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The ability to segregate and understand speech in complex listening scenarios is an 

inherent property of the human brain. However, this ability deteriorates as the brain 

ages. The underlying age-related alteration of neural mechanisms is still unclear. 

Understanding the subcortical and cortical neural mechanisms of auditory processes 

might be critical in order to get a better understanding of how they degraded by age. 

Importantly, the likely non-linearity nature of these auditory processes may conceal 

important internal mechanisms that might not be captured with traditional linear 

methodology. This thesis develops a novel non-linear approach based on information 

theory and investigates the non-linear representation of speech in both the midbrain 

and the cortex. In this dissertation, midbrain and cortical activities from younger and 



  

older listeners are noninvasively recorded with both clean speech (i.e. subjects listening 

to a single speaker) and with adverse listening conditions (i.e. two competing speakers). 

Additionally, the effect of informational masking is also investigated. Results from the 

mutual information analysis suggest an age-related deterioration of the response in the 

midbrain and a strong effect of the informational masking only in older adults. 

Conversely, the cortical analysis reveals an exaggerated response in older listeners. 

Interestingly, this exaggerated response is strongly correlated with behavioral 

measurements, such as speech-in-noise score and behavioral inhibitory control score. 

Further analysis also reveals that the exaggerated response in the aging cortex manifests 

only in the neural representation of the low-frequency speech envelope, while at higher 

frequencies (60-100 Hz) no differences were seen between younger and older listeners. 

However, the aging cortex demonstrates neural deficits, at such higher frequency, in 

suppression of the competing speech in challenging listening conditions, shown by an 

increasing trend of response level with increasing sound level of the competing speech. 

In summary, this dissertation develops a novel mutual information approach for 

analyzing neural recordings, and the results reveal new findings of age-related changes 

in auditory midbrain and cortical activities.  
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 Introduction  

One of the most remarkable features of the brain is its innate ability to track and 

process speech in adverse conditions, such as noisy environments.  However, this skill 

tends to deteriorate with age, thus causing older adults to experience significant 

problems when having a conversation in challenging situations. (i.e. restaurants). These 

communications difficulties have a strong impact on our society, as the National 

Institute of Deafness and Other Communication Disorders (NIDCD) has estimated that 

one third of the U.S. population between age 65 and 74 have hearing problems, and 

nearly half of those older than 75 have difficulty hearing (NIDCD 2015). Furthermore, 

age-related hearing deficits contribute to increased risk of depression (Carabellese et 

al. 1993) and are associated with dementia (Herbst and Humphrey 1980).  

 

Older listeners often report problems listening to speech in noise even when 

they have clinically normal hearing (Burke and Shafto 2008; Helfer and Freyman 

2008). This test for hearing is measured by a tone detection task, where the threshold 

for pure tones at different levels and frequencies is measured. A subject may be 

considered to have clinically normal hearing if they have air conduction thresholds ≤ 

25 dB hearing level from 125 to 4,000 Hz bilaterally (sometimes this threshold might 

be lowered to 20 dB; also, higher frequencies (i.e. 8,000 Hz) might be considered). 

Behavioral studies have found age-related deficits in auditory temporal resolution by 

showing larger gap-detection thresholds on tonal stimulus (Schneider et al. 1994), 

reduced sensitivity to amplitude modulations (Takahashi and Bacon 1992), and speech-
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recognition dysfunction (Frisina and Frisina 1997) for older listeners. Age-related 

temporal processing deficits in behavioral studies are consistent with observations from 

neurophysiological studies: the aging midbrain shows a delayed and reduced response 

to speech syllables (Anderson et al. 2012; Clinard and Tremblay 2013) and clicks 

(Burkard and Sims 2002). Previous studies have also shown that for younger listeners, 

cortical responses can demonstrate segregated speech from either a competing speaker 

(Ding and Simon 2012a) or spectrally matched noise (Ding and Simon 2013), but, 

unexpectedly, more recent studies have shown that this cortical response is enlarged 

(exaggerated), not diminished, in older listeners (Lister et al. 2011; Presacco et al. 

2016a, 2016b). The neural mechanisms underlying age-related auditory temporal 

processes deficits have also been investigated in animal studies: aging animals show 

decreased release of inhibitory neurotransmitters, such as gamma-aminobutyric acid 

(GABA), in dorsal cochlear nucleus (Caspary et al. 2005; Parthasarathy and Bartlett 

2011; Schatteman et al. 2008; Wang et al. 2009), inferior colliculus (IC) (Caspary et 

al. 1995) and in the auditory cortex (Juarez-Salinas et al. 2010; de Villers-Sidani et al. 

2010). In aging rats, altered neural inhibition and functional impairments in the cortex 

are mostly due to a regulated plasticity change (de Villers-Sidani et al. 2010). Animal 

studies are also in agreement with human findings in showing an exaggerated cortical 

response (Hughes et al. 2010).  

 

Despite these studies on aging, it still remains an open question that how aging 

affects the amount of stimulus information represented in the aging midbrain and the 
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aging cortex in challenging listening conditions. In this dissertation, this question is 

studied by adoption of novel informational measures from information theory.  
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 Background 

 Magnetoencephalography (MEG)  
Magnetoencephalography (MEG) is a noninvasive electrophysiological 

technique that records the magnetic field originating from the human brain. MEG 

signals are mainly generated by postsynaptic currents conducted by apical dendrites of 

pyramidal cells (Hämäläinen et al. 1993; Levänen 1998). The order of magnitude of 

the neuromagnetic signals is typically ~10-100 fT (1 fT = 10-15 T), which is roughly 

109 times weaker than the magnetic field generated by the earth (Hämäläinen et al. 

1993). The net neural currents in pyramidal neurons flow in the direction normal 

(perpendicular) to the local cortical surface. Such cortical currents that are also 

tangential to the skull generate a magnetic flux, perpendicular to the current, which 

passes through the scalp without distortion (Figure 2.1). Consequently, MEG is most 

sensitive to tangential cortical currents. However, the main factor affecting MEG 

sensitivity is actually likely to be source depth not current orientation, so tilted neural 

currents from sources near cortical surface are also detected by MEG (Hari and 

Salmelin 2012; Hillebrand and Barnes 2002).  

   
Figure 2.1. Magnetic field of a current dipole 
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Figure 2.1. Magnetic field of a current dipole. (a) Current dipole (big arrow in 

the center) in a homogeneous conducting medium. Volume currents in dashed lines and 

magnetic-field lines B in solid lines are produced by the primary current. (b) Example 

of topographic map calculated from the MEG signals. The geometrically constructed 

equivalent current source dipole locates in the midway between the field extrema. 

Adapted from (Hämäläinen et al. 1993).  

 MEG instrumentation  

MEG uses Superconducting Quantum Interference Devices (SQUID) as sensors 

for recording (Silver and Zimmerman 1965), which offers sufficient sensitivity for 

detecting neuromagnetic signals at a level of ~10 fT (Ryhänen et al. 1989), without 

needing any reference (necessary for measuring electrical potential) (Cohen 1972). 

Modern MEG systems contain helmet-shaped arrays of ~100-300 SQUID sensors, 

which are immersed into liquid helium to keep the temperature at 4 K (-269 ℃). The 

whole system is placed in a magnetically shielded room to reduce environmental 

magnetic interference (Hämäläinen et al. 1993).  

 

The MEG system used in this dissertation is a whole-head 160-channel 

Kanazawa Institute of Technology (KIT) system, among which 157 are data channels 

and 3 are reference channels. The data channels are gradiometers that contain pairs of 

coils and are sensitive to local magnetic field in a certain direction. The reference 

channels are magnetometers built away from the head to record environmental 

magnetic field. The system operates at a typical sampling frequency of 1 kHz. This 
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high temporal resolution makes it suitable to study auditory activity with fast 

fluctuations in time. Since the magnetic field is not volume conductive, it passes the 

scalp without distortion. This magnetic property, coupled with effective noise 

shielding, make MEG feasible for neural source localization.  

 MEG source localization 

Knowing the conductivity of the brain tissue and the neural current generators, 

the magnetic field outside the brain can be derived by Maxwell’s equations and the 

continuity equation. Based on a quasistatic approximation (Hämäläinen et al. 1993), 

the magnetic field intensity can be approximated by a linear combination of those 

created by the neural generators. Several models have been proposed to invert the 

generative relationship between neural current sources and the MEG observations. One 

model, the equivalent current dipole model, assumes the source current is localized in 

one restricted area and finds the best fit that explains the MEG sensor measurements 

(Williamson and Kaufman 1981). The second model, with a minimal assumption 

regarding the a priori distribution of potential sources, captures the distribution of 

sensitivity for every magnetometer to neural currents distributed in the brain. In 

Chapter 5, the second model is used to localize high-gamma time-locked response. 

There, a source space with 5124 current sources is defined using a boundary element 

model (BEM). The lead field matrix (Mosher et al. 1999) that maps neural currents to 

MEG sensor measurements is computed based on the electromagnetic conductivity of 

the brain tissue. Then neural source currents can be estimated by minimum norm 

estimation (MNE) (Hämäläinen and Ilmoniemi 1994). In Chapter 5, an averaged brain 
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surface is adopted from FreeSurfer, and co-registration (Figure 2.2) is performed to 

adjust the size and position of the averaged head to approximately fit the individual’s 

digitized head (Fischl 2012).  

 
Figure 2.2. MNE co-registration. 

Figure 2.2. MNE co-registration. Both head size and position can be adjusted 

to fit with the outline shape formed by digitization points.  

 

After alignment of head with the MEG system, the model can finally be 

formulated, and here is described using the notation of Babadi et al. (2014). Given 

𝒚$ ≔ 	 [𝑦),$, 𝑦+,$, … , 𝑦-,$]/  as the MEG measurement at time t, where 𝑁  is the total 

number of channels, the multi-dimensional observation time series in the interval of [0, 

T] is 𝒀 ≔	 [𝒚), 𝒚+, … , 𝒚2].  Similarly, given the neural source currents at time t and 

source i to be 𝑥4,$, the amplitudes of all dipoles at time t is 𝒙$ ≔ 	 [𝑥),$, 𝑥+,$, … , 𝑥6,$]/ 
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and the multi-dimensional neural source currents is 𝑿 ≔	 [𝒙), 𝒙+, … , 𝒙2]. The MNE 

model assumes 𝒀 = 𝑮𝑿 + 𝑽 , where 𝑮 ∈ ℝ-×6  is the lead field matrix, and 𝑽 ≔

	[𝒗𝟏, 𝒗+, … , 𝒗2] ∈ ℝ-×2  is the observation noise matrix. The problem of computing 

lead field matrix is called the forward problem, which takes into account the 

information of source space set up by BEM model and its conductivity. Given 𝑮 and 

𝒀, the estimation of 𝑿, also known as the inverse problem, can be solved by finding the 

solution to the l2-norm optimization problem,  

𝑿A6-B(𝒀, 𝑮, 𝑪, 𝑸, 𝜆) ≔ arg𝑚𝑖𝑛NOP‖𝒚$ − 𝑮𝒙$‖+STU + 𝜆
+‖𝒙$‖VTU

+W
2

$X)

, 

where 𝜆 is a scaling factor, 𝑪 ∈ ℝ-×- is a spatial covariance matrix of sensor space 

and 𝑸 ∈ ℝ6×6 a spatial prior covariance matrix which is used to penalize the energy 

of the estimated sources (here it is taken to be the identity matrix). Given that the neural 

sources greatly outnumber the sensors, the inverse problem is ill-posed. Therefore, the 

regulation term restricts solution by limiting the power of sources. The solution can be 

derived in a closed form: 

𝑿A6-B(𝒀, 𝑮, 𝑪, 𝑸, 𝜆) = 𝑸𝑮/(𝑮𝑸𝑮/ + 𝜆+𝑪)Y)𝒀. 

The MNE-Python  toolbox allows co-registration and implements BEM and MNE to 

solve for forward and inverse solutions (Gramfort et al. 2013, 2014).  

 Electroencephalography (EEG)  
Electroencephalography (EEG) shares a common physical principle with MEG 

and provides another non-invasive technique for the measurement of brain activity with 

temporal resolution comparable to, or even higher than, MEG. Cortical EEG signals 
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are also mainly generated by postsynaptic currents conducted by dendrites of pyramidal 

neurons. Different than MEG, EEG measures the electric field potentials induced by 

neural currents through electrodes (varying from a few to a few hundred in number) 

fixed to the scalp. Due to the orthogonal orientations of magnetic and electric fields 

induced by a current dipole, EEG is more sensitive to radial currents, and more readily 

detects signals from the deep sources of the brain (Hämäläinen et al. 1993; Hari and 

Salmelin 2012).  The recorded voltage oscillates with a range of tens of micro-volts 

(Bear et al. 2006).  

 

According the Biot-Savart law, the magnetic field is proportional to the inverse 

of the squared distance from a current source. Additionally, a radial current produces 

no magnetic field outside a concentrically homogeneous volume conductor (Sarvas 

1987). Therefore, far-field responses known to originate from the brainstem may not 

be detected by MEG but EEG. In this dissertation, two-channel EEG is used to record 

neural activity from midbrain, an upper brainstem structure.   

 Auditory processing 

 Midbrain frequency following response  

Scalp-EEG recorded neural responses (believed to be dominated by brainstem) 

include the auditory brainstem response (ABR) which is phase-locked to clicks, and 

the frequency-following response (FFR) which is phase-locked to a periodic sound 

stimulus such as tones (Galbraith et al. 2000, 2003; Smith et al. 1975), syllables 

(Anderson et al. 2012), vowels and words (Galbraith et al. 1998, 1997). ABR peaks I 
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and II with latencies of 1.3-3.5 ms are generated by the auditory nerve (Møller et al. 

1988). In contrast to the ABR, the FFR has a generator in rostral brainstem or midbrain 

(Galbraith 1994). The neurons that generate FFR can synchronize to frequencies from 

below 100 Hz up to 1500 Hz (Gardi et al. 1979; Stillman et al. 1978). FFR has been 

shown to be useful in studying temporal processing deficits (Anderson et al. 2012; 

Presacco et al. 2016a, 2016b). The effects of aging on midbrain FFR are shown in 

Chapter 3.  

 Cortical low-frequency modulation  

Cortical slow temporal modulations arising from low-frequency modulation of 

speech have frequencies below 16 Hz (Chi et al. 2005; Rosen et al. 1992). Slow 

modulations in the delta band (1-3 Hz) reflect phrasal boundaries and suprasegmental 

prosodic linguistic features (Gandour et al. 2003; Rosen et al. 1992), and frequencies 

of the theta band (~3-7 Hz) correspond to the average length of a syllable, ~150-300 

ms (Greenberg et al. 1996; Poeppel 2003). The cortical low-frequency temporal 

response function (TRF) to modulations of continuous speech, at rates of 1-12 Hz, is 

sparse in time, and has response peaks at ~50 ms and ~100 ms. (Ding and Simon 2012a, 

2013) The later peak demonstrates top-down attentional gain control, and is 

strengthened in response to the attended speech. By reconstructing the speech envelope 

from neural responses, Pressaco et al. (2016a, 2016b) showed an exaggerated responses 

for older listeners, suggesting an imbalance of neural excitatory and inhibitory 

mechanisms.  
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In Chapter 4, cortical low-frequency modulations in the frequency range 1-8 Hz 

are investigated, and results show age-related exaggeration. Furthermore, the responses 

in older listeners correlate to behavioral measures of speech-in-noise performance and 

behavioral inhibitory control.  

 Cortical high-gamma response  

Auditory high-gamma responses are defined as event-related changes in 

spectral power in the frequency range of 60-150 Hz (Cervenka et al. 2011). 

Demonstrated by electrocorticographic (ECoG) studies, cortical high-gamma 

responses (60-150 Hz) occur approximately 75-120 ms after stimulus presentation 

onset in response to  phonemes (Crone et al. 2001), tones (Edwards et al. 2005) and 

click trains (Brugge et al. 2009; Howard et al. 2000). A recent MEG study shows clear 

cortical contributions to FFR, which falls into the frequency range of high-gamma, in 

response to tones with a latency of 48-60 ms (Coffey et al. 2016a). High-gamma 

responses are associated with multiple functions of auditory processing, including 

sound discrimination (Crone et al. 2001; Edwards et al. 2005; Fishman et al. 2004), 

phonological processing (Chang et al. 2010; Steinschneider et al. 2011), auditory 

selective attention (Herrmann and Knight 2001; Ray et al. 2008), auditory verbal 

memory (Herrmann et al. 2004; Kaiser et al. 2003) and auditory comprehension (Towle 

et al. 2008). In Chapter 5, cortical high-gamma responses are studied by analyzing 

MEG recordings, which demonstrate age-related deficits for older listeners.  
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 MEG signal processing  

 Denoising signal by time-shifted principle component analysis 
(TSPCA)  

Though recorded in heavily shielded rooms, MEG signals are affected by 

environmental noise, such as magnetic field generated by power line with frequencies 

at 60 Hz and its harmonics. Physiological sources such as heartbeat, eye-blink and 

muscle activity also induce noise in MEG recordings (de Cheveigné and Simon 2008a). 

Time-shifted principle component analysis (TSPCA) is a denoising algorithm used to 

remove environmental noise (de Cheveigne et al., 2007). The algorithm utilizes time-

shifted signals from reference channels to regress out the environmental noise from 

signals recorded by data channels.  

 Extracting auditory component by denoising source separation 
(DSS) 

Due to the presence of environmental noise, physiological noise and 

background brain activity, the auditory responses may be hidden in noise. Denoising 

source separation (DSS) is a blind source separation algorithm that can be used to 

extract auditory component(s) from noisy MEG signals. The response patterns, 

repeatable over trials, can be extracted by DSS (de Cheveigné and Simon, 2008; Sarela 

and Valpola, 2005). The algorithm computes a set of spatial filters to project MEG 

signal from sensor space to a virtual sensor space where signals are ranked based on 

descending reproducibility.  
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In this dissertation, a bias function is defined by filtering signals into a 

frequency band of interest (1-8 Hz in Chapter 4 and 60-100 Hz in Chapter 5; details 

follow in the corresponding chapters) and averaging over epochs to compute stimulus-

evoked response. The detailed algorithm is described in (de Cheveigné and Simon 

2008b).   

 Temporal response function (TRF) 

The temporal response function (TRF) models cortical modulation of speech 

envelope as a finite impulse response (FIR) filter, and is characterized by sparse peaks 

around 50 ms and 100 ms (Ding et al. 2014; Ding and Simon 2012a, 2013). The TRF 

can be estimated by solving an l2-norm optimization problem of minimizing squared 

error of the estimated response, often regularized by sparsity of the linear kernel. The 

boosting algorithm may be used for its estimation (David et al., 2007; Friedman et al., 

2000).  

 Information theory in auditory research  

 Mutual information applications and interpretations in auditory 
research  

Established by Claude E. Shannon (Shannon, 1948), information theory laid the 

foundation of communication systems and the information era. Entropy and mutual 

information are two fundamental concepts that provide mathematical representations 

of information (Cover and Thomas 1991). Rieke et al. were among the first researchers 

to apply information theory into auditory research, using mutual information to reveal 

the transmission rate in the low-frequency fibers of the auditory periphery in bullfrog 
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(Rieke et al. 1995). Mutual information has also been used to characterize the amount 

of information encoded in spike trains in auditory neurons in animal studies (Brenner 

et al. 2000). Slee et al. (2005) investigated whether a simplified model for responses of 

nucleus laminaris neurons in chick embryos can capture all the stimulus features 

relevant for spiking. They compared the mutual information between the stimulus and 

response and the mutual information between stimulus and response generated by the 

reduced models; one model is better than the other if the former gives a mutual 

information value closer to the full mutual information than the latter. Chase and Young 

(2005) artificially modified different acoustic cues such as interaural level difference, 

interaural time difference and spectral notches and compute mutual information 

between responses of inferior colliculus (IC) neurons in cats and stimuli with different 

combinations of cues to study information interaction between these acoustic features, 

and their results suggest that IC neurons integrate information from multiple input 

streams. Other studies implementing mutual information include comparing between 

IC responses to artificial sound and natural sound in cats (Escabí et al. 2003), 

characterizing selectivity of neurons, in the midbrain, primary forebrain and secondary 

forebrain areas, to the natural sound ensembles, in zebra finch (Hsu et al. 2004), and 

various studies based on mutual information encoded in spiking trains in neurons in the 

auditory cortex in cats (Furukawa and Middlebrooks 2002; Middlebrooks et al. 1994; 

Stecker et al. 2005). A good review covering implementations of information theory in 

auditory research, especially for the decoding of spiking patterns, can be found in 

Nelken and Chechik (2007).  
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Subsequent research has applied information theory to MEG responses from 

human auditory processing of continuous speech, examining the stimulus information 

encoded in the phase of the responses in frequency sub-bands of delta (1-3 Hz), thetalow 

(3-5 Hz) and thetahigh (5-7 Hz) (Cogan and Poeppel 2011). Their results suggest that 

each frequency sub-band processes independent information. In this study, the Hilbert 

phase (Bedrosian 1963) of the response in each sub-band is binned into 4 bins, and a 

combination of two frequency sub-bands form a 16-bin histogram. Mutual information 

is then estimated based on the assumption of a uniform distribution for the stimulus 

and the probability distribution formed by 16-bin histogram for the phase of the 

response. The authors interpret the mutual information as the average amount of 

information that a single response provides about the stimulus. In Chapter 3 of the 

dissertation, the same approach is followed but for midbrain responses recorded by 

EEG. There the mutual information between stimulus and response amplitude (not just 

phase) is also estimated. The mutual information can then be interpreted as the average 

amount of information that a single amplitude or phase response provides about the 

stimulus. In Chapter 4, the mutual information approach is modified to reveal phase-

locked temporal information, i.e., to create a mutual information analog of the TRF. 

Here, by binning both speech envelope (1-8 Hz) amplitude and response amplitude and 

creating a 64-bin histogram, temporal mutual information can be estimated by shifting 

the response by different time lags. Following the same interpretation, the mutual 

information quantity, at a specific time lag reference to stimulus onset, can be 

interpreted as the amount of information contained in a single response, at the latency, 

about the speech envelope. Chapter 5 uses similar approach as Chapter 4 but studies 
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the amount of information contained in a single response in high-gamma band (60-100 

Hz) about stimulus waveform in the same frequency band, and the effects of aging.  

 Mutual information estimation 

While mutual information does naturally apply to continuous random variables, 

when used in data analysis, in practice, the continuous values are binned, so here the 

stimulus and response are quantized into be discrete random variables. Mutual 

information between two random variables, 𝑋  and 𝑌  is defined by the following 

equation,  

𝐼(𝑋; 𝑌) = 	OO𝑝(𝑥, 𝑦)log	(
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦))

N∈bc∈d

, 

where 𝑝(𝑥, 𝑦) is the joint probability distribution function of 𝑋 and 𝑌, and 𝑝(𝑥) and 

𝑝(𝑦) are the marginal probability distribution functions of 𝑋 and 𝑌 respectively. Based 

on definition of entropy,  

𝐻(𝑋) = 	−O𝑝(𝑥) log 𝑝(𝑥)
N∈b

, 

mutual information is equivalent to 

𝐼(𝑋; 𝑌) = 	𝐻(𝑌) − 	𝐻(𝑌|𝑋), 

where 𝐻(𝑌)  is the entropy of response 𝑌 , 𝐻(𝑌|𝑋)  is the conditional entropy of 

response 𝑌 given stimulus 𝑋. Detailed computation can refer to methods sections of 

Chapters 3 and 4.  
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 Stimulus information contained in phase of the response  

The phase of response contains information of linguistic components such as 

syllable, word and prosody (Cogan and Poeppel 2011). Other studies have shown that 

phase is important in speech discrimination (Luo and Poeppel 2007) and auditory 

learning (Luo et al. 2013). In Chapter 3, the aging midbrain demonstrates significantly 

lower phase-locking values than younger, especially in the steady-state response region 

(corresponding to the response to the vowel), suggesting that loss of reliable response 

phase is important in aging. Therefore, in Chapter 3, the mutual information between 

stimulus and Hilbert phase of response is estimated following methods reported by 

Cogan and Poeppel (2011).  

 Temporal mutual information function (TMIF) 

The temporal mutual information function (TMIF) is a mutual information 

analog of the TRF (Ding and Simon, 2012), but characterizes the time-locked response 

by a non-linear measurement. For low-frequency (1-8 Hz) response, a typical TRF 

contains peaks at latencies of about 50 ms (M50) and 100 ms (M100), which suggests 

that TMIF may also have higher level of responses at about 50 ms and 100 ms (Chapter 

4). For high-gamma (60-100 Hz) response in Chapter 5, TMIF demonstrates a single 

peak around 50 ms. In this dissertation, the TMIF of the first 6 DSS components are 

computed, but only the TMIF for the first DSS component is presented. The details of 

TMIF estimation can refer to Chapter 4.   
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 TMIF in source space  

MEG sensor-space data can be projected into neural source space by source 

localization using MNE (2.2.3), and TRFs can be estimated for each neural source 

(Brodbeck et al., 2018a). By determining the TRF for the speech envelope, it has been 

shown that the age-related exaggerated response to speech originates from an early 

response in higher auditory cortex (Brodbeck et al., 2018b). In Chapter 5, the TMIF is 

estimated for all neural sources, and response significance is tested in auditory cortex. 

 Different choices of probability distributions 

In Chapter 3, the stimulus 𝑋 is the amplitude at each time point. The probability 

distribution of	𝑥 is unknown, but here assumed to be uniformly distributed across time 

points (𝑝(𝑥) = )
2
 , a constant, where 𝑇 is the sample size of 𝑋, so each bin contains 

roughly the same number of stimulus value instances) for two reasons. First, when the 

actual stimulus distribution is unknown, this assumption minimizes estimation bias 

(Nelken and Chechik 2007). Second, while there is not yet evidence for any particular 

distribution (e.g., Gaussian or Laplacian), the assumption of uniform distribution was 

employed for stimulus amplitude by Cogan and Poeppel (2011) with encouraging 

results. In Chapter 4 and Chapter 5, in order to examine the temporal information time-

locked to stimulus, the stimulus is also binned. The stimulus is not assumed to be 

uniform because otherwise the estimated TMIF would be approximately flat in time.  
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 Mutual information vs. linear measures 

In this dissertation, mutual information analysis results have revealed new 

findings that are otherwise hidden by linear measures. Chapter 3 shows a significant 

effect of the informational masking only for older adults, a results that was not found 

in a previous that used the same data set (Presacco et al. 2016b). In Chapter 4, the neural 

response, represented by non-linear measure of TMIF, shows significant exaggerations 

in early (~50 ms), middle (~100 ms) and late (~200 ms) responses for older listeners. 

However, linear representations show only exaggeration with a latency of ~50 ms 

(Brodbeck et al. 2018a). Additionally, this non-linear measure shows strong prediction 

power regarding behavioral scores, such as Flanker inhibitory control and speech 

intelligibility, while the linear approach showed limited prediction power to Flanker 

inhibitory control (significant only when average across all conditions) and no 

correlation to speech intelligibility (Presacco et al. 2016b). Chapter 5 generalizes TMIF 

to high-gamma frequency band. The results show deficits of selective attention in 

challenging listening conditions in older listeners, a result that has not yet been seen by 

using alternative algorithms. 
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 Mutual information analysis in the auditory 

midbrain and the effects of aging  

 
 
 
 
 
 
 

 Introduction 
Understanding speech in the presence of background noise becomes more 

challenging as humans age. Older listeners often report problems in listening to speech 

in noise even with clinically normal hearing sensitivity (Burke and Shafto 2008; Helfer 

and Freyman 2008). Behavioral studies have revealed age-related temporal processing 

deficits in a number of auditory tasks, such as pitch discrimination (Fitzgibbons and 

Gordon-Salantt 1996), gap-in-noise detection (Fitzgibbons and Gordon-Salant 2001) 

and recognition of speech in noise (Frisina and Frisina 1997; Gordon-Salant et al. 2006; 

He et al. 2008; Schneider and Hamstra 1999). These results suggest a temporal 

processing degradation in the auditory pathway, consistent with observed age-related 

changes in response latency and strength in midbrain (Anderson et al. 2012; Burkard 

and Sims 2002; Clinard and Tremblay 2013) and cortical evoked responses (Lister et 

al., 2011; Presacco et al., 2016a, 2016b).  

 

The neural mechanism underlying age-related temporal auditory process 

deficits has also been investigated in animal studies: decreased release of inhibitory 

neurotransmitters, such as gamma-aminobutyric acid (GABA), in dorsal cochlear 

Note: this chapter was recently published as: Zan, P., A. Presacco, S. Anderson and J. 

Z. Simon (2019) Mutual Information Analysis of Neural Representations of Speech in 

Noise in the Aging Midbrain, J Neurophysiol. https://doi.org/10.1152/jn.00270.2019  
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nucleus (Caspary et al. 2005; Parthasarathy and Bartlett 2011; Schatteman et al. 2008; 

Wang et al. 2009), inferior colliculus (IC) (Caspary et al. 1995) and auditory cortex 

(Juarez-Salinas et al. 2010; de Villers-Sidani et al. 2010) have been found in aging 

mammals. Because the spectro-temporal fine structure of speech is encoded by 

synchronous neural firing in midbrain, and the accurate processing of rapid fluctuations 

depends partly on neural inhibitory mechanisms, the representation of speech there also 

may deteriorate as a result of greater variability of neural firing (Walton et al. 1998; 

Yang et al. 1992) or loss of neural inhibition (Caspary et al. 2005, 2006; Walton et al. 

1998). The midbrain frequency-following response (FFR), which tracks periodic 

components of speech or other sounds, may be detrimentally affected by the resulting 

neural jitter. In older listeners, jitter may be more prevalent than in younger listeners, 

as reflected by a decreased inter-trial response consistency (Anderson et al. 2012), or, 

as we hypothesize here, by increased entropy and decreased mutual information as 

defined in the context of information theory (Cover and Thomas 1991; Shannon 1948).  

 

Mutual information, in particular, can be interpreted as a reduction in auditory 

response variability due to the presentation of a stimulus (Nelken and Chechik, 2007). 

It has been used to estimate transmission rates in the low-frequency fibers of the 

auditory periphery in bullfrog (Rieke et al. 1995), and applied to 

magnetoencephalography (MEG) auditory responses to continuous speech (Cogan and 

Poeppel 2011). Auditory information transmitted from midbrain to auditory cortex has 

been observed to show greater redundancy in older listeners compared to younger 

listeners (Bidelman et al. 2014). However, given that older listeners have a weaker 
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midbrain response than younger listeners (Presacco et al. 2016a, 2016b), it remains an 

open question whether the aging midbrain itself processes more information or less 

information than younger listeners.  

 

Here in this study, mutual information is calculated between stimulus waveform 

and the amplitude and phase of response. For stimulus X, band-passed stimulus 

waveform is used, and the distribution is assumed to be uniform in time points. For 

response amplitude, band-passed response of 2,000 trials is used, two consecutive trials 

with opposite polarities are averaged together. The probability distribution of response 

Y, P(Y), is estimated by binning all samples from 1,000 trials of response with averaged 

polarities. The conditional distribution of P(Y|X) is estimated by 1,000 samples from 

Y at time point t, i.e., p(y|xt).  

 

The current study is a mutual informational analysis of auditory midbrain FFR. 

A more traditional analysis (evoked response) of this dataset has already been 

published (Presacco et al., 2016a, 2016b). The goals of this new analysis are: 1) to 

describe these new and innovative methods in detail, 2) to demonstrate rich examples 

of their use, and 3) to demonstrate that the results are quite often stronger in statistical 

power than the more traditional methods. First it is shown that the new analysis 

replicates the most basic earlier findings, that older listeners’ midbrain FFR responses 

contain less auditory signal information about speech stimuli than younger listeners’, 

at the fundamental frequency (F0) of the FFR. Then the method is generalized to 

analysis at the harmonic frequencies, showing that speech information contained there 
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is similarly degraded with age (and falls off more quickly in frequency), consistent with 

earlier findings (Anderson et al. 2012). Finally, the results also show that when the 

speech stimuli are degraded by the addition of a competing talker, the stimulus 

information contained in the midbrain FFR is more sensitive to informational masking 

(competing speech in a familiar vs. unfamiliar language) in older listeners than in 

younger listeners. 

 Materials and methods 

 Subjects 

The dataset used in this study has previously been described (Presacco et al., 

2016a, 2016b). Seventeen younger listeners (3 men) between 18 and 27 years old (mean 

± SD: 22.23 ± 2.27) and fifteen older listeners (5 men) between 61 and 73 years old 

(mean ±  SD: 65.06 ±  2.30), recruited from the Maryland, Washington D.C. and 

Virginia areas, participated in the experiment. All subjects had clinically-normal 

hearing with air-conduction thresholds no greater than 25 dB hearing level (HL) from 

125 to 4,000 Hz bilaterally and no interaural asymmetry. All of them were native 

English speakers and were free of neurological or middle-ear disorders, and none of 

them spoke or understood the Dutch language. All participants were paid for their 

participation, and each of them gave written informed consent before the experiment. 

The experimental protocol and all procedures were reviewed and approved by the 

Institutional Review Board of the University of Maryland. 
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 Stimuli and EEG recording 

The stimulus was a single speech syllable, a 170-ms /da/ (Anderson et al. 2012), 

synthesized at a 20-kHz sampling rate with a Klatt-based synthesizer (Klatt 1980) with 

a 100-Hz F0. The syllable was chosen because it comprises both transient and steady-

state components, the stop consonant /d/ is rich in phonetic information, and its 

perception is sensitive to background noise (Miller and Nicely 1955). Its waveform and 

spectrum are shown in Figure 3.1. The speech syllable was presented diotically at 75 

dB SPL with a repetition rate of 4 Hz. Stimuli were presented with alternating polarities 

to allow cancellation of potential stimulus artifact by summing the responses to each 

pair (Aiken and Picton 2008a). The stimulus was presented to subjects both in quiet 

and in noise. For the noise conditions, a story narrated by a female competing speaker 

in either English or Dutch was used as a masker (a 1-minute duration segment, 

continuously looped). The English story was an excerpt from A Christmas Carol by 

Charles Dickens (http://www.audiobooktreasury.com/a-christmas-carol-by-charles-

dickens-free-audio-book/), and the Dutch story was Aljaska en de Canada-spoorweg 

by Anonymous (http://www.loyalbooks.com/book/Aljaska-en-de-Canada-spoorweg). 

For each of the two masker types, four signal-to-noise ratio (SNR) levels, +3, 0, -3, and 

-6 dB SNR, were created by using the logarithm of the ratio between root-mean-

squared values of syllable /da/ and the long-duration masking speech. All stimuli were 

presented by insert earphones (ER1, Etymotic Research, Elk Grove Village, IL) via 

Xonar Essence One (ASUS, Taipei, Taiwan) using Presentation software 

(Neurobehavioral Systems, Berkeley, CA). FFRs were recorded at a sampling 

frequency of 16,384 Hz using the ActiABR-200 acquisition system (BioSemi B.V., 
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Amsterdam, Netherlands) with a standard vertical montage of five electrodes (Cz 

active, forehead ground common mode sense/driven right leg electrodes, earlobe 

references), and the recorded signal was filtered online by a band-pass filter with a 

cutoff band of 100 Hz to 3,000 Hz. During the 2-hour recording session, subjects sat in 

a recliner and watched a silent captioned movie of their choice to facilitate a relaxed 

but wakeful state. For each of the nine conditions (1 quiet + 2 masker languages × 4 

SNRs), at least 2,300 trials of response (to repetitions of syllable /da/) were recorded.  

 
Figure 3.1. Stimulus waveform, spectrogram and power spectral density 

Figure 3.1. A: Stimulus waveform, B: spectrogram, and C: power spectral 

density of 170-ms syllable /da/. The locations of the horizontal peaks in C indicate that 

the syllable has a fundamental frequency of 100 Hz with harmonic peaks at its multiples 

(Anderson et al. 2012, 2013) 

Stimulus Syllable /da/

B C

A
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 Data analysis 

Encoding response amplitude  

The EEG recordings were first converted into MATLAB format with the 

function pop_biosig from EEGLab (Delorme and Makeig 2004), and all remaining 

analyses performed in MATLAB (version 2017b; Mathworks, Natick MA). The EEG 

recordings were band-pass filtered offline, to remove low-frequency neural 

oscillations, from 70 Hz to 2000 Hz with a linear-phase FIR filter with low-pass 

transition band of 65-70 Hz and high-pass transition of 2000-2100 Hz. Filter delays 

were compensated by processing the data in both forward and backward directions, 

using the Matlab function filtfilt (Mathworks, Natick MA). The response of each trial 

was analyzed in the time window -47 ms to 170 ms with respect to stimulus onset. 

Within this window, the response of each trial was band-pass filtered with linear-phase 

FIR filters of order 200, designed using least-square error minimization, into frequency 

bands centered at harmonics of 100 Hz, i.e., 100, 200, …, 600 Hz, to investigate the 

midbrain representations of harmonics. Harmonics at or above 700 Hz, the first formant 

of the steady-state portion of the stimulus, were excluded from analysis. Sweeps with 

amplitudes larger than ±30 µV were excluded, allowing 2000 artifact-free sweeps to 

be used. To eliminate any possible electrical feedthrough artifacts, a 10-ms temporal 

response function centered at 0 ms with reference to the stimulus onset time was 

estimated per trial, and its contribution was subtracted from the response (Maddox and 

Lee 2018). Additionally, since two consecutive sweeps were always presented with 

opposite polarities, their responses were averaged into one effective sweep, leading to 

1000 such pair-averaged sweeps per subject and per condition that were then used for 
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the analysis; the results for the same sweeps, with artifacts removed but not averaged 

(2000 per condition) are presented in the Appendix. For each of the two analysis 

regions, the response waveforms were extracted from each sweep for every subject, for 

each of the nine conditions and 6 frequency bands. 

 

Under each condition, for each subject and frequency band, a response matrix 

was obtained of size 1000 trials ´ T samples where 𝑇  is the sample length of 

observation window. In addition to the entire response window 0-170 ms, the responses 

were also partitioned into two regions based on the acoustic properties of the syllable 

/da/, i.e., the transition (15-65 ms) and steady-state (64-170 ms) for analysis of masker 

type influence on the response at 100 Hz. Here T = 2853 samples for the entire response 

region, T = 804 samples for the transition region, and T = 2049 samples for the steady-

state region. The response amplitudes at each sample were subdivided into N bins with 

the boundaries of the bins chosen so that approximately equal numbers of samples were 

assigned in each bin; each sample was then associated with its bin index (from 1 to N). 

The boundaries were chosen individually based on each subject’s response. Different 

values of	𝑁 ∈ {4, 8, 16, 32, 64, 128} were evaluated to verify a lack of any interaction 

with age (𝐹(t,)uv) = 0.46, 𝑝 = 0.809 and 𝐹(t,)uv) = 0.18, 𝑝 = 0.970 by ANOVA test 

on interaction of 𝑎𝑔𝑒	 × 	𝑏𝑖𝑛	𝑛𝑢𝑚𝑏𝑒𝑟  for amplitude and phase information, 

respectively). A final choice of N = 32 bins was selected as an optimal trade-off 

between increased resolution between bins and decreased samples per bin due to 

limited samples (too few bins or too few samples per bin both lead to estimation bias). 
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The choice of 32 bins gave more than 30 samples/bin, on average, to estimate the 

conditional probability distribution.   

Encoding response phase  

For every sweep in each region, the phase for each frequency band was 

computed by first applying the Hilbert transform to the band-passed signal and then 

computing the phase of the resultant complex (analytic) signal, i.e., 

 𝐻{𝑥(𝑡)} = 	𝐼𝐹𝑇{−𝑖	𝑠𝑔𝑛(𝑓)𝐹𝑇{𝑥(𝑡)})}, (3.1) 

where 𝐹𝑇 is the Fourier Transform, 𝑓 is the frequency basis of the Fourier Transform, 

𝑠𝑔𝑛(𝑓) is the algebraic sign of 𝑓, and 𝐼𝐹𝑇 is the inverse Fourier Transform. Then 

 𝜃(𝑡) = ∠(𝑥(𝑡) + 𝑖𝐻{𝑥(𝑡)}). (3.2) 

The phase-locking value (PLV) of the response in any single band can be computed as  

 
𝑃𝐿𝑉(𝑡) = 	

1
𝑀 �O𝑒4��($)

6

�X)

�, 
 

(3.3) 

where 𝜃�(𝑡) is the phase of 𝑗$� trial at sample time t, and M is the number of trials.  

 

The set of phase responses	𝜃�(𝑡) obtained for each frequency band, were also 

subdivided in to N = 32 bins, analogously to encoding the amplitude response; here the 

phase samples were divided into bins of width +�
�+
= �

)�
 with each sample encoded by 

its bin index (from 1 to N).  
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Mutual information  

Under each condition, for each subject and each frequency band, the mutual 

information between stimulus and amplitude, and mutual information between stimulus 

and phase were estimated based on those integer-encoded responses. The response 

probability distribution was estimated as above (bin index for each of the T samples 

over 1000 trials). The conditional distribution of 𝑃(𝑌|𝑋) was drawn from response 

samples at the same latency from 1000 trials. The mutual information can then be 

estimated by the entropy of the response, whether amplitude or phase, minus the 

conditional entropy of the response given the (uniformly distributed) stimulus: 

 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 	𝐻(𝑌|𝑋), (3.4) 

where X represents the stimulus distribution, and Y is the response distribution, whether 

amplitude or phase. 𝐻(𝑌) is the entropy of the response, 

 𝐻(𝑌) = −O𝑝(𝑦)
c

𝑙𝑜𝑔 𝑝(𝑦), (3.5) 

where p(y) is the probability of observing the response value y. 𝐻(𝑌|𝑋)	is the entropy 

of the response conditioned by the stimulus X and is given by: 

 𝐻(𝑌|𝑋) =O𝑝(𝑥)
N

𝐻(𝑌|𝑋 = 𝑥) (3.6) 

where  

 𝐻(𝑌|𝑋 = 𝑥) 	= 	−O𝑝(𝑌 = 𝑦|𝑥) 𝑙𝑜𝑔 𝑝 (𝑌 = 𝑦|𝑥).
c

 

 

(3.7) 
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The stimulus 𝑋 is the amplitude or phase at each time point. The probability 

distribution of	𝑥 is unknown, but here assumed to be uniform (𝑝(𝑥) = )
2
 , a constant, 

so each bin contains roughly the same number of stimulus value instances) for two 

reasons. First, when the actual stimulus distribution is unknown, this assumption 

minimizes estimation bias (Nelken and Chechik 2007). Second, while there is not yet 

evidence for any particular distribution (e.g., Gaussian or Laplacian), the assumption 

of uniform distribution was employed for stimulus amplitude by Cogan and Poeppel 

(2011) with encouraging results. Then, equation (3.3) becomes 

 
𝐻(𝑌|𝑋) =

1
𝑇O𝐻(𝑌|𝑋 = 𝑥$),

2

$X)

 
 

(3.8) 

where 𝑥$ is the amplitude or phase bin at sample 𝑡.  

 

To illustrate, consider an analysis of the quiet condition over the steady-state 

region, which encompasses the time window from 64 ms to 189 ms with respect to 

stimulus onset, i.e., 2,049 samples, giving 𝑇 = 2049 and 𝑝(𝑥$) =
)

+v��
 for every value 

of t. 

 

The distribution of the response, 𝑃(𝑌), is estimated for each subject with all 

bin-index-encoded samples in each of the 1,000 trials. The conditional distribution of 

𝑌 given 𝑥$, 𝑃(𝑌|𝑥$), is estimated with 1,000 samples from trials at time point 𝑡. Then 

the conditional entropy is given by 
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 𝐻(𝑌|𝑋)

= −OO𝑝(𝑋 = 𝑥$)𝑝(𝑌 = 𝑖|𝑋 = 𝑥$) log 𝑝(𝑌 = 𝑖|𝑋 = 𝑥$)
-

4X)

2

$X)

= −
1
𝑇OO𝑝(𝑌 = 𝑖|𝑋 = 𝑥$) log 𝑝(𝑌 = 𝑖|𝑋 = 𝑥$)

-

4X)

2

$X)

, 

 

 

 

 

(3.9) 

where 𝑖 ∈ {1, 2, … , 𝑁} is the bin number, and 𝑁 is the number of bins. The mutual 

information is therefore,  

 𝐼(𝑋; 𝑌)

= 	−O𝑝(𝑌 = 𝑖) log 𝑝(𝑌 = 𝑖)
-

4X)

+
1
𝑇OO𝑝(𝑌 = 𝑖|𝑋 = 𝑥$) log 𝑝(𝑌 = 𝑖|𝑋 = 𝑥$)

-

4X)

2

$X)

. 

 

 

 

 

(3.10) 

Statistics 

To examine the effects of aging, frequency, masker type and SNR level, 

multiple t-tests with correction were performed, separately for both amplitude and 

phase information. To facilitate analyzing the information at fundamental frequency, 

linear models were constructed to test effects from interactions between aging and other 

factors, namely masker type and SNR level, with mathematical form 𝐼	~	𝑎𝑔𝑒	 ×

	𝑚𝑎𝑠𝑘𝑒𝑟	𝑡𝑦𝑝𝑒 + 𝑎𝑔𝑒	 × 	𝑆𝑁𝑅. Tests were performed for both amplitude and phase, 

and for different temporal regions, separately. To test masker type influence within 

group, the mutual information difference between Dutch and English maskers for each 

subject was modeled as 𝐼��$�� − 𝐼B���4 �	~	𝑆𝑁𝑅, and the positivity of intercept was 
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tested for both amplitude and phase, and for different temporal regions, separately. The 

results were justified by t-tests on the intercept of linearly fitted regression lines for 

each subject, and similar analysis for PLV.  

 

Linear models with only fixed effects were analyzed in R (R. Core Team 2017) 

using the function lm, which reports the model significance using an F-test on the 

constructed model vs. the null model with only the intercept, and the significance of 

influence from fixed-effect factors with separate t-tests on the slope of each factor. The 

assumption of Homoscedasticity of the linear models was examined by global 

validation of linear model assumptions using toolbox gvlma (Peña and Slate 2006) in 

R. Responses at harmonic frequencies were analyzed using t-tests. False discovery rate 

correction (FDR) (Benjamini and Hochberg 1995), to correct for multiple comparisons, 

was applied when appropriate. 

 

Where appropriate, t-tests for significance are supplemented with effect size 

(Cohen’s d) and its 95% confidence interval (CI). When the CI excludes zero, this is 

alternate evidence that the result is statistically significant (i.e., the effect size is 

significantly greater than zero at an a level of 0.05). Note, however, that the effect size 

analysis is not compensated for multiple comparisons even when the p-value is. 

 

The effective high-frequency cutoff for any frequency-decreasing statistical 

measure is defined to be the frequency at which the measure is not significantly higher 

than the noise floor (pure estimation bias). The noise floor is estimated using the same 
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mutual information method as used elsewhere, but instead using responses to quiet 

intervals between stimuli.  

 Results 
This section reports results from the mutual information analysis of pair-

averaged-polarity responses; the analogous analysis based on single sweeps is reported 

in the Appendix. Because the algorithm takes into account variations across trials, pair-

averaging provides less variation and thus higher mutual information. Except for this 

overall scaling of mutual information, the results are typically comparable.  

 Information in FFR amplitude  

Amplitude information at 100 Hz   

For the amplitude response at 100 Hz, to examine masker type and SNR 

interactions with both age groups, the linear model, 𝐼	~	𝑎𝑔𝑒	 × 	𝑚𝑎𝑠𝑘𝑒𝑟	𝑡𝑦𝑝𝑒 +

𝑎𝑔𝑒	 × 	𝑆𝑁𝑅  is tested. It is significant (𝐹(t,+tv) = 4.99, 𝑝 < 0.001  for the entire 

region; 𝐹(t,+�u) = 2.93, 𝑝 = 0.014  for the transition region; 𝐹(t,+��) = 6.11, 𝑝 <

0.001  for the steady-state region). Outliers that would otherwise cause the 

homoscedasticity requirement to be violated are excluded (2 samples from the 

transition region and 1 sample from the steady-state region, respectively). Results show 

no significant interactions between age and masker type (𝑡(+tv) = 0.53, 𝑝 = 0.587 for 

the entire region; 𝑡(+�u) = 0.15, 𝑝 = 0.884 for the transition region; 𝑡(+��) = 0.29, 𝑝 =

0.773 for the steady-state region), or between age and SNR (𝑡(+tv) = 0.79, 𝑝 = 0.428 

for the entire region; 𝑡(+�u) = 0.46, 𝑝 = 0.645  for the transition region; 𝑡(+��) =
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0.87, 𝑝 = 0.386 for the steady-state region). A linear model with no interactions was 

then constructed and tested, i.e., 𝐼	~	𝑎𝑔𝑒 + 	𝑚𝑎𝑠𝑘𝑒𝑟	𝑡𝑦𝑝𝑒 + 	𝑆𝑁𝑅. The model itself is 

significant ( 𝐹(�,+t+) = 8.05, 𝑝 < 0.001 , 𝐹(�,+tv) = 4.84, 𝑝 = 0.003 , 𝐹(�,+t)) =

9.96, 𝑝 < 0.001  for the entire region, the transition and steady-state regions, 

respectively). Comparisons between the models show that younger listeners’ responses 

contain significantly more information than older listeners’ responses in the whole and 

steady-state regions ( 𝑡(+t+) = 4.24, 𝑝 < 0.001  and 𝑡(+t)) = 4.99, 𝑝 < 0.001 

respectively), and that information increases as SNR increases (𝑡(+t+) = 2.37, 𝑝 =

0.018 for the entire region; 𝑡(+tv) = 2.86, 𝑝 = 0.005 for the transition region; 𝑡(+t)) =

2.15, 𝑝 = 0.033 for the steady-state region).  

 

Since the stimulus has a fundamental frequency of 100 Hz and the phase-

locking of FFR is more robust in low frequencies than in high frequencies (Zhu et al. 

2013), the 100-Hz FFR may contain significantly more information than its harmonics. 

To rule out the possibility that significant contributions to mutual information derive 

from averaging the opposite polarities, the same mutual information analysis is 

performed on single trials, where similar results are observed (see Appendix). Figure 

3.2A displays the mutual information as a function of SNR level. Older listeners not 

only have a noticeably lower amount of information than younger listeners, but also 

extract more speech information when the masker is Dutch than for English. To 

eliminate within-subject variance, a linear regression line of information-by-SNR is 

fitted for each subject and its y-intercept and slope were analyzed, with results 
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illustrated in Figure 3.2. A one-tailed t-test (younger > older) on the y-intercept shows 

a significantly larger amount of information in younger than older listeners for the 

English masker (𝑡(�v) = 1.71, 𝑝 = 0.048; 	𝑑 = 0.75, 95%	𝐶𝐼 = 	 [0.032, 1.469]). The 

difference is not significant for Dutch (𝑡(�v) = 1.41, 𝑝 = 0.102; 	𝑑 = 0.51, 95%	𝐶𝐼 =

[−0.195, 1.216]) (but as will be seen below, it does become significant for higher 

harmonic frequencies). Both age groups demonstrate decreasing information with 

worsening SNR: a one-tailed t-test on the negativity of the regression slope shows 

information loss for all cases except for older listeners with the Dutch masker (𝑡()�) =

3.42, 𝑝 = 0.002  and 𝑡()�) = 2.54, 𝑝 = 0.013  for younger listeners for English and 

Dutch maskers, respectively, and 𝑡()�) = 2.32, 𝑝 = 0.027; 	𝑑 = 0.60, 95%	𝐶𝐼 =

[2.55 × 10Yt, +∞]  and 𝑡()�) = 2.35, 𝑝 = 0.059; 𝑑 = 0.61, 95%	𝐶𝐼 = [1.92 ×

10Yt, +∞] for older listeners). No significant difference is seen between the slopes 

across age groups (one-tailed t-test: 𝑡(�v) = 1.28, 𝑝 = 0.106; 	𝑑 = 0.55, 95%	𝐶𝐼 =

[−0.155, 1.260]  for the English masker; 𝑡(�v) = 1.20, 𝑝 = 0.120; 	𝑑 =

0.73, 95%	𝐶𝐼 = [0.018, 1.452]  for the Dutch masker, though the effect size CI is 

consistent with significance in the last case.  
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Figure 3.2. Mutual information between stimulus and response amplitude as a function of noise level for each age group and masker condition (masker language) 

Figure 3.2. Mutual information between stimulus and response amplitude as a 

function of noise level for each age group and masker condition (masker language). A: 

Mutual information at the fundamental frequency as a function of noise level (quiet 

condition and 4 SNR levels) with blue and green for younger listeners (English and 

Dutch maskers, respectively), and red and gray for older listeners (English and Dutch 

maskers, respectively). The response in younger listeners conveys noticeably more 

information than the response in older listeners for the English masker condition, but 

the difference for Dutch is not significant at 100 Hz. Older listeners show consistently 

higher mutual information for the Dutch masker than for the English (the younger 

listeners show no consistent difference), but the difference is not significant at 100 Hz. 

B: The MI-by-SNR slopes of the previous plots show decreasing trends as SNR 

worsens, regardless of masker type, for both age groups. Younger listeners show a 

steeper decrease than older listeners but the difference is not significant at 100 Hz 

response. Error bars indicate one standard error of mean (SEM). (∗ 𝑝 < 0.05) 
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Amplitude information in harmonics of 100 Hz  

To analyze aging-associated informational loss for the harmonics (200 to 600 

Hz), similar tests are performed on mutual information in responses of these 

frequencies (analysis stops before 700 Hz, which represents the first formant of the 

steady-state portion of the stimulus). In each harmonic, a linear regression line of 

mutual information as a function of SNR is fitted for each subject under each masker 

type. First the y-intercept of the fitted line at 3 dB is analyzed for group differences 

(see Figure 3.3).  
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Figure 3.3. Mutual information for amplitude across frequency bands 

Figure 3.3. A: Mutual information for amplitude across frequency bands from 

200 Hz to 600 Hz (separate subplot for each band). Within each subplot, the left panel 

shows the mutual information as a function of SNR, separately for age group and 

masker type. For the quiet condition, any asterisks above the error bars indicate the 

significance levels of group differences; text and any asterisks above the plots 

demonstrate significance levels of group differences in the corresponding masker 
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types. Only younger listeners convey a significant amount of information in the higher 

harmonics. In the right panels, the bar plots depict the linearly fitted decreasing slopes 

(of the plots shown in the left panel) for the different age groups and masker types. In 

most bands, the mutual information decreases at a faster rate in younger listeners than 

in older. B: Overall, both in quiet (left) and averaged over SNR levels (right), mutual 

information decreases with increasing frequency (except for a single increase at 500 

Hz for younger listeners). For older listeners, the decreasing trend in mutual 

information levels off at 300 Hz, which is lower than the frequency (>600 Hz) at which 

amplitude information levels off in younger listeners. The lower gray line represents 

the noise floor. Error bars indicate one SEM. (∗ 𝑝 < 0.05,∗∗ 𝑝 < 0.01) 

 

One-tailed (younger > older) t-tests (with FDR correction) and effect size 

analysis on the y-intercept (corresponding to 3 dB SNR) of the line fit across all SNR 

levels suggest that the aging midbrain contains significantly less information than the 

younger midbrain in all frequencies from 100 to 600 Hz in the English masker 

condition. For p-values near 0.05 (see Table 1), effect size analysis is further applied. 

For the English masker condition, the 100-Hz condition shows consistent significance 

from both tests (𝑡(�v) = 1.714, 𝑝 = 0.048; 	𝑑 = 0.75, 95%	𝐶𝐼 = [0.032, 1.469]), and 

similarly for the Dutch masker condition at 300 Hz (𝑡(�v) = 2.05, 𝑝 = 0.049; 	𝑑 =

1.236, 95%	𝐶𝐼 = [0.478, 1.993] ), 500 Hz ( 𝑡(�v) = 2.27, 𝑝 = 0.047; 	𝑑 =

0.787, 95%	𝐶𝐼 = [0.0663, 1.507] ) and 600 Hz ( 𝑡(�v) = 2.26, 𝑝 = 0.047; 𝑑 =

1.053, 95%	𝐶𝐼 = [0.312, 1.794] ) (see also Figure 3.3A). In the English masker 
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condition, one-tailed t-tests on fitted regression line slopes of younger listeners 

compared to older listeners show significantly steeper slopes for younger listeners 

compared to older listeners at frequencies from 200 to 600 Hz (all p-values are smaller 

than 0.05). All p-values of multiple comparisons are corrected. Overall, higher 

harmonics contain significant information only for younger listeners, and the difference 

in information between the two age groups becomes more statistically significant as 

the observed frequency increases, which is consistent with the linear model analysis, 

where age × frequency interaction is significant.  

 

Table 3.1. Amplitude information: one-tailed t-test (younger > older) results 

applied to the fitted y-intercepts (3 dB values) and slopes from the linear regression 

analysis of mutual information (for response amplitude) as a function of SNR, for each 

harmonic. p-values are corrected for multiple comparisons by FDR correction. 

Boldfaced entries indicate the corresponding tests are statistically significant.   

 
Harmonic 

(Hz) 
Quiet 
(Y>O) 

English masker (Y>O) Dutch masker (Y>O) 
y-intercept slope y-intercept slope 

t(30) p t(30) p t(30) p t(30) p t(30) p 
100 1.056 0.150 1.714 0.048 1.275 0.106 1.405 0.102 1.199 0.120 
200 1.542 0.080 1.965 0.035 2.737 0.008 1.223 0.115 1.262 0.120 
300 1.871 0.053 2.242 0.024 2.390 0.014 2.051 0.049 2.019 0.108 
400 2.271 0.030 2.261 0.024 2.835 0.008 1.767 0.066 1.502 0.108 
500 3.449 0.003 3.671 0.003 3.677 0.002 2.268 0.047 1.830 0.108 
600 3.412 0.003 3.340 0.003 3.565 0.002 2.259 0.047 1.629 0.108 
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Amplitude information frequency limits 

As seen in Figure 3.3B, the stimulus information contained in the response 

amplitude decreases with frequency for both age groups. The frequency-decreasing 

measure used here is the amplitude information’s y-intercept at 3dB of the fitted MI-

by-SNR regression line. The frequency bands below 700 Hz are analyzed, separately 

for different masker types. The measure at 600 Hz for older listeners is not statistically 

distinguishable from the noise floor (𝑡()�) = 1.72, 𝑝 = 0.107 by one-sample t-test). 

For younger listeners, the measure is significantly higher than the noise floor at all 

frequencies (𝑡(�v) = 3.34, 𝑝 = 0.002 for English masker; 𝑡(�v) = 2.26, 𝑝 = 0.016 for 

Dutch masker (younger > older), both at 600 Hz where the lowest information is 

observed), i.e., the information for younger listeners has not yet reached floor by 600 

Hz. In contrast, the cutoff frequency for older listeners is 300 Hz: the information 

measure at 300 Hz is not significantly greater than that at 600 Hz (𝑡()�) = 1.32, 𝑝 =

0.130 under the English masker; 𝑡()�) = 1.65, 𝑝 = 0.095 under the Dutch masker). 

Therefore, results suggest a lower frequency limit of in amplitude information of 300 

Hz for older listeners than that of beyond 600 Hz for younger listeners.  

Effect of masker type on amplitude information 

As seen in Figure 3.2B, older listeners demonstrate a slower fall-off in 

amplitude information as a function of SNR when the noise masker is Dutch than for 

English. To test for any potential amplitude information benefit from the Dutch masker 

over the English masker, the difference in information between the Dutch and English 

maskers is calculated for each subject in all SNR levels (for both transition and steady-
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state regions), and a linear model of 𝐼��$�� − 𝐼B���4 �	~	𝑆𝑁𝑅  shows a significantly 

positive intercept for older listeners in the transition region (𝑡(t¨) = 2.35, 𝑝 < 0.001 

with 2 samples omitted) but not in the steady-state region (𝑡(t�) = 1.38, 𝑝 = 0.173 

with one sample omitted). Younger listeners, however, do not show a significant 

positive intercept in either transition ( 𝑡(�t) = 1.90, 𝑝 = 0.061  with one sample 

omitted) or steady-state region (𝑡(��) = −0.60, 𝑝 = 0.549). Samples were omitted 

from the tests to satisfy the homoscedasticity requirement. A regression line was fitted 

as a function of SNR to reduce within-subject variance. Using a one-tailed t-test on the 

y-intercept (effective mutual information benefit at 3 dB SNR) of the regression line 

against zero, the mutual information benefit from the Dutch masker over the English 

masker is significantly higher for older listeners in the transition region (𝑡()�) =

2.35, 𝑝 = 0.017 ), but not the steady-state region ( 𝑡()�) = 1.67, 𝑝 = 0.058 ). No 

significant benefit is found for younger listeners in either region (𝑡()�) = 1.17, 𝑝 =

0.130  and 𝑡()�) = 0.51, 𝑝 = 0.307  for transition and steady-state region, 

respectively). The regression slope is not significantly positive or negative for either 

group (𝑝 > 0.05 by two-tailed t-tests), as seen in the bar plots in the right panels of 

figure 3.4C and 3.4D. 
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Figure 3.4. Mutual information of amplitude response by masker type and response region 

Figure 3.4. Mutual information of amplitude response by masker type and 

response region for younger listeners in blue (English) and green (Dutch) and older in 

red (English) and gray (Dutch). A and B demonstrate the mutual information as a 

function of SNR in the transition and steady-stage regions, respectively. In the steady-

state region, group differences are significant for both masker types, indicated by 

asterisks. C and D illustrate the mutual information difference between masker types 

(denoted 𝐼��$�� − 𝐼B���4 � ) in the transition region and steady-state region, 
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respectively. In each plot, the left panel displays information as a function of SNR, and 

the right panel displays a bar plot showing the slopes of the linear fits. The y-intercepts 

(corresponding to the fit at 3 dB SNR) are tested against 0 bits. Older listeners show 

significant benefit from the Dutch masker over English (denoted by asterisk), but only 

in the transition region. Error bars in all plots indicate SEM. (∗ 𝑝 < 0.05) 

 Phase-locking value 

Phase-locking value (PLV) is a traditional measure of inter-trial coherence for 

a narrow-band response. Figure 3.5 shows the grand average of PLV at 100 Hz by age 

and masker condition. Older listeners have lower phase-locking values than the 

younger listeners (𝑡(�v) = 2.62, 𝑝 = 0.007 for one-tailed t-test) on the averaged phase-

locking values across time and SNR levels. By one-tailed t-tests ( 𝑃𝐿𝑉��$�� −

𝑃𝐿𝑉B���4 � > 0), older listeners have significantly higher PLV under Dutch masking 

than English (𝑡()�) = 2.74, 𝑝 = 0.008 for transition region; 𝑡()�) = 1.80, 𝑝 = 0.047 

for steady-state region), while younger listeners’ PLV is not significantly affected by 

informational masking ( 𝑡()�) = 1.67, 𝑝 = 0.058  for transition region; 𝑡()�) =

0.05, 𝑝 = 0.479 for steady-state region). 
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Figure 3.5. The PLV of the 100-Hz FFR is shown for all SNR levels 

Figure 3.5. The PLV of the 100-Hz FFR is shown for all SNR levels, averaged 

across subjects, with colors indicating age and masker language, with younger listeners 

in blue (English) and green (Dutch) and older listeners in red (English) and gray 

(Dutch). A-D correspond to the four SNR levels: 3, 0, -3, -6 dB SNR. Younger listeners 

have visibly higher phase locking than older listeners. Older listeners have significantly 

better phase locking for the Dutch masker than for the English. 

 Information in phase of FFR 

Phase information at 100 Hz 

For the phase response at 100 Hz, the linear model, 𝐼	~	𝑎𝑔𝑒	 ×

	𝑚𝑎𝑠𝑘𝑒𝑟	𝑡𝑦𝑝𝑒 + 𝑎𝑔𝑒	 × 	𝑆𝑁𝑅 is significant (𝐹(t,+tv) = 5.45, 𝑝 < 0.001 for the entire 

region; 𝐹(t,+�u) = 3.27, 𝑝 = 0.007  for the transition region; 𝐹(t,+�u) = 6.24, 𝑝 <

0.001 for the steady-state region). Outliers are excluded to satisfy homoscedasticity 

assumption (2 samples from transition and 2 samples from steady-state regions). 

Results show no significant interactions between age and masker type ( 𝑡(+tv) =

0

0.05

0.1

0.15

3dB

Transition
Steady-State Younger-English

Younger-Dutch
Older-English
Older-Dutch

0dB

Transition
Steady-State

0 50 100 150 200
Time (ms)

0

0.05

0.1

0.15

Ph
as

e-
Lo

ck
in

g

-3dB

Transition
Steady-State

Hilbert Phase Locking in FFR of Fundamental Frequency

0 50 100 150 200
Time (ms)

-6dB

Transition
Steady-State

b

d

a

c DC

A B
PL

V

PLV of 100 Hz FFR

3 dB 0 dB

-3 dB -6 dB



 

 
 

46 
 

0.56, 𝑝 = 0.578  for the entire region; 𝑡(+�u) = 0.22, 𝑝 = 0.825  for the transition 

region; 𝑡(+�u) = 0.06, 𝑝 = 0.954  for the steady-state region), and between age and 

SNR (𝑡(+tv) = 0.86, 𝑝 = 0.393 for the entire region; 𝑡(+�u) = 1.05, 𝑝 = 0.297 for the 

transition region; 𝑡(+�u) = 0.66, 𝑝 = 0.511 for the steady-state region). A linear model 

with no interactions was then constructed and tested, i.e., 𝐼	~	𝑎𝑔𝑒 + 	𝑚𝑎𝑠𝑘𝑒𝑟	𝑡𝑦𝑝𝑒 +

	𝑆𝑁𝑅. The model itself is significant (𝐹(�,+t+) = 8.77, 𝑝 < 0.001, 𝐹(�,+tv) = 5.08, 𝑝 =

0.002, 𝐹(�,+tv) = 10.32, 𝑝 < 0.001 for the entire region, the transition and steady-state 

regions, respectively). Comparisons show that younger listeners’ responses contain 

significantly more information than older listeners’ responses in the steady-state region 

( 𝑡(+t+) = 4.52, 𝑝 < 0.001  for the entire region; 𝑡(+tv) = 2.12, 𝑝 = 0.035  for the 

transition region; 𝑡(+tv) = 5.19, 𝑝 < 0.001  for the steady-state region), and that 

information increases as SNR increases (𝑡(+t+) = 2.31, 𝑝 = 0.022 for the entire region; 

𝑡(+tv) = 2.63, 𝑝 = 0.009 for the transition region).  

 
Mutual information between stimulus and the response phase is analyzed 

analogously to that of the response amplitude. Phase information at 100 Hz is examined 

separately from the higher harmonics. To examine the effect of age and noise level, a 

linear regression line is fitted for information-by-SNR for each subject in both noise 

contents. The fitted y-intercept is compared for group differences. A one-tailed t-test 

(younger > older) effect size analysis on the y-intercept shows a significantly larger 

amount of information in younger than older listeners for the English masker (𝑡(�v) =

1.80, 𝑝 = 0.041; 𝑑 = 0.82, 95%	𝐶𝐼 = [0.095, 1.540]) ; the difference is not 
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significant for Dutch ( 𝑡(�v) = 1.36, 𝑝 = 0.092; 	𝑑 = 0.58, 95%	𝐶𝐼 =

[−0.133, 1.284]) (Figure 3.6A). Both age groups demonstrate decreasing information 

with worsening SNR: a one-tailed t-test on the negativity of the regression slope shows 

information loss, however, the negativity is not significant for older listeners in Dutch 

masker (𝑡()�) = 3.31, 𝑝 = 0.002 and 𝑡()�) = 2.61, 𝑝 = 0.013 for younger listeners in 

English and Dutch maskers, respectively; 𝑡()�) = 2.17, 𝑝 = 0.036; 	𝑑 =

0.56, 95%	𝐶𝐼 = [3.19 × 10Yt, +∞] , 𝑡()�) = 2.55, 𝑝 = 0.061; 	𝑑 = 0.66, 95%	𝐶𝐼 =

[3.84 × 10Yt, +∞]  for older listeners in English and Dutch maskers, respectively) 

(Figure 3.6B). No significant difference is seen between the slopes across age groups 

(𝑡(�v) = 1.36, 𝑝 = 0.091 and 𝑡(�v) = 1.34, 𝑝 = 0.095 for English and Dutch masker, 

respectively). All tests have been corrected for multiple comparisons across the 6 

frequency bands. 

 

 
Figure 3.6. Mutual information between the stimulus and response phase as a function of noise level for each age group and masker condition (masker language) 

Figure 3.6. Mutual information between the stimulus and response phase as a 

function of noise level for each age group and masker condition (masker language). A: 
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Mutual information at the fundamental frequency as a function of noise level. The 

response in younger listeners conveys noticeably more information than the response 

in older listeners for the English masker condition, but the difference for Dutch is not 

significant at 100 Hz. Older listeners show consistently higher mutual information for 

the Dutch masker than for the English (the younger listeners show no consistent 

difference), but the difference is not significant at 100 Hz. B: The MI-by-SNR slopes 

of the previous plots show decreasing trends as SNR worsens, regardless of masker 

type, for both age groups. Younger listeners show a steeper decrease than older listeners 

but the difference is not significant at the 100-Hz response. Error bars indicate one 

SEM. (∗ 𝑝 < 0.05) 

Phase information in harmonics of 100 Hz  

To examine information in the harmonics of 100 Hz, a linear regression line is 

fitted for mutual information as a function of SNR for each subject under each masker 

type. One-tailed (younger > older) t-tests on the y-intercept (with FDR correction) 

suggest that for all SNR levels, the aging midbrain contains significantly less 

information than the younger midbrain in all frequencies from 100 to 600 Hz (Figure 

3.7A). For p-values near 0.05 (see Table 2), effect size analysis is further applied. For 

the English masker condition, the 100 and 200 Hz cases show consistent significance 

from both tests ( 𝑡(�v) = 1.80, 𝑝 = 0.041; 	𝑑 = 0.82, 95%	𝐶𝐼 = [0.095, 1.541] 

and	𝑡(�v) = 1.83, 𝑝 = 0.041;	 𝑑 = 1.06, 95%	𝐶𝐼 = [0.317, 1.799]), and similarly for 

the Dutch masker condition at 300, 400 and 500 Hz, respectively (𝑡(�v) = 2.12, 𝑝 =

0.042; 	𝑑 = 1.39, 95%	𝐶𝐼 = [0.613, 2.159]  and 𝑡(�v) = 1.97, 𝑝 = 0.044; 	𝑑 =
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0.84, 95%	𝐶𝐼 = [0.116, 1.564]  and 𝑡(�v) = 2.28, 𝑝 = 0.042; 	𝑑 = 1.64, 95%	𝐶𝐼 =

[0.838, 2.443]) (see also Figure 3.7A). The results show significant decreasing slope 

in both groups and that the decrease with worsening SNR is faster for younger listeners 

than older listeners.  

 
Figure 3.7. Mutual information for phase across frequency bands 

Figure 3.7. A: Mutual information for phase across frequency bands from 200 

Hz to 600 Hz (separate subplot for each band). Within each subplot, as in Figure 3.3, 
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the left panel shows the mutual information as a function of SNR, separately for age 

group and masker type; in the right panels, the bar plots depict the linearly fitted 

decreasing slopes (of the plots shown in the left panel) for the different age groups and 

masker types. B: Overall, both in quiet (left) and averaged over SNR levels (right), 

mutual information decreases with increasing frequency (except for a single increase 

at 500 Hz for younger listeners). For older listeners, the decreasing trend in mutual 

information levels off at 500 Hz, which is lower than the frequency at which phase 

information levels off in younger listeners. The lower gray line represents the noise 

floor. Error bars indicate one SEM. (∗ 𝑝 < 0.05,∗∗ 𝑝 < 0.01) 

 

Table 3.2. Phase information: one-tailed t-test (younger > older) results applied 

to the fitted y-intercepts (3 dB values) and slopes from the linear regression analysis of 

mutual information (for response phase) as a function of SNR, for each harmonic. p-

values are corrected for multiple comparisons by FDR correction. Boldfaced entries 

indicate the corresponding tests are statistically significant. 

 
Harmonic 

(Hz) 
Quiet 
(Y>O) 

English masker (Y>O) Dutch masker (Y>O) 
y-intercept slope y-intercept slope 

t(30) p t(30) p t(30) p t(30) p t(30) p 
100 1.072 0.146 1.798 0.041 1.363 0.092 1.526 0.069 1.344 0.095 
200 1.386 0.106 1.833 0.041 1.757 0.053 1.530 0.069 1.479 0.090 
300 1.898 0.050 2.219 0.026 2.089 0.034 2.122 0.042 1.909 0.090 
400 2.170 0.038 2.407 0.022 2.694 0.011 1.967 0.044 1.493 0.090 
500 3.609 0.002 3.740 0.001 3.352 0.003 2.280 0.042 1.615 0.090 
600 3.579 0.002 3.738 0.001 3.446 0.003 2.690 0.035 1.716 0.090 
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Phase information frequency limits 

As seen in Figure 3.7B, the stimulus information contained in the response 

phase decreases with frequency for both age groups. Similar to amplitude analysis, the 

frequency-decreasing measure used here is phase information of y-intercept at 3dB of 

the fitted MI-by-SNR regression line. The measure at 600 Hz for older listeners is not 

statistically distinguishable from the noise floor ( 𝑡()�) = 0.11, 𝑝 = 0.917  by one-

sample t-test).  For younger listeners, the measure is significantly higher than the noise 

floor at all frequencies (𝑡(�v) = 3.74, 𝑝 < 0.001 for English masker; 𝑡(�v) = 2.69, 𝑝 =

0.007 for Dutch masker (younger > older), both at 600 Hz where lowest information 

is observed), i.e., the information for younger listeners has not yet reached floor by 600 

Hz. In contrast, the cutoff frequency for older listeners is 500 Hz: the information 

measure at 500 Hz is not significantly greater than that at 600 Hz (𝑡()�) = 0.74, 𝑝 =

0.235  under English masker; 𝑡()�) = 1.07, 𝑝 = 0.152  under Dutch masker). 

Therefore, results suggest a lower frequency limit of 500 Hz for older listeners than 

beyond 600 Hz for younger listeners.   

 

Effect of masker type on phase information 

As seen in Figure 3.6B, older listeners demonstrate a slower fall-off in phase 

information as a function of SNR when the noise masker is Dutch than for English. 

Analogous to amplitude analysis, the difference in mutual information between the 

Dutch and English maskers is calculated for each subject in all SNR levels (for both 

transition and steady-state regions) to examine phase information benefit from the 
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Dutch masker over the English masker, and a linear model of 𝐼��$�� − 𝐼B���4 �	~	𝑆𝑁𝑅 

shows a significantly positive intercept for older listeners in the transition region 

(𝑡(t�) = 4.64, 𝑝 < 0.001 with 2 samples omitted) but not in the steady-state region 

(𝑡(t�) = 1.77, 𝑝 = 0.083 with 4 samples omitted). Younger listeners, however, do not 

show significant positive intercept in either transition (𝑡(��) = 1.75, 𝑝 = 0.085 with 2 

samples omitted) or steady-state region (𝑡(��) = −0.64, 𝑝 = 0.522). Samples were 

omitted from the tests to satisfy the homoscedasticity requirement. For justification, a 

regression line was fitted as a function of SNR to reduce within-subject variance. Using 

a one-tailed t-test on the y-intercept (effective mutual information benefit at 3 dB SNR) 

of the regression line against zero, the mutual information benefit from the Dutch 

masker over the English masker is significantly higher for older listeners in the 

transition region (𝑡()�) = 2.31, 𝑝 = 0.018), but not the steady-state region (𝑡()�) =

1.55, 𝑝 = 0.072). No significant benefit is found for younger listeners in either region 

(𝑡()�) = 1.33, 𝑝 = 0.102 and 𝑡()�) = 0.44, 𝑝 = 0.332 for transition and steady-state 

region, respectively). The regression slope is not significantly positive or negative for 

either group (𝑝 > 0.05 by two-tailed t-tests), as seen in the bar plots in the right panels 

of figure 3.8C and 3.8D. 
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Figure 3.8. Mutual information of phase response by masker type and response region 

Figure 3.8. Mutual information of phase response by masker type and response 

region for younger listeners in blue (English) and green (Dutch) and older in red 

(English) and gray (Dutch). A and B demonstrate the mutual information as a function 

of SNR in the transition and steady-stage regions, respectively. In the steady-state 

region, group differences are significant for both masker types, indicated by asterisks. 

C and D illustrate the mutual information difference between masker types (denoted 

𝐼��$�� − 𝐼B���4 �) in the transition region and steady-state region, respectively. In each 
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plot, the left panel displays information as a function of SNR, and the right panel 

displays a bar plot showing the slopes of the linear fits. The y-intercepts (corresponding 

to the fit at 3 dB SNR) are tested against 0 bits. Older listeners show significant benefit 

from the Dutch masker over English (denoted by asterisk), but only in the transition 

region. Error bars in all plots indicate SEM. (∗ 𝑝 < 0.05) 

 

 Discussion 
Based on these results from the mutual information analysis of FFR amplitude 

and phase, this study provides supporting evidence that the neural response of the 

midbrain of older listeners is not merely less well synchronized than for younger 

listeners (Anderson et al. 2012; Presacco et al. 2016a, 2016b) but also actually contains 

less information, in both amplitude and phase. At the fundamental frequency, the 

informational loss for older listeners was seen only in the presence of a competing 

talker. In contrast, for higher frequencies, the informational loss for older listeners was 

seen in both quiet and noisy conditions. Furthermore, the masker type (Dutch vs. 

English) significantly affects the amount of stimulus information carried in the 

response at the fundamental frequency in the transition region, for older listeners but 

not younger. This last finding arises for the first time from this mutual information 

analysis and demonstrates that mutual information analysis provides access to response 

properties otherwise hidden by response variability.  
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 Aging  

Aging has different effects on subcortical and cortical auditory stages along the 

ascending pathway. Here this study addresses its effect on midbrain representations of 

FFR from an information point of view. First results show a broad-band (100-600 Hz) 

informational loss associated with aging in both quiet and noisy conditions, which is 

reflected in both the amplitude and phase of the responses. The informational loss at 

the fundamental frequency can be attributed to the delayed and weakened responses in 

the aging midbrain (Anderson et al. 2012; Burkard and Sims 2002; Clinard and 

Tremblay 2013), which can be linked to age-related loss of neural inhibition. For 

example, dorsal cochlear nucleus (DCN) has been shown to represent signal and 

suppress background noise aided by glycinergic neurotransmitters, and aging rats 

display decreased glycinergic inhibition in DCN (Caspary et al. 2005, 2006). Another 

contribution may come from synaptopathy arising from a loss of inner hair cell (IHC) 

ribbons and degeneration of ganglion cells (Sergeyenko et al. 2013), or from a decline 

in low-spontaneous-rate nerve fibers as has been seen in aging gerbils (Schmiedt et al. 

1996). Together, synaptopathy and loss of neural inhibition in midbrain may both 

contribute to less information in midbrain FFR in older listeners.   

 Noise level  

In these results, the amount of information in FFR (both phase and amplitude) 

decreases as noise level increases (i.e., SNR decreases) for both younger and older 

listeners. This result is consistent with previous findings (Presacco et al. 2016a, 2016b) 

where the amplitude of FFR decreases with worsening noise level. Via linear regression, 
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it is also seen that younger listeners have a more steeply decreasing slope (as a function 

of noise level) than the older listeners, at both the fundamental frequency and its 

harmonics. This result may also be due to disrupted synchrony at auditory nerve fibers 

(Schmiedt et al. 1996) and the synapse (Sergeyenko et al. 2013). A loss of auditory 

nerve fibers in older listeners may lead to a reduced brainstem response, causing a 

decrease in information even in the quiet condition, leading to a slower rate of 

additional decrease with increasing noise level.  

 Masker type  

In this experiment background masker types included English (meaningful to 

all listeners) and Dutch (meaningless to all listeners). The results suggest that the 

informational content of the noise affects information in the midbrain FFR, in both 

amplitude and phase (in the transition region): older listeners benefit neurally from the 

masker being meaningless over meaningful. It is unexpected that a high-level feature 

such as language would affect midbrain neural responses, though this has been seen 

before for younger listeners (Presacco et al. 2016b). One explanation for the language-

dependent response difference in the aging midbrain could be top-down modulation 

from cortical areas. Descending pathways from primary auditory cortex to inferior 

colliculus (IC) in the midbrain have been reported to mediate learning-induced auditory 

plasticity (Bajo et al. 2010), and IC neurons’ sensitivity to sound frequency and 

intensity can be modified by cortical projections (King and Bajo 2013). Since older 

listeners benefit behaviorally from competing speech being non-meaningful (Pichora-
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Fuller 2008; Tun et al. 2002), the cortical processing underlying this difference may 

also project back upstream to the midbrain.  

 

Another explanation for this difference in FFR due to masking language is that 

the difference might be purely cortical. i.e., purely cortical FFR. Recent studies (Coffey 

et al. 2016a, 2017) have shown that traditional EEG-measured FFR may not be purely 

subcortical at all. It would be substantially less surprising to see language-specific 

effects originating from cortex than midbrain, although, even so, these effects from the 

transition region (15-65 ms) are earlier than might be expected from a language-

influenced cortical response. 

 High frequency limit 

Results show that for both amplitude and phase information, responses from 

older listeners in speech-in-noise conditions contain less information in the higher 

frequencies, and have lower high frequency limits, than younger listeners. Such deficits 

might be also associated with lowered temporal precision arising from a loss of auditory 

nerve fibers and ganglion cells (Schmiedt et al. 1996; Sergeyenko et al. 2013), which 

affect all frequencies. The same analysis carried out on single sweeps (see Appendix) 

suggests that the decrease in information at high frequencies may not be due to the 

average of the two polarities.  

 Relation to cortical representation 

Even though the stimulus representation at the level of auditory midbrain is 

weaker for older listeners, whether based on RMS, correlation, or mutual information 
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measures, it is paradoxically amplified at the level of auditory cortex (Brodbeck et al. 

2018a; Presacco et al. 2016a, 2016b). A negative association between subcortical FFR 

and cortical responses, as measured with mutual information, has been shown in older 

listeners in a task of categorical syllable perception (Bidelman et al. 2014). The 

analogous correlation between cortical speech representation and midbrain response 

amplitude was not seen, however, for temporal speech processing (Presacco et al, 

2016b). Both attention and behavioral inhibitory control are used to enhance 

understanding of speech in noise, but the extent to which these high-level cortical 

processes are altered by auditory periphery deficits is not well known (Presacco et al. 

2019). Furthermore, it is unclear where and how the neural representation of speech in 

older listeners shifts from degraded in midbrain to exaggerated in cortex, but mutual 

information is a promising tool to address these issues (Bidelman et al. 2014).  

 Summary 

The approach employed here, using mutual information to analyze the 

relationship between a speech-in-noise stimulus and the FFR response, can be seen in 

at least two different lights. At one level it can be viewed as a mathematical measure 

derived from information theory (Cover and Thomas 1991; Shannon 1948). This places 

the present analysis on firm mathematical grounds, using concepts and measures from 

a well-established field of mathematical signal processing. At another level, the 

analysis can be viewed as an acknowledgement that the relationship between stimulus 

and response may have strongly non-linear aspects, with mutual information being just 

one of several available non-linear measures that allow us to move beyond 
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conventional linear analysis methods (e.g. evoked response analysis) and conventional 

phase coherence methods. 
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 Mutual information analysis in the auditory 

cortex and the effects of aging  

 Introduction 
The human brain is capable of separating attended speech from background 

distractions. However, this capability degrades with aging. Behavioral studies have 

shown age-related temporal processing deficits in different auditory tasks, such as pitch 

discrimination (Fitzgibbons and Gordon-Salantt 1996), gap-in-noise detection 

(Fitzgibbons and Gordon-Salant 2001) and recognition of speech in noise (Frisina and 

Frisina 1997; Gordon-Salant et al. 2006; He et al. 2008). Neurophysiological studies 

show that although the auditory brain robustly segregates speech from either a 

competing speaker (Ding and Simon 2012b) or spectrally matched noise (Ding and 

Simon 2013), the temporal processing degrades by demonstrating age-related changes 

in response latency and strength in midbrain (Anderson et al. 2012; Burkard and Sims 

2002; Clinard and Tremblay 2013) and cortical evoked responses (Lister et al. 2011; 

Presacco et al. 2016a, 2016b). In animal studies, overrepresentation in central auditory 

nervous system has been seen in aging animals (Hughes et al. 2010). In aging rats, the 

altered neural inhibition, functional impairments in the cortex are mostly due to a 

regulated plasticity change and most of them are reversible (de Villers-Sidani et al. 

2010). However, it remains an unsolved question how much plasticity change is in the 

aging human brain, and its effects on speech processing.  
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A recent magnetoencephalography (MEG) study suggests an exaggerated 

response to speech in noise for older listeners (Presacco et al. 2016a, 2016b) by 

demonstrating a higher speech envelope reconstruction accuracy than younger. Since 

the reconstruction is based on a linear decoder with window length of ~500 ms, it 

remains unclear which response components contribute to the exaggerated response, 

especially with respect to latency, i.e., 50 ms (M50) or 100 ms (M100). Since previous 

studies observe attention modulation of the M100 response (Ding and Simon 2012b, 

2013), and older listeners may pay more attention in the listening tasks (Presacco et al. 

2016a), the study hypothesizes that older listeners will have a higher mutual 

information level at responses of 100 ms and later. Furthermore, Presacco et al. (2016b) 

also shows a negative correlation between the speech envelope reconstruction accuracy 

and behavioral inhibitory control score, measured by a visual inhibitory task, for older 

listeners. It suggests that there might be responses, at M50, M100 or other later 

responses if any that contribute to the correlation. Since the multi-modal association of 

auditory and visual responses occurs later than auditory attention (Griffiths and Warren 

2004), a correlation is expected between M100 or later response for older listeners. 

Here in this study, all the response properties, such as latency and amplitude, will be 

evaluated with respect to mutual information.  

 

Earlier investigations the cortical coding of continuous speech have often relied 

on linear methods (Ding and Simon 2012b; Presacco et al. 2016a, 2016b). Auditory 

cortex, however, is well known to employ non-linear processing (Sahani and Linden 

2003), and therefore a non-linear analysis framework might provide more insight. 
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Nonlinear approaches based on Shannon’s information theory (Shannon 1948) have 

been successfully applied to spiking neurons in the auditory system (Nelken and 

Chechik 2007), to EEG subcortical recordings (Zan et al. 2019; Chapter 3), and even 

to MEG recordings from auditory cortex (Cogan and Poeppel 2011), where it was used 

to decode phase information in low-frequency responses to speech. By estimating 

mutual information between midbrain and cortical responses, recent study shows a 

redundant information transition for older  listeners in the task of categorical perception 

of speech syllables (Bidelman et al. 2014). 

 

Here, to investigate the information encoded in the cortical response phase-

locked to continuous speech, the measure of temporal mutual information function 

(TMIF) is developed. It provides a non-linear measure of a general phase-locked 

response to speech, and is a non-linear analog to the TRF, or the evoked response to a 

brief sound. It also has response peaks at specific latencies, analogous to the TRF’s 

M50TRF and M100 TRF peaks, or the M50 and M100 response peaks of an evoked 

response. The main mutual information peaks of the TMIF are, by analogy, named the 

MI50, MI100 and MI200, and occur for early cortical latency (~50 ms), middle cortical 

latency (~100 ms), and late cortical latency (~200 ms). The actual TMIF peak levels 

and latencies depend on the specific stimulus, the properties of any maskers, the age of 

the subject, and other related factors. The main hypotheses above can be investigated 

by testing for associations between the properties of an individual’s MI200 and their 

behavioral scores. 
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 Materials and methods  

 Subjects 

The dataset analyzed here was already obtained and analyzed for previous 

studies (Presacco et al. 2016a, 2016b). 22 subjects participated in the experiment: 17 

younger adults ages 18 to 27 (3 male) and 15 older adults ages 61 to 73 (5 male). All 

participants were recruited from the greater Washington D.C. area (Maryland, Virginia 

and Washington D.C.), with clinically normal hearing. Specifically, participants had 

normal hearing thresholds (≤ 25	𝑑𝐵 hearing level) from 125 Hz to 4000 Hz, no history 

of neurological or middle ear disorders or surgery, and normal intelligent quotient 

scores (≥ 85 on the Wechsler Abbreviated Scale of Intelligence (Zhu and Garcia 1999). 

Written informed consent was obtained from each subject, and they were compensated 

for their time. The experimental protocol and all procedures were reviewed and 

approved by the Institutional Review Board of the University of Maryland. 

 Behavioral tests 

Flanker test 

The ability to attend to a selected or goal-appropriate stimulus and to ignore 

other distracting stimuli is associated with behavioral inhibitory control (Neill et al. 

1995), and this ability declines with aging (Diamond 2013). This ability may affect 

auditory suppression of a competing speaker while attending to another. To investigate 

broad aging effects on behavioral inhibitory control, including its relationship with 

complex auditory processing, a visual Flanker test (Ward et al. 2016) was given to all 

subjects. The Flanker test measured behavioral inhibitory control and attention control 
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by displaying five arrows in a row and asking only for the direction of the middle arrow, 

i.e., the flanking arrows serve only as distractors. Both reaction time and accuracy are 

taken into account for scoring (Weintraub et al. 2013), and a higher Flanker score 

indicates better performance, i.e., more behavioral inhibitory control. 

QuickSIN test 

The Quick Speech-in-Noise test (QuickSIN) measures listeners’ ability to 

understand speech in noise (four-speaker babble), with subjects asked to recall words 

presented at different SNR levels, with performance rated by the number of words they 

failed to recall (Killion et al. 2004). A lower QuickSIN test score indicates better 

performance, i.e., superior ability to understand speech in noise.  

 

Flanker and QuickSIN scores may be correlated across subjects and this is 

measured with Pearson’s correlation test for both age groups.  

 Stimuli and MEG recording 

The task and stimuli were the same as the ones described in previous studies 

(Presacco et al. 2016a, 2016b). For each subject, the MEG response was recorded with 

an 157 axial gradiometer whole head MEG system (KIT, Kanazawa, Japan) inside a 

magnetically shielded room (Vacuumschmelze GmbH & Co. KG, Hanau, Germany) at 

the University of Maryland, College Park, sampled at 1000 Hz with online low-pass 

filter of cut-off frequency at 200 Hz. The stimulus was continuous speech (a narrated 

audio book), either from a solo speaker or a mixture of two concurrent speakers. The 

solo-speaker speech stimuli were one-minute segments from an audiobook, The Legend 
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of Sleepy Hallow by Washington Irving, narrated by a male speaker 

(http://www.audiobooktreasury.com/legend-of-sleepy-hollow/). The mixture was 

composed of foreground speech to which the subject was instructed to attend and a 

background, which served as a distractor. The foreground speech was from the same 

source as the clean speech condition. The background stimuli were one-minute 

segments from an audiobook, A Christmas Carol by Charles Dickens, narrated by a 

female speaker (http://www.audiobooktreasury.com/a-christmas-carol-by-charles-

dickens-free-audio-book/). The foreground and background speech segments were 

mixed together at four different power ratios, of 3 dB, 0 dB, -3 dB and -6 dB. The 

foreground speech used in -6 dB condition and the clean speech were the identical, and 

the clean speech was only presented after all the mixed speech stimuli had been 

presented. The subjects also listened to mixed speech stimuli where the background 

speaker spoke Dutch instead of English. The Dutch speech stimuli were not 

comprehensible to all subjects, and responses to these stimuli were not analyzed here. 

The stimuli were all presented to the subjects with E-A-RLINK earphones attached 

with sound tubing at about 70-dB sound pressure level. 

 

For each subject, under each condition, the raw MEG recording was first 

denoised by time-shifted principle component analysis (de Cheveigné et al. 2007), in 

which three separate reference channels recording the environmental noise serve as a 

reference with which to eliminate environmental noise from the 157 neural data 

channels. A blind source separation approach called denoising source separation (DSS; 

de Cheveigné and Simon 2008; Särelä and Valpola 2005) is then used to extract the 
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dominant auditory components, based on the 2-8 Hz band-passed response (Ding and 

Simon 2013) to extract a spatial filter which is applied to the 1-8 Hz (FIR filter) 

bandpassed result of TSPCA (Ding and Simon 2012b). Finally, the first DSS 

component, which contain the responses contributing most reliably over repeated 

stimulus presentations, is analyzed further as described below.    

 Data analysis 

Temporal mutual information function (TMIF) 

For decoding the cortical phase-locked response to speech, the use of the 

temporal mutual information function (TMIF) shares properties with the analogous 

temporal response function (TRF) (Ding and Simon, 2012). While the TRF, typically 

500 ms in length for cortical responses, linearly maps the stimulus envelope to the low-

frequency response counterpart, the TMIF captures non-linear cortical modulations 

following the speech envelope. A typical TRF has prominent peaks at latencies of 

approximately 50 ms and 100 ms, meaning that any speech envelope feature will evoke 

a pair of cortical responses 50 ms and 100 ms later. Since this implies enhanced cortical 

processing of speech information at those latencies, therefore it may be expected that 

the mutual information between the speech envelope and the response at those latencies 

should also result in peaks (though both peaks would be positive since mutual 

information can never be negative). Only the TMIF of the first DSS component is 

computed.  
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Specifically, since the mutual information is determined by the joint 

distribution of the stimulus and response, quantization is necessary to specify the 

probability distribution. To estimate the TMIF, the method first quantizes both speech 

envelope and amplitude response into integer-labeled bins (1  to 8 ) based on the 

equipartition principle: that the number of samples assigned to each integer are 

approximately the same (limited necessarily by the divisibility of the number of 

samples into the number of bins). Here, 𝑥(𝑡) denotes the quantized speech envelope, 

and 𝑦(𝑡) denotes the quantized response at time point 𝑡, so then the mutual information 

at time 𝑡 is 

 

 
𝐼$(𝑋; 𝑌) = 	O𝑝¬𝑥(𝜏), 𝑦(𝜏 + 𝑡)® log

𝑝¬𝑥(𝜏), 𝑦(𝜏 + 𝑡)®
𝑝¬𝑥(𝜏)®𝑝¬𝑦(𝜏 + 𝑡)®

N,c

. 
(4.1) 

 

Let 𝑆	 = 	 {1, 2, … , 8} be the set from which the sample values are drawn. The 

joint probability distribution of 𝑥(𝜏) ∈ 𝑆 and 𝑦(𝜏 + 𝑡) ∈ 	𝑆, i.e., 𝑝¬𝑥(𝜏), 𝑦(𝜏 + 𝑡)®, is 

drawn from different values of 𝜏, which ranges from 0 to 𝐿 − 1, where 𝐿 is the length 

of stimulus/response in ms. Since the analysis is done at a sampling rate of 1 kHz, i.e., 

a sampling period of 1 ms, 𝐿 is also the sample size. Practically, the mutual information 

at each time point is estimated by its relation to entropy and conditional entropy, 

𝐼(𝑋; 	𝑌) = 𝐻(𝑌) − 	𝐻(𝑌|𝑋). Specifically, the equation above could be written as,  

 

𝐼$(𝑋; 𝑌) = 	 O 𝑝(𝑥(𝜏) = 𝑖, 𝑦(𝜏 + 𝑡) = 𝑗) log
𝑝(𝑥(𝜏) = 𝑖, 𝑦(𝜏 + 𝑡) = 𝑗)
𝑝(𝑥(𝜏) = 𝑖)𝑝(𝑦(𝜏 + 𝑡) = 𝑗)

4∈¯,�∈¯

. 
(4.2) 
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Here, i and j are values drawn from set S; 𝑡 and 𝜏 are integer numbers of ms. A 

time window of 500 ms is used for t, and mutual information is estimated with 2-ms 

steps, i.e., 𝑡	 ∈ 	 {0, 2, … , 498	(𝑚𝑠)} .  Then the TMIF function is given by 

𝑇𝑀𝐼𝐹(𝑡) 	= 𝐼$(𝑋; 𝑌) . In summary, 𝑇𝑀𝐼𝐹(𝑡)  is estimated by mutual information 

between stimulus and response shifted forward by time 𝑡 . Let  𝑌$  be the response 

shifted forward by 𝑡, 𝑇𝑀𝐼𝐹(𝑡) = 𝐼(𝑋; 𝑌$). To prove that 𝑇𝑀𝐼𝐹(𝑡) does not contain 

redundant information introduced by repeatedly shifting 𝑌, we need to show whether 

𝐼(𝑋; 𝑌$, 𝑌$°), 	 … , 𝑌�) − 𝐼(𝑋; 𝑌$°), 	 … , 𝑌�) = 𝐼(𝑋; 𝑌$) . Based on the chain rule for 

mutual information (Cover and Thomas 1991),  

 
𝐼(𝑋; 𝑌), 𝑌+, 	 … , 𝑌�) =O𝐼(𝑋; 𝑌4|𝑌4Y), 𝑌4Y+, 	 … , 𝑌))

�

4X)

. 
(4.3) 

Therefore,  

 𝐼(𝑋; 𝑌$, 𝑌$°), 	 … , 𝑌�) − 𝐼(𝑋; 𝑌$°), 	 … , 𝑌�)

=O𝐼(𝑋; 𝑌4|𝑌4Y), 𝑌4Y+, 	 … , 𝑌))
�

4X$

− O 𝐼(𝑋; 𝑌4|𝑌4Y), 𝑌4Y+, 	 … , 𝑌))
�

4X$°)

 

= 𝐼(𝑋; 𝑌$), 

(4.4) 

which proves that 𝑇𝑀𝐼𝐹(𝑡) was not affected by repeatedly shifting the response	𝑌. 

 

After estimating the TMIF function for each subject, the distinctive peaks with 

approximate latency of 50, 100, and 200 ms are identified as the MI50, MI100 and 
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MI200 peaks (later their amplitude difference between age groups will be tested). Peaks 

are found by searching for the maximum value over a specific time range. Since the 

response latencies differ when in quiet condition and noise conditions, different ranges 

are applied for different conditions, with range boundaries determined by the trough 

latencies in the relevant TMIF when averaged over subjects. Specifically, for the quiet 

condition, the MI50 corresponds to the time point with the largest amplitude in the 

range of 2-86 ms in the time course, while MI100 and MI200 each corresponds to the 

maximum of ranges of 80-160 ms and 150-300 ms respectively. The group difference 

is tested for each peak by performing 2-sample one-tailed t-tests over amplitudes. For 

the four noise conditions the TMIF is analyzed analogously, but since the noise is just 

background speech, for each SNR condition two TMIFs are computed for each subject, 

based on the foreground and background speech respectively. The temporal ranges of 

foreground are 2-70 ms for the MI50, 50-200 ms for the MI100 and 200-300 ms for the 

MI200. The temporal ranges of background are 2-120 ms for the MI50, 120-230 ms for 

the MI100 and 200-350 ms for the MI200. The group difference is tested for each peak 

by performing the same t-tests over the averaged amplitude across SNRs.   

Statistics  

To systematically examine relationships among neural responses properties of 

the TMIF (MI50, MI100 and MI200) and behavioral scores, linear mixed effect models 

(LME) are used. For each neural response peak, a base model is constructed as a 

function of fixed effects from 𝑎𝑔𝑒	 × 	𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	 × 	𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 + 𝑆𝑁𝑅 and a random 

effect of subject-specific bias. Here, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 has the value of either foreground or 
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background, and 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟  is either the Flanker or QuickSIN score. The 4-way 

interaction was not included due to the limited degrees of freedom. To scrutinize the 

significance of a factor (or an interaction) in the prediction of a neural response, a 

second model is constructed without the factor (or interaction) and is compared with 

the base model by ANOVA. Then non-significant factors or interactions are excluded 

from model, and the significant interaction is examined by dissecting it into all possible 

combinations of its categorical values and further analyzed by linear models. All linear 

model analysis is done in R (R. Core Team 2017), and LME analysis is performed with 

the toolbox lme4 (Bates et al. 2015).  

 Results 
By implementing the approaches established above, for each subject under each 

condition, TMIFs were computed for the first DSS component. Here, this section 

reports results under the conditions of clean speech and mixed speech with SNRs of 

+3, 0, -3 and -6 dB and source-space analysis in the worst SNR case.  

 Behavioral correlation  

A slight negative correlation was found between Flanker score and QuickSIN 

score, for older listeners (Pearson’s correlation 𝑟 = −0.52, 𝑝 = 0.046), as shown in 

Figure 4.1. 
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Figure 4.1. Behavioral test correlation 

Figure 4.1. Behavioral test correlation. Flanker score (higher is better) is 

negatively correlated with Quick-SIN score (lower is better) in older listeners (𝑟 =

−0.52, 𝑝 = 0.046).  

 Neural Responses to Clean speech 

To investigate the age-related exaggerated information representation in the 

quiet condition, peaks analogous to TRF peaks are identified, namely the MI50, MI100 

and MI200, analogous to the M50, M100 and M200 MEG TRF (and evoked response) 

peaks. As for their evoked counterparts, peaks of different latencies may be associated 

with different stages of the processing chain. A one-tailed t-test is performed for each 

peak amplitude for younger against older. Results show that all the peaks from the older 

listeners are significantly larger than those of the younger, with 𝑡�v = −1.85, 𝑝 =

0.037 for MI50, 𝑡�v = −2.52, 𝑝 = 0.009 for MI100 and 𝑡�v = −2.24, 𝑝 = 0.031 for 

MI200. The results suggest that all the processing stages in the aging cortex overly 

represents the clean speech envelope.  

QuickSIN vs. Flanker for OlderBehavioral Tests (Older Listeners)
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Figure 4.2. TMIF to clean speech 

Figure 4.2. TMIF to clean speech. Shaded areas above and below the solid lines 

indicate the standard error of mean. The temporal ranges over which MI50, MI100 and 

MI200 for each subject are constrained are marked by the three black lines above x-

axis. Asterisks show the significance of amplitude differences between the two groups 

from a one-tailed t-test (*p<0.05, **p<0.01). 

 Neural Response to Mixed Speech 

In mixed speech conditions, separate TMIFs for both foreground and 

background speech are computed, shown in Figure 4.3 and Figure 4.4, respectively. 

Response peaks are extracted and effects from factors of age, attention and behavior 

are examined systematically by linear mixed effect models, 𝑀𝐼	𝑙𝑒𝑣𝑒𝑙	~	𝑎𝑔𝑒	 ×

	𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	 × 	𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 + 𝑆𝑁𝑅 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) , where the random effect term, 

(1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡), accounts for subject-specific intercepts or bias. The two behavioral scores 

(Flanker and QuickSIN) were considered separately. When considering the Flanker 

score,  the 3-way interaction is significant for models predicting the amplitude of the 
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MI50 (𝜒+(�) = 16.45, 𝑝 = 0.002 ), MI100 (𝜒+(�) = 98.08, 𝑝 < 0.001 ) and MI200 

(𝜒+(�) = 91.38, 𝑝 < 0.001) compared with a null model with no interactions, i.e., 

𝑀𝐼~𝑎𝑔𝑒 + 	𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 	𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 + 𝑆𝑁𝑅 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) . To examine the 

significance of interactions, variables age, attention and behavior are then separately 

released from the 3-way interaction. Those results show that the 𝑎𝑔𝑒	 ×

	𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	interaction is significant in predicting the amplitude of the MI50 (𝜒+(�) =

7.61, 𝑝 = 0.055  by releasing behavior (Flanker); 𝜒+(�) = 14.17, 𝑝 = 0.003  by 

releasing age; 𝜒+(�) = 14.52, 𝑝 = 0.002  by releasing attention), and the 3-way 

interaction is significant in predicting the amplitude of the MI100 (𝜒+(�) = 66.89, 𝑝 <

0.001 by releasing behavior (Flanker); 𝜒+(�) = 70.89, 𝑝 < 0.001 by releasing age; 

𝜒+(�) = 83.92, 𝑝 < 0.001  by releasing attention) and MI200 (𝜒+(�) = 88.98, 𝑝 <

0.001 by releasing behavior (Flanker); 𝜒+(�) = 78.67, 𝑝 < 0.001 by releasing age; 

𝜒+(�) = 72.39, 𝑝 < 0.001  by releasing attention). Therefore, variables of age and 

attention interact with behavior in predicting the level of mutual information, and the 

prediction power changes for different combinations of 𝑎𝑔𝑒	 × 	𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, such as 

younger and foreground vs. older and foreground. To examine the prediction 

differences, the model of 𝑀𝐼~𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 + 𝑆𝑁𝑅 is constructed separately for different 

combinations of age and attention. The overall model significances are shown in Table 

1, and the effects of behaviors are shown in Table 2.  

 
Behavior Attention Age MI50 MI100 MI200 

F(2,57(65)) p F p F p 
 FG Y 5.52 0.006 3.84 0.026 1.33 0.271 
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Flanker O 6.37 0.003 16.76 <0.001 32.44 <0.001 
BG Y 1.74 0.183 6.44 0.003 4.35 0.017 

O 0.34 0.715 2.41 0.099 0.41 0.668 
 

Q-SIN 
FG Y 4.85 0.011 0.56 0.579 0.14 0.869 

O 2.64 0.080 2.28 0.112 4.52 0.015 
BG Y 1.29 0.288 8.05 <0.001 5.86 0.005 

O -0.42 0.677 1.98 0.147 0.42 0.656 
 

Table 4.1. Model 𝑀𝐼~𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 + 𝑆𝑁𝑅  significance. FG: foreground; BG: 

background. Boldfaced entries indicate the corresponding tests are statistically 

significant. 

 

 
Behavior Attention Age MI50 MI100 MI200 

t P t p t P 
 

Flanker 
FG Y 2.90 0.005 2.56 0.013 1.56 0.124 

O -3.56 <0.001 -5.79 <0.001 -7.96 <0.001 
BG Y 1.30 0.199 -0.05 0.961 1.50 0.139 

O 0.14 0.893 -0.91 0.366 0.35 0.731 
 

Q-SIN 
FG Y -2.67 0.010 -0.27 0.792 -0.23 0.819 

O 2.29 0.026 2.13 0.038 2.87 0.006 
BG Y -0.87 0.385 -1.64 0.106 -2.24 0.029 

O -0.42 0.677 -0.19 0.853 -0.39 0.696 
 

Table 4.2. Effects of behaviors (Flanker and Quick-SIN) in prediction of mutual 

information. Boldfaced entries indicate the corresponding tests are statistically 

significant. 

 
To investigate whether the exaggerated response associated with aging occurs 

for both the foreground and the background, and which peak contributes to this 

exaggerated information in older participants, mutual information levels of all three 

peaks, for each stimulus, under each SNR condition are found for each subject and 
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compared between groups. Older listeners show significantly larger mutual information 

levels in all three peaks to both foreground (𝑡�v = −2.07, 𝑝 = 0.024 for MI50, 𝑡�v =

−3.80, 𝑝 < 0.001  for MI100 and 𝑡�v = −2.37, 𝑝 = 0.012  for MI200) and 

background (𝑡�v = −2.44, 𝑝 = 0.010 for MI50, 𝑡�v = −2.57, 𝑝 = 0.0076 for MI100 

and 𝑡�v = −2.90, 𝑝 = 0.0035 for MI200). Therefore, both foreground and background 

are exaggerated for older listeners, and the MI100 exaggerated information is the most 

prominent for foreground.   

 
Figure 4.3. TMIFs of the foreground speech are amplified in older listeners 

Figure 4.3. TMIFs of the foreground speech are amplified in older listeners. A. 

The four plots illustrate different SNR conditions of 3, 0, -3 and -6 dB SNR, with 

younger listeners in blue and older listeners in red. The three black horizontal lines in 

each figure indicates the ranges from which three peaks are extracted. Shaded areas: ± 

1 SEM. B. MI peak level in older (red bars) and younger listeners (blue bars). 2-sample 

one-tailed t-tests on the averaged peak amplitudes over SNR conditions show that the 
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older listeners have significantly larger amplitudes (*p<0.05, **p<0.01, ***p<0.001).  

Error bars: ± 1 SEM.  

 

 
Figure 4.4. TMIFs of the background speech are amplified in older listeners 

Figure 4.4. TMIFs of background speech are amplified in older listeners. Plots 

in A illustrate different SNR conditions of 3, 0, -3 and -6 dB, with younger listeners in 

light blue and older listeners in light red. The three black horizontal lines in each figure 

indicates the ranges from which three peaks are extracted. Shaded areas: ± 1 SEM. 

Figure B compares peak amplitudes in older listeners (red bars) with younger listeners 

(blue bars). Similar to the responses to foreground speech, the older listeners’ responses 

have significantly larger peaks than younger listeners with 2-sample one-tailed t-tests 

on the averaged peak level over SNR conditions (*p<0.05, **p<0.01, ***p<0.001). 

Additionally, the MI50 level is notably larger than the other two peaks, for both groups. 

This pattern demonstrates representation-to-suppression mechanism for background 

processing. Error bars:  ±1 SEM. 
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 MI200 relationships with behavioral performance 

As can be seen in Figures 4.3 and 4.4, the dependence of the MI200 peak level 

on SNR condition follows different trends for older and younger listeners. Notably, for 

younger listeners, the MI200 response remains steady as SNR decreases for foreground 

speech while it decreases for background speech. However, for older listeners, the 

response to foreground decreases as SNR decreases, while the response to background 

increases as SNR decreases. MI200 saliency can then be defined as the difference 

between foreground and background information (Figure 4.5A), and any trends as a 

function of SNR can be analyzed via the slope of difference-by-SNR linear regression 

line (Figure 4.5B). A right-tailed 2-sample t-test is performed on the slopes of younger 

listeners against the older, resulting in a significantly larger slope for younger than 

older listeners (𝑡�v = 2.31, 𝑝 = 0.014). To test the positivity of the ratio as SNR 

decreases in the younger participants, a right-tailed 1-sample t-test is conducted on the 

slopes of younger listeners, and the results show a significant positive trend as SNR 

decreases (𝑡)� = 1.83, 𝑝 = 0.043). Similarly, a left-tailed 1-sample t-test against zero 

on slopes of older listeners show a negative trend but not significant (𝑡)� = −1.47, 𝑝 =

0.083) (Figure 4.5B). In short, age affects the response pattern (with increasingly 

challenging mixed speech conditions) of this late cortical representation. 
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Figure 4.5. MI200 level difference between foreground and background as a function of SNR in younger and older listeners 

Figure 4.5. MI200 level difference between foreground and background as a 

function of SNR in younger and older listeners. A. Younger listeners (blue) 

demonstrate a significant increasing trend with decreasing SNR, while the older (red) 

demonstrate a decreasing trend. B. MI200 ratio slope as a function of SNR for the two 

age groups. Younger listeners have a significantly positive slope (linearly fitted 

regression to the data shown in panel A), while older listeners show a weakly negative 

slope (not statistically significant). The slope difference between groups is significant. 

(*p<0.05, **p<0.01, ***p<0.001) 

 

The different MI200 saliency trend by age suggest functional differences in 

neural suppression of the background and/or enhancement of foreground representation 

for older listeners as SNR level decreases. These abilities may be related to behavioral 

inhibitory and attentional control. A Pearson’s test was performed on correlations 

between foreground MI200 and Flanker score for each age group under every SNR 
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condition, with p-values corrected by Bonferroni-Holm for multiple tests across SNR 

conditions (Holm 1979), to examine if the foreground MI200 relates to behavioral 

inhibitory control. The result shows significantly negative correlations across all SNR 

condition ( 𝑟 = −0.53, 𝑝 = 0.04  at +3 dB, 𝑟 = −0.77, 𝑝 = 0.0014  at 0 dB, 𝑟 =

−0.82, 𝑝 < 0.001 at -3 dB, and 𝑟 = −0.89, 𝑝 < 0.0001 at -6 dB) for older listeners, 

and the correlation coefficient increases as SNR decreases. In contrast, younger 

listeners show no correlation between MI200 and Flanker score (𝑟 = 0.40, 𝑝 = 0.44 at 

-6 dB). The overall results suggest that foreground MI200 relates to behavioral 

inhibitory control in older listeners. Correlations are shown in Figure 4.6.  

 
Figure 4.6. Correlation between foreground MI200 and Flanker test score by age and SNR 

Figure 4.6. Correlation between foreground MI200 and Flanker test score by 

age and SNR. A. The relationships of foreground MI200 and Flanker test scores under 

the most challenging condition, -6 dB SNR, for younger (blue) and older listeners (red) 
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plot in panel B. B. Correlation tests were performed for every SNR level, with p-values 

corrected by Bonferroni-Holm corrections. Younger listeners show a weakly (non-

significant) positive correlation, but the older listeners show a significantly negative 

correlation, with the correlation coefficient growing larger in its absolute value as SNR 

decreases.  

 

Since the speech-in-noise behavioral score is negatively correlated with the 

Flanker behavioral inhibitory score in older listeners (Figure 4.1), the foreground 

MI200 may also correlate with the QuickSIN score. A Pearson’s correlation test shows 

a significant positive correlation between the QuickSIN and foreground MI200 level 

(𝑟 = 0.60, 𝑝 = 0.018) for older listeners. A stepwise regression, testing if Flanker and 

MI200 both contribute to QuickSIN performance, shows that only MI200 but not 

Flanker contributes to QuickSIN performance (𝐹(),)�) = 7.27, 𝑝 = 0.018 ). These 

results demonstrate that higher higher MI200 level corresponds to worse hearing 

performance for older listeners.  

 
Figure 4.7. MI200 of the foreground correlations with speech-in-noise behavioral score 
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Figure 4.7. MI200 of the foreground correlations with speech-in-noise 

behavioral score. A. A significant correlation is not seen in younger listeners (blue). B. 

The correlation is significant in older listeners (red). A stepwise regression shows only 

the MI200, and not the Flanker, contributes to QuickSIN performance.  

 Discussion 
By developing a novel approach based on information theory, phase-locked 

cortical responses to the low-frequency speech envelope can be measured without 

resorting to linear-only statistics. The TMIF unveils different processing stages in 

cortical response to speech, via the mutual information peaks MI50, MI100 and MI200. 

All three of these peaks in mutual information are larger for older adults than younger 

adults in all conditions. The MI200 stands out differently, however, since difference 

between foreground and background levels has a different pattern of dependences on 

SNR for the two age groups: while the ratio in younger listeners increases with 

worsening SNR, it decreases in older listeners. Plausibly related, the MI200 response 

to foreground negatively correlates with Flanker behavioral inhibitory scores 

regardless of SNR level, and it also correlates to the QuickSIN score in the most 

challenging noise condition. When compared to analysis results based on purely linear 

methods, such as speech envelope reconstruction accuracy (Presacco et al. 2016a), 

these mutual information based measures, e.g., the MI100 and MI200, reveal additional 

significant findings, even for the same data set.    
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 Exaggerated information in older cortex: potential mechanisms  

Exaggerated speech information for older listeners is seen at both short (MI50), 

intermediate (MI100), and long (MI200) latencies and in both clean speech and adverse 

conditions. One possible contribution to this may be loss of neural inhibition between 

synapses (Caspary et al. 2008; Takesian et al. 2012). Animal studies show decreased 

release of inhibitory neurotransmitters, such as gamma-aminobutyric acid (GABA), in 

auditory cortex (Juarez-Salinas et al. 2010; de Villers-Sidani et al. 2010). Such a 

reduction in neural inhibition might occur as part of a compensatory gain mechanism 

(Caspary et al. 2008; Takesian et al. 2012). The aging midbrain shows deficits in 

temporal processing acuity in normal-hearing CBA mice (Walton et al. 1998), and the 

cortex is able to restore auditory processing even with a cochlear denervation and 

virtually eliminated brainstem response (Chambers et al. 2016). Similar exaggerated 

responses are also seen in cases of tinnitus and hyperacusis, at multiple levels along the 

auditory pathway (Auerbach et al. 2014). The early response of MI50 is pre-attentive 

and based on acoustics not the perception. This response might be related to the 

detection of auditory scene. The enlarged response at subcortical level may also induce 

an enlarged early response at the cortical level.  

 

Another potential contributor to exaggerated information in the aging cortex 

might be due to the utilization of more neural resources in cognitive processing, such 

as redundant local processing (Peelle et al. 2010) and exaggerated effort and attention 

(Presacco et al. 2016a). Older listeners allocate more neural resources outsize the core 

sentence-processing network and demonstrate reduced coherence between activated 
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regions (Peelle et al. 2010). Cortical responses with ~100 ms latency have been shown 

to be enhanced by attention (Ding and Simon 2012b, 2013). Therefore, MI100 response 

level may be more affected by attention than acoustics, and older listeners may allocate 

more neural sources or higher power for auditory attention.  

 

Multiple cortical representations of contextual information in older listeners 

might also contribute to this age-related exaggerated information. Older listeners’ 

speech understanding  benefits from different levels of supportive context, such as 

sentential, lexical, phonological and sub-phonemic levels (Pichora-Fuller 2008). 

Embedded within the frequency range of 1-8 Hz (Cogan and Poeppel 2011), such 

contextual information enhancement for older listeners not only corresponds to a larger 

amplitude (Presacco et al. 2016a) but also induces more information in cortical 

response to low-frequency speech envelope as shown by the present study. MI200 is a 

late response that may relate to the contextual information processing, and shows an 

age-related enlargement.  

 Long latency processing, distractor suppression and speech-in-noise 
intelligibility  

The MI200 is the latest of the three peaks, and is stronger in older listeners than 

younger, so it becomes a viable candidate for the processing of redundant speech 

information. The negative correlation between the MI200 and the Flanker score suggest 

that this later neural activity might be related to the same neural source with the 

behavioral inhibitory control for older listeners. It may also lend support to a 

compensatory hypothesis (Caspary et al. 2008; Presacco et al. 2016a, 2016b; Takesian 
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et al. 2012) that an insufficient speech representation at earlier latencies induces larger 

responses at later latencies, where the compensated response would have a negative 

correlation with speech intelligibility. Here, for older listeners, the MI200 salience 

decreases with worsening SNR, as the response to the background is strengthened, 

suggesting that compensation can no longer suppress background speech when it 

reaches higher sound levels. Older listeners show a trend, as SNR decreases, for MI200 

saliency (foreground over background) that is consistent with this view. The MI200 

saliency for younger listeners, however, for whom these SNRs cause only modest 

difficulty, show a trend in the opposite direction.  

 

The EEG correspondence of MI200 could be P2 (P200) or N2 (N200) based on 

its response latency (~200 ms). However, MEG shows little consistent activity at the 

time of occurrence of N2 and P3 (Siedenberg et al. 1996). The current study 

demonstrates consistent MI200 across SNR levels, and thus it more likely corresponds 

to P2 response in EEG. A previous study with syllable stimulus supports evidence for 

P2(m) response in both EEG and MEG, and both radial and tangential neural sources 

contribute to the response (Shahin et al. 2007). Various hypotheses have been proposed 

to explain the functions of P2. Shahin et al. (2007) suggest that P2 is modulated by 

spectral complexity of sounds. Speech-sound training studies have shown that N1-P2 

complex changes after training, which reflect central auditory plasticity change 

(Tremblay et al. 2001). A further study suggests P2 amplitude changes after training 

are retainable for months, and are attributed to neural activity changes associated with 

the acquisition process (Tremblay et al. 2014). These studies support a possible 
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hypothesis of a retainable neural plasticity change associated with MI200 over the 

lifetime listening for older listeners. Other studies support hypothesis that this late 

response of ~200 ms in latency also associates with auditory working memory and may 

have potentials to serve as neurophysiological markers for the assessment of working 

memory capacity (Lefebvre et al. 2005). Visual studies suggest visual P2 may be 

associated with processing contextual information to prepare for the visual analysis of 

upcoming stimuli (Federmeier and Kutas 2002). These studies suggest that P2 might 

be a cross-modality response that relate to processing of contextual information and 

working memory. The current study extends the hypothesis by demonstrating a strong 

correlation between the late auditory response and visual behavioral inhibitory ability, 

suggesting, possibly that a similar neural source or mechanism may contribute to both 

P2 or MI200 and these behavioral abilities such as working memory and behavioral 

inhibitory control.  

 

In conclusion, mutual information analysis provides a non-linear approach 

towards decoding temporal response function to continuous speech. The mutual 

information representation has higher predictive power of behavioral measures 

compared to linear representations. By this novel approach, the current study shows 

that with aging, the cortical response to speech is not only larger in amplitude but also 

redundant in information. And the late response at latency about 200 ms is an important 

response component for older listeners, predicting both behavioral inhibitory control 

and speech intelligibility. 

  



 

 
 

86 
 

 Cortical High-gamma Response to Speech in 

Noise and the Effects of Aging, using Mutual Information 

 Introduction  
The auditory brainstem response (ABR) is phase-locked neural response that 

tracks both the onset transient and any periodic component of a sound (Skoe and Kraus 

2010). The sustained response to the latter, which has been called envelope-following 

responses (Aiken and Picton 2006) and auditory steady-state responses (Dimitrijevic et 

al. 2004), is now known as frequency following response (FFR) (Aiken and Picton 

2008b; Galbraith et al. 1995; Greenberg 1980; Krishnan et al. 2004; Russo et al. 2004) 

where the oscillation rate is at the acoustic fundamental frequency (F0), the lowest 

frequency of a periodic waveform. Neural sources for the onset responses and FFR 

have been hypothesized originate mainly from subcortical stages of the auditory 

system, including the cochlear nucleus (CN), geniculate nucleus (MGB) and inferior 

colliculus (IC) (Batra et al. 1986; Chandrasekaran and Kraus 2010; Schnupp et al. 2011; 

Worden and Marsh 1968). Recent studies using magnetoencephalography (MEG) have 

modified this hypothesis by providing evidence of cortical contributions to FFR, which 

falls within the frequency range of gamma band (Coffey et al. 2016b; Hertrich et al. 

2012). In this study, high gamma waves is defined as rhythms from 60 to 100 Hz. 

Recent research generalizes FFR to continuous speech by estimation of temporal 

response function (TRF) (Forte et al. 2017; Maddox and Lee 2018). The use of 

continuous speech stimuli also allows a natural extension to the case of competing 

speakers, where one speaker is attended (foreground) and the other unattended 
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(background). FFR may, or may not, show modulation due to selective attention, 

depending on the specific methodology employed (Forte et al. 2017; Hoormann et al. 

2004; Lehmann and Schönwiesner 2014; Varghese et al. 2015). 

 

Behavioral studies have demonstrated age-related temporal processing deficits 

in different auditory tasks (Fitzgibbons and Gordon-Salant 2001; Fitzgibbons and 

Gordon-Salantt 1996; Frisina and Frisina 1997; Gordon-Salant et al. 2006). Results 

based on neurophysiological studies are consistent with observed age-related changes 

in response latency and strength in midbrain, i.e., delayed and decreased midbrain FFR 

(Anderson et al. 2012; Burkard and Sims 2002; Clinard and Tremblay 2013) and 

cortical evoked response, i.e., exaggerated cortical response to low-frequency (1-8 Hz) 

speech envelope (Lister et al. 2011; Presacco et al. 2016a, 2016b). However, whether 

cortically generated high-gamma response would be enhanced or reduced in older 

listeners remains unknown. 

 

Mutual information, interpreted as a reduction in auditory response variability 

due to the presentation of a stimulus (Nelken and Chechik 2007), has been proved to 

be useful in auditory research (Rieke et al. 1995). It is applied to measure the amount 

of information contained in magnetoencephalography (MEG) auditory responses about 

the continuous speech (Cogan and Poeppel 2011). Bidelman et al. (2014) applies it to 

measure the information transmitted from midbrain to auditory cortex, and shows 

redundancy in older listeners. My recent work proves it to be fruitful and powerful in 
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studying aging effects of midbrain responses (Zan et al. 2019; Chapter 3) and cortical 

low-frequency responses (Chapter 4). 

 

In the study, neural responses of both attended (foreground) and unattended 

(background) speech, represented by mutual information, are presented, but due to 

large difference in high-gamma component between the foreground and background 

speakers, and that each speaker is only ever attended or unattended (without switching 

across trials), one representation being larger than the other does not lead to any 

evidence for attentional modulation. The focus of this investigation is cortically 

generated high-gamma response to both foreground and background speech, including 

the effect of changing SNR, and to what extend aging has any effect. Specifically, MEG 

high-gamma responses to continuous speech were analyzed in frequency range of 60-

100 Hz. Here, by integrating informational theoretical measures suitable for auditory 

responses (Nelken and Chechik 2007) and MEG source localization (Gramfort et al. 

2013, 2014), it is expected to estimate the time-locked response to continuous speech 

in a cocktail party scenario.  

 

Based on midbrain-generated FFR results of Zan et al. (2019), it is hypothesized 

that the cortical high-gamma response to foreground speech decreases as SNR 

decreases. It is also expected that the background response increases as SNR decreases. 

Furthermore, since earlier studies have shown an enlargement of low frequency cortical 

auditory responses in older listeners, e.g., (Presacco et al. 2016a), the same effect may 

hold true for the high frequency cortical responses analyzed here.  
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 Materials and Methods  

 Dataset 

The dataset was collected previously and has already been analyzed using other 

methods (Presacco et al. 2016a, 2016b).  

 Subjects 

A total number of 32 subjects participated in the experiment, with 17 younger 

adults aged between 18 and 27 (3 male), and with 15 older adults aged from 61 to 73 

(5 male). All participants were recruited from the greater Washington area (Maryland, 

Virginia and Washington D.C.) and had clinically normal hearing (see Presacco et al. 

2016a, 2016b for details). Written informed consent was obtained from each subject 

before the experiment. The experiment protocol and all procedures were reviewed and 

approved by Institutional Review Board of the University of Maryland.  

 Stimuli and recording  

For each subject, the magnetic fields responses were recorded in an 

electromagnetically shielded room (insert manufacturer and location) by a KIT 157-

channel MEG scanner (Kanazawa, Japan), sampled at 1000 Hz with online low-pass 

filter of cut-off frequency 200 Hz. The stimuli were continuous speech (a narrated 

audio book), either from a solo speaker or a mixture of two concurrent speakers. The 

solo-speaker speech stimuli were one-minute segments from the audiobook, The 

Legend of Sleepy Hallow by Washington Irving, narrated by a male speaker 

(http://www.audiobooktreasury.com/legend-of-sleepy-hollow/). The mixture was 
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composed of foreground speech to which the subject was instructed to attend and a 

background, which served as a distractor. The foreground speech was from the same 

source as the clean speech condition. The background stimuli were one-minute 

segments from the audiobook, A Christmas Carol by Charles Dickens, narrated by a 

female speaker (http://www.audiobooktreasury.com/a-christmas-carol-by-charles-

dickens-free-audio-book/). The foreground and background speech segments were 

mixed together at four different power ratios, of 3 dB, 0 dB, -3 dB and -6 dB. The 

foreground speech used in -6 dB condition and the clean speech were the identical, and 

the clean speech was only presented after all the mixed speech stimuli had been 

presented. The stimuli were all presented to the subjects with E-A-RLINK earphones 

attached with sound tubing at about 70-dB sound pressure. More details of the 

experiment can be found in (Presacco et al. 2016a, 2016b). 

 Cortical responses across frequency bands and high-gamma 
response 

The MEG recordings were first cleaned by time-shifted principle component 

analysis (TSPCA) (de Cheveigné et al. 2007), which uses the three reference (noise) 

channels to subtract off environmental noise in the data. The denoised data were then 

feed into two separate analysis pipelines for auditory component analysis and source 

space analysis.  

Frequency bands 

Different frequency bands were analyzed to estimate the amount of information 

contained in these bands. The cutoff frequencies for these bands are 1-12 Hz, 7-13 Hz, 
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12-30 Hz, 35-45 Hz, 45-55 Hz, 65-75 Hz, 75-85 Hz, 85-95 Hz, 95-105 Hz, and 100-

115 Hz. For each band, an FIR band-pass filter with the corresponding cutoffs was 

applied to the signal. For the full high-gamma response, the 60-100 Hz frequency band 

was analyzed.  

Auditory components  

Denoising source separation (DSS) (de Cheveigné and Simon 2008b) was 

applied to the TSPCA-denoised signals to extract auditory components. The bias 

function was based on the band-passed signal. For example, for the high-gamma 

response, a bias function of band-passed 60-100 Hz response averaged across trials was 

applied. Then the signal was projected into DSS space and filtered to 60-100 Hz by an 

FIR filter. For the low-frequency speech envelope response, the signal was band-pass 

filtered to 1-12 Hz band by an FIR filter after projection to a DSS space computed by 

bias function of averaged 1-12 Hz response (Ding and Simon 2013).  

Source space high-gamma response  

Before and after each experimental session, head positions for each subject 

were recorded and used to locate the subject’s head shape in MEG coordinate 

(Brodbeck et al. 2018c). An averaged brain from FreeSurfer was then used to co-

register a single brain map to each subject’s individual digitized head shape. A source 

space with 5124 dipoles was then constructed. All these steps were done using mne-

python (Gramfort et al. 2013, 2014), described in greater detail in (Brodbeck et al. 

2018c). Finally, the TSPCA-denoised MEG sensor-space data was filtered to 60-100 

Hz for the FFR response analysis. The filtered data was then projected to source space 
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with fixed orientation by minimum norm estimate (MNE) in mne-python. A response 

matrix of size 5124 sources-by-1 min for each subject was obtained for each noise 

condition separately.  

Mutual information analysis   

Both the auditory component, represented by the first DSS component, and the 

source space responses were analyzed using a mutual information approach, which is 

called temporal mutual information function (TMIF) analysis (Chapter 4). First, both 

the speech representation and response levels were quantized into 8 bins based on 

amplitude. Then the TMIF was estimated iteratively by shifting the response forward 

by a step size of 2 ms (within a 500-ms window) and computing the mutual information 

at each time point based on the joint distribution of integer-encoded (one of eight bins) 

speech representation and the shifted response. More detailed explanations are 

contained in the previous chapter (Chapter 4). Two main speech representations are 

used, the speech waveform band-passed to 60-100 Hz for high-gamma analysis, and 

the 1-8 Hz Hilbert envelope for low-frequency response analysis. For the auditory 

component analysis, the TMIF was estimated for the first DSS component, separately 

for high-gamma response and low-frequency response, which were denoted as TMIFHG 

and TMIFlow, respectively. For the source space analysis, the TMIF was estimated 

separately for each source, for both the high-gamma response and low-frequency 

response, respectively. In competing-speaker conditions, the TMIF was estimated for 

attended speech (foreground), and unattended speech (background) separately.  
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Measurements and statistics 

For auditory component measures, MI50HG peaks for both foreground and 

background were extracted by finding the maximum value in the time range of 45 ms 

and 55 ms for each individual, and their amplitude was analyzed. For source space 

analysis, a noise floor TMIFHG was calculated by mutual information estimation 

between the response and a speech sample not used in the experiment, and then was 

used to test significance of the response across a time window of 0-100 ms and in the 

region of interest (ROI) of Heschl’s gyrus and superior-temporal gyrus (Brodbeck et 

al. 2018b). One-sample t-tests were used for virtual dipoles and time points, and the 

multiple comparisons were compensated by threshold-free cluster enhancement 

(TFCE) (Smith and Nichols 2009).  

 Results  

 Cortical responses across frequencies 

TMIFs were estimated for the auditory component, separately for a large set of 

frequency bands ranging from 1-12 Hz to 100-115 Hz (example shown in figure 5.1B). 

For each frequency band, the peak value in the time range of 20-150 ms was compared 

across subjects. As seen in Figure 5.1C and 5.1D, younger and older listeners appear 

to show approximately equal levels for all bands but the lowest. Even for the largest 

apparent age difference, the frequency bands centered at 70, 80, 90 and 100 Hz for the 

-6 dB SNR condition, the group difference was not significant (p > 0.05). An ANOVA 

test over all frequency bands, MI ~ age ×  frequency, showed significant age × 

frequency interaction (F(1, 326) = 9.58, p = 0.002), suggesting a different mutual 
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information trend as a function of frequency band for older listeners. To examine age 

effects on low frequency (< 21 Hz) and high frequency (>=21 Hz), respectively, 

separate linear models of MI ~ age × frequency were tested on the subset data with 

these two frequency restrictions. Results showed that for low frequency model 

(significant in itself with F(3, 62) = 16.92, p < 0.001), older listeners had a significant 

0.05 bits larger mutual information than younger listeners on average (t(62) = 2.64, p = 

0.010), and mutual information significantly decreased at a rate of 0.01 bits/Hz 

averaged over the two groups (t(62) = -5.90, p < 0.001). It also demonstrated a significant 

age × frequency interaction with coefficient of -0.005 bits/Hz with younger listeners 

as reference for age factor (t(95) = -2.13, p = 0.037), suggesting the decreasing slope for 

MI-by-frequency is significantly steeper (0.005 bits/Hz steeper) for older listeners. For 

frequencies above or equal to 21 Hz, a same linear model was constructed (significant 

in itself with F(3, 260) = 3.70, p = 0.012). The testing results showed that no significant 

age (t(260) = 0.51, p = 0.609) or frequency (t(260) = 0.37, p = 0.709) effects, and that no 

significant age ×  frequency interaction was observed (t(260) = -1.45, p = 0.147), 

suggesting that older listeners had comparable responses in high frequency bands as in 

younger listeners. 
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Figure 5.1. Mutual information across frequency bands 

Figure 5.1. Mutual information across frequency bands. A. The magnetic field 

distribution associated with an auditory component for a representative subject. B. An 

example mutual information function. C. Mutual information trend as a function of 

frequency in quiet, 3 dB and -6 dB condition for foreground speech. Older listeners 

have stronger response and a steeper decreasing rate, than younger listeners in low 

frequency bands, 1-12 Hz and 7-13 Hz, but comparable responses in frequency bands 

above the former two. D. Mutual information trend for background speech. 
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 Cortical high-gamma response  

Auditory component TMIFHG 

The TMIFHG was estimated based on the response of the auditory component 

for the frequency band 60-100 Hz (Figure 5.2A and 5.2B)  

 

 
Figure 5.2. TMIFs of response in high-gamma band (60-100 Hz).   

Figure 5.2. TMIFs from responses in the high-gamma band (60-100 Hz). A. 

TMIFHG for speech in quiet and for foreground speech. Younger listeners (blue) and 

older (red) show both showed peak responses at around 50 ms. B. TMIF for background 

speech. The peak latency remains near 50 ms. C. The magnetic field distribution 
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associated with an auditory component for a representative subject. D. MI50HG 

amplitude for foreground speech for all conditions, with younger in blue and older in 

red boxplots. E. MI50HG amplitude for background speech. 

 

Compared with conventional slow cortical TMIF, the TMIFHG only has one 

peak, with latency around 50 ms, named here the MI50HG. When compared between 

age groups for each condition and attentional focus (Figure 5.2D and 5.2E) no 

significant difference was found (p > 0.05).  

 

To test whether foreground and background MI50HG was correlated and the 

aging effects, an ANOVA test was performed on MI50HG (foreground) ~ MI50HG 

(background) × age. The results showed a significant MI50HG (background) × age 

interaction (F(1, 124) = 16.65, p < 0.001). Linear models were constructed for testing the 

prediction slope difference between groups. A linear model of MI50HG(FG) ~ 

MI50HG(BG) × age was tested. The linear model was significant (F(3, 124) = 37.06, p < 

0.001). Consistent with ANOVA test, results showed that MI50HG(BG) had a 

statistically significant prediction power at a rate of 1.15 (t(124) = 4.25, p < 0.001), and 

that older listeners showed a significantly shallower (1.60 shallower than younger) 

prediction slope (t(124) = 4.08, p < 0.001). Then a linear model of MI50HG (foreground) 

~ MI50HG (background) was tested separately for each group to examine the prediction 

slope in each group. The linear model shows a slope of 2.75 (t = 10.04, p < 0.001) for 

younger listeners and a slope of 1.15 (t = 4.07, p < 0.001) for older.  
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Given testing results from ANOVA and linear regression, Pearson’s correlation 

test was performed to test MI50HG foreground-background correlation for each group 

for different SNR conditions with false discovery rate correction for multiple 

comparisons (Benjamini and Hochberg 1995). The results are shown in figure 5.3. 

Younger listeners showed significant correlations for all SNR conditions, while older 

listeners showed significant correlations in all but -3 dB condition. Figure 5.3A showed 

the scatter plot of MI50HG averaged across SNR levels (r = 0.95, p < 0.001 for younger 

listeners, r = 0.65, p = 0.006 for older listeners). 

 

 
Figure 5.3. Relationship between MI50HG of foreground and background  

Figure 5.3. Relationship between MI50HG of foreground and background. Both 

younger (blue) and older (red) listeners showed significant correlations, but the 

younger had a higher prediction slope. A. Foreground-background MI50HG 

relationships demonstrated for the single condition of +3 dB SNR for younger (left) 
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and older (right). B. Correlation coefficients at all SNR levels. Stars indicates the 

statistical significance (* p < 0.05, ** p < 0.01, *** p < 0.001).   

TMIF for source space analysis  

To investigate whether the neural sources localize to auditory cortex, the 

TMIFHG for 5124 sources across the whole brain was estimated for the cleans speech 

condition (Figure 5.4). By statistical testing mentioned in the methods section, the 

results showed significant responses for both younger (p<0.001) and older listeners 

(p<0.001). Independent samples t-tests showed no significant difference between the 

two groups (p>0.05).  

 
Figure 5.4. Source space TMIF in the clean speech condition 
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Figure 5.4. Source space TMIF in the clean speech condition. Neural sources 

for the MI50FFR localized to auditory cortex for both younger and older listeners. 

Statistical test on response in the ROI region showed significant response against noise 

floor for both groups. A. TMIF for all 5124 sources. B. MI50HG distribution around the 

whole brain. C. t-values of significance test across ROI region. D. p-values across the 

ROI.  

 Cortical low-frequency response  

The mutual information for the cortical low-frequency response was also 

examined, to compare with the cortical high-gamma response results above. Both the 

MI50TRF and MI100TRF low-frequency response peaks were tested for associations 

between foreground and background measures with false discovery rate correction for 

multiple comparisons across SNR conditions. The results showed that the younger 

listeners had significant correlations for the MI50TRF in the two worst noise conditions, 

-3 dB (r = 0.66, p = 0.015) and -6 dB (r = 0.59, p = 0.026). Older listeners did not show 

such significance (p>0.05) for any condition, nor did the MI100TRF, for either group.  
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Figure 5.5. Relationship between foreground and background low-frequency speech envelope 

Figure 5.5. Relationship between foreground and background low-frequency 

speech envelope (1-8 Hz) mutual information representations in cortex in an example 

condition of -6 dB SNR. A. Younger listeners show a significant correlation between 

responses to foreground and background (left plot, filled blue circles), while older 

listeners do not show such a relationship (right plot, empty red circles). B. No 

significant correlation is found for the MI100TRF in the same condition for either group. 

C. r-values for each condition.  
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 Noise level effects 

Auditory DSS component  

To examine the effect of noise level on the MI50HG, a linear regression was 

performed for MI50HG-by-SNR for each subject and for foreground and background 

speech, respectively (Figure 5.6). The slope was tested against 0 by a one-tailed t-test 

separately for younger and older listeners. The results for foreground showed both 

groups have significantly positive slope in the direction of increasing SNR (t = 1.79, p 

= 0.046 for younger; t = 2.54, p = 0.012 for older). However, the results for background 

speech showed significantly negative slope in the direction of increasing SNR only for 

older listeners (t = -0.10, p = 0.167 for younger and t = -1.84, p = 0.044 for older).  

 
Figure 5.6. MI50HG amplitude as a function of SNR level for each age group 

Figure 5.6. MI50HG amplitude as a function of SNR level for each age group. 

A. Foreground MI50HG amplitude as a function of noise level for younger (blue) older 

(red) listeners. B. The MI-by-SNR slopes (e.g. of the regression indicated in A) show 

decreasing trends as SNR worsens for both age groups. Older listeners appear to show 
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a steeper decrease than younger listeners, but the difference is not significant. C. 

Background MI50HG amplitude at the fundamental frequency as a function of noise 

level. The background showed an increasing trend as SNR decreases, or as background 

sound level increases. D. The MI-by-SNR slope was significantly smaller than zero for 

older listeners in red, but not significant for younger listeners. Stars indicates the slope 

significance against zero (*p < 0.05).  

 Discussion  
These results show a cortical high-gamma response, time-locked to the relevant 

features of continuous speech, with a peak latency of around 50 ms and localized to 

auditory cortical areas. The results also strongly suggest that any cortical exaggerated 

representation seen for older listeners in time-locked low-frequency responses are not 

present at higher frequencies. Nevertheless, the foreground-background MI50HG slope 

is significantly decreased by aging. This cortical response is affected by noise level: 

specifically, the foreground MI50HG decreases with worsening SNR for both age 

groups. In contrast, the background MI50HG grows with increasing noise level but only 

for older listeners.  

 Cortical representation across frequencies and high-gamma 
response 

According to previous studies, older listeners have exaggerated cortical 

responses to continuous speech (Presacco et al. 2016a, 2016b). By examining 

frequency bands from theta to high gamma, the results show that this 

overrepresentation is only present for the low-frequency response to speech envelope, 
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e.g., 1-12 Hz. Older listeners have comparable responses to younger listeners in the 

beta and gamma bands. This suggests that aging does not affect different processing 

rates in cortex in the same way. On the other hand, a recent study showed lower mutual 

information for midbrain-based FFR for older listeners (Zan et al. 2019; Chapter 3). 

Here, since no group difference was seen for frequency bands between 20 and 100 Hz, 

it may also suggest that the reduction for older listeners in the midbrain representation 

does not directly affect the cortical representation at the same frequencies. 

 

Conventional auditory high-gamma responses are defined as event-related 

changes in spectral power in the 60-150 Hz frequency range (Cervenka et al. 2011). 

However, after examination of frequencies ranges from 1 to 140 Hz, for gamma-band 

response, by the proposed approach, analysis results demonstrate significant responses 

only in the frequency range of 60-100 Hz (Figure 5.1). Therefore, in the study, high-

gamma response is defined in the frequency range of 60-100 Hz. The TMIFHG results 

show a consistent response peak around 50 ms across all SNR levels. Demonstrated by 

electrocorticographic studies, conventional auditory high-gamma responses (60-150 

Hz) occur approximately 100 ms (75-120 ms) after stimulus presentation onset in 

response to  phonemes (Crone et al. 2001), tones (Edwards et al. 2005) and click trains 

(Brugge et al. 2009; Howard et al. 2000). By examining cortical sources, recent MEG 

studies show clear cortical contributions to FFR in response to tones with a latency of 

48-60 ms (Coffey et al. 2016a). The time-locked response to continuous speech shown 

in this study by TMIF demonstrates similar response latency. The neural sources 

localize to Heschl’s gyrus and superior-temporal gyrus, which is consistent with the 
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previous studies (Coffey et al. 2016a, 2017; Steinschneider et al. 2011; Trautner et al. 

2006).  

 Aging effects on high-gamma response 

The current study then further examined the aging effects on high-gamma 

response. The amount of information contained in foreground response decreases as 

worsening SNR for both age groups. However, by demonstrating a significant increase 

in background information as SNR decreased only for older listeners, the results 

suggested the high-gamma response for background speech for older listeners is more 

easily affected by noise than younger listeners. Notice that to create different SNR 

conditions, sound level of foreground is fixed, and the SNR is decreased by increasing 

the background sound level. Therefore, the background response is expected to grow 

as worsening SNR unless it is successfully suppressed. The results, which 

demonstrated background response growth only for older listeners but not for younger 

listeners, suggested that the noise conditions are more challenging for older listeners, 

and the younger listeners are better at representing the actual acoustics than older 

listeners. The results of foreground MI50HG also agree with the previous findings in 

midbrain FFR, where the amplitude decreases with worsening noise level (Anderson et 

al. 2012; Presacco et al. 2016a, 2016b; Zan et al. 2019; Chapter 3), and the older 

listeners may spend more efforts suppressing the background (Presacco et al. 2016a, 

2016b). According to previous studies, high-gamma responses are associated with 

multiple functions of auditory processing, including sound discrimination (Crone et al. 

2001; Edwards et al. 2005; Fishman et al. 2004), phonological processing (Chang et al. 
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2010; Steinschneider et al. 2011), auditory selective attention (Herrmann and Knight 

2001; Ray et al. 2008), auditory verbal memory (Herrmann et al. 2004; Kaiser et al. 

2003) and auditory comprehension (Towle et al. 2008). The results of current study 

support the evidence of age-related deficits in selective attention in high-gamma 

response to adverse listening conditions. 

 

The current analysis also shows a decreased foreground-background correlation 

in cortical high-gamma response for older listeners, compared with younger listeners. 

One possible reason would be that the neural oscillations in the aging cortex may 

contain more noise than younger (Presacco et al. 2016a).  

 Noise level effects on high-gamma response 

In the results, the amount of information in the cortical high-gamma for 

foreground decreases as worsening SNR for both younger and older listeners, which 

are consistent with previous findings in midbrain FFR (Presacco et al. 2016, 2016; Zan 

et al. 2019; Chapter 3). The similar pattern against SNR for midbrain and cortex 

suggests a limited cortical modulation for representation of the acoustics. However, the 

finding that the older listeners also show an increasing trend for background as SNR 

worsens suggests that the suppression of background may not only happen in the low-

frequency response (Ding and Simon 2012b, 2013), but may also happen around the 

fundamental frequency. And the older listeners are worse at background suppression 

in high-gamma band than younger listeners. This also suggests a selective attention 

starting at 50 ms with reference to the stimulus onset, which may degrade as aging.  
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 Summary and future work  

 Summary and discussion  

 Information theory and brain information processing  

This dissertation studies auditory processing and the effects of aging by 

informational measures adopted and developed from information theory (Shannon 

1948). Chapter 3 applies mutual information to study the amount of information 

contained in subcortical FFR. Chapter 4 modifies mutual information estimates to 

reveal the amount of information processed across time phase-locked to continuous 

speech envelope. Chapter 5 applies the same method to study information contained in 

higher frequency bands, with reference to low frequency of 1-12 Hz as in Chapter 4 

and with emphasis on 60-100 Hz response, and also extends the method into source 

space analysis. Behind these studies is the analog of information processing for 

communication system and the human brain. According to John von Neumann (1958), 

the transmission error rate for a communication channel can be reduced by increasing 

the transmission redundancy, and this might also be a basis for the reliability of the 

brain information processing. The results from the dissertation support that for younger 

listeners, higher redundancy, as measured by mutual information may contribute to 

decreased error rate in auditory cortical representation. However, for older listeners, 

the increased error rate for subcortical representation may be compensated by an 

increased redundancy in cortical representation.  
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In Chapter 4, based on the MI peak latency, responses at ~50, ~100 and ~200 

ms phase-locked to the speech envelope are named MI50, MI100 and MI200, which 

correspond to M50, M100 and M200, respectively in TRF. According to previous 

electrophysiological studies, M50 (MI50) is pre-attentive and more responsive for 

acoustics, and M100 (MI100) is more attentional modulated than M50 (Ding and 

Simon 2012b). Furthermore, shown by MEG studies, selective listening to sound in a 

complex auditory scene modulates longer-latency (~100-250 ms) responses, i.e., 

MI100 and MI200 in auditory cortex but not the shorter latency response (50 ms) (Ding 

and Simon 2012a; Gutschalk et al. 2008; Okamoto et al. 2011). Previous studies also 

show that P2, with the same latency as MI200, is modulated by spectral complexity of 

sounds (Shahin et al. 2007), associates with training-related neural plasticity change 

(Tremblay et al. 2001, 2014), and relates to auditory working memory (Lefebvre et al. 

2005).  

 Age-related changes in speech representation in both cortical and 
subcortical responses 

The three studies from Chapter 3 to Chapter 5 demonstrate age-related deficits 

in speech processing in both subcortical and cortical representations. Chapter 3 shows 

that the aging midbrain processes less information in FFR than younger listeners and 

is affected by informational masking. Chapter 4 shows age-related enlargement in the 

response to low-frequency speech envelope. Chapter 5 demonstrates in high-gamma 

band, the age-related enlargement from lower frequencies is absent. By the non-linear 

measure of mutual information, age-related changes are revealed for both subcortical 

and cortical responses that are otherwise hidden by linear methods. In Chapter 3, the 



 

 
 

109 
 

aging midbrain benefits from changing background speech from English to Dutch 

while the younger does not. This is not seen by a RMS measure (Presacco et al. 2016b). 

Chapter 4 demonstrates by TMIF that the aging cortex processes more information for 

all response latencies, i.e., MI50, MI100 and MI200. However, TRF analysis on the 

same dataset only shows significant age-related enlargement in M100 (Brodbeck et al. 

2018b). Chapter 5 demonstrates age-related changes in high-gamma responses that no 

linear methods have found in known published works.  

 

Chapter 3 includes Dutch speech as informational masking because Dutch is 

relatively close to English in terms of phonological inventory and prosodic contours 

(Collier and Hart 1975). This study intends to test the subcortical representation fidelity 

of the speech syllable without effect of attention. During the experiment, subjects were 

watching a quiet movie while listening to the presented stimuli. Auditory segregation 

of speech from noise/speech is a relatively complicated problem. It requires both 

bottom-up acoustic cues, such as spatial cues, pitch cues and timbre cues (Brungart et 

al. 2001; Shamma 2001) and top-down attention (Ding and Simon 2012b, 2012a; 

Kerlin et al. 2010) and prior knowledge about sound streams (Wang et al. 2019). Here 

by comparison between English and Dutch, the segregation problem is investigated by 

examining the effect of language, a higher level of feature. On the other hand, attention 

is required for studies in Chapter 4 and 5.  
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 Future work  

 Informational measures of information transduction between 
subcortical and cortical responses and the effects of aging 

Throughout all three studies, mutual information is applied to estimate the 

amount of information contained in the response about the stimulus. However, brain 

information processing includes information perception, transduction, coordination, 

storage and information creation (Rabinovich et al. 2012). For auditory information 

processing, it remains an open question that how much information is transmitted from 

subcortical to cortical auditory structures across different frequency bands. A previous 

study with simultaneous MEG and EEG has shown complementary effects for the two 

modality in studying radial and tangential long-latency (low-frequency) neural 

activities, which has both cortical and subcortical contributions (Shahin et al. 2007). 

Coffey et al. (2016) and Chapter 5 in current research have shown the feasibility of 

MEG recordings of cortical high frequency responses. EEG, on the other hand, has long 

been utilized in subcortical FFR studies (Anderson et al. 2012; Coffey et al. 2017; 

Presacco et al. 2016a). However, few studies have applied mutual information to study 

the amount of information transmitted from subcortical to cortical neural sources 

(Bidelman et al. 2014). Furthermore, even though discussions of MEG and EEG may 

clarify sensitivity difference with respect to the measured neural sources 

(Lopes da Silva 2013; Shahin et al. 2007), it remains an open question how much 

information in the response recordings by M/EEG comes from subcortical or cortical 

neural sources. Based on the developed methods described in Chapter 4 and 5, together 

with source localization (Gramfort et al. 2013, 2014) and information processing 
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inequality (Cover and Thomas 1991), the question of information transduction between 

subcortical and cortical neural sources can be attempted by a two-step random process, 

𝑋 → 𝑌 �¶ → 𝑌�·¸, where 𝑋 is stimulus representation, 𝑌 �¶ is subcortical response, and 

𝑌�·¸ is cortical response. An extra model of 𝑌 �¶ and 𝑌�·¸ as a linear combination of 

𝑌6B¹  and 𝑌BB¹  might be needed to link them to MEG and EEG recordings. The 

combination parameters can be solved by examining the source localization results.  
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Appendices 

The mutual information results without averaging polarities from Chapter 3.  

 

Analogously to the case of averaged polarities presented above, even without 

such polarity averaging, older listeners still demonstrate a slower fall-off in information 

as a function of SNR when the noise masker is Dutch than for English.   

 

Information in amplitude of FFR without averaging polarities 

For amplitude information, a regression line was fitted as a function of SNR to 

reduce within-subject variance. Using a one-tailed t-test on the y-intercept (effective 

mutual information benefit at 3 dB SNR) of the regression line against zero, the mutual 

information in amplitude benefit from the Dutch masker over the English masker is 

significantly higher for older listeners in the transition region ( 𝑡()�) = 1.80, 𝑝 =

0.046 ), but not the steady-state region ( 𝑡()�) = 1.61, 𝑝 = 0.065 ). No significant 

benefit is found for younger listeners in either region (𝑡()�) = 1.04, 𝑝 = 0.156 and 

𝑡()�) = 0.16, 𝑝 = 0.439  for transition and steady-state region, respectively). The 

regression slope is not significantly positive or negative for either group (𝑝 > 0.05 by 

two-tailed t-tests), as seen in the bar plots in the right panels of figure A1C and A1D. 
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Figure A1. Mutual information of amplitude response by masker type and 

response region for younger listeners in blue (English) and green (Dutch) and older in 

red (English) and gray (Dutch). A and B demonstrate the mutual information as a 

function of SNR in the transition and steady-stage regions, respectively. In the steady-

state region, group differences are significant for only the English masker, indicated by 

asterisks. C and D illustrate the mutual information difference between masker types 

(denoted 𝐼��$�� − 𝐼B���4 � ) in the transition region and steady-state region, 
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respectively. In each plot, the left panel displays information as a function of SNR, and 

the right panel displays a bar plot showing the slopes of the linear fits. The y-intercepts 

(corresponding to the fit at 3 dB SNR) are tested against 0 bits. Older listeners show 

significant benefit from the Dutch masker over English (denoted by asterisk), but only 

in the transition region. Error bars in all plots indicate SEM. (∗ 𝑝 < 0.05) 

 

Information in phase of FFR without averaging polarities 

Similarly, for phase information, a regression line was fitted as a function of 

SNR to reduce within-subject variance. Using a one-tailed t-test on the y-intercept 

(effective mutual information benefit at 3 dB SNR) of the regression line against zero, 

the mutual information in phase benefit from the Dutch masker over the English masker 

is significantly higher for older listeners in the transition region (𝑡()�) = 1.90, 𝑝 =

0.039 ), but not the steady-state region ( 𝑡()�) = 1.45, 𝑝 = 0.085 ). No significant 

benefit is found for younger listeners in either region (𝑡()�) = 1.04, 𝑝 = 0.156 and 

𝑡()�) = 0.25, 𝑝 = 0.401  for transition and steady-state region, respectively). The 

regression slope is not significantly positive or negative for either group (𝑝 > 0.05 by 

two-tailed t-tests), as seen in the bar plots in the right panels of figure A2C and A2D. 
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Figure A2. Mutual information of phase response by masker type and response 

region for younger listeners in blue (English) and green (Dutch) and older in red 

(English) and gray (Dutch). A and B demonstrate the mutual information as a function 

of SNR in the transition and steady-stage regions, respectively. In the steady-state 

region, group differences are significant for only English masker, indicated by 

asterisks. C and D illustrate the mutual information difference between masker types 

(denoted 𝐼��$�� − 𝐼B���4 � ) in the transition region and steady-state region, 
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respectively. In each plot, the left panel displays information as a function of SNR, and 

the right panel displays a bar plot showing the slopes of the linear fits. The y-intercepts 

(corresponding to the fit at 3 dB SNR) are tested against 0 bits. Older listeners show 

significant benefit from the Dutch masker over English (denoted by asterisk), but only 

in the transition region. Error bars in all plots indicate SEM. (∗ 𝑝 < 0.05) 

 

Table A1. Amplitude information: one-tailed t-test (younger > older) results 

applied to the fitted y-intercepts (3 dB values) and slopes from the linear regression 

analysis of mutual information (for response amplitude) as a function of SNR, for each 

harmonic. p-values are corrected for multiple comparisons by FDR correction. 

Boldfaced entries indicate the corresponding tests are statistically significant. 

 
Harmonic 

(Hz) 
Quiet 
(Y>O) 

English masker (Y>O) Dutch masker (Y>O) 
y-intercept Slope y-intercept slope 

t(30) p t(30) p t(30) p t(30) p t(30) p 
100 0.982 0.167 1.700 0.050 1.287 0.104 1.238 0.113 1.254 0.110 
200 1.544 0.080 1.918 0.039 2.583 0.011 1.338 0.113 1.619 0.087 
300 1.862 0.054 2.161 0.029 2.060 0.029 2.138 0.041 2.185 0.087 
400 2.441 0.021 2.380 0.024 2.699 0.011 1.795 0.062 1.670 0.087 
500 3.466 0.002 3.640 0.003 3.612 0.002 2.247 0.041 1.696 0.087 
600 3.536 0.002 3.370 0.003 3.546 0.002 2.168 0.041 1.281 0.110 

 
 

Table A2. Phase information: one-tailed t-test (younger > older) results applied 

to the fitted y-intercepts (3 dB values) and slopes from the linear regression analysis of 

mutual information (for response phase) as a function of SNR, for each harmonic. p-

values are corrected for multiple comparisons by FDR correction. Boldfaced entries 

indicate the corresponding tests are statistically significant. 
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Harmonic 
(Hz) 

Quiet 
(Y>O) 

English masker (Y>O) Dutch masker (Y>O) 
y-intercept slope y-intercept slope 

t(30) p t(30) p t(30) p t(30) p t(30) p 
100 1.005 0.161 1.758 0.044 1.334 0.096 1.313 0.100 1.302 0.101 
200 1.514 0.084 2.047 0.030 1.962 0.035 1.782 0.051 1.947 0.061 
300 1.822 0.059 2.300 0.021 2.008 0.035 2.199 0.034 2.167 0.061 
400 2.400 0.023 2.537 0.017 2.512 0.018 2.088 0.034 2.054 0.061 
500 3.653 0.001 3.865 0.001 3.641 0.002 2.204 0.034 1.556 0.081 
600 3.701 0.001 3.677 0.001 3.904 0.001 2.619 0.034 1.533 0.081 
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