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ABSTRACT

Title of thesis: ASIC DESIGN OF BIT-SERIAL AND BIT-PARALLEL
DISCRETE COSINE TRANSFORM PROCESSORS

Name of degree candidate:  Vignarajah Karunakaran
Degree and Year: Master of Science, 1994

Thesis directed by:  Professor K.J. Ray Liu, Ph.D., Electrical Engineering

Designs of the bit-serial and bit-parallel versions of the Discrete Cosine Transform Pro-
cessor using the universal IIR filter module are presented, with emphasis on the bit-serial
design. A bit-serial cell mini-library was created. The designs were performed with the
AlliedSignal Aerospace Microelectronics Center’s 1.2 micron double metal p-well CMOS
standard cell library. The core of the bit-serial design is the 18-bit data x 8-bit coefficient

bit-serial multiplier, whose design is also presented in detail; the multiplier is capable of

handling negative data and negative coefficients, and has an accuracy of 0(2'16). The 8-
point 18-bit bit-serial DCT has a maximum clock speed of 139.0 MHz and 55.6 MHz
under best and worst case conditions respectively. Two bit-parallel design implementa-
tions are presented, one with straight bit-parallel multiplier cells and the other with ROM
multipliers using distributed arithmetic. The bit-parallel designs are also 8-point, but have
an 8-bit wide input and a 12-bit wide output, thereby calculating with much less precision.
The parallel multiplier chip’s maximum speed under best and worst case conditions is 28.4
MHz and 11.4 MHz respectively, whereas the ROM multiplier chip’s is 36.3 MHz and
14.5 MHz respectively. All three designs have a throughput of one clock cycle, with
respect to their data input rates. The latencies for the bit-serial and bit-parallel designs are

38 and 5 cycles respectively.
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Chapter 1 - The IIR Filter Structure for the
Discrete Cosine Transform

Introduction

The Discrete Cosine Transform (DCT) is a near optimal transform, as it statistically
approaches the optimal Karhunen-Loeve Transform (KLT); the KLT minimizes the mean
square error of the system, but is difficult to employ because of its computational com-
plexity, which includes requiring data from the future. The DCT has a very high energy
compaction capability. The 2-dimensional (2-D) DCT is widely recognized as the most
effective tool in speech and image data compression, enabling a very high bit-rate reduc-
tion. It is suitable to be used in high speed video processing applications such as High

Definition Television (HDTV), among a variety of other signal processing applications.

K.J. Ray Liu and C.T. Chiu proposed an architecture to compute the 2-D DCT from a
frame-recursive point of view [2]. This approacﬁ lead to two real-time parallel lattice
structures for successive frame and block 2-D DCT. The DCT and DST can be dually
generated from the same structure. They showed that these structures are fully pipelined
with throughput of N clock cycles for an NxN successive input data frame. The number of
multipliers required is a linear function of the transform size N. There is no constraint on
N. These structures are modular, regular and locally connected; a d-dimensional architec-
ture would need only d 1-D DCT blocks, without transposition. Liu and Chiu went on to
present unified parallel lattice structures for time-recursive DCT, DST and DHT, which
was an extension to the above mentioned two architectures. This architecture had a

throughput of o(1).

K.J. Ray Liu, C.T. Chiu, R.K. Kolagotla and J.F. Ja’ Ja’ extended the lattice architectures



to optimal unified lattice filter structures and IIR filter modules [1]. These filter structures
preserve the advantages of the lattice structures while reducing the hardware complexity
in half; they merge the buffering and transform operation to reduce the hardware complex-
ity to o(N) -- reduced from the previous low of o(N.logN) [6]; these not only deliver block
transforms, but also generate time-recursive transforms, i.e., the transform of the N-point
sequence [x(t+1), x(t+2),......x(t+N)] is generated one clock cycle after the transform of
[x(t), x(t+1),.....x(t+N-1)] is generated; the traditional time required is o(logN). Table 1.1
gives a summarized comparison between a few top DCT algorithms by Liu-Chiu [2],
Chen [8], Lee [9] and Hou [10].

DCT IIR Filter Architecture

Input data arrive serially in most real-time signal processing applications. The DCT is
capable of handling these data without any buffering, unlike in traditional FFT based algo-
rithms. Let us consider the N-point data sequence [x(t), x(t+1),.....x(t+N-1); t=0,1,2,....].
The 1-D DCT and 1-D DST for this sequence is defined as follows [4]:

2[+N-1 . T
Xetkty = Clo | )t: x(n)cos((n—t+§)kﬁ) for k=0,1,..N-1
2l‘+1\,—]. .7
Xs(t) = C by [ Zt: x(n)sin((n-t+-2-)kﬁ) for k=12,.N
where Ch = ifk=0or N
2
=1 otherwise

Here the time index in Xc(k,t) and Xs(k,t) denotes that the transform is for data starting at
x(t), and not the DCT at time t. Now, the time-recursive relationship between Xc(k,t) and
Xc(k,t+1) can be obtained by eliminating the effect of the first term of the previous

sequence and updating the effect of the last term of the current sequence [1].



We would like to compute the time-recursive DCT through filter structures. This can be

achieved if we can view the transform operation as linear shift invariant system that trans-
forms the input sample sequence into transform coefficients. This can be done by looking
at the transfer function of the DCT [1]. The transfer function is derived and expressed in a

Z transform format;

(1 -7l
(1-2cos (nI%) 71 +z'2)

He(z) = J[%C(k) ((-1)% =7} cos (ni"ﬁ

This He(z) is an FIR, since the poles in the denominator are cancelled by the zeros of

(- l)k-z'N) in the numerator. If we factor out the updating vector (l-z'N), we can see that
the basic structure of all transforms is composed of an FIR and an IIR filter with a second
order denominator and a first order numerator; this means that we are using an IIR filter to
realize an FIR filter [1]. As mentioned before, the hardware complexity is greatly reduced
due this IIR filter realization. The DCT can thus be realized with a shift array register and

a second order IIR filter.

Fig. 1.2 illustrates the universal IIR filter module. Fig. 1.3 is the universal structure cus-
tomized for the DCT and DST, with expressions for coefficients, etc.; Table 1.3 lists the
coefficients. Table 1.2 lists the coefficients for the universal lattice modules presented in
Fig. 1.1. Fig. 1.4 presents the parallel IIR filter structure for the 1-D DCT and DST. DXT
is a common name for different discrete sinusoidal transforms such as DCT, DST (Dis-
crete Sine Transform), DHT (Discrete Hartley Transform) and DFT (Discrete Fourier

Transform).



Fig. 1.1: The Universal Lattice Module
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Fig. 1.2: The Universal IR Filter Module
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Fig. 1.3: The IR Filter Structure for the DCT and DST
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Fig. 1.4: The Parallel IIR Filter Structure for 1-D DXT
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Table 1.1: Comparison of different DCT algorithms
Liu-Chiul { Liu-Chiu2 | chen Lee Hou
et. al.

No. of 6N —4 4N Nin(N) (N/2)1n(N) N-1
Multipliers -3N/2+ 4
latency N 2N N/2 {In(¥)(In(N) = 1)}/2 | 3N/2(order)
limitation on no no powerof 2 | power of 2 power of 2
transform size ¥
communication | local local global global .| global
1/0 operation | SIPO SIS0 PIPO PIPO SIPO_

Table 1.2: Coefficients of the Lattice structure for the DXT

—

—

L. T, D, D, e(k) f(k)
DCT/DST | cos(xk/N) | sin(wk/N) | C(k)\/F ckyE |1 1
cos(xk/2N) | sin(vk/2N)
DHT/DET | cos(2rk/N) | sin(2rk/N) | /% 0 1 1
LOT/CLT | cos(x/2N) | sin(r/2N) | /4(-1)}- \/;bf(-l)"j- exp 7205 | exp 7205
exp — 165 exp —j0k
sin(r/4N) | sin(x/4N)

Table 1.3: Coefficients of the universal IIR filter structure for the DXT

kin D1 D2 N1 N2

DCT |k | N | 2cos(xk/N) |1 Cln/% -Ck1 %
cos(rk/2N) cos(rk/2N)

DST |k | N | 2cos(xk/N) |1 -Cn % -C(h &
sin(rk/2N) sin{mk/2N)

DHT |0 | N | 2cos(2rk/N) | 1 v Hlcos2rk/N) | /&

:  sin(2xk/N)]

DFT |0 | N |2cos(2xk/N) |1 ﬁ[cos(%rk/N) \/}b_
+5 sin(2rk/N)]

CLT [0 | 2N | expj26x exp 740y | sin(x/4N)* (—1)%sin(x/4N)

2cos(w/2N) exp 0% cos(® /4N ) exp j40r




Chapter 2 - Design Background and Tools

Fractional Two’s Complement Arithmetic

In general, any real number represented in two’s complement form, with m bits of integer
and n bits of fraction, can be evaluated as follows:

818 2---828180.8.18.0...8 = —ap 2%+ L2, 2K  for k=-n to m-2
Example: 1011.1101 = -8+0+2+1+0.540.25+0+0.0625 = -4.1875
Conversion from a binary representation of a real number to a two’s complement number
goes as follows:
(1) if the number is positive, the two’s complement representation is the same as the num-
ber itself; (2) if the number is negative, simply flip/invert the bits and add a 1 to the Isb.
Example: -4.1875 = -0100.0011 ----> 1011.1101
Conversion from two’s complement to binary representation of the real number is the
reverse procedure: (1) if the msb is a 0, the number is positive, and therefore the two’s
complement representation is the same as the number itself; (2) if the msb is a 1, the num-
ber is negative, so simply prepend the negative sign after flipping/inverting the bits and
adding a 1 to the Isb.

Example: 1100 ----> -.0100=-.25

ASIC Design Using ASA MEC DC1.2 Library

The entire design was performed using the AlliedSignal Aerospace Double Metal CMOS
1.2y P-well standard cell library. It is one of the most advanced silicon gate libraries

available. Its performance over the full military environment and small feature size makes



it a valuable asset for those looking for high speed, high density and system-on-chip appli-
cations. The library consists of 683 standard cells and 70 macro design cells (themselves

made from the standard cells) for a total of 753 cells. The library carries an extensive set

of digital logic, including families of on-chip ROM’s, static RAM’s, dual port RAM’s and

FIFO memory elements, microprocessor building blocks called bus cells, arithmetic oper-
ation cells, a full set of scan testable cells, input and output pads, scan input and output

pads, testability modules, non-bus scan memory and scan bus elements.

The cells have already been laid out in 1.2|L double metal CMOS P-well technology.
Spice simulations have already been performed on these cells along with data obtained
from the layout of the cells. The worst case propagation delays, setup and hold times,
from pin to pin, and minimum (and maximum, if applicable) pusle widths of signals are
specified in the data sheets for these standard cells. The simulation models for each cell

contain functionality and all of the cell-specific timing.

The timing numbers are extracted for best case and worst case conditions, corresponding
to a temperature range of -55 C to 125 C, process variables and a supply voltage range of
5.5V to 4.5 V. The transition from best to worst case simulation is facilitated through a
derating factor, which is set to 0.4 for best and 1.0 for worst. A derating factor of any-
where between 0.4 and 1.0 is specified to obtain conditions in between best and worst.
The derating factor, D(T), has the following relationship with temperature, T, and any con-

stant To (all temperature expressed in Centigrade):

273+

D =D (T —_—
D ( 0)x(273+To)

If we normalize the derating factor at 125 C to 1.0, then we have the following equation,
which would enable us to figure out the derating factor at any given temperature, or the

corresponding temperature for any given derating factor:

Q273+

D@ = —5



A simple ASIC Design Process Flow would entail the following:

1. Design specifications and/or requirements.

2. Conceptual design.

3. Detailed design.

4. Schematic capture using standard cells and hierarchical modules (designed from stan-
dard cells).

Preliminary layout.

Test plan.

Preliminary design review.

Generation of simulation test vectors.

0 0 =N W

Functional and timing simulation of schematic.

10. Block place and route, using “black box” cells for routing.
11. Back Annotation.

12. Timing simulation.

13. Chip preparation, reticles and fabrication.

14. Critical design review (CDR).

15. Assembly and test.

The DC1.2 library is available with the Mentor Graphics IDEA Station 8.2 software; i.c.,
the simulation models are written with this software. The designs were performed using
the MGC v8.2 software tool suite; Design Architect was used for schematic capture,
Design Viewpoint Editor for design viewpointing and QucikSimII for functional and tim-
ing simulations, and the Design Manager for design management. The Mentor Graphics

language AMPLE was used for most programming.

ASA MEC is in the process of developing a SOI 1.6| standard cell library. This library is
scheduled to contain approximately 150 cells and be available as an autosynthesis library,

the cells being very small. It is intended to capture the two DCT designs in this new

10



library, using VHDL and AutoLogic for design capture, autosynthesis and optimization.

The DCT designs are to be fabricated along with the test chip for the library.

Unfortunately, the DC1.2 library does not contain any bit-serial standard cells. Therefore,
a mini library of bit-serial hierarchical cells was necessary; this bit-serial library is pre-

sented in the next chapter.

Our DCT designs were performed up to step 9 as above.

Functionality and Timing Verification

QuickSimII was used for functionality as well as timing simulations, as mentioned in the
previous section. An integral part of the Mentor Graphics v8.2 tool suite, QuickSimII is a
powerful multi-level simulator and debugging tool. QuickSimII provides pinpoint accu-
racy, fast iterations and a large capacity for submicron ASICs and dense board-level
designs. QuickSimlI allows the designer to use compiled logic quickpart models, VHDL

models, behavioral models and hardware models in any combination.

QuickSimII simulates with 12 states: 3 logic levels by 4 strengths. The logic levels are 0,
1 and X, and the strengths are S, R, Z and I (strong, resistive, high impedance and indeter-
minate), the precedence of strengths being in the given order; these combine to produce

Os, 1s, Xs, Or, 1r, Xr, 0z, 1z, Xz, Oi, 1i and Xi; the states 0, 1 and X, by default, refer to Os,

Is and Xs respectively.

Timing, which includes propagation delays, setup/hold/pulse width violations, pin capaci-
tances, pin and net loading, backannotation capability, etc., for the simulation models is
attached through technology files, equation files and back annotation files. The equation

files are sufficiently detailed to allow for pre-layout (of chip) estimates of interconnect

11



capacitance and derating for process/voltage/temperature variations. These estimates are
based on default values assigned to simulation model properties and variables. Properties
derived from extractions and back annotated to a viewpoint, will override the default val-

ues. MEC implements the following equation to compute the delays through a cell:

Delay = De_Rating * (TPiytrinsic)

+ De_Rating * (Drive *(Net_Cap + Input_Cap))

+ netdelay,; ..
- “De_Rating” is the derating factor mentioned in the previous section. “TPjyrinsic” is the
intrinsic propagation delay through the cell, obtained through spice simulations of the cell
layout, measured in nano seconds (ns). “Drive” is the drive strength of the output pin
measured in ns/pf. “Net_Cap” is the total net capacitance, measured in pf; its value is
either a pre-backannotation estimate based on assumed worst case layout or the actual par-
asitic capacitance extracted from the layout. “Input_Cap” is the total input capacitance of
the pins that the output is driving; for tristate outputs, this includes the tristated (non-driv-
ing) pin’s capacitance; this is also measured in pf. The equation file contains two basic
sets of equations, one for normal (non-tristated) outputs, and one for tristated outputs. In
the tristate equation the output capacitance of the node driving the net is subtracted from
the summation of all pin capacitance on the net, because it has already been accounted for

in the timing numbers derived from SPICE.

The interconnect delay time extracted from the layout process, “netdelay”, is one more
item which is included in the overall propagation delay of a signal. This delay time is not
a simulation model property and therefore cannot be included in the equation file. Instead
QuickSimlII evaluates this delay prior to performing setup/hold time check, and prior to
determining the propagation delay through a cell. Because this net delay is pre-processed
the effect of the delay will not be visible on the incoming signal net. However, its effect

will be visible in both functionality and in the apparent “overall” propagation delay

12



through a cell. Each input to a cell will have its own netdelay value; the simulator will use
the largest netdelay value in calculating the propagation time. In the case of a register, the
netdelay of the clock is used for a clock to output transition. Any netdelay on other inputs

will be taken into account while performing setup or hold time checks.

The QuickSimII model symbols and functional models are technology-independent. The
specific technology is specified through a unique label (“DC1” for double metal CMOS
1.21) in the “viewpoint” for the simulation. The derating factor could also be specified in

the viewpoint, but defaults to 1.0.

Block Place & Route, Layout and Extraction of Timing and Parasitics

The netlist conversion was performed by the “dfitosl” tool, which is an interface tool
between MGC v8.2 EDDM database and Silvar Lisco v3.218 layout tool. Place and
route, compaction, layout, and extraction of timing were performed with Silvar Lisco
v3.218. The extracted parasitics and timing information were then backannotated into the
design viewpoints in MGC QuickSimII and simulations were rerun to obtain final timing.
Then the layouts were brought into the MGC ICEnvironment v8.2 set of tools in order to
perform a layout versus schematic (LVS) check, DRC check and verify extracted parasit-
ics. The LVS checks report any shorts or missing instances, cells or nets, etc, and are per-
formed in MGC ICTrace. Then the DRC rules are run in MGC ICRules to verify that
there are no violations. The extraction of lumped capacitances and distributed delays are
performed in MGC ICExtract; lumped capacitance is the total parasitic capacitance on the
whole net, even if the net has multiple fanout, whereas the distributed delays give an esti-
mate of the delay through a particular net segment from one output pin into an input pin.

Once timing is verified after backannotation the designs are ready for chip preparation,

CDR and then fabrication.

13



Chip Area Calculation

The area of each cell is provided in the technology files in square microns. Therefore, it is
possible to calculate the total cell area, even before a preliminary layout, once you have a
stable design after functional (and possibly timing) simulations. The total chip area can-

not be done until a preliminary layout (or place and route) is performed. However, MEC
estimates the total chip area to be, on average, twice the total cell area, and thus giving an
initial estimate of die size, so that the prototype and/or production packages could be

ordered.

An Ample program was written to calculate the total cell area and the estimated chip area
from the design hierarchy file (extracted from the design simulation database) and an input
file with all cells being used and the associated cell areas; these two files serve as the
inputs to the “calc_area” program along with the name of the output file for placing the

calculated areas.

There are two other vehicles to find out the total cell area prior to layout. One is through
the Electronic Rules Checker program written by MEC and the other is through the pre-

route processor, scbuild, which is a feature of the Silvar Lisco block, place and route tool.

SNR

The minimum signal to noise ratio (SNR) required for most digital imaging applications is
40 dB. SNR of a system is defined as

) - 2010g(

Signal

SNR = 2010g(
Noise

o1
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where I denotes the input signal magnitude and O denotes the output signal magnitude.
The difference in magnitude between output and input is the noise. For the purpose of our
designs, we could define the expected result as the input and the simulated result as the

output.

Hardware and Computer System

All design activity was performed on a 65 Mip Sun Sparc Station 10 machine with an
enormous 4 giga byte local disk space. The operating system was SunOS 4.1.3. All pro-

grams written in Ample and C were used with double precision floating point arithmetic.

Testing

A program “dct_out.amp” was written in Ample to calculate the DCT of an input
sequence. The program is specific to the bit-serial design; however, it was modified
slightly, to a new program by the name “dctparll_out.amp”, to run with the bit-parallel
design. The “dct_out.amp” program takes the following as inputs: the output file to which
calculations are to be written, the number of bits in one data word, the size of the trans-
form (eg: 8-point), the clock period and the latency of the design. The program specifies
the calculated DCT output for each clock cycle, taking into account the latency of the
design. The program is given below. Since it is tedious to go through approximately 218
cycle simulation for an 18 bit, 8-point DCT, the input data sequence used is 00....0, 00....1,

001....1,01...0,01....1,011....1, 10....0, 10....1, 101....1, 11....0, 11....1, 111....1.
function dct_out_flr(outfile: string{default = “dct_out.S2_fir"},
nbits : integer{default = 18},

N : integer{default = 8},
ck_period: integer{default = 20},

15



latency : integer{default =38} ) // =20 cyc + 18 bits

local filel ;

local t =0, xval, incr ;

locali, j, k;

local date = $date() ;

local DCT = [“NONE”,void], C = [“NONE”,void];
local lastN = [“NONE”,void] ;

local cl = sqrt(2/N) ;

local max_incr, msbs ;

local prevDCTO ;

filel = $open_file($free_stream_id(), $strcat(“/home/kvk/dct_test/’,outfile),@write);

/! WRITE HEADER INFO TO FILE
$writes_file(file1,”VV Outputs of DCT for \'complt_S2\’ input DATA\n”) ;
$writes_file(file1,”VV Clock period = “,ck_period,” ns\n”) ;
/i INITIALIZATIONS
for (k =0; k <=N-1; k=k+1)
{

C = $create_vector(N,C) ;
Cki=1;

DCT = $create_vector(N,DCT) ;
DCT[k]=0;

lastN = $create_vector(N,lastN) ;
lastN[k] =0 ;

C[0] = 1.414213562 ;
max_incr = pow(2,nbits-2);

for =0;j<=3;j=j+1)

if j==0) msbs=0; // Data begins at 000....0

else if (j==1)msbs = max_incr ;// Data begins at 010....0

else if (j==2)msbs =2 * max_incr;// Data begins at 100....0
else msbs = msbs + max_incr;// Data begins at 110....0

incr=0;
while (incr < max_incr)

xval = msbs + incr;
lastN = shift(lastN,N,xval);// Store the last N data
$writeln($strcat(“Processing Sequence = “,lastN));
$writeln($strcat(“Processing DATA = “ xval));
$writes_file(filel,t,”. At Time = “ (latency+nbits*t)*ck_period,
“ for DATA = “ lastN,” ==>\n");
prevDCTO = DCT[O0];
for (k =0; k <N; k=k+1)
{
DCTIk] = C[k] * c1 * xform_basis(lastN,t,k,N) ;
DCTIk] = floor(DCTI[K]) ;
if (k>0)
$writes_file(filel,” DCT(“,k,”) = “ DCTIk],” ;”);
else // The previous DCTI[0] applies, not current one
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$writes_file(filel,” DCT(“k,”) = “,prevDCTO,” ;”);
if (k == N/2-1)
$writes_file(file1,\n”);

}
$writes_file(file1,\n”);
incr = 2 * incr + 1 ;// Increments are 0,01,011,0111,01111,....,01...1
t=t+1;
}

}
$close_file(filel) ;
}

function xform_basis(xt,t,k,M),invisible

{
local n, xbf =0, pi = 3.141592654 ;
for (n =t; n <= t4+M-1; n=n+1)

{
xbf = xbf + xt[n-t] * cos((n - t + 0.5) *k * pi/M) ;

return xbf;
}

function shift(ary,m,newval),invisible

local j ;
for j =0; j < m-1; j=j+1)
ary[j] = ary[j+1];
ary[m-1] = newval,;
return ary ;
}

An extract from the output of the program, run for an 8-point, 18 bit, 20 ns clock and 38

cycle latency simulation of a bit-serial design, is given below:

// Outputs of DCT for ‘complt_S2’ input DATA

// Clock period =20 ns

0. At Time =760 for DATA =[0,0,0,0,0,0,0,0] ==>
DCT(0)=0; DCT(1)=0; DCT(2)=0; DCT(3)=0;
DCT(4)=0; DCT(5)=0; DCT(6)=0; DCT(7)=0;

1. At Time = 1120 for DATA=[0,0,0,0,0,0,0, 1] ==
DCT()=0; DCT(1)=-1; DCT(2)=0; DCT(3)=-1;
DCT(4)=0; DCT(S)=-1; DCT(6)=0; DCT(7)=-1;

2. At Time = 1480 for DATA=[0,0,0,0,0,0,1,3] ==
DCT()=2; DCT(1)=-2; DCT(2)=1; DCT(3)=-2;
DCT(4)=0; DCT(5)=-1; DCT(6)=0; DCT(7)=-1;

3. At Time = 1840 for DATA =[0,0,0,0,0,1,3,7] ==>
DCT(0)=7; DCT(1)=-5; DCT(2)=3; DCT(3)=-3;
DCT@)=1; DCT(5)=-1; DCT(6)=0; DCT(7)=-1;

4. At Time =2200 for DATA=[0,0,0,0, 1, 3,7, 15] ==
DCT(0) =18 ; DCT(1)=-12; DCT(2)=7; DCT(3)=-4;
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DCT(4)=2; DCT(5)=-2; DCT(6)=0; DCT(7)=-1;

5. At Time =2560 for DATA=(0,0,0, 1,3, 7, 15,31] ==
DCT(0) =40; DCT(1) =-24; DCT(2)=14; DCT(3)=-8;

DCT(4)=4; DCT(5)=-3; DCT(6)=1; DCT(7)=-1;

6. At Time =2920 for DATA=10,0, 1, 3,7, 15, 31, 63] ==>
DCT(0) =84 ; DCT(1) =-49; DCT(2) =27; DCT(3)=-16;

DCT(4)=9; DCT(5)=-6; DCT(6)=3; DCT(7)=-2;

7. At Time =3280 for DATA=[0, 1, 3, 7, 15, 31, 63, 127] ==>
DCT(0) =174 ; DCT(1) =-97 ; DCT(2) =54 ; DCT(3) =-31;

DCT(4) =18 ; DCT(5) =-11; DCT(6)=6; DCT(7)=-3;

8. AtTime =3640 for DATA =[1, 3,7, 15, 31, 63, 127, 255] ==>
DCT(0) =354 ; DCT(1) =-194 ; DCT(2) =108 ; DCT(3)=-62;

DCT(4) =36 ; DCT(5) =-22; DCT(6) =12 ; DCT(7) =-6;

9. At Time =4000 for DATA =[3, 7, 15, 31, 63, 127, 255, 511] ==>
DCT(0) =715 ; DCT(1) =-387 ; DCT(2) =216 ; DCT(3) =-124;

DCT(4) =72 ; DCT(5) =-44 ; DCT(6) =24 ; DCT(7)=-12;

10. At Time =4360 for DATA ={7, 15, 31, 63, 127, 255, 511, 1023] ==
DCT(0) = 1436 ; DCT(1) =-773 ; DCT(2) =433 ; DCT(3) =-247 ;

DCT(4) =144 ; DCT(5) =-88 ; DCT(6) =49 ; DCT(7) =-24;

11. At Time =4720 for DATA =[15, 31, 63, 127, 255, 511, 1023, 2047] ==>
DCT(0) =2879 ; DCT(1) =-1546 ; DCT(2) =867 ; DCT(3) = -493 ;

DCT(4) =288 ; DCT(5) =-175; DCT(6) =99 ; DCT(7) =-47 ;

12. At Time = 5080 for DATA = [31, 63, 127, 255, 511, 1023, 2047, 4095] ==>
DCT(0) =5764 ; DCT(1) =-3092 ; DCT(2) = 1735 ; DCT(3) =-986 ;

DCT(4) =576 ; DCT(S5) =-350; DCT(6) =199 ; DCT(7) =-93;

13. At Time = 5440 for DATA = [63, 127, 255, 511, 1023, 2047, 4095, 8191} ==>
DCT(0) = 11534 ; DCT(1) =-6184 ; DCT(2) =3471; DCT(3) =-1972;

DCT(4) = 1153 ; DCT(5) =-700 ; DCT(6) =398 ; DCT(7) =-185;

14. At Time = 5800 for DATA =[127, 255, 511, 1023, 2047, 4095, 8191, 16383] ==
DCT(0) =23074 ; DCT(1) =-12367 ; DCT(2) = 6943 ; DCT(3) =-3943 ;

DCT(4) =2307 ; DCT(5) =-1400 ; DCT(6) =797 ; DCT(7) =-370;

15. At Time = 6160 for DATA = [255, 511, 1023, 2047, 4095, 8191, 16383, 32767] ==>
DCT(0) =46154 ; DCT(1) =-24734 ; DCT(2) = 13886 ; DCT(3) =-7885 ;
DCT(4) =4615 ; DCT(5) =-2799 ; DCT(6) = 1595 ; DCT(7) =-739 ;

16. At Time = 6520 for DATA = [511, 1023, 2047, 4095, 8191, 16383, 32767, 65535]

==>
DCT(0) = 92314 ; DCT(1) =-49467 ; DCT(2) = 27772 ; DCT(3) =-15769 ;
DCT(4) =9231 ; DCT(5) =-5597 ; DCT(6) =3191; DCT(7) =-1477 ;

17. At Time = 6880 for DATA =[1023, 2047, 4095, 8191, 16383, 32767, 65535, 65536]

==>
DCT(0) = 138293 ; DCT(1) =-66795 ; DCT(2) = 25272 ; DCT(3) =-4292 ;
DCT(4) =-4707 ; DCT(5) =7010 ; DCT(6) =-6158 ; DCT(7) =3440;

18. AtTime =7240 for DATA =[2047, 4095, 8191, 16383, 32767, 65535, 65536, 65537]

==>
DCT(0) = 183912 ; DCT(1) =-74206 ; DCT(2) = 7731 ; DCT(3) = 12270;
DCT(4) =-9413 ; DCT(5) = 88 ; DCT(6) = 5418 ; DCT(7) = -4932 ;

Note that since the new DATA at time t is nearly twice the DATA word at time t-1 (i.e.,
DATA(t) = 2 * DATA(t-1) ) until step 16 above, the DCT output at time t should also be

nearly twice the DCT output at time t-1 for steps 1 to 16.
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Performance Definitions

The throughput of a DCT processor is defined as the number of transform words per clock

cycle per DCT output pin.

The latency of a DCT processor is defined as the number of clock cycles required to see
the DCT output from the time of inputting the data. For a bit-serial implementation, it
could be interpreted as the number of cycles from the first bit of the data to the first bit of

the transform.

The pipeline depth of a DCT processor is defined as the number of clock cycles between
two transform words. For a bit-serial implementation, it could be interpreted as the num-
ber of cycles from the first bit of one transform to the first bit of the next transform. This

is the inverse of the throughput.

The data rate of a DCT processor is defined as the number of transform words from the
whole processor per second. The data rate can be determined by dividing the clock fre-

quency by the pipeline depth.
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Chapter 3 - Bit-Serial Cell Library

Motivation for Bit-Serial Design

It was already mentioned that data arrives serially for most DSP applications. To utilize
the bandwidth better or due to bandwidth limitations, one may want to send the data bit by
bit (bit-serial). A high clock rate would also be desirable. The area of the chip may be a
concern. It was desired to see what the differences, advantages and disadvantages of the

bit-serial approach to a design were, as opposed to a normal bit-parallel design.

Synchronous Design

The bit-serial DCT is a highly synchronous design. Every cell of the design is synchro-
nous. This is necessary because the bits come in one at a time. The methodology for this
design was to bring the least significant bit (Isb) first; the most signiﬁcént bit (msb) will
come in last. There is no sign extension bit in this design as introduced in previous bit-
serial designs; thus the redundancy of the sign extension is eliminated. The lsb is accom-

panied by a control signal which flags the fact that the data being clocked in is the Isb of a

new data word.

All data are in two’s complement representation. The design is an 8-point 18 bit data with
an 8 bit coefficient. The minimum required number of bits for data is 18 for an 8 bit coef-
ficient; this is due to the second order IIR filter, which has a bit-serial multiplier in one of
the two loops feeding back -- the multiplier requires 2b clock cycles to multiply for a b bit

coefficient. The details of the multiplier designs are presented in the next chapter.

Due to the bit-serial approach, the chip area and packaging are expected to be very small.
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The layout is expected to be very dense. There is only one control signal LSB, one data
signal DATA, a CK signal and CLR signal as inputs; there are only eight outputs plus
LSBOUT, the delayed version of the LSB control signal.

The entire design was created and simulated with the AlliedSignal Aerospace Microelec-
tronics Center’s double metal CMOS 1.2 micron (DC1.2) library. The tool kit used from

schematic capture through simulation was Mentor Graphics IDEA Station version 8.2_1.

Pipelined Data and Control Methodology

Without loss of generality, let us say that the DCT is N-point, the data is b bits and the
coefficient is by bits. The DCT data are real integers. The multiplier coefficients are frac-
tions m, where -0.5 <m < 0.5. The output data of all cells, including the multipliers and

the DCT processor itself, should be a by bit integer.

The single bit data signal DATA carries in the input data bit by bit. The Isb arrives first.
To indicate that DATA has the Isb of a new by bit word, the control signal LSB goes active
low. The LSB control signal serves to alert the cell that a new word is beginning; for the
multiplier, it also serves as a flag to indicate that the previous bit clocked in was the MSB,
in order to enable the multiplier to sample the sign information, etc. For a by bit two’s

complement number, the MSB could serve as the sign bit.

The cell library, and therefore the design components as they stand alone, are in a sense

memoryless. The control signal LSB tells the cells which is the beginning of a word, but
there is no way for the cells to know which word they are processing, and for that matter,
which bit they are processing. These all augur for a fully pipelined design. The resuits are
computed back-to-back; there is no buffering involved. This enables the cells, and thereby

the whole design, to have a throughput of 1 bit per clock cycle. The latency is by for each

21



cell, except for the multiplier small cells that require 2 clocks, which possess a latency of
2, and the bigger multipliers, which posses latencies of 8 for the 8x8 multiplier that
requires one clock cycle, 16 for the 8x8 multiplier that requires two clock cycles and 18
for the 18x8 multiplier. These cell designs are described in the following sections. Note

that the throughput is increased due to not employing a sign extension bit in the design.

The cell library is presented in the sections to follow. The clock CK is positive edge-trig-

gered and the clear signal CLR is active low in all cells.

Cell BITADD

The schematic for the BITADD cell is given in Fig 3.2. The DC1.2 library standard cells
TOO8M (2-input AND gate), TO82M1 (full adder) and T273M3 (high speed 3 bit D-regis-
ter) are used. Fig. 3.1 is a sheet with all the bit-serial cell library symbols. The BITADD
is the very first. Active levels are depicted on these symbols, as well as DC1.2 library

symbols.

Signals A and B are the data inputs to be added. The control signal is LSB. LSBDEL is
the signal one clock cycle behind LSB, which feeds into the next cell’s LSB control. SUM
is the summation result. The carryout from the previous cycle’s data carries back into the
full adder. However, when the LSB control is asserted, the carryin gets cancelled; this

prevents the previous data’s carryout affecting the current data.

Cell BITSUB

The schematic for the BITSUB cell is given in Fig 3.3. The DC1.2 library standard cells
TO04M (simple inverter), TO32M (2-input OR gate), TO82M1 (full adder) and T273M3
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Fig. 3.1. Bit-Serial Cell Library Symbols

BITADD BITSUB BITMULT_2CK MSBMULT_2CKX4
K cK jcx ——X
A jk cn:r>< —-cn:><
SUMp— —i8 OFFf— ] MOELp—— —i EL—
S8 LSBOELO— —CJLSB LSBOELD— —PPIN PPOUT— ——PPIN PPOUT}—
CLR —CCLR —CjLsB LSBOELD— ~CJLsB LSBOELID—
—ur —Clar
I$2
183 194
IIR_MODULE
—CK
—EégA DCT—
-
—COEFO LSBOUTR- DUAL _MULT&_2CKXA4
—COEF 1
—COEF2 —CK
—COEF3 —COERQ
—COEF4 —CQEF
—COEF5 —COEF2
—COEF6 —COEF 3
—COEF7 —COEF 4
—(CQOEF5
—COEMO —COEF6
—COEM1 —ﬂCOEF7 RES—
—COEM2 —M MOUTH
—COEM3 -d.SB LSBOUTR-
—COEMA4 —CLR
i
—COEMT 136
—-RESET

187

23



Fig. 3.2: BITADD Schematic
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(high speed 3 bit D-register) are used. The BITSUB symbol is the second from the top left

corner in Fig. 3.1,

Signals A and B are the data inputs to be subtracted. The control signal is LSB. LSBDEL
is the signal one clock cycle behind LSB, which feeds into the next cell’s LSB control.
DIFF is the difference between A and B,i.e., DIFF = A-B (the difference). The carryout
from the previous cycle’s data is fed back into the full adder. However, when the LSB
control is asserted, the carryin gets forced to a 1; this allows for the conversion of B to

two’s complement, explained in the next paragraph.

One may wonder how a subtraction could produce a carryout or how the subtraction can
be performed through addition. The subtraction is performed by adding the two’s comple-
ment of B to A. The two’s complement is obtained by inverting the signal and adding a 1
to it. The TO04M takes care of the inversion with ease. The 1 is added to the data’s Isb
(when LSB=0).

Cell BITMULT_2CK

The schematic for the BITMULT_2CK cell is given in Fig 3.4. The DC1.2 library stan-
dard cells TO04M (simple inverter), TOOSM (2-input AND gate), TO82M1 (full adder),
T157M1 (1 bit 2-1 multiplexer) and T273M3 (high speed 3 bit D-register) are used. The
BITMULT _2CK symbol is the third from the top left corner in Fig. 3.1.

Signals M and COEEF are the multiplicand and coefficient respectively; M is the by bit data
passing through, with the lsb coming in first. Signal PPIN is the partial product coming in
from the previous BITMULT_2CK stage. A bgx by bit bit-serial multiplier will require
b1-1 stages of BITMULT_2CK cells, hooked up in series, and a MSBMULT_2CKx4 at
the last stage. At the first stage the PPIN is grounded. Output signal PPOUT is the partial
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product going to the BITMULT_2CK of the next stage. The PPOUT coming out of MSB-
MULT_2CK is the multiplied result.

The control signal is LSB. LSBDEL is the signal two clock cycles behind LSB, which
feeds into the next stage’s LSB control. MDEL is the signal two clock cycles behind M,
which feeds into the next stage’s M input. The carryout from the previous cycle’s data
carries back into the full adder. However, when the LSB control is asserted, the carryin

gets cancelled; this prevents the previous data’s carryout affecting the current data.

If the COEF is a 0, the data M into the full adder is zeroed out; thus the PPOUT would
only be the carryout from the previous cycle (ANDed with LSB) plus the PPIN. If the
COEF is a 1, the data in M is added in getting the PPOUT. If the LSB is a O, the PPOUT

is set to its previous value, i.e., it is sign-extended.

It is necessary that the cell have two levels of registering, because the PPOUT has to go
out to the next stage one cycle before the data (or multiplicand) M goes there, and the
PPOUT requires registering as well. This is why PPOUT is registered once and M and
LSBDEL are registered twice. Initially, a cell BITMULT was created with just one level
of registering. But this BITMULT design created havoc in the simulation of an 8x8 multi-
plier MULTS which used 7 BITMULT and 1 MSBMULT cells hooked up in series; there
were numerous spikes and the delay for the multiplier result to settle down after each
clock cycle was intolerabI.y high -- 105.2 ns worst case obtained with a maximum clock
speed of 9.5 MHZ -- defeating the purpose of the bit-serial approach; the long delay for
the result to stabilize was due to the PPOUT signal being totally asynchronous throughout
the by stages of the multiplier. The largest delay for the result of an 8x8 multiplier MUL-
T8_2CK result, which used 7 BITMULT _2CK and 1 MSBMULT_2CK cells, to settle
down was 3.5 ns worst case obtained with a maximum clock speed of 55.6 MHz. The dual

registering does not affect the throughput -- it is the latency that is doubled.
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Fig. 3.4: BITMULT_2CK Schematic

(g
D—D_:l )—] L—‘: " _zom_
COE . _EC___] ;J—m': . L- ::8 pPOUT
o> s - : d s Wb
LSBD_?:ID_ wr F] —yr
CLRU
Fig. 3.5 MSBMULT_2CKx4 Schematic
x>
X
N>
COEFC> .
PPINC | o—>ppouT
LR :
_'—%__DLSBDEL
Fig. 3.6: MSBMULT_2CK Schematic
k-
N T
CoEFC>— L R — a = . L:E . "> pPOUT
= - i = s . = {86be
PPIN I b r[ ‘_'
LsaD——{ %—FD l )'—-'
LR :

27



One would expect a by x by multiplication to produce a bg+by bit result. However, since
there are feedback loops in the IIR filter, where the multiplier will be employed, it is nec-
essary to preserve the data at by bits; i.e., by bits of the multiplied result need to be trun-
cated. This is a serious problem. The problem was overcome because the b; bits
represent the fractional part of the result, since the coefficient is a fraction less than magni-
tude 0.5, the result can never exceed the value of the input data. The implementation to
handle the truncation was again to use LSB, which is what is done when the carryout from

the previous cycle is erased by the LSB.

Cell MSBMULT_2CKx4

The MSBMULT_2CKx4 is very similar to the BITMULT_2CK, except that it is geared to
handle the msb of the coefficient and also multiplies the result by 4, because the coeffi-

cients supplied to the multiplier are 4 times smaller than the actual DCT coefficients. For
example, if the actual coefficient is -2, one has to supply -0.5 to the multiplier, or in binary,
.1000 0000; the decimal point is implied. This is because the DCT coefficients have mag-

nitudes of up to 2, whereas this multiplier can handle magnitudes of up to 0.5.

The schematic for the MSBMULT_2CKx4 cell is given in Fig 3.5. The DC1.2 library
standard cells TO04M (simple inverter), TOOSM (2-input AND), TO32M (2-input OR),
TO082M1 (full adder), T157M1 (1 bit 2-1 multiplexer) and T273M2 (high speed 2 bit D-

register) are used. The MSBMULT_2CKx4 symbol is the last from the top left corner in
Fig. 3.1.

Signals M and COEF are the multiplicand and coefficient respectively; M is the bg bit data
passing through, with the Isb coming in first. Signal PPIN is the partial product coming in
from the previous BITMULT_2CK stage. A bg x by bit bit-serial multiplier will require

28



b;-1 stages of BITMULT_2CK cells, hooked up in series, and a MSBMULT_2CKx4 at
the last stage. PPOUT is the multiplied resuit.

The multiplication by 4 is achieved in this cell through a tricky methodology, which fools
the next cell into thinking that it is receiving an Isb. The control signal is LSB. LSBDEL
is the signal virtually two clock cycles behind LSB, which feeds into the next cell’s LSB
control; however, in reality, LSBDEL is just a buffered version of LSB, i.e., the LSBDEL
skips the two levels of registering. This is done in order to advance LSBDEL so that the
output looks like it was shifted twice, which is equivalent to multiplying by 4. The error
produced by this shift is of 0(2"?02).

MDEL is the signal, again virtually, two clock cycles behind M, which feeds into the next
cell’s data input. The carryout from the previous cycle’s data carries back into the full
adder. However, when the LSB control is asserted, the carryin gets forced to 1; this is how

a 1 is added to M to make it a two’s complement number.

If the COEF is a O, the data M and the carryin into the full adder are zeroed out; thus the
PPOUT would only be equal to the PPIN. If the COEF is a 1, the data inverted M is added
in getting the PPOUT.

In this cell, as opposed to the BITMULT_2CK cell, two levels of registering is implied,
but bypassed by the fact that LSBDEL and MDEL are advanced by two cycles. However,
the PPOUT signal still needs to be registered before coming out. Initially, along with the
cell BITMULT, an MSBMULT=x4 was created with just one implied level of registering;
but this failed for the same reasons given in the BITMULT_2CK section.

It it quite obvious that this cell has the largest critical path delay when compared to any of
the bit-serial cells. An estimate of the critical path delays through this cell would be the
addition of the propagation delays through the following cells between signals LSB and
PPOUT: t004f, t032m, t008m, t082m1, t157m1 and t273m2. We shall calculate this delay
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as follows (worst case):

tPeritical = 0.5 +0.2 *(0.940.15) +1.7 +1.1 *0.15 +1.4 +0.9 *0.3 +2.8 +0.9 *0.1
+1.7 +0.9 *0.25 + 0.0 +3.3 +0.5 *0.25

12.485 ns

Note that the t273m?2 register does not require a setup time. This estimate is without any
netdelay or back annotation calculations. The best case delay would be approximately 5.0
ns. Even if we estimate a 40% increase in delay due to backannotation, we have approxi-
mately 17.5 ns worst case and 7.0 ns best case critical path delay. This would accommo-
date a worst clock speed of 57 MHz and best case clock speed of 143 MHz for any size

multiplier.

Cell MSBMULT_2CK

The MSBMULT_2CK is identical to the MSBMULT_2CKx4, except that it does not mul-
tiply the result by 4, i.e., it registers the LSB and M signal twice to produce LSBDEL and
MDEL respectively. The schematic for the cell is given in Fig. 3.6. This cell is not used
in the DCT design.

30



Chapter 4 - Bit-Serial Multiplier

Multiplier Algorithm

In the previous chapter we went over the designs of the bit-serial multiplier cells, as they
were part of the bit-serial library. We also went over how a multiplier is designed using
these cells. But, we did not go over the algorithm for bit-serial multiplication. The tricki-
est part in designing a bit-serial multiplier is implementing the sign extension during mul-
tiplication when a you have a negative multiplicand. An example of a bit-serial

multiplication is given below:

Let us consider a 4x4 multiplication of -1 x -3 = +3. The result obtained through usual
means is:

—t
[a—y
fum—y
[u—y
i
[}
—

x1101 = x -3
11114111 +3
0000000 =====
114111
Q"b 001 <emeeen two’s complement of 1111 since 1101 is negative
00000011 = +3

The sign extensions are tﬁose shown in the triangle. It is this implementation that is diffi-
cult in a bit-serial design. Previous designs [3] were able to handle only negative coeffi-
cients but not negative multiplicands; this is because, as you can see in the example, the
sign extension is required only when the multiplicand is negative. The effect of the coeffi-
cient being negative is that to add the two’s complement of the data, instead of the data
itself, in the last stage, which is pinpointed in the example; this can easily be imple-

mented, as done in the MSBMULT_2CKx4 (and MSBMULT_2CK) cells where the data
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signal M is inverted and a 1 added when control signal LSB is asserted -- only when
COEF=1.

Let us look at an example of the methodology for a bit-serial multiplication; this example
has the same -1 x -3 multiplication used in the previous example. In this example, the
multiplicand bits come down vertically, one bit per cycle, Isb first and msb last, passing
through the coefficients; the coefficients are at the right in a vertical column, Isb at the top
and msb at the bottom; each bit of the coefficients represent one stage of BITMULT _2CK,
and the msb of the coefficient represents an MSBMULT_2CK:

1 I
11 | direction of
111 | multiplicand
1111 I

\"
1111 1 I
1111 0 I

1111 1 I

1111 1 \%

1111
0000
1111
0001

00000011

In the above example, the msb of the multiplicand is always on the left most column of a
row. The partial products are computed and they trickle down to the last stage, unless
there is an Isb somewhere in the middle of the BITMULT _2CK stages, where the running
partial product gets cancelled out by the control signal LSB = 0; this prevents partial prod-
ucts from the current multiplicand word affecting the multiplication of the multiplicand
word ahead.
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DUAL_MULTS8_2CKx4 Design Module

The DUAL_MULT8_2CKx4 module is an 18 bit multiplicand by 8 bit coefficient multi-
plier. The multiplier, in effect, shifts the multiplied result twice in order to multiply it fur-
ther by 4. It is capable of handling positive and negative multiplicands and coefficients.
Because it multiplies the result by 4 to provide the final answer, it is able to accept coeffi-
cients of magnitude up to 2 (as opposed to 0.5); the coefficients should be divided by four
and supplied to the multiplier. For example, if the actual coefficient is -2, one has to sup-

ply -0.5 to the multiplier, or in binary .1000 0000; the decimal point is implied.

Restrictions on this multiplier are: (1) coefficients magnitude should be less than 0.5; (2)
multiplicand M has to fall within the range 1110 0000 0000 0000 <= M < 0010 0000 0000
0000; if not, the most significant bit will be truncated by the x4 operation, and thus the
sign information will be lost. Keep in mind that the largest, in effect, the multiplier can
multiply by 2 at the most -- maximum coefficient magnitude is 0.5 and the double shift

(equivalent to x4) give a resultant of x2.

The symbol for the module is shown in Fig. 3.1 and the schematic for this module is given
in Fig. 4.1. As shown in the schematic, the multiplier has two paths of 8 bit coefficient
multipliers. One path is to evaluate the result if the data is positive and the other is to eval-
uate the result if the data is negative. Two paths are necessary as the multiplier does not
know whether the multiplicand is positive or negative until the msb arrives. When the
msb arrives, the Isb of the result is ready to go in the next cycle. The sign of the multipli-
cand is necessary for determining whether the sign extension, as described in the examples
at the beginning of the chapter, is to be performed or not. As such, the two paths indepen-
dently calculate the result and when the msb arrives, it selects the result through a 2-1 mul-

tiplexer.
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What are these two independent calculations? One is to assume the multiplicand is posi-
tive and perform the multiplication. The other is to assume it is negative and perform the
multiplication. When the multiplicand is assumed negative, it is converted to two’s com-
plement (this is equivalent to negating it), then multiplied by the coefficients and then,
once again, the multiplication result is converted to two’s complement, i.e., negated, to
obtain the final result. In effect, a double negation is performed so that the result would
correspond to the actual multiplicand M. The negation is necessary so that at least the 8
coefficient multiplier path thinks that the multiplicand is negative. The negation is per-
formed by sending the data through the B input of a BITSUB cell and having the A input

grounded.

The simulation of this module was tested with worst and best case parameters. The maxi-
mum clock speed in worst case was 55.6 MHz; for best case, 139.0 MHz. An Ample pro-
gram “chk_res.amp” was written to extract the stimulus and results, which were in bit-
serial order, and convert to a hex integer and compared the results against established
numbers. The accuracy was excellent; an error of 0(2'(b0'2)), where by = 18, was seen as
expected. The throughput of the multiplier is 1 bit per cycle. The latency of the multiplier
is 2by = 16 cycles.

The multiplier was rigorously tested and verified with an Ample program “chk_res.am-
ple”, since it is extremely difficult to decipher the output from a bit-serial multiplier report.

Due to the length of the simulations and report, these results are not included here.

MULTS8_2CKx4 Design Module

The MULT8_2CKx4 module is an 8 bit coefficient multiplier. It is superior to the
DUAL_MULT8_2CKx4 in that it can handle multiplicands of sizes between 1 and 16 bits.
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However, it cannot handle negative multiplicands; it can handle negative coefficients,
though. The multiplier, in effect, shifts the multiplied result twice in order to multiply it
further by 4. Itis capable of handling positive and negative multiplicands and coefficients.
Because it multiplies the result by 4 to provide the final answer, it is able to accept coeffi-
cients of magnitude up to 2 (as opposed to 0.5); the coefficients should be divided by four
and supplied to the multiplier. For example, if the actual coefficient is -2, one has to sup-

ply -0.5 to the multiplier, or in binary .1000 0000; the decimal point is implied.

Restrictions on this multiplier are: (1) coefficients magnitude should be less than 0.5; (2)
multiplicand M has to fall within the range 110.....0 <= M < 010.....0; if not, the two most
significant bits will be truncated by the x4 operation, and thus the sign information will be
lost. Keep in mind that the largest, in effect, the multiplier can multiply by 2 at the most -
- maximum coefficient magnitude is 0.5 and the double shift (equivalent to x4) give a

resultant of x2.

The loss of accuracy is 0(2'(b0'2)), where by = 8. The throughput of the multiplier is 1 bit
per cycle. The latency of the multiplier is 2b;-2 = 14 cycles. This module is not used in
the DCT. The schematic for the module is given in Fig. 4.2.

MULTS8_2CK Design Module

This module is identical to the MULT8_2CKx4 module except that it does not multiply
the final result by 4; the only difference in the schematic is that the MSBMULT_2CK cell
is used instead of the MULT8_2CKx4. This module is not used in the DCT.

Restrictions on this multiplier are different from MULT8_2CK accordingly: (1) coeffi-
cients magnitude should be less than 0.5; (2) multiplicand M has to fall within the range
10....0 <=M < 10....0.
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Fig. 4.1: DUALMULTS8_2CKx4 Schematic
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Fig. 4.2. MULT8_2CKx4 Schematic
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Chapter 5 - Bit-Serial IIR Module and DCT

Calculation of Coefficients

The coefficients to the multipliers, and thereby to the DCT processor, can be calculated
from Fig. 1.2 (and Fig. 1.3) and Table 1.3. The actual DCT coefficients are divided by 4,
for reasons given in the description of the DUAL_MULTS8_2CKx4 design, before they are
hard-wired in the DCTBITSERIAL (the DCT bit-serial top level module). These coeffi-
cients are passed on to the IRMODS and are named COEF(7:0) and COEM(7:0), within
each IIR filter module, corresponding to -D1 and N1 of Fig. 1.2 and Table 1.3; these coef-
ficients are in turn passed to the DUAL_MULT8_2CKx4 multipliers. We shall see how

these coefficients are calculated:

D1 1 k 1 k _
COEF = - -ioos (EN) = —icos (ng) fork=0to7

N1 2 1 k
coem = N . Lo [Ran(nk) « Lowen(nh) ozt 107

COEM-— fork=0

8.2

The calculated binary values of the coefficients will be hard-wired in the top level sche-
matic as mentioned earlier. The decimal point is implied. These coefficients were calcu-
lated to 17 bit precision, and then rounded to 8 bit precision in an Ample program. The
following table of values was produced by the program:

Table 5.1 - Coefficients for Bit-Serial DCT Chip

COEF COEM
-0.500000 = .10000000 0.088388 = .00010111
-1.847759 = .10001010 0.490393 = .00011111
-1.414214 = 10100101 0.461940 = .00011110
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k COEF COEM

-1.530734 = .11001111 0.415735 = .00011011
0.000000 = .00000000 0.088388 = .00010111
1.530734 = .00110001 0.277785 = .00010010
1.414214 = 01011011 0.191342 = .00001100
1.847759 = .01110110 0.097545 = .00000110

Nl AW

IIR_MODULE Design Module

The IIR_MODULE is the bit-serial implementation of the unified IIR module, shown in
Fig. 1.3, for the DCT [1]. Since the data is bit-serial and the filter is of second order (with
two feedback loops), there were very crucial synchronization issues. The Isb’s of succes-
sive data had to synchronize at the input of the filter. If the number of delays through a
loop was to be altered, then the number of bits for the data would also have to be altered

accordingly, and vice versa; they had to be the same.

The symbol for the IR_MODULE is shown in Fig. 3.1; the schematic is given in Fig. 5.1.
The latency through the first feedback loop is 18 (latency of the multiplier is 16 plus 1
each for the BITSUB and BITADD); for the second loop it is twice as much, i.e., 36 (34
shifts plus one each for the BITSUB and BITADD).

DCTBITSERIAL Design Module

This is the top level module of the DCT bit-serial design. This is an 8-point, 18 bit data
and 8 bit coefficients design. This is the bit-serial implementation of the DCT parallel IR

filter structure [1] shown in Fig. 1.4.
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The schematic for the DCTBITSERIAL is given in Fig. 5.2. The two columns of nine 8
bit shift registers (2x9x8 shifts) perform the zN operation, i.e., delaying the data N data
words, where N = 8 here (8-point DCT). Since the data is 18 bits, the data has to be

shifted 8x18 times, resulting in the shift register structure seen in Fig. 5.2.

On the right hand side of the schematic is a column of 8 IR_MODULE filters, each corre-

sponding to a k, where k is in between 0 and 7.

The coefficients should be divided by four and supplied to the IR_MODULE, for reasons
given in the last chapter under the DUAL_MULT8_2CKx4 multiplier description.
Restrictions to the design are also governed by those of the multiplier: (1) coefficients
magnitude should be less than 0.5; (2) data DATA has to fall within the range 11 0000
0000 0000 0000 <= DATA < 01 0000 0000 0000 0000; if not, the most significant bits will
be truncated by the multiplier, and thus the sign information will be lost. It is highly rec-
ommended that one stays within a smaller range, as when the multiplied data feeds back
into the multiplier again or sent through the other multiplier, the data could be increased in
magnitude and thus the msb could be lost. A test on this issue concluded that it is safe to

stay within the following range: 11 1111 0000 0000 0000 <= DATA < 00 0001 0000 0000.

There is only one clock input signal CK. To avoid clock, reset and data skews, the design
has very effective inverting driver structures right down through its hierarchy. A simula-

tion without any driving buffers resulted in a clock skew of 2000 ns!

Since there are 8 synchronized LSBOUT output signals, one coming out of each IIR-
MOD&8 module, the effective LSBOUT can be any one of these.

During simulation prior to layout, a worst clock speed of 56 MHz and best case clock

speed of 141 MHz were measured. The throughput is 1 bit per cycle. The latency of the
design is 38 cycles.



Before getting into block place and route, the design was run through the electronic rules

check (ERC) program. There were no errors reported from the program. The following

are a few statistics from the program:

***********QUICK CHECK STATISTIC REPORT****************

Total number of

Total number of
Equivalent gate

Total cell area in design

instances in design =
Total number of pins in design =
nets in design
count in design =
(in sg. microns) =

2277

10812

4043
19349.5

33961358

Fhhhdhhhhhhkhhkhkhkhhkhhhkhhhkhhkhkhkhhkhkhkrhkhrkhrhkhkdhhkhhkhhkrhkrdhkhkhkhkhhrkx

The following are a few statistics from the Silvar Lisco blocl place and route pre-proces-

sor, scbuild. Bcells refer to big cells, such as ROMs, bit-parallel multipliers, RAMs, etc.

Pcells refer to I/O and power pad cells.

Circuit statistics
LA E S S S S EREEREEEE LS E XY
Nr. of elements
Nr. of Cells
Nr. of Pcells
Nr. of Bcells
Nr. of Nets
Nr. of Pins
Nr. of Pins/Net
Nr. of Pins/Cell
Cell Area
Bcell Area
Pcell Area

The chip I/O is as follows:

Inputs
Data: DATA Control: LSB

Select: MUXS2, MUXS1, MUXSO0
Outputs

Data: DCTO, DCT1, DCT2, DCT3, DCT4, DCT5, DCT6, DCT7

2277
2245
32

0
3608
10365

2.9 (average)

4.6 (average)
8.4897e+08 2.0E-1 MICRON**2
0.0000e+00 2.0E-1 MICRON**2
5.8142e+07 2.0E-1 MICRON**2

Clock; CK Reset: RESET

Control: LSBOUT
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Fig. 5.1: IR_MODULE Schematic
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Fig. 5.2: DCTBITSERIAL Schematic
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DCTBITSERIAL Layout

The netlist extraction, place and route, layout and extraction of timing were performed
with Silvar Lisco v3.218. The following is a summary of the layout extracted from the

tool:

DESIGN_NAME DCTBITSERIAL

LOGIC_NAME DCTBITSERIAL

DATE_TIME 94/04/05 18:28:41

UNIT_OF_SIZE 200 nanometer

_UNIT_NAME 2.0E-1 MICRON

PLI_FILE dct_bser.sc/h34b8-2.pli
INP_WHRATIO 95

INP_RATIO 50

NR_CELLS 2245

NR_BCELLS 0

NR_PCELLS 32

NR FEEDS_EXT 78

NR_LINKS 0

NR_SPACERS 0

NR_NETS 3606

LENGTH_ON_METALZ2 3082670 2.0E-1 MICRON
LENGTH_ON METALl 7830874 2.0E-1 MICRON
NR_OF VIA 12406

NR_OF_MATVIA 1665

WIDTH_OF_ACTIVE AREA 33912 2.0E-1 MICRON
WIDTH_OF_ACTIVE _AREA 6.7824e+00 mm
WIDTH_OF ACTIVE_AREA 2.6702e+02 mils
HEIGHT OF ACTIVE AREA 38284 2.0E-1 MICRON
HEIGHT OF ACTIVE AREA 7.6568e+00 mm
HEIGHT_OF ACTIVE AREA 3.0145e+02 mils
ACTIVE_AREA 1.2983e+09 2.0E-1 MICRON**2
ACTIVE_AREA 5.1931e+01 mm**2
ACTIVE_AREA 8.0494e+04 mils**2
WIDTH_OF_TOTAL_AREA 40682 2.0E-1 MICRON
WIDTH_OF TOTAL AREA 8.1364e+00 mm
WIDTH_OF_ TOTAL AREA 3.2033e+02 mils
HEIGHT OF TOTAL AREA 43316 2.0E-1 MICRON
HEIGHT OF TOTAL AREA 8.6632e+00 mm
HEIGHT_OF _TOTAL AREA 3.4107e+02 mils
TOTAL_AREA 1.7622e+09 2.0E-1 MICRON**2
TOTAL_AREA 7.0487e+01 mm**2

TOTAL _AREA 1.0926e+05 mils**2

AREA RATIO 52



The above summary gives us a lot of information on the layout. The layout consists of 34
horizontal rows. The number of cells is 2245; the number of pads is 32 (16 I/O and 16
power supply pads). The area_ratio of 52 (or 0.52) tells us that the layout is densely
packed with the ratio of interconnect area to cell area of 0.52, i.e., the cell area is nearly
twice as much as the interconnect area. The die size is 320 x 341 mils?, or 8136.4 x
8663.2 micron2. This yields a total area of 1092.6 x 10? mils?, or 70.488 x 108 micron?.
In the common man’s units, this is a 8.2 mm x 8.7 mm, or 70.5 mm? die. A plot of the

layout is given in Fig. 5.3

During the layout of this chip, the prime considerations taken into account were: the total
area; the interconnect area to cell area ratio; the die size -- as square a die as possible; opti-
mal placement of I/O and power pads; optimal placement of standard cells, with minimal
connecting wire lengths; minimal parasitic delays and capacitances (lumped and distrib-

uted) extracted from the layout; maximized active area.

It is worthy to note that, after the extraction of parasitic capacitances and delays, only two
nets had a net load greater than 1.0pF. This is by all means remarkable for a chip of 320 x
341 mils%. The delays due to layout (as opposed to intrinsic delays and input capacitance
of the standard cells) would be less than 1.0ns on any single net, as most dc1.2 standard

cells have a drive strength of 1.0ns/pF.

Testing

The design was simulated in QuickSimII after backannotation of the parasitic loads and

delays. The following is a sampling of the results:

00110010110100101010101
00111110110100101010101
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2940.0111100111110101100000000000
2960.0111100111110111100100000000
2980.0111100111110111100100110010
3000.0111100111110111100101000100
3020.0111100111110111100110101100
3040.0111100111110111100101110100
3060.0111100001110111100120010100
3080.0111100001110111100101010100
3100.01 1110000111011 0100101010100
3120.01 1110000111012 0100101010100
3140.01 1110000111011 0100101010100
310.01 1110000111011 0100101010100
3180.01 1110000111011 0100101010100
3200.0111100001110110100101010100
3220.0111100001110110100101010100
3240.0111100001110110100101010100
3260.01 111001100101 10100101010100
3280.0111100111110110100101010100
3300.0111100111110100100000000000
Time (ns)

The order in which the signals appear from left to right after a time stamp is given below

(refer to the schematics to locate the signal names):

"RESET", "CLRM", "CLR", "CK", "CKM", "CKSUB", "DATA", "DATAIN", "LSB",
"LSBIN", "MUXS2", "MUXS1", "MUXSO0", "Isbu", "datau”, "IN$840/I\$ 1044/CLRU",
"IN$840/CKACT", "IN$840/I\$1044/CKU", "LSBOUT", "DCTO0", "DCT1", "DCT2",
"DCT3", "DCT4", "DCT5", "DCT6", "DCT7".

Since it is extremely difficult to decipher the data and output from a bit-serial simulation
report, a program was written in Ample, “chk_dct.amp”, to read the report file and give

the output in a more friendly manner. The result of the program is:

Simulation results of bit-serial design dctbitserial
Input report name is complt S2 20.rep
Output report name is complt S2 20.chk

At Time = 760 ns ==
DCT (0) = 00000 = 000000000000000000
DCT (1) 00000 = 000000000000000000



DCT (2)
DCT (3)
DCT (4)
DCT (5)
DCT (6)
DCT (7)
At Time
DCT (0)
DCT (1)
DCT (2)
DCT (3)
DCT (4)
DCT (5)
DCT (6)
DCT (7)
At Time

DCT (6)
DCT (7)
At Time
DCT (0)
DCT (1)
DCT (2)
DCT (3)
DCT (4)
DCT (5)
DCT (6)
DCT (7)
At Time
DCT (0)
DCT (1)
DCT (2)
DCT (3)
DCT (4)
DCT (5)
DCT (6)
DCT (7)
At Time
DCT (Q)
DCT (1)
DCT (2)

= 00000 = 000000000000000000

00000 = 000000000000000000

00000 = 000000000000000000

00000 = 000000000000000000

00000 = 000000000000000000

00000 = 000000000000000000
1120 ns ==

00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000

= 00000 = 000000000000000000

1480 ns ==>
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000C000
00000 = 000000000000000000
00000 = 000000000000000000

1840 ns ==>

= 00004 = 000000000000000100

I

= 3FFFC = 111111111111111100
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000
00000 = 000000000000000000

3FFFC = 111111111111111100

00000 = 000000000000000000
2200 ns ==>

00008 = 000000000000001000

3FFF8 = 111111111111111000
00004 = 000000000000000100
00000 = 000000000000000000
= 00000 = 000000000000000000

00000 = 000000000000000000
00000 = 000000000000000000

= 3FFFC = 111111111111111100

I

il

2560 ns ==>
00010 = 000000000000010000
3FFEC = 111111111111101100
0000C 000000000000001100
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DCT(3) = 3FFFC = 111111111111111100
DCT (4) = 00004 = 000000000000000100
DCT (5) = 00000 = 000000000000000000
DCT (6) = 00000 = 000000000000000000
DCT(7) = 00000 = 000000000000000000
At Time = 2920 ns ==
DCT(0) = 00028 = 000000000000101000
DCT(1) = 3FFD4 = 111111111111010100
DCT (2) = 00018 = 000000000000011000
DCT(3) = 3FFF4 = 111111111111110100
DCT (4) = 00008 = 000000000000001000
DCT(5) = 3FFFC = 1111111311111111100
DCT(6) = 00004 = 000000000000000100
DCT(7) = 3FFFC = 111111111111111100
At Time = 3280 ns ==>
DCT (0) = 00050 = 000000000001010000

DCT(l) = 3FFA8 = 111111111110101000
DCT (2) = 00034 = 000000000000110100
DCT(3) = 3FFE4 = 111111111111100100
DCT (4) = 00010 = 000000000000010000
DCT(5) = 3FFF8 = 111111111111111000
DCT(6) = 00004 = 000000000000000100
DCT (7) = 00000 = 000000000000000000
At Time = 3640 ns ==
DCT (0) = 000A8 = 000000000010101000
DCT(1l) = 3FF4C = 111111111101001100
DCT (2) = 00068 = 000000000001101000
DCT(3) = 3FFC4 = 111111111111000100
DCT (4) = 00020 = 000000000000100000
DCT(5) = 3FFEC = 111111111111101100
DCT (6) = 00008 = 000000000000001000

DCT(7) = 3FFFC = 111111111111111100

These results were compared with the outputs obtained from the “dct_out.amp” given in
chapter 2 under the “Testihg” subsection. Keep in mind that what you see at, say 3640 ns
was what you expected as 3280 (the previous strobe time), allowing for the propagation
delay through the chip.

After the chip was functionally verified, the timing was verified. The speed was incre-
mentally increased to figure out the maximum speed of the chip, without any glitches and

setup, hold or pulse width violations which would affect the final output. It was deter-
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mined that the minimum possible clock period is 7.2 ns under best case or 18.0 ns under
worst case. This yields a maximum clock frequency of 139.00 MHz and 55.56 MHz

under best and worst case conditions, respectively.
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DCTBITSERIAL Layout

Fig. 5.3
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Chapter 6 - Bit-Parallel DCT

Bit-Parallel Designs and Modules

Two ASIC chips, DCTBITPARLL and DCTROMPARLL, were designed. These designs
are bit-parallel implementations of the DCT parallel IIR filter structure [1] shown in Fig.
1.4. The two implementations are -- DCTBITPARLL, with actual multipliers and
DCTROMPARLL with ROM multipliers. The DCTBITPARLL is an 8-point, 8 bit input
data, 16 bit coefficients, 16 bit internal bus precision and 12 bit output DCT design. The
ROM multiplier implementation, DCTROMPARLL, is an 8-point, 8 bit input data, 16 bit
internal bus precision and 12 bit output DCT design; the coefficients (calculated to 16 dec- |
imal places) and multiplication results are double precision numbers, and the results are
programmed into the ROM to 16 bit precision; the multiplication is performed using dis-
tributed arithmetic. The designs are optimally synchronized; synchronization is limited by

the IIR filter structure.

The designs use regular (i.e., bit-parallel) two’s complement arithmetic. The coefficients
are still fractions, so we have to deal with fractional two’s complement in these two

designs as well.

Calculation of Coefficients

The coefficients to the multipliers, which are also the coefficients of the DCT, can be cal-
culated from Fig. 1.2 (and Fig. 1.3) and Table 1.3. In the DCTBITPARLL design, the
coefficients are hard-wired in the top level schematic to the calculated coefficient values.

These coefficients are passed on to the IIR filter modules and are named COEFk(15:0) and
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COEMK(15:0), for k values of O to 7, corresponding to -D1 and N1 of Fig. 1.2 and Table

1.3; these coefficients finally go into the BMP1M4 16x16 multipliers. In the ROM imple-

mentation, the coefficients are used, external to the design, to calculate the results for the

ROM outputs. We shall see how these coefficients are calculated:

N

COEF = -D1 = ~2cos (nf) - Dcos (n%)

fork=0to7

2 k 1 k fork=1to7
COEM = N1 C(k)J;cos(nW) -iC(k) cos(n-i—é)

1

COEM = —

22

fork=0

These coefficients were calculated to 17 bit precision in an Ample program. The follow-

ing table of values was produced by the program:

Table 6.1 - Coefficients for Bit-Parallel DCT Chip

COEF

COEM

-2.000000 = 10.000000000000000

0.353553 =00.010110101000001

-1.847759 = 10.001001101111100

0.490393 = 00.011111011000101

-1.414214 = 10.100101011111011

0.461940 = 00.011101100100000

-1.530734 = 11.001111000001000

0.415735 = 00.011010100110110

0.000000 = 00.000000000000000

0.088388 = 00.010110101000001

1.530734 = 00.110000111110111

0.277785 = 00.010001110001110

1.414214 = 01.011010100000100

0.191342 = 00.001100001111101

N|la|lulplw|v]| ~]| o

1.847759 = 01.110110010000011

0.097545 = 00.000110001111100

The coefficients were then rounded to 16 bit precision when used in the DCTBITPARLL;

for the DCTROMPARLL, the coefficients were used to double precision to calculate the

results and program the results into the ROMs. For the DCTBITPARLL implementation,

the calculated binary values of the coefficients are hard-wired in the top level schematic as

mentioned earlier. The decimal point is implied. Since the coefficient magnitude could be
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as big as 2, the output of the 16x16 multiplier (with a 32 bit output) has to be extracted
carefully such that we truncate the fractional part only. Note that these coefficients are
equivalent to the coefficients of the bit-serial DCT multiplied by 4 (the decimal place of
the binary value is shifted to the right by 2 digits); these, however, are the actual coeffi-
cients of the DCT IIR filter module, as the DCTBITSERIAL used the actual coefficients
divided by 4 due to the internal design.

ROM Multiplication

The results obtained by multiplying the data and the coefficients of the DCT can be pre-
stored in a ROM and accessed for each data value. The result is obtained by feeding in the
multiplicand data to the address of the ROMs. The advantages of this method over direct

multiplication are:

a) The largest access time of the two ROMs, RO18M3B and RO18M4B dc1.2 library
standard cells, is 38.1 ns as opposed to the 64.5 propagation delay of the BMP1M4 multi-
plier. Therefore, it is conceivable that the speed of the chip would increase by approxi-

mately 50% when the ROM is used.

b) The cell area of the ROMs is much smaller than the BMP1M4, which has an area of
1915 x 2200 micron’ = 4213.00 x 10° micron?; the area of the RO18M3B is 2196 x 457
micron?, and the RO18M4B has an area of 2650 x 457 micron?, giving a total area of
2216.45 x 10% micron?. Therefore the total ROM pair area is approximately half of the
BMP1M4 area. Therefore, the area of the chip could be significantly less with the ROMs.

c¢) Built-in error reduction. In case of overflow, we can control the magnitude of the error.
For example, if the result was bigger than the maximum allowable magnitude, we could

program the result to be equal to the maximum magnitude. The multiplier BMP1M4 how-
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ever would naively calculate an erroneous result and not even notify you of the fact. For
example, if the result was smaller than the smallest allowable negative number, the multi-
plier would give a positive result; this can be avoided in the ROM by programming in the

value of the smallest allowable negative number.

d) Greater reliability in the result. The BMP1M4 may have a greater tendency to give

results off by a maybe even a single bit, depending upon switching voltage levels and slew

rates and slopes. This is unlikely with the ROMs.

Distributed Arithmetic

The results obtained by multiplying the data and the coefficients of the DCT can be pre-
stored in a ROM and accessed for each data value. However if we had 16 bit data, we
would need 216 = 65536 words. We could reduce the size of the ROMs by implementing
distributed arithmetic as follows:

Res = D (15 «0) x COEF = D (15« 8) x2 x COEF +D (7 0y x COEF

We could use two 256 word ROMs to do the same thing that one 65536 word ROM would
do. We send the lower byte of the data into one ROM’s address and the higher byte into
the other ROM’s address. For the lower byte ROM, we would calculate the result of the
lower byte data times the coefficient and store the value into the ROM. Then for the
higher byte ROM, we would calculate the result of the higher byte data times the coeffi-
cient times 28 and store the value into the ROM. When we calculated the results, it was
evident that only 10 bits for the lower byte ROM’s output and 16 bits for the higher byte
ROM’s output were required. The lower byte ROM’s input is always positive, but we can-
not say the same for the output. Therefore when adding with 16 bits of the higher byte
ROM’s output, we must sign extend the lower byte ROM’s 12 bit output to 16 bits. The
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higher byte ROM’s input could be either positive or negative and the same applies for the
output, which will be in two’s complement like the input. The implementation of this is

the ROM_MULT16.

ROM_MULT16 Design Module

This module performs the multiplication by table lookup, i.e., the multiplied results are
already stored in the ROM. This is a direct implementation of the multiplication using
distributed arithmetic described in the previous sub-section. Although we require only 10
bits of precision for the lower byte ROM, since the DC1.2 ROM cells come in bus widths
which are in increments of 4, we will choose 12 bits of precision anyway. The schematic

for the ROM_MULT16 is given in Fig. 6.6.

ADDS8 Design Module

This is a regular 8 bit adder. The symbol for the ADDS is shown in Fig. 6.1; the schematic
is given in Fig. 6.2. Signals A[7:0] and B[7:0], and carryin CIN are added together to pro-
duce the sum S[7:0] and carryout COUT. The adder has two T283M (4 bit fast carry
adder) cells connected to each other. The lower 4 bits of A and B, which are A[3:0] and
B[3:0], are connected to the top T283M; the higher 4 bits A[7:4] and B[7:4], are con-
nected to the bottom T283M.

ADD16 Design Module

This is a regular 16 bit adder. Signals A[15:0] and B[15:0], and carryin CIN are added
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together to produce the sum S[15:0] and carryout COUT. The adder has four T283M (4
bit fast carry adder) cells connected to each other. The ADDI16, in essence, is two ADDS8

modules put together in one.

SUBS8 Design Module

This is a regular 8 bit subtracter. The symbol for the SUBS is shown in Fig. 6.1; the sche-
matic is given in Fig. 6.3. The difference between the signals A[7:0] and B[7:0] is calcu-
lated to produce the difference DIF[7:0] and carryout COUT. If the module is used stand-
alone as an 8 bit subtracter, the carryin CIN has to be set to a 1; if the SUBS is used to
make a subtracter with a greater width, say 16, the CIN would be set to a 1 for the lower
byte and the COUT of the lower byte would be sent to the CIN of the higher byte. The
subtracter has two T283M (4 bit fast carry adder) cells connected to each other to form the
8 bit adder. The lower 4 bits of A[7:0] and B[7:0], which are A[3:0] and B[3:0], are con-
nected to the top T283M; the higher 4 bits A[7:4] and B[7:4], are connected to the bottom
T283M.

The subtraction is performed in two’s complement, i.e., the B[7:0] signal of the SUBS is
inverted and sent to the B inputs of the T283M cells. The 1 set on the lower 4 bits’ CIN is

to complete the conversion to two’s complement.

SUB16 Design Module

This is a regular 16 bit subtracter. The difference between the signals A[15:0] and B[15:0]
is calculated to produce the difference DIF[15:0] and carryout COUT. If the module is
used stand-alone as an 16 bit subtracter, the carryin CIN has to be set toa 1. The SUB16,
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in essence, is two SUB8 modules put together in one, and therefore all logical characteris-

tics of the SUBS apply here too.

DELAYS8 Design Module

This is simply a string of eight 8 bit D-registers (T273M8). DELAYS delays the 8 bit data
signal for 8 clock cycles, thus performing the zN=738 operation of the IIR filter structure
for the DCT. The symbol for the DELAYS is shown in Fig. 6.1; the schematic is given in
Fig. 6.4. The CK and CLR signals are sent through two 2X inverting buffers each to drive
the inputs of the eight registers. CKDLY and CLRDLY are internal signal/net names cor-
responding to CK and CLR. Q[7:0] signals are the D[7:0] signals delayed by eight clock

cycles.

IIR_16INTx16C Design Module

The ITIR_16INTx16C is the bit-parallel multiplier implementation (using actual multiplier
cells) of the unified IIR module, shown in Fig. 1.3, for the DCT [1]. The symbol for the
IIR_16INTx16C is shown in Fig. 6.1; the schematic is given in Fig. 6.5.

The multiplier BMP1M4 is 16x16, producing a 32 bit result. However, because of the
feedback loop, we cannot take all 32 bits. The data are 16 bit integers; the coefficients are
16 bit fractional numbers with maximum magnitude of 2. Therefore, the data D has to be
within the range 1100 0000 0000 0000 < D < 0100 0000 0000 0000. The coefficient has a
two digit integer part and 14 bits of fractional part. Therefore, out of the outputs P[31:0]
of the multiplier BMP1M4, considering the range and the data and coefficient formats,

what we should be interested in is P[31] (for sign) and P[28:14], truncating the fractional
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14 bits of the result; the two msb bits P[30:29] are also truncated hoping that we stay
within the specified range. The sign could also be derived from P[29] or P[30], instead of
P[31], if the data D stays within the range.

An internal bus precision of 16 is maintained; the 8 bit input to the [IR_16INTx16C is sign
extended to 16 bits; the 16 bit output of the BMP1M4, at the output stage, is truncated (the
4 most significant bits) to 12 bits; these 12 bits are registered and sent to the output of the

module and straight to the output pads of the chip.

Synchronization is a sticky issue for the IIR filter module. Since the maximum and
required delay in the Zlandz2 delay loops is 1 and 2 respectively, only two registers can
be used in the feedback loops. Registers are used as necessary outside the IIR filter feed-

back loops.

IIR_ROM16x16 Design Module

The IIR_ROM16x16 is the ROM multiplier implementation of the unified IIR module,
shown in Fig. 1.3, for the DCT [1]. The symbol for the IIR_ROM16x16 is shown in Fig.

6.1; the schematic is given in Fig. 6.7.

The multiplier ROM_MULT16 is programmed to perform multiplication on a 16 bit input
and produce a 16 bit result. The 16 bit result is because of the feedback loop; we cannot
take all 32 bits results. The data are 16 bit integers; the coefficients are fractional numbers
with maximum magnitude of 2. Therefore, the data D has to be within the range 1100
0000 0000 0000 < D <0100 0000 0000 0000.

An internal bus precision of 16 is maintained; the 8 bit input to the IR_ROM16x16 is sign
extended to 16 bits; the 16 bit output of the ROM_MULT16 at the output stage is trun-
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cated (the 4 most significant bits) to 12 bits; these 12 bits are registered and sent to the out-

put of the module and straight to the output pads of the chip.

Synchronization is a sticky issue for the IIR filter module. Since the maximum and
required delay in the Z'! and 72 delay loops is 1 and 2 respectively, only two registers can
be used in the feedback loops. Registers are used as necessary outside the IIR filter feed-

back loops.

DCTBITPARLL Design Module

This is the top level module of the DCTBITPARLL design. The schematic for the DCT-

BITPARLL is given in Fig. 6.8. The schematics for the four modules used in the design --
SUBS, DELAYS8 and IIR_16INTx16C are given in Figs. 6.3, 6.4 and 6.5 respectively, and

their symbols are given in Fig. 6.1.

The DELAYS8 module (8 clock cycle delays) performs the zN operation, i.e., delaying the
data N data words, where N = 8 here (8-point DCT).

On the right hand side of the schematic is a column of eight IIR_16INTx16C filter mod-

ules, each corresponding to a k, where k is in between 0 and 7.

There is only one clock input signal CK. To avoid clock, reset and data skews, the design

has very effective inverting driver structures right down through its hierarchy.

The processor is designed to be as synchronous as possible. All asynchronous compo-
nents and modules are followed by a register, except in the IIR_16INTx16C feedback

loops.

The critical path of the DCTBITPARLL is clearly the 7! feedback loop of the IIR filter.
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The critical path delay would then be the addition of the propagation delays through the
BMP1M4, ADD16, SUB16 and REG16. The delay through the ADD16 and SUB16 is the
delay through the four T283M carryouts. The delay through REG16 is the same as the
delay through a T273M8. We shall calculate the critical path delay as follows (worst case -
-- this implies cases of overflow and other error conditions, 125 C and worst case process

variables):

tPeritical = delay(BMP1M4) + delay(ADD16) + delay( SUB16) + delay(T273M8)

(645 +02*0.25)+2*(3.7+2*69+7.0+ 1.1 *0.25) + (4.5 +0.7 *0.1)
119 ns

Note that the T273M8 register does not require a setup time. This estimate is without any
netdelay or back annotation calculations. The best case delay would be approximately

(assuming no overflow or carryout, -55 C and best case process variables):

tPeriticat = 0.4 * [(64.5 +0.2 *0.25) + 2 * (3.7 +1.1 *0.25) + (4.5 +0.7 *0.1)]
= 30 ns

If we estimate a 20% increase in delay due to backannotation, we have approximately 143
ns worst case and 36 ns best case critical path delay. This would accommodate a worst

clock speed of 7 MHz and best case clock speed of 28 MHz.

Prior to layout, the maximum clock speed for the whole design was 32.5 MHz at best case
and 13.0 MHz at worst case (125 C and worst process). The throughput is 1 transform

word per cycle. The latency of the design is 5 cycles. All testing of the design were done

with worst case parameters.

Before getting into block place and route, the design was run through the electronic rules
check (ERC) program. There were no errors reported from the program. The following

are a few statistics from the program:
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***********QUICK CHECK STATISTIC REPORT****************
Total number of instances in design = 687

Total number of pins in design 4774

Total number of nets in design 2084

Equivalent gate count in design = 45264

Total cell area in design (in sq. microns) = 78307102
Ahkhhkhkhkhhkhkhkhkhkhkhkhkhkhkdhkhkhkhkhkhkhkhkrhkhkhkdkhhrkrhrkhhkrkhbhbkhbhkkrdhhrdhkhddhhhddxx

The following are a few statistics from the Silvar Lisco block place and route pre-proces-
sor, scbuild. Bcells refer to big cells, such as ROMs, bit-parallel multipliers, RAMs, etc.

Pcells refer to I/O and power pad cells.

Circuilt statistics
hhkhkhkdkhkhkhkhkhhhkdkkxkx

Nr. of elements : 687
Nr. of Cells : 549
Nr. of Pcells : 122
Nr. of Bcells : 16
Nr. of Nets : 1691
Nr. of Pins : 4849
Nr. of Pins/Net : 2.9 (average)
Nr. of Pins/Cell : 7.1 (average)
Cell Area i 2.7171e+08 2.0E-1 MICRON**2
Bcell Area : 1.6854e+08 2.0E-1 MICRON**2
Pcell Area : 2.5628e+08 2.0E-1 MICRON**2
The chip I/O is as follows:

Inputs

Data: D7, D6, DS, D4, D3, D2, D1, D0

Clock: CK

Reset: RESET

OQutputs

Data: DCT0(11:0), DCT1(11:0), DCT2(11:0), DCT3(11:0), DCT4(11:0), DCT5(11:0),
DCT6(11:0), DCT7(11:0)
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DCTROMPARLL Design Module

This is the top level module of the DCTROMPARLL design. The schematic for the
DCTROMPARLL is given in Fig. 6.9. The schematics for the four modules used in the
design -- SUB8, DELAY8 and IRMODS are given in Figs. 6.3, 6.4 and 6.5 respectively,

and their symbols are given in Fig. 6.1.

The DELAYS module (8 clock cycle delays) performs the zN operation, i.e., delaying the
data N data words, where N = 8 here (8-point DCT).

On the right hand side of the schematic is a column of eight IR_ROM16x16 filter mod-

ules, each corresponding to a k, where k is in between 0 and 7.

There is only one clock input signal CK. To avoid clock, reset and data skews, the design

has very effective inverting driver structures right down through its hierarchy.

The processor is designed to be as synchronous as possible. All asynchronous compo-
nents and modules are followed by a register, except in the [IR_ROM16x16 feedback

loops.

The critical path of the DCTROMPARLL is clearly the 7! feedback loop of the IIR filter.
The critical path delay would then be the addition of the propagation delays through the
RO18M4B, ADD16’s, SUB16 and REG16. The delay through the ADD16 and SUB16 is
the delay through the four T283M carryouts. The delay through REG16 is the same as the
delay through a T273M8. We shall calculate the critical path delay as follows (worst case,
which here implies cases of overflow and other error conditions, 125 C and worst case

process variables):

tPeritical = delay(RO18M4B) + 2 * delay(ADD16) + delay( SUB16) + delay(T273M8)
= (38.1+ 1.7 %0.25) + 3 * (3.7 42 % 6.9 + 7.0 + 1.1 ¥0.25) + (4.5 +0.7 *0.1)
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= 118 ns

Note that the T273M8 register does not require a setup time. This estimate is without any
netdelay or back annotation calculations. The best case delay would be approximately

(assuming no overflow or carryout, -55 C and best case process variables):

tPeritical = 0.4 *[(38.1 + 1.7 ¥0.25) + 3 *(3.7 +1.1 *0.25) + (4.5 +0.7 *0.1)]
= 22ns

If we estimate a 20% increase in delay due to backannotation, we have approximately 142
ns worst case and 27 ns best case critical path delay. This would accommodate a worst

clock speed of 7 MHz and best case clock speed of 37 MHz.

Prior to layout, the maximum clock speed for the whole design was 38.5 MHz at best case
and 15.4 MHz at worst case (125 C and worst process). The throughput is 1 transform
word per cycle. The latency of the design is 5 cycles. All testing of the design were done

with worst case parameters.

Before getting into block place and route, the design was run through the electronic rules
check (ERC) program. There were no errors reported from the program. The following

are a few statistics from the program:

***********QUICK CHECK STATISTIC REPORT****************
Total number of instances in design = 767

Total number of pins in design = 5318

Total number of nets in design = 2340

Equivalent gate count in design = 52096

Total cell area in design (in sqg. microns) = 49249342
khkhkhhhkhhhhkhkhkhhkhkhkkhkhkdhkhhhhhdhhkdhhkhkhkhhkhkhkhhkhkhkhkhkrkhkhkhxkkhkhkhhkxkkxk

The following are a few statistics from the Silvar Lisco block place and route pre-proces-
sor, scbuild. Bcells refer to big cells, such as ROMs, bit-parallel multipliers, RAMs, etc.

Pcells refer to I/O and power pad cells.
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Circuit statistics
I E R AR E R EE SRS EE S SRR

Nr. of elements : 767
Nr. of Cells : 613
Nr. of Pcells : 122
Nr. of Bcells : 32
Nr. of Nets : 2155
Nr. of Pins : 5121
Nr. of Pins/Net : 2.4 (average)
Nr. of Pins/Cell : 6.7 (average)
Cell Area :+  3.4526e+08 2.0E-1 MICRON**2
Bcell Area : 8.8539%e+08 2.0E-1 MICRON**2
Pcell Area : 2.5628e+08 2.0E-1 MICRON**2
The chip I/O is as follows:
Inputs
Data; D7, D6, D5, D4, D3, D2, D1, DO
Clock: CK
Reset: RESET
Qutputs

Data: DCTO0(11:0), DCT1(11:0), DCT2(11:0), DCT3(11:0), DCT4(11:0), DCT5(11:0),
DCT6(11:0), DCT7(11:0)



Fig. 6.1: Bit-Parallel Hierarchical Module Symbols
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Fig. 6.2: ADD8 Schematic
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Fig. 6.3: SUB8 Schematic

T283M
ROL> TO04N gi CiHD_ EN ::[: _Dgg?
31> L s ——>0Fp
136 ~ p>—e
B2l> LRl {>c 2 s — >pIF3
53> >c 187 AC>— A
1s8 o
T283M
B4[> TO0AN mgi A1 Z‘;N Z:? _D_DB?;;
35— So—gi— M Wl
o e DIFE
S 1819 > AB
B6 TOG4N A i —{ >DIF7
7> = m o ——{>0UT
1812 5

67



Fig. 6.4: DELAYS8 Schematic
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Fig. 6.5: IIR_16INTx16C Schematic
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Fig. 6.6: ROM_MULT16 Schematic
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Fig. 6.7: IIR_ROM16x16 Schematic
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Fig. 6.8: DCTBITPARLL Schematic




Fig. 6.9: DCTROMPARLL Schematic




DCTBITPARLL Layout

The netlist extraction, place and route, layout and extraction of timing were performed
with Silvar Lisco v3.218. The following is a summary of the layout extracted from the

tool:

DESIGN NAME DCTBITPARLL

LOGIC_NAME DCTBITPARLL

DATE_TIME 94/04/13 23:31:48

UNIT OF SIZE 200 nanometer

UNIT NAME 2.0E-1 MICRON

PLI_FILE dct parll.sc/v4x4h8b8-2.pli

INP WHRATIO 120

INP_RATIO 50

NR_CELLS 549

NR BCELLS 16

NR _PCELLS 122

NR_FEEDS EXT 142

NR_LINKS 0

NR_SPACERS 0

NR NETS 1689

LENGTH ON_METAL2 11570419 2.0E-1 MICRON
LENGTH _ON_METAL1l 26130279 2.0E-1 MICRON
NR OF VIA 10980

NR OF MATVIA 828

WIDTH OF ACTIVE AREA 49910 2.0E-1 MICRON
WIDTH OF ACTIVE AREA 9.9820e+00 mm
WIDTH OF ACTIVE AREA 3.9299e+02 mils
HEIGHT OF ACTIVE AREA 62594 2.0E-1 MICRON
HEIGHT OF ACTIVE AREA 1.2519e+01 mm
HEIGHT OF ACTIVE AREA 4.9287e+02 mils
ACTIVE AREA 3.1241e+09 2.0E-1 MICRON**2
ACTIVE AREA 1.2496e+02 mm**2

ACTIVE AREA 1.9369e+05 mils**2
WIDTH OF TOTAL AREA 58652 2.0E-1 MICRON
WIDTH OF TOTAL AREA 1.1730e+01 mm
WIDTH OF TOTAL AREA 4.6183e+02 mils
HEIGHT OF TOTAL AREA 67950 2.0E-1 MICRON
HEIGHT OF TOTAL AREA 1.3590e+01 mm
HEIGHT_OF TOTAL AREA 5.3504e+02 mils
TOTAL_AREA 3.9854e+09 2.0E-1 MICRON**2
TOTAL AREA 1.5942e+02 mm**2

TOTAL AREA 2.4710e+05 mils**2

AREA RATIO 59
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The above summary gives us a lot of information on the layout. The layout consists of 4
rows of 4 16x16 multipliers each, one pair of rows at the top and one pair of rows at the
bottom, there are 8 horizontal rows sandwiched in between the two pairs of multiplier
rows. The number of cells is 549 MSI and SSI cells and 16 multiplier bus cells; the num-
ber of pads is 122 (106 I/O pads and 16 power supply pads). The area_ratio of 59 (or
0.59) tells us that the layout is densely packed with the ratio of interconnect area to cell
area of 0.59, i.e., the cell area is approximately 1.7 times larger than the interconnect area.
The die size is 462 x 535 mils?, or 11730.4 x 13590.0 micron®. This yields a total area of
2471.0 x 10% milsz, or 159.416 x 10% micron2. In the commeon man’s units, thisis a 11.73

mm x 13.59 mm, or 159 mm? die. A plot of the layout is given in Fig. 6.10.

During the layout of this chip, the prime considerations taken into account were: the total
area; the interconnect area to cell area ratio; the die size -- as square a die as possible; opti-
mal placement of the big cells -- the multipliers; optimal placement of I/O and power
pads; optimal placement of other cells, with minimal connecting wire lengths; minimal
parasitic delays and capacitances (lumped and distributed) extracted from the layout; max-

imized active area.

After the extraction of parasitic capacitances and delays, only a few nets had a net load
greater than 1.0pF. Therefore, delays due to layout (as opposed to intrinsic delays and
input capacitance of the standard cells) would be less than 1.0ns on any single net, as most

dcl.2 standard cells have a drive strength of 1.0ns/pF.

DCTROMPARLL Layout

The netlist extraction, place and route, layout and extraction of timing were performed

with Silvar Lisco v3.218. The following is a summary of the layout extracted from the
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tool:

DESIGN NAME DCTROMPARLL

LOGIC_NAME DCTROMPARLL

DATE TIME 94/04/13 19:10:15

UNIT OF SIZE 200 nanometer

UNIT NAME 2.0E-1 MICRON

PLI FILE dct_rom.sc/v16x2hl0b8-2.pli
INP_WHRATIO 120

INP_RATIO 50

NR_CELLS 613

NR_BCELLS 32

NR PCELLS 122

NR_FEEDS EXT 94

NR_LINKS O

NR_SPACERS 0

NR_NETS 2153

LENGTH_ON_METALZ 13304999 2.0E-1 MICRON
LENGTH ON METAL1 35494592 2.0E-1 MICRON
NR_OF_VIA 11259

NR_OF MATVIA 535

WIDTH OF ACTIVE AREA 45900 2.0E-1 MICRON
WIDTH OF ACTIVE AREA 9.1800e+00 mm
WIDTH OF ACTIVE AREA 3.6142e+02 mils
HEIGHT OF_ACTIVE AREA 54552 2.0E-1 MICRON
HEIGHT OF ACTIVE AREA 1.0910e+01 mm
HEIGHT OF ACTIVE AREA 4.2954e+02 mils
ACTIVE AREA 2.5039%e+09 2.0E-1 MICRON**2
ACTIVE AREA 1.0016e+02 mm**2

ACTIVE AREA 1.5524e+05 mils**2
WIDTH OF TOTAL AREA 58308 2.0E-1 MICRON
WIDTH OF TOTAL AREA 1.1662e+0l1 mm
WIDTH OF TOTAL AREA 4.5912e+02 mils
HEIGHT OF TOTAL AREA 60060 2.0E-1 MICRON
HEIGHT OF TOTAL AREA 1.2012e+01 mm
HEIGHT OF TOTAL AREA 4.729le+02 mils
TOTAL AREA 3.5020e+09 2.0E-1 MICRON**2
TOTAL AREA 1.4008e+02 mm**2

TOTAL_AREA 2.1712e+05 mils**2

AREA RATIO 103

The above summary gives us a lot of information on the layout. The layout consists of 2
rows of 16 ROM cells each, one row at the top and one row at the bottom; there are 10

horizontal rows sandwiched in between the two rows of ROMs. The number of cells is

76



613 MSTI and SSI cells and 32 ROM cells (16 are 256x16 and the other 16 are 256x12); the
number of pads is 122 (106 I/O pads and 16 power supply pads). The area_ratio of 103 (or
1.03) tells us that the layout is fairly densely packed with a ratio of interconnect area to
cell area of 1.03, i.e., the cell area is approximately equal to the interconnect area. The die
size is 459 x 473 mils, or 11661.6 x 12012.0 micron®. This yields a total area of 2171.2 x
10 mils?, or 140.080 x 108 micron?. In the common man’s units, this is a 11.66 mm x

12.01 mm, or 140 mm2 die.

During the layout of this chip, the prime considerations taken into account were: the total
area; the interconnect area to cell area ratio; the die size -- as square a die as possible; opti-
mal placement of the big cells -- the ROMs; optimal placement of I/O and power pads;
optimal placement of other cells, with minimal connecting wire lengths; minimal parasitic
delays and capacitances (lumped and distributed) extracted from the layout; maximized

active area. A plot of the layout is given in Fig. 6.11.

After the extraction of parasitic capacitances and delays, only a few nets had a net load
greater than 1.0pF. Therefore, delays due to layout (as opposed to intrinsic delays and
input capacitance of the standard cells) would be less than 1.0ns on any single net, as most

dcl.2 standard cells have a drive strength of 1.0ns/pF.

Comparison Between ROM and Multiplier

The DCTROMPARLL layout is smaller than the DCTBITPARLL as expected. One could
verify this by looking at the summary for each layout; the DCTBITPARLL has an area of
159 mm?, while the DCTROMPARLL has an area of 140 mm2. This is a significant

12.5% reduction in area. However, the difference is not as much as expected, as there is a

lot of area taken up by the interconnect net area. This accounts for the superior intercon-
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nect area to cell area ratio of 0.59 for the DCTBITPARLL as opposed to the 1.03 area ratio
The designs were simulated in QuickSimlII after backannotation of the parasitic loads and

delays. The following is a sampling of the results:

for the DCTROMPARLL.
a) DCTBITPARLL

Testing

1

1

1200.0 1

0

0
0
0

0O 0 0 0 0 0 00 0 O
0 O 0
0

0
0

0
0
0

0

0 0 0 O

0

0
0

0 6 0 O
0

0
0 0 0 00 0 0 O

0

0 O 0O 0 0 0 O 0
0

0 0 0 0 0 O

0

0 0

0 0 0 0 0 O

1400.0 1 1 1 1
0 0 0 0 O

1

0 0 00 0 1 1

0

0

1

1 1

1

1600.0 1

0
0 0 O

0
0

0O 0 0 O
0 0 0 O

0

0

0
0 0 0 0 0 0 O

0

0O 0 0 0 0 O

1

1

0

1

0

0

0

0

0

1 1

1

1800.0 1

1

0 0 0 0 O

0

1

1

2000.0 1
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2200.01 1 1. 1 1 1 1 0 O O O O O 1 0 O
0111 0 0 0 O0OOOOOI1 01 001 1 1 11
11 01 00 O O OO0OO0OO0OO0ODO0ODODODTI1L 11 011
11 1 1 1 1 1 0 O O O O O O OO O OO0 o0 1 O
01 1 1 1 111 1 1 1 0 1 0 O O O O O 0 O
6 o0 0 11 1 1 1 1 1 1 1 1 1 11

Time (ns)

Since the signal state list report above is wide, they rap around in this document for every
time stamp. The order in which the signals appear from left to right after a time stamp is
given below (refer to the schematics to locate the signal names). The DCTROMPARLL
has the same signal names and column definitions, so this list applies to the DCTROM-
PARLL as well:

"RESET", "CLRIN", "CLRIN2", "CLRA", "DLY8/CLRDLY", "IIR_MO/CLRIIR", "CK",
"CKIN", "CKIN2", "CKA", "DLY8/CKDLY", "IIR_MO/CKIIR", "D7", "D6", "D5",
"D4", "D3", "D2", "D1", "D0", "DCTO0(11)", "DCT0(10)", "DCT0(9)", "DCTO(8)",
"DCTO(7)", "DCTO(6)", "DCTO(5)", "DCT0(4)", "DCTO(3)", "DCTO0(2)", "DCTO(1)",
"DCTO0(0)", "DCT1(11)", "DCT1(10)", "DCT1(9)", "DCT1(8)", "DCT1(7)", "DCT1(6)",
"DCT1(5)", "DCT1(4)", "DCT1(3)", "DCT1(2)", "DCT1(1)", "DCT1(0)", "DCT2(11)",
"DCT2(10)", "DCT2(9)", "DCT2(8)", "DCT2(7)", "DCT2(6)", "DCT2(5)", "DCT2(4)",
"DCT2(3)", "DCT2(2)", "DCT2(1)", "DCT2(0)", "DCT3(11)", "DCT3(10)", "DCT3(9)",
"DCT3(8)", "DCT3(7)", "DCT3(6)", "DCT3(5)", "DCT3(4)", "DCT3(3)", "DCT3(2)",
"DCT3(1)", "DCT3(0)", "DCT4(11)", "DCT4(10)", "DCT4(9)", "DCT4(8)", "DCT4(7)",
"DCT4(6)", "DCT4(5)", "DCT4(4)", "DCT4(3)", "DCT4(2)", "DCT4(1)", "DCT4(0)",
"DCT5(11)", "DCT5(10)", "DCT5(9)", "DCT5(8)", "DCT5(7)", "DCT5(6)", "DCT5(5)",
"DCT5(4)", "DCT5(3)", "DCT5(2)", "DCT5(1)", "DCT5(0)", "DCT6(11)", "DCT6(10)",
"DCT6(9)", "DCT6(8)", "DCT6(7)", "DCT6(6)", "DCT6(5)", "DCT6(4)", "DCT6(3)",
"DCT6(2)", "DCT6(1)", "DCT6(0)", "DCT7(11)", "DCT7(10)", "DCT7(9)", "DCT7(8)",
"DCT7(7)", "DCT7(6)", "DCT7(5)", "DCT7(4)", "DCT7(3)", "DCT7(2)", "DCT7(1)",
"DCT7(0)".
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b) DCTROMPARLL
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0
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1

0
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1

1

1
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1

1
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6 6 0 0 0 00 0 O

0

0
6 0 0 0 0 0 O

0

0 1

1

1

0 0
0

0

0

0 0 0 0 O

0

1

1

2200.0 1

1

0 0 0 O
0

1

0

0 0 0 0 0 0 O

0

Time (ns)

Since it is extremely difficult to decipher the data and output from a bit-serial simulation

report, a program was written in Ample, “chk_parll.amp”, to read the report file and give
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the output in a more friendly manner. The result of the program is:

a) DCTBITPARLL

Simulation results of bit-parallel design dctbitparll
Input report name is dl2o 16x16.rep

Output report name is dl2o 16x16.chk

Date: 4-12-1994

At Time = 1200 ns ==>

DCT (6) 000 = Q000000000000

DCT(7) = 000 = 000000000000 =
At Time = 1400 ns ==>

DCT(0) = 000 = 000000000000 = O

DCT (0) = 000 = 000000000000 = O
DCT (1) = 000 = 000000000000 = O
DCT(2) = 000 = 000000000000 = O
DCT(3) = 000 = 000000000000 = O
DCT (4) = 000 = 000000000000 = O
DCT (5) = 000 = 000000000000 = O

0

0

DCT(1) = FFF = 111111111111 = -1
DCT (2) = 000 = 000000000000 = O
DCT(3) = FFF = 111111111111 = -1
DCT(4) = 000 = 000000000000 =0
DCT(5) = FFF = 111111111111 = -1
DCT (6) = 000 = 000000000000 = O
DCT(7) = FFF = 111111111111 = -1
At Time = 1600 ns ==>
DCT{(0) = 001 = 000000000001 =1
DCT(1) = FFE = 111111111110 = -2
DCT(2) = 001 = 000000000001 =1
PCT(3) = FFE = 111111111110 = -2
DCT (4) = 000 = 000000000000 =0
DCT(5) = FFF = 111111111111 = -1
DCT(6) = 000 = 000000000000 = O

DCT(7) = FFF = 111111111111 = -1
At Time = 1800 ns ==>

DCT (0) = 003 = 000000000011 = 3
DCT(l) = FFB = 111111111011 = -5
DCT(2) = 003 = 000000000011 = 3
DCT(3) = FFD = 111111111101 = -3
DCT(4) = 001 = 000000000001 =1
DCT(5) = FFF = 111111111111 = -1
DCT(6) = 000 = 000000000000 = O
DCT(7) = FFF = 111111111111 = -1
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At Time = 2000 ns ==>
DCT (0) = 009 = 000000001001 = 9

DCT(l) = FF4 = 111111110100 = -12
DCT (2) = 007 = 000000000111 = 7
DCT(3) = FFC = 111111111100 = -4
DCT (4) = 002 = 000000000010 = 2
DCT(5) = FFE = 111111111110 = -2
DCT(6) = 000 = 000000000000 = O
DCT(7) = FFF = 111111111111 = -1
At Time = 2200 ns ==

DCT(0) = 014 = 000000010100 = 20

DCT (1) = FE8 = 111111101000 = -24
DCT(2) = O0OE = 000000001110 = 14
DCT(3) = FF8 = 111111111000 = -8

DCT (4) = 004

000000000100 = 4

DCT(3) = FFD = 111111111101 = -3

DCT (6) = 001 = 000000000001 =1

DCT(7) = FFF = 111111111111 = -1
a) DCTROMPARLL

Simulation results of bit-parallel design dctromparll
Input report name is dl2 romlé6xl6.rep

Output report name is dl2 roml6x16.chk

Date: 4-12-1994

At Time = 1200 ns ==
DCT(0) = 000 = 000000000000 = O
DCT (1) = 000 = 000000000000 = 0
DCT (2) = 000 = 000000000000 = 0
DCT(3) = 000 = 000000000000 = 0
DCT (4) = 000 = 000000000000 = 0
DCT (5) = 000 = 600000000000 = O
DCT (6) = 000 = 000000000000 = 0
DCT (7) = 000 = 000000000000 = 0

At Time = 1400 ns ==>

DCT (0) = 000 = 000000000000 = O
DCT(l) = FFF = 111111111111 = -1
DCT (2) = 000 = 000000000000 = O
DCT(3) = FFF = 111111111111 = -1
DCT (4) = 000 = 000000000000 = O
DCT(5) = FFF = 111111111111 = -1
DCT (6) = 000 = 000000000000 = 0
DCT(7) = FFF = 111111111111 = -1
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At Time =
DCT(0) =
DCT (1)
DCT (2)
DCT (3)

DCT (4)

)
)

DCT (5
DCT (6
DCT(7) =
At Time =

DCT (0)
DCT (1) =
DCT (2) =
DCT (3)
DCT (4
(
(

DCT
DCT
DCT (
At Time =
DCT (0) =
DCT (1)
DCT (2)
DCT (3)
DCT (4)
DCT (5) =
DCT (6) =
DCT (7)
At Time =
DCT (0)
DCT (1) =
DCT (2)
DCT(3) =
DCT (4)
DCT (5) =
DCT (6) =
DCT (7)

I

)
5)
6)
7)

1600 ns ==>
001 = 000000000001

FFE = 111111111110 =

001 000000000001
FFE 111111111110
000 = 000000000000
FFF = 111111111111
000 = 000000000000

It

000 = 000000000000 =

1800 ns ==

= 003 = 000000000011

FFB = 111111111011
003 = 000000000011
FFD = 111111111101
001 = 000000000001
FFF = 111111111111
000 = 000000000000

i

FFF = 111111111111 =

2000 ns ==>

009 = 000000001001 =

FF4 = 111111110100

007 = 000000000111
FFC = 111111111100
002 = 000000000010 =

FFE = 111111111110 =
000 = 000000000000 =

= FFF = 111111111111

2200 ns ==>

= 014 = 000000010100

FE8 = 111111101000

00D = 000000001101
FF8 = 111111111000
004 = 000000000100
FFD = 111111111101
001 = 000000000001

= FFF = 111111111111 =

These results were compared with the outputs obtained from the “dctparil_out.amp” as

mentioned in chapter 2 under the “Testing” subsection. Keep in mind that what you see at,

say 3640 ns was what you expected as 3280 (the previous strobe time), allowing for the

propagation delay through the chip. The following are a sampling of the expected results

file output by “dctparll_out.amp”:
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Outputs of DCT for 'complt S2' input DATA
Clock period = 200 ns
Date: 4-14-1994

0. At Time = 1200 for DATA = [0, O, O, O, O, O, 0, 0] ==>
DCT(0) = 0 ; DCT(1l) = 0 ; DCT(2) 0; DCT(3) = 0 ;
DCT(4) = Q0 ; DCT(5) =0 ; DCT(6) = 0 ; DCT(7) = 0 ;

1. At Time = 1400 for DATA = [0, O, O, O, O, 0, 0, 1] ==>
DCT(0) = 0 ; DCT(lL) =0 ; DCT(2) =0 ; DCT(3) = 0 ;
DCT(4) = 0 ; DCT(5) = 0 ; DCT(6) = 0 ; DCT(7) = 0 ;

2. At Time = 1600 for DATA = [0, O, O, O, O, 0O, 1, 3] ==>
DCT(0) =1 ; DCT(1) = -2 ; DCT(2) = 2 ; DCT(3) = -1 ;
DCT(4) = 1 ; DCT(5) = 0 ; DCT(6) = 0 ; DCT(7) = 0 ;

3. At Time = 1800 for DATA = (O, O, O, O, 0O, 1, 3, 7] ==>
DCT(0) = 3 ; DCT(l) = -5 ; DCT(2) = 4 ; DCT(3) = -2 ;
DCT(4) = 1 ; DCT(5) = -1 ; DCT(6) =0 ; DCT(7) = 0 ;

4, At Time = 2000 for DATA = [0, O, C, O, 1, 3, 7, 151 ==>
DCT (0) 8 ; DCT(l) = -11 ; DCT(2) =7 ; DCT(3) = -4 ;
DCT(4) = 2 ; DCT(5) = -1 ; DCT(6) =1 ; DCT(7) = 0 ;

5. At Time = 2200 for DATA = [0, O, O, 1, 3, 7, 15, 311 ==>
DCT(0) = 18 ; DCT(1l) = -24 ; DCT(2) = 14 ; DCT(3) = -7 ;
DCT(4) = 5 ; DCT(5) = -3 ; DCT(6) =1 ; DCT(7) = -1 ;

6. At Time = 2400 for DATA = [0, O, 1, 3, 7, 15, 31, 63] ==>
DCT(0) = 40 ; DCT(l) = -48 ; DCT(2) = 27 ; DCT(3) = -15 ;
DCT(4) = 9 ; DCT(5) = -5 ; DCT(6) = 3 ; DCT(7) = -1 ;

7. At Time = 2600 for DATA = [0, 1, 3, 7, 15, 31, 63, 127]

==>
DCT(0) = 85 ; DCT(1l) = -97 ; DCT(2) = 54 ; DCT(3) = =31 ;
DCT(4) = 18 ; DCT(5) = -11 ; DCT(6) = 6 ; DCT(7) = -3 ;

After the chips were functionally verified, the timing was verified. The speed was incre-
mentally increased to figure out the maximum speed of the chip, without any glitches and
setup, hold or pulse width.violations which would affect the final output. For the
DCTROMPARLL, it was determined that the minimum possible clock period is 69 ns
under best case or 28 ns under worst case. This yields a maximum clock frequency of
36.25 MHz and 14.50 MHz under best and worst case conditions, respectively. For the
DCTBITPARLL, it was determined that the minimum possible clock period is 88 ns under
best case or 35 ns under worst case. This yields a maximum clock frequency of 28.41

MHz and 11.36 MHz under best and worst case conditions, respectively.
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Fig. 6.10: DCTBITPARLL Layout
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Fig. 6.11: DCTROMPARLL Layout
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Chapter 7 - Comparison and Conclusion
Point-by-point Comparison

(1) The bit-serial design is much faster, in terms of clock speed, than the bit-parallel
designs -- 139.00 MHz as opposed to 28.41 MHz for DCTBITPARLL and 36.25 MHz for

DCTROMPARLL under best case conditions, and 55.56 MHz as opposed to 11.36 MHz
for DCTBITPARLL and 14.50 MHz for DCTROMPARLL under worst case conditions.

(2) The area of the DCTBITSERIAL is much smaller, being 1092.6 x 10? mils2, 70.49 x
108 micron? or 70.49 mm?, The area of the DCTBITPARLL is 2471.0 x 102 mils?, 159.42
x 108 micron? or 159.42 mm2, The area of the DCTROMPARLL is 2171.2 x 10 milsZ,
140.08 x 10% micron? or 140.08 mm?. Therefore, the DCTBITPARLL is about 2.3 times
the area of the DCTBITSERIAL, while the DCTROMPARLL is a little over twice the
area of the DCTBITSERIAL. This is despite the fact that the bit-serial design handles 18

bits as opposed to 8 bits input and 12 bits output for the bit-parallel designs.

(3) By definition, the bit-serial implementation requires much less bandwidth, as the bits

arrive serially.

(4) The ratio of interconnect area to cell area is much lower for the DCTBITSERIAL,; its
ratio is 0.52. Although the DCTBITPARLL has a comparable ratio of 0.59, the ratio for

the better (in terms of speed and total area) of the two bit-parallel designs, DCTROM-
PARLL, is 1.03.

(5) Due to the adjacent placement of interconnected cells of the DCTBITSERIAL, the
extremely short critical paths and the highly synchronized nature of the design, the addi-

tional timing derived from parasitic extraction was insignificant. Therefore, the speed or
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functionality of the design was not affected by layout parasitics, and remained the same as
pre-layout (with intrinsic cell delays, input pin capacitances and faux net capacitances as
mentioned in chapter 2 under “Functionality and Timing Verification”). In contrast, the
DCTBITPARLL and DCTROMPARLL, due to having the big cells, BMP1M4s and
ROMs, pre-placed in certain sections of the chip during block place and route, have long
critical paths in the layout; therefore, the interconnect nets have to be routed quite a dis-

tance to get to these big cells; this results in a sharp reduction in speed after layout.

(6) Number of pins are significantly low for the bit-serial design -- 16 I/O pins as opposed
to 106 on the bit-parallel designs. All designs have 16 power pads. Three of the pins on
the DCTBITSERIAL, MXS(2:0), are not really necessary, since these function to select
one of the 8 LSBOUT signals; we could reduce the number of I/O pins to 13, if we use an
8-input OR, using the 8 LSBOUT signals from the 8 IIR filter modules as inputs, to figure
the chip’s LSBOUT. All designs have 16 power pads in addition.

(7) The package size for the DCTBITSERIAL, in terms of pin-out, is significantly smaller
than both bit-parallel designs. This proves to be cost-effective. The DCTBITSERIAL
could fit in a package with 32 pins (or 29 pins) or more. The package size for both bit-par-

allel designs would have to fit 122 pins.

(8) The throughput of the bit-parallel designs is 1 transform word per clock cycle (frame-
recursive transforms). The throughput of the bit-serial design is 1 bit per clock cycle;
since the data is 18 bits, it takes 18 cycles to get one transform word -- however, this is
acceptable since the data is coming in at the same rate. Therefore, relative to their data

incoming rates, all designs have the same throughput.

(9) Latency of the bit-serial design is much higher -- 38 clock cycles as opposed to 5 for
the bit-parallel designs.

(10) Since the bit-serial is an 18 bit data design, it is has greater accuracy and precision
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when compared to the 8 bit input data bit-parallel design. The accuracy of the bit-serial
design lies in the DUAL_MULTS8_2CKx4 bit-serial multiplier, which has an accuracy of
0(216y; this is equivalent to a SNR of 96.33 dB. The accuracy of the bit-parallel multi-
plier depends on how large the coefficient and data are, and is therefore largely sequence-
dependent. The SNR of the bit-parallel designs do not meet the criterion of 40 dB, which

is required for most applications.

(11) The bit-serial multiplier handles only 8 bit coefficients. For each increment in coeffi-
- cient bit width, we would increase the absolute data bit width by 2, and thereby increase
the absolute throughput and latency by 2 clock cycles. However, the 8 bit coefficient

width has proven to be sufficient, yielding a SNR of 96.33 dB.

(12) Equivalent gate counts for the DCTBITSERIAL, DCTBITPARLL and DCTROM-
PARLL are 19349.5, 45264.0 and 52096.0 respectively. 1 equivalent gate represents a
NAND gate, i.e., 4 transistors for CMOS. Therefore, multiplying these values by 4 would

give the transistor count.

(13) Other miscellaneous statistics about the chips, such as number of standard cell
instances, number of nets, number of pins, pins per net, pins per cell, total cell area, total
active area, number of feed cells, number of link cells, etc., can be obtained from the
designs’ ERC reports, Silvar-Lisco’s “scbuild” place and route preprocessor output sum-

mary and the layout summary from Silvar Lisco.

Desires and Suggested Improvements

Looking back on the designs and the lessons learned, one could draw a few conclusions
and think of ways of improvement. The following set of “desires and suggested improve-

ments” were not implemented due to resource and time conflicts:
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(1) The second set of coefficients, COEMk(15:0) for k = 0 to 7, are all positive and of
magnitude less than 0.5. Therefore, the three most significant bits are always 0. This
means that the two most significant bits are redundant. Therefore, we could think of
increasing the accuracy of the multiplication by ignoring the two MSBs and adding two
LSBs. Then we would have to caref}llly extract the output, with appropriate shifts, if nec-
essary. This could be done easily with the DCTBITPARLL design; we could supply the
new COEMs (which are, in effect, twice shifted to the left) and extract the outputs twice
shifted to the right, i.e., instead of taking P[29:14], we should take P[27:12]. For the
DCTROMPARLL, this could help in the program to calculate the results, increasing the
intermediate result precision by two bits. For the DCTBITSERIAL design, we could use a
MSBMULT_2CK instead of a MSBMULT_2CKx4, increasing the accuracy by two bits;
another option is to use another bit-serial multiplier, with only a 6 bit coefficient and no
MSBMULT-type cells -- this would cut the 2 MSBs of the coefficient, reducing the
latency and increasing the throughput of the multiplier, and thereby the design, by 4 clock

cycles.

(2) We could go a step further to analyze each coefficient and come up with optimal preci-
sion widths for each IIR module. However, the downside of this is that we loose a level of

modularity; each one of the eight modules would need a separate schematic.

(3) Use 12 bit bus precision for the bit-parallel multipliers. This, although may cause a
loss in precision, will increase the speed of the designs as the propagation delay of a 12 bit
ROM or 12 x 12 multiplier is 10% to 15% smaller than a 16 bit ROM or a 16 x16 bit mul-
tiplier, and the delay through a SUB12 is about 25% less than that through a SUB16.

(4) Use only 8 bits for the coefficient in the bit-parallel design (as it was proven with the
bit-serial design that an 8-bit coefficient is sufficient). Using an 8-bit coefficient would cut
down the multiplier size by 8 bits to a 16 x 8 multiplier, and thereby decrease the critical

path delay and increase the speed of the chip significantly.
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(5) Increasing the input data bus width, and increasing the internal bus precision and the

output data bus width accordingly, for the bit-parallel versions may improve the SNR.

(6) Use custom cells to reduce the critical path delays. For example, the worst case delay
of 25 ns through the SUB16 is critical to the speed of the chip. If we could design a better
SUB16 custom cell ourselves, we may be able to increase the speed. The 64.5 ns delay
through the BMP1M4 and the 38.1 ns delay through the RO18M4B are also critical to the
bit-parallel designs. We may be able to modify the existing BMP1M4, as we use output
pins P[29:14] only, and thereby reduce the size and delay of the multiplier.

(7) Power consumption needs to be estimated. As mentioned before, this capability is not

available currently with the MEC DC1.2 library.
(8) For the bit-parallel multipliers, we could multiply the DCT coefficients by 2, 4, 8, 16,

32, ...... (before feeding them to the design) and shift right 1, 2, 3, 4, 5, ..... (effectively

would increase the precision of the coefficients, and thereby the multiplication.

Conclusion

A bit-serial implementation of the Discrete Cosine Transform processor, using the fully-
pipelined, real-time, time-recursive IIR filter module was presented in this thesis; the
counterpart bit-parallel implementations were also presented. All three designs maintain a
high level of modularity and regularity, and are free of global communication; they were
designed to be hierarchical, and thereby correct by construction. The hardware required is

of o(N), where N corresponds to an N-point DCT.

Clearly, the bit-serial implementation has many advantages over the bit-parallel imple-
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mentations; the advantages that the bit-parallel implementations have over the bit-serial
implementation are few. This is despite the fact that the bit-serial design handles 18 bits of
data (but 8 bit coefficients), whereas the bit-parallel designs can handle only 8 bit data
input (but 16 bit coefficients). The major disadvantages of the bit-serial design is a slower
absolute throughput, which is equivalent to the width (in bits) of the data stream, and the
higher latency of minimum 38 clock cycles. Another disadvantage is the reduced preci-
sion of the coefficients, which however, proves to be insignificant as the DCTBITSERIAL
possesses a SNR of 96.33 dB. Apart from these disadvantages, we saw that the DCTBIT-

SERIAL has many advantages which by far overshadow its disadvantages.

These aspects of the bit-serial DCT processor design, presented here, are resonant with the
requirements of modern day image, speech and signal processing applications, data com-
pression, spectrum analysis, computer tomography and signal reconstruction, and specifi-
cally high-definition television (HDTV). The amazingly high speed of this device, up to

139.0 MHz, is particularly attractive.
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APPENDIX

AlliedSignal Microelectronics DC1.2 Library Cells Used

The following is a list of the AlliedSignal Aerospace Microelectronic and Technology

Center’s DC1.2 library parts used:

BMP1M4
C050M
POOOM

POOIM

P0O02M
PO0O6M,PO07M
P0O06M1,P007M1
PO014M
RO18M3B
RO18M4B
T004M

TOO4F

TOOSM
T032M
TO82M1
T151M
T157M1
T164Mn
T273Mn
T283M

16 x 16 Multiplier (two’s complement and sign magnitude)
Buffer

Input Pad

Inverting Input Pad

Output Pad

Power Pads

Auxilliary Power Pads, Metall

Inverting Input pad with Schmitt Trigger (P014M1 is with pullup)
ROM 256 words x 12 bits

ROM 256 words x 16 bits

Simple Inverter

4X Inverting Driver

2-Input AND

2-Iﬁput OR

Full Adder

1 bit, 8-to-1 Line Multiplexer

1 bit, 2-to-1 Line Multiplexer

n bit STPO Shift Register

n bit High Speed D-Register

4 bit Fast Carry Adder
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