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Our sensory system is bombarded with information that can change 

whimsically and yet we make sense of the flow of the information effortlessly. How 

does the brain encode such richly dynamic stimuli? Specifically, how does the 

auditory system encode rich spectral and temporal aspects of the stimulus and how 

does it depend on the behavioral state of the animal? My study aims to answer these 

questions within the scope of mouse auditory cortex (ACX) using imaging techniques 

on various scales. Firstly, I studied how the ACX encodes one temporal aspect of the 



  

sound, specifically the onset and the offset. I found that offset responses dominated 

ACX at high sound levels and their strength depended on auditory cortical fields. 

Moreover, ACX neurons likely inherit their offset responses from thalamocortical 

input, which is further processed by local cortical microcircuit.  Second, I studied the 

spectral tuning properties of layer 2/3 neurons in mouse ACX using two-tone stimuli. 

This study revealed the complex inhibitory sideband structures not only in excitatory 

and inhibitory neurons, but also in feedforward input from auditory thalamus. These 

complex structures showed a higher degree of feature selectivity of auditory neurons 

beyond what is predicted by conventional tuning, and thus auditory cortical responses 

are highly dependent on the spectral context. These two studies focused on passive 

listening, but cortical responses could depend on the behavioral state of the animal. 

The predictive coding theory proposes that sensory cortical responses are a form of 

error response signaling when sensory input failed to conform with predictions from 

higher order brain areas. Thus, to study the encoding of spectrotemporally dynamic 

stimulus under active engagement and to test the predictive coding theory, I designed 

a novel behavior paradigm that allowed the animal to interact with the sound stimulus 

and studied the cortical responses to not only the combination of sensory information 

and the animal’s action but also the introduced perturbation. Together, this 

dissertation combined advanced imaging techniques and innovations in experimental 

designs to provide new insight into how ACX encodes sound stimulus under various 

scenarios.   
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Chapter 1. Introduction 
One of the fundamental goals of neuroscience is to understand how the brain 

utilizes the sensory information and guides the behavior of the organism. To achieve 

this goal, it is paramount that we understand how the brain represents the outside 

world and how that representation might depend on the organism’s interaction with 

the world. In this dissertation, I investigated how the mouse auditory cortex (ACX) 

encodes temporal and spectral information of the sound during passive listening using 

imaging techniques at different spatial scales. Furthermore, I investigated how ACX 

represented both sound and action while the animal performed a novel interactive 

behavioral paradigm. These studies aim to shed light on the functional organization of 

ACX under various conditions and beyond the already known tonotopic structures. 

An outline of each chapter is included at the end of the introduction. 

Functional organization of auditory cortex 

Mouse ACX is consisted of multiple auditory fields, each of which is 

organized tonotopically, i.e., the preference for the frequency of the sound is mapped 

topographically onto the surface of cerebral cortex (Decharms and Merzenich, 1996; 

Guo et al., 2012; Issa et al., 2014; Kanold et al., 2014; Tsukano et al., 2015; Romero 

et al., 2020). This property is inherited from the ascending auditory pathway (Hackett 

et al., 2011), which traces back to the tonotopic organization of the cochlear (Russell 

and Sellick, 1977). In primary auditory cortex (A1), the caudolateral site prefers low 

frequency while the dorsomedial site prefers high frequency (Guo et al., 2012; Issa et 

al., 2014). This one-dimensional mapping allows the frequency of the sound stimulus 
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to be decoded by location of the neuron activated on the cortical surface. However, 

more recent imaging studies at cellular resolutions revealed that although tonotopy 

exists on the large scale of millimeters, individual neurons along A1 tonotopy 

exhibited considerable heterogeneity in their frequency selectivity (Bandyopadhyay et 

al., 2010; Rothschild et al., 2010). These studies suggest that frequency tuning of 

individual neurons in mouse A1 not only depends on the tonotopic gradient but is also 

heavily influenced by the structure of the local microcircuit.  

Nevertheless, sound stimulus contains not only spectral information but also 

rich temporal modulation. Thus, auditory neurons are also sensitive to the amplitude 

modulation (AM) rate (Schreiner and Urbas, 1986, 1988). It has also been shown in 

several species that the organization of the rate of AM modulation is orthogonal to the 

tonotopic axis (Schreiner and Langner, 1988; Langner et al., 2002; Baumann et al., 

2011). These results suggest that the temporal preference as well as tonotopic 

gradient form a two-dimensional grid to encode the joint feature selectivity. In 

addition to AM, frequency modulation (FM) is also common in naturalistic stimuli, 

e.g., animal vocalization, and thus is also represented by the auditory system 

(Mendelson and Cynader, 1985). In mouse ACX, one region at the boundary between 

A1 and anterior auditory field (AAF) has been found that seems to be specialized in 

encoding FM sweeps as it showed less sensitivity to tones and other stimuli (Issa et 

al., 2017), although other regions have also been shown to be sensitive to FM sweep 

rate, including AAF and ultrasonic field (UF) (Stiebler et al., 1997; Trujillo et al., 

2011; Honma et al., 2013). These studies show that ACX is intrinsically sensitive to 

the dynamic spectrotemporal information in the sound stimulus and its organization 
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with regard to AM or FM are overlaid with its tonotopic axis, creating neurons 

diversely selective to the combinations of different features.  

Another fundamental aspect of the temporal information of sound is its onset 

and offset. While most of the studies focused on the onset responses, a few studies on 

offset responses have revealed that ACX also encode the termination of sound 

(Recanzone et al., 2000; Qin et al., 2007; Fishman and Steinschneider, 2009; Scholl et 

al., 2010; Baba et al., 2016). Large scale imaging of ACX using flavoprotein showed 

that one region near A1 might be specialized in encoding tone offset (Baba et al., 

2016). Within A1, individual neurons showed distinct onset/offset response pattern, 

possibly due to highly nonlinear interactions within its input (Deneux et al., 2016). 

Offset responses were also shown to be functionally separate from onset responses as 

they were relayed by different set of synapses in A1 (Scholl et al., 2010), potentially 

having segregated origins in auditory thalamus (He, 2002). Finally, using widefield 

and 2-photon imaging, it was shown that offset response is also tonotopically 

organized and it activates larger areas over ACX (Liu et al., 2019). In summary, 

multiple feature selective maps coexist within ACX, and they combine to create 

neurons with distinct stimulus selectivity.  

 

Receptive fields in auditory neurons 

Due to the tonotopic organization of ACX, auditory cortical neurons typically 

have best frequency (BF) or characteristic frequency (CF), which they are most 

sensitive to or respond with the largest strength. These receptive fields typically have 
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a “V” shape, where the tip of the “V” is centered at the CF, while the bandwidth of 

the receptive field broadens as the sound level increases. Thus, auditory neurons can 

be modeled as bandpass filters. 

However, auditory receptive fields showed considerable changes along the 

auditory ascending pathway. As one moves towards ACX, the neuronal responses 

become increasing less temporally faithful, due to the low pass filtering by the 

cellular membrane across several synapses, while the spectrotemporal feature 

selectivity becomes more complex (Sharpee et al., 2011). Atencio et al. (2012) 

showed that in inferior colliculus, the auditory responses can be characterized by a 

single filter while in ACX the responses increase in their receptive field dimensions. 

The multiple receptive field dimensions also showed cooperative nonlinearities, i.e., 

the nonlinearities between different receptive field dimensions are not independent of 

each other (Atencio et al., 2008). Thus, the responses of ACX neurons can be highly 

nonlinear. 

These complex nonlinearities might be the result of complex interactions 

between excitatory and inhibitory input a neuron receives. A key property of the 

receptive field is that they often exhibit lateral inhibitions, i.e., the frequency away 

from the one that the neuron prefers often produces inhibition in the same neuron. 

Throughout the ascending auditory pathway, such lateral inhibitions could be found 

in cochlear nucleus (Greenwood et al., 1976; Nelken and Young, 1994), the auditory 

midbrain (Brimijoin and O’Neill, 2005; Mayko et al., 2012), the auditory thalamus 

(Schreiner, 1981) and ACX (Sutter and Schreiner, 1991; Nelken et al., 1994; Sutter et 

al., 1999; Li et al., 2014b; Kato et al., 2017). The origin of lateral inhibition in the 
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auditory system lies in the nonlinear mechanical property of the cochlea (Ruggero et 

al., 1992). However, in ACX, input from local inhibitory neurons might also 

contribute to the lateral inhibition (Li et al., 2014b; Kato et al., 2017; Lakunina et al., 

2020). Further, the mismatch between the receptive field of excitatory and inhibitory 

synaptic input could contribute to the diversification of suprathreshold neuronal 

responses (Tao et al., 2017). Nevertheless, as different studies utilized different 

methods to measure the lateral inhibition, there is still a lack of consensus with regard 

to the relative contribution from various sources to this phenomenon in ACX. Thus, 

further studies are necessary to characterize lateral inhibition in ACX, not only in 

excitatory and inhibitory neurons but also in thalamic feedforward input.  

Behavioral dependence of auditory responses 

How does auditory response depend on the behavioral state of the organism? 

Human studies suggest that active engagement or attention can enhance the 

representation of external stimulus in the brain (Hillyard et al., 1973; Petkov et al., 

2004). Ferret ACX neurons engaged in a detection task showed rapid increase in the 

sensitivity towards the target tone in their receptive fields (Fritz et al., 2003). Long 

range cholinergic input to ACX could serve as the source of such plasticity as pairing 

stimulation of cholinergic nucleus basalis with tone presentations induced receptive 

field plasticity where the excitatory synaptic input evoked by the paired tone 

increased (Froemke et al., 2007). Thus, a recurring theme involving attention is its 

boost of the representation of relevant sensory information in the brain. 
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However, a more recent study found a suppressive effect of task engagement on the 

tone responses in rat ACX (Otazu et al., 2009), while another imaging study found 

that the relative proportion of suppression and facilitation depended on the neuronal 

types, with the majority of excitatory neurons showed suppression instead of 

facilitation during active engagement while two classes of interneurons, parvalbumin 

positive (PV) and somatostatin positive (SST) neurons showed mostly facilitation 

during tasks (Kuchibhotla et al., 2017). Thus, although a subset of auditory neurons 

indeed showed attention related facilitation of sensory processing, the effects of 

attention on other neurons can be diverse and are dependent on their molecular 

identity.  

In addition to task engagement, other behavior such as locomotion also 

strongly influence auditory cortical responses. It has been shown that when sound 

stimuli were presented during locomotion, the responses were suppressed compared 

when the animal was quiescent. (Schneider et al., 2014; Zhou et al., 2014; Williamson 

et al., 2015). The suppression of responses in ACX likely involves the long range 

projection from the pre-motor cortex onto local PV neurons (Schneider et al., 2014). 

Furthermore, when a tone is coupled to the action of the animal, e.g., running, lever-

pushing etc., ACX also selectively suppresses the response to the paired tone, 

suggesting a reduction in stimulus saliency due to the predictability (Rummell et al., 

2016; Schneider et al., 2018). These studies suggest that mouse ACX integrates both 

sensory and behaviorally related information, and thus is an ideal locus for studying 

their interactions.   
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Predictive coding and auditory error response 

The predictive coding theory has become popular in recent years as it is 

acclaimed to offer a unifying framework to explain a variety of phenomena including 

associative learning, synaptic plasticity rules, repetition suppression (Friston, 2005). 

Specifically, it makes the hypothesis that the brain maintains a generative model of 

the external world and uses incoming sensory information to update its internal 

representations (Heilbron and Chait, 2017). When incoming sensory events violate 

existing model, an error signal is generated and propagated to higher order areas. And 

thus, these error signals are key aspects of the theory 

The auditory system has become a good candidate for testing the predictive 

coding theory as phenomena such as stimulus specific adaptations (SSA) and 

mismatch negativity (MNN) can be readily interpreted as error signals. Animal 

studies have primarily relied on SSA to evoke error signals, and it has been argued 

that SSA and MMN manifest the same predictive coding mechanism albeit on 

different temporal and spatial scales (Carbajal and Malmierca, 2018). However, 

although SSA can evoke robust suppression of the repeated tones, a similar 

phenomenon to the suppression of the tone when it is behaviorally predictable 

(Rummell et al., 2016; Schneider et al., 2018), SSA is likely to still result mostly from 

a feedforward mechanism, i.e., synaptic depression. Thalamocortical synapses exhibit 

high level of depression with stimulation rate higher than 1Hz (Bayazitov et al., 

2013), which is consistent with the ‘driver’ like depressing synapses from ventral 

MGB projecting to primary ACX (Lee and Sherman, 2010). Moreover, similar level 
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of SSA has been found in both excitatory and inhibitory neural populations in mouse 

ACX, suggesting that SSA might be due to adaption in the thalamic input (Chen et 

al., 2015). Finally, as SSA is present in both anesthetized and awake animals 

(Ulanovsky et al., 2003; Malmierca et al., 2009), it further argues against using SSA 

as a paradigm to study predictive coding as it likely lacks a top-down component. 

We argue that prediction should be an intrinsic aspect of action, and thus it should be 

placed in a framework that involves the active engagement of the animal. In the 

visual system, the predictive coding has been framed under the paradigm of visual 

flow where the locomotion of the animal is coupled to the visual stimulus (Keller et 

al., 2012). This paradigm showed that both local and global mismatch between the 

animal’s action, i.e., running speed, and the visual flow feedback evoked error 

responses in the visual cortex of the animal (Keller et al., 2012). Further, such 

responses were altered if the animal was reared in an environment that had abnormal 

visuomotor coupling (Attinger et al., 2017). These studies present strong evidence 

that the error responses depend on the experience of the animal, and thus evoking 

bona fide error responses requires manipulating the animal’s interaction with the 

outside world through training or rearing under special conditions.  

 

Outline of chapters 

To investigate how mouse ACX encodes both spectral and temporal aspects of 

sound stimulus and how the representation depends on the behavioral state of the 

animal, I used imaging techniques of various spatial resolutions to both investigate 
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large scale as well as microscopic scale functional organizations of different features 

in mouse ACX. 

In Chapter 2 of this dissertation, I investigated the encoding of sound offset 

across mouse ACX. This research has been published in Cell Report (Liu et al., 

2019). We used both widefield imaging as well as 2P imaging to delineate the offset 

responses profile across ACX fields. Using a novel widefield imaging segmentation 

technique, we found that offset responses were organized also according to tonotopic 

axis, and that they activated larger areas over the ACX. The relative strength of onset 

and offset responses depended on the particular ACX field, while A1 showed the 

strongest bias toward offset response. 2P imaging largely recapitulated the results 

from widefield imaging and showed that the majority of ACX neurons encoded either 

onset or offset responses. In addition, inhibitory neurons showed distinct temporal 

response profiles that might help amplify offset responses in excitatory cells. Lastly, 

thalamocortical feedforward input also showed offset responses, albeit with a weaker 

offset response bias, suggesting further processing by the cortical microcircuits. 

These results suggest that onset and offset responses were processed by parallel 

networks that might have their origins in the auditory thalamus. 

In Chapter 3, I characterized the sideband inhibition in L2/3 of mouse A1. 

Specifically, I designed a variant of the traditional two-tone paradigm, which was 

adaptable to measure sideband inhibition in large populations of neurons, especially 

combined with 2P imaging. Using this approach, we showed that L2/3 excitatory 

neurons not only had distinct frequency response area (FRA) shapes, but also showed 

distinct profiles of sideband inhibition. These shapes further corresponded to 
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differential levels of nonlinear interactions. We also showed that the signal 

correlations between neurons were decreased when presented with two-tone instead 

of single pure tones, suggesting a sparser representation of spectrally rich stimulus. 

Finally, we showed that sideband inhibitions also exist in PV and SST positive 

interneurons, as well as in thalamic input, suggesting that sideband inhibitions are 

largely inherited from thalamocortical feedforward input or local excitatory 

populations.  

In Chapter 4, I investigated A1 cortical responses while the animal actively 

engaged in an interactive behavioral paradigm. This paradigm is innovative because it 

allows the animal to modulate one attribute of the sound, i.e., its carrier frequency. 

After extensive training, we imaged the neuronal activity in both L2/3 and L4 of the 

behaving animal, which showed complex interaction between sound and action. 

Especially in L2/3, neuronal activities began to encode action with selectivity. We 

further introduced perturbations of the coupling between sound and action, and we 

observed evoked error responses in both L2/3 and L4. Together, the results suggest 

that A1 neurons learnt to represent the general rule of the paradigm by signaling its 

violation through error responses.  

In Chapter 5, I summarize the results and discussed potential future work that 

could extend beyond the scope of this thesis.  
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Chapter 2. Parallel processing of 

sound dynamics across mouse auditory 

cortex via spatially patterned thalamic 

inputs and distinct areal intracortical 

circuits 
This chapter has been published in Cell Report (Liu et al., 2019). JL, POK designed 

research. JL performed experiments and analyzed the data. MW, DB, and JL 

designed and implemented the autoencoder analysis algorithm. AS and BB 

implemented Granger analysis. POK supervised research. JL and POK wrote the 

paper. 

Abstract 

Natural sounds have rich spectral and temporal dynamics. Multiple auditory cortical 

(ACX) areas spatially represent spectral information via large-scale maps. However, 

the representation of temporal aspects of sounds, e.g. sound offset, is unclear. We 

performed multiscale imaging of large-scale and cellular neuronal activity as well as 

thalamic activity evoked by sound onset and offset in awake mouse ACX. We find 

that known and novel higher ACX areas differed in onset (On-R) and offset-responses 

(Off-R). Most excitatory layer 2/3 neurons showed either On-Rs or Off-R and ACX 

areas were characterized by differing fractions of On-R/Off-R neurons. Somatostatin 

(SOM) and parvalbumin (PV) interneurons showed distinct temporal dynamics, 

potentially amplifying Off-Rs. Functional network analysis showed that ACX areas 

contained distinct parallel On- and Off-networks. Thalamic (MGB) terminals showed 

either On-Rs or Off-Rs indicating a thalamic origin of On/Off-R pathways. Thus, 
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ACX areas spatially represents temporal features and contain circuit specializations 

for temporal processing. Our findings suggest that spatial convergence and co-

activation of MGB inputs initially determines the cellular On/Off-preference which is 

refined upon by distinct intracortical connectivity. 

Introduction 

Natural sounds have rich spectral and temporal dynamics, and neuronal populations 

along the auditory processing stream encode both spectral and temporal information. 

Sound onset and offset are fundamental dynamic features of sound, to which single 

neurons at multiple levels of the auditory system respond (Hillyard and Picton, 1978; 

Henry, 1985; He et al., 1997; Kopp-Scheinpflug et al., 2011), including the auditory 

cortex (ACX) (Recanzone, 2000; He, 2001; Qin et al., 2007; Fishman and 

Steinschneider, 2009; Scholl et al., 2010; Baba et al., 2016). While off-responses 

(Off-R) have been suggested to be responsible for duration coding (He, 2001), they, 

together with on-response (On-R), encode the basic cues (onset/offset) for auditory 

scene analysis (Bregman, 1994). Thus, besides elucidating the encoding of both 

sound onset and offset, revealing the underlying cellular networks is essential for 

understanding auditory processing. 

The ACX contains multiple functional areas and the spatial organization of ACX with 

respect to On-Rs has been extensively studied. On a large scale (hundreds of 

microns), there are clear tonotopic maps, which are due to topographic 

thalamocortical projections (Merzenich et al., 1975; Stiebler et al., 1997; Guo et al., 

2012; Issa et al., 2014; Kanold et al., 2014; Tsukano et al., 2015), while on a finer 
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scale 2-photon imaging studies in mouse primary ACX (A1) revealed a diverse 

tonotopic organization of On-Rs in superficial layers (Bandyopadhyay et al., 2010; 

Rothschild et al., 2010; Winkowski and Kanold, 2013; Kanold et al., 2014). In 

contrast, the spatial organization of Off-Rs in ACX is less well understood. Widefield 

flavoprotein imaging revealed the existence of an area adjacent to A1 that is 

specialized in processing tone offset regardless of tone frequency in anesthetized 

mice (Baba et al., 2016). On a finer scale, neurons in mouse ACX show distinct 

On/Off-R patterns (Deneux et al., 2016), and inputs carrying On-Rs and Off-Rs are 

proposed to originate in non-overlapping synaptic circuits (Scholl et al., 2010). These 

findings at different scales raise the possibility that On- and Off-Rs reflect distinct 

parallel pathways not only within A1 but also across ACX, and that On- and Off-Rs 

might be differentially represented in the cortical space. Here, we tested these 

hypotheses by investigating the spatial representation and functional microcircuits 

contributing to On-Rs and Off-Rs on multiple spatial scales in ACX.  

Since multiple cortical areas contribute to auditory processing, we first performed 

widefield imaging of GCaMP6s in awake mouse. For unbiased identification of ACX 

areas we developed an automated image segmentation algorithm based on the 

temporal responses. With this unbiased method we detected known ACX areas but 

also identified novel higher ACX areas. The identified ACX areas differed in their 

response properties to tone onset and offset indicating that temporal selectivity might 

underlie the functional streams of analysis in ACX. Both On-Rs and Off-Rs showed 

tonotopic organization. To identify the cellular and circuit substrate of the differing 

areal selectivity we performed 2-photon imaging of ACX neurons. The majority of 
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individual excitatory layer 2/3 neurons showed either On- or Off-Rs and ACX areas 

were characterized by differing fractions of On- or Off-responsive neurons. Selective 

imaging of parvalbumin (PV) and somatostatin (SOM) interneurons showed 

differential On-R and Off-R dynamics suggesting suppression of PV neurons by 

SOM neurons during prolonged tone presentation, consistent with known cortical 

connection (Cottam et al., 2013; Pfeffer et al., 2013) and potentially exerting 

disinhibiting effect on local excitatory neurons. This disinhibition could serve to 

selectively amplify cortical Off-R. To further characterize areal differences, we 

analyzed both intrinsic and ascending functional connectivity. Functional 

connectivity analysis using pairwise activity correlations and Granger causality 

showed that ACX areas varied in their intrinsic network structure. Imaging of medial 

geniculate body (MGB) terminals demonstrated that the most individual MGB 

terminals showed either On- or Off-Rs suggesting a thalamic origin of the parallel 

cortical On/Off-R circuits. Spatial analysis suggested that spatial convergence and co-

activation of MGB inputs determines cellular On/Off-preference. Inhibitory circuits 

then further selectively emphasize these preferences. Together our results 

demonstrate that ACX fields differentially process sound onset/offsets via parallel 

and spatially patterned projections from the MGB as well as differing intrinsic areal 

connectivity. 

 

Methods 

All procedures were approved by the University of Maryland’s Animal Care and 
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Use Committee. 

Animal 

We crossed CBA/CaJ mice with Thy1-GCaMP6s (JAX stock #024275, GP4.3, 

(Dana et al., 2014)) to obtain F1’s since C57BL/6 are homozygous for Cdh23 allele 

ahl, which causes them to suffer from aging related hearing loss, while CBA/CaJ 

mice are homozygous for Ahl+, which spare them from the phenotype (Kane et al., 

2012). F1’s thus have no hearing loss and yet have uniform expression of GCaMP6s 

under Thy1 promotor in excitatory neurons. We used adult mice of both sexes whose 

ages range from 2 to 4 months old. For imaging PV or SOM neurons, we crossed 

Thy1-GCaMP6s mice with PV-cre (JAX #008069) or SOM-cre (JAX #013044) mice 

and injected ~30nl of AAV1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 

(Addgene68720) into the left ACX of the F1 animals. Such generated animals express 

innate GCaMP6s in Thy1 pyramidal cells while expressing GCaMP6s and mRuby in 

either PV and SOM interneurons.  

 

Chronic window implant 

2-3 hours before surgery, 0.1cc dexamethasone (2mg/ml, VetOne) was injected 

subcutaneously to reduce brain swelling during craniotomy. Anesthesia was induced 

with 4% isoflurane (Fluriso, VetOne) with a calibrated vaporizer (Matrx VIP 3000). 

During surgery, isoflurane level was reduced to and maintained at a level of 1.5%-

2%. Body temperature of the animal was maintained at 36.0 degrees Celsius during 

surgery. Hair on top of head of the animal was removed using Hair Remover Face 

http://www.healthline.com/health/subcutaneous-injection
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Cream (Nair), after which Betadine (Purdue Products) and 70% ethanol was applied 

sequentially 3 times to the surface of the skin before the central part is removed. Soft 

tissues and muscles were scraped to expose the skull. Then a custom designed 3D 

printed stainless headplate was mounted over left auditory cortex and secured with 

C&B-bond (Parkell). A craniotomy with a diameter of about 3.5mm was then 

performed over left auditory cortex. A three layered cover slip was used as cranial 

window, which is made by stacking 2 pieces of 3mm coverslips (64-0720 (CS-3R), 

Warner Instruments) at the center of a 5mm coverslip (64-0700 (CS-5R), Warner 

Instruments), using optic glue (NOA71, Norland Products). Cranial window was 

quickly dabbed in kwik-sil (World Precision Instruments) before mounted onto the 

brain with 3mm coverslips facing down. After kwik-sil cured (2-5min), C&B-bond 

was applied to secure the cranial window. Synthetic black iron oxide (Alpha 

Chemicals) was then applied to the hardened surface. 0.05cc Cefazolin (1 gram/vial, 

West Ward Pharmaceuticals) was injected subcutaneously when entire procedure was 

finished. After the surgery, the animal was kept warm under heat light for 30 minutes 

for recovery before returning to home cage. Medicated water (Sulfamethoxazole and 

Trimethoprim Oral Suspension, USP 200mg/40mg per 5ml, Aurobindo Pharms USA; 

6ml solution diluted in 100ml water) substituted normal drinking water for 7 days 

before any imaging was performed.  

 

Widefield imaging 

Mice were affixed to a custom designed head-post and restrained within a plastic 

http://www.healthline.com/health/subcutaneous-injection
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tube. The head of the animal was held upright. Imaging was performed using Ultima-

IV two photon microscope (Bruker Technologies) with an orbital nosepiece such that 

the illuminance light is roughly perpendicular to cranial window (rotation angle was 

~60 degrees). As a result, the anterior-posterior axis was not parallel to the edge of the 

images. 470nm LED light (M470L3, Thorlabs Inc.) was used to excite green 

fluorescence. Images were acquired with StreamPix 6.5 software (Norpix) at 10Hz 

and 100ms exposure time. In StreamPix software, we specified the image size to be 

400 by 400 with a spatial binning of 3.  

 

Acoustic stimulus 

Pure tones were generated with custom MATLAB script. Each tone lasted 2 

seconds with linear ramps of 5ms at the beginning and at the end of the tone. The 

amplitudes of the tones were calibrated to 75Db SPL with a Brüel & Kjær 4944-A 

microphone. During sound presentation, sound waveform was loaded into RX6 multi-

function processor (Tucker-Davis Technologies (TDT)) and attenuated to desired 

sound levels by PA5 attenuator (TDT). Then the signal was fed into ED1 speaker 

driver (TDT), which drove an ES1 electrostatic speaker (TDT). The speaker was 

placed on the right-hand side of the animal, 10cm away from the head, at an angle of 

45 degrees relative to the mid-line. The presentation of tones with various 

combination of frequencies and sound levels are randomized and controlled by a 

custom MATLAB program. The silent period in between the 2-second tones was 

randomly chosen from a uniform distribution between 3 and 3.5 seconds. Frequencies 
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of the tones vary from 4kHz to 83.0kHz with logarithmic spacing and with a density 

of 2.28 tones per octave. Sound levels vary from 5dB SPL to 65dB SPL with a step of 

15dB. Each stimulus was repeated 10 times. In total, the widefield imaging session 

for for each animal lasted ~45min. For 2-photon imaging, 9 tones with equal 

logarithmic spacing between 4 and 64kHz were used at a single level of 60dB SPL. 

The tone duration was 2 second and repeated 10 times. 

 

Image preprocessing 

We performed three preprocessing steps before using autoencoder for image 

segmentation. First, we downsampled the original image (400 by 400) using MATLAB 

(2015b) using the MATLAB built-in function ‘imresize’, by a factor of 4. The resultant image 

size was 100 by 100. Next we performed whitening of the image sequence. We first re-shaped 

each image into column vectors, then we stacked them horizontally. Let 𝐼𝑡 denote the column 

vector corresponding to image at time t, M be the stacked matrix, and N be the total number of 

images: 

𝑀 = [𝐼1, 𝐼2, ⋯ , 𝐼𝑁] 

We then subtracted the time average image ( < 𝐼 >𝑡 ) from all images: 

𝑀̂ = 𝑀 −< 𝐼 >𝑡× [1, 1, … , 1]⏟      
𝑁

 

We then performed singular value decomposition on sample covariance matrix of 𝑀̂: 

[𝑈, 𝑆, 𝑉] = 𝑆𝑉𝐷(𝑀̂ × 𝑀̂′/𝑁) 

Then we obtained the whitened images using the following equation: 
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𝑀̃ = 𝑈 × (𝑆−1 + 𝜆) × 𝑈′ × 𝑀̂ 

where 𝜆 is the regularization term. We picked 𝜆 by first plotting the sorted eigenvalues in S in 

logarithmic space and usually a fast initial drop off and a following relatively flat region can be 

observed. We picked 𝜆 close to the turning point to preserve relevant variance and to avoid 

amplifying noise. We then fed 𝑀̃ into autoencoder algorithm.  

 

Image Segmentation with constrained autoencoder 

We used a dimensionality reduction technique to perform automatic image segmentation 

such that pixels with strong temporal correlations across the set of images were grouped 

together into single components (ROIs), following the formulation of Whiteway and Butts 

(2017). To perform this dimensionality reduction, we used an autoencoder neural network. 

The goal of this constrained autoencoder is to adjust the weights between the input 

layer and the hidden layer and those between the hidden layer and the output layer 

such that the output matches the input as closely as possible. For each time point t, the 

autoencoder takes the vector of pixel values 𝐲𝑡  ∈  ℝ
𝑁 and projects it down onto a 

lower dimensional space ℝ𝑀 using an encoding matrix W1 ∈  ℝ
𝑀×𝑁. A bias term 

𝐛1  ∈  ℝ
𝑀 is added to this projected vector, so that the resulting vector 𝐳𝑡  ∈  ℝ

𝑀 is 

given by 

 𝐳𝑡 = W1𝐲𝑡 + 𝐛1  
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The autoencoder then reconstructs the original activity yt by applying a decoding 

matrix W2 ∈  ℝ
𝑁×𝑀 to zt and adding a bias term 𝐛2  ∈  ℝ

𝑁, so that the reconstructed 

activity 𝐲̂𝑡  ∈  ℝ
𝑁 is given by  

 𝐲̂𝑡 = W2𝐳𝑡 + 𝐛2  

Since the dimensionality of zt is typically much smaller than that of yt, zt should 

capture variations in yt that are shared across many pixels. The entries of W2 then 

describe how each pixel is related to each dimension of zt (see Figure 2.5C).    

The weight matrices and bias terms, grouped as Θ = [W1,W2,b1,b2
 ], are 

simultaneously fit by minimizing the mean square error between the observed activity 

yt and the predicted activity 𝐲̂𝑡:  

 Θ̂ = argmin
Θ

1

2
∑ ‖𝐲𝑡 − 𝐲̂𝑡‖2

2

𝑡
   

To further enable interpretability of the results, we constrained the weights W2 to be non-

negative, as one could flip the signs of both spatial and temporal components arbitrarily. This 

also ensured that all pixels in a given ROI always increase or decrease in intensity together, 

depending on the sign of zt. We also tied the weights such that W2 = W1
𝑇. Thus, there was 

essentially only one spatial weight matrix.  

This version of the autoencoder is closely related to principal components analysis (PCA) 

(Bengio et al., 2013). However, PCA is an inadequate technique for automatic image 

segmentation since it did not in general result in spatially localized ROIs, due to the 

orthogonality constraints imposed by the PCA model. A similar approach to our non-

negatively constrained autoencoder is to use non-negative matrix factorization (NNMF) on the 
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preprocessed image sequence. NNMF constrains both the spatial maps and the temporal 

activations to be non-negative, whereas the RLVM just constrains the spatial maps to be non-

negative. The NNMF ROIs also failed to be spatially localized. Finally, in order to solve the 

constrained minimization problem above we used the spectral projected gradient method, a 

constrained variant of gradient descent (Schmidt et al., 2009). 

To perform image segmentation with this method we must first specify the 

number of ROIs (the dimensionality of zt). We determined the appropriate number of 

ROIs using cross-validation by first fitting the parameters of the autoencoder on 75% of the 

frames from the image sequence (training data), and then reconstructing the remaining 

25% of the images (testing data) using the autoencoder. We then calculated the correlation 

between the true and reconstructed images on the testing data, as a measurement for 

goodness of fit. In Figure 2.4A, we show that with an increasing number of ROIs, the 

correlation from the testing data increases monotonically, and roughly plateaus after 

~50 ROIs. We also performed fitting on the entire image sequence and plot the 

correlation (Figure 2.4A, blue curve). A similar monotonic increase is observed, and 

with 50 or more ROIs, the correlation value is above 0.8, which is agreeable 

considering that the full image sequence consisted of more than 28,000 images. 

Another criterion we utilized to choose the number of ROIs was the total spatial area 

covered by the ROIs. An increasing portion of the total area is covered with an 

increasing number of ROIs, (Figure 2.4B), and total area covered by 50 ROIs are 

close to maximum coverage. Given these results, we typically used 50 ROIs in the 

autoencoder.  
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WF On-R and Off-R amplitude 

To determine response amplitude, first the temporal trace from each trial was 

normalized to percentage change with respect to baseline fluorescence: 

normalized trace at time t =
𝐹𝑡 − 𝐹0

𝐹0
⁄  

where 𝐹0 is the baseline determined by finding the most frequent value in the 

histogram of the trace assuming stability. For On-R amplitude, we averaged the 

normalized trace from 200-500ms after tone onset with the baseline from normalized 

trace subtracted. For Off-R, we averaged the normalized trace from 200-500ms after 

tone offset and subtracted the average from the same trace 0-200ms right before tone 

offset. The 200-500ms window was sufficient to capture the rising phase as well as 

the peak of the increase in fluorescence in typical On/Off-R.  

 

Field Parcellation 

We assigned ROIs to different auditory fields based upon known tonotopic 

structure revealed with optical approach (Issa et al., 2014; Tsukano et al., 2015). ACX 

of mice contains several auditory fields, including A1, AAF and Ultrasonic Field 

(UF), which are characterized by the presence of tonotopic gradients in the On-R 

(Stiebler et al., 1997). Tonotopy also exists in secondary area A2, albeit on a 

compressed scale (Issa et al., 2014). First, we identified A1 and UF ROIs based on 

their two tonotopic axes, one from the caudal side to dorsomedial side (low to high) 

and the other one, sharing the same low frequency area, from caudal to ventrolateral 



 

 

 

23 

 

side (Issa et al., 2014). The example A1 and UF ROIs (Figure 2.5I-O) show 

progression of frequency selectivity along the two tonotopic axes. We use ‘UF’ and 

‘high A1’ to distinguish between the two spatially distinct areas that are high 

frequency selective, while they are both considered primary auditory cortices. We 

also found a subset of ROIs located dorsoposterior to A1 which we assigned as DP. 

They showed relatively weak On-Rs but prominent Off-Rs (Figure 2.5M). We 

performed parcellation of ROIs in all animals studied, and the similar spatial layout of 

A1, UF, AAF, A2 and DP can be robustly observed. 

 

Signal correlation among ROIs 

We used corrected signal correlation (SC) for all our calculation due to the 

limited number of repeats and the strong tendency of close-by pixels to covary in time 

(Rothschild et al., 2010; Winkowski and Kanold, 2013). The basic idea is that the 

uncorrected SC equation contains products of responses from the two ROIs in 

question on the same trial, and these terms also appear in noise correlation equation. 

Thus, these products represent to some extent the covariation of ROIs regardless of 

stimulus presentation, and thus should be excluded from SC calculation. The 

denominator in the equation was adjusted accordingly to take into account the 

reduction of number of summation in the nominator.  

In Figure 2.7G, H, we calculated SC among selected ROIs that were dorsally 

located with respect to A1 and UF respectively. These ROIs have centers within 

~450um to the A1 and UF ROIs in the rostrocaudal direction but dorsally located. 
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Then we calculated pairwise SCs among all these ROI pairs and plotted them as a 

function of distance (Figure 2.7I).  

 

On- and Off-tonotopy 

To establish On- and Off-tonotopy, threshold of WF On-R and Off-R were first 

manually determined (Figure 2.2, white solid lines). Then WF images with baseline 

subtracted following tone onset or offset were obtained at identified threshold. Next a 

homomorphic filter was applied to the images to correct for unevenness of 

illumination. Then 95 percentile contour lines of the responses were extracted and 

overlaid to demonstrate systematic movement of activation area as a function of 

different tone frequencies (Figure 2.1C, D, Figure 2.4). 

 

2-Photon imaging of mouse ACX 

A week after the cranial window implant, the animals were head-fixed in custom 

designed holder while 2-second long tones were presented in a similar fashion as in 

WF experiment. Field of views were placed in A1, AAF, A2 and DP region with a 

depth of around 150µm and with a size of 369um x 369um. The imaging was 

performed with a B-SCOPE (Thorlabs Inc.) with the microscope body tilted around 

45 to 50 degrees while the mouse head was held upright. The excitation wavelength 

was 920nm and images were collected with ThorImage software (Thorlabs Inc.) at a 
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frame rate of 30Hz. A 16x Nikon objective was used (NA 0.80). For terminal 

imaging, the average imaging depth was around 140um, comparable to cellular data.  

 

2-Photon imaging data analysis 

First motion correction was performed with TurboReg plugin (Thevenaz et al., 

1998). In a subset of experiments, the motion correction was performed using the 

Suite2P package (Pachitariu et al., 2016). ROIs were drawn manually using a custom 

written GUI. A ring was placed on each cell soma to extract raw fluorescence trace 

while a circular region of 20µm radius was used to extract nearby neuropil signal 

(excluding soma). We used the following equation to correct neuropil contamination 

of cell: 

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑡) =  𝐹𝑐𝑒𝑙𝑙(𝑡) − 0.8 × 𝐹𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡) 

The coefficient of correction (0.8) was measured with the collected 2P dataset by 

taking the ratio of the intensity non-radial blood vessel and the intensity of adjacent 

neuropil containing no neurons. To calculate ∆F/F, the baseline of each cell was 

determined by constructing a histogram of all fluorescence intensity over time and by 

finding the peak of the histogram and the corresponding fluorescence intensity value, 

which we used as the estimate of fluorescence baseline. This procedure is based on 

several assumptions. First, we assume the baseline is constant over time, which we 

generally found to be true given our relatively short imaging sessions (~9 min). 

Second, we assume that the response in ACX is sparse (Hromádka et al., 2008) and 

thus baseline value should be observed the most often, which will be reflected as the 
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peak in histogram. This procedure is generally robust and generates ∆F/F change over 

a reasonable range. If this procedure found negative baseline values, suggesting the 

soma fluorescence was lower in intensity than surrounding neuropil, then these cells 

were excluded from further analysis. Then, we calculate ∆F/F using the following 

equation: 

∆𝐹

𝐹
(𝑡) =

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑡) − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
  

To determine whether a cell is significantly responding to sound onset or offset, we 

first determine the response amplitude in the ∆F/F trace by finding the maximum 

change within 1 second after sound onset or offset and average over a small window 

(±2 frames) around the maximum time point to account for the noisy fluctuation in 

the trace. Then the 95 percent confidence interval (CI) of the median of the response 

amplitude was constructed through a bootstrapping procedure (resampling 1000 

times) and if the lower CI bound exceeded 1.5 times the standard deviation of the 

baseline fluctuation (5 frames or ~150ms before sound onset/offset) then the cell was 

considered significantly on/off-responsive. The response significance was determined 

separately for each frequency and sound level combination and separately for On-R- 

and Off-R. Neuropil and MGB terminal signals were processed with the same 

procedure. Unlike cellular ROIs, MGB terminal ROIs were obtained with Suite2P in 

an automated fashion.  

 For classifying different types of responses (Figure 2.15E), we performed k-

means clustering on averaged responses (across repetitions) to each frequency, 

pooling these traces from Thy1, PV and SOM neurons. The clustering is only 
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confined to statistically significant responses. We used correlation as the distance 

measure and thus the clustering disregarded absolute amplitude of the traces. We 

chose 5 clusters to sufficiently encompass the different response types encountered.  

 

Off-R Bias Index (OBI) 

OBIs are calculated by first averaging On-R and Off-R for responding neurons over 

frequency and repeats, and then calculated with the following equation: 

𝑂𝐵𝐼 =
< 𝑅𝑜𝑓𝑓 > −  < 𝑅𝑜𝑛 >

< 𝑅𝑜𝑓𝑓 > +  < 𝑅𝑜𝑛 >
 

where the angle brackets denote average over tone frequency and repeats.  

 

Injection of GCaMP6s virus in MGB 

AAV1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (Addgene 50942) 

virus was injected into MGB for axon terminal imaging in ACX. Micropipettes pulled 

with a long tapering tip (>3mm) were used for injection with Nanoject II (Drummond 

Inc.). The location of the left MGB was determined using mouse brain atlas (AP: 

3.2mm; ML 2.1mm; DV: 3.0mm). Anesthesia was induced with 4% isoflurane and 

maintained at 1.5%. The skin over the skull was cut open and a small craniotomy was 

made to allow penetration from the dorsal side and the micropipette was lowered 

vertically into MGB. 150-200nl of undiluted virus was injected over 5min. After the 

injection, the skin was sutured back. 3-4 weeks after the injection, the cranial window 

was implanted over the left ACX as previously described.  
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Granger Causality analysis 

The notion of causality proposed by Granger (Granger, 1969) aims at capturing 

the two fundamental principles of temporal predictability and the precedence of cause 

over effect. In order to capture the functional dependencies within a neuronal 

ensemble and the sparsity of interactions, we employ sparse multivariate 

autoregressive models. We introduce a novel measure of GC which accounts for 

sparse interactions, estimate the model parameters using fast optimization methods, 

and perform statistical tests to assess the significance of possible GC interactions, 

while controlling the false discovery rate (FDR) to avoid spurious detection of GC 

links.  

We used the same framework as in for our Granger Causality (GC) measurement 

(Sheikhattar and Babadi, 2016). In order to infer GC patterns for the two On/Off 

conditions, we divide the corresponding responses to the onset and offset inputs, and 

pool across all the tone frequencies, thereby treating them as implicit repetitions to 

the same stimuli condition. In what follows, we present our modeling, parameter 

estimation and GC inference procedure. 

Modeling: Consider a sequence of calcium indicator fluorescence measurements 

from a set of 𝐶 neurons indexed by 𝑐 = 1,2, … , 𝐶 within a slice, denoted by 

{𝑦𝑟,𝑛
(𝑐)
}𝑟=1:𝑅,𝑛=1:𝑁
𝑐=1:𝐶  over time bins 𝑛 = 1,… ,𝑁, and across 𝑅 trial repetitions indexed by 

𝑟 = 1, … , 𝑅. We adopt a sparse vector autoregressive (VAR) framework (Valdés-Sosa 
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et al., 2005) for modeling the slow-decaying and transient dynamics of the calcium 

fluorescence signals as well as the cross-dependencies among the neurons. 

Suppose that the fluorescence observation vector of neuron (𝑐) at the 𝑟-th 

repetition is represented by 𝐲𝑟
(𝑐)
: = [𝑦𝑟,1

(𝑐)
, … , 𝑦𝑟,𝑁

(𝑐)
]′, and let 𝐲

(𝑐)
: =

[𝐲1
(𝑐)′, 𝐲2

(𝑐)′, … , 𝐲𝑅
(𝑐)′]′ denote the zero-mean total observation vector, containing the 

set of all observation vectors 𝐲𝑟
(𝑐)

 from all trials 𝑟 = 1,… , 𝑅.  

The effective neural covariates taken into account in our models are each neuron's 

self-history of activity and the history of activities of other neurons in the ensemble. 

We consider a lag of 𝐿 samples within which the possible neuronal interactions may 

occur. Then, we segment 𝐿 into 𝑀 windows of lengths 𝑊1,𝑊2, ⋯ ,𝑊𝑀 such that 

∑ 𝑊𝑖
𝑀
𝑖=1 = 𝐿. Let 𝑏𝑚: = ∑ 𝑊ℓ

𝑚
ℓ=1  for 𝑚 = 1,… ,𝑀, and 𝑏0 = 0. Let 

 

represent the average activity of neuron (𝑐) within the 𝑚-th window lag of length 𝑊𝑚 

with respect to time 𝑛 and at trial 𝑟. We can then define the vector of history 

covariates from neuron (𝑐), effective at time 𝑛 and trial 𝑟 as 𝐡𝑟,𝑛
(𝑐)
: =

[ℎ𝑟,𝑛,1
(𝑐)

, ℎ𝑟,𝑛,2
(𝑐)

, ⋯ , ℎ𝑟,𝑛,𝑀
(𝑐)

]′. Next, let 𝐱𝑟,𝑛: = [𝐡𝑟,𝑛
(1)′
, 𝐡𝑟,𝑛
(2)′
, … , 𝐡𝑟,𝑛

(𝐶)′
]′ denote the vector of 

covariates from all neurons at time 𝑛 and trial 𝑟.  

In order to represent the covariates in a more compact form, we consider the 

𝑁 ×𝑀𝐶 matrix 𝐗𝑟: = [𝐱𝑟,1, 𝐱𝑟,2, … , 𝐱𝑟,𝑁]
′ which contains in its rows the covariate 

vectors at all times 𝑛 = 1,… ,𝑁 within trial 𝑟. Finally, let 𝐗:= [𝐗1
′, 𝐗2

′, … , 𝐗𝑅
′]′ 

𝒉𝒓,𝒏,𝒎
(𝒄) ≔

𝟏

𝑾𝒎
∑ 𝒚𝒓,𝒌

(𝒄)
𝒏−𝟏−𝒃𝒎−𝟏

𝒌=𝒏−𝟏−𝒃𝒎

 , (1) 
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represent the matrix of all covariates with standardized columns (i.e., zero-mean 

columns with unit norm), capturing the covariates 𝐗𝑟 for all the trials 𝑟 = 1, … , 𝑅 

the VAR model can then be expressed as:  

𝐲
(𝒄)
= 𝐗𝝎(𝒄) + 𝜺

(𝒄)
, (2) 

where 𝜺
(𝑐)
: = [𝜺1

(𝑐)′ , 𝜺2
(𝑐)′ , … , 𝜺𝑅

(𝑐)′
]′ ∼ 𝒩(𝟎, 𝜎(𝑐)2𝐈) is a zero-mean Gaussian noise 

vector of size 𝑅𝑁 with variance 𝜎(𝑐)2, and 𝝎(𝑐) is a parameter vector accounting for 

the interactions in the network, for 𝑐 = 1,2,⋯ , 𝐶. 

In agreement with the parsing of the covariates in the matrix 𝐗, the parameter 

vector 𝝎(𝑐): = [𝝎(𝑐,1)
′
, 𝝎(𝑐,2)

′
, … ,𝝎(𝑐,𝐶)′]′ in Eq. (2) is composed of a collection of 

cross-history dependence vectors  {𝝎(𝑐,𝑐̃)}𝑐̃ =1:𝐶, where 𝝎(𝑐,𝑐̃) represents the 

contribution of the history of neuron (𝑐̃) to the activity of neuron (𝑐) via the 

corresponding covariate vector 𝐡𝑟,𝑛
(𝑐)

 encoded in matrix 𝐗. In particular the component 

𝝎(𝑐,𝑐) is important in capturing the slow calcium florescence decay in an 

autoregressive fashion, and thereby excluding the transient effects of florescence 

decay from the GC analysis. 

Next, we invoke the hypothesis of sparsity in the interactions among the neurons 

in the ensemble. In our model, the sparsity of the interactions can be captured through 

the sparsity of the parameter vector 𝝎(𝑐):  when only very few components of 𝝎(𝑐) 

are non-zero, neuron (𝑐) is only affected by the activity history of a few neurons in 

the ensemble. In addition, as the dimension of the parameter vector given by 𝑀𝐶 

scales with the network size 𝐶, the hypothesis of sparisty enables the detection of 
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salient interactions within a large network, and thereby mitigates overfitting, 

especially when the observations are noisy and trials are limited in number.  

Parameter Estimation: In order to define a framework for inferring a possible GC 

link (𝑐̃ ↦ 𝑐), two nested models are taken into account: 1) the VAR model in Eq. (2), 

where the contributing covariates from all the neurons are taken into account, referred 

to as the full model, and 2) the same model in which the covariates and parameters of 

a single neuron (𝑐̃) on neuron (𝑐), 𝑐̃ ≠ 𝑐 are excluded, to which we refer as the 

reduced model. The parameters and covariates associated with the reduced model are 

denoted by 𝝎(𝑐∖𝑐̃) and 𝐗
∖𝑐̃

, respectively.  

The sparse parameter vector associated with either of the two models can be 

estimated by solving an ℓ1-regularized maximum likelihood (ML) problem for each 

neuron as follows:  

𝝎̂ = 𝐚𝐫𝐠𝐦𝐢𝐧
𝝎

(
𝟏

𝟐
∥ 𝐲

(𝒄)
− 𝐗𝝎 ∥𝟐

𝟐+ 𝜸 ∥ 𝝎 ∥𝟏), (3) 

where 𝐗 takes the two values of 𝐗 and 𝐗
∖𝑐̃

 for the full and reduced models, 

respectively, the ℓ1 -norm is defined as ∥ 𝝎 ∥1: = ∑ |𝑀
𝑚=1 𝜔𝑚|, and 𝛾 ≥ 0 is a 

regularization parameter tuning the sparsity level, which can be selected based on 

analytical results on ℓ1 -regularized ML problems or via cross-validation. Given the 

parameter estimate 𝝎̂, the corresponding variance associated with the model can be 

computed as 𝜎̂2 =
1

𝑁𝑅
∥ 𝐲 − 𝐗𝝎̂ ∥2

2. 

Inference:  The conventional measures of GC are based on ML estimates of the 

VAR parameters, and not the regularized ML as in our case. Hence, we need to 
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modify the GC measure and the corresponding deviance statistics, to account for the 

estimation bias incurred due to ℓ1-regularization. This new measure is the static VAR-

based counterpart of a similar measure presented in our earlier studies in the context 

of dynamic sparse point process models (Sheikhattar and Babadi, 2016) To this end, 

we modify the deviance difference statistic corresponding to the full and reduced 

models to compensate for the bias incurred due to sparse regularization. The bias can 

be computed for the full model as 𝐵(𝑐): = 𝐠(𝑐)
′
𝐇(𝑐)−1𝐠(𝑐), where 𝐠(𝑐): =

𝐗
′
(𝐲
(𝑐)
− 𝐗𝝎̂(𝑐)) 𝜎̂(𝑐)2⁄  and 𝐇(𝑐): = −𝐗

′
𝐗 𝜎̂(𝑐)2⁄  are the gradient and Hessian of the 

log-likelihood function for the Gaussian VAR model of Eq. (2), respectively. 

Similarly, the bias 𝐵(𝑐∖𝑐̃) for the reduced model can be computed by replacing the 

matrix of covariates and parameter estimate by 𝐗
∖𝑐̃

 and 𝝎̂(𝑐∖𝑐̃), respectively. 

The deviance difference statistic associated with the two nested full and reduced 

models can be expressed as:  

𝑫(𝒄̃↦𝒄) ≔ 𝑵𝑹 𝐥𝐨𝐠 
𝝈̂(𝒄∖𝒄̃)𝟐

𝝈̂(𝒄)𝟐
− 𝑩(𝒄̃↦𝒄), (4) 

where 𝐵(𝑐̃↦𝑐): = 𝐵(𝑐) − 𝐵(𝑐∖𝑐̃) denotes the difference of bias terms 

corresponding to the full and reduced models.  

We finally employ the inference framework presented in (Kim et al., 2011; 

Sheikhattar and Babadi, 2016) to simultaneously test the statistical significance of all 

possible GC interactions and to control the FDR at a given significance level 𝛼. This 

inference framework integrates an extension of classical results on analysis of 

deviance, and a multiple hypothesis testing procedure based on the Benjamini-
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Yekutieli FDR control (Benjamini and Yekutieli, 2001). The weights of the detected 

links are further characterized using the Youden's J-statistic, which is a summary 

statistic for quantifying the strength of hypothesis tests. The excitatory or suppressive 

nature of GC links are determined by the effective sign of estimated cross-history 

parameters associated with shorter latencies. 

To quantify the spread of the distribution of GC-link directions (Figure 2.12F), 

we first constructed a circular histogram of the GC-link angles which were computed 

from MATLAB built-in function atan2. Based on this histogram we used PCA to 

extract the long and short axes of the eclipse like distributions. Then all the original 

angles were projected onto the short axis and the resultant dot products (taking 

absolute values) were compared between ACX fields. The more the values are shifted 

towards 1, the larger the spread in the short axis, indicating a less ‘pointy’ 

distribution.  

 

Pupillometry 

During 2P imaging, the arousal state of the animal was monitored through 

pupillometry (McGinley et al., 2015). In short, a camera was positioned around 20cm 

away from and towards the right eye of the head-fixed mouse. An ultraviolet LED 

was placed near the camera to restrict the pupil dilation to around 1/2 of the 

maximum dilation. The exposure time of the camera was set to 26ms and each frame 

was triggered by 2P “Frame Out” triggers and thus synchronized to 2P images.  
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To extract pupil size, each image was first cropped around the eye and MATLAB 

built-in function “imfindcircles” was used to determine pupil location and diameter. 

The pupil size over time was further smoothed with a time window of ~150ms. The 

onset of micro-dilation was determined by first inverting the trace (flip sign) and 

using MATLAB built-in function “findpeaks” with a minimum peak prominence of 

10um. Next we quantified the occurrence of micro-dilation before, during and after 

tone onset using 1-second windows, to investigate whether micro-dilation is more 

likely to occur following tone offset. We established confidence interval by shuffling 

tone onset time and counting the micro-dilation occurrence in reference to the 

shuffled stimulus onset. We performed such analysis for 10 sets of experiments (n=9 

mice). If micro-dilation is more likely to occur during any specific time window, then 

the actual counts should exceed upper bound of the confidence interval. If the counts 

are within the confidence interval, then the occurrence of micro-dilation is equally 

likely to occur before, during or after tone presentation.  

 

Extracellular electrophysiology 

We performed extracellular electrophysiology in CBA/CaJ and Thy1-GCaMP6s F1 

crosses by either acutely recording from A1 neurons or chronically implanting 

electrodes. We used 16-channel linear arrays with 50µm spacing between adjacent 

contacts (A1x16-3mm-100-177-CM16, NeuroNexus) and a Neuralynx Cheetah 

system (32 channels). The acute surgery or implant surgery was similar to the cranial 

window implantations. In both cases, we first identified the location of A1 through 
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widefield imaging of GCaMP6s and we advanced the electrode at a depth of around 

900µm, which was read out from the manipulator. Figure 2.11A-E used data from 

chronic implantation while Figure 2.11F-G used single unit data pooling from both 

acute and chronic recordings. LFP signals and single units were acquired a previously 

described (Petrus et al., 2014). Briefly LFPs were acquired at 30kHz (filtered between 

1 and 6000Hz) and down-sampled by a factor of 100 (using MATLAB built-in 

function ‘decimate’) before analysis. To calculate local field potential (LFP) 

responses, we took the difference of mean LFP amplitude within a 50ms time window 

before and after tone onset/offset. To determine the significance, we used a paired t-

test separately for each frequency and onset/offset and a significant change above 

baseline was considered a significant response. For spike extraction, raw headstage 

signal was filtered from 300Hz to 6000Hz and detected online with a threshold of 

30µv.  Single units were sorted offline using MClust-3.5 package (A. D. Redish et al.) 

and KluastaKwik algorithm (K. Harris). For single unit analysis, we calculated 

responses as the spike count change within a 500ms window before or after tone 

onset/offset and used paired t-test to determine the response significance for each 

frequency.  

 

Results 

We set out to investigate the spatial organization of temporal sensitivity in 

mouse ACX on multiple spatial scales. Since the temporal sensitivity of ACX 

responses, especially Off-Rs, are sensitive to anesthesia (Recanzone, 2000; Qin et al., 
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2007; Fishman and Steinschneider, 2009; Joachimsthaler et al., 2014), we performed 

our studies in ACX of awake animals. We used F1’s of CBA/CaJ (JAX #000654) and 

Thy1-GCaMP6s (C57BL/6 background JAX #024275) crosses (Dana et al., 2014), 

which show normal adult hearing (Frisina et al., 2011) while having widespread 

cortical expression of GCaMP6s. 

We first investigated the spatial distribution of On-R’s and Off-R’s on the 

mesoscale using widefield (WF) imaging. We imaged through a cranial window of 

3mm radius over the left ACX of awake adult F1 animals (n=13) while the mice were 

presented with 2-second pure tones (Figure 2.1A). Tone onset resulted in spatially 

restricted fluorescence increases at several locations in the imaging field (Figure 

2.1B, see 0.4s following tone onset, Figure 2.2A). Fluorescence increases were 

present in discrete locations corresponding to activations of primary as well as higher 

order ACX areas, putatively A1, AAF and A2 respectively. Following tone offset, we 

observed an additional increase of fluorescence (at 2.4s, or 0.4s after tone offset), 

which corresponded to an offset-response (Off-R) (Figure 2.1B). Off-R’s are not due 

to changes in animal state after tone cessation (Figure 2.3). On-R and Off-R were also 

present in response to ultrasonic frequencies such as 83.0 kHz (Figure 2.1B). In both 

examples, the spatial pattern of On-R qualitatively matches previous results (Issa et 

al., 2014; Tsukano et al., 2015; Baba et al., 2016).  

Varying sound frequency and level showed that both On-R and Off-R 

changed their response location with respect to tone frequency (Figure 2.2). We 

overlaid the contour of activation (see Methods) across ACX for each frequency at 

the respective threshold of On-R (Figure 2.1C) and Off-R (Figure 2.1D) and clear 
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systematic changes of activated areas can be seen in multiple locations. Based on the 

relative positions of these gradients in the On-R we labeled areas as primary ACX 

(A1), Anterior Auditory Field (AAF) and A2. The detected gradients were consistent 

across all animals (Figure 2.4). A1 shows dual tonotopic axes: one from the caudal 

area towards the dorsomedial area (Ultrasonic Field or UF) and the other one 

reaching towards ventrolateral side (Figure 2.1C), largely consistent with prior reports 

(Polley et al., 2007; Issa et al., 2014; Tsukano et al., 2015) with the subtle difference 

that two on-tonotopic gradients in primary ACX share the low to mid frequency axis 

before splitting dorsally and ventrally. In addition to the expected On-R tonotopy, we 

observed that a tonotopic gradient is present for Off-Rs in A1, AAF and A2 in all 

animals (Figure 2.1D, Figure 2.4B). The Off-tonotopy gradient from A1 to UF 

overlapped with the On-tonotopy gradient. However, the Off-tonotopy gradient also 

extends dorsoposteriorly and thus covers more area dorsally than the On-tonotopy 

gradient. These results show that Off-Rs are present in multiple ACX areas and that 

Off-Rs are tonotopically organized. The differences in the tonotopic gradients 

between On-Rs and Off-Rs suggest that different microcircuits might underlie 

onset/offset processing.  
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(A) Experiment paradigm: head fixed mouse passively listened to tones while left 

ACX was imaged for GCaMP6s. On- and Off-R are defined as increases in 

fluorescence following tone onset and offset, respectively. (B) Sequence of widefield 

images showing response to 7.3kHz tone at 35dB SPL and to 83.0kHz tone at 65dB 

SPL. The red bar indicates the images collected during tone presentation (0-2sec). (C) 

On-tonotopy showing the contour of 95 percentile of the response following tone 

Figure 2.1 Both On-R and Off-R show global tonotopy 
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onset. Systematic shift of maximum activation location can be seen in A1, AAF and 

A2. (D) Same as in (C) but for Off-tonotopy. 

 

 

On-R frequency response area (FRA). Baseline subtracted average images within 

200-500ms after tone onset are plotted as a function of frequency and sound level. 

White solid lines show threshold at each frequency. (B) Off-R FRA. Average images 

Figure 2.2 Tone onset and offset differentially activate large areas of ACX 
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within 200-500ms after tone offset are plotted with images 0-200ms before tone 

offset used as baseline. Typically, Off-R had a higher threshold than on-response. 

 

We presented the tones to passively listening animals, and it is possible that the 

sudden termination of the sound could change the arousal state of the animal and that 

this caused Off-Rs. To investigate this possibility, we monitored the state of the 

animal through pupillometry (McGinley et al., 2015) and quantified occurrence of 

Figure 2.3 On/Off-R is not related to the animal’s arousal state 
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pupil micro-dilation before, during and after tone presentation. Pupil dilation typically 

indicates increase in arousal state (Reimer et al., 2014). Example pupillometry image 

and pupil size detection (red circle). (B) Example pupil diameter trace and micro-

dilation onset detected with MATLAB built-in function ‘findpeak’ with a minimum 

prominence of 10um. (C) Pupil dilation occurrence was quantified in four 1-second 

windows covering time before, during and after the tone presentation. The plot is 

normalized to the confidence interval computed through shuffling stimulus onset 

time. Most occurrence was well within the confidence interval, suggesting that pupil 

dilation happens equally likely before, during and after tone presentation and thus is 

unlikely to bias On-R or Off-R. 
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On-tonotopy (A) and Off-tonotopy (B) of 12 other animals imaged. The colorbar 

indicates frequency of tones. 

 

Distinct ACX areas show selectivity to temporal features  

So far, we identified functional ACX areas based on their separate On-R and 

Off-R at threshold. Since these areas showed overlap, we sought to determine if ACX 

contained distinct functional areas based on the combination of their differential 

selectivity for On-R and Off-R throughout stimulus space (frequency and sound 

level) and if such an ACX segmentation could lead to the identification of unique 

ACX areas. We thus developed a method to perform unsupervised and unbiased 

image segmentation taking the entire temporal response of each imaged pixel into 

Figure 2.4 ACX organization is stereotypical across mice 
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account. We expressed the sequence of activity of all imaged pixels as a linear 

combination of spatially distinct regions of interest (ROIs) weighted by temporal 

modulations (Figure 2.5A). To do so, we used an autoencoder neural network with 

non-negativity constraints on the weights (Whiteway and Butts, 2017). An 

autoencoder is a neural network with one or more hidden layers (Figure 2.5B). While 

the input and output layers have the same number of nodes, the autoencoder reduces 

the dimension in the image sequence by expressing the intensity of each pixel as the 

weighted sum of the activity of the hidden layer, which has a smaller dimensionality. 

These weights are interpreted as distinct spatial patterns of activity (or region of 

interest, ROI) and the activity of the hidden layer is interpreted as the temporal 

modulation (Figure 2.5C).  

Typically, an autoencoder with around 50 ROIs achieved a good approximation 

of the acquired image sequence (Figure 2.6A). The resulting ROIs densely tiled the 

imaged area (Figure 2.6B, D) with minimum spatial overlap (Figure 2.6C). The lack 

of spatial overlap reflects the distinct selectivity of On/Off-R of different auditory 

fields, which also makes parsing auditory fields unambiguous. Additionally, the 

minimal overlap is likely due to our choice of the minimum number of ROIs to the 

desired degree of goodness of fit (Figure 2.6A). Adding ROIs would increase overlap 

but does not dramatically increase goodness of fit (Figure 2.6A). Next to verify our 

method, we compared the location of the ROIs with the evoked fluorescence 

increases. We found that the placement of ROIs agreed with the location of activation 

for both On-R (Figure 2.5D, E) and Off-R (Figure 2.5F, G), and their shapes reflected 

the contour of the fluorescence increases. Thus, our method can reliably identify the 
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regions of common activation and extract their temporal activation without prior 

knowledge of the spatial distribution of activity. This approach provides advantage 

over the traditional square/hexagonal grid segmentation as the choice of the size of 

the grid could be arbitrary and is likely to obscure the temporal selectivity of ROIs by 

grouping functionally separate cortical fields together. Moreover, while we apply this 

method here to segment ACX into functional fields, this method can be applied to 

arbitrary WF datasets for spatiotemporal analysis and image segmentation. 

Identified ACX fields show distinct On/Off-R frequency response areas (FRAs) 

(Figure 2.5H-O) indicating that differences in the sensitivity to temporal features is a 

major determinant of ACX organization. The low-frequency selective A1 ROI (Figure 

2.5I) shows predominant On-R and Off-R for tones of 4.0 to 7.3kHz while the mid-

frequency selective A1 ROI (Figure 2.5J) shows responses mostly for frequencies of 

around 18.2kHz. The high-frequency selective A1 ROI (ventrolateral gradient of A1) 

typically have On/Off-R very similar to mid-frequency A1 due to their spatial 

proximity and the diffuse nature of the WF signal. However, the average On-R of 

high-frequency A1 ROI to 61.3kHz is larger than that of mid-frequency A1 ROI at 

threshold (Figure 2.5K). In contrast, UF ROI shows much higher selectivity to high 

frequencies (Figure 2.5L), consistent with the proposed role in processing of 

conspecific ultrasonic vocalizations (Stiebler et al., 1997). Figure 2.5M shows one 

Dorsoposterior (DP) ROI where very strong Off-R can be found. AAF ROIs (Figure 

2.5N) show comparable On/Off-R while A2 ROIs (Figure 2.5O) show weaker Off-R. 

The spatial layout of these ROIs was also consistent across mice due to stereotypical 

WF response profile (Figure 2.4). These results demonstrate that ACX contains 
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functional areas with distinct sensitivity to temporal features. Our image 

segmentation approach can better separate ACX into functional fields because it 

captures the different temporal dynamics of ACX fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

46 

 

(A) Cartoon showing image segmentation. The example image sequence at any time 

Figure 2.5 Widefield image segmentation using an Autoencoder reveals ACX 

areas with distinct On/Off selectivity.   
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point can be expressed as the weighted summation of ROI 1 and ROI 2 by respective 

activity level. Our goal of image segmentation is thus to retrieve activated areas as 

well as their temporal activation traces. (B) Autoencoder is a neural network with one 

or more hidden layers between input and output layers, which have the same number 

of nodes. The weights between input/output layer and hidden layer are adjusted such 

that the output matches the input as closely as possible. The hidden layer typically has 

much fewer nodes than input/output layer to achieve dimension reduction. (C) 

Principle of fitting autoencoder ROIs. Original pixels (left) are linearly combined to 

produce ROIs (middle) such that each pixel in turn can be approximated (right) by the 

linear combination of these ROIs, while the weights are interpreted as spatial profile 

of the ROIs. (D-G) On- and Off-R spatial profiles overlaid with selected autoencoder 

ROIs to validate ROI placement. (D-G) share the same color scale. (H) Parcellation 

of ROIs into ACX fields. ROIs outlined in solid lines have the On/Off frequency 

response areas (FRAs) shown in (I-O). (I-O) On/Off-R amplitude is plotted as a 

function of frequency and sound level. Adjacent blue and red bars represent On/Off-R 

to the same frequency/sound level combination. 
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(A) Correlation with original image sequence obtained from cross-validation 

procedure and from full sequence fit as a function of ROI number. With 50 ROIs, the 

correlation value is around 0.8. (B) Areas covered by ROIs as a function of ROI 

number. (C) Spatial correlation of the 50 ROIs shown in (E). (D). Overlay of 50 

ROIs. Note dense covering of cranial window. (E) Example of 50 ROIs shown 

individually. 

ACX fields differ in thresholds and sound level dependence of On- and Off-Rs 

Figure 2.6 Behavior of autoencoder fitting 
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 So far, we observed differences between ACX areas in the selectivity to temporal 

stimulus dynamics. We next sought to characterize the response properties in these 

different ACX areas. Plotting the response amplitude in each field as sound level was 

varied revealed that Off-Rs have a higher threshold than On-Rs (Figure 2.7A-E). 

Moreover, Off-Rs can have higher amplitude than On-Rs (e.g. at 50 and 65dB SPL). 

Quantifying the preference of Off-R versus On-R across ACX fields at 65dB SPL 

showed that UF and DP are among the ACX fields showing the largest selectivity for 

Off-R (Figure 2.7F). These results suggest that while core ACX fields (e.g. A1, AAF) 

show robust responses to both tone onset and offset, higher areas away from the core 

fields can show dominant Off-Rs, especially at higher sound levels. 



 

 

 

50 

 

(A-E) Differential On-R and Off-R profile as a function of both sound level and 

auditory fields. On-R and Off-R profiles with respect to sound level for different 

auditory fields were obtained by summing over frequency in On/Off-FRAs. ‘***’ 

indicates p<0.001; ‘****’ indicates p< 0.0001. Dashed lines show 95% confidence 

interval around the mean. (F) Off- and on-response ratio at 65dB SPL as a function of 

auditory fields. Error bars show SEM. (G) On/Off-SC as function of distance along 

the dorsal-ventral axis, calculated among ROIs dorsal to A1 ROIs (see Methods). Off-

R show higher SCs than On-Rs. (H) On/Off-SC calculated among ROIs dorsal to UF 

ROIs. (I) On/Off-SC among all ROIs.  

 

Off-responsive areas are more spatially extensive than On-responsive areas 

The different degrees of On-R and Off-R in the various ACX subfields suggest a 

different underlying circuit topology. To quantify the spatial topology on the large 

scale, we computed the signal correlation (SC) between individual ROIs among a 

dorsal-ventral slice in each ACX area (see Methods). In A1 and UF, the SCs 

computed from Off-Rs were significantly higher than SCs computed from On-Rs 

(Figure 2.7G, H). This relationship was maintained over distance suggesting that Off-

Rs are more spatially extensive in the dorsal direction (Figure 2.7G, H). This pattern 

was also true across ACX (Figure 2.7I), suggesting that Off-Rs are more diffusively 

represented in all ACX areas. These results are consistent with our observation that 

dorsal ACX areas especially UF and DP are dominantly involved in encoding tone 

Figure 2.7 On/Off-R show areal differences in amplitude and spatial distribution 
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offset (Figure 2.7F). Together, the areal differences in the tonotopic gradients (Figure 

2.1) and the differences in SC between On-Rs and Off-Rs suggest that different 

intrinsic and ascending microcircuits within each area underlie the regional 

differences in onset/offset processing.  

 

Neural populations in ACX areas differ in their selectivity to sound onset or offset 

To investigate areal differences in the processing of tone onset and offset, we 

sought to analyze local microcircuits on the cellular level. We thus assessed the 

temporal stimulus preferences of single neurons in the different ACX areas using in 

vivo 2-photon imaging. We imaged cells in four auditory fields showing distinct 

temporal signatures (n=32 mice; A1: 67 field of views (FOVs), 19366 cells; AAF: 24 

FOVs, 5425 cells; A2: 20 FOVs, 5918 cells; DP: 8 FOVs, 2573 cells). Cells in all 

ACX areas could show responses that are locked to either tone onset and offset 

respectively (Figure 2.8A, B, Figure 2.9). The cells showing On-R in ACX were 

sparse (A1, 5.05% ± 2.89%; AAF, 5.36% ± 2.58%; A2, 5.83% ± 4.53%; DP, 2.23% ± 

1.29%, among all neurons imaged), while the same was true of Off-R (A1, 6.62% ± 

4.34%; AAF, 2.14% ± 1.83%; A2, 2.28% ± 2.24%; DP, 4.64% ± 2.42%, among all 

neurons imaged). These results are consistent with electrophysiological studies 

reporting a sparse representation of sound in ACX (Hromádka et al., 2008). A limited 

number of neurons showed both On-Rs and Off-Rs (A1, 0.98% ± 0.90%; AAF, 

0.54% ± 0.54%; A2, 0.95% ± 1.31%; DP 0.43% ± 0.57%, Figure 2.10A, among all 

neurons imaged), suggesting that most L2/3 neurons are either On- or Off-responsive. 
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We quantified the selectivity of On/Off-Rs by computing the On/Off-R Bias Index 

(OBI=(Off-On)/(Off+On))) (Figure 2.8C). Most of the OBI values were -1 or 1, 

consistent with most neurons being exclusively on-responsive (On-only) or off-

responsive (Off-only). In A1 and DP, Off-only neurons (53% and 65%, among all 

responding neurons) outnumber On-only neurons (38% and 28%, among all 

responding neurons), while in A2 and AAF reverse is true (67% and 70% vs. 23% 

and 19%, among all responding neurons). Neurons showing both On-R and Off-R 

constitute around 10% of all responding neurons and are more biased to Off-R in A1 

and DP than in AAF and A2 (Figure 2.8D). We also confirmed these results in a 

separate analysis (Figure 2.10). Together these results show that ACX areas differ in 

both the number of On/Off-only neurons as well as in the On/Off-selectivity of 

individual neurons. Thus, the ACX areas are defined by the underlying cellular and 

population representation of tone onset/offset and the cellular response amplitudes. 

We next investigated the functional representation of tone onset and offset in these 

neuronal populations.  

To further confirm our results and to get a view across layers, we implanted 

16-channel linear multielectrode arrays into A1 of CBA×Thy1-GCaMP6s mice, 

spanning a cortical depth of 800µm. We first analyzed the local field potential (LFP) 

which reflects the combination of local neuronal activity and afferent input into A1 

(Katzner et al., 2009; Liu et al., 2015; Herreras, 2016). First, we observed that more 

tone frequencies evoke Off-R compared to On-R (Figure 2.11A-C), consistent with 

the widespread nature of Off-R (Figure 2.7). Secondly, we calculated the OBI for all 

electrode contacts and the distribution of OBI was significantly shifted towards Off-R 
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(Figure 2.11D). These results confirm that Off-R evokes a wide activation in A1 and 

that A1 responses are biased towards Off-R.  

Previous electrophysiology studies have reported a higher proportion of 

neurons showing both On- and Off-R than our imaging results (Qin et al., 2007; Tian 

et al., 2013; Joachimsthaler et al., 2014). To identify potential sources for this 

discrepancy we recorded single units (n=220) from A1 of awake CBA×Thy1-

GCaMP6s animals and analyzed their On/Off-R (Figure 2.11F-H). 200/220 units 

(91%) were deemed responsive to either tone onset or offset. Among the responsive 

units, 26% had only On-R, and 57% had both On- and Off-R, and 7% had only Off-R. 

We classified neurons based on their spike shape (wide vs. narrow) reflecting putative 

excitatory and inhibitory units and analyzed their OBI. We found that both classes 

showed similar OBI distribution (Figure 2.11G). Since our linear arrays allowed 

sampling of neurons across a large depth range we next compared OBI across depth. 

We found that OBI was dependent on the depth of the single units, with deeper layer 

units more biased to On-R (Figure 2.11H). Together these results suggest that 

A1contains both On/Off-only neurons and that there is a depth-dependent distribution 

of these neurons consistent with sublaminar circuit differences in L2/3  (Meng et al., 

2017). 
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(A) An example on-responsive neuron (arrow). Vertical dotted lines indicate tone 

onset and offset respectively. Gray horizontal bar indicates tone duration. (B) An 

example off-responsive neuron. Scalebar: 10µm. (C) Histogram of cellular OBI 

values as a function of ACX fields. OBI = (Off-R – On-R) / (Off-R + On-R) while 

(D) shows cumulative distribution function (CDF) of values other than -1 and 1. 

Wilcoxon rank sum test, A1 vs AAF, z=2.77, p=0.0056; A1 vs A2, z=4.41, 

p=1.02×10-5; DP vs AAF, z=1.93, p=0.053; DP vs A2, z=2.49, p=0.013. (E) Left: 

cartoon showing a linear model to predict the BF of On-R and Off-R with respect to 

the cells’ spatial locations across all auditory fields. A direction is searched onto 

which the projection of the cell’s coordinate best explains the cell’s BF. Right: 

Goodness of fit of On-R and Off-R in cells of different auditory fields. (F) 

Figure 2.8 L2/3 neurons show distinct On-R and Off-R and are differentially 

distributed across ACX areas 
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Relationship between On- and Off-SCs and pairwise distance on the neuronal level 

for different auditory fields. Solid lines show median while the shading indicates the 

95% confidence interval. The flanking panel shows CDF of on-SC and off-SC not 

regarding distance. ‘***’ indicates p<0.001. ‘**’ indicates p<0.01. A1, rank sum test, 

z=-13.6, p=4.33×10-42; AAF, z=-3.52, p=4.30×10-4; A2, z=-8.73, p=2.07×10-18; 

DP, z=-2.93, p=3.4×10-3.   

 

Tones of different durations were presented to the same group of neurons and the 

offset-responses were time locked to tone offset and thus were not ‘delayed’ response 

happening at specific time point after tone onset. (A) Example On-responsive neuron 

responding to 0.10, 0.25, 0.62, 1.56 second tones. The response is time locked to tone 

onset. Red lines represent tone durations. (B) Example Off-responsive neuron whose 

responses were time locked to tone offset. (C) Time to reach half of maximum 

activation was quantified for On- and Off-R respectively. For On-R, the latency is not 

a function of tone duration while Off-R latency shifts systematically as a function of 

tone duration. ‘***’ indicates p<0.001. 

Figure 2.9 Neuronal Off-R is time locked to tone offset. 
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(A) Percentage of on-responding and off-responding neurons as a function auditory 

field. Each gray line represents a field of view. In A1 and DP, more cells responded 

to tone offset than to onset while the opposite was seen in AAF and A2. Paired t-test: 

A1, 6.62% ± 4.34% vs. 5.05% ± 2.89%, t(66)=-3.58, p=0.0007; AAF, 2.14% ± 1.83% 

vs. 5.36% ± 2.58, t(23) = 8.57, p=1.29×10-8); A2, 2.28% ± 2.24% vs. 5.83% ± 

4.53%, t(19)=5.70, p=1.7×10-5; DP: 4.64% ± 2.42% vs. 2.23% ± 1.29%, t(7)=-2.50, 

p=0.041.Few neurons showed both On-Rs and Off-Rs (A1, 0.98% ± 0.90%; AAF, 

0.54% ± 0.54%; A2, 0.95% ± 1.31%; DP 0.43% ± 0.57%). (B) Average On/Off-R 

amplitude of individual neurons was pooled over field of views and plotted as a 

function of auditory fields. The relative response amplitude for On-R and Off-R could 

Figure 2.10 Cellular and neuropil signals from different ACX fields show similar 

On/Off-R selectivity to that seen in widefield imaging 
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vary across areas. Wilcoxon rank sum test, A1, z=3.34, p=8×10-4; AAF, z=2.34, 

p=0.0174; A2, z=-1.21, p=0.23; DP, z=1.14, p=0.26). (C) Overall cellular On/Off-R 

amplitude (summing over all significant On-R or Off-Rs from all frequencies and all 

cells within a field of view) as a function of auditory field. The relative population 

composition and response amplitude well predicted the areal On/Off preferences on 

the large-scale (widefield). Wilcoxon signed rank test: A1, z=-2.30, p=0.0214; AAF, 

z=4.07, p=4.6×10-5; A2, z=3.73, p=1.89×10-4; DP, p=0.19. (D-F) Same as in (A-C) 

but plotted for neuropil. (D) Paired t-test: A1, t(66)=-10.4, p=1.23×10-15; AAF: t(23) 

= -1.12, p=0.27; A2: t(19)=1.51, p=0.15; DP, t(7)=-6.99, p=2.14×10-4. (E) Wilcoxon 

rank sum test, A1, z=-33, p=1.62×10-239; AAF: z=9.55, p=1.32×10-21; A2: z=9.67, 

p=4.21×10-22; DP, z=-10.1, p=5.09×10-24. (F) Wilcoxon rank sum test, A1, z=-7.61, 

p=2.66×10-14; AAF: z=0.01, p=0.99; A2: z=2.07, p=0.038; DP, p=1.55×10-4. 
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(A, B) Two example electrode contacts showing On- and Off-R to different tone 

frequencies. Dotted vertical lines represent tone onset and offset respectively. (C) 

Percentage of frequencies evoking significant On- or Off-R shows an Off-R bias in 

LFP responses (Wilcoxon signed-rank test, p=9.5×10-6). (D) LFP Off-R Bias Index 

(OBI) distribution is significantly shifted towards 1 (t-test, p=3.6×10-6), suggesting 

an overall larger Off-R. (E) Signal correlation (SC) was computed for On- and Off-R 

Figure 2.11 Local field potential (LFP) in A1 shows bias towards Off-R in 

strength and spatial spread. 
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separately among all electrode contacts and Off-R SC was larger than On-R SC over 

distance (Wilcoxon rank sum test, 50µm: p=0.040; 100µm: p=0.036; 150µm: 

p=0.038; 200µm: p=0.041; 250µm: p=0.023; 300µm: p=0.011; 350µm: p=0.008; 

400µm: p=0.003; 450µm: p=0.003; 500µm: p=0.004; 550µm: p=0.034). (F) Example 

raster plot of one single unit responding to both tone onset and offset. The inset shows 

the spike waveform. (G) Histogram showing OBI separately for wide and narrow 

spike waveforms (putative excitatory and inhibitory neurons). Both groups show 

prominent On-R and the majority of the units had both On- and Off-R. (H) OBI of 

single units depended on cortical depth. A linear model was used to quantify the 

depth dependence of single unit OBI and deeper cortical layers were more biased 

towards On-R (linear fit: y=5.8×10-4*x-0.043, p=7.3×10-3, adjusted R2=0.031). 

 

Local tonotopy is heterogeneous for both On-R and Off-R in all areas 

On the large-scale both On-R and Off-R show tonotopic organization (Figure 

2.1, 2.5), while on the cellular scale tonotopy is heterogeneous in A1 of anesthetized 

mice (Bandyopadhyay et al., 2010; Rothschild et al., 2010; Kanold et al., 2014). We 

tested if Off-R exhibited local tonotopy and if On-R and Off-R cells in ACX areas 

differed in local heterogeneity of frequency preference. We compared the degree to 

which On-R and Off-R are locally tonotopically organized by analyzing separate 

linear models between best frequency and spatial location of the cell (Figure 2.8E). 

Similar to prior studies in anesthetized mice (Bandyopadhyay et al., 2010; Rothschild 

et al., 2010; Maor et al., 2016) we here find a lack of local tonotopy of frequency 
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selectivity in awake mice as the goodness of fit (R2) is low in general. Moreover, the 

models showed a similar R2 for On-R or Off-R across ACX areas, suggesting that the 

local heterogeneity of frequency selectivity between On-R and Off-R is similar within 

and across fields in mouse ACX.  

 

ACX areas differ in the spatial pattern of neuronal correlated On-R and Off-R activity 

Our results so far indicate regional differences in cellular selectivity. To gain insight 

into the spatial distribution of such circuits we calculated pairwise SCs which are 

reflective of shared inputs (Shadlen and Newsome, 1998). The dependence of the 

pairwise SCs on the spatial relationship between neurons is reflective of the 

underlying circuit topology. In A1 pairwise SCs for On-Rs are highest for nearby 

neurons and decrease with distance, consistent with prior results in anesthetized mice 

(Figure 2.8F) (Winkowski and Kanold, 2013). Such a decrease is also present in A2 

while DP shows a patchy distribution of SCs for On-Rs. A weak SC gradient is 

present in AAF. Off-SC are larger than On-SC in most areas except for DP. In A1 

these differences between On-SC and Off-SC are widespread, while such differences 

are present in patchy areas in AAF (~150-175µm) and A2 (~50-275µm). These 

results show that Off-R neuronal populations are more widespread, which could be 

due to a difference in the underlying intrinsic circuits or due to the spatial distribution 

of ascending input. We also validated this result by computing the SC among 

chronically implanted linear electrode contacts and a similar correlation structure was 

seen where Off-R SC was higher than On-R SC over distance (Figure 2.11E). This 
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result further suggests that Off-R is not only more widespread among different 

cortical columns but also along cortical depth. 

 

Granger Causality analysis reveals areal differences in functional On/Off networks 

The areal differences in pairwise SCs suggest different underlying neuronal 

networks. We thus sought to identify the functional networks in the different ACX 

areas. To do so, we performed Granger Causality (GC) analysis separately among 

On- and Off-responsive populations (Granger, 1969; Oya et al., 2007; Friston et al., 

2013; Sheikhattar and Babadi, 2016; Francis et al., 2018; Sheikhattar et al., 2018). 

GC analysis provides a statistical/data-driven framework for inferring causal 

interactions between neurons from the neural data, by statistically testing if a 

neuron’s activity can be predicted by the recent activity history of other neurons, and 

thus allows us to uncover functional networks  (Granger, 1969; Sheikhattar and 

Babadi, 2016; Francis et al., 2018). The causal interactions (GC-links) can take 

effective positive or negative signs reflecting neuronal activities that are both 

increasing/decreasing or are of opposite directions (Francis et al., 2018). Our calcium 

indicator is expressed in excitatory neurons and thus we focused on positive GC links. 

An example of two GC linked neurons is shown in Figure 2.12A. Note that that the 

source trace preceded the target trace. Figure 2.12B shows one example field of view 

with most significant GC links labeled. We next proceeded to quantify the number, 

strength, length and directionality of these GC links. In A1 and DP, Off-GC-links 

outnumbered On-GC-links, while the opposite was true in AAF and A2 (Figure 
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2.12C). These areal differences in GC link number indicate higher respective 

interconnectivity and are consistent with the areal differences in the relative numbers 

of On-R and Off-R neurons. In contrast to these areal differences in link number, GC 

link strength (J-statistics) largely showed no difference except for AAF (Figure 

2.12D), suggesting both On-R and Off-R networks are strongly functionally 

connected. Since the majority of cells are either On-R or Off-R these results indicate 

that ACX areas contain separate interdigitated On-R and Off-R networks.  

Since 2-photon imaging allows us to identify the spatial location of imaged 

cells we next extracted the relative spatial positions of GC-linked cells and calculated 

the spatial properties of GC linked On and Off networks. First, we compared the 

length of GC-links in different ACX fields. Off-GC-links tend to have a larger 

number of shorter links in A1 (Figure 2.12E), suggesting that Off GC networks more 

densely cover the neural populations in A1 and are more spatially clustered. 

However, no difference is seen in other ACX fields (Figure 2.12E). Since ACX areas 

show tonotopic maps on a global scale, we next investigated if GC links also show a 

direction preference. We thus compared the distribution of On/Off GC-link 

directions. Except for DP and A2 Off-R, the distributions of the GC-link directions 

significantly deviate from uniform distributions (Figure 2.12F). In A1, AAF and A2, 

the ellipse like distributions have the long axis, reflecting a spatial bias of the cell pair 

interactions, roughly in parallel to the tonotopic axes. Thus, here we show that 

although local cellular populations lack precise tonotopic organizations when probed 

based on their frequency preference, there are nevertheless regularities in their 

functional spatial connectivity whose patterns are closely related to the tonotopic axis. 
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Moreover, we found no difference in the On/Off GC-link direction distribution 

(Figure 2.12F). This indicates that although On/Off-R populations are largely non-

overlapping, they are spatially intermingled and parallel, consistent with the ‘salt-and-

pepper’ structure in L2/3 of mouse ACX (Bandyopadhyay et al., 2010; Rothschild et 

al., 2010). We did notice that the distribution of GC-link directions in AAF tends to 

be more ‘pointy’ or narrower than in A1 or A2. We combined both On and Off GC-

links and compared the spread in the direction of the short axis of the eclipse like 

distributions (see Methods). Indeed, AAF GC links were more narrowly distributed 

than in A1 (p=0.033) and the difference between AAF and A2 was close to 

significance (p=0.058). Thus, the spatial topology of the intrinsic functional 

architecture of L2/3 in different ACX fields differs. Moreover, our observation of 

these patterns indicates that spatially specific On/Off sub-circuits exist and that they 

are superimposed on the locally heterogeneous tonotopic map. 
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(A) Fluorescence time course of GC-linked cells. (B) GC links in an example field. 

Blue: On GC-links. Red: Off GC-links. Only GC links with J-statistics>0.95 are 

shown for clarity. (C) Proportion of GC-links as a function of ACX fields (false 

discovery rate: 0.001). More Off GC-links are observed in A1 and DP (Wilcoxon 

rank sum test, A1 on vs off: p=2.53×10-7, z=-5.16; DP, p=1.55×10-4). In AAF and A2 

On GC-links are more abundant (AAF p=5.44×10-7, z=4.55; A2 p=3.32 ×10-6, z=4.65). 

(D) J-statistics, a measure of GC-link strength as a function of ACX fields. Only AAF 

Figure 2.12 GC analysis reveals distinct On/Off sub-networks 
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shows a slight higher On GC-link strength (Wilcoxon rank sum test, p=0.0175, 

z=2.38). (E) GC-link length as a function of ACX fields. A1 contains shorter Off GC-

links (Wilcoxon rank sum test, p=0.0022, z=3.06) (F) Distribution of direction of GC-

links as a function of ACX fields. The non-uniformity of the distributions was tested 

using Chi-square goodness-of-fit test. A1, on: p=0.043, off: p=1.08×10-22; AAF, on: 

p=1.48×10-7, off: p=7.77×10-4; A2, on: 8.15×10-4, off: p=0.42; DP, on: p=0.89, off: 

p=0.17. On/Off distribution difference: Two-sample Kolmogorov-Smirnov test, A1: 

p=0.065; AAF: p=0.82; A2: p=0.; DP: p=0.85. 

 

The On/Off responsivity of MGB terminals determines areal responses 

So far, our results indicate that ACX contains distinct functional areas that are 

defined by differing cellular selectivity and intrinsic connectivity. Since ascending 

inputs to ACX neurons determine the initial cellular selectivity to sound dynamics we 

next examined how the cellular on/off selectivity emerged from the inputs to ACX. 

The main ascending inputs to ACX are provided by medial geniculate body (MGB) 

axons which terminate on excitatory neurons ranging from L2/3 to L6 with the 

strongest input in L4 (Ji et al., 2015). In vivo patch clamp recordings in A1 have 

shown that non-overlapping sets of synapses can give rise to On- and Off-Rs (Scholl 

et al., 2010). Since different ACX areas receive dominant input from different 

subdivisions of the MGB we speculate that these sets of synapses reflect separate 

pathways from the MGB. To test this hypothesis, we injected virus expressing 

GCaMP6s into the MGB (see methods, n=7 mice) and imaged the labelled terminals 
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in A1 (20 FOVs) after 3-4 weeks to allow expression (Figure 2.13). We focused on 

A1 because of its distinct difference in On-R and Off-Rs and because prior in vivo 

patch clamp recordings showed that in A1 On- and Off-R are carried by non-

overlapping sets of synapses (Scholl et al., 2010). MGB terminals showed prominent 

On-R or Off-R (Figure 2.14A, B). The proportion of MGB terminals showing both 

On-R and Off-R is low (0.88% ± 1.06%). The proportion of MGB terminals showing 

either On-R or Off-R was similar (Figure 2.14C). OBI values for MGB terminals also 

indicated that most terminals were either on-only or off-only (Figure 2.14D). Thus, 

the majority of MGB terminals either relay On-R or Off-R suggesting the existence of 

distinct parallel pathways from the thalamus to A1. Terminals showing both On-R 

and Off-R had a more negative OBI compared to the distribution of OBI of the 

cellular response (Figure 2.14D inset), suggesting that there exists a transformation of 

On- and Off-R selectivity from MGB terminals to A1 cellular responses, which are 

more biased to Off-R. Moreover, given the prevalence of Off-R A1 neurons, this 

suggests a differential amplification of Off-Rs from MGB inputs to yield a larger 

fraction of Off-R neurons. 

To gain insight into the transformation, we compared the average strength of 

On-R and Off-R pooling across terminals. Terminal On-Rs were larger than Off-Rs 

(Figure 2.14E) which is similar to the cellular responses (Figure 2.10B). However, 

unlike cellular response in A1, the On-R and Off-R MGB terminals have similar 

overall response amplitude (Figure 2.14F). This suggests that the larger Off-Rs in A1 

cells are not generated by stronger or more numerous Off-R MGB afferents.  
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Local convergence of MGB inputs could lead to stronger cellular responses. Indeed 

convergence and temporal synchrony of thalamic inputs can strongly influence 

cortical neurons (Bruno and Sakmann, 2006). We have observed a distinct spatial SC 

structure in mesoscale (Figure 2.7G-I) as well as in cellular responses (Figure 2.8F) 

and we speculate that these properties could result from spatially structured MGB 

input. We thus calculated the SC of MGB terminals. Indeed, we find that off-MGB 

terminals had higher SC (Figure 2.14G) consistent with the majority cellular Off-Rs. 

Given that SCs on the cellular scale show a distance dependence, we investigated the 

distance dependence of On/Off-SC of MGB terminals. We find that Off-SC is higher 

than On-SC over a distance of 0-70µm indicating a higher degree of spatial spread of 

terminal Off-R. These results suggest that although individual MGB terminals do not 

respond to tone offset more strongly than to tone onset, local MGB terminals respond 

more similarly to tone offset, suggesting that the spatial correlation structure of MGB 

inputs is transformed into cellular tuning in A1, resulting in a more spatially extensive 

representation of tone offset.  

Lastly, we investigated whether there is tonotopic structure in MGB terminal 

response. Using a linear model, we did not find a tonotopic structure in either On-R 

or Off-R in MGB terminals (Figure 2.14H), consistent with the observation that local 

On-R MGB projections in A1 are spatially heterogeneous in their tuning (Vasquez-

Lopez et al., 2017). Together, our results suggest that the spatial meso-scale 

distribution of On- or Off-responsive A1 neurons is largely inherited from the spatial 

distribution of On/Off-R MGB terminals. 
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Viral injection of AAV1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 in 

MGB.mRuby signal was imaged. (A) Overall image of injection site and cortical 

terminals (2x). Scale bar shows 1mm. Labeling in hippocampus is due to injection 

tract. (B) 10x view of auditory cortex. Terminals can be seen in layer 4 and deeper 

layers, consistent with typical MGBv projection pattern. Scale bar shows 100µm. (C) 

10x view of MGB. Labeled cells can be seen in all divisions. Scale bar shows 100µm. 

 

 

 

 

Figure 2.13 MGB injections of AAV-GCAMP6s label terminals in A1 
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(A) Example on-responsive terminal. The image shows the contour of the terminal in 

red. Scalebar: 5µm (B) Same as in (A) but shows an off-responsive terminal. (C) No 

difference is observed in proportion of on- or off-responding terminals. On: 5.99% ± 

6.72%; Off: 5.62% ± 6.00%; paired t-test, t(20)=0.34, p=0.74. (D) Histogram of OBI 

values of MGB terminals in A1. Inset shows CDFs of OBI values other than -1 and 1 

from MGB terminals and A1 L2/3 neurons (Wilcoxon rank sum test, z=3.64, 

p=2.71×10-4). (E) Individual MGB terminals in A1 show significant larger On-Rs 

(Wilcoxon rank sum test, z=2.91, p=0.0036). (F) No difference is observed in the 

overall On/Off-R amplitude (see Method, Wilcoxon rank sum test, z=0.85, p=0.39). 

(G) Off-Rs show higher off-SC over distance (0-70µm). Dashed lines show 95% 

confidence interval around the median. The right panel shows cumulative distribution 

function of On- and Off-SC not regarding distance. ‘***’ indicate p<0.001. (H) No 

difference was found between the goodness of fit of linear On-R and Off-R tonotopy 

model in MGB terminals in A1. 

Figure 2.14 MGB terminals in A1 largely show either On-R or Off-R and Off-R 

terminals show higher local signal correlations 
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Cortical inhibitory networks can amplify Off-R through disinhibition  

The activity of cortical neurons is influenced by inhibition and we 

hypothesized that the On/Off-R selectivity of ACX L2/3 excitatory neurons is 

actively shaped by the local inhibitory network. To investigate this question, we 

focused on PV and SOM positive interneurons which are though to control the 

activity of L2/3 neurons via a disinhibitory circuit (Pfeffer et al., 2013). We crossed 

Thy1-GCaMP6s mice with either PV-cre or SOM-cre mice and injected AAV-virus 

(see methods) expressing mRuby and GCaMP6s under control of FLEX switch 

sequence into ACX of F1 animals. We then imaged these animals (Thy1xPV-cre: 

n=8, 427 PV neurons; Thy1xSOM: n=6, 288 neurons). With this approach, local PV 

or SOM interneurons could be identified based on nuclear red fluorescence signal 

while allowing simultaneous imaging of (Thy1 positive) excitatory neurons and 

PV/SOM neural populations (Figure 2.15A, C). We presented 2 second tones to these 

F1 animals and found that although some PV and SOM interneurons displayed typical 

On/Off-R similar to those seen in excitatory neurons, a significant portion of these 

interneurons displayed a much slower temporal dynamics in their response to 

prolonged tones (Figure 2.15A, B). Most notably, PV neurons showed a slow 

decrease in fluorescence signal following tone onset (Figure 2.15B), which recovers 

following tone offset. SOM neurons showed similarly slow temporal responses albeit 

positive in sign (Figure 2.15D). To classify different response types, we performed k-

means clustering on significant responses averaged across trials, pooling responses 

from both Thy1 (including traces from F1’s of CBA/CaJ and Thy1-GCaMP6s 

crosses) and PV/SOM cells. We used correlation as the distance measurement 
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between averaged traces such that responses of similar temporal dynamics will be 

grouped together irrespective of the amplitude. We could identify 5 clusters with 

distinct temporal dynamics. The first cluster shows sharp increase in fluorescence 

signal following tone onset, which immediately decays (Figure 2.15E, ‘On’). The 

second cluster shows less sharp fluorescence increase than the first cluster, but the 

signal sustains during the tone presentation, suggesting sustained spiking activities 

(Figure 2.15E, ‘On-sustained’). The third cluster shows even slower dynamics with 

little plateau, which decays following tone offset (Figure 2.15E, ‘On-ramping’). The 

fourth cluster shows sharp increase after tone offset and thus is categorized as typical 

Off-Rs (Figure 2.15E, ‘Off’). The last cluster has similar dynamics as ‘On-ramping’ 

while opposite in sign (Figure 2.15E, ‘Suppressed’). We next quantified the 

proportion of responses assigned to each cluster as a function of cell type. Distinct 

patterns are found among Thy1 and PV/SOM cells (Figure 2.15F). Thy1 cells, 

responses are predominantly assigned to ‘Off’, ‘On’ and ‘On-sustained’. However, 

PV interneurons show predominant ‘Suppressed’ responses while SOM interneurons 

show mostly ‘On-ramping’. These two response clusters show no difference in 

latency reaching half of peak amplitude (0.95±0.36s vs. 0.85±0.26s, p=0.21, 

Wilcoxon rank sum test). However, the opposite sign suggests that SOM neurons 

suppress PV neurons during prolonged tone activation, which also consistent with 

previously discovered disinhibition circuit scheme (Pfeffer et al., 2013). These results 

indicate that the suppression of PV neurons by SOM neurons potentially allows a 

decrease of PV inhibitory input onto local excitatory populations, which in turn could 

amplify Off-R as the tail of inhibitory post-synaptic current from SOM to PV 
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interneurons could well last until after tone offset despite the cessation of firing of 

SOM.   

In summary, the above results suggest that the spatial distribution of On/Off-R MGB 

terminals determines the spatial distribution of On- or Off- responsive A1 neurons 

and that Off-Rs are amplified compared to On-Rs due to disinhibition through 

suppression of PV interneurons by SOM interneurons (Figure 2.15) as well as to 

increased local spatial clustering of Off-R MGB afferents (Figure 2.16). 
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(A) Example field of view showing both Thy1-GCaMP6s cells and PV positive 

interneurons virally expressing GCaMP6s and mRuby. Scalebar: 10µm (B) Three 

example PV interneurons showing suppressed response (top), On-R (middle) and Off-

R (bottom). (C) Example field of view showing both Thy1-GCaMP6s cells and SOM 

positive interneurons virally expressing GCaMP6s and mRuby. (D) Three example 

SOM interneurons showing slow ramping responses following tone onset (top, 

middle) and Off-R (bottom). (E) K-means clustering on responses by Thy1, PV and 

SOM cells reveals distinct types of temporal dynamics in response to prolonged 

tones. All traces were normalized to maximum absolute amplitude before averaged 

within each cluster. Shaded regions show standard deviation. (F) Thy1, PV and SOM 

Figure 2.15 PV and SOM neurons show distinct temporal dynamics in response to 

prolonged tones 



 

 

 

74 

 

cells show distinct proportion of response types. PV cells show predominantly 

“Suppressed” response while SOM cells show predominantly “On-ramping” 

response. 

We propose that cortical On/Off-R are resultant from largely segregated On/Off 

thalamic input and the spatial pattern of these input determine the spatial layout of 

On/Off-R selective neurons. Further, Off-R cortical neurons have more recurrent 

connections that amplify the thalamic input compared to On-R circuitry. Black 

triangles represent On/Off-R neurons while gray triangles represent unresponsive 

neurons. 

 

Figure 2.16 Circuit model of separate On/Off processing stream from auditory 

thalamus to A1 
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Discussion 

We show that the ACX encodes tone offset in a locally parallel, spatially 

extensive and yet globally tonotopically organized manner. We find that the ACX 

contains distinct functional areas that are characterized by distinct selectivity for tone 

onset or offset on the population level. Thus, the cortical representation of spectral 

information, i.e., tone frequency, is influenced by temporal dynamics of the spectrally 

static tones. Individual ACX areas contain populations of cells with distinct 

selectivity for On-R or Off-Rs. Moreover, we utilized GC analysis to reveal that ACX 

areas contain intermingled On/Off networks within L2/3. Therefore, areal 

specification is due to different relative numbers of On-R and Off-R neurons as well 

as due to distinct intracortical circuits. Imaging responses of PV and SOM 

interneurons in A1 and their distinct temporal dynamics point to disinhibition as one 

mechanism that amplifies Off-R. Moreover, by imaging MGB terminals we show that 

the areal and cellular On/Off-R specialization may arise from differences in MGB 

input which could be further enhanced by local spatially correlated activity of MGB 

terminals. Together, our results suggest that the differential dynamic responses 

originate from differential feedforward input from MGB that is further elaborated on 

by different intrinsic excitatory and inhibitory circuits in the different ACX regions. 

This indicates that ACX areas operate in parallel to extract differing temporal 

stimulus qualities. Our results also demonstrate that Off-Rs are tonotopically 

organized on the mesoscale. The lack of Off-R tonotopy in prior anesthetized studies 

(Baba et al., 2016) is likely due to Off-R being most prominent in awake animals 
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(Recanzone, 2000; Qin et al., 2007; Fishman and Steinschneider, 2009; 

Joachimsthaler et al., 2014). 

We here develop and deploy a novel method to define functional ACX areas 

based on their temporal responses instead of the largest stationary reponse. This 

image segmentation technique is based on temporal coactivation of pixels (Whiteway 

and Butts, 2017). This method is unbiased and unsupervised and requires no prior 

assumptions on the distribution of cortical fields and can be applied to arbitrary WF 

datasets.  

Besides tone onset and offset, ACX neurons can also be sensitive to other 

dynamic aspects of sound such as amplitude modulation, frequency modulation, 

sound duration and frequency sweep rate (Schreiner and Urbas, 1986; Heil et al., 

1992; He et al., 1997; Baumann et al., 2015; Issa et al., 2017). While frequency sweep 

rate is topographically organized in mouse ACX (Issa et al., 2017), our results show 

that Off-R are also topographically represented.  

We found an extensive representation of tone offset in A1 and DP neurons. 

A1 neurons receive On-Rs and Off-Rs synaptic inputs which are thought to be 

mediated by non-overlapping set of synapses (Scholl et al., 2010). We find that MGB 

terminals are mostly either exclusively On-responsive or Off-responsive suggesting 

that A1 neurons receive convergent input from such On- or Off-responsive MGB 

terminals. Further, we found that MGB terminals have on average weaker Off-R, 

suggesting that enhanced Off-R in A1 is indeed resultant from different On/Off-R 

input topology, or the spatial distribution of connections. While in A1 Off-R neurons 

outnumber On-R neurons, Off-R MGB terminals do not outnumber On-R MGB 
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terminals. Moreover, the On/Off-R bias differs between MGB terminals and A1 

neurons. No evidence so far suggests that On- and Off-circuit has different quantal 

synaptic strength and thus the On/Off-R bias is more likely to result from differential 

convergence of connections. Together, these observations suggest the presence of 

local A1 circuits to amplify Off-R. Our results also suggest that a disinhibitory circuit 

formed by SOM and PV neurons could play this role. Nevertheless, MGB terminals 

share the same On/Off-SC structure as A1 L2/3 neurons, suggesting that the spatial 

pattern of cellular on/off-selectivity is largely determined by the spatial pattern of 

MGB projections. Although Off-Rs are of smaller amplitude than On-Rs in MGB 

terminals, the spatially more extensively distributed input could potentially involve 

more recurrent connections or convergence such that cellular Off-Rs are 

preferentially amplified especially at high sound levels. Indeed, a multilayer nonlinear 

neural network has been proposed to underlie the wide variety of On/Off-Rs observed 

in A1 (Deneux et al., 2016). Our work suggests that the MGB-A1 circuit could 

underlie this transformation. Ideally, our conclusion would be strengthened by 

simultaneously imaging MGB terminals and ACX postsynaptic neurons. However, 

such approach would be still be limited as corresponding terminals and postsynaptic 

neurons would not be necessarily localized in the same imaging plane and with the 

spatial resolution of 2P imaging it is still difficult to determine unequivocally 

presynaptic terminal and postsynaptic cell pairs.  

MGB terminals showing On-Rs or Off-Rs likely originate from different 

MGB subdivisons. ACX receives MGB inputs via lemniscal and non-lemniscal 

pathways. The lemniscal pathway arises from the ventral MGB (MGBv) which shows 
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On-Rs (Aitkin and Webster, 1972; Imig and Morel, 1983; Redies and Brandner, 

1991; Hackett et al., 2011). Multiple lines of evidence suggest that Off-Rs originate in 

non-lemniscal pathways. Off-Rs are predominantly observed in a sheet partially 

surrounding MGBv (He, 2001). Off-Rs can also originate from the dorsal and medial 

MGB (MGBd and MGBm). Indeed, we found that A2 and DP which receive MGBd 

input (Lee and Sherman, 2008; Llano and Sherman, 2008) show Off-Rs. Moreover, 

the spatial extensiveness of Off-Rs is consistent with the broad projection from 

MGBm to ACX through L1 (Huang and Winer, 2000; Lee and Winer, 2008). Thus, 

non-lemincal pathways likely provide tone offset information to ACX. We imaged 

the terminals at roughly the same depth as the cellular population imaged (~150µm), 

and thus these terminal might reflect a mixture of lemniscal and non-lemniscal 

pathways as terminals from both MGBv and MGBd are present in L2 in A1 (Saldeitis 

et al., 2014). Our results show overlapping tonotopy of On-R and Off-R albeit areal 

differences, suggesting that lemniscal and non-lemniscal pathways are coarsely 

aligned but show distinct spatial patterning. The factors that determine these patterns 

are unknown.  

The majority of responding A1 L2/3 neurons have either On-R or Off-R. Thus 

the spatial heterogeneity of tonal responses in A1 L2/3 might be due to intermingled 

cells receiving differing thalamic input. In S1, functionally different thalamic inputs 

from ventral posterior medial nucleus (VPM) and posterior medial nuclues (POm) are 

relayed to barrels and septa (Koralek et al., 1988; Lu and Lin, 1993) which are 

spatially separated and carry whisking-touch information (Yu et al., 2006) and 

temporal information on whisker movement respectively (Ahissar et al., 2000).  Our 
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results suggest that in contrast to S1 functionally different thalamic inputs to A1 are 

spatially interdispersed. A1 L2/3 contains cells with distinct functional intracortical-

circuits and shows a sublaminar organization (Meng et al., 2017). It is possible that 

the distinct On/Off subnetworks we identified might relate to these distinct 

subpopulations. And because recurrent inputs from subgranular layers are thought to 

be able to amplify thalamic inputs (Somers et al., 1995; Miller et al., 2001; Li et al., 

2013), we speculate that Off-R cells receive stronger or more extensive inputs from 

subgranular layers. Prior electrophysiology studies have identified a larger proportion 

of neurons responding to both tone onset and offset (Qin et al., 2007; Joachimsthaler 

et al., 2014). The discrepency most likely results from the difference in recording 

depth and the inclusion of multiunit activity, given the intermingled spatiall 

distribution of On- and Off-R (Figure 2.12B) which could bias electrophysiological 

studies. Indeed, our electrophyisological recordings show that Off R’s are more 

prevalent in superficial layers where we performed imaging (~150 µm depth). Such a 

depth dependence of On/Off-R is consistent with reports showing that L5/6 neurons 

were less likely to generate Off-R (Volkov and Galazjuk, 1991). Thus, given that 2-

photon imaging has much higher spatial resolution and lacks electrode bias our 

imaging results most likely revealed a highly specific On/Off-R selectivity in upper 

L2/3. Nevertheless, we find that among all responding neurons in A1, 53% were Off-

responsive, close to 59% reported in awake cat by Qin et al (2007). Therefore, our 

imaging data revealed an Off-R bias and a separation of On/Off-R network in 

superfiscial layers possibly via distinct sublaminar circuits (Meng et al., 2017). Future 

imaging studies linking functional cicruits to functional responses and focusing on 
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deeper cortical layers are required to address how On/Off-R networks are transformed 

across cortical layers.  

We found that around 5% of neurons in A1 respond to tone onset/offset, 

which is consistent with a sparse representation of sound in A1 (Hromádka et al., 

2008) . However, previous imaging studies of A1 have reported around 20-30% 

response rate (Issa et al., 2014; Kato et al., 2015). This discrepancy likely arises from 

sampling of different populations of neurons. Issa et al. (2014) used cre-dependent 

GCaMP3 driven under syn1-cre or emx-cre, while such labeled populations had fewer 

visual responses compared OGB-1 labeled neurons in V1 (Zariwala et al., 2012), 

suggesting a non-uniform labeling of neuronal population. Kato et al. (2015) used 

viral expression of GCaMP6s under syn1 promotor, which densely labeled local 

populations close to the injection site. Our current study used the GP4.2 line, which 

labels about 70% of pyramidal cells in L2/3 in a relatively uniform fashion (Dana et 

al., 2014). It is likely that the difference in response rate between our study and prior 

imaging studies is due to the labeling of different but potentially overlapping 

populations, the difference in calcium indicator (GCaMP3 vs GCaMP6s), expression 

profile (transgenic vs viral expression), and cell selection criteria. 

We find that L2/3 PV and SOM positive interneurons show distinct temporal 

dynamics from each other as well as from Thy1-expressing excitatory neurons. In 

particular, PV and SOM interneurons show predominantly opposite signs of 

responses. The suppression of the fluorescence signal in PV neurons corresponded to 

a reduction of the firing rate (Forli et al., 2018). Thus our data suggests a suppression 

of PV interneurons’ firing by SOM interneurons. This is consistent with a 
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predominantly suppressed responses of L2/3 PV neurons to prolonged tones (Kato et 

al. (2015). The opposing direction in the response of PV and SOM neurons is 

consistent with the proposed cortical processing scheme that PV interneurons receive 

inhibitory input from SOM interneurons (Pfeffer et al., 2013), and that such inhibiton 

shows significant synaptic facilitation (Karnani et al., 2016). Finally,  SOM neurons 

more readily inhibit PV neurons than local excitatory neurons (Cottam et al., 2013). 

We speculate that such inhibtion could facilitate detection of changes in auditory 

streams, such as tone offset given that the duration of inhibitory post-synaptic current 

could outlast firing of SOM interneurons, which creates a windw for elevated 

excitability in local pyramidal neurons before PV interneurons return to baseline 

firing. Although such inhibition of PV interneurons by SOM interneurons has not 

been experimentally confirmed in ACX, it is possible that this circuit is involved in 

processing prolonged auditory stream. Kato et al (2015) have shown that SOM 

interneurons potentially suppress responses to behaviorally irrelavant and prolonged 

tones by inhibiting PV interneurons and pyramidal cells. Furthermore, our results 

show that SOM neurons are active throughout tone presentation, in contrast to 

previous findings that SOM cells fire transiently during tone presentation, although 

such difference could be due to the animal’s state (awake vs. anesthesia) (Li et al., 

2014a; Chen et al., 2015). Thus, SOM interneurons are potentially important for 

auditory stream analysis and their interactions with PV neurons could facilitate 

change detection.   

In conclusion, we have demonstrated by multiscale imaging a distinctly 

extensive parallel spatial representation of sound dynamics in ACX at multiple levels 
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and we propose that this spatial pattern is determined by the meso- and micro-scale 

spatial layout of thalamic input and by distinct intracortical circuits. 
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Chapter 3. Diversity of receptive 

fields and sideband inhibition with 

complex thalamocortical and 

intracortical origin in L2/3 of mouse 

primary auditory cortex 
 

This chapter has been published in Journal of Neuroscience (Liu and Kanold, 2021) 

Abstract 

 Receptive fields of primary auditory cortex (A1) neurons show excitatory 

neuronal frequency preference and diverse inhibitory sidebands. While the frequency 

preferences of excitatory neurons in local A1 areas can be heterogeneous, those of 

inhibitory neurons are more homogenous. To date, the diversity and the origin of 

inhibitory sidebands in local neuronal populations and the relation between local 

cellular frequency preference and inhibitory sidebands are unknown. To reveal both 

excitatory and inhibitory subfields we presented two-tone and pure tone stimuli while 

imaging excitatory (Thy1) neurons and two types of inhibitory neurons (PV and SST) 

in L2/3 of mice A1. We classified neurons into 6 classes based on frequency response 

area (FRA) shapes and sideband inhibition depended both on FRA shapes and cell 

types. Sideband inhibition showed higher local heterogeneity than frequency tuning, 

suggesting that sideband inhibition originates from diverse sources of local and 

distant neurons. Two-tone interactions depended on neuron subclasses with excitatory 

neurons showing the most nonlinearity. Onset and offset neurons showed dissimilar 
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spectral integration, suggesting differing circuits processing sound onset and offset. 

These results suggest that excitatory neurons integrate complex and nonuniform 

inhibitory input. Thalamocortical terminals also exhibited sideband inhibition, but 

with different properties from that of cortical neurons. Thus, some components of 

sideband inhibition are inherited from thalamocortical inputs and are further modified 

by converging intracortical circuits. The combined heterogeneity of frequency tuning 

and diverse sideband inhibition facilitates complex spectral shape encoding and 

allows for rapid and extensive plasticity. 

Introduction 

One of the fundamental functions of sensory systems is to differentiate 

between distinct stimuli. Such stimulus selectivity requires that neural circuits possess 

selectivity for certain attributes of the sensory stimulus. Starting at the peripheral 

sensory epithelium, stimulus selectivity is achieved through functional so-called 

lateral, or sideband, inhibition. The visual system achieves this by the activation of 

neurons that reduce the activity in other neurons that have slightly differing receptive 

field properties, e.g. being sensitive to stimuli at a different spatial location. For 

example, ON/OFF receptive fields of the retinal ganglion cells signal size selectivity 

(Kuffler, 1953; Famiglietti and Kolb, 1976) and are shaped by such lateral 

interactions (Cook and McReynolds, 1998). In the auditory system, the mechanical 

properties of the basilar membrane creates frequency selectivity as traveling waves 

reach maximum amplitude at specific locations within cochlea (Von Békésy and 

Wever, 1960), which is further amplified by the movement of outer hair cells 
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(Fettiplace, 2020). Presentation of two tones causes nonlinear mechanical interactions 

in the cochlea which in turn causes suppression in inner hair cells (Ruggero et al., 

1992). Thus, a tone of a different frequency than the primary tone can alter the 

responses to the primary tone and such frequencies constitute the inhibitory sideband, 

which sharpens stimulus selectivity even at the very first stage of sensory information 

encoding.  

 Lateral inhibition or sideband inhibition can also be found along the ascending 

auditory pathway, including in the cochlear nucleus (Greenwood et al., 1976; Nelken 

and Young, 1994; Davis and Young, 2000), inferior colliculus (Brimijoin and 

O’Neill, 2005; Mayko et al., 2012), medial geniculate body (Schreiner, 1981) and the 

auditory cortex (ACX)  (Sutter and Schreiner, 1991; Nelken et al., 1994; Sutter et al., 

1999; Li et al., 2014b; Kato et al., 2017). In the ACX, thalamic inputs are amplified 

(Li et al., 2013) and further processed by local microcircuits, resulting in the 

refinement in the frequency tuning where L2/3 neurons showed narrower tuning than 

L4 neurons (Winkowski and Kanold, 2013; Li et al., 2014b) despite the fact that 

frequency tuning tends to get broadened along auditory ascending pathway (Bartlett 

et al., 2011). While the relative contribution of different classes of inhibitory neurons 

to this tuning refinement is unclear (Li et al., 2014b; Kato et al., 2017), Parvalbumin 

(PV) or Somatostatin (SST) positive neurons are thought to mediate sideband 

inhibition in the primary auditory cortex (A1) (Li et al., 2014b; Kato et al., 2017; 

Lakunina et al., 2020). Moreover, it is unclear whether thalamocortical inputs also 

contribute to sideband inhibition in A1.  
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  Excitatory A1 L2/3 neurons in a local area can show diverse tuning 

preferences (Bandyopadhyay et al., 2010; Rothschild et al., 2010; Winkowski and 

Kanold, 2013; Kanold et al., 2014; Maor et al., 2016) and integrate excitatory and 

inhibitory inputs from a large region of the tonotopic map (Meng et al., 2017). In 

contrast inhibitory PV cells in a local area show a high degree of similarity (Maor et 

al., 2016). This raises the question whether sideband inhibition varies among local 

populations of L2/3 neurons and if any spatial patterns exist relative to local 

frequency tuning. To investigate inhibitory sidebands of A1 neurons and the 

relationships of these sidebands between neurons, we performed 2-photon imaging 

and probed neural responses to both pure tones (PT) and two-tone (TT) stimuli in 

excitatory (Thy1) and inhibitory (PV and SST) populations. We classified neurons 

based on the shape of their frequency response areas (FRAs) and found a differential 

degree of sideband inhibition and nonlinear frequency interactions among FRA types 

and cell types. Inhibitory sidebands of local neural populations showed high 

variability and heterogeneity indicating that a variety of inhibitory sources 

contributed to them. Imaging the activity of MGB terminals showed that inhibitory 

sidebands were present in MGB terminals, but that the tuning and sideband properties 

differed from those of cortical neurons. Our results thus suggest that inhibitory 

sidebands are created by non-uniform mechanisms between neurons, reflecting a 

complex interplay between existing inhibitory sideband structures in the feedforward 

MGB input and additional contribution of cortical inhibition. The combined 

heterogeneity in frequency tuning and sideband inhibition could further render 
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neurons’ selective for spectral features and provide a rich local substrate for extensive 

and rapid plasticity.  

Methods 

Animal Procedures 

All procedures were approved by the University of Maryland’s Animal Care 

and Use Committee. To produce mice with normal hearing, all animals used in this 

study were F1 generations from the crosses between CBA/CaJ mice and other 

transgenic lines including Thy1-GCaMP6s (JAX#024275, GP4.3 (Dana et al., 2014)), 

PV-cre (JAX#017320)  and SST-cre (JAX#013044). C57BL/6 are homozygous for 

the mutant Cdh23 allele ahl that causes age related hearing loss while CBA/CaJ mice 

are homozygous for the wildtype Ahl+ (Kane et al., 2012). Such crosses ensured that 

F1 offspring had one wildtype allele such that they had normal hearings (Frisina et 

al., 2011; Bowen et al., 2020). To express GCaMP6s in PV or SST neurons, we 

injected AAV1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (gift from 

Tobias Bonhoeffer & Mark Huebener & Tobias Rose, Addgene viral prep # 68720-

AAV1; http://n2t.net/addgene:68720; RRID: Addgene_68720, ~30nl per site, 3-4 

sites of injections) into the left auditory cortex of the F1 animals expressing PV-cre or 

SST-cre. We waited 14.6±2.3 days before starting imaging viral injected animals. We 

used 6 CBA/CaJxThy1-GCaMP6s mice (4 males, 2 females, 11 to 24 weeks old), 4 

CBA/CaJxPV-cre mice (2 males, 2 females, 13 to 15 weeks old) and 8 
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CBA/CaJxSST-cre mice (4 males, 4 females, among which 6 of them were 13 to 27 

weeks old and the rest 2 were 48 weeks old).  

 

Cranial window implant 

 We implanted cranial windows to perform imaging over the left A1 following 

the procedure outlined in Liu et al. (2019). First to prevent brain swelling during the 

cranial window implant, 0.1cc dexamethasone (2mg/ml, VetOne) was injected 

subcutaneously 2-3 hours prior to the start of the surgery. All surgery tools were 

sterilized with a bead sterilizer (18000-45, Fine Science Tools). The animals were 

anesthetized with isoflurane (Fluriso, VetOne) using a calibrated vaporizer (Matrix 

VIP 3000) with 4% for induction and 1.5-2% for maintenance. During surgery the 

body temperature of the animal was maintained at 36.0 degrees Celsius. After the 

head fixation, the hair on top of the head was removed by applying Hair Remover 

Face Cream (Nair). Application of betadine (Purdue Products) followed by a 70% 

ethanol rinse was repeated 3 times before the skin was removed. The surface of the 

skull was gently scrapped with a scalpel blade to remove the soft tissue. Muscles 

covering the left temporal bone were subsequently removed. After cleaning the skull, 

a custom 3D printed stainless steel headplate was mounted and secured using C&B-

Metabond (Parkell Inc.). A circular craniotomy was then performed over the left 

auditory cortex with a diameter of ~3.5mm using a dental drill. Viral injections were 

performed at this point. Then a custom-made cranial window was placed over the 

exposed brain. The window consisted of 2 layers of 3mm round coverslips (64-0720, 
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CS-3R, Warner Instruments) stacked at the center of a 4mm round coverslip (64-

0724, CS-4R, Warner Instruments) and secured with optic glue (NOA71, Norland 

Products). The edge of the cranial window was then sealed with Kwik-sil (World 

Precision Instruments). More Metabond was then applied to secure the window to the 

skull. After the surgery, 0.05cc Cefazolin (1 gram/vial, West Ward Pharmaceuticals) 

was injected subcutaneously and the animal recovered under a heat lamp for 30 

minutes before being returned to the home cage. Medicated water (Sulfamethoxazole 

and Trimethoprim Oral Suspension, USP 200mg/40mg per 5ml, Aurobindo Pharms 

USA; 6ml solution diluted in 100ml water) substituted normal drinking water for 7 

days before any imaging was performed.  

 

Viral injection into MGB 

 To label axon terminals of MGB in A1, we injected 

AAV.CamKII.GCaMP6s.WPRE.SV40 (a gift from James M. Wilson, Addgene viral 

prep # 107790-AAV9; http://n2t.net/addgene:107790; RRID: Addgene_107790) into 

the MGB. Specifically, we used the coordinate AP -3.2mm, ML 2.1mm relative to 

Bregma to target the left MGB. We injected ~100nl of the virus at a depth of 3.0mm 

below pia. The cranial window was implanted using the same procedure as outlined 

above. For this experiment, we used 3 CBA/CaJ mice (1 female, 2 males) around 11-

12 weeks old. Imaging was performed 17.1 ± 1.1 days after viral injections.  
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Widefield imaging and image processing 

 To identify the location of A1 we performed widefield imaging as previously 

described (Liu et al., 2019). The animal was head-fixed in a custom holder and the 

cranial window was illuminated with 470nm LED light (M470L3, Thorlabs Inc.) 

while the green fluorescence was collected using a PCO Edge 4.2 camera. The frame 

rate was 30 Hz and images had dimensions of 400 by 400 pixels, which were 

downsampled by a factor of 4 for analysis.  

 For image analysis, the 10 frames before sound onset were used as the 

baseline, whose average was subtracted from each of the 30 frames following the 

sound onset. These 30 frames were then averaged to reveal the location of 

fluorescence increase. Then we manually identified the location of A1 based on 

known tonotopy in the mouse ACX (Liu et al., 2019). 

 

Two-photon imaging and image processing 

 The animal was first head-fixed in a custom holder. Then the field of interest 

was determined by comparing the widefield map with the blood vessel patterns to 

ensure A1 was imaged. We imaged L2/3 neurons at a depth of 250.6 µm±48.4 µm 

and MGB terminals at a depth of 117 µm ± 19.5 µm The size of the field of view was 

369 µm by 369 µm for cellular imaging and 92 µm by 92 µm for MGB terminal 

imaging and we used the B-SCOPE (Thorlabs Inc.) with the microscope body tilted at 

45 degrees such that the mouse head could be held upright. The excitation wavelength 

was 920 nm and images were collected with ThorImage software (Thorlabs Inc.) at a 
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frame rate of ~30 Hz. A 16x Nikon objective was used (NA 0.80) and the optic zoom 

was set to 2X for cellular imaging and 8X for MGB terminal imaging.  

 To extract cellular fluorescence, we manually placed circular regions of 

interest (ROIs) on identified cells with the contour of the ROIs roughly aligned with 

the shape of the cell’s soma. To extract neuropil traces we used a ROI spanning 20µm 

from the cell center while excluding any soma ROIs within the distance. To calculate 

ΔF/F traces, we followed the same procedure detailed in (Liu et al., 2019). Briefly, 

we first obtained the neuropil corrected traces for each cell using the following 

equation: 

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑡) =  𝐹𝑐𝑒𝑙𝑙(𝑡) − 0.8 × 𝐹𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡) 

To determine the baseline we constructed a histogram of the corrected fluorescence 

trace and found the fluorescence value with the maximum count, which corresponded 

to the most frequently occurring fluorescence value for each cell. This value was 

chosen as the baseline of each cell. We then used the following equation to obtain 

ΔF/F over time: 

∆𝐹

𝐹
(𝑡) =

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑡) − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
  

 To extract fluorescence trace from MGB terminals, we first used an automated 

program to define ROIs. Specifically, we used a 2D image peak finder algorithm 

(Natan (2020). Fast 2D peak finder 

(https://www.mathworks.com/matlabcentral/fileexchange/37388-fast-2d-peak-finder), 

MATLAB Central File Exchange. Retrieved November 4, 2020) to localize the center 

of each bouton in the average image of the entire image sequence. For the parameters 



 

 

 

92 

 

of this algorithm, we used 15% maximum intensity of the image as the threshold and 

a gaussian filter with a sigma of ~0.54 µm (3 pixels). This algorithm finds local 

maxima and thus accounts for the uneven brightness across boutons. With the 

location of boutons defined, we proceeded to use a circular ROI with a diameter of 

~1.4 µm (8 pixels) to extract raw fluorescence trace. For neuropil traces, we used a 

circular ROI with a radius of 5 µm while excluding all bouton ROIs within the radius. 

The ΔF/F for each bouton was then calculated with the same procedure as outlined 

above.  

 

Acoustic stimuli  

 We presented two sets of stimuli to obtain the FRAs and the inhibitory 

sidebands of the neural population, respectively. The first set consisted of 16 tones 

logarithmically spaced from 4kHz to 53.8kHz. The amplitudes of the tones were 

calibrated to 70dB SPL and attenuated from 0dB to 30dB SPL with a step of 15dB 

SPL. Each tone was 100ms in duration and had a 10ms linear ramp at the onset and 

the offset of the tone. The second set of stimuli consisted of both PTs and TT 

combinations. The PTs within this set were the same 16 tones in the first set with 

their individual amplitude calibrated to 60dB SPL. The TT combinations were 

constructed by drawing two distinct tones and obtaining the linear summation of the 

waveforms over time. Thus, the TTs were 63 dB SPL as they were the linear 

summation of two different frequencies. For each TT stimulus, the phases of the TTs 

were independently and randomly selected. The second set of stimuli were also 
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100ms in duration and had the same 10ms ramping. All sounds were presented using 

a custom-written MATLAB GUI that communicated with RX6 and PA5 (TDT Inc.) 

for actual waveform generation and sound attenuation. The sound was delivered with 

one ES1 speaker (TDT Inc.) driven by ED1 speaker driver (TDT Inc.). The speaker 

was situated 10cm away from the animal’s head and at a 45-degree angle relative to 

the midline. 

 

Response significance 

 We determined the significance of the responses using a similar approach 

outlined in (Liu et al., 2019). First, a window of 10 frames before stimulus onset was 

chosen for measuring baseline activities, while a window of 20 frames spanning 0.2 

sec to 0.83 sec after stimulus onset was chosen to measure evoked activity. We chose 

to start at 0.2 sec to ensure the maximum separation of response amplitude from 

baseline given actual neural activities as the latency to reach peak fluorescence 

change is around 160 ms for GCaMP6s (Chen et al., 2013). This choice also accounts 

for offset responses, which are also more delayed. Time-varying ΔF/F values were 

obtained within both windows across trials (10 frames × 5 trials = 50 data points 

before sound onset, 20 frames × 5 trials = 100 data points after sound onset), and the 

99.9% confidence interval (CI) of the mean of each sets of data points were obtained. 

A response was deemed significant if the lower bound of the post-stimulus CI was 

higher than the upper bound of the pre-stimulus CI.  
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Classification of FRA shape 

 In order to classify the FRAs, we first resorted to unsupervised algorithm that 

helped to identify recurring shapes, which ultimately guided our manual 

classification. For unsupervised classification, we first aligned the FRAs of all 

responsive cells (pooling from all cell types) at the geometric center, calculated 

through weighted average of frequencies by significant responses: 

𝐹𝑐 = 
∑ 𝑟(𝐹𝑖,𝑗)𝑖,𝑗 ∗  𝐹𝑖

∑ 𝑟(𝐹𝑖,𝑗)𝑖,𝑗

 

where i and j denote index of frequency and sound level respectively while F and r 

denote actual frequency and the response amplitude respectively. Non-significant 

responses were set to zero to ensure the validity of the average. This method of 

alignment was preferred over using best frequency or characteristic frequency 

because their measurement could be noisy and thus less robust. Next, a principal 

component analysis (PCA) was performed for dimensionality-reduction such that 

remaining number of coefficients account for 95% of the total variances in the 

aligned FRA. Then, we performed K-means clustering on the kept coefficients using 

a range of number of clusters (from 2 to 20) and used the T-distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm to visualize the clustering results. We used 

correlation distance in the K-means algorithm in order to capture the similarity 

between FRA shapes, regardless of the response amplitude. Upon plotting the average 

aligned FRAs and inspecting the t-SNE plot (Figure 3.4A) we chose the number of 

clusters to be 6, among which some roughly corresponded to classic V and I shaped 

FRAs while some were sparsely responding to PTs. We then manually inspected the 
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FRAs guided by the unsupervised clustering to generate the final classification result 

(Figure 3.4A). The final clusters differed in their general shapes, tuning properties at 

different levels and sparseness of the responses. 

 

Width of tuning curve or inhibitory sideband 

Frequency selectivity is measured by the width of the tuning curve. To 

account for the variability of tuning across cells with different FRA shapes as well as 

to use a similar measure to quantify the broadness of both tuning curve and inhibitory 

sideband, with the latter not necessarily single-peaked, we used a sparseness measure 

as a surrogate to estimate tuning curve width. Specifically, we first calculate the 

sparseness of the tuning curve and inhibitory sideband with the following equation:  

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =  
√𝑘 − ‖𝑥‖1

‖𝑥‖2 × (√𝑘 − 1)
 

where ‖𝑥‖1 and ‖𝑥‖2 are the L1 and L2 norm of vector 𝑥. 𝑘 is the length of vector 𝑥, 

while 𝑥 = 𝑟 ⊙ 𝑠, which is the element wise product between 𝑟, a vector representing 

the amplitude of either tuning curve or inhibitory sideband, and 𝑠, a vector consists of 

0s and 1s to indicate the significance at each frequency for either the tuning curve or 

the inhibitory sideband. The sparseness measure has values between 0 and 1, with 0 

achieved by a vector with a uniform non-zero amplitude and 1 achieved by a vector 

with a single non-zero element. Thus, a widely tuned neuron will have sparseness 

close to 0 while a narrowly tuned neuron will have sparseness close to 1. We then 

used 1-Sparseness as a measure for tuning width. 
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Signal correlations  

 We used the neural responses to the second stimulus set (16 PTs+120 TTs) to 

compare the signal correlations with or without the addition of the second tone. 

However, such comparison would not be valid unless the number of PTs or TTs was 

the same. To achieve this, we first picked a frequency (Fi) from all frequencies and 

gather average responses over all trials to all frequencies but Fi: 

[𝑟̅(𝐹1),⋯ , 𝑟̅(𝐹𝑖−1), 𝑟̅(𝐹𝑖+1),⋯ , 𝑟̅(𝐹𝑛)] 

where n is the total number of distinct frequencies (16 in the current study). Such 

generated vector would be of length n-1. We proceeded by forming the second 

response vector as follows: 

[𝑟̅(𝐹1 + 𝐹𝑖),⋯ , 𝑟̅(𝐹𝑖−1 + 𝐹𝑖), 𝑟̅(𝐹𝑖+1 + 𝐹𝑖),⋯ , 𝑟̅(𝐹𝑛 + 𝐹𝑖)] 

which consisted of average responses to all TT combinations containing Fi. Such 

generated response vector had the same length of n-1 and was matched in frequency 

with the PT response vector except for the introduction of the second tone. We 

computed the signal correlations between cell pairs using the above response vectors 

through computing the correlation coefficients and pooled data across frequencies for 

statistical analyses.  

 

Sideband inhibition and nonlinear frequency interactions 

 To determine whether the responses to TT caused significant reductions in 

response amplitude compared to responses to the BF, which was chosen based on the 

frequency evoking the maximum response among the PTs presented at 60 dB SPL in 
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our second stimulus set, we first chose a window of 0.5sec (15 frames) after the 

stimulus onset and centered at the peak of ΔF/F change and gathered all time-varying 

ΔF/F traces within the window across trials (15 frames × 5 repeats, 75 data points) for 

both the TT and the BF stimulus. Next, we used a bootstrap procedure with 1000 

repeats to determine the 95% confidence intervals (CI) of the mean of the two sets of 

data points. If the upper bound of the CI of the TT stimulus was less than the lower 

bound of the CI of the BF stimulus, then the TT stimulus was considered to have 

resulted in a significant reduction in response compared to that of the BF. Similarly, 

to determine nonlinear interactions between responses to PTs, we gathered three sets 

of data points, belonging to responses to two distinct PTs and their TT combination, 

respectively. We bootstrapped the 95% CI of the summation of the mean responses to 

the two PTs and compared the boundary to the 95% CI of the mean response to the 

TT combination. If the two Cis were nonoverlapping, the interaction was considered 

significant and depending on the sign of the difference, it was characterized as 

facilitative (positive) or suppressive (negative). To characterize the total amount of 

such interactions, we summed over all found facilitative or suppressive interactions 

for individual cells. To calculate Suppression Facilitation Index (SFI), we used the 

following equation: 

𝑆𝐹𝐼 =  
𝑆 − 𝐹

𝑆 + 𝐹
 

where S and F denote the absolute value of total suppressive and facilitative 

interactions, respectively.  
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IQR analysis 

 To quantify the heterogeneity of local frequency tuning and sideband 

inhibition (Figure 3.7), we computed the interquartile range (IQR) of either BF and 

BIhF within a 100µm radius of the cell in question and pooled this value based on 

cell types. Specifically, all responding cells within the 100 µm radius were identified 

and the absolute differences in octaves of BF and BIhF relative to the cell in question 

were calculated respectively. Then the IQR value was computed for ΔBF and ΔBIhF 

respectively and pooled according to cell types.  

 

Experimental design and statistical analyses 

  To compare tuning width between different cell type and FRA type 

combinations (Figure 3.5B), we used a three-way ANOVA with main factors of cell 

type, FRA type and tuning versus sideband (MATLAB built-in function ‘anovan’, 

2017b). To compare specific groups, we used Tukey–Kramer multiple-comparison 

test (MATLAB built-in function ‘multicompare’, 2017b). For comparison of IQR 

(Figure 3.7), we used a two-way ANOVA with main factors of cell type and BF 

versus BIhF. For comparison of signal correlations (Figure 3.8), we used a two-way 

ANOVA with main factors of cell type and PT versus TT. For SFI comparison, we 

used one-way ANOVA with FRA types as the factor (Figure 3.9B). All bar graphs 

show mean±SEM as indicated. Confidence intervals were constructed with MATLAB 

built-in function ‘bootci’ (Mathworks MATLAB, 2017b). For effect size, we 

computed Hedges’ g using Measures of Effect Size (MES) toolbox (Harald 
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Hentschke (2020). hhentschke/measures-of-effect-size-toolbox 

(https://github.com/hhentschke/measures-of-effect-size-toolbox), GitHub. Retrieved 

November 12, 2020). 

 

Results 

 To characterize sideband inhibition in L2/3 of mouse primary auditory cortex 

(A1), we played both pure tones (PT) and two-tone (TT) combinations to passively 

listening awake male and female mice (Figure 3.1A). Conventionally, sideband 

inhibition is inferred by first choosing a reference tone typically at the best frequency 

(BF) of the neuron in question and then presenting other tones of varying frequencies 

and sound levels in combination with the chosen tone (Brosch and Schreiner, 1997). 

By definition, a tone at BF evokes the largest response among frequencies presented 

across all sound levels. If a tone at BF combined with other tones results in reduced 

responses, functional inhibition can be inferred at these frequencies (Sutter and 

Schreiner, 1991). However, this method is ill-suited for two-photon imaging where 

large neural populations are monitored simultaneously given the heterogeneity of 

local tuning (Bandyopadhyay et al., 2010; Rothschild et al., 2010; Winkowski and 

Kanold, 2013) it would be impossible to use the same reference tone for every 

neuron. Therefore, we designed an alternative approach using a fixed sound level and 

presenting tones of all possible combinations given the chosen frequency range (3.75 

octaves) and density (4 tones per octave). This strategy thus resulted in 120 distinct 

tone pairs given 16 different tones (4kHz to 53.8kHz, logarithmically spaced). We 
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presented two sets of stimuli. The first set of stimuli consisted of the same 16 tones at 

3 sound levels (40/55/70dB SPL) in order to construct frequency response area 

(FRA). The second set of stimuli consisted of both individual PTs and all 120 tone 

pairs whose waveforms were linear summations of the PTs. In this second set, the 

PTs were presented at 60 dB SPL and thus the TTs were 63 dB SPL as they were the 

linear summation of two different frequencies. Figure 3.1 shows two examples of 

responses to the two sets of stimuli in excitatory neurons. Figure 3.1B shows the 

responses of an example neuron to pure tone (PT) stimuli. This neuron had a V-

shaped FRA with its BF at 19kHz (Figure 3.1D, red curve). Presenting two tones 

(TT) showed that in the presence of a second tone other than 19kHz, the evoked 

change in the fluorescence signal (ΔF/F) was reduced compared to that evoked by the 

BF alone (Figure 3.1C). We thus inferred the inhibitory sideband as frequencies that, 

when presented together with BF, resulted in a reduction of responses to BF alone. 

This analysis revealed the presence of sideband inhibition flanking the BF (Figure 

3.1D, blue curve). Figure 3.1E-G shows another Thy1 neuron with an I-shaped FRA. 

This neuron not only showed sideband inhibition, but also showed a facilitative TT 

effect (arrows in Figure 3.1F, G). As our goal is to infer the inhibitory sideband, we 

focused mainly on the suppressive effect.  

 We proceeded to record from both excitatory (Thy1-GCaMP6s (Dana et al., 

2014)) and inhibitory (PV-cre and SST-cre animals with viral expression of 

GCaMP6s, Figure 3.1A) neurons. All mice used in this study were F1 generations 

from crosses with CBA/CaJ mice to ensure normal hearing throughout adulthood 

(Frisina et al., 2011). Table 1 lists the basic statistics of responding neurons such as 
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the percentage responding to PTs, to TTs or to both. We characterized a neuron as 

responding and analyzed it only if it responded significantly to at least one stimulus 

(see Materials and Methods). A total of 5576 Thy1 neurons, 1324 PV interneurons 

and 1451 SST interneurons passed this criterion and all subsequent analyses are 

focused on them. Figure 3.2 shows example responses from one PV and one SST 

interneuron, confirming that our approach is applicable to interneurons as well.  
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Figure 3.1 Inhibitory sideband can be inferred using TT stimuli 

combined with 2-photon imaging of GCaMP6s across neural populations 
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Example responses to PT and TT of two Thy1-GCaMP6s neurons within the same 

field of view and their respective tuning curves and inhibitory sidebands are shown 

here. (A) Experimental paradigm of the current study. Awake mice were passively 

listening to pure tone (PT) and two-tone (TT) stimuli while different cell classes in 

the left A1 were imaged. The location of A1 was determined by performing widefield 

imaging. Example widefield maps are shown on the right. The contour lines of 

different color indicate the region of fluorescence increase following the presentations 

of pure tones of corresponding frequencies. Scale bar = 300 µm. The example 2-

photon field of views show Thy1-GCaMP6s neurons and viral expression of 

GCaMP6s and mRuby in PV and SST interneurons. Scale bars = 20 µm. (B) Example 

responses to PT of one Thy1 neuron. The gray traces represent responses in 

individual trials and average responses are plotted in black. Vertical dotted lines 

indicate the onset of the stimulus. The asterisks indicate significant responses 

determined by non-overlapping 99.9% confidence interval of ΔF/F over pre- and 

post-stimulus period. For example, the pre- and post-stimulus CI was [-17%,19%] 

and [29%, 84%] respectively for the stimulus with the red asterisk, and thus this 

stimulus evoked a significant response. For the stimulus with the red cross, the pre- 

and post-stimulus CI was [-19%,18%] and [-22%, 11%] respectively and thus the 

response was not significant. (C) Example responses from the same neuron as in (B) 

to TT stimuli. Note that the traces on the diagonal were responses to PTs in the 

second stimulus set (see Materials and Methods) while off-diagonal traces were 

responses to TT combinations (figure inset). The traces with averages plotted in red 

or blue were used to construct tuning curve and sideband respectively in (D). (D) 
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Tuning curve and inhibitory sideband of the same neuron shown in (B) and (C). The 

solid lines indicate mean responses while the shaded regions show 99.9% confidence 

interval. For tuning curves, the F/F reflects the percentage of fluorescence change 

from baseline following the different PTs. For inhibitory sidebands, F/F following 

the BF tone was subtracted from the F/F following the TT stimuli containing the 

BF. A significantly negative value suggests a suppression of the response due to the 

presence of the second tone other than BF. (E-G) same as in (B-D) but for another 

Thy1-GCaMP6s neuron with an “I” shape FRA. Note that this neuron showed both 

TT suppression and facilitation. In (F) the arrow points to one example of TT 

facilitation where PTs presented alone failed to excite this neuron. (G) The sideband 

of this neuron showed mostly suppression except for one frequency (arrow) that 

evoked facilitation.  
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Figure 3.2 Inhibitory sidebands can be inferred with TT stimuli in PV and SST 

interneurons 

(A) Example FRA of one PV interneuron. The gray traces show individual trials 

while the black traces show the trial average. Vertical dotted lines indicate the onset 

of the stimulus. (B) Example responses to TT from the same PV neuron as shown in 

(A). The diagonal responses were to PTs while the off-diagonal responses were to 

TTs that were the combinations of all PT pairs. (C) The tuning curve and inhibitory 
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sideband of the same PV neuron as shown in (A) and (B). The solid lines indicate 

mean responses while the shaded regions show 99.9% confidence intervals. (D-F) 

Same as in (A-C) but for an SST interneuron.  

Table 3-1 Basic response properties across cell types 

 Number 

of fields 

of view 

Number 

of mice 

Percentage 

responding 

to PTs (%, 

Mean±SD) 

Percentage 

responding to 

TTs 

(%,Mean±SD) 

Percentage 

responding to 

both 

(%,Mean±SD) 

Thy1 57 6 35.5±10.9 40.9±11.5 25.4±10.3 

PV 43 4 60.7±19.6 63.4±19.1 53.8±20.3 

SST 65 8 79.5±13.1 81.6±13.3 74.7±15.0 

 

 

FRA shapes of A1 neurons form cell type dependent classes 

 We observed a high degree of variability in the shapes of FRAs of all 

responding neurons (Figure 3.3), similar to recordings in cats (Sutter and Schreiner, 

1991; Sutter et al., 1999). We hypothesized that the shape of the FRAs could be 

linked to properties of sideband inhibition. We thus sought to first classify FRAs 

based on their shapes. In short, we aligned the FRAs at the geometric center by 

averaging frequencies weighted by responses across sound levels and performed K-

means clustering based on PCA components that kept the 95% of the total variance in 

the aligned FRA. Figure 3.4A shows the t-distributed stochastic neighbor embedding 

(t-SNE) plot of the PCA scores, which embeds high-dimensional data such as the 

PCA scores for visualization in low-dimensional space, as well as generated labels 

and their corresponding average FRAs. These unsupervised classification results 
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suggest that there are at least 6 distinct types of FRAs given the stimulus set in the 

current study. Intuitively, cluster 1 and cluster 2 corresponded to typical V and I 

shaped FRAs, while the most distinct feature of cluster 3 was its wide tuning at the 

loudest sound level and sparser responses at lower levels. Clusters 4, 5 and 6 typically 

only responded to one frequency and sound level combination and thus had the 

sparsest responses. To further improve the accuracy of the clustering, we manually 

examined the labels assigned to each cell and corrected misclassifications. Among the 

total 8351 neurons, 4619 labels were corrected. The final labels were V, I, H, S1, S2 

and S3, where “H” stands for “Horizontal” and “S” stands for “Sparse”. Figure 3.4A 

shows the average FRAs of the corrected labels. We quantified the variability within 

each cluster before and after manual correction by computing the interquartile range 

of the responses across neurons at each aligned frequency. The corrected clusters 

showed variability mainly within their respective shapes indicating that the manual 

classification better retains the consistency of shapes within each cluster (Figure 

3.4B). We further quantified the proportion of misclassification by calculating for 

each final manual cluster the compositions of the original K-means result (Figure 

3.4C), which shows that the misclassification happened majorly among putative V 

and I shaped neurons while H and S type neurons were mostly accurately classified. 

To further validate the distinctness of the FRA types, we plotted the response profiles 

either over frequency or over sound level as a function of cell types (Figure 3.4D). 

All FRA types had most of the frequency responses at the center of the FRA except 

for H type, which had the smallest slope in its cumulative curve over frequency, due 

to its wide tuning (Figure 3.4D, left). The differences between FRA types were more 
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pronounced in the response profile over sound level (Figure 3.4D, right). All S types 

had most of the responses at the sound level to which they were most selective. I type 

had a rather linear profile while V and H showed supralinear profiles due to widening 

tuning at higher sound levels (Figure 3.4D, right). These results suggest that the labels 

generated by our semi-automatic classification reflect true differences in the neurons’ 

selectivity to both frequency and sound levels. 

 We performed the classification on FRAs of all cell types and further 

quantified the proportion of FRA types within each cell type (Figure 3.4E). For Thy1 

neurons, the vast majority of responding neurons belonged to the S types, consistent 

with the sparse coding of stimuli in sensory cortices (Hromádka et al., 2008). PV and 

SST neurons had a lower percentage of S type FRAs that Thy1 neurons. Most 

notably, both types of interneurons had higher proportion of H type FRAs than Thy1 

neurons, suggesting a broadening of tuning as the sound level increases. Moreover, 

PV neurons were the least likely to have I shaped FRAs, consistent with their broad 

tuning (Li et al., 2014b). These results show a clear cell type dependent distribution 

of different FRA types in L2/3 of mouse A1. 
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6 different FRAs from Thy1 neurons were plotted to show the variability of FRA 

shapes across neural populations. In each panel the image of the neuron was shown in 

the left upper corner with the red line indicating its contour. The white scale bar in the 

image shows 10 µm. For FRA traces, all horizontal scale bars indicate 1 second while 

vertical scale bars indicate 300% ΔF/F. All gray traces show individual trials while 

the black traces show the trial average. These examples differed in their sparseness of 

responses as well their selectivity for frequency and sound level. For example, in the 

second row these neurons responded only to one frequency and sound level 

combination and thus showed the highest level of sparseness in their FRAs.  

 

Figure 3.3 The FRAs of individual neurons show a large variability 
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Figure 3.4 Classification of FRA shapes reveals distinct receptive field types 

(A) Left: t-SNE plot of PCA coefficients of aligned FRAs with data points color-

coded with their corresponding K-means clusters. Right top row: average aligned 

FRAs of the 6 clusters as determined by K-means algorithm. Right bottom row: 
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average aligned FRAs of manual classification based on K-means result. The clusters 

1-6 roughly correspond to the color-matched manual classification result in the 

bottom row. (B) The variability within the K-means cluster and that within the 

manually classified cluster were compared. We quantified the variability at each 

aligned frequency by computing the interquartile range of response amplitude at the 

aligned frequency across neurons. The color-matched plots share the same color axis. 

The manual classification results showed higher variability within their perspective 

shape, e.g. cluster 1 vs. V and cluster 2 vs. I. (C) To quantify the misclassification, for 

each final manual label the proportion of original K-means cluster is plotted. For 

example, the first column shows the proportion of the original clusters that 

constituted the final V-shape cells, i.e., 19.6% from cluster 1, 44.8% from cluster 2, 

19.8% from cluster 3, 2.1% from cluster 4, 7.7% from cluster 5 and 6.1% from cluster 

6. Thus, each column has the summation of one. The most misclassification happened 

among the putative V and I shape neurons (cluster 1 and 2) while H and S type 

neurons were more accurately assigned.  (D) The FRA clusters differed in their 

frequency and sound level response profile. Each line represents the normalized 

cumulative summation of responses over either frequency (left) or sound level (right). 

For each cell the summation was normalized such that the maximum was one. The 

shaded regions show 95% confidence interval. (E) The proportion of FRAs types 

within each cell type.   
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Sideband inhibition shows dependencies on FRA shape 

 We next sought to compare various properties of inhibitory sidebands across 

both cell types and FRA types. Despite the classification of FRAs, not all neurons 

responded to the PTs in the TT stimulus set, possibly due to the sparseness of 

responses or stimulus selectivity for particular frequency and sound level 

combinations. Table 2 shows the proportion of neurons from which we could infer 

inhibitory sidebands and we focused the following analysis on these subsets of 

neurons. First, we plotted the average tuning curves and inhibitory sidebands for each 

cell class (Figure 3.5A). We then quantified the width of both the tuning curve and 

the inhibitory sideband. Given that the shape of the tuning curves and sidebands 

among different neurons could be highly variable we resorted to a sparseness measure 

that could be applied to both the tuning curve and inhibitory sideband (see Material 

and Method). The fewer frequencies a neuron significantly responded to, the higher 

the sparseness of the tuning curve and given that the sparseness values are bound 

between 0 and 1, we used 1 – sparseness as the width measure. We found that for all 

cell types, the width of the inhibitory sidebands was larger than the tuning curve 

width (Figure 3.5B, Table 3). Since inhibitory sidebands are thought to sharpen 

tuning curves (Li et al., 2014b), we hypothesized that the width of the tuning curve 

and the width of the inhibitory sideband would be negatively correlated. Indeed, a 

linear fit pooling all cell types and FRA types showed a significant negative slope 

between the width of tuning curve and that of the inhibitory sideband (Figure 3.5C, 

p=5.1×10-13), suggesting a narrower tuning is associated with wider sideband 
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inhibition. These results are consistent with the notion that inhibitory sidebands in 

cortical neurons contribute to tuning curve sharpening (Li et al., 2014b). 

We next investigated differences of tuning widths across cell types. The widths of the 

tuning curves were significantly different across cell types (ANOVA, p=9.9×10-35) 

and post-hoc multiple comparison test revealed that Thy1 neurons had narrower 

tuning width than both PV and SST neurons (Thy1 vs PV, p=9.9×10-10, effect size 

measured by Hedges’ g=-0.32; Thy1 vs SST, p=9.6×10-10, Hedges’ g=-0.48) while 

PV neurons had narrower tuning width than SST neurons (p=0.015). However, both 

Thy1 and PV neurons showed wider inhibitory sideband than SST neurons (Thy1 vs 

SST, p=9.6×10-10, Hedges’ g=0.33; PV vs SST, p=2.4×10-6, Hedges’ g=0.25) while 

Thy1 and PV neurons did not differ (p=0.11). Together, these results show that both 

tuning width and inhibitory sideband width depend on cell types. Specifically, Thy1 

neurons had the narrowest tuning width among the three cell types while the 

inhibitory sideband width was comparable to PV neurons but wider than SST 

neurons. Most notably, the width of sidebands were much broader than those of the 

tuning curves across all cell types and FRA types, suggesting the highly selective 

frequency tuning which could be due to broad inhibitory synaptic inputs (Li et al., 

2014b).  

The differences between cell types in terms of tuning and sideband widths 

could be due to their BF. We thus compared the median BF across cell types and 

found that the median BFs were similar (Figure 3.6A). We next compared the tuning 

BF as a function of both cell types and FRA types (Figure 3.6B). Within specific cell 

types, some differences in BF exist across FRA types. Specifically, we found that 
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Thy1 I shape neurons had slightly higher BF median than V (p=0.025), S1 (p=0.031) 

and S2 (p=0.037) shape neurons. The respective 95% CI of BF median difference in 

octaves, computed with bootstrap procedure, were [0, 0.5], [-0.25, 0.5] and [0, 

0.6250]. Since these CIs contains 0, we conclude that the true difference between the 

BF distributions are relatively small. For PV neurons, only V and H shape neurons 

showed significantly different BF median (p=2.0×10-8) and 95% CI of the median 

difference was [-1, -0.5] octave. For SST neurons, V shape neurons also had a lower 

BF median than H shape neurons (p=0.0053) with 95% CI of the median difference 

being [-1.25, -0.25] octave. Given that these differences only existed in specific FRA 

type pairs, they were not likely to significantly impact the results on tuning and 

sideband width. Similarly, we found that the tuning and sideband width were rather 

constant within the frequency range of the PT and TT stimuli set, while some 

differences exist for cells whose BFs were at the low or high end of the frequency 

range, which is likely due to the lack of data beyond the frequency extremes (Figure 

3.6C). Together these results show that across the tonotopic axis of A1, the frequency 

selectivity of cortical neurons are similar and that they receive similar amount of 

sideband inhibition.  

Table 3-2 Proportion of neurons within each FRA types with sideband inferred 

 V I H S1 S3 S3 

Proportion (%) 88.8 69.4 68.1 24.5 32.9 25.4 

 

Table 3-3 P values, Wilcoxon signed-rank test, width of tuning curve vs. width of 

sideband inhibition and effect size measured by Hedges’ g 



 

 

 

115 

 

 V I H S1 S3 S3 

 P value Hedges’ g P value Hedges’ g P value Hedges’ g P value Hedges’ g P value Hedges’ g P value Hedges’ g 

Thy1 3.3×10-83 -2.79 3.9×10-39 -3.77 3.6×10-46 -3.64 6.9×10-78 -5.41 1.1×10-36 -5.71 3.4×10-37 -5.60 

PV 1.5×10-26 -2.47 9.8×10-4 -3.04 1.5×10-40 -3.92 2.3×10-25 -4.95 1.6×10-10 -5.20 2.4×10-10 -5.86 

SST 6.4×10-49 -2.13 1.2×10-17 -3.38 5.2×10-39 -2.76 8.3×10-18 -3.57 6.5×10-23 -4.92 1.8×10-15 -5.57 
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Figure 3.5 All cell types and FRA types show broader inhibitory sidebands than 

tuning curves  

(A) The average tuning curve (solid lines) and inhibitory sideband (dash lines) were 

plotted as a function of both cell types and FRA types. TC: tuning curve; SB: 

sideband. For each cell, the amplitude of the tuning curve and that of the inhibitory 

sideband were normalized to the amplitude of the BF. Then the normalized tuning 

curve and inhibitory sideband were aligned at BF in order to construct both the mean 
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and the confidence interval using bootstrap procedures. (B) The widths of the tuning 

curves and the inhibitory sidebands as measured by 1-Sparseness were plotted as a 

function of cell types and FRA types. Inhibitory sidebands were considerably larger 

in width than those of the tuning curves. ‘**’ indicates p<0.01. ‘***’ indicates 

p<0.001. (C) Across all cells, the width of the tuning curve was negatively correlated 

with the width of the inhibitory sideband. The bar graph shows the inhibitory 

sideband width binned according to the width of the tuning curve. The dot-dash line 

shows the linear fit (y=0.73-0.23x, p=5.1×10-13).  
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Figure 3.6 BF of tuning curves were not different across cell types 



 

 

 

119 

 

(A) Boxplot and cumulative distribution function of tuning BF as a function of cell 

types. Median BF across different cell types were similar. (B) Boxplot and 

cumulative distribution function (left and mid column) of tuning BF as a function of 

both cell types and FRA types. The rightmost column shows the pairwise comparison 

significance of tuning BF as a function of FRA types. BF difference was only found 

in between specific FRA subtypes within each cell type. (C) The width of tuning 

curve and inhibitory sideband were largely similar across tuning BF in all cell types, 

except for at the low or high frequency end, which is likely due to the lack of data 

beyond the frequency range chosen for this study.   

 

Inhibitory sidebands of local populations show higher degree of heterogeneity than 

frequency preference 

 Tonotopy on the mesoscale is a defining characteristic of A1, but on a finer 

spatial resolution such organization is largely lost as individual excitatory neurons in 

a local area can have heterogeneous frequency selectivity (Bandyopadhyay et al., 

2010; Rothschild et al., 2010; Winkowski and Kanold, 2013; Kanold et al., 2014; 

Maor et al., 2016; Liu et al., 2019). Since we here show the presence of inhibitory 

sidebands, we investigated whether such heterogeneity exists in the inhibitory 

sideband of different cell types in a local area. We quantified the heterogeneity of 

local tuning by computing the interquartile range (IQR) of the BF within a radius of 

100µm. A large IQR would indicate a more diversely tuned local populations. 

Similarly, we defined the best inhibitory frequency (BIhF) as the frequency evoking 
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the strongest inhibition in the sideband and quantified the IQR of BIhF (Figure 3.7). 

A two-way ANOVA (cell type × BF/BIhF) revealed a significant main effect of cell 

types on IQR (p=6.1×10-47). Specifically, Thy1 neurons had greater overall 

heterogeneity than PV neurons (post-hoc multiple comparison, p=9.6×10-10, effect 

size as measured by Hedges’ g=0.6050) and SST neurons (p=1.1×10-9, Hedges’ 

g=0.2380), while PV neurons showed less heterogeneity than SST neurons 

(p=9.6×10-10, Hedges’ g=-0.2540). These results are consistent with in vivo patch 

clamp recordings showing a higher level of heterogeneity in excitatory than PV 

neurons (Maor et al., 2016). Second, the main effect of BF versus BIhF was also 

significant (p=6.5×10-57) with IQR of BIhF higher than IQR of BF across cell types 

(p=1.0×10-10, Hedges’ g: Thy1, -0.3488; PV, -0.4971; SST, -0.3379), suggesting that 

the heterogeneity of inhibitory sidebands was greater than that of tuning of local 

populations. This heterogeneity of inhibitory sidebands suggests that diverse sources 

of functional inhibition as an aggregate result in the inhibitory sideband. Lastly, the 

interaction term (cell type × BF/BIhF) was also significant (p=2.8×10-3). Specifically, 

the difference between BF and BIhF IQR within Thy1 neurons were smaller than 

those within PV and SST neurons (ANOVA and multiple comparison, Thy1 vs PV, 

p=0.001, Hedges’ g=-0.1722; Thy1 vs SST, p=0.044, Hedges’ g= -0.0931). Together, 

these results suggest that the combined heterogeneity in the local populations’ tuning 

and inhibitory sideband could further diversify a neuron’s response to spectrally 

complex stimuli and thus makes its responses more selective. 
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(A) Cartoon for IQR calculation. The cell in question is represented as the black 

circle at the center. Cells within a 100µm radius are plotted. The left and right half of 

the circle color code the difference of BF and BIhF in octave respectively with the 

center cell. Grey circles represent non-responding cells. The IQRs are then calculated 

taking the interquartile range of BF and BIhF Δoct. (B) The heterogeneity of the 

selectivity of the local tuning and inhibitory sideband was quantified by calculating 

interquartile range (IQR) of best frequency (BF) or best inhibitory frequency (BIhF) 

respectively. IQR of BIhF was larger than that of BF across all cell types. ‘***’ 

indicates p<0.001. 

 

The presence of the second tone decorrelates neuronal responses 

 The differences in the IQR of BF and BIhF suggest that the introduction of the 

second tone influences neuronal coding of the primary tone on the population level. 

Thus, to measure this influence we next quantified the signal correlations (SC) to the 

Figure 3.7 Inhibitory sidebands show more local heterogeneity than tuning 

curves 
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primary tone with or without the second tone (Figure 3.8A). We performed a two-

way ANOVA to determine the dependence of SC on both cell types and the addition 

of the second tone. The main effect of cell type was significant (p<0.001) and so was 

the main effect of adding the second tone (p<0.001). Specifically, across all cell types 

the SC of TT was lower compared to that of PT (p=1.0×10-10). Regardless of stimulus 

type, SCs of Thy1 cells were lower than both PV and SST neurons (Thy1 vs PV, 

p=9.6×10-10, Hedges’ g=-0.6534; Thy1 vs SST, p=9.6×10-10, Hedges’ g= -0.7917), 

while SCs of SST neurons were highest among the three cell types (PV vs SST, 

p=9.6×10-10, Hedges’ g= -0.1253). This suggests that PV and SST neurons are more 

functionally homogeneous than Thy1 neurons, likely due to convergent local input, 

consistent with results by Maor et al. (2016). In all cell types, SC of TT were lower 

compared to SC of PT (Thy1, p=2.1×10-8, Hedges’ g=0.036; PV, p=2.1×10-8, 

Hedges’ g=0.065;SST, p=2.1×10-8, Hedges’ g=0.095). To investigate whether the 

addition of a second tone caused any change to the spatial pattern of neural 

correlations, we plotted the SCs against the distance of the cell pairs (Figure 3.8B). 

The SCs of PT and TT decreased over the distance in all cell types and the SCs of 

TTs were consistently below those of PTs (Figure 3.8B), suggesting a network level 

decorrelation of neural responses by the addition of the second tone. These results 

suggest that a spectrally complex stimulus would make neural responses sparser and 

effectively more selective to spectral features. These results also indicate that TT 

responses cannot be readily predicted from responses to PTs alone and that the linear 

and nonlinear frequency interactions in TT responses need to be characterized.  
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(A) Violin plot showing the distribution of signal correlations (SCs) as a function of 

both cell types and stimuli (PT vs TT). SCs of TT responses between pairs of neurons 

were significantly reduced compared to SCs of PT across all cell types. ‘***’ 

indicates p<0.001. (B) Left: SCs as function of distance, cell types and stimulus (PT 

vs. TT). SCs of TTs were smaller in value than SCs of PTs across distance. Solid 

lines correspond to SCs of PTs while dash lines correspond to SCs of TT. The shaded 

regions show 95% confidence interval. Right: the difference between SCs of TT and 

PTs as a function of distance and cell types. Shaded regions show 95% confidence 

interval. 

 

Nonlinear frequency interactions depend on both cell types and FRA types 

 Frequency interactions in the auditory system can be linear or nonlinear 

(Escabı and Schreiner, 2002). Our experimental design allowed us to investigate the 

degree of nonlinear interactions between frequencies beyond simple TT suppression. 

Specifically, if a neuron behaves like a linear filter, then its response to the TT stimuli 

would be the linear summation to the responses to each frequency presented in 

Figure 3.8 The presence of the second tone decorrelates neuronal responses 
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isolation: 𝑟(𝐹1 + 𝐹2) = 𝑟(𝐹1) + 𝑟(𝐹2). Any deviation from the linear assumption 

signals the presence of nonlinear interactions. We quantified the degree of nonlinear 

interactions across cell types and separated them based on whether the response to the 

TT stimulus was larger (facilitation) or smaller (suppression) than that predicted by 

the linear assumption (Figure 3.9A). All cell types showed nonlinear effects and 

significantly more suppression than facilitation (two-way ANOVA, main effect of 

facilitation vs. suppression: Thy1, p=1.6×10-76; PV, p=1.1×10-13; SST, p=2.4×10-35). 

Across all FRA types, except H type in SST neurons, all other FRA types showed the 

same dominance of suppressive nonlinear interactions (Wilcoxon rank sum test, see 

Table 4 for p values and effect size), which suggests the degree of nonlinear 

interactions could further depend on specific cell type and FRA type combinations. 

This analysis pooled the degrees of facilitation and suppression across cells and thus 

reflected the properties on a population basis. To investigate the bias of facilitation 

and suppression of individual cells, we calculated a Suppression Facilitation Index 

(SFI), which had values between -1 and 1, with 1 indicating only suppressive 

interactions and -1 indicating only facilitative interactions. The cumulative 

distributions of SFIs are shown in Figure 3.9B. For Thy1 cells, V, I and H type 

neurons had the most bias towards suppression while SFI distributions among all S 

types were not significantly different from each other (Figure 3.9B). While V and I 

type neurons had the same SFI distribution, both were higher than that of H type 

neurons (V vs H, p=2.1×10-8, Hedges’ g=0.5018; I vs H, p=0.001, Hedges’ 

g=0.3081), suggesting a broader tuning width was associated with a lesser degree of 

suppressive frequency interactions. For PV neurons, SFI values were smaller in H 
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type neurons than in V type neurons (p=0.011, Hedges’ g=0.3451). For SST neurons, 

SFI values were also smaller in H type neurons than in both V and I type neurons (V 

vs H, p=3.4×10-5, Hedges’ g=0.4671; I vs H, p=4.4×10-5, Hedges’ g=0.5799). 

Therefore, the shape of FRAs could serve as an indicator of the degree of nonlinear 

interactions and thus delineates functionally separate classes of cells. Specifically, the 

results above suggest that H type neurons might be more involved in integrating 

energy over frequency bands while V and I neurons serve as differentiators of the 

frequency content.   
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 Table 3-4 Wilcoxon rank sum test p values and Hedges’ g, facilitation vs 

suppression across cell type and FRA types 

 V I H S1 S2 S3 

 P value  Hedges’ g P value  Hedges’ g P value  Hedges’ g P value  Hedges’ g P value  Hedges’ g P value  Hedges’ g 

Thy1 4.6×10-31 -0.68 4.7×10-16 -0.64 1.0×10-6 -0.33 9.7×10-7 -0.15 2.8×10-3 -0.14 1.1×10-7 -0.23 

PV 1.7×10-14 -0.82 4.9×10-2 -0.56 9.2×10-9 -0.44 1.7×10-5 -0.28 2.4×10-5 -0.55 5.4×10-4 -0.43 

SST 1.09×10-16 -0.65 4.4×10-10 -0.84 1.2×10-2 -0.21 8.2×10-4 -0.32 1.8×10-11 -0.66 7.5×10-7 -0.52 

Figure 3.9 Nonlinear frequency interactions show prominent suppression among 

all cell types while the relative facilitation/suppression strength depends specific 

cell/FRA type combination 
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(A) The amplitude of facilitative and suppressive nonlinear frequency interactions as 

a function of FRA types and cell types. In all cell types, the average suppressive 

interactions were larger in amplitude than facilitative interactions. ‘*’ indicates 

p<0.05. ‘**’ indicates p<0.01. ‘***’ indicates p<0.001. (B) Upper row: Suppressive 

Facilitative Index (SFI, see Material and Method) as a function of FRA types and cell 

types. SFI measures the bias of suppressive or facilitative interactions within 

individual cells. 1 indicates pure suppressive interactions while -1 indicates pure 

facilitative interactions. Lower row: matrices showing p values of pairwise 

comparisons between different FRA types within each cell types.  

 

Nonlinear frequency interactions as a function of onset and offset response 

 Our previous study demonstrated that dynamic sound features such as sound 

onset and offset are processed in parallel processing pathways in the auditory cortex 

(Liu et al., 2019). Thus, we sought to investigate whether these two pathways might 

also process spectral information differently and whether differences exist between 

these pathways in terms of the degree of nonlinear frequency interactions. We first 

quantified the latency of the cellular responses to identify onset and offset neurons 

(Figure 3.10A). We labeled neurons as either onset or offset neuron (see Materials 

and Methods) since they largely consisted of separate groups of neurons (Liu et al., 

2019). The majority of neurons were onset neurons across cell types and FRA types 

(Figure 3.10B). The lower fraction of offset neurons compared to prior studies (Liu et 

al., 2019), is likely due to shorter stimulus duration (100 ms vs 2 seconds) and 
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intertrial intervals (1.5 seconds vs 5 to 5.5 seconds).  We next compared the 

amplitude of facilitative or suppressive interactions between onset and offset neurons 

on a population basis (Figure 3.10C). In Thy1 neurons, offset V, I, H and S1 type 

neurons had larger facilitative interactions than onset neurons of the same FRA type 

(Figure 3.10C, Wilcoxon rank sum test, V: p=2.6×10-7, Hedges’ g=-0.93; I: p=0.022, 

Hedges’ g=-0.50; H: p=1.5×10-5, Hedges’ g=-0.59; S1: p=7.8×10-3, Hedges’ g=-

0.32). In contrast, only H type neurons showed larger suppressive interactions for 

offset neurons (Wilcoxon rank sum test, p=3.9×10-5, Hedges’ g=-0.82). PV neurons 

generally showed the same degree of facilitative and suppressive interactions across 

onset and offset neurons, except that PV H type offset neurons showed larger 

facilitative interactions than corresponding onset neurons (Wilcoxon rank sum test, 

p=0.003, Hedges’ g=-0.42) while PV S1 offset neurons showed slightly smaller 

facilitative interactions (Wilcoxon rank sum test, p=0.026, Hedges’ g=0.17). SST 

neurons also showed similar degree of nonlinear interactions across onset and offset 

neurons except that V and H type offset neurons had larger facilitative interactions 

than V and H onset neurons (Wilcoxon rank sum test, V: p=2.2×10-7, Hedges’ g=-

0.59 ; H: p=1.5×10-5, Hedges’ g=-0.50), which is similar to what seen in Thy1 

neurons. These results show that a subset of offset neurons tended to have larger 

nonlinear facilitative interactions than their onset counterparts. This suggests that the 

offset pathway not only conveys temporal information, it also tends to integrate 

spectral information supralinearly to a larger degree than onset neurons, and thus 

could be more suited to encode the general energy level in the stimulus. 
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(A) The average traces of onset and offset responses pooled from all responding 

Figure 3.10 Nonlinear frequency interactions as a function of response 

timing 
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neurons. Dotted vertical lines mark the onset and offset of the stimulus respectively. 

(B) Proportion of onset and offset neurons as a function of cell type and FRA types. 

(C) Nonlinear frequency interactions as a function of response timing, FRA types and 

cell types. A subset of offset neurons showed a higher degree of facilitative 

interactions than their onset counterparts. ‘*’ indicates p<0.05. ‘**’ indicates p<0.01. 

‘***’ indicates p<0.001. 

 

MGB responses exhibit sideband inhibition 

A1 neurons receive feedforward input from the auditory thalamus or medial 

geniculate body (MGB) and it is thus possible that the sideband inhibition seen in 

cortical neurons is partially inherited from thalamocortical input. To investigate this 

question, we injected AAV.CamKII.GCaMP6s.WPRE.SV40 into the MGB and 

imaged MGB terminals in A1 (Liu et al., 2019) (n=3 mice, 17 FOVs, Figure 3.11A). 

Our labeling of MGB neurons included ventral and dorsal division and thus the 

imaged boutons likely consisted of both first and second order thalamic input (Figure 

3.11A). The MGB terminals had denser labeling in L1 and L4, consistent with 

previous findings (Vasquez-Lopez et al., 2017). We imaged at a depth of 117 µm ± 

19.5 µm and as L1 and L3b/4 MGB boutons show similar tuning (Vasquez-Lopez et 

al., 2017), the PT and TT responses were not likely affected by this choice of depth. 

Among all putative boutons recorded, 47.1% ± 12.2% responded to at least one PT 

stimulus and 54.2% ± 12.8% responded to at least one TT stimulus. 40.3% ± 12.6% 

responded to both PT and TT stimuli. Figure 3.11B-G show two example boutons 
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with respective FRAs and responses to TT and the corresponding sideband inhibition. 

These results show that sideband inhibition exists in thalamocortical input. Similar to 

our cellular data, we also observed considerable variability in the shapes of the MGB 

terminal FRAs and following the same approach as above we classified the FRA 

shapes (Figure 3.12A). However, the MGB clusters were not as separated as seen in 

cellular data (Figure 3.2B), which could be due to the limited signal to noise ratio of 

bouton imaging that resulted in failed detection of smaller responses. Nevertheless, 

the average FRAs of the clusters resembled those seen in cellular data (Figure 3.12A). 

Specifically, cluster 1 roughly corresponded to a combination of narrow ‘V’ and ‘I’ 

shapes while cluster 2 corresponded to putative ‘H’ shape. The average FRA of 

cluster 3 suggests a broad tuning, and yet the average tuning curve suggests otherwise 

(Figure 3.12A, B). Thus, this cluster has a large within cluster variation and might not 

have a well-defined FRA shape. We speculate that this cluster might represent 

responses from non-lemniscal pathway such as dorsal MGB (dMGB), as our 

injections were not restricted to particular divisions of MGB (Figure 3.12A) and 

dMGB responses are weakly tuned (Vasquez-Lopez et al., 2017). Clusters 4 and 5 

likely corresponded to ‘S1’ shape and cluster 6 corresponded to ‘S2’ shape. However, 

‘S3’ type was not recovered in MGB data. These results show that the responses of 

individual MGB boutons to tones also showed large FRA variability. We then 

proceeded to quantify the width of both tuning curves and inhibitory sidebands in 

these clusters. On average, all clusters showed much broader inhibitory sidebands 

than tuning curves (Figure 3.12B, C, Wilcoxon sign rank test, cluster 1: p=8.3×10-96, 

Hedges’ g=-3.20; cluster 2: p=2.8×10-105, Hedges’ g=-3.97; cluster 3: p=2.7×10-277, 
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Hedges’ g=-5.49; cluster 4, p=4.7×10-85, Hedges’ g=-4.79; cluster 5: p=8.1×10-129, 

Hedges’ g=-5.66; cluster 6: p=1.7×10-104, Hedges’ g=-5.36), also similar to our 

cellular data (Figure 3.5B). These data suggest that MGB input might contribute to 

sideband structures seen in cortical neurons. Finally, we compared the sparseness of 

tuning width and inhibitory sideband of MGB terminals with those of cellular data 

(Figure 3.12D). We found that MGB terminals showed significantly narrower tuning 

than all cortical cell types examined (ANOVA and multiple comparison, MGB vs 

Thy1, p=7.8×10-4, Hedges’ g=-0.11; MGB vs PV, p=3.8×10-9, Hedges’ g=-0.49; 

MGB vs SST, p=3.8×10-9, Hedges’ g=-0.67). In contrast, MGB terminals showed the 

broader inhibitory sideband than those of cortical neurons (ANOVA and multiple 

comparison, MGB vs Thy1, p=0.0097, Hedges’ g=0.086; MGB vs PV, p=3.5×10-4, 

Hedges’ g=0.17; MGB vs SST, p=3.8×10-9, Hedges’ g=0.42). These results are 

consistent with narrower tuning of MGB neurons relative to A1 neurons in awake 

marmoset (Bartlett et al., 2011). Together, MGB terminals showed more pronounced 

sideband inhibition than the three cortical neuron types examined, which suggests that 

the narrowly tuned MGB feedforward input serves as the backbone for cortical 

inhibitory sidebands and that the wider tuning of cortical neurons reflect the 

differential patterns of convergence of connectivity onto different types of cortical 

neurons by both feedforward thalamocortical and intracortical input (Figure 3.12E).  
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(A) Brain slice showing GCaMP6s expression in MGB and MGB terminals in A1. 

Figure 3.11 MGB terminals show inhibitory sideband structures 
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Left two images show DAPI staining and GCaMP6s epifluorescence at low 

magnification (2×). Scale bars represent 200 µm. Right two images show high 

magnification (10×) views of outlined areas. Scale bars represent 100 µm. Axon 

terminal GCaMP6s expressions can be seen in L1 and L4. (B-G) Two example MGB 

boutons’ response to PT and TT are shown. (B) FRA of one example bouton. (C) 

Example responses to TT stimuli. Gray traces represent individual trials in both (B) 

and (C). The blue and red average traces indicate the responses used to construct the 

tuning curve and the inhibitory sideband in (D). The inset shows the image of the 

bouton, with the white contour line outlining the ROI mask. The scale bar represents 

5 µm. (D) The tuning curve and inhibitory sideband of the bouton. (E-G) Same as in 

(A-C) but for another bouton.  
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Figure 3.12 MGB terminals show narrow tuning and prominent sideband 

inhibition 

(A) t-SNE plot showing the distribution of center aligned FRAs of MGB terminal 

FRAs. The colors indicate the clusters from K-means algorithm. Right: average 

center aligned FRAs of the K-means clusters. (B) Average tuning curves and 
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inhibitory sidebands of clustered MGB terminals. All clusters showed narrow tuning 

and broad inhibitory sidebands. (C) Bar plot showing the width of tuning and 

inhibitory sideband as a function of clusters. In all clusters, the inhibitory sidebands 

were much broader than tuning curves. ‘***’ indicates p<0.001. (D) Bar plot 

comparing tuning width and sideband width among different cortical cell types and 

MGB terminals. MGB terminals show narrower tuning than cortical neurons while 

having broader inhibitory sidebands. (E) Cartoon showing a model for cortical tuning 

and sideband inhibition. The cortical neurons partially inherit inhibitory sideband 

structures from the thalamocortical MGB input and the width of tuning and sideband 

inhibition reflect the differential convergence of input within intracortical circuits, i.e. 

from neurons tuned to other frequencies (gray triangles and connections). Triangles 

represent Thy1 neurons while white and gray circles represent PV and SST neurons 

respectively.  

 

Discussion 

  We used a variant of the TT paradigm suitable for two-photon imaging and 

characterized the sideband inhibition of excitatory neurons (Thy1) and two classes of 

inhibitory neurons (PV and SST) in A1. Imaged cells clustered into subtypes based on 

the shapes of FRA and the degree of sideband inhibition and nonlinear frequency 

interactions. This suggests that sound information in A1 is locally processed in 

distinct neuronal population with varying degrees of complex integration of spectral 

information. The wide inhibitory sidebands suggest a tight control of frequency 
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tuning by inhibition. The mostly suppressive nonlinear frequency interactions also 

suggest inhibition as a key modulator of spectral integration and thus plasticity. 

Moreover, we found that cells showing onset and offset preferences showed different 

spectral integration, suggesting that these cells form different neuronal circuits. 

Finally, we found that MGB terminals show inhibitory sidebands, suggesting that 

feedforward inputs contribute to cortical sideband inhibition. 

A1 neurons formed 6 distinct clusters based on their FRA. These clusters 

differed in their apparent shapes, namely in their frequency and sound level 

selectivity. In excitatory Thy1 neurons, the majority (~75%) of the responding cells 

belonged to the S types where their FRAs were patchy and sparse while ~25% of the 

responding cells belonged to V, I or H types. With an overall response rate of ~35%, 

this suggests about 9% all excitatory cells have “classic” V-shaped FRAs, consistent 

with a sparse coding regime with only about 5% auditory responsive neurons 

(Hromádka et al., 2008). Notably, our results suggest a negative correlation between 

tuning and inhibitory sideband width. Together, these results suggest that functional 

inhibition controls the sparseness and tuning width of responses in A1, consistent 

with the contribution of PV interneurons to sparse coding of local pyramidal cells 

(Liang et al., 2018). The wide range of inhibitory sidebands also implies that 

adjusting inhibitory sidebands could be a potential mechanisms to rapidly change 

cellular tuning during task performance (Fritz et al., 2010; Francis et al., 2018). 

 Pyramidal neurons in L2/3 of mouse A1 can be classified into 5 groups based 

on their cellular location and functional excitatory and inhibitory connectivity pattern 

(Meng et al., 2017), suggesting that these cells would likely show differential tuning 
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properties. Here the FRAs of L2/3 neurons could be classified into 6 different groups 

and we speculate that these clusters correspond to cells with differential connectivity 

patterns. L2 neurons are more likely to have recurrent lateral connections while 

deeper L3 neurons show more feedforward L4 input, which is correlated with a 

broader tuning at more superficial layers (Meng et al., 2017). Within our 

classification, H type neurons had the broadest tuning at 70dB SPL and PV and SST 

neurons are more likely to include such type of neurons. SST neurons in L3 of mouse 

A1 mostly receive excitatory input form superficial layers (Oviedo, 2017), suggesting 

that local connectivity patterns could bias tuning selectivity in vivo.  

 Our results suggest that sideband inhibition observed in cortical neurons 

originates both from MGB terminals and intracortical sources. The source of cortical 

sideband inhibition in A1 has been attributed either to PV neurons (Li et al., 2014b) 

or to SST neurons (Kato et al., 2017; Lakunina et al., 2020). One confounding factor 

is that these prior studies differed in their methods for inferring inhibitory sidebands. 

Li et al. (2014b) used the classic TT paradigm with one tone (100 ms in duration) of 

varying frequency and sound levels and the other held constant at the characteristic 

frequency of the cell. In contrast, Kato et al. (2017) used 1-second tones and inferred 

sideband inhibition from frequencies that resulted in below-baseline fluorescence 

deflection, which could underestimate inhibition. Lastly, Lakunina et al. (2020) used 

increasing bandwidth of band-passed noise (1s duration) centered at the BF of the cell 

and inferred sideband through suppression of the firing rate. The differences in 

stimulus duration can potentially bias the relative contribution of PV and SST 

neurons. PV neurons receive feedforward input as a part of the “driver” pathway that 
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typically exhibits synaptic depression (Lee and Sherman, 2010). In addition, 

inhibitory synapses onto pyramidal cells also show strong synaptic depression (Bridi 

et al., 2020). Together, these two mechanisms suggest that the inhibition from PV 

neurons onto pyramidal neurons weakens as stimulus duration is prolonged. In 

contrast, it is likely that SST neurons are specialized in sustained inhibition during 

long stimuli. Inhibitory neurons show within group cooperativity and cross-group 

inhibition (Karnani et al., 2016) and our previous work showed that SST and PV 

neurons show activity of opposite sign during prolonged stimuli (Liu et al., 2019). 

These results suggest that SST neurons mediate sustained inhibition to both local 

excitatory neurons and PV neurons. In contrast, PV neurons might be more involved 

in mediating disynaptic feedforward inhibition at the onset of the sensory stimuli (Li 

et al., 2014b). Nevertheless, the relative contributions of PV and SST towards 

sideband inhibition as a function of the duration of the sensory stimuli remain 

unclear.  

SST neurons provide dense and non-specific inhibition onto local pyramidal 

cells (Fino and Yuste, 2011) and they have high connection probability with local 

pyramidal neurons (Levy and Reyes, 2012). Thus, if SST neurons play a major role in 

shaping inhibitory sidebands, neighboring pyramidal cells should have similar 

inhibitory sidebands. However, our IQR analysis of BIhF shows a higher degree of 

sideband heterogeneity than local frequency tuning. Therefore, our results suggest 

that sideband inhibition might not originate from a uniform source but reflects 

multiple sources. Given that we find prominent inhibitory sidebands in MGB terminal 

responses, our result suggests that inhibitory sidebands arise from the complex 
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interplay between feedforward input from the thalamus and the processing by local 

microcircuits. This view is consistent with a linear amplification of thalamocortical 

inputs by L4 (Li et al., 2013) which would include both excitation and disynaptic 

inhibition. The tuning of MGB terminals was narrower than the three types of cortical 

neurons, consistent with results in marmoset (Bartlett et al., 2011). Thus, it is likely 

that thalamocortical inputs contribute significantly to the observed cellular inhibitory 

sidebands. Moreover, as sideband inhibition originates from the auditory periphery 

(Ruggero et al., 1992) and can be observed at other stages in ascending auditory 

pathway (Konrad-Martin et al., 1998; Jen et al., 2002), we consider the inhibition 

seen in A1 as functionally diverse with aspects partially generated de novo in A1. 

The relative contribution of MGB and intracortical inhibitory sources likely 

varies by relative frequency to BF. PV and SST neurons likely contribute to 

inhibitory sideband far from BF. Our data show that PV and SST neurons had higher 

SCs over distance than Thy1 neurons, suggesting that these interneurons are suited to 

convey inhibition of frequencies far from the CF. In addition, Natan et al. (2015) 

found no firing rate change to BF when either PV or SST neurons were silenced 

while responses to non-preferred frequencies were slightly disinhibited. In contrast, 

silencing PV neurons increased evoked firing rate yet produced no change in tuning 

width while silencing SST neurons increased tuning width but this effect was due to 

increased firing rate to spectral content far from BF (Lakunina et al., 2020). However, 

these results cannot explain the sideband structure close to BF that we observed in the 

current study. Such inhibition close to BF could result from feedforward 

thalamocortical or L4 input. Thus, PV and SST neurons might serve to temporally 
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truncate pyramidal neurons’ responses. In A1 L4, the intracortcal connections are 

thought to selectively amplify EPSCs evoked by frequencies close to BF as cotuned 

neurons tend to be interconnected (Liu et al., 2007). This circuit could also amplify 

the TT suppression close to BF. Specifically, as responses of TT and PT close to BF 

are amplified, their differences are effectively amplified as well, leading to a greater 

suppressive effect. Therefore we speculate that feedforward inputs contribute more 

strongly to sideband inhibition for frequencies close to BF.  

 We have shown here that the introduction of the second tone decreases neural 

correlations between cell pairs, which suggests that more spectral complex stimuli 

result in changes in population encoding. This potentially resulted from prominent 

suppressive nonlinear interactions between frequency components within the TT 

stimuli. Nevertheless, facilitative interactions do exist and the relative strength of 

suppression versus facilitation depend on specific FRA types. Typically, V and I type 

neurons are most biased towards suppression, while H type neurons show less such 

bias due to larger facilitative interactions. This is consistent with findings that L2/3 

neurons of mouse A1 consist of subtypes that differentially integrate spectral 

information (Li et al., 2019). V and I type neurons behave similarly to band-pass 

filters while H type neurons behave as integrators of spectral energy. We speculate 

that these two types of processing could be more relevant to differentiation and 

detection of sound, respectively. Across cell types, Thy1 neurons showed larger 

nonlinear interactions overall than PV and SST neurons. However, a possible 

confound is that evoked fluorescence (ΔF/F) responses could potentially be smaller in 

PV and SST neurons due to a higher baseline fluorescence levels. As the suppressive 
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effect of TT cannot exceed the responses to PT, the detectable nonlinear interactions 

were bounded by the ΔF/F evoked by PTs.  

 We found that both onset and offset responding neurons show nonlinear 

frequency interactions in their responses to TT stimuli. Notably, in some subtype of 

neurons (e.g. Thy1 H type), offset neurons show greater nonlinear interactions. To 

our knowledge this is the first time such phenomenon has been shown, suggesting 

that the pathway conveying offset information in mouse A1 might be engaged 

differently in integrating sound information and might consist of different neuronal 

circuits. Our previous study suggested that timing information is relayed from 

thalamus and further refined in cortical microcircuits (Liu et al., 2019). Our current 

result suggests that this pathway is also suited to convey complex spectral 

interactions, but it is unclear if the same cortical mechanisms involving PV and SST 

neurons contributing to spectral interactions are responsible for the same interactions 

in offset responses. 

 In summary, our modified TT paradigm has allowed us to reveal inhibitory 

sideband and nonlinear frequency interactions of large populations of neurons. 

Neurons form subclasses based on the shape of FRAs and the differential degree of 

nonlinear frequency interactions. Moreover, spectrally complex stimuli like TT 

resulted in decorrelation of neural responses, suggesting a sparse and more selective 

encoding of sound with rich spectral content.  The local heterogeneity of sideband 

inhibition suggests that these sidebands might reflect integration of multiple sources. 

Lastly, we found prominent sideband inhibition in MGB terminals. Together, our 

results show that cellular tuning properties in a local region might not result from a 
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uniform set of sources but from feedforward input with existing sideband structures 

arising from subcortical processing stages and further diverse contributions from local 

cortical inhibitory sources. 
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Chapter 4. Interactive auditory task 

reveals complex sensory-action 

integration in mouse primary auditory 

cortex 
 

Abstract 

 Sensory perceptions are not simply passive events but are active constructions 

by the brain. Predictive coding theory postulates that the brain actively makes 

predictions about the outside world and corrects them if any error arises. Thus, this 

process requires organisms to actively explore their environment and calibrate their 

expectations. In other words, the individual’s neural system would be shaped in ways 

specific to their interactions with world. Where such predictions are formed is 

unclear, but the cerebral cortex is thought to play a key role. We here designed a 

novel interactive behavior paradigm where the animal actively modulated the carrier 

frequency of the sound stream for water reward. Given this paradigm, we identified 

neurons in primary auditory cortex (A1) that encoded complex interactions between 

sound and action, akin to representing the boundary conditions of our task. 

Furthermore, we found that layer 2/3 (L2/3) neurons encoded more action related 

information than L4. Lastly, a subset of L2/3 and L4 neurons responded to 

perturbations during active trials, constituting potential error signals. Together, our 

results show that complex interactions between action and sound already happen in 

A1 and that A1 neurons’ responses potentially encode the violation of the general rule 
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of our task. Thus, primary sensory cortices do not simply encode sensory driven 

activity but represent the complex interaction of sensory input, expectations, errors, 

and behavioral outcomes. 

Introduction 

 Predictive coding theory has recently become a popular framework for 

explaining perception. The theory hypothesize that the brain perceives the outside 

world by actively making predictions according to its own model of the world, and 

constantly updating it via interactions between lower and higher order brain regions 

through error signals (Friston, 2010; Heilbron and Chait, 2017). However, such error 

signals would not arise unless individual organisms are actively engaged in testing 

such models by interacting with their environment. Thus, one can argue that 

predictions are an intrinsic part of performing actions, while the sensory outcome of 

actions provide new information to update the brain’s hypothesis of the world. 

Therefore, testing predictive coding theory requires experimental paradigms that 

explicitly incorporate actions into the sensory process.    

 Recent studies in the visual system have provided a wealth of information on 

how action is integrated into sensory perceptions. For example, it has been robustly 

shown that locomotion increases visual responses in mouse visual cortex (Niell and 

Stryker, 2010; Mineault et al., 2016; Pakan et al., 2016). Furthermore, error signals 

were evoked in mouse primary visual cortex by the mismatch between expected 

visual flow and actual feedback (Keller et al., 2012), lending evidence for the 

predictive coding theory. In the auditory system, this framework has been proposed to 
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explain phenomena such as Stimulus Specific Adaptation (SSA) and Mismatch 

Negativity (MMN) (Carbajal and Malmierca, 2018), as these neuronal responses have 

been largely interpreted as error signals for violating auditory expectations. However, 

these paradigms are not interactive in nature and do not require the active engagement 

of the subject. In particular, SSA can be evoked in both awake and anesthetized 

animals (Ulanovsky et al., 2003; Malmierca et al., 2009). As such, these paradigms 

are insufficient for studying predictive coding. However, there have been more effort 

in using closed-loop designs in studying auditory perception (Nelson et al., 2013; 

Rummell et al., 2016; Schneider et al., 2018; Clayton et al., 2021). These studies have 

shown that ACX neurons’ responses are modulated by the animal’s action, and these 

actions can generate expectation specific effects in ACX. Nevertheless, unlike in 

visual closed-loop experiments, where the animal’s action directly and continuously 

modulates the visual stimulus, e.g., the speed of visual flow being coupled to running, 

the auditory counterparts employed a largely simple relationship between the action 

and the sound, i.e., action triggers sound presentations. These discrete events might 

not form as tight a coupling between action and sensory feedback as in the continuous 

coupling between running and visual flow. Furthermore, as action modulation in 

sensory cortex depends on experience (Attinger et al., 2017), we speculate that by 

introducing a more complex action-sensory relationship in the auditory domain, we 

might observe distinct form of interactions between the two in ACX that are specific 

to this relationship. 

 Thus, to investigate such possibilities, we designed a novel behavior paradigm 

that allowed the mice to directly interact with the sound. Specifically, we trained mice 
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to turn a wheel, whose readout was coupled with the increase or decrease of the 

carrier frequency of the sound stream the mice were presented with. Mice needed to 

“steer” the carrier frequency either into the low or high end of the spectrum (target 

zones) for water reward. Unlike previous studies where the animals mostly had 

control over the timing of the sound, this paradigm allowed mice to continuously 

evaluate and control one attribute of the sound, i.e., frequency. Given this paradigm, 

we further introduced two forms of perturbations: Delay-Sound (DS) and Stop-

Frequency (SF) where we briefly perturbated the default relationship between action 

and sound. To study neural responses in this paradigm, we used 2-Photon (2P) 

imaging of primary auditory cortex (A1) to investigate whether potential error signals 

evoked by the perturbations were present. Given that the cortex performs hierarchical 

computations we imaged both layer 4 (L4) and L2/3 to investigate if the error signal 

emerged in specific layers. Overall, we identified groups of neurons in L2/3 and L4 of 

A1 that were responsive to distinct features including sound or action with L2/3 

showed more neurons responsive to actions than L4. Further, we found a group of 

neurons that responded to a particular form of interaction between action and sound, 

i.e., the decoupling (DCP) between the two either at the boundary conditions or due 

to the introduced perturbations. Our results suggest that A1 represents the complex 

relationship between action and sound in our paradigm as DCP responses signal the 

violation of the default rules. 
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Methods 

Animals 

All protocols and procedures are approved by the Johns Hopkins Institutional 

Care and Use Committee.  In this study we trained and imaged 3 male and 3 female 

adult mice which were F1 generation of Thy1-GCaMP6s (JAX# 024275) crossed 

with CBA/CaJ mice (JAX# 000654). Such a strategy ensures that F1 offspring has 

both widespread genetic expressions of GCaMP6s in excitatory cells and minimum 

hearing loss throughout their lifespan (Frisina et al., 2011). The mice used in this 

study ranged from 4- to 8-month-old.  

 

Behavior Paradigm 

The mice were trained on an interactive behavior paradigm. Specifically, the 

mice were presented with a frequency stream which started with either 10 kHz (low 

starting frequency) or 40 kHz (high starting frequency). By turning the wheel (63 mm 

in diameter) placed beneath their front paw, mice were able to modulate the carrier 

frequency by either turning to their right (carrier frequency increases) or turning to 

their left (carrier frequency decreases). The lower and upper bound of the carrier 

frequency was defined by the low and high starting frequency, respectively, beyond 

which left turning at lower frequency bound or right turning at upper frequency 

bound) produced no carrier frequency change. If in a given trial the mouse was 

presented with the low starting frequency (10 kHz), the mouse would need to increase 
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the carrier frequency by turning to its right and if the carrier frequency entered a 

target zone which was 0.25 octave wide and situated at the high frequency end (33.6 

to 40 kHz) for a sufficient amount of time (0.2 sec), a hit was achieved. For trials with 

the high starting frequency (40 kHz), the target zone was located at the low frequency 

end (10 to 11.9 kHz) and thus, the mouse was required to turn left in order to achieve 

a hit. The animal was given a maximum of 6 sec to complete each trial. 22.5 degrees 

of rotation corresponded to 1 octave change in carrier frequency. After a hit was 

achieved, the frequency stream continued for 0.5 sec while its carrier frequency 

remained the same as the time of hit. During this period, a 10 Hz amplitude 

modulation was added to the frequency stream to reinforce the stimulus salience with 

the behavioral relevance. After the sound terminated, the servo-controlled waterspout 

was elevated and one drop of water (~5 µl) was dispensed. The mouse had 2 sec for 

reward assumption before the waterspout was retracted by the servo. If the animal 

turned in the incorrect direction beyond 30 degrees, the trial was deemed incorrect 

and terminated. If animal failed to reach the target zone without turning incorrectly 

(beyond 30 degrees in the incorrect direction), the trial was deemed a miss. Both 

incorrect and miss trials were punished with an 8-sec timeout. There was a fixed 0.5 

sec period between the end of reward or punishment period of the previous trial and 

the start of the next trial. At the beginning of each trial, the mouse was monitored for 

any spontaneous wheel turning activity and only after the mouse remained inactive 

for another 0.5 sec was the sound presented. The program waited indefinitely until 

this criterion was met. After the sound started, the first 0.1 sec was considered a 

‘grace period’ where any wheel turning was discounted, and thus wheel turning 
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during this period did not produce carrier frequency change. The behavior program 

was implemented with LABVIEW 18.0 and was run on NI-USB 6343 (National 

Instrument). 

During imaging, we controlled the onset of any sound such that it roughly 

aligned with the frame start trigger from the 2P imaging system. The jitter between 

the onset of the sound and the onset of one particular frame was around 0.17 ± 1.23 

millisecond. This approach allowed us to more precisely align neuronal responses 

with the animal’s behavior. Furthermore, we employed a second device (NI PCI-

6251) that used the same 2P frame start triggers as the acquisition clock to record a 

copy of the rotary activity. Thus, not only did we record the rotary activity within 

each trial at 100 Hz but we also recorded the rotary activity at 15 Hz (the 2P frame 

rate) throughout the entire imaging session. 

 

Perturbation trials during behavior 

To test the hypothesis that A1 encodes error signals induced by mismatch 

between the behavior and the sensory outcome, we introduced two forms of 

perturbations: Stop-Frequency (SF) and Delay-Sound (DS). In SF perturbations, we 

chose 4 frequencies outside the target zone (13.2, 17.4, 23.0, 30.3 kHz). These 

frequencies were symmetrical about the center of the spectral range (20 kHz) in the 

logarithmical space and equally spaced by 0.4 octave. During the SF perturbation 

trials, as the frequency trajectory reached one of the SFs, the carrier frequency would 

be frozen at that SF for 0.25 sec, artificially introducing a decoupling period. At the 
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end of this period, the paradigm resumed the normal coupling between the rotary and 

the carrier frequency. We presented SFs in blocks. Every 4 SFs form a block and 

within each block all 4 different SFs were presented. The order of the 4 different SFs 

within a block were randomized. We also balanced the starting frequencies by 

flipping them every time the same SF were encountered, i.e., if one particular SF was 

introduced in a low starting frequency trial in the previous block, it would be 

introduced in a high starting frequency trial in the current block and vice versa. We 

required that between SF trials, there would be a minimum of 2 hit trials and a 

maximum of 7 hit trials. Within those limits, it was determined with a probability of 

0.5 whether SF would be introduced in each trial. However, if the animal failed to 

reach the SF in a given SF trial, in which case the perturbation effectively did not 

happen, the SF was carried over to the next trial with the same starting frequency. In 

all our imaging sessions with SF perturbations, we had a total of 31.4 ± 4.9 

(mean±std) SF trials per session, which corresponded to 15.9% ± 1.4% of all trials. 

In a different set of imaging sessions, we introduced Delay-Sound (DS) perturbations. 

In such trials, we introduced a delay of 1 sec between the action and the sensory 

feedback, i.e., the carrier frequency change corresponding to any rotary activities was 

delayed by 1 sec. To balance trials with low and high starting frequencies, every DS 

trial had the opposite starting frequency of the previous DS trial. Similar to SF trials, 

we introduced DS with a probability of 0.5 if there were at minimum 3 hit trials but 

no more than 8 hit trials since the last DS trial. However, if the outcome of a 

particular DS trial was miss (the animal did not turn sufficiently in the correct 

direction) or incorrect (the animal turned in the wrong direction and effectively 
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produced no carrier frequency change), we deemed these trials as insufficiently 

perturbated and repeated the DS trial until the animal turned in the correct direction 

with a sufficient amount, which typically resulted in a hit. In our imaging sessions 

with DS perturbations, we had 21.2 ± 6.5 (mean±std) DS trials, which corresponded 

to 11.6% ± 1.9% of all trials. Both SF and DS perturbations were only introduced 

during imaging sessions. 

 

Behavioral training 

Mice first received headplates implant and were allowed 5-7 days of recovery 

before the start of water deprivation. We restricted the water intake of mice to no 

more than 1 ml per day and the weight of mice dropped steadily within around 7 days 

to about 80% to 85% of the original weight. In the meantime, mice were introduced 

to the behavioral chamber and were accustomed to head-fixation before the training 

start. We devised 4 training stages for mice to systematically advance. The 

parameters of these stages were overall similar to those of the imaging sessions. The 

first 3 stages differed in the gain of the wheel, with each stage requiring the mouse to 

turn twice as much as the previous stage. Specifically, the gains were 5.625, 11.25, 

and 22.5 degrees per octave change in carrier frequency. In these stages, mice were 

rewarded as soon as a hit was achieved, and thus they consumed the reward during 

the period when the amplitude modulation was added to the frequency stream. In the 

4th stage, the reward time was delayed to 0.5 sec after the end of the frequency 

stream in a hit trial and thus separated the reward consumption behavior from sensory 
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input in time. The rotary gain of the 4th stage was the same as in the 3rd stage. The 

mice advanced to the next stage if they completed at least 100 trials within a session 

and if the maximum hit rate over any consecutive 100 trials were above 60%. This 

relatively relaxed criterion was chosen such that mice were not overtrained on 

intermediate stages and could advance to the final stage more quickly, which shared 

the parameters of the actual experimental session. After mice reached a performance 

of about 70% to 80%, they were given cranial window implant and transferred to 

behaving under 2-photon imaging.  

 

Sound stimulus 

During the behavior paradigm, the carrier frequency of the sound stream 

changed dynamically depending on the mouse’s wheeling turning. The carrier 

frequency was bounded between 10 and 40 kHz. The wheel turning as readout by the 

rotary readings and the carrier frequency was updated 100 times per second. The 

carrier frequency changed with a step of 1/128 octave. Every 10 ms, the program 

translated the change in rotary reading (ΔR) into the change in the carrier frequency 

(ΔCF) and outputted a linear frequency sweep of 10-ms duration with its start at the 

current carrier frequency (CF) and its end at the CF+ΔCF. Therefore, the sound 

stream was essentially a piecewise linear frequency sweep that updated every 10 ms. 

At each time point, the rotary reading was smoothed over the previous 100 ms with a 

mean filter to produce a smoother frequency stream. The amplitude of the frequency 

stream at any time point was interpolated using an array of frequencies and their 
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calibrated amplitude at 60 dB SPL. Within the frequency bounds, 22.5 degrees of 

rotation mapped onto 1 octave change in carrier frequency. 

Right after the conclusion of the active session, we presented the mice with 

pure tones that ranged from 7.1 to 56.5 kHz with 0.25 octave spacing at the same 

sound level as in the active session. These tones were used to construct tuning curves 

under the passive condition. 

After the presentation of the pure tones, we presented mice with playbacks of 

the frequency streams selected from a subset of trials in the previous active session. 

Specifically, all perturbation trials were selected along with 10 hit trials, 6 incorrect 

trials and 6 miss trials which were evenly split between trials with low or high 

starting frequency. These selected trials were each repeated 4 times with a random 

order.  

The sound waveform was generated by NI 6343 (National Instrument), which 

was used as input for ED1 speaker driver (Tucker-Davis Technologies) that drove an 

ES1 open field speaker (Tucker-Davis Technologies).  

 

Widefield imaging 

To locate A1, we performed widefield imaging similar to previously described 

(Liu et al., 2019). In short, we used a blue LED of 470 nm wavelength (M470L3, 

Thorlabs Inc.) to illuminate the cranial window while imaging the excitation light 

with a PCO Edge 4.2 camera. We presented 5 tones ranging from 4 kHz to 64 kHz 

with 1 octave spacing and at 3 sound levels (30, 50 and 70 dB SPL). The images were 
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of size 330 by 330 and were sampled at 30 Hz. We identified A1 by identifying the 

low to high frequency gradient starting from the caudal side of the cranial window 

towards the rostromedial side.  

 

Two-photon imaging and analysis 

We performed two photon imaging in A1 while the mouse was behaving 

under the microscope (Bruker Ultima 2Pplus). We imaged A1 with a 16X Nikon 

objective (NA 0.80) and at an optical zoom of 1X. The field of view was of size 

1109.9 by 1109.9 µm. The frame rate was 15 Hz.  During the experiment, the head of 

the mouse was upright while the microscope nosepiece was rotated from the vertical 

position by about 50 degrees to match the angle of the cranial window surface. The 

imaging laser (Spectra-Physics InSight X3) was tuned to 920 nm wavelength.  

For analysis, we used Suite2P package to perform motion correction, automated ROI 

detection and raw cellular and neuropil fluorescence trace extraction (Pachitariu et al., 

2016). We corrected the neuropil contamination using the following equation:  

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑡) =  𝐹𝑐𝑒𝑙𝑙(𝑡) − 0.7 × 𝐹𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡) 

To convert the time-varying neuropil-corrected fluorescence trace into ΔF/F traces, 

we computed the baseline using the same method as described before (Liu and 

Kanold, 2021). In short, as most excitatory neurons had sparse firing, the fluorescence 

would fluctuate around the baseline during most of the imaging session. Thus, for 

each neuron, we constructed the histogram of fluorescence values over time and 

identified the value that appeared most often at the resolution of the histogram 
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binning. We used this value for that neuron’s baseline and then computed ΔF/F over 

time using the following equation: 

∆𝐹

𝐹
(𝑡) =

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑡) − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
  

For a subset of our analyses, we used inferred spikes from the ΔF/F traces. The spikes 

were extracted using OASIS package (Friedrich et al., 2017). 

 

Cranial Window Surgery 

We followed a similar procedure for cranial window implant as previously 

described (Liu and Kanold, 2021). In short, 0.1 ml dexamethasone (2mg/ml, VetOne) 

was injected subcutaneously 2-3 hours before the surgery started in order to prevent 

brain swelling during surgery. All surgery tools were sterilized using a bead sterilizer 

(18000-45, Fine Science Tools). We anesthetized mice with isoflurane (Fluriso, 

VetOne) using a calibrated vaporizer (Matrix VIP 3000). We used 4% for induction 

and 1.5-2% for maintenance. During surgery the body temperature of the animal was 

maintained at 36.0 degrees Celsius. Next, we exposed the bone covering the auditory 

cortex by removing the skin and the muscles. A circular craniotomy was then 

performed over the left auditory cortex with a diameter of ~3.5mm using a dental 

drill. We then placed a custom-made cranial window over the exposed brain. The 

window consisted of 2 layers of 3mm round coverslips (64-0720, CS-3R, Warner 

Instruments) stacked at the center of a 4mm round coverslip (64-0724, CS-4R, 

Warner Instruments) and was secured with optic glue (NOA71, Norland Products). 

The edge of the cranial window was then sealed with Kwik-sil (World Precision 
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Instruments). Finally, C&B-Metabond (Parkell Inc.) was applied to secure the 

window. After the surgery, 0.05 ml Cefazolin (1 gram/vial, West Ward 

Pharmaceuticals) and 0.1 to 0.15 ml Carprofen (1 mg/ml) was injected 

subcutaneously, and the animal recovered under a heat lamp for 30 minutes before 

being returned to the home cage. For the two days after the surgery, the animal was 

given additional 0.05 ml dexamethasone (2mg/ml) and 0.1 to 0.15 ml Carprofen (1 

mg/ml) daily. The animal was taken off training schedule for 3 to 5 days after the 

surgery and was given supplemental water.  

 

Linear model construction and fitting 

We constructed linear models that included several factors to explain the 

neuronal responses. In our first model (Figure 4.3A), the predictors were constructed 

from both trials and inter-trial periods. Each row of predictors was constructed from a 

0.5 sec window, and each window was shifted by 0.25 sec. The predictors include 

frequency energy in different frequency bins (E), the carrier frequency change rate or 

sweep rate (S) and rotary activities (R). The predictor E could be thought of as a 

spectrogram with a low spectral resolution. Specifically, the boundaries of the 5 bins 

we used were 0, 0.25, 0.625, 1,1.375, 1.75, 2, which were measured in octaves 

relative to the 10 kHz, the lower bound of the carrier frequency. The first ([0, 0.25]) 

and last bin ([1,75, 2]) corresponded to the low and high frequency target zone, 

respectively. The rest of the 4 bins were of equal size: 0.375 octave. For each of the 

time window the predictors were extracted from, we quantified the proportion of time 
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the carrier frequency resided in each of the 6 bins, in order to proximate the energy in 

each frequency bin. Next, we calculated the S predictor first by taking the derivative 

of the frequency trajectory represented in octave. We then constructed two histograms 

for positive and negative sweep rate respectively. For positive sweep rate, we used 

the following edges for the histogram: 0, 5, 10, 20 oct/sec. For negative sweep rate, 

we used the same edges with the opposite sign. In both cases, 0 oct/sec was not 

included in the histogram and thus only strictly non-zero sweep rate was considered. 

For each time window, such histograms were constructed, which measured the 

occurrence of different sweep rate. For the R predictors, we took the first order 

derivative of the rotary traces and summed positive and negative terms separately, 

which produced +R and -R, representing the absolute size of right and left turning 

events as measured in degrees. To model the effect of behavioral state, we introduced 

one “Task” term (T) that took value of 1 for predictor values constructed from ACT 

trials while taking value of -1 for predictor values constructed from PB trials. We 

then included the cross-product terms between sound encoding terms, i.e., E and S, 

and T to produce ET and ST predictors. If a particular neuron responded 

preferentially to E during ACT but not PB trials, then one would expect positive E 

coefficients and positive ET coefficient. Such interaction term was not constructed for 

R term as the animal showed little activity during the PB session. Next, to model the 

interaction between sound and action, we introduced the RE term, which was the R 

terms (separated according to left and right terms) times the summation of all 

frequency energies (summing over all E terms). Thus, the RE term was equivalent to 

the R terms windowed by the presence of sound. Finally, we also included a reward 
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term (Rw) that marked the presence of reward. For this model, the design matrix had 

6 E terms, 6 ET terms, 6 S terms, 6 ST terms, 2 R terms, 2 RE terms, 1 Rw term and 1 

T term. Each ACT and PB session pair would produce ~10,000 observations for the 

row of the design matrix. We used inferred spikes as the neuronal responses for the 

model due to the more accurate timing. Next, we fit our linear model using LASSO 

(MATLAB built-in function, lasso), which had the benefit of automated feature 

selection. For each neuron, we used a 10-fold cross-validation to determine the 

optimal regularization term value that achieved the minimum error, and subsequently 

used the same value for fitting all the observations.  

To determine the sensitivity of neuronal responses to the different predictors, 

we calculated the ΔR2s by measuring the difference between full model R2 and the R2 

calculated from shuffling a particular set of predictor values. For example, to 

determine the ΔR2 of the E predictor, all 6 E terms were shuffled. Next, we grouped 

neurons based on which predictor had the highest ΔR2. We also required that the 

maximum ΔR2 cross a threshold of 0.05.  

For Delay-Sound (DS) perturbations, we extracted predictors from 4 non-

overlapping time-windows of 0.5 sec duration (Figure 4.6A). The first window was 

aligned with the onset of the action. Due to the 1 sec delay between action and carrier 

frequency change, in the first second following action onset, the carrier frequency 

remained the same as the starting frequency. Thus, the first two time-windows 

correspond to this period, which we define as the action window, while the other two 

time-windows corresponded to the period when the delayed carrier frequency change 

occurred. We define this window as the sound window. Next, we extracted action 
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driven decoupling (DCP) in the action window and sound driven DCP in the sound 

window. Action driven DCP (DCPA) was defined as the period of time when the 

wheel turning failed to translate into carrier frequency change. Sound driven DCP 

(DCPS) was defined as the period of time when the frequency change did not 

correspond with the concurrent action (Figure 4.6B). We broke down DCPA by the 

starting frequency at which it occurred (low vs. high) and we broke down DCPS by 

the direction of the frequency sweep (up vs. down). All other predictors were 

constructed as in the first model. For the rows of the design matrix, we included 

observations from DS trials and the corresponding PB trials. Only DS trials with a 

delayed hit were included. We also included non-DS (NDS) trials where hits were 

achieved. These trials with hits were selected such that the responses due to the action 

could be separated from the genuine error responses. In total, the design matrix had 

31 columns (6 E terms, 6 ET terms, 6 S terms, 6 ST terms, 2 R terms, 2 DCPA terms, 

2 DCPS terms and 1 T term) and ~800 rows.  

For our third model that focused on the Stop-Frequency (SF) perturbation, we 

used the same approach and constructed similar predictors. As the duration of the SF 

perturbation was 0.25 sec, we constructed our predictors from two time-windows of 

0.25 sec. The first window spanned the 0.25 sec before SF onset, while the second 

window spanned the 0.25 sec after the SF onset. All predictors but DCP were 

constructed in the same fashion as in the first model. As SFs happened outside target 

zones, we computed the action driven DCP in the 4 middle frequency bins that we 

used for E predictors, where the 4 SFs were within each of the 4 bins. Thus, this 

model had 4 DCP terms, one for each of the 4 SFs. In total, the design matrix for the 
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SF perturbations had 31 columns (12 E and ET terms, 12 S and ST terms, 2 R terms, 

4 DCP terms, 1 T term). For rows in the design matrix, all SF perturbation trials in the 

ACT sessions were included. A typical ACT session included ~30 SF trials. We next 

included the PB trials that corresponded to SF trials in the ACT sessions. As each SF 

trial was played back with 4 repeats, the PB sessions added ~120 observations to the 

design matrix. To further account for the contribution of pre-SF period to neuronal 

responses, we included so-called SIM trials, where the frequency trajectory was 

similar to that of the SF trial immediately before SF onset (Figure 4.7B). We 

hypothesize that if the responses during the post-SF period were due to pre-SF 

factors, then the responses to SF trials would be similar to those in SIM trials. For 

each of the 8 unique SF trials (4 SFs × 2 starting frequencies), we each selected the 

closest n matching SIM trials, such that the total number of SIM trials (8n) were 5 

times that of SF trials (~150 observations). In the end the design matrix had about 300 

rows.  

 

Local Best Frequency 

In Figure 4.6I, we investigate whether BSF depended on the Local Best 

Frequency (LBF), which measured the tuning preference of local population of 

neurons. To compute LBF, we first identified the neurons within a 100-µm radius of 

the neuron in question. Next, we summed the tuning curves across individual neurons 

weighted by the respective significance, i.e., significant responses had a weight of 1 

while non-significant responses had a weight of zero. Thus, we obtained a population 



 

 

 

162 

 

tuning curve whose peak represented the frequency that evoked the most responses in 

the local group of neurons, which we defined as LBF. The significance of tone 

evoked responses for each neuron was determined similar to described before (Liu 

and Kanold, 2021). In short, we constructed the 99.9% confidence interval of the pre-

stimulus-onset and post-stimulus-onset ΔF/F values, and one tone is considered 

significant if the corresponding confidence intervals were non-overlapping. For pre-

stimulus-onset period, we chose a window of ~0.5 sec duration immediately before 

the tone onset. For post-stimulus-onset period, we chose a window of ~0.5 sec 

duration offset by ~0.27 sec (4 frames) from the tone onset, in order to better capture 

the peak of the ΔF/F trace. 

 

Spatial Clustering Analysis 

 In Figure 4.8, we quantified the spatial clustering of different feature sensitive 

group following a similar strategy in Deneux et al. (2016). We calculated a 

homogeneity index for each neuron, which quantified the proportion of neurons 

within a 100 µm radius that belonged to either the same group as the neuron at the 

center or belonged to the other feature sensitive groups. We determined the 

significance of the distribution of the homogeneity indices by comparing the actual 

distribution against the shuffled data, where we randomly assigned the feature 

sensitive identity to neurons in the FOV. The values of real and shuffled data were 

pooled from all FOVs and compared to determine significance. 
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Results 

Mice learnt to perform an interactive auditory task 

To investigate how the mouse A1 neurons encodes the interaction between 

action and sensory feedback and to investigate if such interactions emerge across the 

cortical layers, we imaged L2/3 and L4 of mouse A1 while the animal performed a 

novel interactive task (n=6 mice (3 male and 3 female); L2/3, 26 field of views 

(FOVs), 46328 neurons imaged; L4, 25 FOVs, 53211 neurons imaged). Our 

interactive task required the animal to change the frequency of a sound into a target 

frequency range. The mice were trained to control the frequency of the sound by 

turning a wheel placed beneath its front paw. The mice were presented with a 

frequency modulated sound stream and its carrier frequency would decrease or 

increase as the animal turned the wheel clockwise or counterclockwise (Figure 4.1A). 

The sound stream started either at the low end (10 kHz) or at the high end (40 kHz) of 

the predefined spectral range. The task required the animal to “steer” the low starting 

frequency (10 kHz) into the high target zone (33.6 kHz to 40 kHz, 0.25 octave in 

width), or “steer” the high starting frequency (40 kHz) into the low frequency target 

zone (10 kHz to 11.9 kHz, 0.25 octave in width). The carrier frequency would not 

decrease or increase beyond the low and high frequency boundary (10 and 40 kHz, 

respectively). Figure 4.1B shows the spectrogram of the microphone-recorded sound 

stimulus of one trial with the high starting frequency, along with the action of the 

animal as shown by the rotary reading (also see Video 1). Figure 4.1C shows the 

average frequency and rotary trajectories for hit trials with short hit latencies (within 
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2 sec). These results show that the animals turned the wheel robustly to perform the 

task. Immediately following each active (ACT) session, we presented animals with a 

playback (PB) session. In PB sessions, we first played pure tones to measure tuning 

curves of imaged neurons, following which we presented the animal with a subset of 

the frequency stream generated in the ACT session as a control condition. The 

playback session allowed us to measure the contribution of stimulus selectivity to 

neural responses with minimum confound from animal movement as previous studies 

suggest that auditory responses could suppressed by the animals’ action (Rummell et 

al., 2016; Schneider et al., 2018). In PB sessions, the animals remained relatively still 

and showed much less movement (Figure 4.1D, right).  We identified A1 with 

widefield imaging and performed 2P imaging in A1 L2/3 and L4 (Figure 4.1E). The 

animals were able to perform the task well during imaging sessions. The overall hit 

rate of all behavioral sessions with simultaneous imaging was 70.2% ± 8.9% (Mean ± 

STD). The maximum hit rate over any consecutive 100 trials during one session was 

75.6% ± 10.0%. The average time to achieve a hit was 1.05 sec ± 1.03 sec. 
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(A) Schematic of the behavior paradigm. The mouse was trained to modulate the 

carrier frequency by turning the wheel. (B) Example frequency stream and action 

from one hit trial. Left: the microphone-recorded spectrogram of the frequency 

stream. The white dash line indicates the boundary of the target zone for this trial. 

After the hit condition was met, the carrier frequency was frozen for 0.5 sec while a 

10 Hz amplitude modulation was added to signal the trial outcome. Right: the rotary 

reading corresponding to the left turning action. (C) Average frequency and rotary 

trajectories of hit trials with short hit latencies (≤ 2 sec) from one mouse in one active 

session. The solid lines represent the mean and the shaded regions represent standard 

deviation. (D) Left and middle: example rotary activities from one ACT session and 

Figure 4.1 Mice were trained to perform a novel interactive behavior paradigm 
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the subsequent PB session. Right: mice showed significantly less movement in PB 

sessions than in ACT sessions (Wilcoxon rank sum test, p=3.3×10-18). (E) Left: 

contour plots showing “hotspot” of fluorescence increase evoked by different tone 

frequencies during widefield imaging. A1 was identified through its caudolateral-

mediodorsal tonotopic gradient. The scale bar represents 500 µm. Right: A1 neurons 

under 2P microscopy. The example image shows a cropped region from the full FOV 

for clarity. Neurons were colored according to segmentation by Suite2P. The scale 

bar represents 50 µm. The rotation of the 2P FOV was due to the rotation of the 

nosepiece relative to the scanning directions. 

 

 

A1 neurons show both sensory and action driven activity during an interactive 

auditory task 

To begin to understand how neural responses encode action and the 

corresponding sensory outcome, we constructed a simple linear model whose 

predictors included energy in different frequency bins (E), the rate of frequency 

modulation (sweep rate, or S) and wheel turning (R) (Figure 4.3A). We added one 

interaction term between R and E as we hypothesize that neurons could show 

sensitivity to the synergy between the two (Figure 4.3A, see Methods). To account for 

the behavioral state dependence of the neuronal responses, we introduced one task 

term (T) that took value of 1 for predictor values constructed from ACT sessions and 

-1 for predictor values constructed from PB sessions. The T term alone can account 

for a shift of baseline activity levels across the behavioral states, while the interaction 
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terms between T and sound encoding terms, i.e., E and S, can account for sound 

driven responses that are behavioral state dependent (ET and ST term). We Finally, 

we added one term that accounts for the reward consumption (Figure 4.3A, Rw). 

Thus, this model has 8 groups of predictors that encode various features during the 

ACT and PB sessions (Figure 4.3B). 

We fit our model with LASSO to automatically identify relevant factors 

influencing each neuron’s responses. We clustered neurons into different feature 

sensitive groups by identifying the predictors with the maximum ΔR2 within each 

neuron, calculated by shuffling predictor values (Figure 4.3B, see Method). We 

visualized the distribution of these groups of neurons in a lower dimension space 

projected by T-sne (Supplemental Figure 4.2A), which verified that such identified 

groups of neurons segregate in the projected space. These clusters further suggest that 

A1 neurons encode various features in addition to sound during the behavioral 

session. As a case in point, the Rw neuronal group was robustly and preferentially 

activated during reward consumption (Supplemental Figure 4.2B) while showing 

little sensitivity to other features (Figure 4.3B, Rw). The identification of this group 

further validated our approach to use regression to explain neuronal responses in A1.  

 Next, we quantified the fraction of neurons within each FOV that were 

assigned to each group as a function of layer (Figure 4.3C). Among all groups, E and 

ET neurons were the most abundant, while S and ST neurons were much fewer, 

suggesting that A1 neurons are more sensitive to the presence of sound energy within 

its receptive field, which is consistent with previous findings that A1 neurons were 

more likely to be driven by spectrally static stimuli than by frequency modulations 
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(Issa et al., 2017). Across cortical layers, L4 had more neurons assigned to E and ET 

group than L2/3 while the two layers showed similar proportions of S and ST 

neurons. In contrast, L2/3 showed more abundant R and RE neurons, suggesting more 

integration of action related information in L2/3. Next, we investigated the tuning 

properties of these feature sensitive groups of neurons (Figure 4.3D, E). Sound 

encoding neuronal groups, i.e., E, ET and S, ST, tend to show more neurons 

responsive to tones (Figure 4.3D) and showed broader tunings than other neuronal 

groups (Figure 4.3E). In addition, sound encoding L2/3 neurons showed broader 

tuning than L4 neurons, which is consistent with previous reports (Bowen et al., 

2020). Together, these results suggest that there are functionally separate groups in 

A1 that preferentially encode sound or action related information. The differential 

proportion of sound and action sensitive neurons in L2/3 and L4 further suggests 

there is a shift towards encoding behaviorally relevant information from L4 to L2/3. 
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(A) Left: rotary trajectory (top) and frequency trajectory (bottom) of an example hit 

Figure 4.2 A1 responses can be explained by various factors 
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trial. The part of action that was not translated into carrier frequency changes was 

marked in black (DCP). The green line marks the post-trial period when the animal 

consumes the water reward. The rotary activities were recorded both in trial (top, 

solid blue curve) and inter-trial (blue dotted curve). The purple lines represent the 

time windows (0.5 sec in duration) from which we constructed the predictors for the 

linear model. Each window was shifted by 0.25 sec from the previous one. Right: the 

predictors constructed from the same trial shown on the left. (B) The group of 

neurons sensitive to various features were identified through their maximum group 

ΔR2 term. (C) The faction of feature sensitive neurons as a function of cortical depth. 

L4 vs L2/3 Wilcoxon rank sum test (significance adjusted with Bonferroni 

correction): E, ET, p=1.8×10-5; S, ST, p=0.22; R, p=0.0086; RE, p=1.8×10-4; Rw, 

p=0.55; T, p=0.015. (D) The fraction of neurons within each feature group that were 

tone responsive as a function of layer. (E) Left: within the tone responsive neurons of 

each feature group, the number of tones evoking significant responses in each neuron 

were plotted as a function of layer. L4 vs L2/3 Wilcoxon rank sum test: E, ET, 

p=1.2×10-9; S, ST, p=0.0036; R, p=0.40; RE, p=0.11; Rw, p=0.22; T, p=0.0012. 

Right: multiple comparison between feature groups were plotted, pooling data from 

both layers. (F) Left: scatter plot the coefficients of the E and ET term from both E 

and ET group. The four quadrants of neurons showed different levels of behavioral 

state dependence in their frequency responses. The dashed lines were of slope 1 and -

1, respectively. Right: the traces from four example neurons are shown. The colors of 

the titles match the four colored datapoints shown on the left. The traces are aligned 

to the onset of their preferred frequencies and vertically offset by their immediate pre-
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onset baselines. (G) The fraction of E, ET neurons as a function of both the sign of 

the (E, ET) coefficient pair and cortical layer. L4 vs L2/3 Wilcoxon rank sum test: 

(+,+), p=0.77; (+,-), p=9.2×10-8; (-,+), p=0.066; (-,-), p=0.0058. The inset shows the 

multiple comparison between neurons with different (E, ET) coefficients signs 

regardless of the cortical layer. The (+,-) group had the most number of neurons. (H) 

The ratios between the absolute values of ET and E coefficients are plotted as a 

function of both the sign of the (E, ET) coefficient pair and cortical layer. L4 vs L2/3 

Wilcoxon rank sum test, (+,+), p=7.6×10-7; (+,-), p=3.5×10-13; (-,+), p=0.012; (-,-), 

p=0.12. The inset shows the multiple comparison between neurons with different (E, 

ET) coefficients signs regardless of the cortical layer. The (+,-) group showed the 

strongest modulation between ACT and PB session. (I) The same as in (F) but for S 

and ST group. Unlike E and ET group, the S coefficients were predominantly 

positive. (J) The fraction of S, ST neurons as a function of both the sign of the (S, ST) 

coefficient pair and cortical layer. L4 vs L2/3 Wilcoxon rank sum test: (+,+), 

p=0.0073; (+,-), p=0.75. Right: comparison between (+,+) and (+,-) group regardless 

of the cortical layer, Wilcoxon rank sum test, p=1.2×10-9. (K) The ratios between the 

absolute values of ST and S coefficients are plotted as a function of both the sign of 

the (S, ST) coefficient pair and cortical layer. L4 vs L2/3 Wilcoxon rank sum test: 

(+,+), p=0.0023; (+,-), p=0.0285. Right: comparison between (+,+) and (+,-) group 

regardless of the cortical layer, Wilcoxon rank sum test, p=9.8×10-18. 
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(A) 3D scatter plot showing the identified feature sensitive groups of neurons 

projected on the lower dimensional space generated by the T-sne algorithm. (B) Left: 

the fluorescence trace from an example reward sensitive neuron. The blue lines mark 

the reward consumption period. Right: the traces from all reward neurons aligned to 

the onset of the reward period. The solid line represents the mean and the shaded 

region represent the 95% confidence interval constructed through bootstrapping. 

 

Sound driven responses in A1 were more suppressed during behavior 

The interaction terms between sound encoding terms and the task term, i.e., 

ET and ST allow us to investigate the behavioral state dependence of sound evoked 

responses in A1. Depending on the sign of the coefficients of the sound encoding 

Figure 4.3 Projection of feature sensitive neurons in a low dimension space 

and reward neuron traces 
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term and its corresponding task interaction term, e.g., coefficients of E vs. 

coefficients of ET, one could determine first whether the sound feature (E and S) 

actives or suppresses the neuronal responses and second how the active state 

modulates such activation or suppression (ET and ST). For E and ET neurons, while 

the majority of neurons were activated by the presence of sound (positive E 

coefficients), a subset showed suppression (negative E coefficients, Figure 4.3F left). 

Both activation and suppression can be modulated by the behavioral state with a 

variety of strength, but the coefficients of the ET term were almost always smaller 

than the coefficients of the E term, confirming their modulatory roles (Figure 4.3F, 

left). Specifically, a neuron with positive E and ET coefficients would show boosted 

responses in the ACT session while a neuron with a positive E coefficient and a 

negative ET coefficient would show suppressed responses in the ACT session 

compared to the PB session. A neuron with negative E and ET coefficients would 

show less suppression in the PB session compared to the ACT session, while a neuron 

with a negative E coefficient and a positive ET coefficient would show more 

suppression in the PB session compared to the ACT session. Most E and ET neurons, 

regardless of cortical layers, showed positive E and negative ET coefficients (Figure 

4.3G, inset). This suggests that the majority of A1 neurons showed more suppressed 

responses during the ACT session than during the PB session.  However, these 

suppressed neurons were more abundant in L4 and in L2/3, where the neurons 

showing positive and negative ET coefficients were the same in number (Figure 

4.3G). Furthermore, we quantified the strength of the task modulation by computing 

the ratio between the absolute values of ET and E coefficients (Figure 4.3H). This 



 

 

 

174 

 

analysis revealed that the neurons with positive E and negative ET coefficients 

showed the highest modulation strength, and such effect was also stronger in L4 than 

in L2/3. Together, these results suggest that although the majority of E and ET 

neurons showed activation in response to increase in sound energy, their responses 

were more suppressed during behavior and this suppressive modulation had the 

largest strength among all possible forms of modulation.  

Next, we investigated whether such modulations also exist in S and ST 

neurons. Almost all S and ST neurons showed positive S coefficients, suggesting that 

their responses were activated by frequency sweeps. Similar to E and ET neurons, the 

majority of S and ST neurons showed a positive S and negative ST coefficient pair, 

although such neurons did not differ in numbers across L4 and L2/3 (Figure 4.3J). 

Furthermore, S and ST neurons also showed a similar stronger suppressive effect due 

to task engagement (Figure 4.3K). Overall, our results confirmed that A1 is in a more 

suppressed state during behavior, which is consistent with previous reports (Otazu et 

al., 2009; Kuchibhotla et al., 2017). 

A1 neurons showed wheel-turning driven activities that were sound dependent 

 Having identified action sensitive neurons in A1, we proceed to examine their 

properties. Figure 4.4A shows an example R neuron identified as in Figure 4.3B. 

Examining this neuron’s responses revealed that its activities were temporally 

correlated with leftward turning activities and that such correlation existed both 

within trials and during intertrial intervals. Furthermore, this neuron’s responses 

tended to be smaller during trials than during intertrial intervals (Figure 4.4A, arrows 

and arrow heads). We separated R neurons into right turn and left turn preferring 



 

 

 

175 

 

neurons by identifying which term had a higher ΔR2 and thus better explained the 

variability in the neuron’s responses. Such identified neurons showed more prominent 

+R and +RE coefficients for right turn preferring neurons and more prominent -R and 

-RE coefficients for left turn preferring neurons (Figure 4.4B, C). However, for right 

turn preferring neurons, +R and +RE coefficients were significantly negatively 

correlated and the same was true for -R and -RE coefficients in left turn preferring 

neurons. This result suggests that similar to the example shown in Figure 4.4A, the 

majority of R neurons showed a more suppressed action driven responses during 

sound presentation. Examining the R and RE coefficient pairs revealed that almost all 

fell above the line with slope of -1 (Figure 4.4B, C), suggesting that RE coefficients 

were smaller than R coefficient in absolute value, and thus confirming that RE term 

negatively modulates action driven activities in R neurons. As our model lacks 

temporal resolution, we verified this result by constructing the correlograms between 

inferred spikes from R neurons with the onset of rotary activities broken down by 

turning directions and the presence of sound stimuli (Figure 4.4D, E). For both groups 

of neurons, the peaks of the correlogram had negative lags, suggesting that the onset 

of rotary activities preceded the spikes. For right turn preferring neurons, the 

correlogram with right turns during intertrial interval (no sound period) had the 

largest peak (Figure 4.4D, right). Similar result holds true for left turn preferring 

neurons (Figure 4.4E, right). We further examined the fluorescence traces and 

inferred spikes, temporally aligned to the onset of rotary activities broken down by 

turning directions and the presence of sound stimuli (Figure 4.4F, G). In both groups 

of neurons, turning in the preferred direction during no-sound intertrial period evoked 
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the largest responses. Lastly, we quantified the suppressive effect of sound 

presentation as a function of cortical layer, by computing the bias index using the 

response amplitude following action onset, i.e., (Respsound-Respno 

sound)/(Respsound+Respno sound). This analysis revealed that L2/3 R neurons showed a 

stronger sound induced suppressive effect (Figure 4.4H). Together, these analyses 

showed that a subset of A1 neurons were selectively activated by the animal’s 

specific action and thus potentially encodes the choice of the animal. Such neuronal 

responses are dynamically modulated by the presence of sound, which could provide 

a substrate of more complex interactions between sound and action within A1. 
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(A) Top two rows: example left- and right-turning rotary activities are plotted. Rotary 

activities during sound presentations are plotted in orange. Inter-trial rotary activities 

are plotted in blue. Bottom two rows: fluorescence trace and inferred spikes from one 

example action sensitive (R) neuron from the same behavioral session. This neuron 

was preferentially sensitive to left turns, and its response amplitude tended to be 

smaller during sound presentations (arrow heads) than during inter-trial intervals (no 

sound, arrows). (B) Left: boxplot showing the coefficients of right turn preferring R 

neurons. In these neurons, +R and +RE term coefficients are more prominent than the 

negative counterparts. Right: scatter plot showing the joint distribution of +R and 

+RE coefficients. +R and +RE coefficients had a significantly negative correlation 

(p=1.5×10-228). The black solid line is of slope -1. (C) The same as in (B) but for left 

turn preferring R neurons. For these neurons, -R and -RE coefficients also had a 

Figure 4.4 Action sensitive (R) neurons showed sound dependent activities 
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significantly negative correlation (p<10-4). (D) Left: the correlogram between inferred 

spikes of right turn preferring R neurons and the onset of rotary activities broken 

down by both turn directions (right vs. left) and sound presence (sound vs. no sound). 

Right: boxplot showing the peak value of the correlogram under the four conditions. 

The peak correlogram values were higher during no sound period than during sound 

presentation for both right and left turns (Wilcoxon sign rank test, right, no sound vs. 

right, sound, p=2.1×10-74; left, no sound vs. left sound, p=2.9×10-32). (E) Same as in 

(D) but for left turn preferring R neurons. Similarly, the peak correlogram values 

were higher during no sound period than during sound presentation for both right and 

left turns (Wilcoxon sign rank test, right, no sound vs. right, sound, p=1.6×10-91; left, 

no sound vs. left sound, p=1.7×10-152). (F) Left and middle: the fluorescence and 

inferred spike traces of right turn preferring R neurons, temporally aligned to the 

onset of wheel turning and broken down by the turning directions and the presence of 

sound. Right: boxplot showing the ΔF/F following the wheel turning onset, broken 

down by the four conditions. ΔF/F values following wheel turning were higher during 

no sound than during sound presentation (Wilcoxon sign rank test, right, no sound vs. 

right, sound, p=1.0×10-68; left, no sound vs. left sound, p=2.1×10-33). (G) Same in (F) 

but for left turn preferring R neurons. Similarly, ΔF/F values following wheel turning 

were higher during no sound than during sound presentation (Wilcoxon sign rank test, 

right, no sound vs. right, sound, p=5.9×10-107; left, no sound vs. left sound, p=8.5×10-

96). (H) Boxplot showing the bias indices quantifying the strength of the suppressive 

effect of sound to neuronal responses evoked by wheel turning, broken down by 

neuron groups (left or right turn preference) and cortical layer. More negative values 
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suggest stronger suppressive effects. For both right and left turn preferring neurons, 

the suppression strength was higher in L2/3 than L4 (Wilcoxon sign rank test, right 

preferring neuron, p=4.3×10-4; left preferring neuron, p=6.2×10-8).  

 

 

A subset of sound and action jointly sensitive neurons encode the spectrum boundary 

of the behavioral paradigm 

 We identified a group of neurons that were sensitive to actions specifically 

during sound presentation (RE, Figure 4.3B). Figure 4.5A shows one such neuron, 

which responded preferentially to left turns during trials but not during intertrial 

intervals. Similar to R neurons, RE neurons can be further separated depending on 

their sensitivity to left or right turns (Figure 4.5B, C). For right turn preferring RE 

neurons, their +RE coefficients were larger than +R coefficients, while left turn 

preferring RE neurons showed larger -RE coefficients than -R coefficients. These 

results confirm that RE neurons were driven by actions specifically during sound.  

 Due to the design of our interactive behavior paradigm, the carrier frequency 

cannot increase beyond the upper limit of the spectrum (40 kHz) or decrease below 

the lower limit of the spectrum (10 kHz). Thus, any wheel turning beyond these 

spectrum boundaries would essentially produce no carrier frequency change and 

result in a decoupling between the action and sound (DCP, Figure 4.5D). One goal of 

the current study is to introduce perturbations in the form of DCP (“Delay Sound” 

and “Stop Frequency” perturbations, see below) during the interactive task to induce 

error responses. However, DCP happens naturally at the spectral boundaries due to 
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the design of the experiments. We thus hypothesize that A1 neurons could be 

sensitive to this form of DCP intrinsic to the task. Nevertheless, as DCP happened 

during wheel turning, DCP and RE events were closely temporally related (Figure 

4.5E) and thus difficult to distinguish with the coarse temporal resolution of our first 

model (0.5 sec window). Given this reason, true DCP sensitive neurons could be a 

subset of the RE neurons. We explored this possibility first by examining the 

correlogram between RE neurons’ inferred spikes and motion onset and the 

correlogram between spikes and the onset of DCP events (Figure 4.5F, G). For both 

left and right preferring RE neurons, their inferred spikes had shorter lags from DCP 

event onset than from motion onset, which suggests that these responses could be 

more directly driven by DCP events. Next, we used a model with higher temporal 

resolution to address this question (Figure 4.5H). First, we expressed the wheel 

turning events and DCP events by shrinking these events to their onset time with 

corresponding event size (Figure 4.5H, left top). Next, we convolved these events 

with a set of 9 tent bases spanning 2 seconds (Figure 4.5H, left bottom) to get the 

predictors (Figure 4.5H, right). We fit the inferred spikes from RE neurons to these 

predictors and examined their explanatory powers (Figure 4.5I). For RE predictors, 

the 3rd basis had the highest ΔR2 while for DCP predictors, the 1st and 2nd basis had 

the highest ΔR2, which further suggests that RE neurons’ responses were more 

temporally aligned with DCP onset. In addition, DCP predictors had a larger overall 

ΔR2 than RE predictors (Figure 4.5I), suggesting that DCP could better explain the 

responses. We assigned the subset of neurons that had higher DCP ΔR2 as DCP 

neurons while the rest as RE neurons (Figure 4.5J). Next, we examined the 
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fluorescence and inferred spike traces temporally aligned according to the DCP onset 

in both DCP and RE neurons (Figure 4.5K). DCP neurons had a larger increase in 

ΔF/F following the DCP onset than RE neurons (Figure 4.5K). The inferred spike 

trace showed that DCP neurons had a sharp increase in firing rate following DCP 

onset. We further separated DCP neurons based on their turn direction selectivity and 

both right and left turn preferring DCP neurons showed the most responses following 

the DCP onset (Figure 4.5L, M). Together, these results suggest that a subset of sound 

and action jointly sensitive neurons indeed responded robustly to the DCP of action 

and frequency at the spectrum boundary. Their responses could be interpreted as error 

signals, as the relationship between action and carrier frequency changes breaks down 

at the spectrum boundary. These responses could also guide the behavior of the 

animal as they signal reaching the target zone. 
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(A) Top two rows: example left- and right-turning rotary activities from one active 

Figure 4.5 A subset of action-sound jointly sensitive neurons encode the spectrum 

boundary of the task paradigm 
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session. Rotary activities during sound presentations are plotted in orange. Inter-trial 

rotary activities are plotted in blue. Bottom two rows: fluorescence trace and inferred 

spikes from one example action-sound jointly sensitive (RE) neuron from the same 

behavioral session. This neuron was preferentially activated by left turns during trials 

(arrow heads). (B) Left: boxplot showing the coefficients of right turn preferring RE 

neurons. In these neurons, the +RE term had the most prominent coefficients. Right: 

scatter plot showing the joint distribution of +R and +RE coefficients. +RE 

coefficients were higher than +R coefficients (Wilcoxon rank sum test, p=9.6×10-25). 

The black solid line is of slope 1. (C) The same as in (B) but for left turn preferring 

RE neurons. Similarly -RE term coefficients were larger than -R coefficients 

(Wilcoxon rank sum test, p=1.7×10-69). (D) The rotary (top) and frequency (bottom) 

trajectory of an example trial. The decoupling (DCP) period where the rotary 

activities were not translated into carrier frequency changes due to the spectrum 

boundary was labeled in black in both plots. The dotted line marks the onset of the 

action while the dashed line marks the onset of the DCP period. (E) The correlogram 

between onset of left turn events and the onset of DCP at low frequency target zone 

(DCP LTZ, purple curve) and the correlogram between onset of right turn events and 

the onset of DCP within the high frequency target zone (DCP HTZ, orange curve) are 

shown. Both correlograms peaked at around -0.2 sec. The solid lines represent the 

mean, while the shaded regions represent standard deviation. (F) Left, the 

correlogram between inferred spikes of right turn preferring RE neurons and the onset 

of either motion (left or right turn) or DCP events (LTZ and HTZ). Spiking activities 

had a shorter lag from HTZ DCP events than from right turn onset (Wilcoxon sign 
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rank test, p=9.2×10-11). (G) Same as in (F) but for left turn preferring RE neurons. 

Spiking activities had a shorter lag from LTZ DCP events than from left turn onset 

(Wilcoxon sign rank test, p=2.6×10-12). (H) Left top: we expressed the rotary 

activities and DCP from the example in (D) by assigning the amplitude of these 

events (measured in degrees) to the respective onset time. In this example, the left 

turning event was of ~70 degrees from the motion onset to the end of the DCP period. 

The DCP event was of size ~20 degrees. These events were then convolved with a 

basis set spanning 2 seconds (left bottom) to construct predictors with frame rate 

temporal resolution (right, top and bottom). (I) Left and middle: the ΔR2 and 

coefficients as a function of the 9 bases plotted separately for RE and DCP predictors. 

For RE predictors, the 3rd basis had the most explanatory power, while for DCP 

predictors, the 1st and 2nd basis had the most explanatory power. Right: boxplot 

showing the group ΔR2 from all bases plotted as a function of RE and DCP. DCP 

predictors had higher ΔR2 than RE predictors (Wilcoxon sign rank test, p=2.2×10-6). 

(J) The scatter plot showing the joint distribution of group ΔR2 of RE and DCP term. 

We identified the putative DCP sensitive neurons as the subset of neurons with higher 

DCP group ΔR2. The solid line has a slope of 1. (K) Left and middle: the fluorescence 

and inferred spikes of RE and DCP neurons as grouped in (I) were temporally aligned 

to the onset of DCP and plotted. DCP neurons showed larger responses following 

DCP onset compared to RE neurons (right, Wilcoxon rank sum test, p=1.3×10-15). (L) 

Left and middle: fluorescence and inferred spike traces of HTZ DCP preferring 

neurons temporally aligned to the DCP onset. These neurons had larger ΔF/F 

responses to right turn induced DCP (right plot, Wilcoxon sign rank test, p=1.0×10-9). 
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(M) Left and middle: same as (L) but for LTZ DCP preferring neurons. These 

neurons had larger ΔF/F responses to left turn induced DCP (right plot, Wilcoxon 

sign rank test, p=2.0×10-39). 

 

Delay Sound (DS) perturbations induced both action driven and sound driven error 

responses  

The identification of DCP sensitive neurons indicate that A1 neurons can 

signal errors induced by the mismatch between action and carrier frequency change. 

However, the DCP at the boundary of the spectrum is intrinsic to the task design and 

thus we hypothesize that such DCP was expected by the animal. In order to actively 

violate the expectations of the animal, we introduced two forms of perturbation: 

“Delay Sound” (DS) and “Stop Frequency” (SF). DS perturbations aimed to 

perturbate the timing relationship between action and sound (perturbate “when”) 

while SF perturbations aimed to perturbate the sensory feedback (perturbate “what”). 

Figure 4.6A shows an example DS trial. We introduced a delay of 1 sec 

between the action and the carrier frequency change. Due to the delay, the carrier 

frequency remained same throughout the first 1 sec. Thus, any action during this 

period triggered an action induced DCP event (DCPA). After the 1 sec delay, carrier 

frequency started changing, but as it was not matched to the concurrent action, this 

triggers another DCP event but induced by sound (DCPS). In order to identify error 

responses triggered by DCPA or DCPS, we built a second linear model focused on the 

2 sec after the action onset (Figure 4.6A). We constructed the predictors from 4 

nonoverlapping time windows of 0.5 sec (Figure 4.6B). The first two windows fell 
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within the first 1 sec, which we denoted as the action window, while the other two 

windows fell within the second 1 sec, which we denoted as the sound window. Each 

trial thus contributed 4 data points to the model. In addition to DS trials, we also 

included non-DS (NDS) trials and playback of DS trials (DSPB). We only selected 

DS and NDS trials that resulted in hits where the animals showed a sufficient amount 

of turning, which was comparable across DS and NDS trials and resulted in similar 

frequency trajectories despite the delay in DS trials (Figure 4.6C). In the action 

window, both DS and NDS trials had wheel turning activities, while only NDS trials 

had corresponding frequency changes. DSPB trials shared the same frequency 

trajectories as DS trials but lacked wheel turning activities (Figure 4.6C, see also 

Figure 1D). These trials thus allowed us to distinguish the contribution from factors 

other than DCPA or DCPS to the neuronal responses. We proceeded to fit the model 

and identified different feature sensitive using a similar approach as in Figure 2B, and 

the average fluorescence traces from each group showed distinct patterns (Figure 

4.6D). Most notably, DCPA showed the most prominent responses in the action 

window during DS trials while the responses were much weaker during NDS trials in 

the action window. In contrast, DCPS neurons showed prominent responses in the 

sound window in DS trials while the responses in the action window in NDS trials 

and the responses in the sound window in DSPB trials were also weaker. Other 

feature sensitive groups of neurons did not show such selectivity to DCP features. For 

example, the R neurons showed highly similar responses in the action window in both 

DS and NDS trials. The responses of DCPA and DCPS were also highly selective 

(Figure 4.6E). For DCPA neurons, their responses were mostly explained by either 
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DCP at the low frequency target zone (resulted from right turns) or at the high 

frequency target zone (resulted from left turns). For DCPS neurons, their responses 

were evoked by either up frequency sweep or down frequency sweep. Thus, these 

error responses not only encoded the presence of DCP events, but they also encoded 

the specific content of the DCP events. 

We proceeded to quantify the strength of these error signals. For DCPA 

induced errors, we computed the bias index between responses from the action 

windows in DS and NDS trials. For DCPS induced errors, we computed the bias index 

using the responses from the sound window in DS trials and responses from the 

action window in NDS trials. Among all feature sensitive neurons, DCPA and DCPS 

neurons showed the most positive bias indices and thus showed the strongest error 

responses (Figure 4.6F, G). These results suggest that our approach indeed identified 

putative error responses induced by DCPA and DCPS. 

Next, we investigated whether such error signals had any dependence on 

cortical layers. First, we quantified the fraction of neurons in L4 and L2/3 that 

showed either DCPA or DCPS induced responses, but we found no difference. 

Similarly, L4 and L2/3 neurons showed no difference in the strength of either DCPA 

error responses or DCPs error responses (Figure 4.6I). Overall, these results suggest 

that these error signals were similarly represented in L4 and L2/3 of mouse A1. 
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(A) The frequency (blue solid curve) and rotary trajectories (orange solid curve) of 

one example DS trial are shown. The dotted dash curve shows the “would-be” 

frequency trajectory without the DS perturbation. Two forms of DCP (action induced, 

DCPA and sound induced DCPS) are marked in dark and light gray, respectively. Four 

windows of 0.5 sec duration were placed following the onset of the action to extract 

Figure 4.6  “Delay-Sound” (DS) perturbation induced error responses in a subset of 

A1 neurons 
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the predictors as shown in (B). (B) The predictors extracted from the example trial in 

(A). (C) Left: average absolute rotary speed as a function of trial conditions. DS: 

delay-sound trials; NDS: non-delay-sound trials; DSPB, playback of delay-sound 

trials. Right: the corresponding absolute frequency trajectories of the three trial 

conditions. (D) Top: feature sensitive neurons were grouped according to their 

maximum ΔR2 term. The horizontal lines represent the mean while the vertical lines 

represent standard deviation. Bottom: the average fluorescence traces from the 

corresponding feature sensitive neuronal groups as a function of trial conditions. The 

solid curves represent the mean while the shaded regions represent 95% confidence 

intervals. The dotted vertical lines mark the action onset while the dashed line mark 

the onset of the delayed frequency sweep. (E) Scatter plots showing the joint 

distribution of ΔR2 of the LTZ and HTZ term for DCPA neurons (top) and the joint 

distribution of ΔR2 of the up sweep and down sweep term for DCPS neurons. Both 

groups of DCP neurons showed a high selectivity for a single feature. (F) Left: DCPA 

bias index as a function of different feature sensitive groups shown in (D). The more 

positive the value of the bias index is, the higher the strength of the action induced 

error signal. Right: the multiple comparison between the different feature sensitive 

groups. (G) Left: DCPS bias index as a function of different feature sensitive groups 

shown in (D). The more positive the value of the bias index is, the higher the strength 

of the sound induced error signal. Right: the multiple comparison between the 

different feature sensitive groups. (H) Boxplot showing the percentage of neurons in a 

FOV that were assigned to either DCPA or DCPS groups as a function of cortical 

layer. There was no difference across layers (L4 vs. L2/3, Wilcoxon rank sum test, 
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DCPA, p=0.89; DCPS, p=0.26). (I) Boxplot showing the DCPA and DCPS bias indices 

as a function of cortical layer within DCPA and DCPS neurons, respectively. DCPA 

bias index showed no difference across layers (Wilcoxon rank sum test, p=0.42). 

DCPS bias index also showed no difference across layers (Wilcoxon rank sum test, 

significance adjusted with Bonferroni correction, p=0.032). 

 

“Stop-Frequency” (SF) perturbations evoked frequency specific error responses in a 

subset of A1 neurons 

The DS trials introduced action driven DCP events at the two starting 

frequencies. To further probe frequency dependency of DCP induced error responses, 

we introduced a second form of perturbation, i.e., “Stop-Frequency” (SF) 

perturbations. In SF trials, as the carrier frequency approached one of the SFs, 

randomly chosen for a given trial, the frequency stream would be ‘frozen’ for a brief 

period (0.25 sec) at the SF and thus introducing a frequency dependent DCP (Figure 

4.7A). This brief action driven DCP created a deviation from the “would-be” 

frequency trajectory and we hypothesize that A1 also encodes DCP at these SFs and 

the amplitude of the DCP responses could be layer dependent.   

To identify the neurons that were sensitive to DCP at these 4 SFs, we 

constructed a similar model to that of the DS perturbation but focused on the time 

immediately before and after the onset of the SF (see Method). Both SF trials and the 

corresponding PB trials were included, such that the contribution of sound feature 

selectivity to the responses could be accounted for. We also included non-perturbated 

ACT trials where the frequency trajectories were similar to the perturbated trials 



 

 

 

191 

 

immediately before the SF onset (Figure 4.7B, SIM trials). The similarity of the 

frequency trajectory and the presence of wheel turning activities help to account for 

the contributions from these factors to the neuronal responses. We hypothesize that 

true DCP responses are specific to SF trials and thus DCP sensitive neurons should 

show weaker responses to SIM and PB trials.  

With this approach, we fitted a linear model using LASSO and we could 

identify neuronal groups that were sensitive to different features (Figure 4.7C).  Next, 

we examined the response profile of these groups of neurons (Figure 4.7D). Except 

for DCP neurons, all other groups showed rather similar responses in SF and SIM 

trials, suggesting a lack of selectivity to DCP. In E, ET, S and ST neurons, PB trials 

tend to evoke larger responses, confirming a more suppressed state in ACT trials (see 

also Figure 2). R neurons showed similar responses in SF and SIM trials, with little 

activation in PB trials, confirming their sensitivity to actions. Moreover, these groups 

of neurons showed responses before DCP onset and thus were driven by factors other 

than DCP. In contrast, DCP neurons showed responses after DCP onset while 

showing much weaker responses in both SIM and PB trials. Thus, these neuron’s 

responses cannot be accounted for by stimulus selectivity as well as the animal’s 

action, and thus likely represent bona fide error responses. We quantified the strength 

of the error responses by computing a bias index between the response amplitude of 

the SF trials and the response amplitude of the SIM trials, i.e., (RespSF - 

RespSIM)/(RespSF + RespSIM). This analysis confirmed that among all groups of 

neurons, DCP neurons showed the highest selectivity towards SF trials (Figure 5E). 
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Together, these results showed that our approach could identify neurons sensitive to 

SF induced error responses.  

Next, we investigated the frequency dependency of the error responses 

induced by SFs. We could separate DCP neurons into subgroups based on the 

particular SF that neurons were most responsive to (Figure 5F). These neurons 

showed a high degree of selectivity to SFs, as they responded primarily to one SF, 

which we defined as their Best SF (BSF). They also showed corresponding albeit 

weaker responses to the same SF in the PB trials, which suggests that these SF 

responses could be related to their tuning properties. Out of the total DCP neurons 

identified responding to SF (n=644, both layers included), 178 showed significant 

responses to pure tones in the passive setting. We plotted the BSFs against the BFs in 

these subset of tone responsive neurons and we found a positive relationship between 

BSFs and BFs within the spectral boundary (10 to 40 kHz, Figure 4.7G). This 

relationship holds both in L4 and L2/3. In addition, we quantified the distance 

between BSF and the closest frequency that evoked significant responses within the 

tuning curves of these neurons. The distribution of the distance centered around zero 

for both L4 and L2/3 (Figure 4.7G, right). These results suggest that in tone 

responsive DCP neurons, their SF selectivity is closely related to their tuning 

selectivity.  

As the majority of these DCP neurons showed no tone responses, we 

investigated whether their SF selectivity could be predicted from the tuning properties 

of their local population. For this purpose, we defined local BF (LBF) as the 

frequency that most neurons responded to within a radius of 100 µm. We plotted the 
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BSF against LBF, but we failed to find any relationship between the two measures 

(Figure 4.7H). This result shows that the SF selectivity is best predicted by the 

neuron’s own tuning while the local population’s frequency selectivity failed to 

predict SF selectivity, possibly due to the large variability in the local tuning 

preference (Bandyopadhyay et al., 2010; Rothschild et al., 2010). 

Next, we investigated whether the encoding of SF induced error responses 

was layer dependent. We first quantified the fraction of SF responsive DCP neurons 

in L4 and L2/3, where we found no difference (Figure 4.7I). Next, we compared the 

strength of the error responses by computing the response bias index between SF and 

SIM trials defined as in Figure 4.7E and we found no difference in this measure 

(Figure 4.7J). These results suggest that L4 and L2/3 encode the SF induced error 

responses to a similar degree, mirroring the results from DS perturbations (Figure 5I).  

The introduction of multiple SFs allowed us to investigate the correlational 

structure between neurons that were of different feature sensitivity, and we 

hypothesize that DCP neurons could have functional connectivity. To investigate this, 

we computed the noise correlation (NC), a measure that quantifies stimulus 

independent variability among neuronal pairs, either between DCP neurons and other 

feature groups of neurons (E, S and R, cross-group) or within DCP neurons (intra-

group). We found that DCP neurons had the highest NC with other DCP neurons, 

while their NC with R neurons were higher than NC with E or S neurons (Figure 

4.7K). We also found a consistently higher NC among neuronal pairs in L4 than in 

L2/3. These results suggest that DCP neurons form stronger functional networks 

within themselves while sharing stronger functional connectivity with action sensitive 
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neurons than sensory information sensitive neurons. These functional connections 

could underlie their highly nonlinear selectivity towards SF perturbations.  
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(A) Example frequency and rotary trajectories of an example SF perturbation trial. 

Left: the orange solid line shows the frequency trajectory and the period marked in 

black indicates the occurrence of the perturbation, where the carrier frequency was 

frozen despite the rotary activity. The dash-dotted line shows the frequency trajectory 

if the perturbation had not been introduced. Right: the gray line shows the 

corresponding rotary activity of the trial, and the perturbation period was marked in 

black. (B) Left: the frequency trajectory of an example active trial with perturbation 

(red) and the frequency trajectory of an example SIM trial (purple) that shared a 

similar frequency trajectory to the SF trial immediately before DCP onset (marked in 

black). Right: the average absolute difference in frequency trajectories between SF 

trials and SIM trials. The difference was negligible before the perturbation onset and 

increased after perturbation onset. (C) The group ΔR2 of identified feature sensitive 

neurons are shown. (D) Average ΔF/F traces from SF, SIM and PB trials from the 

corresponding feature sensitive neurons as shown in (C). Solid lines show average 

across neurons while the shaded regions show 95% confidence interval. The vertical 

dotted lines indicate the onset of SF perturbation. The black bar indicates the duration 

of the SF perturbation. (E) Left: the bias indices quantifying the difference between 

SF and SIM trials were plotted as a function of feature sensitivity. Right: the multi-

comparison table between the groups is shown. (F) DCPA neurons showed distinct 

preference for SFs and neurons could be categorized by the SF that evoked the largest 

response. Each panel shows the average ΔF/F responses over the subpopulation of 

Figure 4.7 “Stop-frequency” (SF) perturbations induced DCP responses at 

frequencies outside target zones 
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neurons with the same SF preference. (G) Left: for neurons showed passive tone 

responses, the SF that each DCP neuron was most sensitive to (Best Stop Frequency, 

BSF) was plotted against the neuron’s best frequency (BF). BSF and BF were 

positively correlated within the carrier frequency boundary (10 and 40 kHz, marked 

by the dotted lines). The linear fit was plotted in dash lines (L4, slope=0.58, 

p=2.9×10-5; L2/3, slope=0.59, p=3.0×10-7). Right: for the same subset of tone 

responsive DCP neurons, the distance of BSF to the nearest frequency that evoked 

significant responses was shown as a function of cortical layer. Both distributions 

centered around zero. (H) Local BF (LBF), the frequency evoking the most responses 

from neurons within a radius of 100 µm of DCP neurons, was plotted against the 

DCP neurons’ BF. LBF was not correlated with BSF in DCP neurons (L4, 

slope=0.12, p=0.11; L2/3, slope=0.01, p=0.87). (I) Boxplot showing the bias indices 

from DCPA neurons as a function of cortical layer. No difference was found between 

L4 and L2/3 (Wilcoxon rank sum test, p=0.080). (J) Boxplot showing the fraction of 

neurons per FOV identified as SF responsive as a function of cortical layer. No 

difference was found between L4 and L2/3 (Wilcoxon rank sum test, p=0.26). (K) 

Left: cross-group noise correlation (NC) between DCP and E, S, R neurons (column 

1-3) and intra-group noise correlation within DCP neurons (4th column). Vertical 

lines show the mean and the vertical lines show the SEM. L4 vs. L2/3, Wilcoxon rank 

sum test, NC DCP and E p=0.0012; NC DP and S, p=0.0058; NC DCP and R, 

p=2.6×10-5; NC DCP vs DCP, p=4.6×10-11. Right: the multiple comparison table 

showing the difference of NC regardless of cortical layer. 
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Feature sensitive neurons form spatial clusters 

 Lastly, we investigated the spatial distribution of different feature sensitive 

groups of neurons. Figure 4.8A shows two example FOVs from L4 and L2/3 

respectively with identified feature sensitive neurons color coded. We hypothesize 

that neurons from the same feature sensitive group could form spatial clusters. To 

investigate this, we computed a homogeneity index (Deneux et al., 2016) that 

quantifies the fraction of neurons belonging to the same group within a 100 µm radius 

and compared the distribution of values against shuffled data where the identity of 

neurons were assigned to randomly selected neurons in the FOV. This analysis 

revealed that all feature sensitive neurons were more likely to cluster with neurons of 

the same identity and thus were non-uniformly distributed in both L4 and L2/3 

(Figure 4.8B, C). We further asked if this clustering also extended to neurons of 

different feature groups. For this purpose, we computed the fraction of neurons that 

belonged to other feature sensitive groups than the neuron at the center of the radius 

and compared the distribution of values against shuffled data (Figure 4.8D, E). The 

majority of the comparisons produced insignificant results, which suggest that 

neurons of different feature sensitive groups were largely randomly scattered across 

FOVs, despite their within-group spatial clustering, which might facilitate the 

interaction between neurons encoding different behaviorally relevant information by 

superimposing their spatial locations. 
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(A) Two example FOVs from L4 and L2/3 respectively showing the spatial 

distribution of feature sensitive neurons. DCP neurons contain all identified DCP 

sensitive neurons, i.e., spectral boundary, DS or SF sensitive neurons. E neurons 

contain both E and ET sensitive neurons from Figure 2. S neurons contain both S and 

ST sensitive neurons from Figure 2. R neurons contain both R and RE (excluding 

boundary sensitive neurons) from Figure 2. The black scale bar represents 100 µm. 

(B) and (C) The homogeneity indices that quantifies the fraction of local population 

Figure 4.8 Feature sensitive neurons form local clusters 
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of neurons that belong to the same category are shown as a function of cortical layer. 

Data from all FOVs were pooled together. In both L4 and L2/3, each feature sensitive 

group showed significant within group clustering as actual data showed higher 

homogeneity indices than shuffled data (Wilcoxon rank sum test, data vs. shuffle, L4: 

E, p=2.2×10-128; S, p=4.9×10-29; R, p=8.2×10-22; DCP, 9.4×10-17; L2/3: E, p=7.9×10-

41; S, p=9.4×10-10; R, p=6.3×10-50; DCP, 8.9×10-12). The markers show the mean 

while the vertical lines show the 95% confidence interval of the mean. (D) The cross-

group homogeneity indices are shown as a function of the feature groups for L4. Each 

panel shows whether other feature groups spatially cluster in the vicinity of one 

particular feature group, e.g., the first panel shows the fraction of each group around 

E neurons. One tailed Wilcoxon rank sum test (significance adjusted with Bonferroni 

correction), E neurons: E vs. S, p=1; E vs. R, p=1; E vs DCP, p=4.1×10-5; S neurons: 

S vs. E, p=0.21; S vs. R, p=0.96; S vs. DCP, p=4.1×10-5; R neurons: R vs. E, p=1; R 

vs. S, p=1; R vs. DCP, p=0.56; DCP neurons: DCP vs. E, p=2.0×10-5; DCP vs. S, 

p=0.0026; DCP vs. R, p=0.29. (E) The same as in (D) but for L2/3 neurons. One 

tailed Wilcoxon rank sum test (significance adjusted with Bonferroni correction), E 

neurons: E vs. S, p=0.81; E vs. R, p=1; E vs DCP, p=0.022; S neurons: S vs. E, 

p=0.12; S vs. R, p=0.028; S vs. DCP, p=0.061; R neurons: R vs. E, p=0.97; R vs. S, 

p=0.081; R vs. DCP, p=5.5×10-6; DCP neurons: DCP vs. E, p=8.2×10-5; DCP vs. S, 

p=0.30; DCP vs. R, p=0.022. 
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Discussion 

 In this study, we trained mice to perform a novel and interactive auditory task 

while imaged large populations of neurons in A1. We identified separate groups of 

neurons sensitive to sound or action related information, and we showed that while 

L4 contained more sound encoding neurons, L2/3 contained more action driven 

neurons. For sound encoding neurons, their responses were typically more suppressed 

during active sessions than during passive sessions. Furthermore, we identified two 

groups of action sensitive neurons. One group was activated by actions both within 

trials and during intertrial intervals. However, their responses were more suppressed 

during trials where sound was presented. The second group of neurons were 

preferentially driven by the joint presence of action and sound, and we further show 

that a subset of these neurons encode the spectral boundary of our interactive task. 

Next, we introduced two forms of perturbations, i.e., “Delay-Sound” and “Stop-

Frequency”, to evoke error responses in A1. We identified neurons in L4 and L2/3 

that were selective to these perturbations, but we did not observe a difference in the 

strength of these error signals across the cortical layer. Finally, we show that the 

identified feature sensitive neurons were spatially clustered. Together, our results 

show that given our interactive behavioral task, a significant portion of A1 neurons 

were dedicated to encoding action related information, which could give rise to the 

highly nonlinear responses we observed either at the spectral boundary or evoked by 

the DS and SF perturbations.  
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 Our interactive behavioral design has allowed us to systematically manipulate 

the coupling between action and sound feedback, such that error responses could be 

evoked. This approach is inspired by studies in the visual system where visual flow 

mismatch evoked error responses in the mouse visual cortex (Keller et al., 2012; 

Zmarz and Keller, 2016). The continuous coupling between wheel turning and the 

carrier frequency change is similar to the coupling of running behavior and the visual 

flow feedback. In such designs, the animal’s action actively modulates the attribute of 

the sensory feedback, and we believe such tight coupling better engages the 

predictive mechanism in the brain. In the auditory system, similar efforts have been 

made to couple the animal’s action, e.g., locomotion or lever pushing, with the 

auditory feedback (Rummell et al., 2016; Schneider et al., 2018; Audette et al., 2021). 

In these studies that employed a simple coupling, the sound was often only secondary 

to the task and might not necessarily require attention to the sound per se (Audette et 

al., 2021). Our task introduced a more complex mapping between sound and action 

while requiring the animal to pay attention to the sound presented, i.e., the direction 

of the turn depends on the initial frequency of the sound stream. Thus, the design of 

the current study is more suitable for the predictive coding framework.  

 In our task we used wheel turning to report the animal’s behavior. We 

monitored the turning activities throughout the entire experiment session and together 

with the sound information, we were able to rule out responses due to sound and 

action while identifying putative bona fide error responses. Consistent with previous 

reports (Musall et al., 2019), we observed considerable action induced responses in 

A1 and identified action sensitive neurons through linear regression. What’s more, we 



 

 

 

203 

 

found neurons responding specifically to reward consumption and these responses 

were robust and consistent. These findings further call for a disassociation of choice 

reporting behavior (wheel turning) and reward consuming behavior (licking) as the 

latter could produce responses that resemble sensory processing. In an interactive task 

design, it is impossible to temporally separate sensory processing signals from motor 

signals, and thus it requires the modeling approach, e.g., linear regression, to explain 

neuronal responses.  

 The above approach allowed us to identify neurons with specific selectivity to 

wheel turning directions. These neurons were activated by the animal’s action, and it 

is possible that these neurons receive long range input from motor related areas. It has 

been shown that both primary (M1) and secondary motor cortex (M2) have 

projections to A1, and M2 innervate both pyramidal and parvalbumin positive 

neurons in A1, although the net effect of M2 activation in A1 could be feedforward 

inhibition (Nelson et al., 2013; Schneider et al., 2014). On the other hand, basal 

forebrain has also been shown to project to A1 and these cholinergic inputs in A1 are 

active during movement (Nelson and Mooney, 2016). It is thus possible that the 

action sensitive neurons identified in this study receive primarily input from basal 

forebrain given the positive sign of their responses. The selectivity of the turn 

directions in the action neurons also suggest that these neurons were not activated by 

the sound, if any, caused by the movement. In addition, the action neurons were also 

among the least tone responsive. Thus, these action neurons could serve as a 

functional network that broadcasts action specific signal to other A1 neurons, 

potentially giving rise to the action dependent error responses.  
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 In this study, we identified both action driven and sound driven error 

responses in A1. The action driven error responses were evoked when the carrier 

frequency change failed to follow the wheel turning activities, which happened either 

due to the boundary of the frequency spectrum or due to the introduction of the 

perturbations. The error responses evoked by these decoupling events thus represent a 

highly nonlinear sensitivity to the combination of a stationary carrier frequency and 

concurrent wheel turning. These error responses could be interpreted as signaling the 

violation of the fundamental rule of the task, i.e., turning the wheel changes the 

carrier frequency. On the mechanism level, these responses could result from the 

nonlinear interactions between action encoding and sound encoding neurons. In DS 

trials, the action driven error responses were time locked to the onset of the action, 

while in SF trials, the error responses occurred after the SF onset. These phenomena 

further suggest that these responses can be explained in terms of low-level sound or 

action selectivity, but such selectivity was highly dynamic and dependent on previous 

action and sensory history.  

 One of the key hypotheses of the predictive coding theory is that cortical 

layers could form hierarchical structures in terms of error signaling (Heilbron and 

Chait, 2017). We thus investigated whether the strength of error signals differed 

across L4 and L2/3 in mouse A1. Despite the fact that more L2/3 neurons were action 

sensitive, we did not find a systematic shift in the error response strength across L4 

and L2/3. This finding suggests that cortical layers might not be the minimum 

functional unit in terms of generating error responses, and it is possible that the 

hierarchy exists only across different brain regions.  



 

 

 

205 

 

 In conclusion, we designed a novel interactive auditory task that allowed us to 

probe complex interactions between sound and action in mouse A1. We identified 

both sensory information and action sensitive neurons in A1, as well as neurons 

signaling error responses evoked by the decoupling between action and sound. Our 

approach potentially provides a new road map in terms of studying predictive coding 

in the auditory system.  
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Chapter 5. Summary and Discussion 

Summary 

 In this dissertation, I used imaging techniques of various spatial scales to 

study the encoding of different aspects of sound in the mouse auditory cortex (ACX). 

2-photon imaging allowed monitoring of large populations of neurons with high 

spatial resolutions while single photon or widefield imaging allowed monitoring 

activities of different auditory areas. With these techniques, I first studied the 

encoding of sound onset and offset in mouse ACX. I found that offset responses are 

tonotopically expressed over the surface of ACX on the scale of millimeters. With 

single photon imaging, I also found that offset responses dominate ACX, especially at 

high sound levels. At a finer spatial resolution, the ACX neuronal onset and offset 

responses mirror the responses seen at the mesoscale and the cortical offset could be 

resultant from the interplay between cortical microcircuit and thalamic feedforward 

input. Second, I used a modified version of the two-tone paradigm to study the 

inhibitory sideband structures in mouse primary ACX (A1). This paradigm allowed 

me to simultaneously infer the inhibitory sidebands of large populations of neurons. I 

classified excitatory neurons based on the shape of their receptive field (frequency 

response area, FRA) and revealed that both inhibitory sidebands and the amount of 

nonlinear spectral interactions depend on the particular FRA shape. Further, I showed 

that inhibitory neurons also showed inhibitory sidebands. Lastly, I studied the 

encoding of the interaction between sound and action in mouse A1 using a novel 

interactive behavioral paradigm. I found that the encoding of sound stimuli depended 
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on the behavioral state of the animal, and that the responses of the A1 neurons could 

be explained by various factors including their turning behaviors. Furthermore, I 

found that a subset of A1 neurons encode the decoupling between sound and action, 

and thus represent the general rule of the task. Together, these studies provided both 

new knowledge and new methodology on the studying of sound encoding in mouse 

ACX.  

 

Discussion and Future Directions 

Cortical processing of offset responses 

 In Chapter 2, I studied the encoding of sound offset in mouse ACX in not only 

excitatory neurons, but also in inhibitory neurons, as well as in thalamic input. We 

thus hypothesize that cortical offset responses are not generated de novo but rather 

inherited from thalamic feedforward input. However, cortical responses were more 

biased towards offset response than thalamic terminal responses. This result suggests 

that cortical microcircuit further processed sound offset responses and this processing 

could depend on the dynamics between excitatory and inhibitory neurons.  

 In the two types of common inhibitory neurons we studied, parvalbumin 

positive (PV) and Somatostatin positive (SST) showed mostly opposite sign of 

responses to prolonged presentations of tones. SST neurons typically showed a 

graduate increase in fluorescence while PV neurons showed a decrease of 

fluorescence. It is thus possible that SST neurons inhibit both PV and pyramidal cells 
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during the prolonged stimulus, and we hypothesize that because of the slow dynamics 

of the SST neuron’s responses, their inhibition on local PV and pyramidal cells could 

extend for a brief period after the sound termination, causing a brief disinhibition that 

concur with the arrival of the feedforward offset responses relayed by the thalamic 

terminals. Thus, if this hypothesis is true, then inhibiting SST neurons during the 

sound presentation or transiently before the sound offset could reduce the offset 

responses in a local population of pyramidal cells.  

 To specifically test this hypothesis, one could employ optogenetic 

manipulations of SST neurons. Recent development in the generation more efficient 

opsins as well as in spatially and temporally precise manipulations of the neuronal 

populations have made this possible (Marshel et al., 2019). Specifically, one need to 

cross Thy1-GCaMP6s mice (Dana et al., 2014) with SST-cre mice, while injecting 

cre dependent red shifted inhibitory opsins such as Jaws (Chuong et al., 2014). 

Spatially precise targeting of SST neurons could be achieved with spatial light 

modulator (SLM), which is capable of generating arbitrary spatial patterns of 

stimulation (Nikolenko et al., 2008). Combining these approaches thus allows 

spatially and temporally accurate manipulations of the SST neurons, and I expect that 

inhibiting SST neurons either throughout the tone presentation or briefly before the 

tone offset would reduce offset responses in local pyramidal neurons.  
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Spectral tuning in other areas than A1 

 In Chapter 3, I characterized the complex inhibitory sideband in mouse A1 

and I show that the degree of nonlinear spectral interactions is associated with the 

FRA types. However, there had been very few studies focusing on other auditory 

cortical areas such as Anterior Auditory Field (AAF) and secondary auditory cortex 

(A2). Recently, it has been shown that spectrally dense sound stimuli resembling 

vocalizations preferentially active A2 (Kline et al., 2021). Specifically, A2 neurons 

responded more strongly than A1 neurons when the set of harmonics were temporally 

aligned. Therefore, it is possible that A2 neurons integrate spectral energy differently 

than A1 neurons. I have found that A1 neurons receive strong sideband inhibition, 

and A2 neurons could show the opposite effect with both broader spectral tuning as 

well as less sideband inhibition. In terms of AAF, a previous study has shown largely 

similar receptive field properties between A1 and AAF (Linden et al., 2003). 

However, anesthetized animals were used in this study and more recent imaging 

studies also suggest that the canonical tonotopic map used to identify AAF could be 

inaccurate (Issa et al., 2014; Romero et al., 2020). It thus calls for renewed effort to 

revisit spectral tuning in AAF, using imaging technique that allows better locating of 

AAF as well as the monitoring of large ensemble of auditory cortical neurons.  

 Therefore, one future direction to extend the result of Chapter 3 is to 

investigate the tuning properties of the AAF and A2 neurons with the same approach, 

i.e., using a similar two-tone paradigm to simultaneously infer the spectral tunings of 

large populations of neurons. In Chapter 3, efforts were made to classify auditory 

neurons with different FRA shapes. The validity of the classification could benefit 
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from the addition of the FRA shapes from both AAF and A2, which could further 

establish the spectral tuning preference of different auditory fields.  Similarly, the 

same approach could extend to the common inhibitory neurons in AAF and A2.  

 

Interactive behavioral paradigm and cortical hierarchy 

 In Chapter 4, I designed a novel interactive behavioral paradigm with the goal 

to study the encoding of both action and sensory information in mouse A1. In this 

study, I observed significant action driven activities in mouse A1. Several questions 

remained to be addressed in this paradigm.  

 First of all, it is possible that the action driven activities could be the result of 

the form of action used to report animal’s choice, i.e., wheel turning. To address this 

concert, one needs to perform a control experiment where the mouse is required to 

use the wheel for a simple tone discrimination task. This task would require the 

mouse to discriminate between two tones that share the same frequency content as the 

starting frequencies in our interactive behavioral task, i.e., 10 and 40 kHz. The mouse 

would be required to turn left for the 40 kHz and to turn right for the 10 kHz. 

However, in this simple discrimination task, the carrier frequency is not coupled to 

the action, and thus this task in open-loop in nature. I hypothesize that the significant 

action driven activities in mouse A1 are specific to the interactive task, as these action 

driven responses provide a substrate for nonlinear interactions in A1 that gave rise to 

the decoupling induced error responses. Therefore, I would expect that in the control 

experiments with the open-loop design while the animal is required to turn the wheel 
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with the same amount, one would not observe such strong relay of action relevant 

information in A1.  

 Second, it remains to be shown which areas relay the action related 

information in A1. It has been shown that both primary (M1) and secondary motor 

(M2) cortex send long range input into A1 (Nelson et al., 2013). M2 projections in A1 

both synapse onto pyramidal cells and inhibitory interneurons such as PV neurons 

(Nelson et al., 2013). However, it is also shown that the net effect of activating M2 

projections is feedforward inhibitions in A1, which is the opposite of our observations 

in A1. Thus, M2 might not be the candidate region that activates action sensitive 

neurons in our study. Nevertheless, the artificial broad activation of M2 projections 

could mask the potential activations. In addition, extensive training with the 

interactive task could also modify the relative strength of the projection onto 

pyramidal neurons and inhibitory interneurons. Therefore, it remains to be tested 

whether M2 projections are involved in sending action related information to A1.  

 Another candidate for investigation is the basal forebrain (Nelson and 

Mooney, 2016). Although the basal forebrain also innervates both excitatory and 

inhibitory neurons in A1, the net effect of optogenetic stimulation is excitatory and 

thus is more in line with our observation of increased activity triggered by wheel 

turning. It has been shown that the basal forebrain terminals in A1 activate during 

locomotion and thus I expect that it also conveys information related to wheel turning 

to A1.  

 To specifically test the contribution of M2 and basal forebrain, one could 

express calcium indicators of different emission spectrum and simultaneously image 
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the terminal activities in A1 of trained mice. For example, one could use viral 

injection to target M2 for GCaMP6s expression, while targeting basal forebrain with 

RGECO, a red shifted calcium indicator (Dana et al., 2016). By choosing an 

excitation wavelength suitable for both fluorophores, one could perform dual color 

imaging, and thus readout activities from both M2 and basal forebrain. Comparing the 

temporal coherence with wheel turning activities could shed light on which region is 

primarily responsible for driving the action related activities in A1.  

 Thirdly, it is unclear whether the decoupling induced error responses emerge 

in A1 or if it is present in earlier auditory processing stages. To answer this question, 

one would need to perform recordings from auditory subcortical nucleus, such as 

medial geniculate body (MGB) and inferior colliculus (IC). Indeed, it has also been 

shown that M2 also projects to MGB (Nelson et al., 2013). Thus, it is possible that the 

decoupling induced error responses could appear early in the auditory system. 

 Finally, in Chapter 4 I compared the strength of error responses across L4 and 

L2/3 in mouse A1 and I hypothesize that the magnitude of the error responses could 

depend on the cortical layer. However, there was little difference between the L4 and 

L2/3, and both showed similar error responses in terms of action driven decoupling 

and sound driven decoupling. Thus it is likely that the hierarchy, if any, of error 

signaling could exist between auditory processing stages but not necessarily across 

different cortical layers in the same area. Thus, to test this hypothesis, one would 

need to perform similar recording in higher order auditory areas such as A2. 

According to the “Driver-Modulator” theory, A1 L5 neurons project to dorsal MGB, 

which projects to L4 of A2 (Lee and Sherman, 2010). Therefore, A2 presents as a 
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higher order processing stage, and it is possible that the error responses undergo 

further amplification through this pathway. In addition, ACX has also been shown to 

project to primary motor cortex (Zhang et al., 2016) and it remains to be investigated 

how these error signals interact with higher order brain areas and whether the neurons 

carrying error responses in A1 also have long projection targets. To answer this 

question would require a strategy that allows tagging neurons based on their activity. 

One candidate for this purpose would be CaMPARI, a calcium indicator that 

irreversibly changes color upon violet light illumination (Fosque et al., 2015). 

Simultaneous illumination with violet light during the introduction of decoupling 

could potentially label the neurons signaling error responses and their long-range 

projection target, if any, could be examined through histology.  

 Overall, the interactive behavior task design has the potential to provide rich 

information about the integration of action and sound along the auditory pathway, and 

I believe it will be a fruitful path to pursue. 
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