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1. Introduction

Frames for a Hilbert space were first introduced by R. J. Duffin and A. C.
Schaeffer and were used as a tool in the study of nonharmonic Fourier series
[10]. The idea of Duffin and Schaeffer did not seem to attract the attention
of people except in signal processing. In 1986, frames came to a turning
point. In [9], Daubechies, Grossmann and Meyer pointed out that frames
would be a useful and powerful tool in many areas of theoretical physics and
applied mathematics. Since then the theory of frames began to be studied
more widely. Because frames provide robust, stable, and non-unique rep-
resentations of vectors, the theory of frames has grown rapidly during the
last two decades with the development of several new applications where
redundancy plays an important role (e.g., filter bank theory, sigma-delta
quantization, signal and image processing, and wireless communications).

However, a number of new applications have emerged which can hardly
be modeled naturally by one single frame system. Generally they share
a common property that requires distributed processing. To handle these
applications new approaches needed to be developed. In [6], Casazza and
Kutyniok studied redundant subspaces for the purpose of easing the con-
struction of frames by building them locally in (redundant) subspaces and
then piecing them together by employing a special structure of the set of
subspaces. This was referred to as a frame of subspaces. They realized
that the idea could be far more reaching than that of building large frames
from smaller local ones. The weighted and coherent subspace combination
in such a mechanism is exactly what was needed in distributed and parallel
processing for many fusion applications as mentioned above. They decided
on a terminology of fusion frames since it reflected much more precisely
the essence of the system studied and its applications. Some basic theory of
fusion frames is studied in [6].

The organization of this article is as follows. The definition and basic
properties of fusion frames and fusion frame systems will be given and
relations between fusion frames and conventional frames will be studied in
Section 2. In Section 3, Parseval fusion frames are presented. Section 4 is
devoted to the sensor networks as an application of fusion frames.

2. Definitions and Basic Properties of Fusion Frames

Throughout this paperH is assumed to be a separable Hilbert space.

2.1. Review of Frames. A sequence F = { fi}i∈I is a frame for H , if there
exist 0 < A ≤ B < ∞ such that for all f ∈ H ,

(1) A‖ f ‖2 ≤
∑
i∈I

|〈 f , fi〉|
2 ≤ B‖ f ‖2.
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The constatns A and B are called a lower and upper frame bound, respec-
tively. Those sequences which satisfy only the upper inequality in (1) are
called Bessel sequences. A frame is tight, if A = B. If A = B = 1, it is
called a Parseval frame. We call a frame { fi}i∈I uniform (or equal norm ),
if we have ‖ fi‖ = ‖ f j‖ for all i, j ∈ I. A frame is exact, if it ceases to be a
frame whenever any single element is deleted from the sequence { fi}i∈I .

In the theory of frame an input signal is represented by a collection of
scalar coefficients. The representation space employed is `2(I). In order
to analyze a signal f ∈ H , the analysis operator TF : H → `2(I) given
by TF f = {〈 f , fi〉}i∈I is applied. The associated synthesis operator is de-
fined to be the adjoint operator T ∗

F
: `2(I) → H by T ∗

F
(c) =

∑
i∈I ci fi for

each sequence of scalars c = {ci}i∈I ∈ `
2(I). By composing TF and T ∗

F
we

obtain the frame operator S F : H → H , S F f = T ∗
F

TF f =
∑

i∈I〈 f , fi〉 fi,
which is a positive, self-adjoint and invertible operator. This provides the
reconstruction formula

(2) f = S −1
F

S F ( f ) =
∑
i∈I

〈 f , fi〉 f̃i =
∑
i∈I

〈 f , f̃i〉 fi for all f ∈ H ,

where f̃i = S −1
F

( fi). The sequence { f̃i}i∈I is also a frame for H , called the
canonical dual frame of { fi}i∈I . When F is a redundant frame, there exist
infinitely many dual frames.

2.2. Fusion Frames and Fusion Frame Systems. The definition of a fu-
sion frame shares many of the properties of frames, and thus can be viewed
as a generalization of frames.

Definition 2.1. Let I be a countable index set, and let {Wi}i∈I be a family
of closed subspaces {Wi}i∈I in H , and let {3i}i∈I be a family of weights, i.e.,
3i > 0 for all i ∈ I. Then {(Wi, 3i)}i∈I is a fusion frame, if there exist constants
0 < C ≤ D < ∞ such that

(3) C‖ f ‖2 ≤
∑
i∈I

3
2
i ‖πWi( f )‖2 ≤ D‖ f ‖2 for all f ∈ H ,

where πWi is the orthogonal projection onto the subspace Wi. We call C
and D the fusion frame bounds. The family {(Wi, 3i)}i∈I is called a C-tight
fusion frame, if in (3) the constants C and D can be chosen so that C = D, a
Parseval fusion frame provided that C = D = 1 and an orthonormal fusion
basis if H =

⊕
i∈I Wi. Moreover, we call a fusion frame {(Wi, 3i)}i∈I 3-

uniform, if 3 = 3i = 3 j for all i, j ∈ I. We call {(Wi, 3i)}i∈I a Bessel fusion
sequence with Bessel fusion bound D, if we only have the upper bound.

We need to consider a set of local frames and string together frames for
each of subspaces to get a frame for the whole space.
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Definition 2.2. Let {(Wi, 3i)}i∈I be a fusion frame for H , and let { fi j} j∈Ji be
a frame for Wi for each i ∈ I. Then we call {(Wi, 3i, { fi j} j∈Ji)}i∈I a fusion
frame system for H . C and D are the associated fusion frame bounds if
they are the fusion frame bounds for {(Wi, 3i)}i∈I , and A and B are the local
frame bounds if these are the common frame bounds for the local frames
{ fi j} j∈Jifor each i ∈ I. A collection of dual frames { f̃i j} j∈Ji , i ∈ I associated
with the local frames will be called local dual frames.

The following theorem provides relations between properties of the as-
sociated fusion frame and the sequence of all local frame vectors.

Theorem 2.3 ([6], Theorem 3.2). For each i ∈ I, let 3i > 0, let Wi be a
closed subspace ofH , and let { fi j} j∈Ji be a frame for Wi with frame bounds
Ai and Bi. Suppose that 0 < A = infi∈I Ai ≤ B = supi∈I Bi < ∞. Then the
following conditions are equivalent.

(i) {(Wi, 3i)}i∈I is a fusion frame forH .
(ii) {3i fi j}i∈I, j∈Ji is a frame forH .

Furthermore, if {(Wi, 3i)}i∈I is a fusion frame forH with fusion frame bounds
C and D, then {3i fi j} j∈Ji,i∈I is a frame for H with frame bounds AC and
BD. Also if {3i fi j} j∈Ji,i∈I is a frame for H with frame bounds C and D, then
{(Wi, 3i)}i∈I is a fusion frame forH with fusion frame bounds C

B and D
A .

Proof. First, assume that {(Wi, 3i)}i∈I is a fusion frame for H with fusion
frame bounds C and D, and let f ∈ H . Then by the definition of a fusion
frame, we get (3). Since for each i ∈ I, { fi j} j∈Ji is a frame for Wi with frame
bounds Ai and Bi and πWi( f ) ∈ Wi, we obtain

(4) Ai‖πWi( f )‖2 ≤
∑
j∈Ji

|〈πWi( f ), fi j〉|
2 ≤ Bi‖πWi( f )‖2

and by (4)

(5)

A
∑
i∈I

3
2
i ‖πWi( f )‖2 ≤

∑
i∈I

Ai3
2
i ‖πWi( f )‖2 ≤

∑
i∈I

3
2
i

∑
j∈Ji

|〈πWi( f ), fi j〉|
2

=
∑
i∈I

∑
j∈Ji

|〈πWi( f ), 3i fi j〉|
2 ≤

∑
i∈I

Bi3
2
i ‖πWi( f )‖2 ≤ B

∑
i∈I

3
2
i ‖πWi( f )‖2.

Since πWi is the orthogonal projection onto Wi, we have

(6)
∑
i∈I

∑
j∈Ji

|〈πWi( f ), 3i fi j〉|
2 =

∑
i∈I

∑
j∈Ji

|〈 f , πWi(3i fi j)〉|2 =
∑
i∈I

∑
j∈Ji

|〈 f , 3i fi j〉|
2.

Therefore, by (3), (5) and (6), we have

AC‖ f ‖2 ≤
∑
i∈I

∑
j∈Ji

|〈 f , 3i fi j〉|
2 ≤ BD‖ f ‖2.
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Conversely, assume that {3i fi j}i∈I, j∈Ji is a frame for H with frame bounds C
and D, and let f ∈ H . Then we have

C‖ f ‖2 ≤
∑
i∈I

∑
j∈Ji

|〈 f , 3i fi j〉|
2 ≤ D‖ f ‖2.

Since for each i ∈ I, { fi j} j∈Ji is a frame for Wi with frame bounds Ai and Bi,
and πWi( f ) ∈ Wi, we get

A
∑
i∈I

3
2
i ‖πWi( f )‖2 ≤

∑
i∈I

3
2
i Ai‖πWi( f )‖2 ≤

∑
i∈I

∑
j∈Ji

|〈πWi( f ), 3i fi j〉|
2

=
∑
i∈I

∑
j∈Ji

|〈 f , 3i fi j〉|
2 ≤ D‖ f ‖2

and

C‖ f ‖2 ≤
∑
i∈I

∑
j∈Ji

|〈 f , 3i fi j〉|
2 =

∑
i∈I

∑
j∈Ji

|〈πWi( f ), 3i fi j〉|
2

≤
∑
i∈I

3
2
i Bi‖πWi( f )‖2 ≤ B

∑
i∈I

3
2
i ‖πWi( f )‖2.

These imply
C
B
‖ f ‖2 ≤

∑
i∈I

3
2
i ‖πWi( f )‖2 ≤

D
A
‖ f ‖2.

Therefore, {(Wi, 3i)}i∈I is a fusion frame for H with fusion frame bounds C
B

and D
A . �

2.3. Fusion Frame Operators. In the theory of fusion frame an input sig-
nal is represented by a collection of vector coefficients that represent the
projection onto each subspace. For the definition of operators for a fusion
frame, we need the following notation and Lemma 2.4.

For each family of subspaces {Wi}i∈I ofH , we define the space (
∑

i∈I ⊕Wi)`2

by (∑
i∈I

⊕Wi

)
`2

=

{
{ fi}i∈I | fi ∈ Wi and

∑
i∈I

‖ fi‖
2 < ∞

}
with inner product given by

〈{ fi}i∈I , {gi}i∈I〉 =
∑
i∈I

〈 fi, gi〉.

Lemma 2.4. Let {(Wi, 3i)}i∈I be a Bessel fusion sequence for H . Then, for
each sequence { fi}i∈I ∈ (

∑
i∈I ⊕Wi)`2 , the series

∑
i∈I 3i fi converges uncondi-

tionally.
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Proof. Let f = { fi}i∈I ∈ (
∑

i∈I ⊕Wi)`2 . Fix J ⊂ I with |J| < ∞ and let
g =

∑
i∈J 3i fi. Then since fi ∈ Wi, we have

‖
∑
i∈J

3i fi‖
4 =

(
〈g,

∑
i∈J

3i fi〉

)2

=

(∑
i∈J

3i〈πWi(g), fi〉

)2

≤

(∑
i∈J

3i‖πWi(g)‖‖ fi‖

)2

≤
∑
i∈J

3
2
i ‖πWi(g)‖2

∑
i∈J

‖ fi‖
2 ≤ D‖g‖2

∑
i∈J

‖ fi‖
2 ≤ D‖

∑
i∈J

3i fi‖
2‖ f ‖2.

Hence,
‖
∑
i∈J

3i fi‖
2 ≤ D‖ f ‖2.

It follows that
∑

i∈I 3i fi is weakly unconditionally Cauchy and hence uncon-
ditionally convergent inH ([13], page 392, Theorem 4.3.12). �

Definition 2.5. Let W = {(Wi, 3i)}i∈I be a fusion frame for H . Then the
analysis operator

TW : H −→
(∑

i∈I

⊕Wi

)
`2

is defined by
TW( f ) = {3iπWi( f )}i∈I .

By the definition of the analysis operator TW, we can easily show that
the synthesis operator T ∗

W
, which is defined to be the adjoint operator, is

given by

T ∗
W

:
(∑

i∈I

⊕Wi

)
`2

→ H with T ∗
W

( f ) =
∑
i∈I

3i fi for all f = { fi}i∈I ∈

(∑
i∈I

⊕Wi

)
`2

.

Theorem 2.6. Let {Wi}i∈I be a family of subspaces inH , and let {3i}i∈I be a
family of weights. Then the following conditions are equivalent.

(i) {(Wi, 3i)}i∈I is a fusion frame forH .
(ii) TW is an isomorphism.

(iii) T ∗
W

is bounded, linear and onto.

Proof. (i) ⇔ (ii): Suppose that {(Wi, 3i)}i∈I is a fusion frame for H and let
f ∈ H . Then by the definition of TW, we have

(7) ‖TW( f )‖2 = ‖{3iπWi( f )}i∈I‖
2 =

∑
i∈I

3
2
i ‖πWi( f )‖2.

Since {(Wi, 3i)}i∈I is a fusion frame for H , there is a constant M > 0 such
that

1
M
‖ f ‖2 ≤

∑
i∈I

3
2
i ‖πWi( f )‖2 = ‖TW( f )‖2 ≤ M‖ f ‖2.
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Therefore TW is an isomorphism.
Conversely, suppose TW is an isomorphism. Then this claim follows im-
mediately by (7).
(ii)⇔ (iii) holds in general for each operator on a Hilbert space. �

Definition 2.7. Let {(Wi, 3i)}i∈I be a fusion frame for H . Then the fusion
frame operator SW forW is defined by

SW( f ) = T ∗
W

TW( f ) = T ∗
W

({3iπWi( f )}i∈I) =
∑
i∈I

3
2
i πWi( f ).

Proposition 2.8. Let {(Wi, 3i,Fi = { fi j} j∈Ji)}i∈I be a fusion frame system for
H , and let F̃i = { f̃i j} j∈Ji , i ∈ I be associated local dual frames. Then the
associated fusion frame operator SW can be written as

SW =
∑
i∈I

3
2
i T ∗
F̃i

TFi =
∑
i∈I

T ∗
Fi

T
F̃i
.

Proof. Since πWi( f ) ∈ Wi, πWi( f ) =
∑

j∈Ji
〈πWi( f ), fi j〉 f̃i j. Therefore, for all

f ∈ H we have

SW( f ) =
∑
i∈I

3
2
i πWi( f ) =

∑
i∈I

3
2
i

∑
j∈Ji

〈 f , fi j〉 f̃i j =
∑
i∈I

3
2
i

∑
j∈Ji

〈 f , f̃i j〉 fi j.

Since TFi( f ) = {〈 f , fi j〉} j∈Ji and T ∗
F̃i

({〈 f , fi j〉} j∈Ji) =
∑

j∈Ji
〈 f , fi j〉 f̃i j, the result

immediately. �

Proposition 2.8 provides that the fusion frame operator can be expressed
in terms of local frame operators TFi and T ∗

F̃i
or T ∗

Fi
and T

F̃i
.

Proposition 2.9. Let {(Wi, 3i)}i∈I be a fusion frame with frame bounds C and
D. Then the fusion frame operator SW is a positive, self-adjoint, invertible
operator onH with

(8) C · Id ≤ SW ≤ D · Id.

Proof. For any f ∈ H , we have

〈SW( f ), f 〉 = 〈
∑
i∈I

3
2
i πWi( f ), f 〉 =

∑
i∈I

3
2
i 〈πWi( f ), f 〉 =

∑
i∈I

3
2
i ‖πWi( f )‖2,

which implies that SW is a positive operator. We further compute

〈C f , f 〉 = C‖ f ‖2 ≤
∑
i∈I

3
2
i ‖πWi( f )‖2 = 〈SW( f ), f 〉 ≤ 〈D f , f 〉.

This shows that C · Id ≤ SW ≤ D · Id and hence SW is an invertible operator
onH . Furthermore, for any f , g ∈ H we have

〈SW( f ), g〉 =
∑
i∈I

3
2
i 〈πWi( f ), g〉 =

∑
i∈I

3
2
i 〈 f , πWi(g)〉 = 〈 f , SW(g)〉.

Thus SW is self-adjoint. �
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This provides the reconstruction formula from the collected and prepro-
cessed data πWi( f ), i ∈ I.

Proposition 2.10. Let {(Wi, 3i)}i∈I be a fusion frame forH with fusion frame
operator SW and fusion frame bounds C and D. Then we have the recon-
struction formula

f =
∑
i∈I

3
2
i S −1
W
πWi( f ) f or all f ∈ H .

Proof. Since SW is invertible, for all f ∈ H we have

f = S −1
W

SW( f ) =
∑
i∈I

3
2
i S −1
W
πWi( f ).

�

2.4. Analysis of the Fusion Frame Bounds. Since the exact values of the
fusion frame bounds will be important for determining the rate of conver-
gence for reconstruction algorithms, we will show how to compute the op-
timal fusion frame bounds.

Theorem 2.11. Let {Wi}i∈I be closed subspaces in H , let {3i}i∈I be posi-
tive numbers, and let SW denote the fusion frame operator associated with
{(Wi, 3i)}i∈I . Then the following conditions are equivalent.

(i) {(Wi, 3i)}i∈I is a fusion frame with fusion frame bounds C and D.
(ii) We have C · Id ≤ SW ≤ D · Id.

Proof. (i) implies (ii) by (8).
Now assume (ii). Let TW denote the analysis operator associated with
{(Wi, 3i)}i∈I . Since SW = T ∗

W
TW and hence ‖SW‖ = ‖T ∗

W
TW‖ = ‖TW‖2,

for any f ∈ H we obtain∑
i∈I

3
2
i ‖πWi( f )‖2 = ‖TW( f )‖2 ≤ ‖TW‖2‖ f ‖2 = ‖SW‖‖ f ‖2 ≤ D‖ f ‖2.

Also, for all f ∈ H ,

‖TW( f )‖2 = 〈T ∗
W

TW( f ), f 〉 = 〈SW( f ), f 〉 = 〈S
1
2
W

( f ), S
1
2
W

( f )〉 = ‖S
1
2
W

( f )‖2 ≥ C‖ f ‖2.

�

3. Parseval Fusion Frames

Parseval frames play an important role in abstract frame theory, since
they are extremely useful for applications. Parseval fusion frames are also
of particular importance due to their advantageous reconstruction proper-
ties. Therefore in this section we study characterizations of Parseval fusion
frames.
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Corollary 3.1. For each i ∈ I let 3i > 0, let Wi be a closed subspace of
H , and let { fi j} j∈Ji be a Parseval frame sequence in H . Then the following
conditions are equivalent.

(i) {3i fi j}i∈I, j∈Ji is a Parseval frame forH .
(ii) {(Wi, 3i)}i∈I is a Parseval fusion frame forH .

Proof. This follows immediately from Theorem 2.3 �

We can also characterize Parseval fusion frames in terms of their frame
operators in a similar manner as in frame theory.

Proposition 3.2. Let {Wi}i∈I be a family of subspaces inH , and let {3i}i∈I be
a family of weights. Then the following conditions are equivalent.

(i) {(Wi, 3i)}i∈I is a Parseval fusion frame forH .
(ii) SW = Id.

Proof. For each i ∈ I, let {ei j} j∈Ji be an orthonormal basis for Wi. By Propo-
sition 2.9, (i) implies (ii). Conversely, suppose that SW = Id. Then for all
f ∈ H we have

f = SW( f ) =
∑
i∈I

3
2
i πWi( f ) =

∑
i∈I

3
2
i

∑
j∈Ji

〈πWi( f ), ei j〉ei j =
∑
i∈I

3
2
i

∑
j∈Ji

〈 f , ei j〉ei j.

This yields

‖ f ‖2 =

〈∑
i∈I

3
2
i

∑
j∈Ji

〈 f , ei j〉ei j, f
〉

=
∑
i∈I

3
2
i ‖πWi( f )‖2.

�

Proposition 3.3. LetWi}i∈I be a family of subspaces inH , and let {3i}i∈I be
a family of weights. Then the following conditions are equivalent.

(i) {Wi}i∈I is an orthonormal basis of subspaces forH .
(ii) {Wi, 1}i∈I is a 1-uniform Parseval fusion frame forH .

Proof. For each i ∈ I, let {ei j} j∈Ji be an orthonormal basis for Wi.
(i)⇒(ii). Suppose that {Wi}i∈I is an orthonormal basis of subspaces for H .
Then {ei j}i∈I, j∈Ji is an orthonormal basis forH . This implies

‖ f ‖2 = 〈
∑
i∈I

∑
j∈Ji

〈 f , ei j〉ei j, f 〉 =
∑
i∈I

∑
j∈Ji

|〈 f , ei j〉|
2

and since πWi( f ) ∈ Wi, we have

‖πWi( f )‖2 = 〈πWi( f ), f 〉 = 〈
∑
j∈Ji

〈 f , ei j〉ei j, f 〉 =
∑
j∈Ji

|〈 f , ei j〉|
2
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for all f ∈ H . Therefore,

‖ f ‖2 =
∑
i∈I

‖πWi( f )‖2.

This implies (ii).
(ii)⇒(i). Suppose that (ii) holds. Then by the above equation, for all f ∈ H
we have

‖ f ‖2 =
∑
i∈I

‖πWi( f )‖2 =
∑
i∈I

∑
j∈Ji

|〈ei j, f 〉|2

and ‖ei j‖ = 1 for all i ∈ I, j ∈ Ji, which shows that {ei j}i∈I, j∈Ji is an orthonor-
mal basis forH . This implies (i). �

Definition 3.4. A family of subspaces {Wi}i∈I ofH is called complete, if

spani∈I{Wi} = H .

The following theorem gives a characterization of Parseval fusion frames
in terms of projections from larger spaces.

Theorem 3.5. For a complete family of subspaces {Wi}i∈I ofH and positive
weights {3i}i∈I , the following conditions are equivalent.

(i) {(Wi, 3i)}i∈I is a Parseval fusion frame forH .
(ii) There exists a Hilbert space K ⊃ H , an orthonormal basis {e j} j∈J

for K , a partition of {Ji}i∈I of J, and isometries Li : span j∈Ji
{e j} →

Wi, i ∈ I such that
P =

∑
i∈I

3iLi

is an orthogonal projection of K ontoH .

Proof. (i)⇒(ii). For every i ∈ I, let {ei j} j∈Ji be an orthonormal basis for
Wi. Since {(Wi, 3i)}i∈I is a Parseval fusion frame for H , by Corollary 3.1,
{3iei j}i∈I, j∈Ji is a Parseval frame for H . By Theorem 3.4 in [3], there exists
a Hilbert space K ⊃ H with an orthonormal basis {̃ei j}i∈I, j∈Ji so that the
orthogonal projection P of K ontoH satisfies

P(̃ei j) = 3iei j, i ∈ I, j ∈ Ji.

Setting Ki = span j∈Ji
{̃ei j}, the map

Li =
1
3i

P|Ki : Ki → Wi

is an isometry for all i ∈ I, and

P =
∑
i∈I

3iLi

is an orthogonal projection of K ontoH .
(ii)⇒(i). Since P =

∑
i∈I 3iLi is an orthogonal projection of K onto H ,
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{Pe j} j∈J is a Parseval frame forH . Further, since Li := 3−1
i P|Ki : Ki → Wi is

an isometry, it follows that {3−1
i Pe j} j∈Ji is an orthonormal basis for Wi, i ∈ I.

Applying these observations and denoting by Pi the orthogonal projection
onto Wi, for all f ∈ H , we have∑

i∈I

3
2‖Pi f ‖2 =

∑
i∈I

3
2
i

∥∥∥∥∑
j∈Ji

〈
f ,

1
3i

Pe j

〉 1
3i

Pe j

∥∥∥∥2

=
∑
i∈I

3
2
i

∑
j∈Ji

∣∣∣∣〈 f ,
1
3i

Pe j

〉∣∣∣∣2
=

∑
i∈I

∑
j∈Ji

|〈 f , Pe j〉|
2

= ‖ f ‖2.

Thus {(Wi, 3i)}i∈I is a Parseval fusion frame. �

Corollary 3.6. For a family of subspaces {Wi}i∈I ofH and positive weights
{3i}i∈I , the following conditions are equivalent.

(i) {(Wi, 3i)}i∈I is a Parseval fusion frame forH .
(ii) There exists a Parseval frame {ei j}i∈I, j∈Ji for H such that {3−1

i ei j} j∈Ji

is an orthonormal basis for Wi for all i ∈ I.

Lemma 3.7. Let W1, W2 be closed non-trivial subspaces of H , and let 31,
32 > 0. The following conditions are equivalent.

(i) {(W1.31), (W2, 32)} is a Parseval fusion frame forH .
(ii) Either we have W1 ⊥ W2 and 31 = 32 = 1 or we have W1 = W2 = H

and 321 + 322 = 1.

Proof. (i)⇒ (ii). First we assume that W2 , H . Fix some g ⊥ W2. Then,
by (i),

‖g‖2 = 321‖πW1(g)‖2 + 322‖πW2(g)‖2 = 321‖πW1(g)‖2 ≤ 321‖g‖
2,

hence 321 ≥ 1. But for all f ∈ W1, we have

‖ f ‖2 = 321‖ f ‖
2 + 322‖πW2( f )‖2 ≥ 321‖ f ‖

2.

This implies 321 ≤ 1, and therefore 31 = 1. Now for all f ∈ W1,

‖ f ‖2 = ‖ f ‖2 + 322‖πW2( f )‖2.

This shows that W2 ⊥ W1, and 32 = 1 follows immediately.
If W2 = H , towards a contradiction assume that W1 , H . Fix g ⊥ W1.

Then
‖g‖2 = 321‖πW1(g)‖2 + 322‖πW2(g)‖2 = 322‖g‖

2,

hence 322 = 1. Now for g ∈ W1, we obtain

‖g‖2 = 321‖πW1(g)‖2 + 322‖πW2(g)‖2 = (321 + 1)‖g‖2.
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But this can only be true if 31 = 0, a contradiction. Thus W1 = H . Now
321 + 322 = 1 follows from

‖ f ‖2 = 321‖ f ‖
2 + 322‖πW2( f )‖2 = (321 + 322)‖ f ‖2 for all f ∈ H .

(ii)⇒(i). This is obvious. �

4. Sensor Networks

The theory of fusion frame is a generalization of frame theory that is more
acceptable to applications where two-stage signal/data analysis is required.
Although fusion frames are usually used to model general distributed pro-
cessing applications, in this section we will focus on the role of fusion
frames in sensor networks fields.

4.1. (Wireless) Sensor Networks. Wireless (micro)sensor networks have
been identified as one of the most important technologies of the 21st cen-
tury.

Current and potential applications of sensor networks include: military
sensing, physical security, air traffic control, traffic surveillance, video surveil-
lance, industrial and manufacturing automation, distributed robotics, envi-
ronmental monitoring, and building and structures monitoring. The sensors
in these applications may be small or large, and the networks may be wired
or wireless. However, ubiquitous wireless networks of microsensors most
likely offer the most potential in changing the world of sensing.

Some of the most powerful benefits of a distributed network are due to
the integration of information gleaned from multiple sensors that merge into
a larger worldview not detectable by any single sensor alone. For example,
consider a sensor network whose goal is to detect a stationary phenomenon
P. P might be a region of a water table that has been polluted within a field
of chemical sensors. Each individual sensor might be very simple, capable
only of measuring chemical concentration and thereby detecting where or
not it is within P. However, by fusing data from all sensors, combined with
the knowledge of the sensors’ positions, the complete network can describe
more than just a set of locations covered by P; it can also compute P’s
size, shape, speed, and so forth. The whole of the information has become
greater than the sum of it’s parts: the network can deduce the size and shape
of P even though it does not have a ”size” or ”shape” sensor. Nearly every
sensor network does this type of data fusion.

4.1.1. Distributed signal processing. For decades, the signal processing
community has devoted much research and attention to the seamless in-
tegration of signals from multiple sources. It is often called data fusion.
Such applications include signal enhancement(noise reduction), source lo-
calization, process control, and source coding. It would seem to be a natural
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match to implement such algorithms into distributed sensor networks, and
there has been great interest in doing so.

Signal processing is a crucial building block in sensor networks. For
example, responsible for target tracking, signal identification, and classifi-
cation. All of these are processes that resolve low-level sensor signals into
higher level sensors. In sensor networks, the challenge is to get the best sig-
nal processing results given the bandwidth and computational constraints of
the sensing platform.

4.1.2. Future. In sensor networks, many unique challenges arise in ensur-
ing the security of sensor nodes and the data they generate. For example,
the fact that sensors are embedded in the environment presents a problem,
in that, the physical security of the nodes making up the network cannot be
assured. This can make security measures significantly different than that
of internet servers. In sensor networks, attackers may modify node hard-
ware, replace it with malicious counterparts, or fool sensors into making
observations that do not accurately reflect the environment. Algorithms for
ensuring network-wide agreements are crucial in detecting attacks because
we can no longer assume the security of individual nodes, or the data they
generate.

The limited resources on the smallest sensor nodes also can pose chal-
lenges. Many encryption schemes are impractically resource-intensive, con-
suming far more energy, memory, and computational time than would be re-
quired to send a raw, unprotected data value. In addition, protection of data
from eavsedropping en-route – particularly important in wireless networks
– traditionally implies end-to-end encryption. That is, data is encrypted as
soon as it is created, transmitted through the network, and finally received
by a secured server where decryption keys can be stored without danger
of exposure. Unfortunately, finite energy drives the need for in-network
processing in sensor networks, which confounds the traditional security
schemes. Nodes inside the network can not perform application-specific
processing on encrypted data. Decrypting the data at each node implies
decryption keys are stored at each node; unfortunately, the node hardware
itself is exposed, and can not be assumed to be out of reach of the attacker.

As with many types of information technology that developed throughout
history, sensor networks also raise important questions about the privacy of
individuals. Certain aspects of privacy have gradually eroded due to various
forces – for example, the tracks we leave behind by using credit, the ubiq-
uity of surveillance cameras, and the seeming omniscience of Internet seach
engines. Sensor networking, similarly, is a technology that can be used to
enrich and improve our lives, or in turn, evlove into an invasive tool. As
sensor networks become more widespread, they will become an important
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point to consider in the continuing debate between public information and
private lives.

4.2. Modeling Sensor Networks. A common sensor network strategy is to
divide the network into subgroups where each sensor communicates its data
to a single node within the cluster. Central nodes communicate the summa-
rized data from their clusters to a more central location for collective pro-
cessing. In frame theory terminology, the frame elements are divided into
groups that span individual subspaces. The signal is reconstructed within
each subspace and communicated to a central location for final reconstruc-
tion. Due to both the unpredictable nature of low-cost devices and its situ-
ations, certain local sensor systems can be less reliable than others. While
facing the task of combining local subspace information coherently, one
also has to consider weighting the more reliable sets of substation infor-
mation against the suspected less reliable ones. Consequently, the coherent
combination mechanism often requires weighted structures.

To model a sensor network, we associated each sensor with a vector fi j

( j ∈ Ji, i ∈ I) in RM that quantified how it measured the environment. This
vector models the point-spread function of the sensor. The sensor mea-
surement of a signal f is given by the inner product 〈 f , fi j〉. If all of these
measurements were available at a single central location, reconstruction of
the environmental signal f would be a straightforward application of frame
theory.

Because of the prohibitive communication constraints of the typical sen-
sor nodes under consideration, we focus on a common wireless sensor net-
work paradigm where sensors are grouped into clusters. Specifically, the
sensors are grouped so that for each group Ji with i ∈ I the sensors { fi j} j∈Ji

belong to that cluster. Each sensor is able to communicate its informa-
tion to a collection point assigned to the relevant cluster, which may sim-
ply be a fixed or rotating assignment of a sensor node within the group.
Remembering that the vectors { fi j} j∈Ji form a frame for their closed linear
span(i.e., for Wi), we can obtain a partial reconstruction of the signal by
the ”normal” frame reconstruction inside Wi. More precisely, we obtain∑

j∈Ji
〈 f , fi j〉S −1

i fi j = πWi( f ), where S i is the local frame operator for { fi j} j∈Ji .
Therefore, each collection point can use a frame theoretic approach to re-
construct the orthogonal projection of the (environmental) signal onto the
subspace spanned by the sensors in the cluster.

After collecting data from the individual sensors in the cluster and per-
forming a local subspace reconstruction, the collection point transmits this
information to a master collection point (central station) for the whole sen-
sor network. The central station is tasked with reconstructing the signal f
from the processed data it receives from each cluster collection point. This
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reconstruction now depends entirely on the set of subspaces, i.e., only on the
fusion frame itself. The choice of the local frame vectors does not interfere
anymore.
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