
TECHNICAL RESEARCH REPORT

Biologically Inspired Algorithms for Optimal Control

by Cheng Shao and D. Hristu-Varsakelis

TR 2004-29

CENTER FOR DYNAMICS
AND CONTROL OF

SMART STRUCTURES

C

S

D
+

-

The Center for Dynamics and Control of Smart Structures (CDCSS) is a joint Harvard University, Boston University, University of Maryland center,
supported by the Army Research Office under the ODDR&E MURI97 Program Grant No. DAAG55-97-1-0114 (through Harvard University). This

document is a technical report in the CDCSS series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CDCSS/cdcss.html

Biologically Inspired Algorithms

for
Optimal Control1

Technical Report

Cheng Shao and D. Hristu-Varsakelis

Department of Mechanical Engineering & Institute for System Research

University of Maryland

College Park, MD 20742

{cshao,hristu}@glue.umd.edu

1This work was supported by the National Science Foundation under Grant No. EIA0088081

and by ARO ODDR&E MURI01 Grant No. DAAD19-01-1-0465, (Center for Communicating

Networked Control Systems, through Boston University).

Contents

1 Introduction 1

1.1 Cooperative Biological Systems . 2

1.2 Research Objectives . 3

1.3 Outline . 4

2 Literature Review 5

2.1 Animal Group Pattern Modeling . 5

2.2 Models of Ant-Trail Formation . 7

2.3 Distributed Covering and Searching . 8

2.4 Distributed Localization and Estimation . 9

2.5 Group Formations . 10

2.6 Biologically-Motivated Optimization . 11

3 Biologically Inspired Algorithms for Optimal Control 13

3.1 Problem Statement and Notation . 13

3.2 A Class of Bio-Inspired Pursuit Algorithms 15

3.3 Algorithm Advantages . 19

4 Current Progress 21

4.1 Results on Sampled Local Pursuit . 21

4.2 Results on Continuous Local Pursuit . 24

4.3 Results on Free Final Time Local Pursuit . 26

4.4 Summary . 26

4.5 Special Cases: Length and Time Minimization 27

4.6 Simulations . 28

5 Ongoing Work 32

5.1 Optimal Control Problems with Free Final State 32

5.2 Convergence to Global vs Local Optimum 34

5.3 Pursuit with Noisy Measurements . 36

i

5.4 Application in Numerical Computation of Optimal Control 38

5.5 Other Algorithms Inspired by Biology . 40

A Proofs 42

A.1 Preliminaries . 42

A.2 Proof of Lemma 4.1 . 42

A.3 Proof of Lemma 4.2 . 45

A.4 Proof of Lemma 4.3 . 46

A.5 Proof of Lemma 4.4 . 47

A.6 Proof of Lemma 4.5 . 48

A.7 Proof of Lemma 4.6 . 48

ii

Chapter 1

Introduction

Cooperative control systems are increasingly emerging as significant alternatives to their

centralized counterparts recently. The rising interest in deploying cooperative systems is fu-

eled by the development of decentralized systems with low cost and performance advantages.

For example, mobile exploration and information gathering tasks can often be accomplished

Figure 1.1: A swarm of robots are expected to explore unknown planets.

cheaply and more reliably by swarms of small autonomous robots as opposed to a single

more sophisticated one. Cooperative control is also applied in many tasks that can not

be performed by a single system, e.g. satellite arrays that enable global communication,

geographically remote systems that communicate via network and others.

The goal of our research is to investigate optimal control in cooperative systems, using

1

algorithms inspired from biology. We begin with a review of collective behavior in biological

systems.

1.1 Cooperative Biological Systems

Animal aggregation is a common phenomenon in nature, seen in organisms that range in

complexity from primal zooplanktons to advanced mammals. Many species exhibit collective

movement patterns which are highly organized, compared to the seemingly random individual

behaviors. For example, a school of fish can move together in a tight formation and respond

almost as fast as a single organism to evade encountering dangers. Worker honey bees can

distribute themselves to different nectar sources in accordance with the profitability of each

source. Ants can recruit their nest-mates to form a trail along the most efficient path between

the nest and food when foraging [1, 2].

The above examples show that aggregate behaviors in these animals may have special

group-level properties that go beyond the ability of an individual. Certainly, if all group

members’ behaviors are coordinated by a centralized “leader”, the leader must have the ca-

pabilities to communicate with others and alter their behaviors. Observing the qualitatively

identical behaviors of all members in an insect aggregate as well as their physical limitations,

we can conclude that there are no such leaders in these groups (and this is supported by

other research [1, 2, 4]). Therefore, some of the awe-inspiring group behaviors in nature

come about as the results of individuals’ self-organized actions. For instance, at the individ-

ual level honey bees receive limited information from other workmates and go to forage the

selected flowers. This type of behavior seems to lead to random distribution over different

sources because the message each bee obtained does not convey to it accurate information

about the profitability of each nectar source. At the group level, however, it is amazing

to see that foragers are rationally dispatched over different flowers in accordance with the

distribution of nectar over various sources. Coordinating a colony of bees to achieve such a

complicated collective behavior seems very difficult for any individual bee. A reasonable ex-

planation is that bees only follow some simple rules all through the foraging activities while

the collective behavior turns out to be highly organized [1]. In conclusion, the individual

behavior is an “unsophisticated” one due to the individuals’ physical limitations, in contrast

to the complex performance of the whole group. This fact implies that there seems to ex-

ist an intrinsic mechanism among insect aggregates that overcomes individuals’ drawbacks

and yields results that might be impossible for individuals to attain. It is the cooperation

between group members, i.e. the rule that each individual complies with, that yields group

patterns1 qualitatively different from and more elegant than those of individual behaviors.

1We use “group pattern” to refer to the collective movement pattern of a group.

2

We have seen that biological systems, especially social insects, demonstrate many promis-

ing cooperative solutions to complicated tasks. Many of these tasks are similar (at least

functionally) to what one might want to do with cooperative engineered collectives. In ad-

dition, individual members in a biological collective are similar to the units of a cooperative

control system in the sense that they are equipped with limited capabilities of sensing, com-

municating and computing. What we are essentially interested in is trading off individual

capability of cooperating in order to achieve a complex task with less sophisticated equip-

ment: low power, short sensing range and low communication burden, looking to natural

examples - like that ants are able to find the most efficient path while individual ants are

of short sight and low intellect - for successful prototypes. Natural systems have developed

such capabilities to solve various problems through evolution and natural selection, and may

offer us some clues on how to proceed [1, 26].

1.2 Research Objectives

The objective of this work is to investigate the cooperative solution of a class of optimal

control problems using groups of agents2 with limited sensing and computing capabilities.

Our approach will be to postulate rules for individual behavior, inspired from observations

of biological systems, and then investigate the “group pattern” that emerges. Rules for

individual agents will be obtained by:

1. Constructing a proper model for the observed collective movement patterns of certain

biological systems, including ant colonies. An effective model will allow us to capture

some aspects of the “experience” accumulated through natural selection.

2. Extracting simple “rules” that capture individual behavior within the group. These

rules should be kept simple, with respect to the computation and communication

resources required to implement them, to be applied to cooperative control systems,

such as cheap autonomous robots.

3. Exploring how these rules can be applied to artificial collectives in order to solve

optimization control problems that are hard or impossible for an individual to solve.

This will involve combing existing methods on optimal control with the specified rules.

2Throughout the document we will use “agent” to refer to a member of a group of control systems.

3

1.3 Outline

The rest of this paper is organized as follows: in Chapter 2 we will review various recent

research directions of cooperative systems. A class of algorithms for cooperative optimal

control inspired from the observed movements of ant colonies will be introduced in Chapter

3, along with a discussion of the algorithms’ potential advantages. Chapter 4 presents some

current progress concerning the proposed algorithms, including convergence analysis, special

cases and numerical experiments. Finally, the ongoing work and an outline of possible

approaches for its completion are given in Chapter 5.

4

Chapter 2

Literature Review

The potential of a cooperating group to “do better than the sum of its parts” has already

seeded a variety of recent research directions in engineering, from modeling of animal groups

[1, 24, 25, 26], to distributed collective covering and searching [28, 29], estimating by groups

[30, 31, 32], cooperative robotic teams [33, 34, 42] and biologically-motivated optimization

[36, 27]. These works typically treat narrowly defined problems [36, 32, 27], discuss only

the feasibility of special tasks [33, 34, 42], or show the effectiveness instead of optimality

of various proposed algorithms [28, 29]. Here, we review some of these and other relevant

works.

2.1 Animal Group Pattern Modeling

The work of [24] proposed a simple model concerning the movement of n autonomous agents

with the same speed but with varying headings. If each agent of a group uses the “nearest

neighbor rule” to update its heading, that is

〈θi(t)〉r =
1

1 + ni(t)



θi(t) +
∑

j∈Ni(t)

θj(t)





where θi(t) is the heading of the ith agent and ni(t) is the number of neighbors of the ith

agent at time t, then all agents’ headings will converge to a common constant vector as time

goes on. The theoretical explanation for the convergence described in the above model is

provided in [25], along with several similar models inspired by [24], such as “leader following”

showing that if there exists an agent acting as the “leader” in the group, all agents will evolve

to point to the same heading as the leader . This “nearest neighbor rule” can cause all the

members of a group to move towards the same direction despite the fact that there is no

centralized coordination and that an agent’s set of nearest neighbors might change as the

5

system evolves. The models developed by [24, 25] have been used to explain how a group of

birds or fish manage to move in tight formation as a single entity.

Foraging at
Flower A

Foraging at
Flower B

Unloading nectar
from A (HA)

Unloading nectar
from B (HB)

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

Following
dancers(F)

Dancing
for A (DA)

Dancing
for B (D

B
)

PX
A

PX
B

1- PX
A 1- PX

B

PF
A PF

B

Pd
A(1- PX

A) Pd
B(1- PX

B)

Figure 2.1: The flow diagram illustrates the model of how honey bees allocate the foragers.

Another mathematical model is constructed in [1] to describe the foraging activities of

worker honey bees. Each honey bee complies with certain rules to determine where it will

go to forage. This process is described by a flow diagram illustrated in Fig. 2.1. At the

bifurcations on the diagram, honey bees make decisions on which nectar source to forage

and whether to dance - the way honey bees transfer information - or not. The decision-

making process is modeled as the probabilities of proceeding various actions. For example,

P A
X represents the probability for one bee to watch other dancers after it unloads the nectar

collected from flower A, P A
d (1−P A

X) represents the probability of dancing for the flower A and

P A
F represents the probability of following other dancers to forage flower A. Noticing that

honey bees make decisions only after receiving limited information from their workmates, [1]

proposed a set of simple equations to describe these probabilities, e.g.

P A
F =

DAdA

DAdA + DBdB

where DA represent the number of dancers for flower A and dA is the proportion of time that

foragers actually dance. Other probabilities such as P A
X can be assumed to be a constant.

Simulations showed a collective result that was qualitatively similar to what is observed in

real bee colonies.

6

2.2 Models of Ant-Trail Formation

One of the awe-inspiring phenomena in nature is the foraging activity of ant colonies, which

includes discovering foods, recruiting nest-mates and forming trails. When an ant finds

food, it will recruit other ants around to convey food back to the nest. These co-workers will

rapidly form a well-defined trail between the nest and food although they are homogeneously

distributed at first. Finding an efficient line between the nest and food seems too complicated

a problem for an individual ant to solve, especially if one considers the ant’s tiny size relatively

to obstacles in the environment, such as stones, stick and crevices. Nonetheless, a colony of

ants seem to always be able to complete this task [1]. To explore the intrinsic mechanism

that leads to the collective efficiency as opposed to individual clumsiness, several models

concerning ant-trail formation have been proposed.

The work of [1] described a model about how ants utilize pheromonal secretions to

choose ongoing pathways. According to this model, pheromonal secretions are laid along the

paths by ants to keep a trace and recruit other nest-mates. At the same time, pheromonal

secretions evaporate as time goes on. When an ant comes to a location where several traces

cross, it will try to follow the path with the highest concentration. As illustrated in Fig. 2.2,

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxx
xxxx
xxxx

Figure 2.2: An ant chooses the path in accordance with pheromone concentrations

the probability of taking the left branch of a “fork” in the terrain is quantified as

PL =
(k + CL)n

(k + CL)n + (k + CR)n

The parameters CL and CR represent the pheromone concentrations on the left and right

branch, n and k are constants corresponding to the degree of nonlinearity of the choice and

the attraction of an unmarked branch, respectively. The key point is that the pheromonal

secretions play a “positive feedback” role. Although an individual ant knows little about the

7

entire environment and the distribution of its co-workers, simulations show that the colony

has the collective potential to find the shortest path.

Another model concerning ant-trail formation on a plane was explored in [26]. The

basic rule in this model is that each ant “follows” one of its co-workers instead of measuring

pheromonal secretions, as Fig. 2.3 illustrates. In [26], the pheromonal secretions laid by an

ant are used to trace its own tail and find its way back to the nest but not to recruit its

nest-mates. Paraphrasing [26], the path traveled by a single ant is a curve xk(t) : [0, T] → R
2

Figure 2.3: Ants find the shortest path joining two members

with ẋk = u(xk) (u ∈ R
2). The boundary conditions for these systems are x0(0) = x0 and

x0(T) = xf , which represent the starting point (nest) and the target point (food) respectively.

Any ant can trace its own trajectory back to the nest so that we have a sequence of ants

departing from x0. Each ant moves with unit speed and there are ∆ units of time between

the departure time of successive ants. At every instance, each ant except the first one will

follow its predecessor by pointing its speed vector in a straight line toward the predecessor.

In short, for k = 1, 2, 3 . . .

ẋk(t) =
xk−1(t) − xk(t)

‖xk−1(t) − xk(t)‖

with xk(0) = x0 for t ≤ k∆ and xk(T) = xf if xk reaches the target xf . For the case when

xk(t) ∈ R
2, it has been shown that if the initial ant x0(t) has access to a sub-optimal path

from x0 to xf , then the trajectories {xk} will converge to a straight line connecting x0 and

xf .

2.3 Distributed Covering and Searching

Inspired by the fact that ants and other insects use pheromones for various communication

and coordination tasks, [28] developed robust adaptive algorithms to perform tasks requiring

8

the traversal over an unknown region, such as cleaning the floor of an unmapped building.

The region to be covered is described by a graph G = (V, E), where every vertex represents

an “atomic region” (tile). When agents deployed in the algorithms are traveling on G,

they mark the trails by depositing a pheromone, which evaporates as time goes on. By this

mechanism, the agents can assign each edge of the graph, which represents the neighborhood

relation between two “atoms”, with a label of the time that implies the most recent traversal

of that edge. An agent visiting vertex u ∈ V (G) checks the labels on all edges emanating

from u, thereafter it goes the direction that was not visited for the longest time by choosing

the smallest label. The time tk needed to cover all edges of the graph by k agents under the

“ANT-WALK-1” rule based on the above idea is bounded as

tk ≤ n∆

(

ρ(G) +
(1 + α)n

k

)

where ∆ is the maximum vertex degree in G, n = |V (G)|, α is related to the measurement

noise and ρ(G) is the cut-resistant of G. In the same work, the “ANT-WALK-2” rule, a

generalization of the famous Depth-First search algorithm, was developed for agents with

limited amounts of memory. The time tk for this rule is bounded as

tk ≤ (n∆/2)

⌈

(1 + α)

k

⌉

where the notation is as before.

The work of [29] investigated the performance of cooperative strategies that control

autonomous air vehicles searching a dynamic environment to gather information. The pro-

posed framework considers two main components for each agent: distributed learning of the

environment and distributed path planning based on the information gathered. The collec-

tive results based on a recursive q-step ahead as well as an interleaved planning technique

illustrate that the cooperation among vehicles improves the performance. The authors also

explored the feasibility of developing coordination control strategies inspired by the social

foraging activities of E. coli, a common type of bacteria.

2.4 Distributed Localization and Estimation

The study of [30, 31] proposed a method called “Cooperative Positioning System (CPS)”

to aleviate the weakness of traditional position identification techniques usually applied in

robotics, including dead reckoning and landmark. In that work, a robot group is divided into

two teams in order to provide “portable landmarks”. At every instance, one team moves

and the other stays static, acting as the landmark, then they exchange roles. Therefore,

9

each team can benefit from accurate measurement by utilizing static landmarks, while at

the same time, no prior placing of landmarks is required. The drawback is that at least one

robot must stay stationary so that the overall speed of the algorithm is restricted.

Another approach has been presented in [32] to simultaneously localize a group of mobile

robots with respect to the others’ positions. Each robot measures its own motion using its

proprioceptive sensors. When two robots xi, xj meet, they will share information with one

another, then the ith robot will update the estimate of its own position with respect to

the jth robot’s and the relative distance estimate between the two robots. The proceeding

propagation and update are described by the Kalman filter equations in [32]. This method

distributes what would be a centralized estimation process among M Kalman filters, each

of them operating on a different robot.

2.5 Group Formations

The work of [33] derived a framework that allows robots equipped with range sensors to con-

trol their states in order to accomplish the searching or rescuing manipulations. The authors

derived three formation controls - “Separation-Bearing Control”, “Separation-Separation

Control” and “Separation Distance-To-Obstacle Control” - with respect to neighboring

robots or obstacles in the environment. The “basic formation” framework is constructed

using the above formation controls and is proved to be able to stabilize the formation of a

robot team. Lastly, that work outlined a coordination strategy allowing switches between

control policies for maintaining the formation in situations with constraints on the sensors,

actuators and the environment.

A smooth time-varying feedback control law is developed in [34] to organize formations

of multiple nonholonomic wheeled mobile robots. Each robot Ri senses the relative positions

of its neighboring robots in its own coordinate system Σi. The formation control is described

by a vector called “formation vector”. Because it is hard to obtain asymptotically stable

performance for robots with nonholonomic constraints via smooth static-state feedback con-

trols, the authors utilized a time-varying feedback control law to get the desired velocity

for each agent. Using an analytical method based on averaging theory, the group formation

under this mechanism is proved to be asymptotically stable.

Another coordinate strategy for vehicle group maneuvers, including translation, rota-

tion, expansion and contraction, is presented in [42] through the construction of artificial

potentials and virtual leaders. The control applied on each vehicle is defined as the linear

10

combination of the gradient of these potentials as well as a linear damping term:

ui = −
N

∑

j 6=i

∇xi
VI(xij) −

M
∑

k 6=i

∇xi
Vh(hik) − Kẋi

where ui = ẍi is the control, xij is the distance between the ith vehicle and the jth vehicle and

hik is the distance between the ith vehicle and the virtual leader k. The artificial potentials

VI deploy attraction to distant neighbors as well as repulsion for neighbors too close. The

accomplishment of desired mission is through controlling the direction of virtual leaders’

motion, while the speed of the virtual leaders is to ensure the convergence of the formation.

The convergence property is proved by Lyapunov’s method.

2.6 Biologically-Motivated Optimization

The work of [36] introduced a search methodology based on the “distributed autocatalytic

process” to solve a classical optimization problem - the Traveling Salesman Problem (TSP).

Inspired from the fact that ants can use pheromonal secretions to find the shortest path

when foraging, [36] utilized an ant team to travel through the towns in TSP. The transition

probability from town i to town j for the kth ant is defined as

pk
ij(t) =

{

[τij(t)]
α·[ηij]

β

∑

k∈Ωk
[τij(t)]α·[ηij]β

if j ∈ Ωk

0 otherwise
(2.1)

where Ωk is the set of towns reachable by k and τij(t) is the intensity of pheromonal trail

on edge (i, j) at time t, which is laid by ants on the edge and evaporates as time goes on.

The visibility of the path, ηij, is defined as the reciprocal of the distance between the town

i and town j, dij, i.e. ηij = 1/dij. Lastly, α and β are parameters evaluating the relative

importance of the trail and the visibility, respectively. Based on Eq. (2.1), [36] developed

three algorithms: “ant-cycle”,“ant density” and “ant-quantity”, each based on a slightly

different rules by which ants update the τij(t) along their trails. The trajectories of the ant

team in each algorithm eventually converges to the optimal tour for the TSP.

The “probabilistic pursuit” algorithm for a group of agents moving on a planar grid was

presented in [27]. Briefly, a sequence of agents A0, A1, . . . are moving from the origin at time

t = 0, ∆, 2∆, . . . to a destination. While moving on the grid, An+1 “chases” An by making

a random choice of a neighboring grid point and moving there. The probability distribution

that defines the agent’s choice is determined by its relative position to its predecessor, that

is

An+1(t + 1) = An+1(t) + δn+1(t + 1)

11

where δn+1(t + 1) ∈ {1,−1, j,−j} and

Prob{δn+1(t + 1) = sign(dx)} =
‖dx‖

d

Prob{δn+1(t + 1) = j · sign(dy)} =
‖dy‖

d

where An(t) is the position of the nth agent at time t, d = ‖dx‖ + ‖dy‖ and dx, dy are

relative distances between An and An+1 at the x and y directions, respectively. Analytical

and simulations show that the average trajectories of agents converge to a straight line on

the plane. This work is related to the problem of discovering optimal trajectories that will

be the focus of this research. It is of course restricted to a discretized plane.

12

Chapter 3

Biologically Inspired Algorithms for

Optimal Control

In this chapter we introduce a class of algorithms inspired by ant-trail formation and discuss

their potential advantages. Recall that there are already several effective models of ant-trail

formation [1, 26], which explained how a colony of ants find the shortest path length between

two points and already seeded some applications [36, 28]. We are particularly interested in

the simplicity of the model in [26]. However, [26] only applies to a very narrow domain

(R2 with holonomic, kinematic vehicles). We would like to expand it to a much broader

class of optimization problems, including many classical problems in optimal control. Before

proceeding with the algorithms, we describe the precise problems we are concerned with.

3.1 Problem Statement and Notation

For our purposes, the agents are assumed to be a number of “copies” of a dynamical system,

i.e. for k = 0, 1, 2 . . .

ẋk = f(xk, uk) xk(t) ∈ R
n, uk(t) ∈ Ω ⊂ R

m (3.1)

Physically, each copy of Eq. (3.1) could stand for a robot, UAV or other autonomous system.

What we discuss here are some classical trajectory optimization problems for systems

evolving under Eq. (3.1) with fixed end points. Each function xk(t) : [0, T] → R
n represents

a trajectory defined by the agent’s movement. For simplicity, let us start with the problem

with fixed final time.

13

Fixed Final Time Problems

Assume the starting state x0 and target state xf are equilibrium points of Eq. (3.1) for

u = 01, i.e.

ẋk(t) = f(xk(t), 0) = 0 if xk(t) ∈ {x0, xf}

The problem we are concerned with is finding a trajectory x∗(t) that minimizes the cost

function

J(x, ẋ, t0, T) =

∫ t0+T

t0

g(x(t), ẋ(t), t)dt (3.2)

with x(t0) = x0, x(t0 + T) = xf and subject to ẋ = f(x, u).

The cost function could apply in various categories of optimal control problems, e.g.

g(x(t), ẋ(t), t) = ‖ẋ‖ (length minimization).

Let D ⊂ R
n be a domain containing states a and b. Assume 0 < σ ≤ T and t0 ≥ 0. The

optimal trajectory from a to b in fixed T units of time is defined to be x∗(t) (t ∈ [t0, t0 + T])

satisfying:

J(x∗, ẋ∗, t0, T) = min
x

J(x, ẋ, t0, T) subject to x(t0) = a, x(t0 + T) = b (3.3)

For notational convenience, we define the cost of following x∗(t) for σ units of time as:

η(a, b, T, t0, σ) ,

∫ t0+σ

t0

g(x∗(t), ẋ∗(t), t)dt σ ≤ T (3.4)

where the optimal trajectory x∗(t) is defined in Eq. (3.3).

For a generic trajectory x(t), we define

C(x, t0, σ) ,

∫ t0+σ

t0

g(x(t), ẋ(t), t)dt (3.5)

to be the cost incurred along x(t) during [t0, t0 + δ).

Free Final Time Problems

Consider a class of optimal control problems with free final time (such as minimum-time

control), where we are trying to find a trajectory x∗(t) and a best final time Γ > 0 that

minimize the cost function

JF (x, ẋ, t0) =

∫ t0+Γ

t0

g(x(t), ẋ(t), t)dt (3.6)

1Otherwise we can assume there exist u0 and uf such that f(x0, u0) = f(xf , uf) = 0.

14

with the restriction that x(t0) = x0, x(t0 + Γ) = xf and Γ > 0. The cost of the optimal

trajectory x∗(t) (t ∈ [t0, t0 + Γ]) from a to b is defined as:

JF (x∗, ẋ∗, t0) , min
x,Γ

JF (x, ẋ, t0) with x(t0) = a, x(t0 + Γ) = b over all Γ > 0 (3.7)

The cost of following the optimal trajectory for σ units of time is defined as

ηF (a, b, t0, σ) ,

∫ t0+σ

t0

g(x∗(t), ẋ∗(t), t)dt δ ≤ Γ (3.8)

where x∗(t) is defined in Eq. (3.7).

3.2 A Class of Bio-Inspired Pursuit Algorithms

In the model of ant-trail formation described in [26], each ant is trying to catch up its

R
2

Xk

Xk+1

Figure 3.1: A geodesic discovery process on a plane.

predecessor on R
2 in the most “efficient” way, namely by pointing its velocity vector towards

its predecessor. The trajectories generated by the movements of ants are gradually optimized

and the trajectory sequence converges to a straight line on R
2, as illustrated in Fig. 3.1. The

work in [18] expanded the above approach to uneven terrains. Both [18] and [26] separated

the task of finding a geodesic over long distances into many simpler tasks of seeking geodesics

connecting nearby points. The difficulty of “following” increases in accordance with the

distance between the predecessor and the successor and with the complexity of the terrain.

It is easer for an ant to aim at its leader on R
2 and move on a shortest path toward it if they

are closer, whether on a plane or on a terrain. Same is for a robot that havs limited sensing

range and computing ability.

15

Figure 3.2: It is easier to solve an optimization problem within a “small” region.

M

Xk

Xk+1

Figure 3.3: Expanding the algorithm to more general optimization problems on a manifold.

We are interested in generalizing the existing approaches in [26, 18] to a much broader

class of optimization problems in Eq. (3.3), (3.6), using an iterative strategy requiring little

communication as well as short-range sensing. There is an analogy here between optimal

control problems that are easier to solve where the boundary conditions are “close” to one

another, and members of a collective that are easier to follow from a close distance, as Fig.

3.2 illustrates. Our idea is to seek optimal trajectories locally, by means of “local pursuit”,

and combine the efforts of a group of agents to gradually optimize an initial solution.

Our approach will be to propose a set of iterating rules that somehow generalize the

idea of pursuit to settings with non-trivial geometry, and agents with non-trivial dynamics.

If this approach succeeds, then complicated tasks could be separated into simpler tasks and

accomplished by a group of “inexpensive” agents. The following is an algorithm that pre-

scribes the evolving of a group, given an initial feasible trajectory.

Algorithm 1 (Sampled Local Pursuit): Identify two states x0 and xf on D. Let

16

t=tk t=tk+δ t=tk+2δ

Follower Xk

Leader Xk-1

Xk(t) Xk(t)

Xk-1(t)

Figure 3.4: A snapshot of the updating processes executed by the kth agent.

x0(t) (t ∈ [0, T]) be an initial trajectory satisfying Eq. (3.1) with x0(0) = x0, x0(T) = xf .

Choose the following interval ∆ and updating interval δ such that 0 < δ < ∆ ≤ T . Then

follow the next rules for the kth agent.

1. For k = 1, 2, 3 . . ., let the tk = k∆ be the starting time of the kth agent. Let uk(t) =

0, xk(t) = x0 for 0 ≤ t ≤ tk.

2. When t = tk + iδ, i = 0, 1, 2, 3, . . ., calculate u∗
t (τ) such that f(xk(τ), u∗

t (τ)) = ẋ∗
k(τ),

where

x∗
k(τ) achieves

{

η(xk(t), xk−1(t), ∆, t, ∆), τ ∈ [t, t + ∆] if ∆ + iδ < T

η(xk(t), xf , tk + T − t, t, tk + T − t), τ ∈ [t, tk + T] otherwise

3. Apply uk(t) = u∗
tk+iδ(t−tk−iδ) to the kth agent for t ∈ [tk+iδ, tk+(i+1)δ) if ∆+iδ < T

or t ∈ [tk + iδ, tk + T) otherwise.

Repeat from step 2, until the kth agent reaches xf .

This is a “sampled” version local pursuit because agents are only required to update their

trajectories a finite number of times. There are two adjustable parameters: the “following

interval” ∆ and the “updating interval” δ. Usually we take 0 ≤ δ < ∆. We will refer to the

times tik = tk + iδ, i = 0, 1, 2, 3 . . . as the “updating times”. Notice that the SLP algorithm

yields a well-defined trajectory xk(t) on [0, T], if given xk−1(t). The resulting trajectory is

continuous but not necessarily smooth at the time interval [tk, tk + T]. A snapshot of the

iteratively updating processes is illustrated in Fig. 3.4.

According to the SLP algorithm, agents leave the starting state x0 one after another,

each in ∆ units of time after its predecessor. That is, if the (k − 1)th agent leaves the starting

17

state at time tk−1, the kth agent will leave it at tk = tk−1 + ∆. We assume the number of

agents in the group is large and label each agent by an integer k so that we can utilize xk(t)

to denote the kth agent’s trajectory2. Each agent moves to pursue its predecessor. If we

denote the (k− 1)th agent as the “leader” during this pursuit relationship, the kth agent will

be denoted as the “follower”. At each t = tik, the follower calculates the optimal control

u∗
t (τ) (τ ∈ [t, t + ∆)) that steers it from xk(t) to xk−1(t) over ∆ units of time, i.e. from its

current state to the leader’s current state. Then during [tk + iδ, tk + (i + 1)δ], the follower

moves along the trajectory driven by u∗
t (τ), and the process repeats until the follower reaches

xf .

For notational convenience, we define the planned trajectories, denoted by x̂(t), to be

the trajectories along which the follower plans to move at tk + iδ but may not do so because

it will update its future trajectory at tk + (i + 1)δ. In other words, the planned trajectories

are the trajectory driven by u∗
tk+iδ(τ) for the time period of [tk + (i + 1)δ, tk + iδ + ∆], while

it may not actually be executed because the next updating result, u∗
tk+(i+1)δ(τ), will drive

the agent to move along different trajectories. The realized trajectories, denoted by x(t), are

defined as the trajectories along which the follower actually moves. Referring to Fig. 3.4,

the planned trajectories and realized trajectories are represented by the dashed lines and

solid lines, respectively.

If we let δ → 0 in SLP, we will obtain the following continuous local pursuit algorithm:

Algorithm 2 (Continuous Local Pursuit): Identify two states x0 and xf on D. Let

x0(t) (t ∈ [0, T]) be an initial trajectory satisfying Eq. (3.1) with x0(0) = x0, x0(T) = xf .

Choose the following interval ∆ such that 0 < ∆ ≤ T . Then follow the next rules for the kth

agent.

1. For k = 1, 2, 3 . . ., let tk = k∆ be the starting time of kth agent. Let uk(t) = 0, xk(t) =

x0 for 0 ≤ t ≤ tk.

2. Calculate u∗
t (τ) for all t ∈ [tk, tk + T] such that f(xk(τ), u∗

t (τ)) = ẋ∗
k(τ), where

x∗
k(τ) achieves

{

η(xk(t), xk−1(t), ∆, t, ∆), τ ∈ [t, t + ∆] if t < tk + T − ∆

η(xk(t), xf , tk + T − t, t, tk + T − t), τ ∈ [t, tk + T] otherwise

3. Apply uk(t) = u∗
t (0) to the kth agent.

Repeat from step 2, until the kth agent reaches xf .

Due to the limitations of each agent’s computing capability, it might be more expedient

to apply the sampled local pursuit (SLP) because the agents only need to update their

2From now on, we will utilize xk(t) to denote both the kth agent and its trajectory.

18

trajectories finite times instead of continuously in CLP. However CLP does not require

storage of calculated results so it is more favored in situations where the update is easily to

be carried out.

If we are dealing with a free final time optimization problem, then the SLP and CLP

algorithms must be altered so that agents optimized their trajectories connecting them pair-

wise with respect to both u and the final time.

Continuous local pursuit is thus altered as follows3.

Algorithm 3 (Free Final Time Local Pursuit): In Algorithm 2 replace the step 2 with:

2.’ Calculate u∗
t (τ) for all t ∈ [tk, tk + T] such that f(xk(τ), u∗

t (τ)) = ẋ∗
k(τ) , and

x∗
k(τ) achieves ηF (xk(t), xk−1(t), t, Γ) (τ ∈ [t, t + Γ]), where ηF is given by Eq. (3.8).

3.3 Algorithm Advantages

Each agent that participates in local pursuit is only required to calculate the optimal tra-

jectory from itself to its nearby leader. Meanwhile the “distance” between them can be

limited by selecting an appropriate following interval ∆. Therefore every agent only needs

to sense the environment within a limited region when proceeding pursuit processes. This

is preferable to obtaining a global map via random exploration with limited sensor range.

For example, it would be difficult and wasteful for a single robot to obtain the entire map of

an unknown terrain. Even if a group of agents can be dispersed and each composes a map

“patch” around itself, it is not guaranteed that the composition of these patches covers the

whole environment, or at least covers the region containing the optimal trajectory.

Even if enough patches covering the entire environment have been collected, the fusion

of a composite map still requires a large amount of information communication. A powerful

agent is also needed to stitch the scattered maps using sophisticated fusion algorithms.

This means at least one agent in the group has enough memory, communication bandwidth

and computing ability to dealing with the collecting and fusing tasks concerning the entire

environment. In contrast, in local pursuit, there is no requirement for agents to exchange

local maps that they sense. Agents only have to communicate in very limited ways, by using

vision to track one another or by communicating in primitive ways to signal their locations,

e.g. sound or radio emission.

Furthermore, even if an effective map could be obtained, solving optimization problems

3In SLP, it can not be guaranteed that at every updating time the minimum time to reach the leader Γ

is greater than or equal to the updating interval δ. If Γ < δ, then extra costs might be incurred. Based on

the above consideration, we only develop the Free Final Time Local Pursuit (FFTLP) in continuous version

so that δ < Γ is guaranteed.

19

over an sophisticated environment, especially in an environment containing different kinds

of coordinate patches, requires large amounts of calculations. The example includes finding

geodesics on a terrain with mountains and basins. The most often used technique in such

situations is numerical method. As we shall see later, using numerical method over long

distances may leads to huge amounts of calculations. However, local pursuit only requires

computing optima within small regions so that fewer calculations are needed.

In summary, local pursuit introduces a way to obtain the locally optimal trajectory4

over distance by many short pieces generated via an ordered sequence of identical agents,

meanwhile it only requires local knowledge about the environment as well as calculation

of optimal trajectories within small regions. Thus, a complicated optimization problem

could be solved by a group of cost-effective agents. The trade-off is that each agent must

compute locally optimal trajectories more than once. However, the deployment of a group

of cheap agents using local pursuit does show various advantages with cost and reliability

consideration, if compared with achieving the same task by a single, expensive agent.

4This conclusion will be proved in next chapter.

20

Chapter 4

Current Progress

In this chapter we will investigate the collective behavior of the group involved under local

pursuit. Recall that each algorithm defines an ordered sequence of trajectories {xk(t)}. The

convergence of the sequence involved under SLP will be first explored. Then the limiting

trajectory will be proved to be locally optimal, this is exactly the collective property we

are seeking to obtain. Similar results will be explored in CLP and FFTLP. Special cases

concerning path length and time minimizing problems will be introduced because of their

prevalence in practice. Lastly, simulation experiments are provided to illustrate our results.

4.1 Results on Sampled Local Pursuit

We would like to investigate the property of the limiting trajectory generated by the group,

i.e. xk(t) as k → ∞. The convergence of the trajectories’ cost will be explored first, then

the convergence of trajectories themselves, {xk(t)}. After that, we show that the limiting

trajectory of the sequence, denoted as x∞(t), is locally optimal.

Lemma 4.1 (Convergence of Cost in SLP): Assume a group of agents x0, x1, . . . , xk

evolve under “Sampled Local Pursuit” with starting state x0 and target state xf . Suppose an

initial control/trajectory pair, {u0(t), x0(t)} (t ∈ [0, T]), satisfying x0(t) = x0 and x0(T) = xf

is given. If the updating time satisfies 0 < δ ≤ ∆, then the cost of the iterated trajectories

will converge, i.e. limk→∞ C(xk, tk, T) exists.

Sketch of Proof: Given an existing optimal control problem, the cost of any trajectory

satisfying the boundary conditions is bounded below. By investigating the pursuit process

between xk(t) and xk−1(t) pairwise, we can prove that C(xk, tk, T) ≤ C(xk−1, tk−1, T). This

is enough to show the convergence of the sequence {C(xk, tk, T)}. See Appendix A.2 for the

detailed proof.

21

Xk(tk)

Xk(tk+δ)

Xk(tk+2δ)

Xk(tk+3δ)
Xk(tk+nδ)

Xk(tk+Τ)

Xk-1(tk-1)

Xk-1(tk)

Xk-1(tk+δ)

Xk-1(tk+2δ)

Xk-1(tk+nδ−δ)

Xk-1(tk-1+Τ)

Xk(tk+nδ−δ)

Figure 4.1: Sketch of the pursuit process pairwise in SLP

Nonetheless, the convergence of trajectories’ cost does not imply the convergence of

the trajectories themselves. If there exist multiple locally optimal trajectories connecting

the leader and follower at the updating times, then the convergence of trajectories is not

guaranteed, i.e. Lemma 4.1 defines an equivalence class of trajectories with the same cost.

If we restrict the pursuit process to take place within a “small” region by selecting ∆

sufficiently small, e.g. agents follow close to one another, there will exist a unique locally

optimal trajectory from the follower to the leader at every updating time tk + iδ. Thereafter

we obtain the following result:

Lemma 4.2 (Uniqueness of the Limiting Trajectory): If at each updating time, the

locally optimal trajectory obtained through SLP is unique, then the limiting trajectory x∞(t)

is also unique.

Sketch of Proof: We will show that if there exist more than one trajectories that xk(t)

might take, for k large enough, then the cost of one trajectory must be less than the others.

This contradicts to what we have obtained from Lemma 4.1, which shows that the limiting

trajectories should have the same cost if they exist. See Appendix A.3 for the details of the

proof.

The locally optimal trajectories obtained at every updating time are smooth in many

optimal control problems, e.g. the solution to the Euler-Lagrange equation in calculus of

variations. Nonetheless, xk(t) is only known to be piecewise smooth. For example, in R
2

with ẋk = uk, if the locally optimal trajectories are straight lines, xk(t) is not smooth for

there exists a corner at the joint of two segments. However, we can show that the limiting

trajectory is smooth in the time interval [0, T], the locally optimal trajectories obtained at

22

every updating time are smooth. The following definitions will be necessary for discussing

the properties of the limiting trajectory.

Definition 4.1: Let γ1(t) and γ2(t) be trajectories of Eq. (3.1), defined on a time interval I1

and another time interval I2 respectively, where I1 ∩ I2 6=ø. We say that γ1 and γ2 overlap

if γ1(t) = γ2(t) for all t ∈ I1 ∩ I2.

Definition 4.2: Let γ1(t) and γ2(t) be trajectories of Eq. (3.1), defined on a time interval

I1 and another time interval I2 respectively, where I1 ∩ I2 6=ø. The composition of γ1(t)

and γ2(t) on the interval I1 ∪ I2 is defined as

γ1 ◦ γ2 ,

{

γ1(t) t ∈ I1, t /∈ I2 − I1 ∩ I2

γ2(t) t /∈ I1, t ∈ I2 − I1 ∩ I2

Lemma 4.3 (Smoothness of Composition): Suppose that in Lemma 4.1 the updating

interval δ and the following interval ∆ satisfy that 0 < δ < ∆, then the planned trajectory

x̂(t) and realized trajectory x(t) of the limiting trajectory overlap. Furthermore, if the locally

optimal trajectories obtained at every updating time are smooth, then the limiting trajectory

is also smooth.

Sketch of Proof: We will first explore that the planned trajectory and realized trajectory

of x∞(t) overlap by contradiction. Then it is shown that the limiting trajectory is piecewise

smooth and its neighboring segments overlap, the smoothness of the limiting trajectory over

the entire time interval is an immediate consequence. See Appendix A.4 for the details of

the proof.

Before proceeding to the main theorem, we are required to define the following condition.

Condition 4.1: Assume there exists an ε > 0 such that for all a, b1, b2 ∈ D and all ∆ > 0,

the optimal cost η(a, b1, ∆, 0, ∆) from a to b1 and η(a, b2, ∆, 0, ∆) from a to b2 satisfy

‖b1 − b2‖ < ε ⇒ ‖η(a, b1, ∆, 0, ∆) − η(a, b2, ∆, 0, ∆)‖ < L∆ (4.1)

for some constants L independent of ∆.

A piecewise locally optimal trajectory is not necessarily optimal. However, the composi-

tion of overlapping locally optimal trajectories is locally optimal if Condition 4.1 is satisfied.

23

Lemma 4.4 (Composition of Optimal Trajectories): Let γ1(t) and γ2(t) be over-

lapped locally optimal trajectories defined on a time interval I1 and another time interval I2

respectively, where I1 ∩ I2 6=ø. If Condition 4.1 is satisfied, then the composition γ1 ◦ γ2 is

locally optimal on I1 ∪ I2.

Sketch of Proof: Suppose that the composition (call it x∗(t)) is not locally optimal, then

there must exist another trajectory (call it x(t)) nearby such that ‖x(t) − x∗(t)‖∞ < ε and

C(x(t), 0, T) < C(x∗(t), 0, T). We can then use Condition 4.1 to obtain a contradiction,

namely that C(x(t), 0, T) > C(x∗(t), 0, T). See Appendix A.5 for the complete proof.

The next theorem is an immediate consequence of the above lemmas.

Theorem 4.1 (Sampled Local Pursuit): Suppose a group of agents {xk} evolve under

sampled local pursuit and at each updating time t = tk+iδ, the locally optimal trajectory from

xk(t) to xk−1(t) is unique. If the updating interval and following interval satisfy 0 < δ < ∆

and Condition 4.1 is satisfied, then the trajectory sequence converges to a unique local opti-

mum. Furthermore, if the locally optimal trajectories at every updating time are smooth, the

limiting trajectory is also smooth.

Proof: From Lemma 4.2, the limiting trajectory is unique. We know that x∞(t) (t ∈ [0, ∆))

and x∞(t) (t ∈ [δ, δ + ∆)) are locally optimal for the realized trajectory and planned

trajectories overlap (Lemma 4.3). The optimality of x∞(t) (t ∈ [0, δ + ∆)) follows from

Lemma 4.4. Repeating this argument on [iδ, iδ + ∆] (i = 0, 1, 2 . . .) leads to the result that

x∞(t) (t ∈ [0, T]) is locally optimal. The proof of smoothness follows from a similar argu-

ment.

4.2 Results on Continuous Local Pursuit

In the case of continuous local pursuit, the follower keeps on updating its movement at every

t ∈ [tk, tk + T], i.e. the updating interval δ → 0. Similar to the sampled local pursuit, we

assume the selection of ∆ guarantees that at every updating time there is a unique optimal

trajectory from the follower to the leader. We will first show that a single update to the

leader’s trajectory will result in less cost than what is incurred by the leader, no matter

when the update occurs. Then we will explore the convergence of the trajectories’ cost in

CLP. The remaining arguments are quiet similar to what we had discussed in SLP.

Lemma 4.5: Let λ ∈ [0, T). Suppose that a follower replicates the leader’s trajectory on

t ∈ [tk, tk + λ)∪ [tk + λ+ ∆, tk + T] if λ ≤ T −∆ (or t ∈ [tk + λ, tk + T] if λ > T −∆), while

24

during [tk +λ, tk +λ+∆] it follows the optimal trajectory joining xk(tk +λ) and xk−1(tk +λ)

in ∆ (or (T − λ)) units of time. Then the cost along the follower’s trajectory will be no

greater than the leader’s.

Sketch of Proof: We can investigate the cost along the follower and the leader, respec-

tively. The overlapping parts of the leader’s and follower’s trajectories will lead to equal

Xk(tk)

Xk(tk+Τ)

Xk-1(tk-1)

Xk-1(tk-1+Τ)

Xk(tk+u)

Xk(tk+u+∆)

Figure 4.2: Sketch of a single update.

costs, while the follower incurs less cost during [tk + λ, tk + λ + ∆]. It follows that the whole

cost along the follower is less than the leader’s. See Appendix A.6 for the complete proof.

Lemma 4.6 (Convergence of Cost in CLP): In the case of continuous local pursuit, the

cost of the iterated trajectories converges.

Sketch of Proof: The movement of the kth agent under CLP can be interpreted as the

consequence of applying infinitely moving “updates” to the leader’s trajectory. From Lemma

4.5, each update leads to non-increasing cost so that infinite times of update will also lead

to less or equal cost for the follower. See Appendix A.7 for the details of the proof.

Now the main result concerning continuous local pursuit can be derived easily by an

argument similar to what was used for sampled local pursuit.

Theorem 4.2 (Continuous Local Pursuit): Suppose a group of agents evolve under

continuous local pursuit and that at every updating time t, the locally optimal trajectory from

xk(t) to xk−1(t) is unique. Then the limiting trajectory obtained is unique and locally opti-

mal. It is smooth also if the locally optimal trajectories calculated at every updating time are

smooth.

Proof: First, we assume there are two different limiting trajectories x1(t) and x2(t). The

proof of Lemma 4.2 shows that if there exist updates during the non-overlapping parts of

successive trajectories x1(t) and x2(t), the whole cost along the follower will be less than the

25

leader’s, even in the case where infinite updates occur because the number of updates does

not change this property. If there exist more than one limiting trajectories, the decrease

of cost from the leader to the follower contradicts the fact that all the limiting trajecto-

ries must have the same cost. Therefore the limiting trajectory is unique. It follows that

xk−1(t − ∆) = xk(t) if xk−1(t) = x∞(t − tk−1). If we pick a δ1 such that 0 < δ1 < ∆, the

limiting trajectory is piecewise smooth and locally optimal. Using the arguments in Lemma

4.3 and Lemma 4.4 we can say x∞(t) is smooth and locally optimal over the entire time

interval.

4.3 Results on Free Final Time Local Pursuit

Notice that Lemma 4.5 still holds for the free final time local pursuit. The convergence of

the trajectories’ cost is easily to obtain using the similar arguments in Lemma 4.6. Using

the similar argument in Theorem 4.2 and changing the argument to free final time version

will yield the following result.

Theorem 4.3 (Free End-Time Local Pursuit): Suppose a group of agents evolve under

free final time local pursuit and at every updating time t, the locally optimal trajectory from

xk(t) to xk−1(t) with free final time is unique. Then the limiting trajectory is unique and

locally optimal, it is also smooth if the locally optimal trajectories calculated at every updating

time are smooth.

Proof: The proof is simple and will be omitted here.

4.4 Summary

Until now, we have seen that each algorithm (SLP, CLP, FFTLP) will generate an interesting

“collective pattern” - the local optimum for proposed optimal control problem. Although

each agent only solves the optimal control problem within a small region (limited by ∆), the

trajectories generated by them are gradually optimized. Each agent “learns” from its prede-

cessor and the limiting trajectory exhibits the collective intellect of the group. Therefore, a

complicated task (optimizing over long distance) is separated into small tasks requiring less

capabilities of sensing, communicating and computing.

Our algorithms fall into the category of “learning by repetition”. Newton’s method and

gradient methods are well-known examples in this category, and are usually applied to solve

extremal problems in finite dimensional vector spaces [6]. Extensions of such methods in

26

function spaces also enable the development of trajectory optimization algorithms through

repetition. For example, the work of [40] utilized a developed gradient method to iteratively

optimize the control for a specified dynamic system . The control u(t) is derived by

du

dt
= −α

∂

∂u

[

∂W (x, t)

∂x
X(x, u)

]

(4.2)

where X(x, u) = ẋ(t) are the system dynamics and W (x, t) is the minimal cost of reaching

the final state xf provided with the initial state is x(t0) = x. Eq. (4.2) converges to the

optimal control u∗(t) and x∗(t) if the optimal control is smooth.

However, existing algorithms usually require the cost function and the control to be

partial differentiable. To proceed with the above algorithm, they also need to store and

describe the entire xk, in order to get xk+1. Moreover, to obtain a smooth curve, infinitely

small time increments are required so that laborious calculations are introduced. All these

factors hinder the application of these algorithms in decentralized systems whose members

are working cooperatively.

In contrast, our proposed algorithms are suitable for a large class of optimization prob-

lems and do not suffer from the above drawbacks. For example, our algorithms could be

applied in the situations where the control and trajectory are not smooth such as Bang-bang

control. The computing requirement for each agent could be limited by defining an appro-

priate ∆. Furthermore, each agent only need very limited information of its predecessor so

that multiple agents could work together to achieve the most effectiveness.

4.5 Special Cases: Length and Time Minimization

We have the additional interesting results for the trajectory optimization problems that often

involve reaching a desired target state with minimum path length or end time. We state it

as follows.

Theorem 4.3 : If the time rate of the change of the cost along a trajectory is independent

on xk(t) for all t, then the minimum cost from the follower to the leader with free final time

is strictly decreasing under local pursuit, unless the leader moves along a locally optimal

trajectory.

Proof: Let ρ(a, b) = JF (x∗, ẋ∗, τ) be the minimum cost to steer system from state a to

another b. For the pursuit process shown in Fig. 4.3, We have that

27

Xk+1(t)

Xk+1(t+δ)

Xk(t)

Xk(t+δ)

Figure 4.3: The minimum cost from xk+1(t) to xk(t) is decreasing if dC/dt is independent.

ρ(xk+1(t + δ), xk(t + δ)) ≤ ρ(xk+1(t + δ), xk(t)) + ρ(xk(t), xk(t + δ))

≤ ρ(xk+1(t + δ), xk(t)) + C(xk(t), t, δ)

= ρ(xk+1(t + δ), xk(t)) + C(xk+1(t), t, δ)

= ρ(xk+1(t), xk(t)) (4.3)

If the equalities hold in Eq. (4.3) then xk(t) must be moving along an optimal trajectory.

This result has a variety of applications, e.g. the minimum time control problem

J(x, ẋ, 0, T) = T ‖ẍ‖ ≤ 1 (4.4)

whose solution could be obtained via the maximum principle; or the minimum path length

problem with the condition that all agents are moving on unit speed

J(x, ẋ, 0, T) = T with ‖ẋ‖ = 1, T is free (4.5)

4.6 Simulations

We now present some simulation results concerning application of local pursuit in different

optimal control problems.

Sampled Local Pursuit

To illustrate the effectiveness of sampled local pursuit, we solve the minimum path length

problem on R
2 with boundary conditions x(0) = 0, x(1) = 1. Obviously the optimal trajec-

tory is a straight line. We set δ = 0.25, ∆ = 0.5, T = 1. Fig. 4.4 shows 5 trajectories iterated

from sampled local pursuit. The 5th trajectory is close to straight line.

28

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

X(m)

Y
(m

)

Robot 0
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5
Optimum

Figure 4.4: Iterated trajectories of minimum length problem through SLP on R
2

A Lagrangian Example

Fig. 4.5 illustrates the application of continuous local pursuit in systems with drift. Here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

X
 (

m
)

Optimum
Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Figure 4.5: Iterated trajectories for the Lagrangian problem through CLP with ∆ = 0.5

the system dynamic is

ẍ(t) + x(t) = u(t)

and we want to minimize
∫ 1

0

(ẋ(t)2 + u(t)2)dt with x(0) = 0, x(1) = 1

29

The locally optimal trajectory could be obtained through Euler-Lagrange equation from

calculus of variations. The following interval ∆ is set to be 0.5. Fig. 4.5 shows that the

trajectory sequence converges to the optimum.

Minimum Time Control

Consider the following second-order system

ẍ = u ‖u‖ ≤ 1

And we want to minimize the cost J(x, ẋ, 0, T) = T with the boundary conditions of x(0) =

π, x(T) = 0. From maximum principle it is well known that the optimal control for this

problem is the Bang-bang control.

u∗(t) =

{

−1 if t ∈ [0, T/2)

1 if t ∈ [T/2, T]
(4.6)

With the following interval ∆ = 0.3π, as Fig. 4.6 illustrates, the trajectory of 6th agent is

essentially under optimal control, which means the convergence is really rapid.

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

Time (s)

V
el

oc
ity

 (
m

/s
)

Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

P
os

iti
on

 (
m

)

Agent 0
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Figure 4.6: Iterated trajectories for minimum time control problem through FFTLP with

∆ = 0.3π

Geodesic Discovery

Now we will show a geodesic discovery example that involves complicated calculation over

entire environment but relatively simpler in local patches. This example simulates two hills

by two cones. The starting state is (3500, 0, 0) and the end state is (−1300, 0, 0). The first

30

Figure 4.7: Iterated trajectories for the geodesic discovery problem through CLP.

agent moves on a trajectory that follows along the border of the cones. The geodesic over

large distance is not easy to compute because not only it demands knowledge over the entire

map but also there are 4 coordinate switches along the path1.

However, if we set ∆ = 0.2T , the follower is at most required to do calculation with one

coordinate switch so that the amount of calculation at every step is decreased, compared to

computing over the whole map. As Fig. 4.7 illustrates, the iterated trajectories converge to

the optimum.

1If applied numerical method over the entire map, the number of the time segments is 4.

31

Chapter 5

Ongoing Work

In this chapter we will discuss some ongoing research directions related to local pursuit, as

listed as follows.

• Notice that a large category of optimal control problems are which involve free final

state or “point-to-set” problems as oppose to point boundary conditions problems. We

would like to generalize our pursuit algorithm to such problems.

• The limiting trajectory obtained from local pursuit may converge to a global optimum

or a local optimum, depending on the parameters of the algorithm. We will explore

that dependence and determine which optimum the trajectory sequence converges to.

• The performance of local pursuit with noisy measurements will be considered due to its

relevance in practice. We want to know whether the agents can estimate the solution

in the absence of precise sensor readings.

• We will explore the advantages of local pursuit in the numerical computation of optimal

trajectories.

Finally, we will look into the development of other biologically inspired algorithms for

complicated tasks in engineering or other fields. The potential tasks and ongoing steps will

be outline next.

5.1 Optimal Control Problems with Free Final State

Many optimal control problems with fixed final time include a penalty to the final state but

do not impose any constraints on it, i.e.

J(x, ẋ, t0, T) = Q(x(t0 + T)) +

∫ t0+T

t0

g(x(t), ẋ(t), t)dt (5.1)

32

The example includes the LQR problems, which could be solved by introducing a feedback

control and a Riccati equation, as we know.

We would like to modify local pursuit to apply to this class of problems, if possible.

Recall that in local pursuit we are gradually optimizing our initial solution, it seems that

if the cost incurred by an agent is no greater than its predecessor, the trajectory sequence

will converge to a local optimum. However, if agents are always moving on locally optimal

trajectories from themselves to their predecessors, we can obtain an non-increasing trajectory

sequence but the end point is determined by the first agent and is not the best choice. We

should have some freedom in choosing the final state instead of fixing it by simply catching

up the leader’s position. On the other hand, if at every updating step the follower is dealing

with an optimal control problem with free final state, then it does not need the leader. The

follower can determine the locally optimal trajectory only by its current state and the ∆,

thus agents are totally independent. The aimlessly pursuing process will not let the follower

“learn” from the leader and we can not guarantee the follower does better than the leader.

Based on the above consideration, we will let the follower “catch” the leader before the

leader reaches the final state, i.e. the follower will solve an optimal control problem with

fixed end point during [tk, tk + iδ), where iδ ≤ T − ∆. After the leader reaches the final

state, the follower will solve an optimal control problem with free final state. By dividing

the time into two different phases - “catching up” and “free running” - the follower has the

potential of “learning” from the leader as well as choosing the best final state. The trajectory

sequence is expected to be gradually optimized through learning while it also benefits from

the property of free final state.

As before, we define the cost of a segment of an optimal trajectory over [t0, t0 + T] as:

ηfs(a, T, t0) = Q(x(t0 + T)) +

∫ t0+T

t0

g(x∗(t), ẋ∗(t), t)dt (5.2)

where x∗(t) minimize Eq. (5.1) with the restriction of x∗(τ) = a. We here set up an algo-

rithm similar to SLP, except replacing the step 2 to:

2. When t = tk + iδ, i = 0, 1, 2, 3, . . ., calculate u∗
t (τ) such that f(xk(τ), u∗

t (τ)) = ẋ∗
k(τ),

where

x∗
k(τ) achieves

{

η(xk(t), xk−1(t), ∆, t, ∆), τ ∈ [t, t + ∆] if ∆ + iδ < T

ηfs(xk(t), tk + T − t, t), τ ∈ [t, tk + T] otherwise

If the final state is not free but restricted to a set, it should satisfy the final condition

of

q(x(t0 + T)) = 0 T is free (5.3)

33

For example, if the final state is located on a unit circle, the condition will be ‖x(t0+T)‖ = 1.

From optimal control, we have known that the best final time and state could be determined

by the transversality condition.

We also define the cost of a segment of an optimal trajectory over [t0, t0 + T] as:

ηfsg(a, T, t0) = Q(x(t0 + T)) +

∫ t0+T

t0

g(x∗(t), ẋ∗(t), t)dt (5.4)

where x∗(t) is the optimal trajectory for the cost in Eq. (5.1) while it satisfies that x∗(t0) =

a, q(x∗(t0 + T) = 0.

Of course we need both “catching up” and ”free running” phases if applying local pursuit

into such problems. We set up the algorithm as same as the CLP, except replacing the step

2 to

2. Calculate u∗
t (τ) fro all t ∈ [tk, tk + T] such that f(xk(τ), u∗

t (τ)) = ẋ∗
k(τ), where

x∗
k(τ) achieves

{

η(xk(t), xk−1(t), ∆, t, ∆), τ ∈ [t, t + ∆] if t < tk + T − ∆

ηfsg(xk(t), tk + T − t, t), τ ∈ [t, tk + T] otherwise

The remaining work is to prove the optimality of the limiting trajectory obtained from

the above algorithms. We may follow the similar steps as we do with SLP and CLP:

1. Proving the convergence of the cost incurred by the trajectories.

2. Proving the uniqueness of the limiting trajectory.

3. Proving the optimality of the composition of two segments of locally optimal trajecto-

ries.

4. Proving the local optimality of the limiting trajectory.

5.2 Convergence to Global vs Local Optimum

The limiting trajectory in local pursuit is determined by the parameters ∆, δ and the initial

trajectory x0(t). As we shall see, different parameters may result in reaching different local

optima. x0(t) is the initial trajectory generated by estimation or random exploration, and

is not determined by the algorithms themselves.

There is an obvious trade-off in choosing ∆: large values of ∆ may require significant

demands on each agent’s capabilities of sensing, communicating and computing, however,

large ∆ will also generally result in faster convergence and the ability of local pursuit to

“escape” local optima. For the sake of space limitations we restrict our discussion to the

following example1.

1In this section, all the examples are deal with problems of minimizing the path length.

34

• If pursuit takes place on a surface with “holes” or “obstacles” and the initial feasible

path winds around the obstacles. The iterated trajectories may converge to a global

optimum instead of a local one with large ∆. For example, if the ∆ is greater than

1/2 the perimeter of the largest circle that surrounds the holes and all agents run at

unit speed, then the iterated trajectories converge to the global optimum.

R=1 O

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

3

S

E

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

S

E

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

S

E

∆=3.1416

δ=2.5

∆=3.1416

δ=3

Figure 5.1: Larger δ may lead to a better result.

The δ is much easier to be adjusted because the only requirement for δ is that 0 ≤ δ < ∆.

Nonetheless, there seems no simple relationship between the group’s performance and δ.

Smaller δ seemingly refers to more frequent updates and will bring better result, however,

in fact it may lead to the local optimum instead of the global optimum. This can be seen

from the following example.

• If pursuit takes place on a plane with a hole of unit radius, and each agent moves on

unit speed. Let the first agent move counterclockwise along one local minimum from

S to E, as illustrated in the left of Fig. 5.1. The ∆ is set to be 3.1416 (a little more

than π). Then the simulation shows that for some δ, e.g. δ = 2.5, all the followers

travel along the same trajectory as the leader’s, and for some δ, e.g. δ = 3, the limiting

trajectory will converge to the global optimum. Here we see larger δ leads to better

result. The two limiting trajectories in contrast are illustrated in Fig. 5.1.

We see that carefully selected parameters may lead to the global optimum. Directly

determining the desired parameters that lead to desired local optimum seems difficult. How-

ever, given the parameters of an algorithm and a desired local optimum, we can investigate

whether the trajectory sequence will converge to it. We will proceed using Lyapunov’s

method.

35

Recall that an agent’s trajectory, xk+1(t), can be determined by the algorithm’s pa-

rameters, if given its leader’s trajectory xk(t). At every updating time, the locally optimal

trajectory is determined by the starting state, the end state and ∆, so we can assume that

the optimal trajectory minimizing the cost J is given by the mapping:

x∗(τ) = h(a, b, ∆, τ) τ ∈ [t, t + ∆] (5.5)

with the boundary condition x(t) = a, x(t + ∆) = b. We assume that the mapping h :

D×D×R
+×R → D×I (I is an time interval) defines a continuous trajectory. Given fixed ∆

and δ (assume we start with SLP), and denoting the kth trajectory as xk(t) (t ∈ [tk, tk +T]),

then the (k + 1)th trajectory is

xk+1(t) =

{

h(xk+1(tk+1 + jδ), xk(tk+1 + ∆ + jδ), ∆, t) if t ∈ [tk+1, tk+1 + iδ]

h(xk+1(tk+1 + iδ), xk(tk + T), T − (i + 1)δ, t) otherwise
(5.6)

where the integer i satisfies iδ ≤ T − ∆ and (i + 1)δ > T − ∆.

For simplicity, we can write Eq. (5.6) as

xk+1(t) = fp(xk(t), ∆, δ, t) t ∈ [0, T] (5.7)

where fp : D × [0, T] × R
+ × R → D × [0, T] is a continuous function. This is similar to the

state equation of a dynamic system, if we think every trajectory as a state in the space of

trajectories (D × [0, T]).

Noticing that Lyapunov’s method is a commonly applied technique in analyzing the

convergence properties of dynamic systems, we plan to set up a Lyapunov function in the

space of trajectories. The constructed Lyapunov should satisfy the following condition:

V (x∗(t)) = q and V (xk(t)) > q in D × [0, T] − {x∗(t)} (5.8)

V (xk+1(t)) − V (xk(t)) ≤ −ρk < 0 for xk(t) ∈ D × [0, T] − {x∗(t)} (5.9)

where x∗(t) is the predetermined local optimum and ρk → 0 only if xk(t) → x∗(t). If we can

find such a Lyapunov function, we can conclude that the trajectory sequence generated by

local pursuit and started with an initial trajectory x0(t) ∈ D × [0, T] will converge to x∗(t).

Furthermore, by finding a region in the space of trajectories where the Lyapunov function

satisfies the above condition of Eq. (5.8),(5.9) and is bounded above, we are expected to

find the region of attraction of this local optimum.

5.3 Pursuit with Noisy Measurements

In the real world, sensors and actuators embedded in robots are not perfect and the operation

of them is often distorted by noise. There are a number of key points to understand the

uncertainty [21]:

36

• Sensors only deliver uncertain values in practice. At best they deliver an approximation

to what they are measuring. The disturbance in environments, difference between

physical parts and measuring mechanism are also bringing unexpected errors for every

sensor. Moreover, sensors do not deliver direct descriptions of the world. They do

not identify the objects and separate the effects due to their own motion and objects’

motion. Therefore we can hardly obtain an accurate model for a real sensor.

• Commands to actuators can have uncertain effects. Many layers of refinement may

be performed before high level action commands become appropriate motor currents,

each may bring uncertainty. Depending on the hardware and software accuracy, errors

could accumulate rapidly. These uncertainties make it difficult to model actuators

accurately.

What we want to investigate is the collective behavior of the system when the mea-

surements made by agents are subjected to noise. We would like to develop algorithms that

work not only well but also robustly. For the sake of simplicity, we may consider the noise

of sensors and actuators together and model the noise in a generic, abstract context as

x̂(t) = x∗(t) + ξ(x)ω(t) (5.10)

where x∗(t) is the actually optimal trajectory, ξ(x) is a real valued function and ω(t) is

a white Gaussian process with mean ω̄ and variance Σ2. What we are interested in is to

investigate the limiting trajectory and determine its distribution.

Another source of uncertainty comes from the estimation of optima, when precise so-

lutions to locally optimal trajectories is impossible to obtain even though all measurement

and models are perfect. For example, for an uneven terrain that can not be described by

any existing geometric objects, it is hardly to obtain an analytical solution to the geodesics

on it. However, sometimes we can estimate the solution with bounded error through numer-

ical methods or other simple rules, by investigating properties of the environment and the

optimal solution. The error of local estimate is related to the “following distance” between

the leader and the follower: the smaller the distance is, more precise the estimate. So in this

case the locally optimal trajectories that agents obtain are as follow.

x̂(t) = x∗(t) + ε(t) ‖ε(t)‖∞ < L (5.11)

and we are interested to find the range of the limiting trajectory’s error. If the error of the

limiting trajectory is bounded (depends on L), then we have found a method to transform

the local trajectories’ error to the entire trajectory’s error.

In order to proceed with this, the following steps will be considered:

37

1. Making a model of locally optimal trajectories at updating times, as Eq. (5.10),(5.11)

did.

2. Investigating the evolution of each pair of leader and follower under noisy measurements

and the evolution of the trajectory’s error through the pursuit process.

3. Finding the error of the limiting trajectory.

5.4 Application in Numerical Computation of Optimal

Control

The algorithms stated here can potentially lead to advances in numerical computing of

optimal trajectories for control systems. Numerical methods, including the Newton’s method

and gradient methods, are commonly applied optimization methods. An obvious drawback

of ordinary numerical methods is that they need large amount of calculation for they are

optimizing the result iteratively.

For example, the multiple shooting method is widely used in difficult applications,

e.g. fuel optimization problem for spaceships [9]. Proceeding formally to multiple shoot-

ing method, as Betts summarized in [8], “the fundamental idea of multiple shooting is to

break the trajectory into shorter pieces or segments”. The time domain is broken into smaller

intervals of the form t0 < t1 < · · · < tM = tf . The initial value for the dynamic variable at

the beginning of each segment is denoted as νj for j = 0, 1, . . . , (M − 1) and the variable

obtained through solving system equation from tj to tj+1 is denoted as ν̄j . The nonlinear

programming (NLP) variables are defined as x = [ν0, ν1, . . . , νM−1]. And the constraints for

NLP are

c(x) =













ν1 − ν̄0

ν2 − ν̄1

...

φ(νM , tf)













= 0

where φ(νM , tf) = 0 is the boundary condition. The number of NLP variables and constrains

is n = nνM where nν is the dimension of dynamic variable ν and M is the number of

segments [8] [13]. Thereafter the problem to minimize cost function F (x) can been solved

by introducing the Lagrangian

L(x, λ) = F (x) − λT c(x)

38

Necessary conditions for the variable [x∗, λ∗] to be an optimum are defined by

∇xL(x, λ) = 0

∇λL(x, λ) = 0

When proceeding with the iterating process, the dimension of Jacobian matrix ∇x is n×n =

nνM × nνM . Here we have seen that the number of segments involved in the calculation

affects the “degree of labor-consumption” at least in the order of O(n2). Moreover, increasing

the variable size will lead to more iterating steps. If fewer segments were introduced during

calculation processes, the complexity of computing can be decreased.

Another obvious example of “more time segments lead to increased complexity” is the

dynamic programming. Bellman introduced the Hamilton-Jacobi-Bellman (HJB) equation

to describe the optimal control u∗(x, t) as well as the cost-to-go function J∗(x, t) for all

possible initial conditions [17, 14]. The HJB theory plays an important role in the field of

optimal control because it provides sufficient condition for optimality as opposed to the nec-

essary condition obtained from ordinary optimization methods [8]. However, the drawback

of dynamic programming is the “curse of dimensionality”, as Bellman himself calls it. Even

dealing with a moderately complicated problem will involve an enormous amount of storage

[15]. This drawback of dynamic programming could be seen from the discrete example of

shortest path problem [16] [17], as illustrated by the trellis diagram in Fig. 5.2. The worst

case will involve investigating n2
νM paths and storing nνM data if proceeding backward from

the end point to the starting point, where nν is the dimension of state x and M is the number

of segments. Operation using dynamic programming with large M is often unfeasible due

to the agent’s limited physical memory.

S X0 X1 XM E

Figure 5.2: The trellis diagram of shortest path problem.

39

We would like to utilize numerical methods with less computing complexity. One idea is

to decrease the number of time segments in operational processes. Fewer segments mean that

optimization processes can only be executed in smaller regions, which coincides with the idea

of finding optima within small regions, as stated before. Therefore we plan to apply local

pursuit in numerical methods and investigate the potential advantages that appear, such as

the decrease of physical requirements for each agent and the “degree of labor-consumption”

for the group. To complete the argument, we should consider the following steps:

1. Applying local pursuit in numerical methods to solve some optimal control problems.

Investigate a single updating process, determine the requirement for an individual

agent to proceed the algorithm, e.g. the size of storage, the complexity of computing.

2. Trying to find the appropriate iterative times to reach the satisfying result, e.g. to

determine the k so that

‖xk(t) − x∗(t)‖∞ ≤ ε (5.12)

3. Investigating the requirements and computing complexity in numerical method ordi-

narily applied in the same problems.

4. Comparing the two kinds of numerical methods.

5.5 Other Algorithms Inspired by Biology

Besides ants, other social insects, e.g. worker honey bees, have shown us a lot of group

activities with amazing coordinated behaviors. The intrinsic mechanism has been partly

revealed by some effective models of such activities. We are considering ways to “borrow”

the rules that govern behaviors of insects and to develop additional biologically inspired

algorithms for problems in engineering. Some potential topics are as follows:

• The foraging activities of worker honey bees [1] can provide us with some clues on solv-

ing the resource allocating problems, which has numerous applications in engineering,

economics and research operation, e.g. routing a group of taxis to pick up and deliver

passengers whose appearances are dynamic or random, arranging a limited number of

robots to execute several manufacturing processes.

• The work of [3] presented a model of how ants select ongoing foraging zones. According

to this model, each ant has the uniform distribution over all foraging zones at first.

Assume the probability of foraging zone i at time t is Pi(t). If at time t, the ant

finds food in zone i, then the probability Pi(t + 1) = Pi(t) + min(P+, 1−Pi(t)), where

40

P+ is a constant indicating the relative importance of “learning”. If not, then the

probability Pi(t+1) will be decreased. By this mechanism, both an individual ant and

a colony of ants will evolve into optimal spatial distribution over foraging zones - getting

maximum food when the appearance of food at each zone is random and unknown to

the ants. In engineering, this method of “learning” is helpful, especially when there

exist unknown factors. For example, we may want to use limited number of controllers

to stabilize multiple plants. However, each plant has the unknown distribution of

deviating from its equilibrium position and we want to minimize the sum of deviations.

It is promising that we can let the controllers learn the distribution of each plant and

develop decentralized rules for each controller.

In order to successfully complete the proposed research, the following are specific steps

to be taken:

1. Finding some engineering or economic problems with similar properties to a social

insect activity and constructing an effective model of insect activities. Many works

have discussed models of social behavior in insects. We will stress those that appear

to have the simplest rules.

2. Abstracting the rules that govern communication and motion behaviors of insects and

embedding it into the artificial collectives in order to solve the proposed tasks.

3. Showing the effectiveness of proposed algorithm by analysis or simulation.

41

Appendix A

Proofs

A.1 Preliminaries

The following facts can be derived easily from the properties of optimal trajectories and are

helpful in future argument.

Facts : Let η, C, ηF as defined in Eq. (3.4),(3.5),(3.8), xk(t) be a trajectory of Eq. (3.1)

and x∗(t) an optimal trajectory of Eq. (3.3) or Eq. (3.7). Then, the following properties

hold:

1. η(a, b, T, t0, σ) ≤ C(xk, t0, σ) with any xk(t0) = x∗(t0), xk(t0 + σ) = x∗(t0 + σ) where

x∗(t) satisfies Eq. (3.3).

2. η(a, c, T, t0, T) ≤ η(a, b, σ, t0, σ) + η(b, c, T − σ, t0 + σ, T − σ)

3. C(xk, t0, T) = C(xk, t0, σ) + C(xk, t0 + σ, T − σ)

4. ηF (a, b, t0, σ) ≤ η(a, b, T, t0, σ)

5. η(a, b, T, t0, σ) = C(x∗, t0, σ) where x∗(t) satisfies Eq. (3.3).

A.2 Proof of Lemma 4.1

It is enough to show the cost of the iterated trajectories is non-increasing with k. Consider

the pursuing process between the (k − 1)th and kth agents. As shown in Fig. A.1, the

dotted line, denoted by xk−1(t) on [tk−1, tk−1 + T], indicates the leader’s path. The solid

lines, denoted by xk(t), are the trajectories of the “follower”, and the dashed lines, noted

by x̂k(t), are the planned trajectories, as described before. And we use x̃(t) to denote the

trajectory that the follower copies from the leader’s trajectory but with a delay of time ∆,

42

i.e. x̃k(t + ∆) = xk−1(t). Therefore the cost along it must be same to the cost along the

leader’s.

Xk(tk)

Xk(tk+δ)

Xk(tk+2δ)

Xk(tk+3δ)
Xk(tk+nδ)

Xk(tk+Τ)

Xk-1(tk-1)

Xk-1(tk)

Xk-1(tk+δ)

Xk-1(tk+2δ)

Xk-1(tk+nδ−δ)

Xk-1(tk-1+Τ)

Xk(tk+nδ−δ)

Figure A.1: Sketch of Sampled Local Pursuit

The follower leaves the starting state at time tk, while the leader leaves it at time tk−1,

where tk = tk−1 + ∆. For t ∈ [tk, tk + δ], the follower moves on an optimal trajectory from

state xk(tk) to xk−1(tk) over ∆ units of time. Thus from Fact 1:

η(xk(tk), xk−1(tk), ∆, tk, ∆) ≤ C(x̃k, tk, ∆)

= C(xk−1, tk−1, ∆) (A.1)

The right-hand side is the cost along the leader’s path for the first ∆ units of time, the

left-hand side is the optimal cost from xk(tk) to xk−1(tk).

At time tk + δ the follower reaches the state xk(tk + δ). Recalling that the trajectory

drvien by u∗
tk

(τ) is optimal from xk(tk) to xk−1(tk) and from Fact 3, we can divide the cost

into two parts, one is actual and the other is planned1, i.e.

η(xk(tk), xk−1(tk), ∆, tk, ∆)

= η(xk(tk), xk−1(tk), ∆, tk, δ) + η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) (A.2)

From (A.1),(A.2):

η(xk(tk), xk−1(tk), ∆, tk, δ)

≤ C(xk−1, tk−1, ∆) − η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) (A.3)

At time tk + δ, the follower updates its trajectory to catch the leader at its new location

xk(tk + δ). For this trajectory is optimal from xk(tk + δ) to xk−1(tk + δ) over time ∆, any

1These two pieces are both optimal with respect to their corresponding end points.

43

path xk(t) (t ∈ [tk + δ, tk + δ + ∆]) that is from xk(tk + δ) to xk−1(tk + δ) over time ∆ and

passes through xk−1(tk) at time tk + ∆ = tk + δ + ∆ − δ has equal or more cost. From Fact

2 follows:

η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, ∆)

≤ η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) + η(xk−1(tk), xk−1(tk + δ), δ, tk + ∆, δ)

≤ η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) + C(x̃k, tk + ∆, δ)

= η(xk(tk + δ), xk−1(tk), ∆ − δ, tk + δ, ∆ − δ) + C(xk−1, tk, δ) (A.4)

We can also divide this cost into a realized part and a planned one, i.e.

η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, ∆)

= η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, δ) + η(xk(tk + 2δ), xk−1(tk + δ), ∆ − δ, tk + 2δ, ∆ − δ)

(A.5)

From (A.1) ∼ (A.5), we obtain

C(xk, tk, 2δ)

= η(xk(tk), xk−1(tk), ∆, tk, δ) + η(xk(tk + δ), xk−1(tk + δ), ∆, tk + δ, δ)

≤ C(xk−1, tk−1, ∆) + C(xk−1, tk, δ) − η(xk(tk + 2δ), xk−1(tk + δ), ∆ − δ, tk + 2δ, ∆ − δ)

= C(xk−1, tk−1, ∆ + δ) − C(x̂k, tk + 2δ, ∆ − δ) (A.6)

where η(xk(tk + 2δ), xk−1(tk + δ), ∆ − δ, tk + 2δ, ∆ − δ) = C(x̂k, tk + 2δ, ∆ − δ) is from the

fact that the planned trajectory is optimal.

Xk(tk)

Xk(tk+δ)

Xk(tk+2δ)

Xk-1(tk-1)

Xk-1(tk+δ)

Figure A.2: First two steps in sampled local pursuit

We repeat this procedure until t = tk + nδ where ∆ + (n − 1)δ < T and ∆ + nδ ≥ T .

This choice of n means that the leader has not reached the final state, and

C(xk, tk, nδ) =

n−1
∑

i=0

η(xk(tk + iδ), xk−1(tk + iδ), ∆, tk + iδ, δ)

≤ C(xk−1, tk−1, ∆ + (n − 1)δ) − C(x̂k, tk + nδ, ∆ − δ) (A.7)

44

When t ∈ [tk +nδ, tk +T], the leader reaches the final state and stays static. During this

time period, no matter how many times the follower updates its movement, it will move on

the same path that was determined at time t = tk +nδ. This path, which is indicated by the

last solid line in Fig. A.1, is locally optimal between the states xk(tk + nδ) and xk(tk + T)

over T − nδ units of time. Therefore

C(xk, tk + nδ, T − nδ)

= η(xk(tk + nδ), xk−1(tk−1 + T), T − nδ, tk + nδ, T − nδ)

≤ C(x̂k, tk + nδ, ∆ − δ) + C(xk−1, tk + (n − 1)δ, T − (n − 1)δ − ∆) (A.8)

From (A.7) ∼ (A.8), we obtain

C(xk, tk, T) ≤ C(xk−1, tk−1, ∆ + (n − 1)δ) + C(xk−1, tk + (n − 1)δ, T − (n − 1)δ − ∆)

= C(xk−1, tk−1, T) (A.9)

We have shown that cost incurred by the follower is no greater than the leader’s. Writing

Ck = C(xk, tk, T) in convenience, we can see that Ck ≤ Ck−1. Obviously Ck is bounded

below if there exits an optimal trajectory from the starting state to the target state. Hence

we conclude that

lim
k→∞

Ck = C (A.10)

A.3 Proof of Lemma 4.2

Suppose there exist more than one limiting trajectory, and suppose x1(t) and x2(t) are two

possibilities. x1(t) differs from x2(t) for t ∈ [t1, t2] ∪ [t3, t4] From Lemma 4.1 these two

trajectories must have the same cost.

Let the leader xk−1(t) travel along x1(t), while the follower xk(t) travels along x2(t). If

no update occurs during [t1, t2], x2(t) has less cost during [t1, t2] because the follower moves

along x2(t) and the local optimum is unique. Same arguments on other different time periods

lead to the face that the whole cost along x2(t) is less than x1(t) if no update occurs during

t ∈ [t1, t2]∪ [t3, t4] . . ., which contradicts to the fact that two trajectories have the same cost.

Next, assume only one update occurs during [t1, t2], as Fig. A.3 indicates. Separate the

curves during [t1, t2] into several segments (the meaning of different curve style is the same

as in Lemma 4.1), and indicate the cost along curve i as Ci. From the uniqueness of local

optimum, we have C1 +C5 < C3 and C2 < C5 + C4. Hence C1 + C2 < C3 + C4, which means

x2(t) has less cost than x1(t) during [t1, t2].

If there are multiple updates during [t1, t2], we can see that the updates does not change

the fact that cost along x2(t) is less than x1(t). Hence we still get the result that the cost

along x2(t) is less than x1(t) for t ∈ [t1, t2], no matter how many updates occur.

45

X1(t)

X2(t)

t1

t2

1

2

3

4

5

Figure A.3: There is one update between two trajectories

Iterating on more different time periods leads to the fact that the whole cost along x2(t)

must be less than x1(t). We also obtain contradiction.

A.4 Proof of Lemma 4.3

Let the leader move along the limiting trajectory x∞(t), suppose it is the (k − 1)th agent.

From Lemma 4.2, the limiting trajectory means that xk−1(t) = xk(t+∆) for ∀t ∈ [tk, tk +T].

At first we claim that in the time interval [tk + δ, tk + ∆], the planned trajectory agrees

with the realized one, i.e. x̂k(t) = xk(t), t ∈ [tk + δ, tk + ∆]. Suppose that x̂k(t) 6= xk(t) for

some t ∈ [tk + δ, tk + ∆]. Because x̂(t) is optimal from xk(tk + δ) to xk(tk + δ + ∆), the

trajectory

x̄(t) =

{

x̂k(t) t ∈ [tk + δ, tk + ∆)

xk(t) t ∈ [tk + ∆, tk + δ + ∆]

has less cost than the trajectory xk(t) (t ∈ [tk + δ, tk + δ + ∆]) , which is updated by the

follower at the time t = tk +δ and is supposed to be optimal from xk(tk +δ) to xk(tk +δ+∆).

Thus there is a contradiction. Hence we obtain x̂k(t) = xk(t) for ∀t ∈ [tk + δ, tk + ∆]. Same

arguments could be applied in other time periods.

x̄(t) is smooth for t ∈ [tk, tk + ∆] because the locally optimal trajectory is smooth,

and xk(t) is smooth for t ∈ [tk + δ, tk + δ + ∆](second update step) because of the same

reason. And we know x̂k(t) = xk(t) for ∀t ∈ [tk + δ, tk + ∆]. Thus the actual trajectory

xk(t)(t ∈ [tk, tk + 2δ]) is smooth. Continuing on this argument leads to the result that the

whole trajectory xk(t) (t ∈ [tk, tk + T]) is smooth.

46

A.5 Proof of Lemma 4.4

We rewrite the lemma to that if x∗(t) (t ∈ [0, t1 + ∆1]) and x∗(t) (t ∈ [t1, T]) are two locally

optimal trajectories and Condition 4.1 is satisfied, where 0 < t1 < t1 + ∆1 < T , then the

trajectory x∗(t), t ∈ [0, T] is a local minimum.

We take 0 < ∆ ≤ ∆1. From principle of optimality, we obtain that x∗(t)(t ∈ [0, t1 +∆])

and x∗(t)(t ∈ [t1, T]) are two locally optimal trajectories with respect to their corresponding

end points.

Suppose that x∗(t)(t ∈ [0, T]) is not the local minimum, there must exist an ǫ < ε and

another optimum x(t) ∈ D × [0, T] satisfying that ‖x(t) − x∗(t)‖∞ < ǫ and C(x(t), 0, T) <

C(x∗(t), 0, T), as Fig. A.4 shows.

X*(t)

Xf

X(t)

X0

X*(t1)

X*(t1+∆)

X(t1)

X(t1+∆)

Y2(t)

Y1(t)

Figure A.4: Overlapped local minimums lead to the local minimum overall

Construct two optimal trajectories y1(t), y2(t), t ∈ [t1, t1 + ∆] connecting x(t) and x∗(t)

such that x∗(t1) = y2(t1), x
∗(t1 + ∆) = y1(t1 + ∆), x(t1) = y1(t1), x(t1 + ∆) = y2(t1 + ∆).

From principle of optimality, x∗(t) and x(t) (t ∈ [t1, t1 + ∆]) are both optimal trajectories

with respect to their corresponding end points. Now with the condition of Eq. (4.1), we

obtain

C(y1(t), t1, ∆) < C(x(t), t1, ∆) + L∆

C(y2(t), t1, ∆) < C(x∗(t), t1, ∆) + L∆ (A.11)

For x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈ [t1, T]) are two unique local optimal trajectories, we

have

C(x∗(t), 0, t1) + C(x∗(t), t1, ∆) < C(x(t), 0, t1) + C(y1(t), t1, ∆)

C(x∗(t), t1, ∆) + C(x∗(t), t1 + ∆, T − t1 − ∆) < C(x(t), t1 + ∆, T − t1 − ∆) + C(y2(t), t1, ∆)

(A.12)

Combining (A.11) and (A.12) leads to

C(x∗(t), 0, T) + C(x∗(t), t1, ∆) < C(x(t), 0, T) + C(x∗(t), t1, ∆) + 2L∆

47

which could be derived as

C(x∗(t), 0, T) < C(x(t), 0, T) + 2L∆ (A.13)

C(x(t), 0, T) is assumed to be less than C(x∗(t), 0, T), but if we take

0 < ∆ <
C(x∗(t), 0, T) − C(x(t), 0, T)

2L

Therefore Eq. (A.13) can not be true. There is a contradiction because ∆ could be set to

be arbitrarily small. Hence follows the conclusion that x∗(t) (t ∈ [0, T]) must be the local

minimum.

A.6 Proof of Lemma 4.5

Suppose that tk + λ + ∆ < T . As Fig. A.5 indicated, the follower moves on the locally

optimal trajectory xk(t)(t ∈ [tk + λ, tk + λ + ∆]) at time tk + λ. Define a function G :

D × [0, T] × R
+ → D × [0, T] to represent the new trajectory, denoted as G(λ, xk−1(t)). The

cost along the follower’s trajectory is

C(xk, tk, T) = C(xk, tk, λ) + η(xk(tk + λ), xk−1(tk + λ), ∆, tk + λ, ∆) + C(xk, tk + ∆, T − ∆)

≤ C(xk−1, tk−1, λ) + C(xk−1, tk−1 + λ, ∆) + C(xk−1, tk−1 + λ + ∆, T − λ − ∆)

= C(xk−1, tk−1, T) (A.14)

Same argument could be applied for the case where tk + λ + ∆ ≥ T .

Xk(tk)

Xk(tk+Τ)

Xk-1(tk-1)

Xk-1(tk-1+Τ)

Xk(tk+u)

Xk(tk+u+∆)

Figure A.5: The cost is decreased with a single update.

A.7 Proof of Lemma 4.6

Suppose the cost along the leader’s trajectory xk−1(t) (t ∈ [tk−1, tk−1 + T]) is Ck−1. Set up a

48

xk

xk

xk

1

2

3

xk
4

Figure A.6: Trajectory Sequence of xi
k(t).

trajectory sequence xi
k(t) (t ∈ [tk, tk +T]), i = 1, 2 . . . with the corresponding cost of Ci

k. Let

x0
k(t) = xk−1(t) and xi

k(t) = G((i− 1)δ, xi−1
k (t)), as Fig. A.6 indicates, where G is defined in

the proof of Lemma 4.5.

According to Lemma 4.5,

Ci
k ≤ Ci−1

k ⇒ C∞
k ≤ C0

k = Ck−1

with δ ≥ 0.

Let δ = T/i, then δ → 0 as i → ∞. And now the trajectory xi
k(t) is exactly under the

same updating process as in the continuous local pursuit. Therefore we obtain the follower’s

cost Ck = C∞
k ≤ Ck−1. Since the sequence {Ck} is non-increasing, surely it will converge to

a limit.

49

Bibliography

[1] S. Camazine, etc.(Eds), Self-Organization in Biological Systems, Princeton University

Press, 2001.

[2] J. M. Pasteels and J-L. Deneubourg(Eds), From individual to collective behavior in

social insects, Les Treilles Workshop, Basel, Boston, 1987.

[3] J-L. Deneubourg, S. Goss, J. M. Pasteels, D. Fresneau and J-P. Lachaud, Self-

organization mechanisms in ant societies (II): learning in foraging and division of labor,

in: J. M. Pasteels and J-L. Deneubourg(Eds), From individual to collective behavior in

social insects, Les Treilles Workshop, Basel, Boston, 1987, pp. 177-196.

[4] D. M. Gordon, Ants at work, The Free Press, New York, 1999.

[5] H. K. Khalil, Nonlinear Systems, Prentice Hall, New jersey, 2002.

[6] E. K. P. Chong and S. H. Żak, An introduction to optimization, Wiley, New York, 1996.

[7] D. J. Wilde, Optimum seeking methods, Prentice-Hall, Englewood Cliffs, N.J. 1964.

[8] J. T. Betts, Survey of numerical methods for trajectory optimization, Journal of Guid-

ance, Control and Dynamics, Vol. 21, No. 2, Mar. - Apr. 1998.

[9] R. S. Nah, S. R. Vadali and E. Braden, Fuel-optimal, low-thrust, three-dimensional

earth-mars trajectories, Journal of Guidance, Control, and Dynamics, Vol. 24, No. 6,

Nov.-Dec., 2001.

[10] D. Kincaid and W. Cheney, Numerical Analysis, Brooks/Cole Publishing Company,

Pacific Grove, California, 1991.

[11] R. Kress, Numerical Analysis, Springer-Verlag New York Inc, New York, 1998.

[12] N. S. Bakhvalov, On the optimization of numerical algorithms, in: B. Bojanov, H.

Woźniakowski(Eds), Optimal Recovery, Nova Science Publishers, Inc. 1992, pp. 1-58.

50

[13] H. B. Keller, Numerical methods for two-point boundary value Problems, Blaisdell

Publishing Company, Waltham, Massachusetts, 1968.

[14] G. L. Nemhauser, Introduction to dynamic programming, John Wiley and Sons, Inc.,

New York, 1966.

[15] A. E. Bryson, Jr., Y. C. Ho, Applied optimal control: optimization, estimation and

control, Hemisphere Pub. Corp., Washington, 1975.

[16] G. D. Forney, Jr., The viterbi algorithm, Proceedings of the IEEE, vol.61, no.3, March,

1973, pp. 268-278.

[17] D. P. Bertsekas, Dynamic programming and optimal control, Volume I, Athena Scien-

tific, Belmont, Massachusetts, 2000.

[18] D. Hristu-Varsakelis, Robot formations: Learning minimum-length paths on uneven

terrain, Proceedings of the 8th IEEE Mediterranean Conference on control and Au-

tomation, 2000.

[19] D. Hristu-Varsakelis, P. Krishnaprasad, S. Andersson, F. Zhang, P. Sodre, L. D’Anna,

The MDLe engine: a software tool for hybrid motion control, Tech. Rep. TR2000-54,

Institute for systems Research, Oct. 2000.

[20] L. Edelstein-Keshet, Trail following as adaptable mechanism for popular behavior, in:

R. Murphey, P. M. Pardalos(Eds), Animal groups in three dimensions, Cambridge Uni-

versity Press, Cambridge, U.K., 1997, pp. 282-300.

[21] R. A. Brooks, Artificial life and real robots, Proceeding of the First European Conference

on Artificial Life, MIT Press/Bradford Books, Cambridge, 1992, pp. 3-10.

[22] R. A. Brooks and A. M Flynn, Fast, cheap and out of control: a robot invasion of the

solar system, Journal of the British Interplanetary Society, Vol, 42, 1989, pp. 478-485.

[23] R. Murphey, P. M. Pardalos(Eds), Cooperative control and optimization, Kluwer Aca-

demic Publishers, 2002.

[24] T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Schochet, Novel type of phase

transitions in a system of self-driven particles, Physical Review Letters, Vol. 75, 1995,

pp. 1226-1229.

[25] A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous

agents using nearest neighbor rules, IEEE Transactions on Automatic Control, Vol. 48,

No. 6, June 2003.

51

[26] A. M. Bruckstein, Why the ant trails look so straight and nice, The Mathematical

Intelligencer, 15(2), 1993, pp. 59-62.

[27] A. M. Bruckstein, C. L. Mallows, and I. A. Wagner, Probabilistic pursuits on the grid,

The American Mathematical Monthly, Vol. 104, No. 4, April, 1997, pp. 323-343.

[28] I. A. Wagner, M. Lindenbaum, A. M. Bruckstein, Distributed covering by ant-robots

using evaporating traces, IEEE Transactions on Robotics and Automation, Vol. 15, No.

5, 1999, pp. 918-933.

[29] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint and M.

Baum, Cooperative control for autonomous air vehicles, in: R. Murphey, P. M. Parda-

los(Eds), Cooperative control and optimization, Kluwer Academic Publishers, 2002, pp.

233-272.

[30] R. Kurazume, S. Hirose, S. Nagata and N. Sashida, Study on cooperative positioning

system(Basic principle and measurement experiment), Proceeding of the 1996 IEEE

International Conference in Robotics and Automation, Vol. 2, Minneapolis, MN, April,

1996, pp. 1421-1426.

[31] R. Kurazume and S. Hirose, Study on cooperative positioning system: optimum mov-

ing strategies for CPS-III, Proceeding of the 1998 IEEE International Conference in

Robotics and Automation, Vol. 4, Leuven, Belgium, May, 1998, pp. 2896-2903.

[32] S. I. Roumeliotis, G. A. Bekey, Distributed multi-robot localization, IEEE Transactions

on Robotics and Automation, Vol. 18, No. 5, 2002, pp. 781-795.

[33] R. Fierro, P. Song, A. Das and V. Kumar, Cooperative control of robot formation,

in: R. Murphey, P. M. Pardalos(Eds), Cooperative control and optimization, Kluwer

Academic Publishers, 2002, pp. 73-93.

[34] H. Yamaguchi, J. W. Burdick, Asymptotic stabilization of multiple nonholonomic mobile

robots forming group formations, Proceedings of IEEE International Conference on

Robotics and Automation, Vol. 4, 1998, pp. 3573-3580.

[35] H. Yamaguchi, A cooperative hunting behavior by mobile-robot troops, The Interna-

tional Journal of Robotics Research, Vol. 18, No. 8, September, 1999, pp. 931-940.

[36] M. Dorigo, V. Maniezzo, and A. Colorni, Ant systems: Optimization by a colony of

cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol

26, No. 1, 1996, pp. 29-41.

52

[37] H. Sussmann, J. C. Willems, 300 years of optimal control: from the brachystochrone to

the maximum principle, IEEE Control Systems Magazine, Vol.17, No.3, June 1997, pp.

32-44.

[38] J. K. Parrish, W. M. Hammer(Eds.), Animal groups in three dimensions, Cambridge

University Press, Cambridge, U.K., 1997.

[39] Y. Liu, K. M. Passino and M. Polycarpou, Stability analysis of one-dimensional asyn-

chronous swarms, IEEE Transaction on Automatic control, Vol. 48, No. 10, 2003, pp.

1848-1854.

[40] E. M. Khazen, Searching for optimal trajectory with learning, IEEE Transaction on

Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 31, No. 6, Nov.

2001.

[41] N. E. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated

control of groups, Proceedings of the 40th IEEE Conference on Decision and Control,

Orlando, Florida, December, 2001, pp. 2968-2973.

[42] P. Ögren, E. Fiorelli and N. E. Leonard, Formation with a Mission: Stable Coordina-

tion of Vehicle Group Maneuvers, Proceedings Fifteenth International Symposium on

Mathematical Theory of Networks and Systems, Notre Dame, IL, August, 2002.

[43] P. Ögren, E. Fiorelli and N. E. Leonard, Cooperative control of Mobile Sensor Net-

works: Adaptive gradient climbing in a distributed environment, submitted to IEEE

Transactions on Automatic Control.

53

