of rvs {(v, Oy, w;),t = 1,...,£(s)} pertaining to s. Hence,
the quantity ®()) can be computed by

=Y Pi[E=s]¢(s) = Y d(s)c(s)A*(S) - (1 — N HO—#E), (9)
ses ses
where we have set
£(8)—1
¢(s)= Y 1lagi(s)=b], seS (10)
t=0

PRELIMINARIES

To proceed with the evaluation of the light traffic derivatives, we define several subsets of S, namely

S;={s€S:¢4(s) >0} and T, ={s€S:#(s)=n}, n=0,1,....

Lemma 1
For any sequence s in S, we have £(s) > 2b and #(s) > 2b, while £(s) = 2b if s is an element of S, () Tas.
Proof

Recall that the system is initially empty. During each time slot, at most one cell is fed into each input
port, and at most one cell can be selected for transmission from each queue. Hence, a minimum of b time
slots is required before the first queue gets full, and similarly once the first queue is full, at least b time slots
must elapse for the system to empty. Therefore, we have £(s) > 2b for each sample path s in S,. Moreover,
#(s) > 0 implies that at least b cells out of the #(s) cells generated in that cycle have been fed into the first
input port since the buffer is of size b. In order to keep these b cells in the first queue, each time slot there
must exist at least one cell residing in the other queues and these cells must always block the HOL cell in
the first queue. Since at least one cell goes in each time slot, the minimum number of cells to be assigned
to the other input ports is thus b. Therefore we have #(s) > 2b for all s in S, and £(s) = 2b for all s in
S n 7~2b-

Upon using Lemma 1 in conjunction with a well-known formula due to Leibniz for the higher—order
derivatives of a product of two functions, we readily obtain the following results.

Proposition 1

1. L P0+)=0, k=0,1,...,2b—
2. L P (0+) = &x®(0+), k=2b2b+1.

Proposition 2

%;%FQ(O+) (2b) !Eses.n’rm, c(s)9(s);

d2b+1

2. L 8(0+) = 25+ 1)! [Lscs. iy, CEIH(S) = (K = 1) Taes.nr, 6)6(s)].
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FIGURE 1. Comparison of 8th Derivatives When b = 4.

EVALUATION OF THE FIRST TWO NON-ZERO DERIVATIVES

For large values of b, it is not easy to evaluate the expressions 3 .5 7, c(s)¢(s) and
Y sc 5. Tabss c(s)$(s) that appeared in Proposition 2. We cope with this difficulty by providing upper-
bounds on these non—zero derivatives; these bounds turn out to be very tight when K is much bigger than
b. Throughout we assume K > b.

To obtain the first bound, we consider a sample path s in S, N T2, so that £(s) = 2b and ¢(s) > 0.
Therefore, 2b cells are generated during the regeneration cycle to make the first input queue full (in other
words, @3 = b), and exactly b cells should be assigned to the first input port and the remaining b cells to
the other input ports such that every time there exists at least one cell (including the newly arriving cells)
in the other queues, playing the role of blocking the HOL cell in the first queue. Using this remark, we show
in Kim 1995 and Kim and Makowski 1994a that

b t
R0s) < & { > (") M} , ()

7
TeA t=1 D k=1 Tk —t+2

with the notation A = {(z1,...,2s) € {0,1,...,b}* : Y0z, = b, b 2s -~k >0,k =1,...,b}. For
K > b, the bound turns out to be tight enough as should be clear from Figure 1.

The evaluation of ZSE 5. Taban
The details are omitted for the sa)fte
1994a.

c(s)¢(s) is more complicated but similar to that of Y gc s 7, €(8)¢(s)-
of brevity and the reader is referred to Kim 1995 and Kim and Makowski

AN EXAMPLE

We have applied our result to the estimation of CLP in crossbar switches of size K = 20 (See Figure
2). As we can observe in Figure 2, although the simulation results for extremely small input rates are very
poor due to the limitation of Monte Carlo simulation techniques (or employing other variance reduction -
techniques such as importance sampling) in this light traffic regime, the two results fit well together as the
input rate becomes larger.
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FIGURE 2. Comparisons between Light Traffic Approximation and Simulation Results.

CONCLUSIONS

In this paper, we have derived expressions for the non-zero derivatives of CLP with respect to the arrival
rate evaluated in light traffic. These light traffic derivatives obtained are incorporated into an approximation
of the CLP via a Taylor expansion, thereby providing an economical way to get a quick evaluation of CLP
in light traffic. This result may be further extended by interpolating heavy and medium traffic values to
yield a global configuration of input rate versus CLP; this is discussed in Kim 1995 and Kim and Makowski

1994a.
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