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Although recycling programs have reduced stockpiles of scrap tires in the U.S., vast 

numbers of tires are still deposited throughout landscapes nationwide. Among the most 

important environmental impacts of tires is their degradation when exposed to ultraviolet 

(UV) radiation and, in the presence of water, the resulting leaching of numerous soluble 

inorganic (e.g., zinc) and organic contaminants (e.g., benzothiazoles). Studies have shown 

clear toxicological effects of tire leachate on a few focal aquatic taxa, but there is a lack of 

knowledge on the effects of tire leachate on most aquatic communities. This project 

investigates the relationship of scrap tire contamination on the ecologies of the two most 

broadly distributed mosquitoes in the Eastern U.S., the invasive Aedes albopictus and 

resident Culex pipiens, which engage in strong competition for microbial food in tire 

habitats. The main objectives of this project were to: (1) Assess the impacts of UV-B 

radiation conditions that mimicked full-sun, shade, and no-UV settings in the field on the 

metabolic rates and fitness of Ae. albopictus and Cx. pipiens larvae and associated 



microbial fauna; (2) Compare the effects of full-sun, shade, and no-UV radiation on the 

degradation of tires; (3) Test the hypothesis that tire leachate from tire degradation 

promotes condition-specific competition between Ae. albopictus and Cx. pipiens; and (4) 

Test the effects of tire leachate on Ae. albopictus and Cx. pipiens oviposition. Overall, the 

results of my dissertation indicate that UV-B can have strong effects on the ecologies of 

both Ae. albopictus and Cx. pipiens, both through direct negative effects on metabolic 

processes and fitness, and indirectly through the degradation of tires and the leaching of 

contaminants. The most ecologically interesting impacts of UV-B exposure may be via the 

promotion of condition-specific competition whereby Cx. pipiens appears to have greater 

competitive effects on Ae. albopictus under conditions that promote greater tire 

degradation. Tire leachate does not appear to alter the oviposition behavior of both Ae. 

albopictus and Cx. pipiens. Therefore, the effects of tire leachate on larval ecology is likely 

to be important in dictating the distribution and abundance of both species in tire habitats.  
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Chapter 1 – General Introduction 
 

Study organisms: Aedes albopictus and Culex pipiens 
 

General biology and ecology of mosquitoes 

 

Mosquitoes such as Ae. albopictus and Cx. pipiens are blood-feeding insects of the 

order Diptera and family Culicidae. Mosquitoes undergo complete metamorphosis, 

meaning they have four distinct life stages: egg, larva, pupa, and adult. The egg, larva, and 

pupal stages develop in aquatic environments, and the adult stage in the terrestrial 

environment (Lounibos, 2002a; Becker et al., 2010).  

Mosquitoes oviposit eggs on or near still water in natural containers (e.g., water 

puddles, rock pools, tree holes) or in artificial containers (e.g., discarded tires, bottles, 

buckets, plastic pools). Mosquito eggs may be oviposited singly on the water surface (e.g., 

Anopheles mosquitoes), attached to container surfaces (e.g., Ae. albopictus, Ae. aegypti), 

or in clusters forming rafts of 100 to 300 eggs on top of the water surface (e.g., Cx. pipiens) 

(Becker et al., 2010). Hatching occurs when development is completed, or, for some 

species, when the water level rises sufficiently to immerse the eggs (Clements, 2000) or 

when environmental factors are adequate for the hatching of the offspring (i.e., 

photoperiod) (Lounibos, 2002a; Lounibos et al., 2011).  

Mosquito larvae live in water from 5 to 15 days, depending on water temperature, 

photoperiod, and presence of food resources. Larvae of most mosquito species must come 

to the surface at frequent intervals to obtain oxygen through a siphon. During growth, the 

larva molts four times and the stages between molts are called instars. When the 4th instar 
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larva molts, it becomes a pupa (Becker et al., 2010). Mosquito larvae feed on aquatic 

microbial communities (e.g., bacteria, fungi, protists) that colonize organic detritus (e.g., 

leaf litter, bark, invertebrate carcasses) (Becker et al., 2010). Mosquitoes feed on microbial 

communities using their brush-like mouthparts to either filter-feed through the mouth and 

separating particulate material (e.g., Cx. pipiens) or browse by removing particles from 

surfaces (e.g., Ae. albopictus) (Merritt et al., 1992).   

Mosquito pupae live in water from 1 to 4 days, depending on temperature and 

species. Pupae take in oxygen through two breathing tubes called trumpets. In the pupal 

stage, there is no food ingestion. Once pupae reach the maturation stage they go into a 

metamorphosis into adult mosquitoes, which emerge to the surface of the water where they 

rest until their bodies dry and harden (Becker et al., 2010). In the adult stage, only female 

mosquitoes require blood meals as a source of protein, which is essential for egg 

production. Only female mosquitoes bite. Male mosquitoes do not bite; they feed on the 

nectar of flowers (Becker et al., 2010).   

Aedes albopictus invasion 

 

Aedes albopictus, also known as the Asian tiger mosquito, is a mosquito native to 

the tropical and sub-tropical areas of Southeast Asia. Aedes albopictus is about 2 to 10 mm 

in length with a striking white and black pattern and a characteristic white stripe down the 

center beginning at the dorsal surface of the head and continuing along the thorax. Aedes 

albopictus males are approximately 20% smaller than females. The female lays her eggs 

near water, not directly into it like other mosquitoes. Aedes albopictus are diurnal biters; 

they blood feed on a range of mammals besides humans and also on birds (Estrada-Franco 

and Craig, 1995).   
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In the past 40 years, Ae. albopictus has spread to 28 countries in four continents 

(North and South America, Europe and Africa), mainly through the international used tire 

trade (Benedict et al., 2007; Ngoagouni et al., 2015). Aedes albopictus is the most invasive 

mosquito in the world utilizing a range of artificial containers as developmental habitats, 

including trash receptacles, buckets, tires, birdbaths (Juliano and Lounibos, 2005). Aedes 

albopictus was introduced from Asia into the continental United States in the mid-1980s 

through tire shipments. It was first discovered in a shipment of used tires from Japan in 

Houston, Texas in 1985 (Sprenger and Wuithranyagool, 1986). Since then Ae. albopictus 

has become the most abundant container-dwelling mosquito in the eastern United States 

(Moore and Mitchell, 1997). Mosquitoes are ecologically and medically important (Juliano 

and Lounibos, 2005). Non-native mosquitoes, including Ae. albopictus, have had important 

ecological and human health impacts, such as declines in abundance and/or local extinction 

of resident mosquitoes (Lounibos et al., 2002b) and the spread of disease (Fonseca et al., 

2004; Kim et al., 2005).  

Culex pipiens mosquitoes 

 

Culex pipiens is known as the northern house mosquito or the common house 

mosquito. The northern house mosquito is about 3 to 12 mm in length and its color is 

brownish. It is present in 44 countries on 4 continents (North and South America, Europe, 

and Africa). Culex pipiens lays eggs on still water and at night. One Cx. pipiens female 

may lay up to 300 eggs. The eggs are laid side by side standing erect, and stuck together 

by the legs to form boat-shaped rafts which float on water. The eggs hatch in 1 to 3 days 

and a larva emerges from the lower end of each egg (Markowski, 2015).       
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Culex pipiens was introduced to North America between the 16th and 17th centuries, 

presumably from Europe, and has since become a resident member of the mosquito 

community in its introduced range (Vinogradova, 2000; Lounibos, 2002a). The 

establishment and spread of Cx. pipiens was probably facilitated by the absence of 

competitors at the time of the invasion (Carriere et al., 2003; Constanzo et al., 2005a). 

Currently, Cx. pipiens is distributed in the northern part of the United States and the 

southern part of Canada (Costanzo et al., 2005a). Along the eastern seaboard, it overlaps 

with Ae. albopictus, from northern Virginia to southern Connecticut (Darsie and Ward, 

2005). Culex pipiens is associated with human development and urbanization 

(Vinogradova, 2000; Costanzo et al., 2005a). It is one of the most important vectors of 

West Nile virus (Fonseca et al., 2004). West Nile virus was introduced into the United 

States in 1999 with a genotype known as NY99, which mutated into a novel genotype 

known as WN2, a genotype that is better transmitted and disseminated by Cx. pipiens 

mosquitoes (Kilpatrick et al., 2008).    

Coexistence of Ae. albopictus and Cx. pipiens: Potential ecological mechanisms 

   

Competition among larval mosquitoes is common in container systems where 

allochthonous leaf litter and associated microbial communities (bacteria, fungi, and 

protists) provide the main food resource (Walker et al., 1991; Murrell and Juliano, 2008). 

Understanding how larval competition and species richness affects mosquito survival, 

growth, fecundity and overall population performance under a range of environmental 

conditions is important in better understanding mosquito invasions and vector-borne 

disease risk (Juliano and Lounibos, 2005; Juliano, 2009).  
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Numerous studies have shown that in almost all conditions Ae. albopictus is a 

superior competitor over other mosquito species, including Ae. aegypti (e.g., Murrell and 

Juliano, 2008; Alto et al., 2013), Ae. japonicus (Freed and Leisnham, 2014), Ae. triseriatus 

(Smith et al., 2013), Ae. sirrensis (Kesavaraju et al., 2014), and Cx. pipiens (Carrieri et al., 

2003; Constanzo et al. 2005a; Constanzo et al., 2011). However, although resident 

mosquito species are usually competitively inferior to Ae. albopictus, they appear to coexist 

with the invasive in some areas. Mechanisms governing the coexistence of resident 

mosquito species after Ae. albopictus invasion are still not well understood. Some 

mechanisms have been relatively well documented including interspecific competition, 

keystone predation, aggregation of species, apparent competition, and intraguild predation 

(Blaustein and Chase, 2007), among the most ecologically interesting variation in 

competition across habitat gradients (Juliano, 2009).  

Some studies have shown how changes in environmental conditions by abiotic 

factors have altered or reversed competitive superiority. This ecological phenomenon is 

called condition-specific competition (Blaustein and Chase, 2007). Probably the best 

studied case of condition-specific competition is the competition of Ae. albopictus and Ae. 

aegypti in the Florida region, where Costanzo et al. (2005b) showed that competitive 

superiority of Ae. albopictus over Ae. aegypti under wetter environmental conditions could 

be reversed under dryer environmental conditions. This mechanism probably explains the 

co-existence of Ae. albopictus and Ae. aegypti in Florida (Juliano and Lounibos, 2005; 

Costanzo et al., 2005b; Costanzo et al. 2011). Another example of condition-specific 

competition was reported by Alto et al. (2013), who assessed the effect of Malathion, an 

organophosphate insecticide, widely used in agriculture, on the coexistence of Ae. 
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albopictus and Ae. aegypti. In the absence of Malathion, Ae. aegypti survivorship was 

negatively affected by increasing densities of Ae. albopictus, while Ae. albopictus 

survivorship was not affected by increasing densities of Ae. aegypti. But in presence of 

Malathion, the negative effect of Ae. albopictus competition on Ae. aegypti survivorship 

was eliminated. Apart from these two examples, there has been no research on the role of 

condition-specific competition upon mosquito invasions.       

Study system: Discarded tires 
 

Discarded tires and mosquitoes 

 

In the last 40 years, discarded tires have been implicated in the spread and 

introduction of mosquitoes in many parts of the world, many of them bringing with them 

novel pathogens or vectoring resident pathogenic fauna (Hedberg et al., 1985; Lounibos, 

2002a; Yee 2008a). Invasions of vector mosquitoes like Ae. aegypti, Cx. pipiens, and most 

recently, Ae. albopictus have been facilitated by worldwide ship and aircraft transport, 

especially in water-holding objects like used tires (Lounibos, 2002a). One of the most 

recent examples is the introduction of Ae. albopictus. An established population was 

discovered for the first time at a roadside tire dump in Houston, Texas in 1985 (Moore and 

Mitchell, 1997; Mitchell et al., 1998; McMahon, 2008). 

Discarded tires can be used by mosquitoes for breeding, representing a potential 

human health threat (Evans, 1997). There are millions of used tires discarded annually 

around the globe. The Rubber Manufacturers Association (2017) estimates that each year 

280 million scrap tires are generated in the U.S. and around 67 million tires are in stockpiles 

in the U.S. Of the 32 mosquito species found in tires, Ae. albopictus and Cx. pipiens are 

two of the most abundant species (Yee, 2008a). Aedes albopictus and Cx. pipiens species 



7 

 

co-occur in high abundance in tires in residential areas, sharing limited space and resources 

(Costanzo, 2005a; Macia, 2006; Juliano, 2009). Similar to other container systems, tire 

dwelling mosquitoes often undergo strong inter- and intra-specific interactions that can 

generate phenotypical variations, in addition to genetic variants, which can have an 

important effect on population dynamics (Fish, 1985; Macia, 2006). Inter- and intra-

specific competition during the larval stage can alter adult fitness and vectorial capacity 

(Bradshaw and Holzapfel l986; Himeidan et al., 2013). A shortage of resources in earlier 

instars can result in lower percentages of larval survival and longer larval development as 

well as lower success and smaller size at metamorphosis, which could affect fecundity, 

mating success, and flight capacity as adults (Fisher et al., 1990; Bradshaw and Holzapfel, 

1992; Bradshaw et al., 1993; Hard and Bradshaw, 1993). 

Tire composition 

 

Tires are composed of a complex mixture of chemical substances. Evans and Evans 

(2006) stated that a common sized all-season passenger tire fabricated by Goodyear 

contains 30 kinds of synthetic rubber, 8 kinds of natural rubber, 8 kinds of carbon black, 

steel cord for belts, polyester and nylon fiber, steel bead wire, waxes, oils, pigments, silicas 

and clays. Tires components vary according to the brand and use of the tire (Wik and Dave, 

2005; Wik and Dave, 2009); for this reason, different authors have cited different kinds 

and amounts of metals and organic compounds in tires. Horner (1996) analyzed 10 

different tire makes in the UK for cadmium, lead and zinc. To do this, he cut 5 small pieces 

of 10 g each from discarded tires, and then samples were ashed in a muffle furnace, digested 

in concentrated nitric acid, and analyzed in an atomic absorption spectrophotometer. He 

found that zinc concentrations ranged from 2,524 to 6,012 mg/kg, cadmium concentrations 
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ranged from 0 to 2 mg/kg, and lead concentrations ranged from 8.1 to 22.3 mg/kg. Kreider 

et al. (2010) found concentrations of 9,000 mg/kg of zinc, 12,000 mg/kg of sulfur, 470 

mg/kg of aluminum, 76.5 mg/kg of antimony, and 21.5 mg/kg of copper in tire particles 

that were obtained from unused tires, which were cryogenically ground and sieved to 180 

µm to obtain the ground material for analysis. Tires used by Kreider et al. (2010) were 

Goodyear and Michelin brands, which were analyzed using microwave assisted digestion 

and ICP-AES. Kreider et al. (2010) also analyzed these tires for polycyclic aromatic 

hydrocarbons (PAHs) using gas chromatography coupled with 2D mass spectrometry, 

finding concentrations of 2.95 mg/L of chrysene, 2.87 mg/L of benzo(a)Anthracene, 1.77 

mg/L of benzo(ghi)perylene, 1.62 mg/L of fluoranthene, 1,24 mg/L of acenaphthalene, 

1.21 mg/L of phenantherene, and 1.18 mg/L of naphthalene.  

Toxicity of tire leachate 

 

Tires have historically been considered to be relatively benign in the environment 

unless subjected to high temperatures (Andrady et al. 2003). However, different studies 

suggest that tires contain water soluble compounds that leach into water and have lethal or 

chronic detrimental effects on some aquatic biota (Gualtieri et al., 2005a; Gualtieri et al. 

2005b; Wik and Dave 2006). Most of these studies assessed toxicity of tire leachate using 

the leachate as a combination of pollutants which have a combined effect on biological 

organisms, instead of trying to identify specific contaminants. Wik and Dave (2009) 

highlight that this method is very common in assessing the toxicity of complex chemical 

mixtures like tire leachate, where most of toxic contaminants are unknown. Summarized 

below is an overview of the existing literature on the toxicity of tire leachate on aquatic 

organisms.  
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The study of Day et al. (1993) showed a 96-h median lethal concentration (LC50) 

for Oncorhynchus mykiss (rainbow trout) that ranged from 11.8% to 19.3% (v/v) for 

leachate from used tires and 52.1% to 80.4% (v/v) for leachate from new tires, showing 

that leachate from discarded tires is more toxic than leachate from new tires. This is 

probably because antioxidants and antiozonants have been removed from the surface of the 

tire through wear of tire tread. This in turn could cause cracking of tires which could expose 

fillers and metals inside the tire to humidity and heat, producing higher leachate of 

toxicants. Gualtieri et al. (2005a) found a 72-h half maximal effective concentration (EC50) 

of 0.47 to 1.64 g/L for Pseudokirchneriella subcapitata (a green algae) exposed to tire 

leachate. Wik and Dave (2005) found a 24-h EC50 that ranged from 0.29 to 32 g/l and a 48-

h EC50 that ranged from 0.0625 to 2.41 g/l for Daphnia Magna exposed to leachate from 

tire particles from seven different tire brands. Wik and Dave (2005) also showed that tire 

leachate could increase its toxicity by more than 10-fold after exposure to UV-A radiation 

at 340 nm with a light intensity of 0.5 mW/cm2.   

Tire leachate also exhibits chronic toxicity effects on species such as the marine 

bacterium Photobacterium phosphoreum where bioluminescence is inhibited, Escherichia 

coli where the enzyme β-galactosidase is inhibited, and Spirillum volutans where some 

motility inhibition occurs (Day et al., 1993). Gualtiere et al. (2005b) reported 20% 

mortality of embryos and 80% of malformed larvae in Xenopus laevis (African clawed 

frog) when they are exposed for 120 hours to tire leachate with a concentration of 44.73 

mg/l of zinc, obtained from tire particles. Oncorhynchus mykiss shows sub-lethal effects 

when exposed to high aromatic oils from tire leachates. After one day of exposure, 

cytochrome P4501A1 (CYP1A1) was induced; and, after 2 weeks of exposure, antioxidant 
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activity decreased, and the liver showed high concentration of glutathione groups and 

glucose-6-phosphate dehydrogenase (Stephensen et al., 2003). Camponelli et al. (2009) 

reported that zinc from tire wear particles increased the time of metamorphosis by 6.5 days 

of Rana sylvatica (wood frog).   

The most common constituents of tires that are used as markers to assess tire 

contamination in the environment are styrene butadiene, benzothiazoles, and zinc (Fauser 

et al., 1999; Wik and Dave, 2009). The study of Nelson et al. (1994) is the only study that 

identified zinc from tire leachate as the toxicant that caused acute toxicity to Ceriodaphnia 

dubia with a 24-h LC50 of 147.1 ug/L. Nelson et al. (1994) used 

ethylenediaminetetraaceticacid (EDTA) and sodium thiosulfate to remove the toxicity of 

copper, cadmium, and lead from the solution and found zinc as the toxic component for C. 

dubia. To reconfirm his results, he added zinc chloride to deionized water, and he found it 

was toxic to C. dubia. Nelson et al. (1994) found concentrations of 751 ug/L of zinc, 6.7 

ug/L of copper, 6.7 ug/L of lead, and 0.6 ug/L of cadmium from leachate of 29 tire plugs 

of 10.25 cm of diameter and 100 g of weight. All the tire leachate samples tested for organic 

compounds were under the detection limit, which was 1.0 ug/L (Nelson et al. 1994). In our 

study, I assessed the effect of tire leachate on the overall population performance of 

competing Ae. albopictus and Cx. pipiens mosquitoes, using zinc as a marker of the 

presence of contaminants, metals and organic compounds, in tire leachate. 

Ultraviolet radiation and its impact on mosquito populations and associated microbial 

communities  

 

The ozone layer, whose formation in the stratosphere started 3.5 billion years ago, 

protects organisms and its environment from the harmful ultraviolet radiation (UVR) 
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emitted by the sun (McMichael et al., 2003). Ultraviolet radiation is electromagnetic 

radiation with a wavelength shorter than that of visible light, but longer than X-rays. The 

wavelength range of UVR is between 400 and 100 nm (Andrady et al., 1998). Ultraviolet 

radiation is subdivided into three subtypes, UV-A (400-315 nm), UV-B (315-280 nm) and 

UV-C (280-100 nm). The amount of UVR reaching the earth’s surface is about five percent 

of all the energy received by the earth. Of the UVR that reaches the surface about five 

percent corresponds to UV-B radiation and ninety five percent to UV-A radiation. Most of 

UV-B radiation is absorbed by the ozone layer in the stratosphere (Mazza et al., 2010). The 

amount of UVR reaching the earth’s surface depends on many factors: thickness of the 

ozone layer, the cosine law that states that solar radiation is highest at the equator and 

decreases towards the poles (Scotto et al., 1988), the incident intensity which is inversely 

related to the altitude, cloudiness and the presence of particulate matter in the atmosphere 

(Caldwell et al., 2003). Between the 1970’s and 1990’s, due to the increase of the emissions 

of Chlorofluorocarbons, a depletion of the ozone layer was observed (Newman, 2009). As 

a consequence of ozone depletion, UVR reaching the earth’s surface increased by an 

average of 5% in the northern hemisphere mid-latitudes (40° N-50° N) and by 8 % in the 

southern hemisphere mid-latitudes (40° S-50° S), and by 2 to 3% in the tropics (20° N-20° 

S) (McKenzie et al., 2003). 

Research on the direct impact of UVR on mosquitoes dates back to the 1930’s, with 

the study of MacGregor (1932), which assessed which levels of UVR cause negative 

effects on larvae and pupae of Ae. aegypti and Cx. pipiens mosquitoes. MacGragor (1932) 

found that the pupal state is more resistant to UV-C and UV-B radiation levels than the 

larval state. He also found that Cx. pipiens larvae are more resistant to UVR than Ae. 
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aegypti larvae. Larvae irradiated with UV-C showed damage at the cuticle level after 45 

seconds of exposure and paralysis, followed by death after 24 hours of exposure. Larvae 

exposed to UV-B radiation were affected when exposed for longer periods of time (more 

than 48 hours). Larvae lost movement coordination and increased swimming rates after 24 

hours of exposure but still 60 % of larvae were able to pupate. However, none were able to 

become adult.  

There may also be some indirect effects of UVR on mosquito communities. 

Ultraviolet radiation plays a major role in tire deterioration and the generation of leachate 

of pollutants in the aquatic environment where mosquitoes breed. Tire leachate affects 

mosquitoes in different ways. For example, the study of Suwanchaichinda and Brattsten 

(2002), showed that mosquito larvae from Ae. albopictus that were pre-exposed to tire 

leachate mainly containing benzothiazole were more tolerant to some pesticides such as 

carbaryl, rotenone, and temephos. On the other hand, there was no change in toxicity for 

aldrin treatment. The mechanism involved in this tolerance is that benzothiazole induces 

the cytochrome P450s, which detoxify insecticides and thus cause insecticide tolerance in 

the mosquito larvae (Scott, 1999). Burke et al. (1983) described the negative effect of UVR 

on the spore viability and larvicidal effect of Bacillus sphaericus strain 1593, used in the 

biological control for mosquitoes. Spore viability of B. sphaericus was drastically affected 

diminishing from 3.7x107 CFU/ml to 3.7x104 CFU/ml after 7.5 minutes of exposure to UV 

levels of 675 W/m2. The diminished spore viability decreased the mortality rate of Cx. 

quenquifasciatus by 25% after 24 hours of application. Also, spore viability of the 

indigenous ISPC-8 Bacillus sphaericus strain Neide was reduced to 2.5% and larvicidal 

activity was reduced by 50% against Cx. quenquifasciatus after 8 hours of exposure to UV-
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B radiation that was provided by a 20W Philips lamp with a maximum wavelength of 315 

nm, placed a 12.5 cm of distance (Hadapad et al., 2008).    

Microbial organisms are the predominant food resources for mosquito larvae and 

influence the composition of container inhabitants via competitive interactions (Pelz-

Stelinski et al., 2011). Microbial growth is influenced by various physical factors (e.g., 

temperature, pH, solar radiation) and chemical factors (e.g., oxygen, carbon, nitrogen, 

phosphorus). There are two different points of view about the effect of UV-B on microbial 

communities. Some authors indicate that UV-B radiation has negative effects on 

microorganisms and algae (Gao et al., 2008; Wu et al., 2009; Hader et al., 2007). Gao et al 

(2008) reported that UV-B radiation damages the DNA, proteins, membranes, and 

photochemical efficiency of photosynthetic prokaryote organisms like Arthrospira 

platensis (cyanobacteria), affecting photosynthesis and biomass production. The spiral 

structure of Ar. platensis is broken, and there is inhibition of photosynthetic activity after 

exposure to UV-B radiation in a temperature range of 18 to 20 °C. The damage to these 

cells is temperature and density dependent (Gao et al., 2008). Wu et al. (2005) also found 

that exposure to 4 to 6 hours of UV-B radiation breaks the spiral filaments of Ar. platensis 

into small pieces and it also affects photosynthesis activity. UV-B radiation specifically 

affects the photosynthetic electron transport and pigment-protein complexes of Ar. 

platensis (Wu et al., 2005). Hader et al. (2007) showed that UVR affects negatively algae 

and microbial communities in aquatic ecosystems on which mosquito larvae feed. 

Ultraviolet radiation penetrates to significant depths in aquatic systems, depending on 

water transparency, with effects ranging from effects on major biomass producers such as 

phytoplankton to effects on consumers in the food web such as mosquito larvae. Davidson 
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and Belbin (2002) found that marine phytoplankton and protozoan community 

assemblages exposed to UVR at less than 2 meters depth for more than a day suffer a 

reduction in biomass and concentration per cubic meter of water, which would represent 

less availability of food for mosquito larvae that feeds on these microbial assemblages. On 

the other hand, other authors have suggested that UVR could be beneficial to microbial 

communities because of increased availability of dissolved organic carbon, which leads to 

bacterial growth and bacterial abundance, leading to the increase of food resources for 

mosquito larvae (De Lange et al., 2003).  

Dissertation goal and structure 
 

The overarching goal of my dissertation is to test the role of UV-B radiation and 

tire contaminants in the coexistence of Ae. albopictus and Cx. pipiens mosquitoes in 

discarded tire habitats. By addressing this goal, my research is of importance both to the 

applied field of medical entomology and to basic ecological theory that may explain 

invasion success, impacts, and species coexistence. My thesis consists of four content 

chapters that address different aspects of the goal above, with each chapter describing a 

separate study and written as a stand alone paper. 

In Chapter 2, I describe a laboratory experiment that tested the effects of UV-B 

radiation on the metabolic rate of larvae and fitness parameters (survival, development 

time, and body size) of Ae. albopictus and Cx. pipiens, and on the production of microbial 

resources on which mosquito larvae feed, in aquatic microcosms. I set up three UV-B 

radiation conditions that mimicked three common conditions in the field: (1) full-sun: 

10.82 umol/m2/s (FS); (2) shade: 6.1 umol/m2/s (S); and (3) no UV radiation: 0.6 umol/m2/s 
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(NUV). The metabolic rates for larvae and microbial communities were measured at days 

1, 8, and 15.  

In Chapter 3, I used a controlled greenhouse experiment to test the effects of UV-

B radiation on the degradation of discarded vehicular tires, using zinc as an indicator of 

tire leachate. To do this, whole discarded tires were exposed to one of my three UV-B 

conditions: FS, S, and NUV. Tires were filled with 4 L deionized water and were routinely 

topped up throughout the experiment. At days 1, 50, 100 and 150 water samples were 

collected to be analyzed for total and dissolved zinc. At day 210, each tire was destructively 

sampled for biofilm and biofilm was analyzed for total recoverable zinc.    

In Chapter 4, in a controlled greenhouse experiment, I tested the hypothesis that 

tire leachate, released by tire degradation under three different UV-B radiation conditions 

(chapter 3), may promote condition-specific competition for limited food resources 

between Ae. albopictus and Cx. pipiens, thereby facilitating their coexistence. To do this, 

varying densities of newly hatched Ae. albopictus and Cx. pipiens larvae (Ae. albopictus: 

Cx. pipiens, 0:100, 0:50, 100:0, 50:0, 50:50) were added to tires that had been exposed to 

FS, S, or NUV conditions. From each tire, I measured three fitness parameters for both 

species: proportion ♀ survivorship, median ♀ development time, and median ♀ wing 

length.  Using these fitness parameters, I calculated λ`, a composite index of population 

increases based on r’, the realized per capita rate of population change (dN/N dt = r, the 

exponential growth rate) (Juliano 1998). Furthermore, I measured total recoverable zinc in 

Ae. albopictus and Cx. pipiens mosquitoes.  

In Chapter 5, I conducted an oviposition choice bioassay, where single species 

cohorts of Ae. albopictus and Cx. pipiens had access to cups containing tire leachate with 
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high vs. low zinc concentrations and high vs. low amounts of food resources (i.e., filtered 

and unfiltered). The variables that I measured were number of eggs and hatching 

percentage for Ae. albopictus and number of egg rafts and number of eggs per egg raft for 

Cx. pipiens.  

From these 4 studies, I gather critical information on the ecologies of Ae. albopictus 

and Cx. pipiens in tire habitats, testing both basic ecological theory that can help explain 

species coexistence as well as explore how the significant environmental problem of 

discarded tires may affect human health by altering species interactions between an 

invasive and a resident mosquito.  

All of the chapters have been written as manuscripts to be submitted to journals for 

publication. Purposely, the collective term “we” was used through the chapters to reflect 

the collaborative nature of our chapters for publication. 
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Abstract 
 

Environmental changes will alter many environmental factors in the coming years 

including temperature, precipitation, humidity, and the amount of solar radiation reaching 

the earth’s surface, which in turn will have an impact on living organisms like 

invertebrates. In this study, we assessed the effect of UV-B radiation upon the metabolic 

rate and upon three fitness parameters (survival, development time, and body size) of the 

mosquitoes Aedes albopictus and Culex pipiens, and upon the production of microbial 

resources on which mosquito larvae feed in aquatic microcosms. We set up three UV-B 

radiation treatments mimicking levels typically measured in full-sun (FS) and shade (S) 

conditions, as well as a control group with no UV-B radiation (NUV). The metabolic rate 

expressed as heat production (µwatts/ml) for larvae and microbial community was 

measured at days 1, 8, and 15. Our results indicated that UV-B radiation affected the 

metabolic rate of both Cx. pipiens and Ae. albopictus larvae; metabolic rates were 

significantly higher in full-sun (FS) compared to shade (S) and no-UV condition (NUV), 

at days 8 and 15 compared to day 1 (Figures 1A and 1B). Culex pipiens metabolic rates 

were significantly higher than Ae. albopictus at day 15 compared to days 1 and 8 (Figure 

1B). Metabolic rates were significantly lower in microbial communities from vials with 

Ae. albopictus larvae, Cx. pipiens larvae, and no larvae in FS conditions compared to vials 

from S and NUV conditions, especially at day 8 (Figure 2A and 2B). There was a major 

effect of UV-B conditions only on the survival of Ae. albopictus and Cx. pipiens 

mosquitoes, with significantly lower survival in FS compared to S and NUV conditions. 

UV-B radiation at levels found in aquatic environments in open fields showed a negative 

impact on the metabolic rate of Ae. albopictus and Cx. pipiens larvae and on the microbial 
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communities on which they feed. These negative impacts could have important 

implications for the distribution and abundance of these mosquitoes and for the 

transmission rate of illness caused by the pathogens that these two broadly distributed 

mosquitoes transmit.    

 

Key words: Ultraviolet radiation, metabolic rate, Ae. albopictus, Cx. pipiens, microbial 

communities  
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Introduction 
 

Environmental changes (e.g., global warming, climate change) will trigger major 

changes in environmental factors (e.g., temperature, solar radiation) in coming years. These 

changes are likely to have profound impacts on insect ecology and physiology, including 

survival, development time and underlying metabolic processes (Helbling and Zagarese, 

2003). Environmental changes will differ with geographical regions, and the impacts on 

the ecology and physiology of insects will vary with the extent of temperature increase, 

amounts and patterns of precipitation and humidity, and changes in incoming solar 

radiation, especially UV-B radiation. Despite many uncertainties, there is consensus that 

environmental changes have had and will have impacts upon insect metabolic processes, 

fitness variables, geographical ranges, and abundance; upon species extinction; upon 

activity and abundance of natural enemies; and upon the transmission of vector-borne 

diseases (Shuman, 2011; Gray, 2013).  

Temperature is the most well-studied environmental factor that affects insect 

biology and ecology. Most insects are ectothermic, meaning that their bodily heat source 

is primarily sourced from the environment; through thermoregulation, they regulate their 

body temperature to optimally support survival and reproduction (Klowden, 2007; 

Terblanche et al. 2005, 2009; Klowden, 2007). Although in the context of environmental 

changes much of the focus has been on changing temperatures, precipitation and humidity 

also have important impacts on insects. Terrestrial insects lose water through their cuticle, 

and aquatic insects require water for habitat. Water availability could affect insect activity, 

distribution patterns, and species richness, especially for those insects that inhabit 
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ephemeral habitats (e.g., mosquitoes). Other environmental variables may also have subtle 

yet important effects upon insects; perhaps the most interesting of these is UV radiation. 

 Ultraviolet radiation (UVR) is part of the electromagnetic spectrum emitted by the 

sun, with a wavelength range between 400 and 100 nm (Andrady et al., 1998); it is 

subdivided into three subtypes: UV-A (400-315 nm), UV-B (315-280 nm) and UV-C (280-

100 nm). Of these three subtypes UV-C, the most harmful, does not reach the earth’s 

surface (Dyer, 2001; Caldwell et al., 2003). Of the UVR that reaches the earth’s surface, 

around five percent corresponds to UV-B radiation and ninety five percent to UV-A 

radiation. Of these two, UV-B radiation is more harmful to biotic and abiotic environments 

because of its shorter wavelength, which means higher energy levels (Andrady et al.,1998). 

Variation in exposure to radiation throughout the landscape, because of varying shade 

conditions, can moderate the direct and indirect effects of UVR upon insects. Relatively 

few studies have examined the effects of UVR, and the few that have been published have 

focused on insect control through the use of UVR traps (Shimoda and Honda, 2013; Sliney 

et al., 2016) or, the use of UVR to affect insect physiology (e.g., flight behavior, 

orientation, visual ecology) in greenhouse facilities (Johansen et al., 2011). 

Mosquitoes are blood-feeding insects of the order Diptera. They are medically 

important because they transmit vector-borne diseases. Aedes albopictus and Cx. pipiens 

are two common mosquitoes in urban areas of the eastern United States (Joy et al., 2003; 

Joy 2004; Costanzo et al., 2005). Aedes albopictus is an important vector for the 

transmission of many viral pathogens, including yellow fever, dengue, and Chikungunya 

(Lambrechts et al., 2010). Aedes albopictus is also capable of hosting the Zika virus and it 

is therefore considered a potential vector for Zika virus (Wong et al., 2013). Culex pipiens 
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is an important vector for the transmission of West Nile virus, Japanese encephalitis, and 

meningitis (Gerhardt et al., 2001; Kim et al., 2005; Molaei et al., 2006). Aedes albopictus 

and Cx. pipiens are also capable of transmitting the dog heartworm (Dirofilaria immitis), 

which not only affects dogs but also cats, foxes, coyotes, and other animals (Cancrini, 

2007).  

Mosquitoes have a complex life cycle; they lay eggs in aquatic environments where 

the larvae and pupae develop in several weeks until adults emerge into the terrestrial 

environment where they can freely move (Juliano, 2009). Mosquito larvae feed on 

microbial communities (Juliano, 2009). Environmental effects on larval stages have 

important consequences for some adult traits (Terblanche and Chown, 2007). Larval 

ecology affects distribution and abundance of adults, by modulating survival as well as 

adult fitness parameters, such as body size, that can affect adult survival, biting rate, and 

ultimately the ability to vector and transmit pathogens. There is little information on the 

effect of UV-B radiation on mosquito metabolic rate and survival and on the microbial 

community on which mosquitoes feed. One of the few studies that has assessed the effects 

of UVR on mosquitoes dates back to the 1930’s (MacGregor, 1932); the author, 

demonstrated clear negative effects on larvae and pupae of Ae. aegypti and Cx. pipiens 

mosquitoes. However, a significant limitation of the study is that the UVR levels used were 

not comparable to field conditions. 

Other studies have demonstrated that UV-B radiation has effects on microbial 

communities (Pancotto et al., 2003), but none have examined how these effects may impact 

mosquito populations. Future variations in UV-B, resulting from climate change and 

anthropogenic activities (e.g., change in land use, pollution), may have more important 
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consequences for microbial communities and for decomposition of dead plant and animal 

material than the changes in UV-B caused by ozone depletion, thereby affecting the food 

chains that depend on microbial communities (Ballare et al., 2011). The goal of this chapter 

is to test the effect of field-relevant UV-B radiation on the metabolic rate, larval survival, 

development time, and adult body size of Ae. albopictus and Cx. pipiens mosquitoes, and 

on the production of the microbial communities on which the larvae feed.   

Materials and methods  
 

Collection and maintenance of mosquitoes 

 

Aedes albopictus and Cx. pipiens larvae were collected from multiple locations in 

College Park, Baltimore, and Towson, Maryland. Neither Ae. albopictus or Cx. pipiens are 

endangered, and collection sites were either on publically accessible lands or on private 

lands where consent for collections was granted at the time of collection; thus, no field 

permits were required to collect them. Field collected Ae. albopictus and Cx. pipiens larvae 

were reared to adulthood at 25°C at 16:8 (L:D) h photoperiod, and then released into 1-m² 

single-species cages. Adults were kept in an insectary at 25°C and >85% RH, 16:8 (L:D) 

h photoperiod. Both colonies were supplied 20% sugar solution. Females from both 

colonies were fed horse or rooster blood once a week via an artificial feeder (Hemotek, 

Accrington, UK) to ensure egg production and experimental larvae. Aedes albopictus 

females oviposited on seed paper in 500 ml black cups covered filled with 200 ml of 

deionized (DI) water. Eggs were collected over multiple weeks and stored at >80% RH and 

16:8 hours (L:D) photoperiod until hatching for the experiment. Culex pipiens oviposited 

egg rafts into a 500 ml black bowl filled with 400 ml of DI water. Culex pipiens eggs cannot 

be held without hatching; thus, egg rafts were collected within 24 h of oviposition, hatched 
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in a lactobumina: yeast solution, and larvae were transferred into the experiment after being 

rinsed. Ae. albopictus eggs that had been stored were also hatched in a lactobumina: yeast 

solution and transferred into the experiment after being rinsed and within 24 h of hatching. 

Experimental larvae were of both species were F1-3 generation. 

Experiment set up 

 

The experimental design was a split plot-randomized complete block design 

(RCBD) with UV-B radiation condition as the main plot, mosquito larvae cohorts (Ae. 

albopictus, Cx. pipiens, or no larvae) as the sub-plots, and three replicate blocks. 

Individuals of Ae. albopictus and Cx. pipiens were sorted into single species cohorts of 10 

newly hatched individuals and added to 20 ml vials with 17 ml of DI water that were 

inoculated with 1 ml of water containing a microbial community that was collected from 

discarded tires. A total of 45 vials were prepared. Ten newly hatched Ae. albopictus or ten 

newly hatched Cx. pipiens were randomly added to 15 vials each. 15 vials only contained 

microbial community; no larvae were placed on these vials. Fifteen of the total vials (5 of 

each treatment) were randomly allotted to one of three Percival reach-in environmental 

chambers, model I-36 VL, located in the Aqua Engineering laboratory in the 

Environmental Science and Technology Program (ENST). Each chamber was kept at 25° 

C, 16:8 (L: D), and 80- 90 % of humidity, to mimic typical summer conditions in the 

northeastern U.S. (Day et al., 1993; Li et al., 2006). At the end, each environmental 

chamber had 5 vials containing 10 first instar larvae of Ae. albopictus, 5 vials containing 

10 first instar larvae of Cx. pipiens, and 5 vials containing no larvae, only the microbial 

community. Vials represent sub-samples and each experimental unit was a group of 5 vials 

in one of the three environmental chambers. Each vial was checked daily to collect pupae 
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and place them in individual vials with water from that vial until adults emerged. I recorded 

the following information for each adult: date of emergence, sex, species, and replicate 

(notebook for the experiment). On the day of emergence, the adults were killed by placing 

them on a drying oven for further analysis such as wing length measurements. The 

Experiment was run until all larvae had died or eclosed.  

One of three UV-B radiation conditions mimicking full-sun (10.82 umol/m2/s), 

shade (6.1 umol/m2/s), and a no-UV control group (0 umol/m2/s), were applied to each 

chamber. To achieve the required UV-B levels in the full-sun and shade treatment 

chambers, cellulose diacetate filters were applied on four UV-B-313 lamps (Q Panel Lab 

Products, Cleveland, OH) in each chamber, and vials were placed 5 cm and 20 cm from 

the bulbs, respectively. For the control group, I used regular Phillips 32 watts bulbs, model 

205047, which simulate a visible range of sunlight (400 nm - 700 nm). To assure uniform 

exposure to UV radiation, vials were rotated daily. I ran the experiment three times (blocks) 

and applied a different UV-B treatment to each incubator each time to minimize incubator-

treatment confounding effect.  

Measurement of metabolic rate 

 

Metabolic rate was measured as the rate of heat production (µwatts/ml) by a heat 

conduction, multicell differential scanning calorimeter (MC-DSC model 4100, 

Calorimetry Sciences Corp.). The multicell differential calorimeter was set up in isothermal 

mode, at a temperature of 25 °C, which allows concurrent measurements of two samples 

using two 1 cm3 ampoules. For larvae, five were selected randomly from each sub-sample 

of each of the three treatments. Before being place in the ampoule, they were washed in 

sterilized water and placed inside the ampoule with 1 ml of deionized water. The heat 
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production was monitored for 60 minutes to allow for temporal equilibration and 

consistency of final readings. Previous to this step, I ran a blank sample (just deionized 

water) for 60 minutes. After obtaining the reading in µwatts (µW) I subtracted the blank 

reading from the sample reading, and the result was the final metabolic rate value in 

µwatts/ml (Zhang et. al., 2009). Metabolic rates were measured when larvae were first 

instars (within 2 to 24 hours of hatching); the second measurement was when larvae were 

8 days old; and the final measurement was made when larvae were 15 days old. For 

mosquito larvae metabolic rate measurements, from each species, five larvae were 

collected randomly from each vial, together with 5 ml of water from the same vial and 

placed in a sterile bottle (5 ml) and transported to the laboratory for metabolic rate 

measurements. Vials in chambers were refilled with deionized water as needed.  

To measure the metabolic rate of the microbial community I followed the same 

procedure described for mosquito larvae metabolic rate measurements. The only difference 

was that I placed 1 ml of water sampled from the vials in the ampoules. We measured the 

microbial metabolic rate 24 hours after inoculation of vials with a 1 ml of microbial 

inoculum from tires (day 1). After completing microbial metabolic measurements for day 

1, we placed the first instar larvae in the corresponding vials as described in previous 

paragraph.  The metabolic rate of the microbial community was also measured on days 8 

and 15. Before placing samples in the ampoules, they were washed in sterilized water and 

sterilized with ethanol before each run (Zhang et al., 2009). To place larvae and water 

microbial samples into the ampules, we used sterile pipettes, tips, and forceps to avoid any 

kind of sample contamination. To collect microbial community samples to measure 

metabolic rate, we mixed the liquid content in each vial with a manual stirrer and took a 2 
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ml sample and placed it in a sterile bottle (5 ml) for its transportation to the laboratory for 

metabolic rate measurements. 

Analyses 

 

All the data were analyzed using linear models using the SAS 9.4 software (SAS 

Institute Inc. 2013). The metabolic rate of Ae. albopictus and Cx. pipiens larvae and 

microbial community from containers with Ae. albopictus larvae, Cx. pipiens larvae and 

no larvae were analyzed as a three-way analysis of variance (ANOVA) containing one 

repeated factor (day of sampling) using the PROC MIXED procedure, with UV-B 

condition, species and days as fixed effects, day as the repeated variable, and block as a 

random effect. Metabolic rate was measured on days 1, 8, and 15. To account for 

assumptions of normality and homogeneity of variances, data were log10(y) transformed.  

For vials with larval mosquito cohorts, fitness parameters were calculated 

(proportion survival, development time, and wing length). To determine survival rate, the 

number of adults were compared with the initial number of larvae placed in the 

experimental units; to measure mean development time, we considered the days from 

hatching to adulthood; and to measure wing length, we used a dissecting microscope and 

the image analysis system called Image Pro Plus 6.0. These fitness parameters were 

analyzed as a two way ANOVA using the PROC MIXED procedure; we considered UV 

conditions and species as fixed effects, and block as a random effect in the model. To 

account for assumptions of normality and homogeneity of variances, data were log10(y+1) 

transformed. We did a pairwise mean comparison in the mixed procedures using the 

LSMEANS statement with tukey adjustment. For all analyses experiment-wise α = 0.05; 

marginal significance was defined α = 0.05-0.10.              
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Results 
 

Metabolic rate of mosquito larvae 

 

There was an interaction between UV-B condition and day of sampling (Table 1). 

There was also an interaction between species and day of sampling for larval metabolic 

rate, indicating differences in metabolic rate depending on the day of sampling for both Ae. 

albopictus and Cx. pipiens (Table 1, Figure 1B). At day 15, metabolic rate of Cx. pipiens 

was significantly higher compared to Ae. albopictus in FS conditions; this was not seen on 

days 1, and 8 (Figure 1B). Main effects of UV-B condition, species, and days were detected 

on larval metabolic rates (Table 1). Metabolic rates of both Ae. albopictus and Cx. pipiens 

were significantly higher under FS condition compared to NUV condition (Figure 1A). 

Metabolic rates of both Ae. albopictus and Cx. pipiens were higher at days 8 and 15 

compared to day 1, with Cx. pipiens metabolic rates being higher than Ae. albopictus 

metabolic rates (Figure 1B). 

Metabolic rate of microbial community 

 

There was an interaction between UV-B condition and day of sampling for 

microbial metabolic rate (Table 2). Main effects of UV-B condition and day of sampling 

were detected on microbial metabolic rates (Table 2, Figures 2A and 2B). Metabolic rates 

of microbial communities from vials with Ae. albopictus, Cx. pipiens larvae and no larvae 

were significantly lower in FS condition compared to S and NUV conditions (Figure 2A). 

Metabolic rates of microbial communities from vials with Ae. albopictus, Cx. pipiens 

larvae and no larvae were significantly lower at day 8 compared to days 1 and 15 (Figure 

2B).    
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Mosquito Fitness parameters  

 

There was no an interaction between UV-B condition and species for Ae. albopictus 

and Cx. pipiens fitness parameters: survival, development time, and body size (Table 3, 

Figure 3). UV-B condition affected the survival of Ae. albopictus and Cx. pipiens 

mosquitoes similarly, with significantly lower survival of both species under FS conditions 

compared to S and NUV conditions (Figure 3A and 3B). There was also a main effect of 

species on body size between Ae. albopictus and Cx. pipiens, with Cx. pipiens being the 

larger on average (Figure 3E and 3F). 

 Discussion  

  
Ultraviolet radiation may have important effects on the development of mosquitoes, 

effects that could have important implications for the distribution and abundance of 

pathogen-transmitting species and their microbial food resources. This is the first study 

that has assessed the effect of UV-B radiation comparable to that which reaches water 

bodies in open fields (full-sun), shaded areas (shade), and no-UV radiation conditions 

(control group) upon the fitness (survivorship, development time, and body size) and 

metabolic rates of two of the most broadly distributed mosquito species in the world: Ae. 

albopictus and Cx. pipiens; and upon the microbial communities on which they feed. In 

previously published field studies, resting metabolic rate increased in mosquito larvae 

between emergence and day 4 to 5 (Gray and Bradley, 2003). Our results showed that larval 

metabolic rate of both Cx. pipiens and Ae. albopictus mosquitoes significantly increased in 

FS conditions compared to NUV conditions (Figure 1A). In addition, larval metabolic rate 

is significantly higher at day 8 and day 15, indicating a direct effect of UV-B radiation on 
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mosquito metabolism. Furthermore, at day 15, metabolic rate was significantly higher for 

Cx. pipiens compared to Ae. albopictus (Figure 1B).  

The increase of metabolic rate in Cx. pipiens larvae from day 8 to day 15 under FS 

conditions compared to Ae. albopictus presumably reflects that UV-B radiation had a 

greater negative effect on Cx. pipiens larvae. It has been shown in many insect species that 

metabolic rate is strongly related to the physical and biological factors that influence 

metabolism (Gray and Bradley, 2003). The Culex pipiens mosquito larvae probably 

increases its metabolic rate under FS conditions, especially at day 15, in response to 

negative effects of UV-B radiation. These effects could cause larvae to increase energy 

expenditure in order to perform physical and biological activities such as getting food, 

growing, or competing with conspecifics, which is reflected in greater metabolic rates. It 

has been shown previously that UV-B radiation has a greater negative effect on the larval 

stage than the pupae stage, as the pupae stage is more resistant to damage by UV radiation 

(MacGregor, 1932). In that study, larvae of Cx. pipiens exposed to UV-B radiation were 

affected when exposed for long periods of time (more than 48 hours). Larvae lost 

movement coordination and increased swimming rates after 24 hours of exposure but still 

60 % of larvae were able to pupate. However, none were able to become adults. 

Histological analyses showed that larvae suffered damage in the cuticle, there was 

disintegration of the abdominal segments, that the peristaltic-wave no longer travelled 

between the 7th and 8th segment, and that the pulse rate was lowered (MacGregor, 1932).  

Natural and artificial container aquatic habitats (e.g., puddles, tree holes, tires) are 

inhabited by a specialized community of macroinvertebrates (e.g., mosquitoes) that feed 

on microbial communities associated with decaying organic matter from insect carcasses 
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and leaf litter (Walker et al., 1988; Walker et al., 1991). Microbial abundance and diversity 

could be affected by environmental stressors (e.g., contaminants, UV radiation). In this 

study, we assessed how microbial communities from microcosms that contain Ae. 

albopictus larvae, Cx. pipiens larvae, or no larvae (just microbial community), were 

affected by UV-B radiation. We used microbial community metabolic rate expressed as 

heat production (µwatts/ml) as an indicator of the quantity of microbial community. 

Microbial community metabolic rate in the three different microcosms was significantly 

lower in FS compared to S and NUV conditions, especially for microbial communities 

from microcosms that do not contain larvae; metabolic rate decreased in 35.73 % from 

NUV conditions and in 33.93 % from S conditions compared to FS conditions. This 

showed that UV radiation levels reaching water bodies on open fields had a negative effect 

in the metabolic rate of microbial community compared with water bodies in shade areas. 

This could be a mechanism leading to low reproduction and even dying of bacterial 

community, which would indirectly affect larvae that feed on them. At day 8, microbial 

community metabolic rate in the three different microcosms was significantly lower 

compared to days 1 and 15. Increase of metabolic rate from day 8 to day 15 is probably 

due to the input of dead carcasses from larvae that were dying in the vials due to the 

negative effect of UV-B radiation; this material probably served as a nutrient source that 

increased microbial community size and metabolic rate.    

In regard to the effect of UV radiation on microbial and algae communities that 

serve as food resources for mosquito larvae (Pelz-Stelinski et al., 2011), there are different 

points of view. Some authors indicate that UV-B radiation has negative effects on 

microorganisms and algae (Wu et al., 2009; Hader et al., 2007). Gao et al (2008) reported 
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that UV-B radiation damages the DNA, proteins, membranes, and photochemical 

efficiency of photosynthetic prokaryote organisms like Arthrospira platensis 

(cyanobacteria), affecting photosynthesis and biomass production. The spiral structure of 

A. platensis is broken, and there is inhibition of photosynthetic activity with exposure to 

UV-B radiation in a temperature range of 18 to 20 °C, and this results in low biomass 

densities. The damage to these cells is temperature and density dependent (Gao et al., 

2008). Wu et al. (2005) also found that exposure to 6 hours of UV-B radiation breaks the 

spiral filaments of A. platensis into small pieces and it also affects photosynthesis activity. 

UV-B radiation specifically affects the photosynthetic electron transport and pigment-

protein complexes of A. platensis (Wu et al., 2005). Hader et al. (2007) showed that UV 

radiation affects negatively algae and microbial communities in aquatic ecosystems on 

which mosquito larvae feed. UV radiation penetrates significant depths in aquatic systems, 

depending on water transparency, with effects ranging from effects on major biomass 

producers such as phytoplankton to effects on consumers in the food web such as mosquito 

larvae. Davidson and Belbin (2002) found that marine phytoplankton and protozoan 

community assemblages exposed to UV radiation at less than 2 meters depth for more than 

a day suffer a reduction in biomass and concentration per cubic meter of water, which 

would represent less availability of food for mosquito larvae that feed on this microbial 

assemblage. On the other hand, other authors have suggested that UV radiation could be 

beneficial to microbial communities because of increased availability of dissolved organic 

carbon; this would promote bacterial growth and bacterial abundance, leading to the 

increase of food resources for mosquito larvae (De Lange et al., 2003).  
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Of the fitness parameters we assessed, only survival was significantly negatively 

affected by UV-B radiation, in FS conditions in both species (Figure 3A, 3B). Lower 

survival rates in FS conditions were probably a consequence of the direct effect of UV-B 

radiation, but also of the indirect effect of lower amounts of food resources in microcosms 

in FS conditions compared to microcosms from S and NUV conditions. UV-B exposure 

probably stressed larvae, which was reflected in greater metabolic rates. Greater metabolic 

rates were probably due to greater expenditures of energy to keep with biological processes 

(e.g., growth) and searching for food resources, which provide the calories needed for 

biological processes, considering that food resources decline in habitats exposed to high 

UV-B radiation. Stress in insects had been detected through the release of stress hormones 

such as cortisol, epinephrine, octopamine (Peric-Mataruga et al., 2006; Farooqui, 2012). 

Furthermore, Development time showed a trend toward greater development time under 

FS conditions compared to NUV conditions in both species. Also, for body size of Ae. 

albopictus and Cx. pipiens there was a trend toward smaller body size in FS condition 

compared to NUV conditions. These results are similar to those of Sang et al. (2017), who 

found a negative effect of UV-B on survival, development time and reduced size in 

tribolium castaneum, which is not a mosquito, but it has a similar life cycle. The study of 

Hori et al. (2014) showed that not only could UV radiation have a negative impact on 

mosquito survival, but also that wavelengths in the violet and blue range could cause pupae 

mortality as high as 60 percent. Understanding the effects of ultraviolet radiation on larval 

metabolic rate and fitness parameters of mosquitoes could lead to the development of new 

ways to control mosquitoes, to predict future geographic distribution due to changes in 
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solar radiation, and to prevent outbreaks of illness caused by viruses transmitted by these 

mosquitoes.  

In Summary, we observed that larval metabolic rate of Ae. albopictus and Cx. 

pipiens were significantly higher in full-sun conditions compared to no-UV conditions, 

especially at day 15, and that negative effects upon these mosquitoes were expressed in 

lower survival rates, greater development time, and smaller sizes of both species under FS 

conditions compared to NUV conditions. Also, we observed that the bacterial communities 

of container aquatic habitats demonstrated lower metabolic rates in response to disturbance 

by UV-B radiation in FS conditions. These findings enhance the understanding of how 

changes in UV-B radiation could affect mosquito fitness and the microbial communities 

on which mosquitoes feed; and they suggest impacts upon some key ecological processes 

such as decomposition, nutrient cycling, and microbial diversity, processes that should be 

evaluated in future studies.   

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

List of tables and figures 
 

Tables  

 

Table 1. Three-way ANOVA of the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) at three different times (days 1,8, and 15) on the 

larvae metabolic rate of Ae. albopictus and Cx. pipiens mosquitoes. 

 

Variable Larval metabolic rate 

dfs F P 

UV conditions 2,10 5.50 0.0245 

Species 2,10 6.08 0.0333 

UV conditions x Species 2,10 0.58 0.5799 

Days 2,24 350.85 <0.0001 

UV conditions x Days 2,24 13.96 <0.0001 

Species x Days 2,24 14.79 <0.0001 

UV conditions x Species x Days 2,24 0.87 0.4975 

 

 

Table 2. Three-way ANOVA of the effects of UV-B conditions (FS, S, and NUV) and the 

species that inhabit the vials where microbial samples come from (Ae. albopictus, Cx. 

pipiens, and no larvae) at three diferent times (days 1, 8, and 15) in the metabolic rate of 

microbial community. 

 

Variable Microbial metabolic rate 

dfs F P 

UV conditions 2,16 10.74 0.0011 

Species 2,16 1.13 0.3483 

UV conditions x Species 4,16 0.79 0.5502 

Days 2,36 5.69 0.0071 

UV conditions x Days 4,36 3.65 0.0135 

Species x Days 4,36 0.47 0.7562 

UV conditions x Species x Days 8,36 0.54 0.8203 

 

Table 3. Two-way ANOVA of the effects of UV-B conditions (FS, S, and NUV) and 

specie (Ae. albopictus and Cx. pipiens) on the fitness parameters (survival, developmental 

time, and body size) of Ae. albopictus and Cx. pipiens mosquitoes. 

 

Variable Survival  Development time Body size-wing length 

dfs F P dfs F P dfs F P 

UV conditions 2,11 7.11 0.0104 2,11 0.80 0.4773 2,11 1.05 0.3857 

Species 1,11 0.01 0.9963 1,11 1.50 0.2491 1,11 16.36 0.0023 

UV conditions x 

species 

2,11 0.59 0.5717 2,11 0.30 0.7456 2,11 0.05 0.9518 
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 Figures 

 

Figure 1. Least squares means (± SE) for metabolic rate expressed as heat production 

(µW/ml) of larvae of Ae. albopictus and Cx. pipiens in response to (a) UV-B conditions 

(NUV, S, and FS) and (b) day of metabolic rate measurement (days 1, 8, and 15). Data 

were statistically tested using ANOVA. Significant pairwise comparisons among treatment 

levels for main effects of (a) UV-B conditions and (b) day of sampling are indicated by 

capitalized letters, and interaction effects of UV-B conditions and day of sampling are 

indicated by lower case letters. 
 

Figure 2. Least squares means (± SE) for metabolic rate expressed as heat production 

(µW/ml) of microbial community from vials that contain Ae. albopictus larvae, Cx. pipiens 

larvae, and no larvae (just microbial community) in response to (a) UV conditions (NUV, 

S, and FS) and (b) day of metabolic rate measurement (days 1, 8, and 15). Data were 

statistically tested using ANOVA. Significant pairwise comparisons among treatment 

levels for main effects of (a) UV-B conditions and (b) day of sampling are indicated by 

capitalized letters.    

 

Figure 3. Least squares means (± SE) for fitness parameters of Ae. albopictus and Cx. 

pipiens mosquitoes. (a) survival percentage of Ae. albopictus (b) survavil percentage of 

Cx. pipiens (c) development time of Ae. albopictus (d) development time of Cx. pipiens (e) 

body size of Ae. albopictus, and (f) body size of Cx. pipiens in response to UV-B conditions 

(FS, S, and NUV). Data were statistically tested using ANOVA. Significant pairwise 

comparison among treatment levels for main effects are indicated by different letters above 

bars. 
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Appendices 
 

Appendix 1: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) at three different times (days 1, 8, and 15) on 

the larvae metabolic rate of Ae. albopictus and Cx. pipiens mosquitoes 

 

PROC IMPORT OUT= WORK.LmetrateRM  

            DATAFILE= "C:\Documents\Data\MRLrepmcon.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=LmetrateRM; 

run; 

proc sort data=LmetrateRM; 

key trt sp blk/ascending; 

run; 

data b; 

set LmetrateRM; 

mr1=log10(mr1); 

mr8=log10(mr8); 

mr15=log10(mr15); 

run; 

proc print data=b; 

run; 

data l; 

set b; 

day= 1; mr=mr1; output; 

day= 8; mr=mr8; output; 

day= 15; mr=mr15; output; 

drop mr1 mr8 mr15; 

proc print data=l; 

run; 

proc mixed data=l covtest; 

class vial trt sp blk day; 

model mr = trt|sp|day / residual ddfm=kr; 

repeated day/ subject= trt*sp*blk type=cs; 

random blk; 

lsmeans trt sp day trt*day sp*day / pdiff adjust=tukey; 

run; 
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Appendix 2: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) at three different times (days 1, 8, and 15) on 

the metabolic rate of the microbial communities. 

 

PROC IMPORT OUT= WORK.MbMetrate  

            DATAFILE= "C:\Documents\Data\MRMbrepmcon.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

Proc print data=MbMetrate; 

run; 

proc sort data=Mbmetrate; 

key trt sp blk/ascending; 

run; 

data e; 

set MbMetrate; 

mr1=log10(mr1); 

mr8=log10(mr8); 

mr15=log10(mr15); 

run; 

proc print data=e; 

run; 

data k; 

set e; 

day= 1; mr=mr1; output; 

day= 8; mr=mr8; output; 

day= 15; mr=mr15; output; 

drop mr1 mr8 mr15; 

proc print data=k; 

run; 

proc mixed data=k covtest; 

class vial trt sp blk day; 

model mr = trt|sp|day / residual ddfm=kr; 

repeated day/ subject=trt * sp * blk type=cs; 

random blk; 

lsmeans trt sp day trt*day / pdiff adjust=tukey; 

run; 
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Appendix 3: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) on the fitness parameters (survival, 

development time, and body size) of Ae. albopictus and Cx. pipiens mosqutioes 

 

PROC IMPORT OUT= WORK.UpSurvLarva  

            DATAFILE= "C:\Documents\Data\Surlarvae.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

Proc print data=UpSurvLarva; 

run; 

proc sort data=UpSurvlarva; 

key sp trt blk rep/ascending; 

run; 

proc means data=UpSurvlarva n mean stderr stddev; 

by sp trt blk; 

var eclo; 

output out=sura1 n=count nmiss=nmiss;  

run; 

proc print data=sura1; 

run; 

data surA2; 

set sura1; 

ss=log10(count+1);  

run; 

Proc print data=surA2; 

run; 

*survival; 

proc mixed data=surA2; 

class trt sp; 

model ss = trt|sp /residual ddfm=sat; 

random blk; 

LSMEANS trt sp trt*sp/pdiff adjust=tukey; 

run; 

 *development time; 

proc means data=Survlarvae n mean stderr stddev; 

by trt sp blk; 

var eclo; 

output out=devtime1 mean=mean;   

run; 

data devtime2; 

set devtime1; 

dt=log10(mean+1);  

run; 

proc mixed data=devtime2; 
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class trt sp blk; 

model dt = trt|sp /residual ddfm=kr; 

random blk; 

lsmeans trt sp trt*sp /adjust=tukey; 

run; 

*wing length; 

proc means data=Survlarvae n mean stderr; 

by trt sp; 

var wingL; 

output out=wing1 mean=mean stderr=stderr; 

run; 

proc print data=wing1; 

run; 

data wing3; 

set Survlarvae; 

ss=log10(wingL+1); 

run; 

proc means data=wing3 n mean stderr; 

by trt sp blk; 

var wingL; 

output out=wing1 mean=mean stderr=stderr; 

run; 

proc mixed data=wing1; 

class trt sp blk; 

model mean = trt|sp/ residual ddfm=sat;  

random blk; 

lsmeans trt sp trt*sp /adjust=tukey; 

run; 
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Abstract 

 

Each year 280 million scrap tires are generated and around 67 million tires are in 

stockpiles in the United States. When tires degrade, metals and organic compounds are 

released to the environment where they could have toxic effects on cells and organisms. 

We assessed the behavior and fate of discarded tire pollutants using zinc as an indicator. 

Whole discarded tires filled and maintained with 4 L of deionized water were exposed to 

three different levels of UV-B radiation that mimic full-sun conditions, 10.82 umol/m2/s 

(FS), shade conditions, 6.1 umol/m2/s (S), and no UV radiation, 0.6 umol/m2/s (NUV) for 

150 days in a controlled greenhouse facility. Water samples from tires were collected on 

days 1, 50, 100, and 150, and biofilm was harvested at the end of the experiment (day 210) 

to assess the concentration of dissolved and total zinc concentrations. Zinc concentration 

was on average higher in tires exposed to FS conditions compared to tires exposed to S and 

NUV conditions over the duration of the experiment for both dissolved and total zinc in 

the water and for total recoverable zinc in biofilm. In FS and S conditions, dissolved zinc 

concentrations in water rose to a peak on day 100, with the highest concentration in FS 

(2.301 mg/L), but then declined to day 150; and total zinc concentration in water rose to a 

peak at day 150, with the highest concentration in FS (4.11 mg/L). Amount of biofilm was 

significantly higher in FS condition compared to NUV condition and total zinc 

concentration in tire biofilm was higher in the FS condition (11.54 mg/g) than in the S 

(7.75 mg/g) and NUV (2.92 mg/g) conditions. These results showed that UV-B radiation 

affects the degradation of tires, and that zinc may shift from the water to the biofilm layer. 

Increased leaching of zinc and other contaminants with UV-B degradation, and shifts of 

these contaminants from the water column into the biofilm may have important 
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environmental impacts, especially for aquatic systems that may be vulnerable to 

contaminant toxicity.  

Key words: Zinc, tire leachate, UV-B radiation, tire contaminants 
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Introduction 

 

The Rubber Manufacturers Association (RMA, 2017) estimates that around 280 

million automobile tires are discarded annually in the United States. Approximately 67 

million discarded tires are stored in American stockpiles while illegal dumping adds 

additional tires into the environment. Discarded tires present a substantial challenge to 

discard and recycle (RMA 2017). Discarded tires are very durable and persist in the 

environment, unless they are processed with mechanical, thermal or a combination of these 

treatments (Kwon and Castaldi, 2009). Discarded tires could have a range of adverse 

environmental effects including threats to public health (Horner, 1996). When tires 

breakdown and the chemicals they contain are released into the environment from tire 

decomposition, incineration or accidental fires; each of these processes could pollute the 

major earth components (e.g., atmosphere, lithosphere, hydrosphere) and negatively 

impact the living organism that inhabit these earth components.  Discarded tires represent 

a problem in landfills because of their volume and its slow degradability. Landfill buried 

tires represent a potential risk due to the release of contaminating leachates to surrounding 

groundwater when infiltration of rainwater occurs (Evans, 1997). Another major, but less 

studied, concern of discarded tires is their ability to collect rainwater and provide a 

potential developmental habitat for pestiferous and disease-vector mosquitoes (Yee et al., 

2010). 

Tires are made of a conglomerate of organic (e.g., polycyclic aromatic 

hydrocarbons PAHs, benzothiazoles, 4-tert-butylphenol) and inorganic (e.g., zinc, copper, 

cadmium, lead) contaminants that can leach and persist in the environment, and accumulate 

overtime (Peterson et al., 1986; Day et al., 1993, Selbes et al., 2015). Many tire 
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contaminants are bioavailable and persistent in the aquatic environment. Contaminants 

from tire leachate have been documented to affect a range of biota, including fish (Spies et 

al., 1987; Day et al., 1993; Hartwell et al., 2000), algae (Gualteri et al., 2005), bacteria 

(Day et al., 1993; Hartwell et al., 2000; Crampton, et. al., 2014), small planktonic 

crustaceans such as Daphnia magna and Ceriodaphnia dubia (Wik and Dave, 2005; Wik 

et al., 2009; Marwood et al., 2011), and insects (Villena et al., 2017). Tire leachate can 

have both direct or indirect effects. Some examples of direct effects could be detrimental 

effects on growth, survival, weight, and reproduction (Day et al., 1993). Indirect effects 

could be an interference in the outcome of competition between two or more similar species 

that are competitors, especially if one is more susceptible to specific pollutants (Rohr and 

Crumrine, 2005; De Hoop et al., 2013); or negative effects on biota, making them more 

susceptible to predators (Sanchez-Bayo et al., 2012). 

Tire deterioration is influenced by a number of environmental factors, including 

temperature, ozone, humidity, and ultraviolet radiation (UVR) (Andrady et al., 1998; 

Andrady et al., 2003). Once tires crack and split, water can reach the steel belts of tires, 

causing oxidation (Andrady et al., 1998), and an acceleration in the leaching of compounds 

into the environment. Perhaps the most important factor affecting tire deterioration and 

contaminant leaching is UVR. Not only does UVR promote the deterioration of tire 

structure, tire leachate that is continually exposed to UVR undergoes a further 

photochemical reaction called phototoxicity whereby leachate molecules absorb light 

photons to be made even more toxic to biotic organisms; in some cases 10 times more toxic 

(Wik and Dave, 2005). Ultraviolet radiation has a wavelength range between 100-400 nm 

(Andrady et al., 1998) and is subdivided into three subtypes: UV-A (400-315 nm), UV-B 
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(315-280 nm) and UV-C (280-100 nm). Only UV-A and UV-B reach the earth’s surface 

(Caldwell et al., 2003). Although UV-B constitutes only approximately 5% of the total 

UVR that reaches the earth’s surface, has higher energy levels due to its shorter wavelength 

and therefore causes almost all of the negative UVR effects on tire and other materials 

(Andrady et al.,1998).  

            Tire exposure to UVR can vary with shade and tire orientation (Turner, 2011). 

Despite the importance of tire deterioration on the rate of contaminant release into the 

environment there is a paucity of data on effects of different field-relevant UVR levels on 

the rate and accumulation of contaminants in the environment. In this chapter, we assess 

the effect of three different UV-B radiation conditions that mimic a range of circumstances 

in the field (full-sun, shade, and no-UV radiation) on the leaching of zinc from whole 

discarded tires in a controlled laboratory experiment. Zinc is commonly used as a marker 

of tire leachate and in prior studies has been shown to be toxic at concentrations commonly 

detected in the field across a range of species, is common across almost all tire types, and 

is relatively easy to detect (Nelson et al., 1994; Wik and Dave, 2009; Marwood et al., 

2011).  
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Materials and methods  

Ultraviolet radiation treatments 

 

In a controlled greenhouse facility at University of Maryland College Park, 90 

Goodyear brand tires (Model: Assurance, P215/60R16), organized in 6 blocks of 5 tires 

per treatment, yielding 18 experimental units, were randomly assigned to one of three UV-

B conditions that mimicked three common conditions in the field: (1) full-sun: 10.82 

umol/m2/s (FS); (2) shade: 6.1 umol/m2/s (S); and (3) no UV radiation: 0.6 umol/m2/s 

(NUV). UV-B radiation was provided by 12 UVB-313 lamps (Q Panel Lab Products, 

Cleveland, OH) suspended over each of three benches that were assigned one of the three 

UV-B conditions. UV-B lamps for FS and S conditions were wrapped with cellulose 

diacetate (CA) biofilm, which transmitted UV-B radiation down to 290 nm at a height of 

1.2 and 0.6 meters, respectively. For the NUV radiation treatment, polyester filters that 

block almost all UV-B radiation below 316 nm were used (Grant et al., 2010; Sullivan et 

al., 2010). FS and S lamps were adjusted to specific heights above tires to attain the 

appropriate UV-B radiation levels, and all UV-B levels were confirmed by an ultraviolet 

meter (UVM-SS, Apogee Instruments Inc.) (Sullivan et al., 2010). Tires were obtained 

from the Motor Transportation Service of the University of Maryland College Park. The 

tires were 70 cm high, 18.89 cm wide, and 42 cm in diameter and four liters in volume in 

the base.  

Zinc concentrations in water 

 

The experiment design was a repeated measure randomized complete block design 

(RCDB). Tires were exposed to UV-B radiation in 6 blocks of 15 tires, and blocks were 

run for 210 days in sequential temporal order. In each block, five tires were randomly 
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assigned to each of the three benches, making one experimental unit the group of 5 

discarded tires on a bench. To assure uniform exposure to UV radiation, tires were rotated 

every 4 days. Tires were filled with 4 L deionized water and were routinely topped up 

throughout the duration of the experiment (Macia, 2006).   

Water samples were taken from each tire at day 1, 50, 100, and 150 after tire set-

up, and analyzed for total recoverable and dissolved zinc concentrations following the U.S. 

EPA 3015A method for microwave assisted acid digestion of aqueous samples and extracts 

(U.S. EPA, 2007). For total recoverable zinc, 100 ml of water was extracted from each tire 

and 150 ul of concentrate nitric acid was added; samples were then refrigerated until 

analysis. For dissolved zinc, I collected 19 ml of filtered water and added 1 ml of 

concentrated nitric acid in Polypropylene conical centrifuge tubes, and refrigerated until 

analysis. 45 ml of water sampled for total recoverable zinc plus 5 ml of concentrated nitric 

acid (10% v/v) were placed in a 100 ml digestion vessel. For the digestion process, a full 

set of 12 vessels was placed in an Ethos D Milestone Microwave equipment; if there were 

not enough samples to make a full set, I prepared a full set by filling remaining digestion 

vessels with 45 ml deionized water and 5 ml of concentrated nitric acid (method blanks). 

The vessel with the temperature sensor always contained a normal sample (not a method 

blank). For the digestion process, we followed the lab program # 11 to provide digestion 

with 10 minute ramp to 160 °C followed by 10 minute ramp to165 °C. Then, digested 

samples were transferred to 50 ml Polypropylene conical centrifuge tubes and stored at 5 

°C.  

Analysis of water samples for total and dissolved zinc concentrations was 

conducted with an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 
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with autosampler following the U.S. EPA Method 200.7 for the analysis of water and 

wastes using ICP-AES (U.S. EPA, 1994). Standardization of equipment occurred after 

daily calibration and after every 11 samples. Calibration standards were 0, 0.4, 2, 4, and 6 

mg zinc/L in 5% (v/v) nitric acid. Standardization regression was linear up to 100 mg 

zinc/L.  Samples for total zinc concentration were diluted to 5% (v/v) nitric acid before 

analysis. Water samples for dissolved zinc were already at 5% (v/v) nitric acid. Before 

analyzing a water sample, a rinse/wash was done using 5% nitric acid (v/v) for one minute, 

the sample was pre-flushed for 30 seconds at pump speed 4 followed by 30 seconds at 

pump speed 2, followed by 30 second integration; each time a sample probe was moved 

took an additional 8 seconds; total sample turn-around time is 2 minutes 47 seconds.  

Zinc concentration in biofilm 

    

On day 210, each tire was destructively sampled for biofilm.  All water was 

removed, and total biofilm was extracted with a plastic spatula into 30 ml glass beakers 

and the wet weight was measured. Biofilm samples were dried for 24 hours at 95 °C and 

then at 105 °C for four hours in a Blue M Stabil-Therm Oven. After samples were dried, 

they were placed in a glass vacuum desiccator and weighted to obtain dry weight. Digestion 

of biofilm samples was performed with Ethos D Milestone Microwave with a carrousel of 

12 digestion vessels. Samples were prepared for digestion by placing up to 0.3 g of oven-

dried biofilm and 10 ml of concentrate nitric acid into a 100 ml closed digestion vessel; 

then a full set of 12 vessels containing nitric acid was placed into the Ethos D Milestone 

Microwave following U.S. EPA 3015A method (U.S. EPA, 2007). If there were not enough 

samples to make a full set, then a full set was prepared by filling the remaining digestion 

vessels with 10 ml of concentrated nitric acid (method blanks). The vessel with the 
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temperature sensor should always contain a normal sample (not a method blank). For the 

digestion process, we followed the lab program # 14 that included 10 steps to provide 

digestion with a slow ramp to 175 °C followed by 9.5 minutes at 175 °C. After biofilm was 

digested it was brought to 100 ml with deionized water and transferred to 50 ml 

Polypropylene conical centrifuge tubes for storage at 5 °C (10 % nitric acid v/v).  

Analyses of biofilm samples for total recoverable zinc were conducted with 

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) with autosampler 

following the U.S. EPA Method 200.7 for the analysis of water and wastes using ICP-AES 

(U.S. EPA, 1994). Standardization of equipment occurred after daily calibration and after 

every 11th sample following U.S. EPA Method 200.7. Calibration standards were 0, 0.4, 2, 

4, and 6 mg Zn/L in 5% (v/v) nitric acid. Standardization regression was linear up to 100 

mg zinc/l. For analyses, digested samples were further diluted by mixing 5 ml of digested 

sample with 5 ml deionized water to provide a solution that contained nitric acid at about 

5% (v/v) concentration, which is the limit for the equipment. These diluted solutions were 

analyzed for total recoverable zinc.  

 

Analyses  

Differences of total and dissolved zinc concentrations in the tire water column 

between UV-B conditions were tested using linear models using the SAS PROC MIXED 

procedure (SAS 9.4, SAS Institute Inc. 2013), with separate analyses by sample day to 

meet the assumptions of normality and homogeneity of variances. Models included UV-B 

radiation condition as a fixed effect, and block as a random effect. Measurements at day 1 

were used as a covariate. Each experimental unit was a group of 5 tires on one of the three 

benches, where each individual tire was treated as a sub-sample. The response variables 
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were dissolved and total zinc concentrations from tire water columns (mg/L). Significant 

differences of amounts of biofilm (g) per tire and total recoverable zinc concentration in 

tire biofilm (mg/g) between UV-B conditions were tested using a nested linear model, 

using PROC MIXED procedure (SAS 9.4, SAS Institute Inc. 2013). The model included 

UV-B condition as a fixed effect, and tires nested in blocks as a random effect. We did a 

pairwise mean comparison in the mixed procedure using LSMEANS statement with tukey 

adjustment. Experiment-wise α = 0.05 for all analyses. 

Results 

 

Zinc concentration in water  

 

Leachate from discarded tires exposed to FS condition generally had the highest 

dissolved and total zinc concentrations, followed by those exposed to S condition and then 

NUV condition at days 50, 100, and 150 (Table 4; Figures 4A and 4B). Dissolved zinc in 

both FS and S peaked on day 100 before declining, while dissolved zinc in NUV remained 

consistently lower throughout the experiment. In contrast, total zinc concentration rose 

over the course of the experiment in FS, peaking on day 150, and was similar on days 100 

and 150 in the S condition. Consistent with dissolved zinc, total zinc concentrations in 

NUV were lower than other conditions and similar throughout the experiment.  

 

Amount and zinc concentration in biofilm 

At the conclusion of the experiment, tires exposed to FS condition had the greatest 

biofilm, followed by those exposed to S condition and then NUV condition (F2,25 = 7.95, P 

= 0.0019; Figure 5A). Biofilm from FS also showed higher concentrations of total 

recoverable zinc per gram dry biomass compared to S and NUV conditions (F2,25 = 22.13, 
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P = <0.0001; Figure 5B). The mean concentration of total recoverable zinc in tire biofilm 

was 11.54 mg/g, 7.75 mg/g, and 2.92 mg/g for FS, S, and NUV conditions respectively. 

Discussion  

 

This study showed that longer exposure to increasing UV-B radiation promoted the 

leaching of zinc, and likely other contaminants, from whole discarded vehicle tires. Tires 

exposed to full-sun (FS) conditions consistently leached higher zinc concentrations 

compared to those exposed to shaded (S) or no-UV (NUV) conditions. Under FS, dissolved 

zinc peaked on sample day 100 after first exposure and then declined by day 150, while 

total zinc continued to increase. This result appears to be because much of the zinc was 

retained in biofilm, which was harvested in considerably greater amounts and had higher 

zinc concentration in FS conditions. A similar but less pronounced trend was seen in S 

conditions, while NUV conditions showed consistently low zinc concentrations.  

Over 280 million vehicle tires are discarded in the United States each year, 

approximately one tire per person per year (RMA, 2017). Despite the U.S. EPA and 

individual states’ efforts to reduce stockpiles of scrap tire through the establishment of 

waste tire management and recycling acts and the waste tire and recycling management 

fund, which is dedicated to the cleanup of scrap tire stockpiles and market development 

programs for scrap tires (U.S. EPA, 1993; Miller, 2014), many thousands of tires are still 

illegally discarded or are stored for extended periods. Despite the potential for tires to 

deteriorate from UV-B radiation exposure over extended periods and to release leachate 

into watersheds, there are relatively few studies assessing the rate of tire decay over time 

under varying environmental conditions. This is one of the few studies that have addressed 

the rate of tire decay using whole tires and UV-B radiation levels similar to those found 
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under different sun and shade conditions in the natural environment.  In the literature, most 

studies have used crumb rubber particles (Wik and Dave, 2005; Marwood et al., 2011; 

Rhodes et al., 2012; Villena et al. 2017) or tire chips (Selbes et al., 2015) to obtain tire 

leachate and assess its toxicity. Few studies have used whole tires, under laboratory 

conditions, however in these studies, tires were totally submerged in water (Kellough, 

1991; Day et al., 1993; Abernethy et al., 1994). Furthermore, our study measured zinc 

concentrations in water that was retained in whole tire casings over time and in the biofilm 

that formed in the bottom of the tires. Such measurements are particularly important 

because tire casings provide an important habitat for a number of Dipteran insects, 

including mosquitoes that can transmit a number of vector-borne disease agents to animals 

and humans (e.g., zika, chikungunya, and West Nile virus).  

Our results showed a maximum average dissolved zinc concentration of 2.3 

(SE±0.5) mg/L (0.18-6.91 mg/L) which was reached at day 100 in FS conditions. 

Interestingly, these results are consistent with a previous study by Villena et al. (2017) that 

found an average of 2.39 (SE1.17) mg/L (0.05-7.26 mg/L) of dissolved zinc concentration 

in 42 whole discarded tires in five sun exposed field locations in the state of Maryland, 

suggesting that my experimental conditions in the greenhouse are generally realistic to 

those in the field.  

The most well documented environmental impacts of tire leachate are in aquatic 

organisms, and perhaps the most interesting one is in vector-borne disease mosquitoes.  

Villena et al. (2017) tested the effect of experimentally-derived tire leachate on two 

mosquito species, Aedes triseriatus and Aedes albopictus and found that leachate with zinc 

concentrations at as low as 0.05 mg/L and 44.50 mg/L could have severe negative effects 
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on the population performance of each species, respectively, and ultimately lead to their 

complete mortality at higher concentrations. Although, other factors likely contributed to 

mortality in this experimental study, including low resource levels, the findings in the study 

here suggest that tires may not need to be exposed to UVR conditions for long to have toxic 

conditions for Ae. triseriatus. In our experiment, we found levels at day 100 in FS 

conditions that can be lethal to Ae. triseriatus especially under FS, but not to Ae. albopictus.  

A limitation of the Villena et al. (2017) was that it only tested the effects of 

dissolved zinc concentrations rather than total zinc concentrations within the tire 

environment, which include zinc associated with fine particulate matter (0.45 um) and with 

biofilm. Mosquito larvae filter-feed from the water column and browse surfaces to feed on 

detritus and associated microbial organisms (Merrit et al., 1992). Our study showed much 

higher zinc concentrations in unfiltered water samples (i.e., total recoverable zinc) and 

biofilm, peaking at 4.11 (SE±0.93) mg/L (0.50 - 20.02 mg/L), at day 150 from water 

samples in FS conditions and in FS tires as biofilm among all three experimental conditions 

at 11.54 (SE±1.85) mg/g (4.17-19.13 mg/g). Furthermore, tires exposed to FS conditions 

had greater amounts of biofilm compared to S and NUV conditions. Therefore, it is highly 

likely that mosquito larvae would experience negative impacts from tires that degrade in 

the field, especially under FS conditions, which would likely have much lower dissolved 

zinc concentrations than those reported in Villena et al (2017). 

Our findings are broadly consistent with studies of tires in natural water bodies, 

which find concentrations of tire particles higher in sediment compared to the column water 

(Kumata et al., 2002; Marwood et al., 2011). The tire particle concentration in the sediment 

portion ranges from 0.3 to 155 g/kg (Kumata et al., 2002; Wik et al., 2006), while the 
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concentration of tire particles in the water column ranges from 0.0003 to 0.197 g/L 

(Kumata et al., 1997). In our study, we found almost three times higher zinc concentration 

in the biofilm of the discarded tires than in the water column under FS conditions and twice 

higher concentration for tires exposed to S conditions. Under NUV radiation there is no 

significant difference between zinc concentration in the biofilm or in the water column. Of 

the released zinc and likely other contaminants from tires, some would be dissolved in the 

water column, but some would be bound to inorganic or fine particulate organic matter 

(FPOM) in the water column. Other tire contaminants would precipitate to the sediment 

fraction of the tire casings (biofilm layer) where they will be attached or be absorbed into 

the biofilm layer at the bottom of the tire casings (Cuong et al., 2008; Huang et al., 2012). 

Mosquitoes that filter-feed on the water column (e.g., Cx. pipiens) will be exposed mainly 

to the dissolved fraction of tire contaminats or contaminats attached to FPOM. On the other 

hand, mosqutioes that browse-feed (e.g., Ae. albopictus) will be exposed to tire 

contaminants attached or absorved into the biofilm layer (Merrit et al., 2012). 

The zinc concentrations we found within tire water and tire biofilm, especially 

under conditions that mimic full-sun exposure, are well within the level that might 

negatively affect a range of living organisms, besides mosquitoes. The study of Day et al. 

(1993) showed a 96-hour median lethal concentration (LC50) for Oncorhynchus mykiss 

(rainbow trout) that ranged from 11.8% to 19.3% (v/v) for leachate from used tires and 

52.1% to 80.4% (v/v) for leachate from new tires, showing that leachate from discarded 

tires is more toxic than leachate from new tires. This is probably because antioxidants and 

antiozonants have been removed from the surface of the tires through wear of tire tread. 

This in turn could cause cracking of tires which could expose fillers and metals inside the 
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tire to humidity and heat, producing higher leaching of toxicants. Kellough (1991) exposed 

O. mykiss to tire leachate from tire cuts and whole tires that were submerged in water for 

30 and 60 days.  In both cases, 100 % mortality was observed. Zinc concentration in the 

fish tissue was 81 mg/kg in fish exposed to tire leachate from whole tires and 120 mg/kg 

in fish exposed to tire leachate from cut tires (Kellough, 1991). Wik and Dave (2005) found 

a median effective concentration (EC50) range between 0.125 to 2.4 g/L for Daphnia magna 

after 48 hours of exposure to tire leachate obtained from grated rubber. Marwood et al. 

(2001) found an EC50 of 4,3 g/L and a 1.25 g/L of no observed adverse effect concentration 

(NOAEC) for D. magna using tire leachate extracted at 44ºC. Gualtieri et al. (2005) found 

a LC50 range from 50 to 100 g/L for the African clawed frog (Xeno Dus laevis) after 120 

hours of exposure to tire leachate. 

Consistent with past studies, this study used zinc as a marker of tire leachate 

because it has been shown to be toxic at concentrations commonly detected in the field 

across a range of species, is common across almost all tire types, and is relatively easy to 

detect (Nelson et al., 1994; Wik and Dave, 2009; Marwood et al., 2011). Nelson et al. 

(1994) identified zinc from tire leachate as the toxicant that caused acute toxicity to 

Ceriodaphnia dubia with a 24-hour LC50 of 147.1 ug/L. To isolate zinc, they used ethylene 

diamine tetraacetic acid (EDTA) and sodium thiosulfate to remove the toxicity of copper, 

cadmium, and lead from the solution.  To reconfirm these results, they added zinc chloride 

to deionized water and found it was toxic to C. dubia. Nelson et al. (1994) found 

concentrations of 0.75 mg/L of zinc, 0.0067 mg/L of copper, 0.0067 mg/L of lead, and 

0.0006 mg/L of cadmium from the leachate of 29 tire plugs of 10.25 cm in diameter and 

100 g of weight. All the tire leachate samples tested for organic compounds were under the 



71 

 

detection limit, which was 0.001 mg/L (Nelson et al., 1994). Further, Marwood et al. (2011) 

suggest that zinc and aniline are probably the most important toxic chemicals in tire 

leachate, tire particle leachate extracted at 44 ºC was analyzed and found zinc as the most 

abundant heavy metal in the samples with a concentration of 0.056 mg/L, and they also 

found two organic compounds at quantifiable levels, aniline (16mg/L) and N,N’-bis(1,4-

dimethylpentyl)-p-phenylenediamine (26mg/L). We showed that the concentrations of zinc 

within the water and biofilm after 150 days would almost certainly have negative impacts 

on exposed communities of organisms. However, in addition to zinc a suite of other 

compounds are integral to tire material, have negative effects on living organisms, and may 

leach at different rates than zinc (e.g., benzothiazoles). Future studies should also aim to 

characterize the fate of these other contaminants to better understand the impact of tire 

deterioration on living systems.  

This study is among the first to test the effects of different field-relevant UV-B 

levels on the rate and accumulation of zinc in used tires, and there is considerable scope to 

further study this environmental issue. Our findings in combination with prior studies 

(Villena et al., 2017) suggest that tire leachate is likely to have negative effects on at least 

some mosquito species through direct toxicity. Perhaps more ecologically important may 

be indirect effects that leachate may have by moderating species interactions, particularly 

among mosquito communities. Tire habitats are typically resource limited and mosquito 

larvae usually engage in strong intra- and inter-specific competition for microbial and 

detrital food resources. If competing mosquito species are differentially affected by tire 

leachate, the outcome of hetero-specific competition may be altered or even reversed, 
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leading to changes in the distribution and abundance of vector species and risk of disease 

transmission to human, wildlife, and livestock. In chapter 4, we test these hypotheses.  
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List of tables and figures 

Tables 

 

Table 4. ANOVA results of the effects of UV-B radiation conditions (full-sun, shade, and 

no-UV) on the concentrations of dissolved and total zinc concentrations in tire water.  

 

 

Source of 

Variation 

Day 50 Day 100 Day 150 

dfs F P dfs F P dfs F P 

Dissolved zinc 2,11 3.75 0.0573 2,11 4.50 0.0473 2,11 2.54 0.1175 

Total zinc 2,11 7,21 0.0100 2,11 11.81 0.0041 2,11 4.24 0.0452 
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Figures 

 

Figure 4.  Least square means (± SE) for (a) dissolved and (b) total zinc concentrations in 

water samples from discarded tires exposed to UV radiation conditions that mimicked full-

sun (FS), shade (S) and no ultraviolet radiation (NUV) conditions at days 50, 100, 150 

(expressed in mg/l). Data were statistically tested using ANOVA. Significant pairwise 

comparison among day of sampling are indicated by different letters.  

 
                  

Figure 5. Least square means (± SE) for (a) dry weight of tire biofilm expressed in g and 

(b) total recoverable zinc concentrations in biofilm samples expressed in mg/g from 

discarded tires exposed to UV radiation conditions that mimicked full-sun (FS), shade (S) 

and no ultraviolet radiation (NUV) conditions for 150 days. Data were statistically tested 

using ANOVA. Significant pairwise comparison among UV-B conditions are indicated by 

different letters above bars.  
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Appendices 
 

Appendix 4: Calibration of the Inductevely coupled plasma atomic emission 

spectroscopy (ICP-AES), using the following zinc concentrations: 0, 0.4, 2, 4, 6 mg/L. 
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Appendix 5: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) on 

the dissolved and total zinc concentration in discarded tires. 

 

PROC IMPORT OUT= WORK.zinc  

            DATAFILE= "C:\Documents\Data\Zinc\waterZnCov.csv"  

            DBMS=CSV REPLACE;  

     GETNAMES=YES; 

    DATAROW=2; 

RUN; 

PROC PRINT DATA=zinc; 

RUN; 

proc sort data=zinc; 

key trt day /ascending; 

run; 

proc means data=zinc; 

var ivdzn ivtzn DZn TZn; 

by trt day block; 

output out=a mean=ivdzn ivtzn DZn TZn; 

run; 

proc print data=a; 

run; 

proc sort data=a; 

by day trt block; 

run; 

proc mixed data=a; 

class block day trt; 

model DZn= ivdzn trt/residual ddfm=sat; 

random block; 

lsmeans trt/ adjust=tukey; 

by day; 

run; 

proc sort data=a; 

by day trt block; 

run; 

proc mixed data=a; 

class block day trt; 

model TZn= ivtzn trt/residual ddfm=sat; 

random block; 

lsmeans trt/ adjust=tukey; 

by day; 

run;
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Appendix 6: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) on 

the total recoverable zinc concentration in biofilm from discarded tires. 
 

PROC IMPORT OUT= WORK.Znbio2  

            DATAFILE= "C:\Documents\Data\Zinc biofilm2.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

run; 

Proc print data=Znbio2; 

run; 

proc sort data=Znbio2; 

  by trt blk; 

  run; 

*Amount of biofilm per trt**; 

proc means data=Znbio2 n mean median stderr; 

 by trt blk; 

 var Drybiofilm; 

 output out=biofilm1 n=count mean=meanwbio median=medianwbio stderr=stderrwbio 

nmiss=nmiss; 

 run; 

*Amount of Zn per trt mg/g**; 

 proc means data=Znbio2 n mean median stderr; 

 by trt blk; 

 var TZnGram; 

 output out=zn1 n=count mean=meanzn median=medianzn stderr=stderrzn nmiss=nmiss; 

 run; 

*data transformation**; 

data b; 

set Znbio2; 

TZnGram=log10(TZnGram); 

DryBiofilm=log10(DryBiofilm); 

run; 

proc mixed data=b; 

 class trt Tire blk; 

 model TZnGram = trt /ddfm=sat residual; 

 random blk; 

 LSMEANS trt/pdiff adjust=tukey; 

run; 

proc mixed data=b; 

 class trt blk; 

 model DryBiofilm = trt /ddfm=sat residual; 

 random blk; 

 LSMEANS trt/pdiff adjust=tukey; 

run;
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Abstract 
 

Competitive interactions between mosquitoes depend on environmental conditions. 

Tire leachate, released by tire degradation under three different UV-B radiation conditions 

(full-sun, shade, and no-UV conditions), may promote condition-specific competition for 

limited food resources between the invasive Aedes albopictus and resident Culex pipiens 

mosquito in tire habitats. We tested the hypothesis that exposure to tire leachate alters 

heterospecific resource competition, diminishing the superior competitiveness of Ae. 

albopicuts over Cx. pipiens, thereby facilitating species coexistence. Our results showed 

some evidence to support this hypothesis. Although negative effects of Ae. 

albopictus competition on the population performance of Cx. pipiens were consistent 

across all UV-B conditions, there were increased competitive effects of Cx. pipiens on Ae. 

albopictus population performance and survival in shade and full-sun conditions. In NUV 

condition, per capita rate of population change (λ') and survival of Ae. albopictus were 

greater under Cx. pipiens competition (50:50) compared to conspecific competition (100:0 

and 50:0), a trend that was not apparent under S and FS conditions. Culex pipiens 

development time was statistically significantly negatively affected by Ae. albopictus 

competition, increasing on average by 10 days compared with low conspecific competition 

(50:0). Culex pipiens and Ae. albopictus body size were affected by UV condition, showing 

statistically significantly greater body size when adults emerged from tires exposed to S 

and FS conditions compared to NUV condition. Larger mosquitoes can represent a threat 

to public health because of their higher vectorial capacity, longer life expectancy, greater 

flying range, and better fecundity rates compared to smaller mosquitoes. Furthermore, 

overall zinc concentration in mosquitoes was higher in Ae. albopictus compared to Cx. 
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pipiens in tires with higher tire leachate concentration (from FS and S conditions). These 

findings suggest that UV-B exposure and tire degradation that Ae. albopictus and Cx. 

pipiens are likely to experience under shade and full-sun conditions in the field are likely 

to facilitate their coexistence and produce larger adults of both species, a finding that could 

have health consequences due to the higher vectorial capacity of larger mosquitoes.  

 

Key words: Tire leachate, condition-specific competition, Ae. albopictus, Cx. pipiens 
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Introduction 
 

Understanding the ecological mechanisms that govern the establishment and spread 

of exotic insect species and their impacts on resident communities is of fundamental 

importance to the field of invasion biology. Traditional niche theory and empirical research 

indicate that superior competitive ability is often a critical trait that determines the success 

and impacts of exotic species (Juliano, 2009; Davis, 2009; Lockwood et al., 2009). With 

one limiting resource in a constant environment, interspecific competition should result in 

competitive exclusion or local extinction (Tilman, 1982; Chase and Leibold, 2003). There 

are numerous instances where a competitively superior invader has displaced a resident 

species (Lounibos et al., 2016). However, there is also evidence of competitively inferior 

residents escaping competitive exclusion or local extinction via a number of mechanisms, 

including differential resource use (e.g., Tilman, 1982; Blaustein and Chase, 2007), 

temporal and spatial habitat segregation (Costanzo et al., 2005a; Leisnham et al., 2014), 

Oviposition patterns and asynchrony in hatching (Costanzo et al., 2005a), and trade-offs 

between competitive ability and environmental tolerances (Dunson and Travis, 1991; 

Hemphill, 1991; Chesson and Huntly, 1997; Chesson, 2000). Condition-specific 

competition, whereby abiotic conditions reduce or reverse the outcome of competition 

between two species can facilitate coexistence when there are temporal or spatial changes 

in abiotic conditions (Lawton and Hassell, 1981; Juliano, 2009; Costanzo et al., 2011). 

Condition-specific competition is perhaps most interesting in invaded systems when it 

facilitates the incursion of an exotic species or persistence of a resident species despite the 

presences of a superior competitor.  
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A convenient model to investigate the role of condition-specific competition in 

biological invasions and the impacts on native communities is container dwelling 

mosquitoes that utilize discarded tires. Discarded tires that collect rain water are a common 

habitat for the developmental stages (eggs, larval, pupae) of many mosquito species 

worldwide (Yee, 2008b). In the United States, approximately 280 million scrap tires are 

generated each year and around 67 million tires are stored in stockpiles (Rubber 

Manufacturers Association, 2017). Tires have been particularly instrumental in the 

establishment and spread of invasive mosquito species (Lounibos, 2002a; Benedict et. al., 

2007). The best documented mosquito invasion is that of Ae. albopictus in North America 

via used tires in Texas in the mid-1980s (Sprenger and Wuithranyagool, 1986; Benedict et 

al., 2007). Since then, Ae. albopictus has spread throughout the eastern part of the United 

States, reaching New York state (CDC, 2016), commonly utilizing tire habitats, to become 

the most dominant human-biting species in many states (Juliano and Lonibos 2005).  

In the Mid-Atlantic region of the United States, Ae. albopictus often co-occurs with 

Culex pipiens in tire habitats where larvae of both species feed on microorganisms in the 

water column and on surfaces (Vinogradova, 2000; Costanzo et al., 2005a, Yee et al., 

2010). Microbial resources within tire habitats are associated with allochthonous inputs of 

plant and animal detritus, and are therefore limiting. Aedes albopictus and Cx. pipiens 

likely engage in strong interspecific competition in the field yet only four studies have 

rigorously tested competition between them. All four studies have confirmed strong 

competitive superiority of Ae. albopictus over the resident mosquitoes (Carrieri et al., 2003; 

Costanzo et al., 2005a; Costanzo et al., 2011; Marini et al., 2017). Of the four studies, only 

one study has rigorously tested the effects of environmental conditions on altering the 
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outcome of interspecific competition between Ae. albopictus and Cx. pipiens. A laboratory 

competition trial by Costanzo et al. (2011) showed that although Ae. albopictus was 

competitively superior to Cx. pipiens over a range of resource types, its competitive 

advantage was reduced in treatments with mainly grass, which is a high nutrient resource, 

and which, if combined with other mechanisms that relaxed the competitive impacts from 

Ae. albopictus, could ensure Cx. pipiens persistence.  

Collectively, Ae. albopictus and Cx. pipiens are vectors for a range of human and 

animal pathogens, including West Nile virus (WNv), dengue, Eastern Equine encephalitis, 

La Crosse encephalitis, malaria, St. Louis encephalitis, Japanese encephalitis, and dog 

heartworm (Savage and Miller, 1995; Gerhardt et al., 2001; Kim et al., 2005), thus the 

distribution and abundance of each species is of medical and veterinary importance. 

Coexistence of Ae. albopictus and Cx. pipiens may be particularly important for the spread 

of human WNv because Cx. pipiens is the main WNv vector among avian populations 

where the virus amplifies, while Ae. albopictus can bridge the virus into human populations 

(Tiawsirisup et al. 2005; Rizzoli et al., 2015). These two species also show high preference 

for urban and suburban residential areas (Sawabe et al., 2010).  

Despite being competitively inferior, Cx. pipiens has persisted in tire habitats in 

many urban and suburban areas after the invasion of Ae. albopictus, and factors controlling 

their coexistence within a tire are largely unknown. Tires are made of a conglomerate of 

organic (e.g., styrene-butadiene, polybutadiene), and inorganics (e.g., zinc, copper, 

cadmium, lead) compounds (Day et al., 1993; Selbes et al., 2015). Once tires are discarded 

and exposed to the effect of rain and ultraviolet radiation, organic and inorganic 

contaminants can leach into water in the tire casing (Andrady et al., 1998). Tire 
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contaminants have shown lethal (Kellough, 1991; Day et al., 1993) and sub-lethal effects 

on biota (Wik and Dave, 2005; Gualtieri et al., 2005a; Gualtieri et al., 2005b), including 

mosquitoes, in concentrations found in the field; such effects of these contaminants may 

allow condition-specific competition to play a role in coexistence of Ae. albopictus and Cx. 

pipiens (Villena et al., 2017). Two aspects of the life histories of Ae. albopictus and Cx. 

pipiens suggest that tire leachate may modify the outcome of interspecific competition 

between these two species. First, Cx. pipiens is well-documented to utilize a wider range 

of habitats than Ae. albopictus, including those that are likely highly contaminated by 

organic and inorganic pollutants that Ae. albopictus and most other mosquito species do 

not utilize (Vinogradova, 2000; Dehghan et al., 2010), suggesting that Cx. pipiens shows a 

higher tolerance to environmental contaminants. On the other hand, Ae. albopictus has 

shown reduced performance in habitats with excessive nutrient pollutants (WHO, 2003). 

Second, Cx. pipiens and Ae. albopictus have different feeding behaviors that may expose 

the invader species to higher concentrations of tire contaminants than the resident species. 

Aedes albopictus spends much more time feeding than Cx. pipiens and a greater proportion 

of its feeding time browsing surface biofilm compared with Cx. pipiens, which tends to 

exclusively filter-feed in the water column (Merritt et al. 1992), suggesting that Ae. 

albopictus may be exposed to more contaminants that may leach from a tire casing wall. 

In this chapter, I tested the effects of tire leachate on competition between the 

competitively superior Ae. albopictus and resident Cx. pipiens. Specifically, I tested the 

hypothesis that tires that have been exposed to greater UV-B radiation, and that therefore 

contain tire leachate with higher concentration of pollutants produce a condition-specific 

advantage for Cx. pipiens by relaxing or even reversing the outcome of competition with 
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Ae. albopictus. From this hypothesis, I derived the following predictions: 1. Aedes 

albopictus will have a greater competitive impact on Cx. pipiens under UV conditions that 

minimize tire degradation and reduce contaminant leaching; and 2. Culex pipiens will 

demonstrate reduced or even reversed negative impact from Ae. albopictus competition 

under UV conditions that accelerate tire degradation and increase contaminant leaching. 

Materials and methods  
  

Collection and maintenance of mosquitoes 

 

Aedes albopictus and Cx. pipiens larvae were collected from multiple locations in 

College Park, Baltimore, and Towson, Maryland. Neither Ae. albopictus or Cx. pipiens are 

endangered and collection sites were either on publically accessible lands or on private 

lands where consent for collections was granted at the time of collection; thus, no field 

permits were required to collect them. Field collected Ae. albopictus and Cx. pipiens larvae 

were reared to adulthood at 25°C at 16:8 (L:D) h photoperiod, and then released into 1-m² 

single-species cages. Adults were kept in an insectary at 25°C and >85% RH, 16:8 (L:D) 

h photoperiod. Both colonies were supplied 20% sugar solution. Females from both 

colonies were fed horse or rooster blood once a week via an artificial feeder (Hemotek, 

Accrington, UK) to ensure egg production and experimental larvae. Aedes albopictus 

females oviposited on seed paper placed inside 500 ml black cups, and filled with 200 ml 

of deionized (DI) water. Eggs were collected over multiple weeks and stored at >80% RH 

and 16:8 hours (L:D) photoperiod until hatching for the experiment. Culex pipiens 

oviposited egg rafts into a 500 ml black bowl filled with 400 ml of DI water. Culex pipiens 

eggs cannot be held without hatching; thus, egg rafts were collected within 24 h of 

oviposition, hatched in a lactobumina: yeast solution, and larvae were transferred into the 
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experiment after being rinsed. Aedes albopictus eggs that had been stored were also 

hatched in a lactobumina: yeast solution and larvae were transferred into the experiment 

after being rinsed and within 24 h of hatching. Experimental larvae of both species were 

F1-3 generation. 

Competition trial 

 

The competition trial was setup as a split-plot randomized complete block design 

(RCBD) with ultraviolet radiation (UVR) condition as the main plot, competition treatment 

as the sub-plot, and four replicate blocks. Newly hatched Ae. albopictus and Cx. pipiens 

were added to 15 whole tires that had been exposed to one of three UV-B conditions: full-

sun (FS), shade (S), and no-UV (NUV) conditions, for 150 days. Before placing newly 

hatched larvae, UV-B bulbs were wrapped with polyester filters that block almost all UV-

B radiation below 316 nm (Sullivan et al. 2010). The experiment was housed in a 

greenhouse at the University of Maryland College Park at 25°C, 16:8 h (L:D) photoperiod 

and the set-up is described in Chapter 2. The five tires exposed to each of the three UV-B 

conditions were randomly assigned one of five mosquito competition treatments (Ae. 

albopictus: Cx. pipiens, 0:100, 0:50, 100:0, 50:0, 50:50) and provisioned with 1.0 g 

senescent dried white oak (Quercus alba) leaf litter to create a response-surface 

competition trial. Treatments with 100 single species larvae (i.e., 0:100, 100:0) and with 

100 mixed species larvae (i.e., 50:50) were expected to exert high conspecific and 

heterospecific competition compared with treatments with only 50 single-species larvae 

which would exert little competitive pressure and represent “baseline” conditions. The 

experiment was set up as a blocked design in that the procedure was replicated four times 

as a new set of 15 tires were exposed to the UVR condition for 150 days. Each run of the 
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experiment was a replicate of each UVR condition x mosquito competition treatment 

combination, yielding 60 total experimental units. Tires were checked daily to collect 

pupae, which were then placed in individual vials with water until adult emergence. On the 

day of emergence, adults were killed by drying (>40°, > 48 h) and had their wing lengths 

measured. From each tire, we measured three fitness parameters for both species: 

proportion ♀ survivorship, median ♀ development time, and median ♀ wing length. Using 

these fitness parameters, we calculated λ`, a composite index of population increase based 

on r’, the realized per capita rate of population change (dN/N dt = r, the exponential growth 

rate) (Juliano 1998). 

 

where N₀  is the initial number of females per container or microcosm (assumed to be 50 

% of the larvae population); Ax is the number of females eclosing on day x; wx is a measure 

of mean female size on day x; f(wx) is a function relating fecundity to female size, and D 

is the estimated time (in days) required for a newly eclosed female to mate, obtain a 

bloodmeal, and oviposit. D is assumed to be 10 days for Cx. pipiens (Vinogradova and 

Karpova 2006, Costanzo et al. 2011), and 14 days for Ae. albopictus (Juliano 1998). For 

Aedes albopictus, f(wx)=78.02wx-121.24 (r2=0.713, N=91, P<0.0001; Lounibos et al. 

2002b). There is limited information on the fecundity to size relationship for female Cx. 

pipiens as most information on this function is of autogenous Cx. pipiens molestus. Egg 

rafts from autogenous species tend to have fewer eggs than those of anautogenous species, 

and thus using a size-fecundity relationship based on Cx. pipiens molestus is undesirable 
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for Cx. pipiens pipiens (Vinogradova 2000). Therefore, we used the equation 

f(wx)=148.5wx-383.82 (r2=0.3724, N=55, P<0.0001) based on a recent study following 

standard rearing protocols to obtain fecundity-size relationships for mosquitoes, whereby 

adult females of varying sizes were placed in individual cages and allowed to oviposit to 

obtain exact measures of fecundity across a distribution of sizes in a study at the University 

of Maryland (Scott et al. unpublished).  

Zinc concentration in mosquitoes 

 

After being dried and measured, all adults from blocks 3 and 4 were pooled by 

UVR condition and species to yield sufficient material to test for zinc concentration. Pooled 

samples were ground, microwave digested using an Ethos D Milestone Microwave 

following U.S. EPA 3015A method and standard protocols (EPA, 2007), and measured for 

total recoverable zinc using Inductively Coupled Plasma Atomic Emission Spectroscopy 

(ICP-AES) following the U.S. EPA Method 200.7 (EPA, 1994).  

Analyses 

 

Two-way analyses of variance (ANOVA) were used to measure the effects of UV-

B radiation conditions and competition treatment on λ` and its fitness parameters: ♀ 

survival, median ♀ development time, median ♀ body size for both Cx. pipiens and Ae. 

albopictus (PROC MIXED, SAS 9.4). Significant interactions between UV-B radiation 

conditions and competition treatment would indicate that UV-B radiation conditions 

altered the impact of competition. To account for assumptions of normality and 

homogeneity of variances, all survivorship data were arcsin transformed and Ae. albopictus 

λ` was log10(y+1) transformed. In all these analysis, we considered treatment and species 

as fixed effects, and block as a random effect in the model. Despite transformations, Cx. 
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pipiens λ` failed to meet parametric assumptions, and therefore we used a randomization 

two-way ANOVA (Randomization wrapper for SAS PROCs; Cassell 2011). Mosquito zinc 

concentration was also analyzed by a two-way ANOVA. To account for assumptions of 

normality and homogeneity of variances, zinc concentration was log10(y+1) transformed. 

In the model, we considered UV-B radiation conditions and species as fixed effects, and 

block as a random effect. For all ANOVAs, we did a pairwise mean comparison in the 

mixed procedure using the LSMEANS statement with tukey adjustment with the exception 

of the Cx. pipiens ANOVA because main effects and interaction of effects were not 

statistically significant. Experiment wise  = 0.05; marginal significance was defined  = 

0.05-0.10. 

 

Results 
 

There was no interaction between UV-B radiation conditions and competition 

treatment for Cx. pipiens λ`, survival, or development time (Table 5, Figure 7), indicating 

that there was no evidence that UV-B conditions altered the impact of competition on the 

Cx. pipiens population performance or important parameters of its fitness. But there was a 

marginal UV-B conditions x competition treatment interaction effect on Cx. pipiens body 

size, with the larger females eclosing from tires exposed to shade and full-sun vs. no-UV 

conditions, under high conspecific (0:100) and Ae. albopictus (50:50) competition (Table 

2). Main effects of UV-B conditions were detected on Cx. pipiens λ` (marginal) and 

survival, with cohorts in tires under FS condition having the lowest population 

performances and survival (Figure 9A). UV-B radiation conditions also affected female 

body size (Table 6), with the largest median body sizes in tires exposed to S and FS 

conditions (Figure 9E). Main effects of competition treatment were also detected on Cx. 
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pipiens survival, development time, and body size (Table 6). Culex pipiens survival was 

lower and body size was smaller in the 0:100 and 50:50 vs. 0:50 competition treatments, 

indicating negative effects of both conspecific and Ae. albopictus competition on these 

fitness parameters (Figures 9B and 9F). Culex pipiens development time was longer in the 

50:50 vs. 0:50 competition treatments, indicating a negative effect of Ae. albopictus 

competition on this fitness parameter (Figure 9D). Despite these effects of competition on 

Cx. pipiens fitness, no effect of competition was detected in its population performance.  

Across almost all UV-B conditions and competition treatments, Ae. albopictus had 

higher λ` than Cx. pipiens, indicating that it was the superior competitor under my 

laboratory conditions. Consistent with Cx. pipiens, a main effect of UV-B conditions on 

Ae. albopictus λ` (marginal) and survival were detected, with lowest population 

performance and survival in tires that had been exposed to FS condition (Tables 5 and 6, 

Figures 6A and 8A). However, in contrast to Cx. pipiens, the effects of UV-B conditions 

were not consistent across all competition treatments, as detected by significant UV-B 

conditions x competition treatment interaction (Table 5). Under high Cx. pipiens 

competition (50:50), Ae. albopoictus λ` was significantly lower in S vs. NUV conditions 

(Figure 6A). Also, main effects of competition treatment were detected on Ae. albopictus 

survival with lower survival in the 100:0 and 50:50 vs. 50:0 competition treatments (Figure 

8B). Although effects of Cx. pipiens competition varied across UV conditions, Ae. 

albopictus experienced the greatest competition from conspecifics. Ae. albopitus λ` and 

survival was lower in the 100:0 vs. 50:0 competition treatment indicating a significant 

negative effect of conspecific competition (Figures 6A, 8B). 
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There was no interaction between species and UV-B conditions treatment for Cx. 

pipiens and Ae. albopictus body total recoverable zinc concentration expressed in mg/kg 

(Table 7). indicating that there was no evidence that UV-B conditions had impact on the 

species zinc concentration. There was a main effect of species on the total recoverable zinc 

concentration with Ae. albopictus showing greater total recoverable zinc concentration 

compared to Cx. pipiens across all UV-B conditions (Figure 10).  

 

Discussion  
 

Tire habitats that have been exposed to greater UV-B radiation and that therefore 

contain water with higher amounts of tire leachate may produce a condition-specific 

advantage for Cx. pipiens by relaxing or even reversing the outcome of competition 

with Ae. albopictus. My competition trial using tires that had been exposed to varying UV-

B radiation under controlled experimental conditions showed some evidence to support 

this hypothesis. There were increased competitive effects of Cx. pipiens on Ae. 

albopictus population performance and survival in shade (S) and full-sun (FS) conditions, 

but not in no-UV (NUV) conditions. Aedes albopictus from full-sun conditions had higher 

amounts of bodily zinc, indicating greater exposure to tire leachate contaminants in tire 

habitats. Although Ae. albopictus had consistently higher population performance across 

all UV-B conditions and competition treatments, indicating competitive superiority, 

increased competitive impacts on Ae. albopictus in conditions with higher tire 

contaminants and reduced body ingestion of tire contaminants may facilitate the 

coexistence of Cx. pipiens with the invader.    

Competition was clearly asymmetrical between Ae. albopictus and Cx. pipiens, 

with Ae. albopictus the superior competitor to Cx. pipiens, this finding is consistent with 
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the finding of Carrieri et al. 2003, Costanzo et al. 2005a, Costanzo et. al. 2011, and Marini 

et al. 2017. Population growth index (λ'), the finite rate of increase of a population, 

determines if a population is increasing or decreasing. Lambda below zero indicates that a 

population decreases, a λ' equal to 1.0 indicates that a population is stable, and λ' greater 

than 1.0 indicates population increase (Oli and Dobson, 2003). For Ae. albopictus, under 

NUV conditions, λ' was greater for heterospecific competition (50:50) compared to high 

conspecific competition (100:0), and marginally greater compared to low conspecific 

competition (50:0), which did not happen under S and FS condition, being statistically 

significantly smaller for 50:50 in S condition compare to NUV, indicating a negative effect 

of Cx. pipiens on Ae. albopictus λ' (Figure 6A). In spite of higher interspecific competition 

of Cx. pipiens on Ae. albopictus population performance under FS and S conditions, λ' 

values for Ae. albopictus still were above 1.0, meaning that Ae. albopictus population will 

increase in similar conditions. On the other hand, under no-UV conditions, Cx. pipiens λ' 

was lower for high conspecific and heterospecific competition, compared to low 

intraspecific competition, meaning that Cx. pipiens was equally affected by conspecific 

and by Ae. albopictus (Figure 7A). In shade conditions, both Ae. albopictus and Cx. pipiens 

showed similar λ' values and all values were above 1.0 for low and high conspecific 

competition and heterospecific competition, meaning that both populations will increase 

through time. In FS conditions, Cx. pipiens λ' values were below 1.0 meaning its population 

would decline through time under these conditions. These results suggest that tire leachate 

could be one of the mechanisms that could make coexistence possible between Ae. 

albopictus and Cx. pipiens under shade condition.  
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Culex pipiens ♀ survival was consistently lower than Ae. albopictus across all UV-

B conditions and competition treatments (Figure 9A, 9B, 8A and 8B). However, 

survivorship of Cx. pipiens was proportionally greater than Ae. albopictus under S 

conditions compared to NUV conditions (Figure 9A, 8A). Survival of Ae. albopictus was 

affected by conspecifics, but not by Cx. pipiens (Figure 8B). Culex pipiens was affected in 

similar way by conspecifics and by Ae. albopictus (Figure 9B), suggesting that Cx. pipiens 

survival does not appear to be lower in tires with Ae. albopictus compared to only Cx. 

pipiens; these findings suggest that competition from Ae. albopictus is having no greater 

effect than competition from conspecifics. The increase leaching of contaminants with UV-

B exposure probably played a role in the findings of these experiments. Tire leachate is 

probably having a sub-lethal effect on Ae. albopictus and Cx. pipiens mosquitoes in S and 

FS conditions. Several laboratory studies have shown that tire leachate showed sub-lethal 

and lethal effects to aquatic organisms of different taxonomical orders. For example, Day 

et al. (1993) found that tire leachate was lethal for Oncorhynchus mykiss, Gualtiere et al. 

(2005b) found that tire leachate was lethal for Xenopus laevis embryos, and Wik and Dave 

(2005) found that tire leachate was lethal for Daphnia magna. 

High concentration of tire leachate also influenced development time and wing 

length. For Cx. pipiens, development time was statistically negatively affected by Ae. 

albopictus competition (Figure 9D), increasing on average by 10 days compared with low 

conspecific competition and by 6.3 days compared with high conspecific competition. 

Under field conditions, development time has a cost/benefit relationship (Lane and 

Mahony 2002). From an ecological point of view, longer development time means greater 

duration of mosquito larvae exposure to competition from conspecifics and other mosquito 
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species and longer exposure to predation, which could reduce the larval population and 

lead to a fewer number of adults. This scenario could be detrimental for a mosquito 

population. Aedes albopictus development time was not affected either by conspecifics or 

by Cx. pipiens.  

In our study, body size of Cx. pipiens, was affected by UV-B conditions and 

competition treatment. Cx. pipiens showed statistically significant greater body size when 

adults emerged from tires exposed to S and FS conditions compared to NUV conditions 

(Figure 9E). Ae. albopictus also showed the same trend of greater body size when adults 

emerged from shade and full-sun conditions (Figure 8E). Bigger mosquitoes are of medical 

and veterinarian concern and may represent a threat to public health because greater 

mosquito size is positively correlated with survival, reproductive success, higher number 

of egg batches, higher number of eggs per batch, and greater vectorial capacity (Xue et al., 

1995; McCann et al., 2010; Moller-Jacobs et al., 2014; Roux et al., 2015) 

Aedes albopictus showed the capacity to absorb higher amounts of pollutants 

compared to Cx. pipiens across all UV-B conditions (Figure 10) with an average of 8 mg 

of zinc per kilogram of body mass in mosquitoes that were placed in tires exposed to FS 

condition. This is probably because compared to Cx. pipiens, Ae. albopictus spends more 

time feeding, and, of the time feeding, a higher proportional time browsing on surfaces 

(Merrit et al. 1992, Yee et al. 2008b). Even though Ae. albopictus were more exposed and 

ingested higher quantities of tire contaminants than Cx. pipiens, the negative effect of these 

contaminants did not prevent Ae. albopictus from having higher λ' than Cx. pipiens. 

Previous studies showed that other contaminants at field concentration (e.g., malathion) or 

environmental factors (e.g., temperature) have negative effects on Ae. albopictus that are 
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capable of reversing its superior competitiveness. For example, the study of Alto et al. 

(2013) found that field concentrations of malathion, an organophosphate insecticide, was 

able to eliminate the superior competitiveness of Ae. albopictus against Ae. aegypti. Alto 

et al. (2013) assessed the effect of malathion, widely used in agriculture, on the coexistence 

of Ae. albopictus and A. aegypti. In the absence of Malathion, A. aegypti survivorship was 

negatively affected by increasing densities of Ae. albopictus, while Ae. albopictus 

survivorship was not affected by increasing densities of Ae. aegypti. But in presence of 

malathion, the negative effect of Ae. albopictus competition on A. aegypti survivorship was 

eliminated. This is a good example of condition-specific competition that is mediated by a 

chemical contaminant. Temperature, is another example where an abiotic factor has 

reversed the competitive superiority of Ae. albopcitus. Costanzo et al. (2005b) showed that 

competitive superiority of Ae. albopictus over Ae. aegypti under wetter environment 

conditions could be reversed under dryer environmental conditions. This mechanism 

probably explains the co-existence of Ae. albopictus and A. aegypti in Florida (Juliano et 

al., 2002; Juliano and Lounibos, 2004; Leisnham and Juliano, 2010; Costanzo et al. 2011). 

In our study, tire leachate did not reverse the competitive superiority of Ae. albopictus over 

Cx. pipiens in tire habitats, but it showed that it can play a role in the coexistence of these 

two species. Coexistance of these two species may be influenced by other factors besides 

tire leachate or a combination of factors such as temperature, timing of hatching, or habitat 

segregation, each of which should be evaluated in future studies.  
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List of Tables and Figures 

Tables 

 

Table 5. Two-way ANOVA of the effects of UV-B conditions (full-sun, shade, and non-

UV) and competition treatments (Ae. albopictus: Cx. pipiens, 100-0, 50-0, 50-50, 0-100, 

050) on the per capita rate of population change (λ’) from competition between Ae. 

albopictus and Cx. pipiens mosquitoes.  

 

Variable Population growth index (λ’) 

dfs F P 

Ae. albopictus    

UV Condition 2, 24 2.68 0.0889 

Competition treatment  2, 24 3.04 0.0665 

UV condition x competition treatment 4, 24 3.10 0.0343 

Cx. pipiens    

UV Condition 2, 24 2.97 0.0660 

Competition treatment 2, 24 0.15 0.7520 

UV condition x competition treatment 4, 24 0.01 0.9930 

 

Table 6. Two-way ANOVA of the effects of UV-B conditions (full-sun, shade, non-UV) 

and competition treatments (Ae. albopictus: Cx. pipiens, 100-0, 50-0, 50-50, 0-100, 050) 

on survivorship, developmental time and body size (wing length) from competition 

between Ae. albopictus and Cx. pipiens mosquitoes. 

 

 

 

 

 

 

Variable Survival Developmental 

time  

Body size (wing 

length) 

dfs F P dfs F P dfs F P 

Ae. albopictus          

UV-B Conditions 2,24 7.29 0.0034 2,24 2.83 0.0790 2,24 0.24 0.7908 

Competition treatment 2,24 8.29 0.0018 2,24 1.02 0.3752 2,24 1.45 0.2553 

UV-B conditions x 

competition treatment 

4,24 3.30 0.0274 4,24 1.74 0.1751 4,24 0.41 0.8003 

Cx. pipiens          

UV-B Conditions 2,24 5.91 0.0082 2,21 0.37 0.6920 2,21 13.7 0.0002 

Competition treatment 2,24 3.79 0.0371 2,21 5.38 0.0130 2,21 6.11 0.0081 

UV-B conditions x 

competition treatment 

4,24 0.28 0.8886 4,21 1.13 0.3708 4,21 2.61 0.0645 
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Table 7. Two-way ANOVA of the effects of UV-B conditions (full-sun, shade, non-UV) 

and species (Ae. albopictus, Cx. pipiens) on zinc concentration (mg/kg) in mosquitoes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Zinc concentration (mg/kg) 

dfs F P 

Species 2,5 29.44 0.0029 

UV-B conditions 1,5 1.67 0.2775 

Species x UV-B conditions  2,5 2.19 0.2072 
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Figures 

 

Figure 6. Least square means (± SE) of Ae. albopictus (a) λ’ and (b) survival percentage 

in response to competition treatments (high and low conspecific, and heterospecific) and 

UV-B conditions (full-sun, shade, no-UV). Data were statistically tested using ANOVA. 

Significant pairwise comparisons among treatments for interactions effects are indicated 

by different letters above bars.  

 

Figure 7. Least square means (± SE) of Cx. pipiens (a) λ’ and (b) survival percentage in 

response to competition treatments (high and low conspecific, and heterospecific) and UV-

B conditions (full-sun, shade, no-UV). Data were statistically tested using ANOVA. The 

difference between treatments is not significant.  

 

Figure 8. Least square means (± SE) of Ae. albopictus (a) survival percentage (b) 

development time (c) wing length in response to UV-B conditions (full-sun, shade, no-UV) 

and competition treatments (high and low conspecific and heterospecific). Data were 

statistically tested using ANOVA. Significant pairwise comparisons among treatments for 

main effects are indicated by different letters above bars. 

 

Figure 9. Lesast square means (± SE) of Cx. pipiens (a) survival percentage (b) 

development time (c) wing length in response to UV-B conditions (full-sun, shade, no-UV) 

and competition treatments (high and low conspecific and heterospecific). Data were 

statistically tested using ANOVA. Significant pairwise comparisons among treatments for 

main effects are indicated by different letters above bars. 

 
                  

Figure 10. Least square means (± SE) total recoverable zinc concentration in mosquitoes 

(mg/kg) for Ae. albopictus and Cx. pipiens in response to UV-B conditions (full-sun, shade, 

non-UV). Data were statistically tested using ANOVA. 
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Appendices 
 

Appendix 7: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

competition treatments (Ae. albopictus: Cx. pipiens, 100:0, 50:0, 50:50, 0:100, 0:50) on 

the per capita rate of population change (λ’) and fitness parameters (survivorship, 

development time, and body size) of Ae. albopictus 

 

PROC IMPORT OUT= WORK.SurvAlbo  

            DATAFILE= "C:\Documents\Data\SurAlbo.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=SurvAlbo; 

run; 

proc sort data=SurvAlbo; 

  by sex trt combAC A C blk; 

  run; 

 

***survival analyses***; 

proc sort data=SurvAlbo; 

  by trt combAC A C blk; 

  run; 

proc means data=SurvAlbo; 

 by trt combAC A C blk; 

 var eclosion; 

 output out=sura1 n=count nmiss=nmiss;  

 run; 

*Calculating proportion survival for each cohort in each tire; 

data surA2; 

 set sura1; 

 s=count/A;  

 run; 

data surA2;  

set surA2; 

ss = arsin(sqrt(count/A)); 

 proc print data=surA2;  

 run; 

 proc mixed data=surA2; 

 class trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 
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*survival by sex; 

proc sort data=SurvAlbo; 

  by sex trt combAC A C blk; 

  run; 

proc means data=SurvAlbo; 

 by sex trt combAC A C blk; 

 var eclosion; 

 output out=sura1 n=count nmiss=nmiss;  

 run; 

*Calculating proportion survival for each cohort in each tire; 

data surA2; 

 set sura1; 

 s=count/(A/2); 

if s>1 then s=1;  

 run; 

data surA2;  

set surA2; 

ss = arsin(sqrt(s)); 

 proc print data=surA2;  

 run; 

 proc mixed data=surA2; 

by sex; 

class sex trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 

***Development time analyses***; 

proc sort data=SurvAlbo; 

  by sex trt combAC A C blk; 

  run; 

proc means data=SurvAlbo; 

    by sex trt combAC A C blk; 

 var eclosion; 

 output out=eclo2 n=count mean=meandays median=mediandays; 

 run; 

 proc mixed data=eclo2;  

 by sex; 

 class sex trt combAC A C blk; 

 model mediandays = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 
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proc plot data=b2; 

plot resid*pred = trt; 

run; 

 

***Body Size***; 

proc means data=SurvAlbo; 

by trt combAC A C blk; 

var wingL; 

output out=wingl2 n=count mean=meanwingL median=medianwingL; 

run; 

 proc mixed data=wingl2; 

 by sex; 

class trt combAC A C blk; 

 model medianwingL = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 

data lambda; 

    set SurvAlbo; 

 if sex='M' then delete;  

 run; 

proc sort data=lambda; 

     by trt combAC A C blk eclosion; 

 run; 

 

proc means data=lambda; 

    by trt combAC A C blk eclosion; 

 var wingL; 

 output out=lambda1 mean=meanwingL median=medianwingL n=count 

nmiss=nmiss; 

 run; 

 proc print data=lambda1; 

 run; 

/*calculations of lifetable stats*/; 

data lambda2; 

     set lambda1; 

 ax=count+nmiss; 

 fwx= 0.5*(-121.240+78.02*medianwingL); 

 lxmx=ax*fwx; 

 xlxmx=eclosion*ax*fwx; 

 run; 

/*gets sums*/; 
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proc means data=lambda2 noprint; 

     by trt combAC A C blk;  

 var lxmx xlxmx; 

 output out=lambda3 sum=sumlxmx sumxlxmx; 

 run; 

data lambda4; 

     set lambda3; 

     lambda=exp((log((2/A)*sumlxmx))/(14+(sumxlxmx/sumlxmx))); 

 if sumxlxmx=. then lambda=0; 

 if sumlxmx<1 then lambda=0; 

 r=log(lambda); 

 run; 

 proc print data=lambda4; 

 run; 

 proc means data=lambda4 n mean stderr; 

 by trt combAC; 

 var lambda; 

 run; 

 data lambda4;  

 set lambda4; 

 log10lambda=log10(lambda+1); 

 run; 

 proc print data=lambda4; 

 run; 

 proc mixed data=lambda4;  

 class trt combAC A C blk; 

 model lambda = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt|combAC /pdiff adjust=sidak; 

 run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 
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Appendix 8: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

competition treatments (Ae. albopictus: Cx. pipiens, 100:0, 50:0, 50:50, 0:100, 0:50) on 

the per capita rate of population change (λ’) and fitness parameters (survivorship, 

development time, and body size) of Cx. pipiens mosquitoes 

 

PROC IMPORT OUT= WORK.SurvCxPip  

            DATAFILE= "C:\Documents\Data\SurCulex.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

data survcu; 

set SurvCxPip; 

run; 

proc print data=survcu; 

run; 

proc sort data=survcu; 

  by sex trt combAC A C blk; 

  run; 

 

***survival analyses***; 

proc sort data=survcu; 

  by trt combAC A C blk; 

  run; 

proc means data=survcu; 

 by trt combAC A C blk; 

 var eclosion; 

 output out=surc1 n=count nmiss=nmiss;  

 run; 

data surC2; 

 set surc1; 

 s=count/C;  

 run; 

data surC2;  

set surC2; 

ss = arsin(sqrt(count/C)); 

 proc print data=surC2;  

 run; 

 proc mixed data=surC2; 

class trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 
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*survival by sex; 

proc sort data=survcu; 

  by sex trt combAC A C blk; 

  run; 

proc means data=survcu; 

 by sex trt combAC A C blk; 

 var eclosion; 

 output out=surc1 n=count nmiss=nmiss;  

 run; 

data surC2; 

 set surc1; 

 s=count/(C/2); 

if s>1 then s=1;  

 run; 

data surC2;  

set surC2; 

ss = arsin(sqrt(s)); 

 proc print data=surC2;  

 run; 

 proc mixed data=surC2; 

by sex; 

class sex trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 

***Development time analyses***; 

proc sort data=survcu; 

  by sex trt combAC A C blk; 

  run; 

proc means data=survcu; 

    by sex trt combAC A C blk; 

 var eclosion; 

 output out=eclo2 n=count mean=meandays median=mediandays; 

 run; 

 proc mixed data=eclo2;  

 by sex; 

 class sex trt combAC A C blk; 

 model mediandays = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 
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run; 

***Body Size***; 

proc means data=survcu; 

    by sex trt combAC A C blk; 

 var wingL; 

 output out=wingl2 n=count mean=meanwingL median=medianwingL; 

 run; 

 proc mixed data=wingl2; 

by sex; 

class sex trt combAC A C blk; 

 model medianwingL = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 

 

data lambda; 

    set survcu; 

 if sex='M' then delete;  

 run; 

proc sort data=lambda; 

     by trt combAC A C blk eclosion; 

 run; 

/*determines mean wing lengths for each day and counts individuals*/; 

proc means data=lambda noprint; 

    by  trt combAC A C blk eclosion; 

 var wingL; 

 output out=lambda1 mean=meanwingL median=medianwingL n=count 

nmiss=nmiss; 

 run; 

 proc print data=lambda1; 

 run; 

/*calculations of lifetable stats*/; 

data lambda2; 

     set lambda1; 

 ax=count+nmiss; 

 fwx= 0.5*(-383.82+148.05*medianwingL);  

 lxmx=ax*fwx; 

 xlxmx=eclosion*ax*fwx; 

 run; 

proc means data=lambda2 noprint; 

     by trt combAC A C blk;  

 var lxmx xlxmx; 
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 output out=lambda3 sum=sumlxmx sumxlxmx; 

 run; 

data lambda4; 

     set lambda3; 

     lambda=exp((log((2/C)*sumlxmx))/(10+(sumxlxmx/sumlxmx))); 

 if sumxlxmx=. then lambda=0; 

 if sumlxmx<1 then lambda=0; 

 r=log(lambda); 

 run; 

 proc print data=lambda4; 

 run; 

 proc means data=lambda4 n mean stderr; 

 by trt combAC; 

 var lambda; 

 run; 

 data lambda4;  

 set lambda4; 

 log10lambda=log(lambda+1); 

 run; 

 

*model using randomization - because data violated parametric assumptions; 

 

%macro rand_gen( 

indata=lambda4, 

outdata=outrand, 

depvar=lambda, 

numreps=1000, 

seed=0); 

proc sql noprint; 

select count(*) into :numrecs from 

&INDATA; 

quit; 

data __temp_1; 

retain seed &SEED ; drop seed; 

set &INDATA; 

do replicate = 1 to &NUMREPS; 

call ranuni(seed,rand_dep); 

output; 

end; 

run; 

proc sort data=__temp_1; 

by replicate rand_dep; 

run; 

data &OUTDATA ; 

array deplist{ &NUMRECS } _temporary_ ; 

set &INDATA(in=in_orig) 
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__temp_1(drop=rand_dep); 

if in_orig then do; 

replicate=0; 

deplist{_n_} = &DEPVAR ; 

end; 

else &DEPVAR = 

deplist{ 1+ mod(_n_,&NUMRECS) }; 

run; 

%mend rand_gen; 

%macro rand_anl( 

randdata=outrand, 

where=, 

testprob=probf, 

testlabel=F test,); 

data _null_; 

retain pvalue numsig numtot 0; 

set &RANDDATA end=endofile; 

%if "&WHERE" ne "" 

%then where &WHERE %str(;) ; 

if Replicate=0 then pvalue = &TESTPROB ; 

else do; 

numtot+1; 

numsig + ( &TESTPROB < pvalue ); 

end; 

if endofile then do; 

ratio = numsig/numtot; 

put "Randomization test for &TESTLABEL " 

%if "&WHERE" ne "" %then "where &WHERE"; 

" has significance level of " 

ratio 6.4 ; 

end; 

run; 

%mend rand_anl; 

%rand_gen(indata=lambda4,outdata=outrand, 

depvar=lambda,numreps=1000,seed=1230568) 

ods output OverallANOVA=overall; 

/* change model */ 

proc glm data=outrand outstat=outstat1; 

by replicate; 

class trt combAC A C blk; 

model lambda = blk trt combAC trt*combAC ; 

run; 

%rand_anl(randdata=outstat1, 

where=_source_='trt' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 
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%rand_anl(randdata=outstat1, 

where=_source_='combAC' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='blk' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='trt*combAC' and _type_='SS3', 

testprob=prob,testlabel=interaction test) 

%rand_anl(randdata=outstat1, 

run; 

 

***proc mixed random***; 

%macro rand_gen( 

indata=lambda4, 

outdata=outrand, 

depvar=lambda, 

numreps=1000, 

seed=0); 

proc sql noprint; 

select count(*) into :numrecs from 

&INDATA; 

quit; 

data __temp_1; 

retain seed &SEED; drop seed; 

set &INDATA; 

do replicate = 1 to &NUMREPS; 

call ranuni(seed,rand_dep); 

output; 

end; 

run; 

proc sort data=__temp_1; 

by replicate rand_dep; 

run; 

data &OUTDATA ; 

array deplist{ &NUMRECS } _temporary_ ; 

set &INDATA(in=in_orig) 

__temp_1(drop=rand_dep); 

if in_orig then do; 

replicate=0; 

deplist{_n_} = &DEPVAR ; 

end; 

else &DEPVAR = 

deplist{ 1+ mod(_n_,&NUMRECS) }; 
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run; 

%mend rand_gen; 

%macro rand_anl( 

randdata=outrand, 

where=, 

testprob=probf, 

testlabel=F test,); 

data _null_; 

retain pvalue numsig numtot 0; 

set &RANDDATA end=endofile; 

%if "&WHERE" ne "" 

%then where &WHERE %str(;) ; 

if Replicate=0 then pvalue = &TESTPROB ; 

else do; 

numtot+1; 

numsig + ( &TESTPROB < pvalue ); 

end; 

if endofile then do; 

ratio = numsig/numtot; 

put "Randomization test for &TESTLABEL " 

%if "&WHERE" ne "" %then "where &WHERE"; 

" has significance level of " 

ratio 6.4 ; 

end; 

run; 

%mend rand_anl; 

%rand_gen(indata=lambda4,outdata=outrand, 

depvar=lambda,numreps=1000,seed=1230568) 

ods output OverallANOVA=overall; 

/* change model */ 

proc mixed data=outrand outstat=outstat1; 

by replicate; 

class trt combAC A C blk; 

model lambda = trt combAC trt*combAC; 

random blk; 

run; 

%rand_anl(randdata=outstat1, 

where=_source_='trt' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='combAC' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='blk' and _type_='SS3', 



121 

 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='trt*combAC' and _type_='SS3', 

testprob=prob,testlabel=interaction test) 

%rand_anl(randdata=outstat1, 

run
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Abstract  
 

The selection of an oviposition site is a critical step in the life cycle of mosquitoes 

because it influences the survival of her offspring, and overall population performance. 

Tires are common habitats for Ae. albopictus and Cx. pipiens mosquitoes, especially in 

peridomestic areas. Our study hypothesis was that tire leachate with high zinc 

concentration and scarce levels of food resources would be a deterrent to oviposition by 

gravid females of Ae. albopictus and Cx. pipiens mosquitoes.  We tested this hypothesis by 

exposing cohorts of 20 Ae. albopictus or Cx. pipiens females into four oviposition cups 

assigned either with two different zinc concentrations in tire leachate (high and low) and 

high and low amounts of food resources (filtered and unfiltered tire leachate samples) in 

replicated laboratory cages. The number of eggs and hatching percentage were compared 

between treatments for Ae. albopictus, and the number of egg rafts and average number of 

hatched larvae per egg raft were compared between treatments for Cx. pipiens. Our results 

showed no difference in the number of Ae. albopictus numbers of eggs between oviposition 

cups with high or low zinc concentration, or between the presence or absence of food 

resources, indicating that tire degradation and tires leachate contaminants do not provide 

cues. On the other hand, Cx. pipiens gravid females choose oviposition sites with high 

amounts of food resources. But, as with Ae. albopictus, Cx. pipiens mosquitoes did not 

show a preference/rejection for oviposition sites with high or low concentration of zinc 

concentration. These results indicate that neither species alters oviposition based on 

concentrations of tire contaminants, and thus are likely to engage in larval resource 

competition in the field. Understanding oviposition behavior of mosquito species could be 

a key factor to mosquito surveillance and control. 
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Introduction 
 

 Optimal oviposition theory predicts that female insects prefer to oviposit in 

locations that maximize offspring performance and reproductive success (Thompson, 

1988; Spencer et al., 2002). Oviposition site selection is a response to variation in habitat 

quality through time and space (Wong et al., 2011; Day, 2016). During oviposition, the 

quality of the habitat that the females choose for their progeny affects hatching success, 

larval development and larval success, which could have a significant impact in the overall 

population growth rate (Spencer et al., 2002; Day, 2016; Yoshioka et al. 2012). Optimal 

oviposition site selection results in better larval performance and survival. On the other 

hand, oviposition in poor larval habitats can greatly reduce population growth of a specie 

(Spencer et al., 2002). In organisms that utilize patchy habitats, such as many amphibians 

and insects, developmental stages are almost always restricted to the specific site of 

oviposition (e.g., ephemeral pools, tree holes, tires). Oviposition site selection and larval 

performance have been well studied in amphibians (Volker et al., 2005; Pintar and 

Resetarits, 2017), and some insects, especially those that are pests for agriculture crops and 

forested areas (Martinez et al., 2013; Martinez et al., 2017) and on disease vectors such as 

mosquitoes (Himeidan et al., 2013; Afify and Galizia, 2015; Day, 2016).  

Mosquito oviposition has been widely studied, especially for those species that 

utilize water-filled container habitats (e.g., treeholes, plant axils, artificial receptacles). 

Allochontous animal and leaf detritus is the main nutrient base in container habitats 

(Walker et al. 1991), and mosquito larvae engage in strong competition for microbial food 

resources associated with this detritus (Juliano, 2009). Mosquito species have shown 

different oviposition strategies and adaptations to assure good habitats for their offspring. 
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Skip oviposition strategy is the strategy whereby females scatter an egg batch between 

different oviposition sites, accounting for quality of the site. This spatial distribution may 

be a form of bet-hedging to spread the risk among the sites to cope with environmental 

uncertainty (e.g., lack of flooding) or the eventual case of a catastrophe event (e.g., predator 

presence, conspecific and heterospecific competition); in this way, it would secure the 

survival of at least part of the progeny (Roitberg et al., 1999). Some mosquito species are 

specialized and only lay eggs in specific habitats. For example, Aedes atropalpus only 

oviposit in rock pools, rock holes, and coral holes and Deinocerites cancer only oviposit 

in partially flooded holes of blue land crabs (Day, 2016). Other mosquitoes are more 

generalist or opportunistic and they lay their eggs in any aquatic habitat, without taking 

into account quality of the site; a good example is Culex nigripalpus, which lays eggs in 

salt marshes, tree holes, or artificial containers (Day, 2016). Another strategy is egg 

brooding where females take care of their eggs until they hatch; some examples are 

Armigeres flavus and Trichoprosopon digitatum (Lounibos and Machado-Allison, 1983; 

Okasawa et al., 1991). A case of adaptation to facilitate egg laying is the morphological 

adaptation of female mosquitoes in which their thorax narrows and allows them to access 

extremely small holes such as Aedes angustus (Day, 2016). 

The attractiveness or repellence of oviposition sites for mosquitoes are governed 

by multiple physical and chemical factors (Himeidan et al., 2013; Afify and Galizia, 2015). 

Mosquito oviposition requires a complex integration of physical and chemical cues, which 

can be divided between long and short-range cues (Himeidan et al., 2013). Long-range cues 

would likely be sensed before physical contact with the site and are more related with 

macro habitat or landscape factors (Barker et al., 2003). Identification of long range cues 
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involves vision and olfactory systems of mosquitoes that allow mosquitoes to identify 

oviposition places based on habitat characteristics (e.g. presence and type of vegetation, 

water color, shade percentage). Short-range cues are sensed upon contact with the site, and 

are more related to micro habitat factors (Edgerly et al., 1998; Day, 2016). The sensing of 

short-range cues involves olfactory, gustatory and tactile mosquito systems to finally make 

a decision for an oviposition site based on temperature, presence of conspecifics, 

heterospecifics, or predators, and presence of volatile chemicals associated with vegetation, 

microbial communities, and predators (Bentley and Day, 1989; Ellis, 2008; Himeidan et 

al., 2013).  To select an oviposition site, gravid female mosquitoes go through a complex 

evaluation of physical and chemical cues, which may act in two different ways. Some cues 

exert an attractive effect, whereas cues from unsuitable habitats exert a repulsive effect. 

The balance of attraction/repulsion effects of these physical and chemical cues probably 

guides mosquitoes to suitable habitats for their offspring.  

 Perhaps the most well studied set of environmental cues for mosquito oviposition 

are substances in container water, such as microbial and nutrient food resources or 

contaminants, which can be detected by an ovipositing female either in the water column 

or as volatile chemicals. In particular, numerous studies have shown that the quantity and 

species of plant detritus can influence mosquito oviposition (Pickett and Woodcock, 1996; 

Himeidan et al., 2013). For example, infusions of longleaf pine (Pinus palustris), water 

oak (Quercus nigra), and 50:50 mixture of these in container water appears to encourage 

greater oviposition by the Asian tiger mosquito, Aedes albopictus compared to St. 

Augustine grass (Stenotaphrum secundatum) infusion or just water alone (Obenauer et al., 

2010). On the other hand, ghalisum (Solenostema argel), an herbaceous plant from West 
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Africa, has larvicidal effects against Culex pipiens and deters oviposition by adult Cx. 

pipiens females (Al-Doghairi et al., 2004). Other cues are presence or absence of con- and 

hetero-specific organisms. The presence of conspecifics may indicate suitable habitat for 

an ovipositing female or, alternatively, potential competitors for her offspring. Conspecific 

attraction has been observed across many taxa, such as birds, mammals, reptiles, and 

numerous insects (Stamps, 1988; Mokany and Shine, 2003; Ward and Schlossberg, 2004). 

Kiflawi et al. (2003) stated that the choice of oviposition site based on conspecifics 

presence represents a tradeoff between the risk of choosing an unsuitable habitat and the 

cost of intraspecific competition. However, high densities of conspecifics generate 

competition, with negative effects on larval survival, adult sizes, fecundity, and overall 

population performance. Presence of high densities of conspecifics or high levels of 

conspecifics pheromones could thus become a deterrent or repellent for the oviposition of 

mosquitoes (Afify and Galizia, 2015). This suggests that some mosquitoes may not only 

evaluate the presence of conspecifics but also their density (Chadee,1993). Microbial 

communities also produce volatiles that serve as semiochemicals and could influence 

female mosquito oviposition (Himeidan et al., 2013). Microbial communities may serve as 

a direct source of food or as a modifier of organic matter on which mosquito larvae feed 

(Navarro et al., 2003). The influence of habitat water quality on female mosquito 

oviposition has mainly focused on detritus and associated microbial communities. Less 

research has examined the effects of contaminants in containers, especially those that may 

be leached from the container receptacle.  

Discarded automobile tires are an important artificial habitat in peridomestic areas 

for the developmental stages for Ae. albopictus and Cx. pipiens mosquitoes. The Rubber 
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Manufacturers Association (2017) estimates that each year 280 million scrap tires are 

generated just in the U.S. and that around 67 million tires are in stockpiles in the U.S. 

Discarded automobile tires degrade under ultraviolet light and leach numerous soluble 

metals (e.g., zinc, copper, cadmium) and organic substances (e.g., polyaromatic 

hydrocarbons, benzothiazoles), which could be bioavailable and persistent in the aquatic 

environment (Wik and Dave, 2009). Contaminants that leach from tires affect biota 

including microorganisms, animals, plants, and insects, especially in the aquatic 

environment (Wik and Dave, 2009). Effects of tire leachate could be direct or indirect 

effects. Some examples of direct effects would be detrimental effects on growth, survival, 

weight, and reproduction (Day et al., 1993). Examples of indirect effects would be 

interference with the outcome of competition between two or more similar species that are 

competitors, especially if one is more susceptible to specific pollutants (Rohr and 

Crumrine, 2005). Relatively few if any studies have examined the impacts of tire leachate 

on the oviposition of mosquito species; previous work has only addressed the effects on 

insects in direct contact with the leachate in the water column. 

Villena at al. 2017 showed that the abundances of Ae. albopictus, Ae. triseristus, 

and Cx. pipiens in discarded and stockpiled field tires were all negatively associated with 

zinc concentration, a common marker for tire leachate. This finding could be the result of 

two processes. Tire leachate could affect the fitness of the immature mosquitoes developing 

in tires, either directly through toxicity or indirectly by altering (likely decreasing) 

available microbial food resources. Alternatively, the negatively association between tire 

leachate and mosquito abundances in tire habitats could be due to ovipositional avoidance 

of tires with high leachate concentrations by gravid adult females. In the same study, 
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Villena et al. (2017) found that the survival and per capita rate of population change of 

larval cohorts of Ae. albopictus and Ae. triseriatus were negatively affected by increasing 

tire leachate concentrations in a control laboratory dose-response experiment. Moreover, 

in Chapters 2-4 in this dissertation, I showed that tires exposed to higher UV-B radiation 

under experimental conditions leached greater concentrations of zinc and likely other 

contaminants, and that this leachate had both direct effects on the metabolic rate and fitness 

of Ae. albopictus and Cx. pipiens larvae and indirect effects on the population performance 

of both species by moderating heterospecific and conspecific competition. Of particular 

importance was the finding that the effects of the competitively superior Ae. albopictus on 

the resident Cx. pipiens were moderately reduced in tires that had been exposed to high 

UV-B radiation and which contained water with higher tire leachate concentrations.  

In this chapter, we report the effects of tire leachate with high and low of food 

resources on mosquito oviposition site selection in a controlled laboratory experiment. I 

used water from the tires that had been exposed to varying UV-B radiation, as reported in 

Chapter 2, specifically selecting the tires that exhibited the highest and lowest zinc 

concentrations from water tests. 

Materials and methods  
 

Tire leachate 

 

Tire leachate was obtained from the tires that were exposed to one of three UV-B 

radiation treatments for 150 days (see chapter 3). I collected tire leachate from the tires 

with the highest and the lowest zinc concentration. The tire with the highest zinc 

concentration had a zinc concentration of 4.11 mg/L for dissolved zinc and 6.24 mg/L for 

total zinc. The tire with the lowest zinc concentration had a zinc concentration of 0.18 mg/L 



136 

 

for dissolved zinc and 0.2 mg/L for total zinc. Discarded tires were of the Goodyear brand, 

model Assurance (P215/60R16), which were obtained from the Motor Transportation 

Service of the University of Maryland College Park. To analyze water samples for zinc 

concentration we followed the U.S. EPA Method 3015A for microwave assisted acid 

digestion of aqueous samples and extracts (EPA, 2007), and U.S. EPA Method 200.7 for 

the analysis of water samples using Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AES) with autosampler (EPA, 1994).  

 

Food resources – tire leachate filtration 

 

For the experiment, besides the two different zinc concentrations we had two 

different food resources conditions (high vs. low). To remove food resources (e.g., 

bacteria) on which mosquitoes feed, we filtered the tire leachate using a Corning filter 

system. We used the 250 ml Corning bottle filter with a pore size of 0.22 and the membrane 

material was cellulose acetate. The Corning bottle filters were sterilized by gamma 

irradiation. Tire leachate was vacuumed filtered through the in-house vacuum system of 

the Environmental Science and Technology Department of the University of Maryland 

College Park. We obtained two liters of sterile tire leachate with high zinc concentration 

and two liters of sterile tire leachate with low zinc concentration, which were used as the 

treatment without food resources. To determine that microbial community was removed 

by the filtration system, I measured the metabolic rate expressed as rate of heat production 

(µwatts/ml) of both the filtered and unfiltered samples using a MSC 4100 multicell 

differential scanning calorimeter in isothermal mode, at 25 °C of temperature (Zhang et. 

al. 2009).  
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Collection and maintenance of mosquitoes 

 

Aedes albopictus and Cx. pipiens larvae were collected from multiple locations in 

College Park, Baltimore, and Towson, Maryland. Neither Ae. albopictus or Cx. pipiens are 

endangered and collection sites were either on publically accessible lands or on private 

lands where consent for collections were granted at the time of collection; thus, no field 

permits were required to collect them. Field collected Ae. albopictus and Cx. pipiens larvae 

were reared to adulthood at 25°C at 16:8 (L:D) h photoperiod, and then released into 1-m² 

single-species cages. Adults were kept in an insectary at 25°C and >85% RH, 16:8 (L:D) 

h photoperiod. Both colonies were supplied 20% sugar solution. Females from both 

colonies were fed horse or rooster blood once a week via an artificial feeder (Hemotek, 

Accrington, UK) to ensure egg production and the production of mosquitoes for the colony. 

Aedes albopictus females oviposited on seed paper in 500 ml black cups covered filled 

with 200 ml of deionized (DI) water and Cx. pipiens oviposited egg rafts into a 500 ml 

black bowl filled with 400 ml of DI water, supplemented with 3 or 4 pieces of foxtail grass 

as an oviposition stimulant.  

 

Experiment set up 

 

The experiment design was a 2-factor Randomize Complete Block Design. To 

assess the effect of tire leachate zinc concentration (high and low) and absence and 

presence of food resources (filtered and unfiltered) on Ae. albopictus and Cx. pipiens 

mosquito oviposition and the hatching of eggs, per block, I placed 6 bug dorm insect 

rearing cages inside a 3 level Percival environmental chamber model I-36LLVL. In the 

Percival environmental chamber humidity was set up to 85 – 92 %, temperature to 25°C, 
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and a photoperiod 16:8 hours (L:D). Bug dorms are built on polypropylene, with 

dimensions L30 x W30 x H30 cm. The mesh size of its side panels is 32 x 20 mesh/square 

inch. Two bug dorm insect rearing cages were placed per each of the three levels of the 

Percival environmental chamber, one with Ae. albopictus mosquitoes and the other with 

Cx. pipiens mosquitoes. Inside of each bug dorm, we set up four oviposition cups, each 

with one of four treatments: (1) filtered and high zinc concentration leachate, (2) unfiltered 

and high zinc concentration leachate, (3) filtered and low zinc concentration leachate, and 

(4) unfiltered and low zinc concentration leachate. Oviposition cups were built using 16 oz 

plastic food containers, which outside was painted with black paint. Oviposition cups were 

sterilized with ethanol before being filled with 180 ml of tire leachate from one of the four 

treatments.  

Of the six bug dorm cages, each with four oviposition cups, randomly three were 

designed for Ae. albopictus and three for Cx. pipiens oviposition experiment. The 

oviposition cups placed in the cages for Ae. albopictus oviposition were lined with seed 

paper to facilitate oviposition. In the oviposition cups designated for Cx. pipiens, 0.1 g of 

foxtail grass, previously rinsed with sterile water, was added as a stimulant for oviposition. 

Once bug dorms cages were set up with the oviposition cups, Ae. albopictus and Cx. pipiens 

colonies were blood-fed with an artificial feeder (Hemotek, Accrington, UK), using rooster 

blood for a period of 4 hours. Next, using a mouth operated pooter aspirator we collected 

blood fed females from the colonies and placed them in the bug dorm cages. 20 blood-fed 

females were placed in each of the bug dorm cages. We also placed in each bug dorm cage 

5 male mosquitos to guaranty the mating and production of eggs. Mosquitoes in the bug 

dorm cages were blood fed on day 3 after being placed in the bug dorm cage with an 
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artificial feeder (Hemotek, Accrington, UK), using rooster blood for a period of 4 hours. 

Also, mosquitoes were provided with sugared water (20 % v/v) during the experiment. 

Females were permitted to oviposit in the plastic cups for 7 days. For Ae. albopictus, at the 

end of the experiment seed germination papers were collected and eggs were counted using 

a dissecting microscope and recorded onto a spreadsheet. Then egg papers were dried and 

placed in sealable plastic bags for 3 days. Next, egg papers were hatched in a lactobumina: 

yeast solution and larvae were counted and recorded on a spreadsheet. For Cx. pipiens, 

every two days plastic cups were check for egg rafts, if egg rafts were present they were 

removed and hatched in a lactobumina: yeast solution and larvae were counted and 

recorded on a spreadsheet. At the end of the experiment, cups were checked for larvae 

presence; if larvae were found they were added to the previous counting.  

 

 Analyses 

 

Two-way analyses of variance (ANOVA) were used to measure the effects of tire 

leachate concentration and presence/absence of food resources on the oviposition site 

selection of Aedes albopictus and Culex pipiens mosquitoes, and to measure also the 

differences in metabolic rate for the filtered and unfiltered samples to assure that the 

microbial community had been removed from tire leachate samples (PROC MIXED 

procedure, SAS 9.4 Software). Number of eggs and percentage of hatched larvae were the 

measured variables for Ae. albopictus and number of egg rafts and number of larvae per 

egg raft for Cx. pipiens. To account for assumptions of normality and homogeneity of 

variances, all oviposition data and metabolic rate data were log10(y+1) transformed. In all 

these analyses, we considered tire leachate concentration and presence/absence of food 

resources as fixed effects, and block as a random effect in the model. We did a pairwise 
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mean comparison in the mixed procedure using the LSMEANS statement with tukey 

adjustment. For all analyses experiment-wise α = 0.05.       

Results 

 
Metabolic rate of microbial community in tire leachate samples 

 

The metabolic rate of the microbial community in tire leachate samples was only 

affected by amount of food resources (filtered and unfiltered), but it was not affected by 

tire leachate concentration or the interaction of these two variables. After measuring 

metabolic rate expressed as rate of heat production (µwatts/ml), filtered tire leachate 

samples showed a statistically significantly lower metabolic rate compared to unfiltered 

samples (F1,3 = 3980.96, P < 0.0001; Figure 11). Filtered and unfiltered tire leachate 

samples with high Zn concentration had an average metabolic rate of 0.279 and 5.840 

µwatts/ml respectively, and filtered and unfiltered tire leachate samples with low Zn 

concentration had an average metabolic rate of 0.341 and 6.295 µwatts/ml respectively. 

Aedes albopictus oviposition behaviour  

 Aedes albopictus females did not show a preference for laying eggs between sites 

with high and low level of pollutants (F1,3= 0.08, P=0.7990; Table 8) or sites with presence 

or absence of food resources (F1,3=1.46, P=0.3133; Table 8). Aedes albopictus females laid 

in average 56 eggs in samples with high concentration of pollutants and low levels of food 

resources, 80 eggs in samples with high concentration of pollutants and high levels of food 

resources, 75 eggs in samples with low concentration of pollutants and low levels of food 

resources, and 87 eggs in samples with low concentration of pollutants and high levels of 

food resources (Figure 12A). Percentage of larvae hatched from eggs laid by Ae. albopictus 

females was not statistically different between treatments (table 8), but a lower percentage 
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of larvae hatched in the low concentration of pollutants and low concentration of food 

resources (Figure 12B). 

Culex pipiens oviposition behaviour 

 In the case of Cx. pipiens, females showed a statistically significant difference for 

the choice of oviposition site based on the presence/absence of food resources (F1,3=35.90, 

P = 0.0093; Table 9), but Cx pipiens females did not show a statistically significant 

difference in choice of oviposition site between sites with high or low concentrations of 

tire pollutants (F1,3=1.39, P=0.3239; Table 9). Gravid Cx pipiens laid five times as many 

egg rafts in oviposition cups with high levels of food resources compared to oviposition 

cups with low food resources. Culex pipiens females laid an average of 0.5 egg rafts in 

ovicups with high levels of pollutants and low levels of food resources, 3.66 egg rafts in 

ovicups with high levels of pollutants and high levels of food resources, 0.83 egg rafts in 

ovicups with low levels of pollutants and low levels of food resources, and 4.66 egg rafts 

in ovicups with low levels of pollutants and high levels of food resources (Figure 13A). 

The number of larvae per egg raft was greatly influenced by the presence of food resources 

in the ovicups (F1,3=19.10, P=0.0222; Figure 13B).  

    Discussion  
 

 Oviposition is a critical step in the reproduction process, and oviposition site 

selection plays a major role in egg and larvae survival and overall population growth. 

Oviposition site selection may be more critical when two species share the same 

geographical distribution, share habitat types, and are asymmetrical competitors, which is 

the case for Ae. albopictus and Cx. pipiens mosquitoes, where Ae. albopictus is a superior 

competitor (Carrieri et al., 2003; Constanzo et al., 2011). Oviposition site selection may 
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play a major role in the survival of the inferior competitor and make its coexistence possible 

with the superior competitor. Mosquito oviposition processes have developed through 

evolution into two well defined groups. One group, the specialists, only lay eggs in sites 

with specific physical and chemical characteristics; and the other group, the generalists, 

lay eggs in almost any aquatic habitat (Day, 2016). In this study, we assessed the effect of 

high and low zinc concentrations, as an indicator of presence of pollutants, in tire leachate, 

and the presence/absence of food resources in tire leachate (filtered and unfiltered 

samples). 

 Our results showed that gravid Ae. albopictus mosquitoes showed generalist 

oviposition behavior when choosing oviposition sites. In our study, Ae. albopictus did not 

show a preference for laying eggs between sites with high and low level of pollutants or 

sites with presence or absence of food resources. Also, the percentage of larvae hatched 

from eggs laid by Ae. albopictus females was not statistically different between treatments. 

Our results differ from those of Obenauer et al. (2010) that stated that Ae. albopictus 

showed skip oviposition or bet hedging oviposition behavior. In their study, they tested 6 

different infusions and Ae. albopictus deposited higher numbers of eggs on longleaf pine, 

water oak-longleaf pine, water oak, longleaf pine-St. Augustine grass, and St. Augustine 

grass-water oak infusions compared to just St. Augustine grass infusion or well water. 

Probably St. Augustine grass and well water are not optimal for determining wheter Ae. 

albopictus exhibits skip oviposition behavior. St. Augustine grass is considered a pasture 

or turf grass and probably is not a common constituent of container habitats where Ae. 

albopictus mosquitoes breed. If we remove St. Augustine grass and well water from their 

study, Ae. albopitus only shows a generalist behavior that chooses oviposition sites in a 
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random way. The study of Allen and Kline (1995) supports our results that Ae. albopictus 

is a generalist at the moment of selecting an oviposition site. They assessed if the presence 

of conspecifics had an effect at the moment of choosing an oviposition site for Ae. 

albopictus and Ae. aegypti. They found that gravid Ae. aegypti females laid more eggs in 

ovicups in the presence of conspecifics or Ae. albopictus eggs. But this is not the case for 

Ae. albopictus, which laid eggs regardless of the presence or absence of conspecifics or 

eggs of Ae. aegypti. Chadee (1993) even found that Ae. aegypti gravid females lay more 

eggs in sites with fewer than 25 eggs than in sites with more than 25 eggs of conspecifics. 

The presence of eggs or larvae from conspecifics or other mosquito species may be an 

indicator of a productive oviposition site, but the presence of too many eggs or larvae may 

be an indicator of high levels of competition for food resources for the coming generation. 

 In contrast to Ae. albopictus, gravid Cx. pipiens mosquitoes seem to be specialists 

at the moment of selecting an oviposition site. In ovicups with high zinc concentrations 

and presence of food resources Cx. pipiens mosquitoes lay 7.32 times more eggs rafts and 

yield 5.22 times more larvae per egg raft compared with sites with no food resources. In a 

similar way, in ovicups with low zinc concentrations and presence of food resources Cx. 

pipiens mosquitoes lay 5.61 times more egg rafts and yield 3 times more larvae per egg 

raft compared to ovicups with no food resources. Our results showed that the Cx. pipiens 

mosquitoes search for oviposition site is not random but rather a complex process where it 

probably makes use of long and short range cues to approach a potential oviposition site.  

 Based on this study and other studies such as the one by Allen and Kline (1995) it 

seems that Ae. albopictus is a generalist at the moment of choosing an oviposition site and 

that it lays eggs in any aquatic environment regardless of quality. It is probable that Ae. 
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albopictus does not spend energy looking for oviposition sites with specific chemical and 

physical characteristics; instead it trusts its superior competitiveness against other 

mosquito species to assure the survival of its progeny. Numerous studies have shown that 

in almost all conditions Ae. albopictus is a superior competitor over other mosquito species, 

including Cx. pipiens (Carrieri et al., 2003; Constanzo et al., 2005; Constanzo et al., 2011), 

Ae. aegypti (e.g., Murrell and Juliano, 2008; Alto et al., 2013), Ae. japonicus (Freed and 

Leisnham, 2014), Ae. triseriatus (Smith et al., 2013), and Ae. sirrensis (Kesavaraju et al., 

2014). On the other hand, Cx. pipiens, an inferior competitor, shows specialist behavior at 

the moment of looking for an oviposition site, searching for sites with high amounts of 

food resources that could guaranty the survival of its progeny.   

 When searching for oviposition sites, mosquitoes look for cues, which could be one 

or more of three different types of substances that have an effect on gravid female 

mosquitoes: attractants, repellents, and deterrents. Our results showed that gravid females 

of both Ae. albopictus and Cx. pipiens mosquitoes laid eggs on tire leachate regardless of 

high or low concentration of zinc. Tire leachate seems to be acting as an attractant to gravid 

females of both species, Ae. albopictus and Cx. pipiens, to lay eggs. The study of Allgood 

(2011) also found that gravid females of Ae. albopictus and Cx. quinquefasciatus laid 

significantly more eggs in tires with higher pollutants concentration.  

 Understanding oviposition behavior of mosquito species could be a key factor to 

mosquito surveillance and control. Knowledge of this critical behaviour could allow for 

predictions about where mosquitoes are more likely to breed. Also, knowledge about what 

substances or compounds attract gravid female mosquitoes could be used to bait gravid 

mosquito traps and oviposition traps, and become an important tool in mosquito control. 
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Future research should focus on testing individual tire leachate compounds to determine 

which specific compounds have an attractant effect on gravid female mosquitoes and use 

this in mosquito traps to help control mosquito populations.   
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List of tables and figures 
 

Tables  

 

Table 8. Two-way ANOVA of the effects of leachate concentrations (high and low) and 

the amount of food resources (filtered and unfiltered) for the number of laid eggs, number 

of hatched larvae, and percentage of hatching for Ae. albopictus mosquitoes.  

 

Variable Number of eggs Number Hatched 

Larvae 

% Hatching 

dfs F P dfs F P dfs F P 

Leachate 

concentration 

1,3 0.08 0.7990 1,3 0.27 0.6406 1,3 6.91 0.0784 

Food 

resources 

1,3 1.46 0.3133 1,3 0.46 0.5482 1,3 1.04 0.3828 

Lechate conc 

x Food 

resources 

1,3 0.11 0.7660 1,3 0.43 0.5595 1,3 3.07 0.1782 

 

 

Table 9. Two-way ANOVA of the effects of leachate concentrations (high and low) and 

the amount of food resources (filtered and unfiltered) for the number of egg rafts, number 

of hatched larvae, and number of hatched larvae per egg raft for Cx. pipiens mosquitoes.  

 

 

 

 
 
 
 
 
 
 
 
 

Variable Number of egg rafts Number Hatched 

Larvae 

Hatched 

larvae/egg raft 

dfs F P dfs F P dfs F P 

Leachate 

concentration 

1,3 1.39 0.3239 1,3 1.86 0.2664 1,3 1.84 0.2679 

Food 

resources 
1,3 35.90 0.0093 1,3 28.96 0.0126 1,3 19.10 0.0222 

Lechate conc 

x Food 

resources 

1,3 0.04 0.8489 1,3 0.001 0.9756 1,3 0.001 0.9856 
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Figures 

 

Figure 11. Least squares means (± SE) of microbial metabolic rate expressed as µwatts/ml 

for filtered and unfiltered tire leachate samples with high and low zinc concentrations. Data 

were statistically tested using ANOVA. Significant pairwise comparisons among treatment 

levels are indicated by different letters above bars. 

 

Figure 12. Least squares means (± SE) for (a) number of eggs, (b) number of hatched 

larvae, and (c) percentage of hatching by tire leachate concentration (high and low), and 

two levels of food resources (filtered and unfiltered) for Ae. albopictus mosquitoes. 

 

Figure 13. Least squares means (± SE) for (a) number of eggs rafts and (b) number of 

larvae per egg raft for Cx. pipiens mosquitoes exposed to two levels of tire leachate 

concentration (high and low), and two levels of food resources (filtered and unfiltered. 

Significant pairwise comparisons among treatment levels are indicated by different letters 

above bars. 
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Appendices 
 

Appendix 9: SAS code to assess the amount levels of food resources (filter and 

unfiltered) in tire leachate with high and low zinc concentrations.  

 

PROC IMPORT OUT= WORK.metrate  

            DATAFILE= "C:\Documents\Data\metab rate.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=metrate; 

run; 

data b; 

set metrate; 

metrate=log10(metrate+1); 

run; 

proc print data=b; 

run; 

proc sort data=b; 

key blk LeachateConc FoodRes/ascending; 

run; 

proc print data=b; 

run; 

proc means data=b; 

var metrate; 

by blk LeachateConc FoodRes; 

output out=a mean=metrate; 

run; 

proc print data=a; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model metrate= LeachateConc|FoodRes/residuals ddfm=sat; 

random blk; 

run; 
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Appendix 10: SAS code to assess the effects of zinc concentration (high and low) and 

amount of food resources (filter and unfiltered) on the oviposition behavior of Ae. 

albopictus mosquitoes  

 

PROC IMPORT OUT= WORK.albovip  

            DATAFILE= "C:\Documents\Data\AlboOvip.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=albovip; 

run; 

data e; 

set albovip; 

NumEggs=log10(NumberEggs+1); 

totalLarvae=log10(HatchedLarvae+1); 

PercHatch=log10(PercHatching+1); 

run; 

proc sort data=e; 

key LeachateConc FoodRes blk/ascending; 

run; 

proc means data=e n mean stderr; 

var NumEggs totalLarvae PercHatch; 

by LeachateConc FoodRes blk; 

output out=a mean= NumEggs totalLarvae PercHatch; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model NumEggs = LeachateConc|FoodRes / residual ddfm=kr; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model totalLarvae = LeachateConc|FoodRes / residual ddfm=kr; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model PercHatch = LeachateConc|FoodRes / residual ddfm=kr; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run;  



153 

 

Appendix 11: SAS code to assess the effects of zinc concentration (high and low) and 

amount of food resources (filter and unfiltered) on the oviposition behavior of Cx. 

pipiens mosquitoes  

 

PROC IMPORT OUT= WORK.culexovip  

            DATAFILE= "C:\Documents\Data\CulexOvip.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=culexovip; 

run; 

data d; 

set culexovip; 

eggRaft=log10(eggrafts+1); 

totalLarvae=log10(total_larvae+1); 

larvaeRaft=log10(larvae_per_raft+1); 

run; 

proc sort data=d; 

by LeachateConc FoodRes blk; 

run; 

proc means data=d n mean stderr; 

var eggRaft totalLarvae larvaeRaft; 

by LeachateConc FoodRes blk; 

output out=a mean= eggRaft totalLarvae larvaeRaft; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model eggRaft = LeachateConc|FoodRes / residual;  

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model totalLarvae = LeachateConc|FoodRes / residual;  

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model larvaeRaft = LeachateConc|FoodRes / residual; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 
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Chapter 6: General Discussion 

 

Aedes albopictus and Culex pipiens are two mosquito species that are highly present 

in urban areas of the United States (Lounibos, 2002). Aedes albopictus is currently present 

in 33 states and Cx. pipiens is present in 38 states (Evans et al., 2017). Aedes albopictus 

and Cx. pipiens mosquito populations overlap in their geographic distribution in 27 states 

where they coexist in spite of the fact that Cx. pipiens is an inferior competitor compared 

to Ae. albopictus (Carrieri et al., 2003; Costanzo et al., 2005; Costanzo et al., 2011). In the 

area where these mosquitoes overlap in their distribution, they could represent a threat to 

public health because they could promote increased human incidence of WNv, considering 

that Cx. pipiens is the main vector of WNv and that Ae. albopictus could act as a brigde 

vector for WNv (Brustolin et al., 2016).  

Discarded tires are important habitats for Ae. albopictus and Cx. pipiens mosquitoes 

in peridomestic areas. Understanding the factors affecting heterospecific competition of 

the immature stages of mosquitoes is important to the understanding of their distribution 

and of measures to control of adult populations.  The overall goal of this dissertation, was 

to test the effects of UV-B radiation and tire pollutants on the larval ecologies of Ae. 

albopictus and Cx. pipiens. Through four experiments I compared the effects of three UV-

B radiation levels that mimicked conditions in the field: full-sun, shade, and no-UV on tire 

degradation and leaching of contaminants, the metabolism and oviposition of Ae. 

albopictus and Cx. pipiens, and density-dependent competition between these two species.  

My results showed that both Ae. albopictus and Cx. pipiens had higher metabolic 

rates and lower survival in full-sun conditions compared to no-UV conditions, probably 

because they were under greater physiological stress. Stress could be due to direct UV-B 
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exposure that demand greater partitioning of energy to maintaining bodily processes (e.g., 

feeding, growth, and reproduction), which would be expressed in lower survival rates and 

greater development time (MacGregor, 1932). Water samples exposed to full-sun 

conditions also showed lower microbial activity than samples exposed to no-UV and shade 

conditions, suggesting that full-sun exposure appears to decrease available microbial food 

resources for mosquito larvae. Thus, another form of stress could be via reduced food 

availability that could limit energy available to maintenance, or encourage larvae to forge 

for food for longer and incur injuries from increasing swimming, both of which could lead 

to reduced survivorship,  

Tires appeared to release higher concentrations of zinc and likely other 

contaminants (e.g., copper, cadmium, polycyclic aromatic hydrocarbons, benzothiazoles) 

when exposed to higher UV-B radiation. Released zinc and other contaminants could be 

suspended in the water column or attached or absorbed on the biofilm layer at the bottom 

of the tire casings. My findings suggested that after 150 days, zinc appeared to be ingested 

by mosquitoes both on fine particulate organic matter (FPOM) in the water column and in 

the biofilm that was on tire surfaces. Full-sun conditions promoted much greater microbial 

growth and zinc concentrations and overall amounts were substantially higher in biofilm. 

Interesting, although Ae. albopictus appeared to ingest much higher amounts of 

contaminants than Cx. pipiens, presumably due to its behavior of spending more time 

browsing biofilm than filtering in the water column, it was still the superior resource 

competitor, suggesting that tire leachate does not reverse the outcome of heterospecific 

competition. Nevertheless, although being the inferior competitor, overall Cx. pipiens 

appeared to have greater competitive effects on Ae. albopictus under UV-B conditions that 
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promote greater tire degradation than no-UV conditions, which could still help promote 

species coexistance and is an example of condition-specific competition. This suggest that 

tire leachate from tires exposed to shade and full-sun conditions could alleviate 

heterospecific competition, facilitating coexistence. Overall, my dissertation research 

suggests that UV-B can have strong effects on the larval ecology of both Ae. albopictus 

and Cx. pipiens, both through direct negative effects on metabolic processes and resultant 

decreases in survival, and indirectly through the degradation of tires and the leaching of 

toxic tire contaminants.  Moreover, my research showed that tire leachate does not appear 

alter the oviposition behavior of both Ae. albopictus and Cx. pipiens. Therefore, the effects 

of tire leachate on larval ecology is likely to be especially important in dictating the 

distribution and abundance of both Ae. albopictus and Cx. pipiens larval competition for 

resources in tire habitats is likely to be especially important in structuring their 

communities.  

In addition to affecting the population dynamics of both species, my dissertation 

indicates a number of important implications to public health. Aedes albopictus adults have 

14 times higher bodily zinc concentrations compared to Cx. pipiens when emerging from 

tires exposed to full-sun conditions. Two previous studies have demonstrated high and 

greater tolerances to tire leachate of Ae. albopictus than other mosquito species, which 

could lead to the development of insectide resistance. Suwanchaichinda and Brattsten 

(2002) showed that Ae. albopictus exposed to benzothiazoles from tire leachate showed 

resistance to carbaryl, rotenone, and temephos, and the study of Nkya et al. (2013) showed 

that Ae. albopictus exposed to tire leachate developed resistance to pyrethroid insecticides. 

In both cases, Ae. albopictus was able to detoxify tire contaminants through the increased 
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induction of the cytochrome P450s monooxygenases. Insecticide resistance in Ae. 

albopictus exposed to tire leachate should be further studied because it would have a direct 

impact on mosquito distribution and the increase in the risk of virus transmission to humans 

and animals.  

An additional finding of my dissertation is that although Cx. pipiens and Ae. 

albopictus experienced lower survival from tires exposed to shade and full-sun than no-

UV conditions, the adults that did emerge were larger. Juliano et al. (2014) has shown that 

although dengue virus disseminates through the mid-gut to the salivary glands more slowly 

in larger Ae. aegypti females, larger individuals are overall superior disease vectors because 

they have a higher rate of biting, longer life expectancy, greater flying range, and 

production of higher number of eggs compared to smaller mosquitoes. Further studies 

should assess if lower numbers of larger mosquitoes from tires with higher tire leachate 

concentration have greater negative effect on virus transmission compared to higher 

numbers of smaller mosquitoes from tires with lower tire leachate concentration.  

The effects of UV-B radiation and tire leachate are likely to be complex and may 

be manifest in both the immature (larval) and adult life stages, as well as in the microbial 

communities on which mosquito larvae feed. The main goal of my work was to test if tire 

leachate from UV-B degradation could alter the competitive superiority of Ae. albopictus 

over Cx. pipiens; it showed evidence of increased competitiveness of Cx. pipiens over Ae. 

albopictus in tire habitats exposed to shade and full-sun conditions. Additional research 

needs to examine the effects of tire leachate on other community processes, such as 

predation, parasitism, and on vector competence across other disease systems such as 

chikungunya and Zika virus. Also, more research is needed in a multigenerational study on 
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the development of insecticide resistance by mosquitoes previously exposed to tire 

leachate. It is obvious that the elimination of stockpiles of scrap tires will eliminate a 

breeding mosquito habitat along with the associated risk of virus transmission. It also clear 

that the spread of Ae. albopictus since its discovery in 1985 in Houston, Texas has been 

favored by interstate shipments of scrap tires. If elimination of stockpiles of scrap tires is 

not feasible, mosquito control programs may be required to suppress mosquito populations 

at tire piles, which it would be probably more problematic and costly. Reduction or 

elimination of stockpiles of discarded tires should be a priority for state recycling programs 

and tire disposal and recycling should be addressed at the federal level.  
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Appendices 
 

Appendix 1: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) at three different times (days 1, 8, and 15) on 

the larvae metabolic rate of Ae. albopictus and Cx. pipiens mosquitoes 

 

PROC IMPORT OUT= WORK.LmetrateRM  

            DATAFILE= "C:\Documents\Data\MRLrepmcon.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=LmetrateRM; 

run; 

proc sort data=LmetrateRM; 

key trt sp blk/ascending; 

run; 

data b; 

set LmetrateRM; 

mr1=log10(mr1); 

mr8=log10(mr8); 

mr15=log10(mr15); 

run; 

proc print data=b; 

run; 

data l; 

set b; 

day= 1; mr=mr1; output; 

day= 8; mr=mr8; output; 

day= 15; mr=mr15; output; 

drop mr1 mr8 mr15; 

proc print data=l; 

run; 

proc mixed data=l covtest; 

class vial trt sp blk day; 

model mr = trt|sp|day / residual ddfm=kr; 

repeated day/ subject= trt*sp*blk type=cs; 

random blk; 

lsmeans trt sp day trt*day sp*day / pdiff adjust=tukey; 

run; 
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Appendix 2: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) at three different times (days 1, 8, and 15) on 

the metabolic rate of the microbial communities. 

 

PROC IMPORT OUT= WORK.MbMetrate  

            DATAFILE= "C:\Documents\Data\MRMbrepmcon.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

Proc print data=MbMetrate; 

run; 

proc sort data=Mbmetrate; 

key trt sp blk/ascending; 

run; 

data e; 

set MbMetrate; 

mr1=log10(mr1); 

mr8=log10(mr8); 

mr15=log10(mr15); 

run; 

proc print data=e; 

run; 

data k; 

set e; 

day= 1; mr=mr1; output; 

day= 8; mr=mr8; output; 

day= 15; mr=mr15; output; 

drop mr1 mr8 mr15; 

proc print data=k; 

run; 

proc mixed data=k covtest; 

class vial trt sp blk day; 

model mr = trt|sp|day / residual ddfm=kr; 

repeated day/ subject=trt * sp * blk type=cs; 

random blk; 

lsmeans trt sp day trt*day / pdiff adjust=tukey; 

run; 
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Appendix 3: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

species (Ae. albopictus and Cx. pipiens) on the fitness parameters (survival, 

development time, and body size) of Ae. albopictus and Cx. pipiens mosqutioes 

 

PROC IMPORT OUT= WORK.UpSurvLarva  

            DATAFILE= "C:\Documents\Data\Surlarvae.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

Proc print data=UpSurvLarva; 

run; 

proc sort data=UpSurvlarva; 

key sp trt blk rep/ascending; 

run; 

proc means data=UpSurvlarva n mean stderr stddev; 

by sp trt blk; 

var eclo; 

output out=sura1 n=count nmiss=nmiss;  

run; 

proc print data=sura1; 

run; 

data surA2; 

set sura1; 

ss=log10(count+1);  

run; 

Proc print data=surA2; 

run; 

*survival; 

proc mixed data=surA2; 

class trt sp; 

model ss = trt|sp /residual ddfm=sat; 

random blk; 

LSMEANS trt sp trt*sp/pdiff adjust=tukey; 

run; 

 *development time; 

proc means data=Survlarvae n mean stderr stddev; 

by trt sp blk; 

var eclo; 

output out=devtime1 mean=mean;   

run; 

data devtime2; 

set devtime1; 

dt=log10(mean+1);  

run; 

proc mixed data=devtime2; 
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class trt sp blk; 

model dt = trt|sp /residual ddfm=kr; 

random blk; 

lsmeans trt sp trt*sp /adjust=tukey; 

run; 

*wing length; 

proc means data=Survlarvae n mean stderr; 

by trt sp; 

var wingL; 

output out=wing1 mean=mean stderr=stderr; 

run; 

proc print data=wing1; 

run; 

data wing3; 

set Survlarvae; 

ss=log10(wingL+1); 

run; 

proc means data=wing3 n mean stderr; 

by trt sp blk; 

var wingL; 

output out=wing1 mean=mean stderr=stderr; 

run; 

proc mixed data=wing1; 

class trt sp blk; 

model mean = trt|sp/ residual ddfm=sat;  

random blk; 

lsmeans trt sp trt*sp /adjust=tukey; 

run; 
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Appendix 4: Calibration of the Inductevely coupled plasma atomic emission 

spectroscopy (ICP-AES), using the following zinc concentrations: 0, 0.4, 2, 4, 6 mg/L. 
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Appendix 5: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) on 

the dissolved and total zinc concentration in discarded tires. 

 

PROC IMPORT OUT= WORK.zinc  

            DATAFILE= "C:\Documents\Data\Zinc\waterZnCov.csv"  

            DBMS=CSV REPLACE;  

     GETNAMES=YES; 

    DATAROW=2; 

RUN; 

PROC PRINT DATA=zinc; 

RUN; 

proc sort data=zinc; 

key trt day /ascending; 

run; 

proc means data=zinc; 

var ivdzn ivtzn DZn TZn; 

by trt day block; 

output out=a mean=ivdzn ivtzn DZn TZn; 

run; 

proc print data=a; 

run; 

proc sort data=a; 

by day trt block; 

run; 

proc mixed data=a; 

class block day trt; 

model DZn= ivdzn trt/residual ddfm=sat; 

random block; 

lsmeans trt/ adjust=tukey; 

by day; 

run; 

proc sort data=a; 

by day trt block; 

run; 

proc mixed data=a; 

class block day trt; 

model TZn= ivtzn trt/residual ddfm=sat; 

random block; 

lsmeans trt/ adjust=tukey; 

by day; 

run;
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Appendix 6: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) on 

the total recoverable zinc concentration in biofilm from discarded tires. 
 

PROC IMPORT OUT= WORK.Znbio2  

            DATAFILE= "C:\Documents\Data\Zinc biofilm2.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

run; 

Proc print data=Znbio2; 

run; 

proc sort data=Znbio2; 

  by trt blk; 

  run; 

*Amount of biofilm per trt**; 

proc means data=Znbio2 n mean median stderr; 

 by trt blk; 

 var Drybiofilm; 

 output out=biofilm1 n=count mean=meanwbio median=medianwbio stderr=stderrwbio 

nmiss=nmiss; 

 run; 

*Amount of Zn per trt mg/g**; 

 proc means data=Znbio2 n mean median stderr; 

 by trt blk; 

 var TZnGram; 

 output out=zn1 n=count mean=meanzn median=medianzn stderr=stderrzn nmiss=nmiss; 

 run; 

*data transformation**; 

data b; 

set Znbio2; 

TZnGram=log10(TZnGram); 

DryBiofilm=log10(DryBiofilm); 

run; 

proc mixed data=b; 

 class trt Tire blk; 

 model TZnGram = trt /ddfm=sat residual; 

 random blk; 

 LSMEANS trt/pdiff adjust=tukey; 

run; 

proc mixed data=b; 

 class trt blk; 

 model DryBiofilm = trt /ddfm=sat residual; 

 random blk; 

 LSMEANS trt/pdiff adjust=tukey; 

run;
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Appendix 7: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

competition treatments (Ae. albopictus: Cx. pipiens, 100:0, 50:0, 50:50, 0:100, 0:50) on 

the per capita rate of population change (λ’) and fitness parameters (survivorship, 

development time, and body size) of Ae. albopictus 

 

PROC IMPORT OUT= WORK.SurvAlbo  

            DATAFILE= "C:\Documents\Data\SurAlbo.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=SurvAlbo; 

run; 

proc sort data=SurvAlbo; 

  by sex trt combAC A C blk; 

  run; 

 

***survival analyses***; 

proc sort data=SurvAlbo; 

  by trt combAC A C blk; 

  run; 

proc means data=SurvAlbo; 

 by trt combAC A C blk; 

 var eclosion; 

 output out=sura1 n=count nmiss=nmiss;  

 run; 

*Calculating proportion survival for each cohort in each tire; 

data surA2; 

 set sura1; 

 s=count/A;  

 run; 

data surA2;  

set surA2; 

ss = arsin(sqrt(count/A)); 

 proc print data=surA2;  

 run; 

 proc mixed data=surA2; 

 class trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 

*survival by sex; 

proc sort data=SurvAlbo; 

  by sex trt combAC A C blk; 
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  run; 

proc means data=SurvAlbo; 

 by sex trt combAC A C blk; 

 var eclosion; 

 output out=sura1 n=count nmiss=nmiss;  

 run; 

*Calculating proportion survival for each cohort in each tire; 

data surA2; 

 set sura1; 

 s=count/(A/2); 

if s>1 then s=1;  

 run; 

data surA2;  

set surA2; 

ss = arsin(sqrt(s)); 

 proc print data=surA2;  

 run; 

 proc mixed data=surA2; 

by sex; 

class sex trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 

***Development time analyses***; 

proc sort data=SurvAlbo; 

  by sex trt combAC A C blk; 

  run; 

proc means data=SurvAlbo; 

    by sex trt combAC A C blk; 

 var eclosion; 

 output out=eclo2 n=count mean=meandays median=mediandays; 

 run; 

 proc mixed data=eclo2;  

 by sex; 

 class sex trt combAC A C blk; 

 model mediandays = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 
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***Body Size***; 

proc means data=SurvAlbo; 

by trt combAC A C blk; 

var wingL; 

output out=wingl2 n=count mean=meanwingL median=medianwingL; 

run; 

 proc mixed data=wingl2; 

 by sex; 

class trt combAC A C blk; 

 model medianwingL = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 

data lambda; 

    set SurvAlbo; 

 if sex='M' then delete;  

 run; 

proc sort data=lambda; 

     by trt combAC A C blk eclosion; 

 run; 

 

proc means data=lambda; 

    by trt combAC A C blk eclosion; 

 var wingL; 

 output out=lambda1 mean=meanwingL median=medianwingL n=count 

nmiss=nmiss; 

 run; 

 proc print data=lambda1; 

 run; 

/*calculations of lifetable stats*/; 

data lambda2; 

     set lambda1; 

 ax=count+nmiss; 

 fwx= 0.5*(-121.240+78.02*medianwingL); 

 lxmx=ax*fwx; 

 xlxmx=eclosion*ax*fwx; 

 run; 

/*gets sums*/; 

proc means data=lambda2 noprint; 

     by trt combAC A C blk;  

 var lxmx xlxmx; 

 output out=lambda3 sum=sumlxmx sumxlxmx; 
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 run; 

data lambda4; 

     set lambda3; 

     lambda=exp((log((2/A)*sumlxmx))/(14+(sumxlxmx/sumlxmx))); 

 if sumxlxmx=. then lambda=0; 

 if sumlxmx<1 then lambda=0; 

 r=log(lambda); 

 run; 

 proc print data=lambda4; 

 run; 

 proc means data=lambda4 n mean stderr; 

 by trt combAC; 

 var lambda; 

 run; 

 data lambda4;  

 set lambda4; 

 log10lambda=log10(lambda+1); 

 run; 

 proc print data=lambda4; 

 run; 

 proc mixed data=lambda4;  

 class trt combAC A C blk; 

 model lambda = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt|combAC /pdiff adjust=sidak; 

 run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 
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Appendix 8: SAS code to assess the effects of UV-B conditions (FS, S, and NUV) and 

competition treatments (Ae. albopictus: Cx. pipiens, 100:0, 50:0, 50:50, 0:100, 0:50) on 

the per capita rate of population change (λ’) and fitness parameters (survivorship, 

development time, and body size) of Cx. pipiens mosquitoes 

 

PROC IMPORT OUT= WORK.SurvCxPip  

            DATAFILE= "C:\Documents\Data\SurCulex.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

data survcu; 

set SurvCxPip; 

run; 

proc print data=survcu; 

run; 

proc sort data=survcu; 

  by sex trt combAC A C blk; 

  run; 

 

***survival analyses***; 

proc sort data=survcu; 

  by trt combAC A C blk; 

  run; 

proc means data=survcu; 

 by trt combAC A C blk; 

 var eclosion; 

 output out=surc1 n=count nmiss=nmiss;  

 run; 

data surC2; 

 set surc1; 

 s=count/C;  

 run; 

data surC2;  

set surC2; 

ss = arsin(sqrt(count/C)); 

 proc print data=surC2;  

 run; 

 proc mixed data=surC2; 

class trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 
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*survival by sex; 

proc sort data=survcu; 

  by sex trt combAC A C blk; 

  run; 

proc means data=survcu; 

 by sex trt combAC A C blk; 

 var eclosion; 

 output out=surc1 n=count nmiss=nmiss;  

 run; 

data surC2; 

 set surc1; 

 s=count/(C/2); 

if s>1 then s=1;  

 run; 

data surC2;  

set surC2; 

ss = arsin(sqrt(s)); 

 proc print data=surC2;  

 run; 

 proc mixed data=surC2; 

by sex; 

class sex trt combAC A C blk; 

 model ss = trt|combAC /ddfm=kenwardroger residual; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 

***Development time analyses***; 

proc sort data=survcu; 

  by sex trt combAC A C blk; 

  run; 

proc means data=survcu; 

    by sex trt combAC A C blk; 

 var eclosion; 

 output out=eclo2 n=count mean=meandays median=mediandays; 

 run; 

 proc mixed data=eclo2;  

 by sex; 

 class sex trt combAC A C blk; 

 model mediandays = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 
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run; 

***Body Size***; 

proc means data=survcu; 

    by sex trt combAC A C blk; 

 var wingL; 

 output out=wingl2 n=count mean=meanwingL median=medianwingL; 

 run; 

 proc mixed data=wingl2; 

by sex; 

class sex trt combAC A C blk; 

 model medianwingL = trt|combAC /outp=b2; 

 random blk; 

 LSMEANS trt combAC trt*combAC /pdiff adjust=tukey; 

run; 

 options ps=45; 

proc plot data=b2; 

plot resid*pred = trt; 

run; 

 

data lambda; 

    set survcu; 

 if sex='M' then delete;  

 run; 

proc sort data=lambda; 

     by trt combAC A C blk eclosion; 

 run; 

/*determines mean wing lengths for each day and counts individuals*/; 

proc means data=lambda noprint; 

    by  trt combAC A C blk eclosion; 

 var wingL; 

 output out=lambda1 mean=meanwingL median=medianwingL n=count 

nmiss=nmiss; 

 run; 

 proc print data=lambda1; 

 run; 

/*calculations of lifetable stats*/; 

data lambda2; 

     set lambda1; 

 ax=count+nmiss; 

 fwx= 0.5*(-383.82+148.05*medianwingL);  

 lxmx=ax*fwx; 

 xlxmx=eclosion*ax*fwx; 

 run; 

proc means data=lambda2 noprint; 

     by trt combAC A C blk;  

 var lxmx xlxmx; 
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 output out=lambda3 sum=sumlxmx sumxlxmx; 

 run; 

data lambda4; 

     set lambda3; 

     lambda=exp((log((2/C)*sumlxmx))/(10+(sumxlxmx/sumlxmx))); 

 if sumxlxmx=. then lambda=0; 

 if sumlxmx<1 then lambda=0; 

 r=log(lambda); 

 run; 

 proc print data=lambda4; 

 run; 

 proc means data=lambda4 n mean stderr; 

 by trt combAC; 

 var lambda; 

 run; 

 data lambda4;  

 set lambda4; 

 log10lambda=log(lambda+1); 

 run; 

 

*model using randomization - because data violated parametric assumptions; 

 

%macro rand_gen( 

indata=lambda4, 

outdata=outrand, 

depvar=lambda, 

numreps=1000, 

seed=0); 

proc sql noprint; 

select count(*) into :numrecs from 

&INDATA; 

quit; 

data __temp_1; 

retain seed &SEED ; drop seed; 

set &INDATA; 

do replicate = 1 to &NUMREPS; 

call ranuni(seed,rand_dep); 

output; 

end; 

run; 

proc sort data=__temp_1; 

by replicate rand_dep; 

run; 

data &OUTDATA ; 

array deplist{ &NUMRECS } _temporary_ ; 

set &INDATA(in=in_orig) 
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__temp_1(drop=rand_dep); 

if in_orig then do; 

replicate=0; 

deplist{_n_} = &DEPVAR ; 

end; 

else &DEPVAR = 

deplist{ 1+ mod(_n_,&NUMRECS) }; 

run; 

%mend rand_gen; 

%macro rand_anl( 

randdata=outrand, 

where=, 

testprob=probf, 

testlabel=F test,); 

data _null_; 

retain pvalue numsig numtot 0; 

set &RANDDATA end=endofile; 

%if "&WHERE" ne "" 

%then where &WHERE %str(;) ; 

if Replicate=0 then pvalue = &TESTPROB ; 

else do; 

numtot+1; 

numsig + ( &TESTPROB < pvalue ); 

end; 

if endofile then do; 

ratio = numsig/numtot; 

put "Randomization test for &TESTLABEL " 

%if "&WHERE" ne "" %then "where &WHERE"; 

" has significance level of " 

ratio 6.4 ; 

end; 

run; 

%mend rand_anl; 

%rand_gen(indata=lambda4,outdata=outrand, 

depvar=lambda,numreps=1000,seed=1230568) 

ods output OverallANOVA=overall; 

/* change model */ 

proc glm data=outrand outstat=outstat1; 

by replicate; 

class trt combAC A C blk; 

model lambda = blk trt combAC trt*combAC ; 

run; 

%rand_anl(randdata=outstat1, 

where=_source_='trt' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 
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%rand_anl(randdata=outstat1, 

where=_source_='combAC' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='blk' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='trt*combAC' and _type_='SS3', 

testprob=prob,testlabel=interaction test) 

%rand_anl(randdata=outstat1, 

run; 

 

***proc mixed random***; 

%macro rand_gen( 

indata=lambda4, 

outdata=outrand, 

depvar=lambda, 

numreps=1000, 

seed=0); 

proc sql noprint; 

select count(*) into :numrecs from 

&INDATA; 

quit; 

data __temp_1; 

retain seed &SEED; drop seed; 

set &INDATA; 

do replicate = 1 to &NUMREPS; 

call ranuni(seed,rand_dep); 

output; 

end; 

run; 

proc sort data=__temp_1; 

by replicate rand_dep; 

run; 

data &OUTDATA ; 

array deplist{ &NUMRECS } _temporary_ ; 

set &INDATA(in=in_orig) 

__temp_1(drop=rand_dep); 

if in_orig then do; 

replicate=0; 

deplist{_n_} = &DEPVAR ; 

end; 

else &DEPVAR = 

deplist{ 1+ mod(_n_,&NUMRECS) }; 
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run; 

%mend rand_gen; 

%macro rand_anl( 

randdata=outrand, 

where=, 

testprob=probf, 

testlabel=F test,); 

data _null_; 

retain pvalue numsig numtot 0; 

set &RANDDATA end=endofile; 

%if "&WHERE" ne "" 

%then where &WHERE %str(;) ; 

if Replicate=0 then pvalue = &TESTPROB ; 

else do; 

numtot+1; 

numsig + ( &TESTPROB < pvalue ); 

end; 

if endofile then do; 

ratio = numsig/numtot; 

put "Randomization test for &TESTLABEL " 

%if "&WHERE" ne "" %then "where &WHERE"; 

" has significance level of " 

ratio 6.4 ; 

end; 

run; 

%mend rand_anl; 

%rand_gen(indata=lambda4,outdata=outrand, 

depvar=lambda,numreps=1000,seed=1230568) 

ods output OverallANOVA=overall; 

/* change model */ 

proc mixed data=outrand outstat=outstat1; 

by replicate; 

class trt combAC A C blk; 

model lambda = trt combAC trt*combAC; 

random blk; 

run; 

%rand_anl(randdata=outstat1, 

where=_source_='trt' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='combAC' and _type_='SS3', 

testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='blk' and _type_='SS3', 
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testprob=prob,testlabel=main effect test) 

ods output close; 

%rand_anl(randdata=outstat1, 

where=_source_='trt*combAC' and _type_='SS3', 

testprob=prob,testlabel=interaction test) 

%rand_anl(randdata=outstat1, 

run
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Appendix 9: SAS code to assess the amount levels of food resources (filter and 

unfiltered) in tire leachate with high and low zinc concentrations.  

 

PROC IMPORT OUT= WORK.metrate  

            DATAFILE= "C:\Documents\Data\metab rate.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=metrate; 

run; 

data b; 

set metrate; 

metrate=log10(metrate+1); 

run; 

proc print data=b; 

run; 

proc sort data=b; 

key blk LeachateConc FoodRes/ascending; 

run; 

proc print data=b; 

run; 

proc means data=b; 

var metrate; 

by blk LeachateConc FoodRes; 

output out=a mean=metrate; 

run; 

proc print data=a; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model metrate= LeachateConc|FoodRes/residuals ddfm=sat; 

random blk; 

run; 
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Appendix 10: SAS code to assess the effects of zinc concentration (high and low) and 

amount of food resources (filter and unfiltered) on the oviposition behavior of Ae. 

albopictus mosquitoes  

 

PROC IMPORT OUT= WORK.albovip  

            DATAFILE= "C:\Documents\Data\AlboOvip.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=albovip; 

run; 

data e; 

set albovip; 

NumEggs=log10(NumberEggs+1); 

totalLarvae=log10(HatchedLarvae+1); 

PercHatch=log10(PercHatching+1); 

run; 

proc sort data=e; 

key LeachateConc FoodRes blk/ascending; 

run; 

proc means data=e n mean stderr; 

var NumEggs totalLarvae PercHatch; 

by LeachateConc FoodRes blk; 

output out=a mean= NumEggs totalLarvae PercHatch; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model NumEggs = LeachateConc|FoodRes / residual ddfm=kr; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model totalLarvae = LeachateConc|FoodRes / residual ddfm=kr; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model PercHatch = LeachateConc|FoodRes / residual ddfm=kr; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run;  
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Appendix 11: SAS code to assess the effects of zinc concentration (high and low) and 

amount of food resources (filter and unfiltered) on the oviposition behavior of Cx. 

pipiens mosquitoes  

 

PROC IMPORT OUT= WORK.culexovip  

            DATAFILE= "C:\Documents\Data\CulexOvip.csv"  

            DBMS=CSV REPLACE; 

     GETNAMES=YES; 

     DATAROW=2;  

RUN; 

proc print data=culexovip; 

run; 

data d; 

set culexovip; 

eggRaft=log10(eggrafts+1); 

totalLarvae=log10(total_larvae+1); 

larvaeRaft=log10(larvae_per_raft+1); 

run; 

proc sort data=d; 

by LeachateConc FoodRes blk; 

run; 

proc means data=d n mean stderr; 

var eggRaft totalLarvae larvaeRaft; 

by LeachateConc FoodRes blk; 

output out=a mean= eggRaft totalLarvae larvaeRaft; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model eggRaft = LeachateConc|FoodRes / residual;  

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model totalLarvae = LeachateConc|FoodRes / residual;  

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 

proc mixed data=a; 

class LeachateConc FoodRes blk; 

model larvaeRaft = LeachateConc|FoodRes / residual; 

random blk; 

lsmeans LeachateConc FoodRes LeachateConc*FoodRes / adjust=tukey; 

run; 
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