(m(8,)+h(8, +7))0, - (m(8,)+ (6, + 1) &, - (1, (6,)+ (6, + m))

= h, (6, uy, +h (0, + myw,, +h(0,))uy +h (6, + m)u,, —u,

where &;, i=1..5 are defined in Reference 6, and are a function of &, only.

1.4 Computational Methods

Computational simulations of the three degree-of-freedom model and the one
degree-of-freedom model were performed using the mathematical software package
MATLAB. To compute the trajectories of the dynamic equations, the function
ode23 was used to integrate the ordinary differential equations using second and
third order Runge-Kutta algorithms.  Several optimization problems were
demonstrated using the fmin (unconstrained scalar optimization) and fimins
(unconstrained optimization using simplex search algorithm) functions. The key

MATLAB programs used are included in Appendix B.

1.5 Summary of Results

In Chapter 2, control of the one degree-of-freedom model is studied. In that
chapter, it is demonstrated that successively complex cycling performance
optimization problems can be formulated and solved, with successively better
results. This serves as a model for learning locomotive behavior, in that the
behavior is simple at first but can be improved through increasingly complex
coordination of the limbs. In Chapter 3, control strategies for the three degree-of-
freedom model are examined. The significant effects of the ankle angles on the rest

of the model’s dynamics lead to utilization of a fixed-ankle strategy. Through



analysis of the physical limits of the foot and analysis of the dynamic equations,
regions are identified in which the foot should be constrained for effective cycling.
Feedback linearization is used to show the ideal input torque profile for achieving a
constant acceleration, and for identifying the ankle angle resulting in the minimal
effort to complete a full cycle. Finally, in Chapter 4, results are developed for
recumbent cycling and compared to upright cycling. Chapter 5 summarizes the

work in this thesis, and presents suggestions for future extensions of this work.
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Chapter 2 Analysis of the One Degree-of-Freedom Model

2.1 Introduction

In this chapter, control strategies for pedaling a bicycle as modeled by the
One Degree-of-Freedom system presented in section 1.3.2 are examined. The
response to both zero and nominal bang-bang input is presented. Chapter 1
develops an argument that locomotive behavior is learnable and can be
parameterized; in this chapter, the process of learning effective cycling behavior is
modeled through a series of increasingly complex optimization problems which

identify the key parameters and provide some intuitive results.

2.2 Zero-Input Response

First, the response of the One Degree-of-Freedom model with zero input is
examined. The zero-input response shows the effects of gravity on the system, and
shows the minimum input magnitude required to overcome those effects. The zero
input behavior of the One Degree-of-Freedom system was examined under the
following initially stationary conditions:

6, €[0,27]
94(’0) =0
0,(1,)=0
u, =0

where 6, is the cycle crank angle as shown in Figure 1.3. Except at two

equilibrium points, any initial crank angle leads to a periodic acceleration in the
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Figure 2.1: Crank Angle Acceleration, Frictionless system
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absence of any friction, as shown in Figure 2.1. Consequently, the crank angle
oscillates back and forth about its initial crank value. The farther the initial crank
angle was from an equilibrium point, the greater the magnitude of the initial
acceleration, and thus the greater the magnitude of the periodic acceleration. The
equilibrium points can be found by realizing that for the given initial conditions, the

model’s dynamic equation (section 1.3.2) reduces to

5 _ (0D +h(8,+ )
*Th(0)+h(6,+ )

For the crank arm to remain stationary, the following relation must hold:
h(6,) = h(6, +7)

and the crank angle 6; which solves this equation defines-the equilibrium points.

The solution to this equation is based solely on the geometric relationship between

61, &, and 64. Since h; is the only term of the dynamics that accounts for gravity,

[Ref. 6, eq. 2.3.21], the interpretation of an equilibrium point is a crank angle

12



position such that the legs and crank are balanced with respect to gravity. Any
imbalance absent a forced input causes the crank to move toward the equilibrium
angles. The acceleration profiles in Figure 2.1 were computed for a frictionless
system; inclusion of a realistic non-zero friction term, particularly one which is a
function of the crank velocity or acceleration, would obviously cause the
acceleration to decay over time. Various types of friction can be represented
through the friction term up, such as

Constant friction

a
Linear viscous damping ,394
Air drag YA
Flywheel inertia 56

4

Appropriate values for the friction coefficients can be found in Reference 8. Figure
2.2 shows the equilibrium points versus the seat position for the parameter set
detailed in Appendix A, where the seat position is defined by the angle & pictured in

Figure 1.3. The plot labels above the curves in Figure 2.2 provide qualitative

330 1 Recumbent Upright Forward

Equilibrium Angles (deg)
N
o
a

Seat Position (deg)

Figure 2.2: One Degree of Freedom Model Equilibria vs. Seat Position
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descriptions of the position of the cyclist. The upright position is the normal
position of a cyclist, seated above the crank center. In the recumbent position, the
rider is seated behind the crank center (this position is utilized for several types of

stationary exercise bicycles), and in the forward position, the rider is seated ahead

of the crank center.

2.3 Bang-Bang Input Response

In Reference 6, Chapter 3, it was shown that the control which achieved a
full rotation of the crank of the One Degree-of-Freedom system in minimum time
consists of maximum extension torque at the hip between the minimum and
maximum hip angle, a maximum flexion torque at the hip between the maximum
and minimum hip angle, a maximum extension torque at the knee between the
minimum and maximum knee angle, and a maximum flexion torque at the knee
between the maximum and minimum knee anglel. This may be expressed more
specifically as

U, for6, <6,<6,
U, forg, <6,<06,

U, for6, <6,<6,
4= for6, <6,<6,

! An update to the results in Reference 6 is shown in Appendix C.
14




where 7 is the hip-crank axis angle, and where

ghm = H_:'HI(H_:)> 6,(6,) V0,
6, =6,|6.(6,)<6.(8,) V6,

and where the inputs are bounded, i.e.

JU_,, constant, finite such that

Un | S Unaxs (U | S U
U 1S Unaxs Uk, | S Unax
Ui |5 Upae, Ui | S Ui
Ui |2 Upaxs U | S Upna

The left knee angle, defined as 6, + 7— 6,, reaches a minimum at £—- 7 and a
maximum at 3£ - 7 [Ref. 6, section 2.3]. A finite solution trajectory is guaranteed
if the following constraint [Ref. 6, section 3.2] is met:

(A (8,)+ 1 (8, + m)) + By (8, )y, +Ry( 8, + 7ty + h (6, )ty +hy( 6, + Ty, ~up >0 V6,

An example of the acceleration profile with bang-bang input is provided in Figure
2.3. Simulations were configured to provide the inputs according to the
conditions listed above. For small input magnitudes, the input was not enough to
overcome the zero-input response of the system noted in the previous section, and
thus full-rotation forward cycling was not achieved. This is in accordance with the
condition 3.2.10 in Reference 6, which states that the input magnitude has to be
enough to overcome the potential energy effects and resistance in order to induce

forward cycling. However, once past the threshold, increasing input magnitudes
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Figure 2.3: One Degree-of-Freedom Model Acceleration with Bang-Bang Input

resulted in increasingly faster full rotations of the crank angle. The joint torque

magnitudes used for the remaining analysis in this chapter are listed in Appendix A.

2.4 Learning through Optimization

In this section, the results described so far for the One Degree-of-Freedom
model are extended to simulate a human learning to pedal a bicycle. It has been
established analytically that the input providing the minimum cycle time though one
rotation of the crank is bang-bang, with the conditions mentioned in the previous
section. Given this information, we hypothesize that the joint torques required to
achieve minimal time cycling under similar but slightly different input conditions
and constraints are bang-bang in nature. Thus, to model the learning process, the

bang-bang conditions on the inputs are varied, and performance is optimized under
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those conditions. For instance, if the input is constrained to change polarity only
once, then the problem becomes finding the crank angle at which to execute the
switch. Additionally, the hip and knee inputs can be constrained to switch polarity
in a synchronized or unsynchronized fashion. Thus, the basic bang-bang profile of
the input signal does not change, but the timing of the signal does. Formulating
optimal control problems which arrive at solutions for timing the signals will model
the tuning of the motor control mechanism by the spinal cord as pictured in Figure
1.1. If it can be shown that the problems which are formulated can be solved
relatively easily, say with a simple gradient descent algorithm, then we hypothesize
that such problems can be solved in reality - i.e. in the brain-spinal cord-muscle
network. Simulation results show that performance improves as more complexity is
added to the solution by allowing greater freedom in the input constraints. This
series of problems models the human learning process in that cycling and other such
complex activities may be achieved and optimized through refined, successive steps

in coordination of the appropriate muscle groups and limbs.

2.4.1 Problem Formulation

The goal of the analysis is to minimize the following cost function:
i
J=fdt=t,-t,
to

with the following boundary conditions
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0,(t,)=6,
0,(t;)=6, +2x
0,(2,)> 0
94(tf)= free

The large number of parameters and complexity of the dynamics of the One
Degree-of-Freedom model make an analytic solution difficult to find, but problems

can be formulated to find numerical answers that provide insight into the solution.

Table 2.1: Extremal Angles of One Degree-of-Freedom Model

Angle Value at Crank Angle
min 6 13° 112°
max 6, 60° 292°
min 6 105° 230°
max 6 147° 40°
min knee angle 62° 85°
max knee angle 126° 265°

For information, Table 2.1 shows the crank angles at which the joint
extremal angles of the One Degree-of-Freedom model are attained for the

parameters in Appendix A. The knee angle in Table 2.1 is defined to be

6, +n-0,.

2.4.2 Case 1: Minimum Cycle Time with One Synchronized Hip and Knee

' ‘ Switch

The analysis is begun with the simplest case possible - switching the polarity

of the hip and knee torques only once per full rotation of the crank arm, and in a
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synchronized manner. More specifically, the hip and knee inputs are bang-bang,
can have only one of two values, and both are synchronized such that they switch
values at the same crank angle. The goal is to minimize the time to complete one
full cycle, as represented by the cost functional presented in the previous section.
The following condition is put on both the hip and knee inputs:

U, for 6,< 6,
U, for 6,> 6,

u6,)= {

with U; = - U,. Thus, the input profile will correspond to Figure 2.4.
A function computing cycle time based on the crank angle of the input
polarity switch 6, was minimized using a simplex search algorithm in MATLAB.

With synchronized hip and knee inputs, the computational results for this particular

problem, given the cyclist parameters in Appendix A, are listed in Table 2.2.

0,
U
Hip < >
Input 0
Ut *
U+
Knee . N
Input N 04 -
U
Figure 2.4: Input Schedule - Case 1
Table 2.2: Results for Case 1
£-n<6, <6, 6, <6, <¥-n
Optimal switch angle 6, 98° 278°
Levele 0.44 sec 0.44 sec
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Multiple simulation runs show that the optimal switchpoints lie in the
following ranges, given that the bang-bang input conditions listed in section 2.2

hold for the initial crank angle 6, :

'[9,,‘“% n]for@ <6, <6, .6, >%-n
9 [%—n,@hm]forﬁ <6, <6, .6, <£-7q
s [121’-— . 0, ]for@ <6, <9hm’2 77>0;.m
L[QAMT” r,]fore <6, <6, . %-n<6,_

To summarize, the optimal switch angle occurred between the crank angle at
which the minimum knee angle occurred, and the crank angle at which the
minimum 6, (hip angle) occurred, thus compromising between the nominal bang-
bang switchpoints for the hip and knee. It is easy to see why the optimal switch
angle must lie in the region it does - by switching the input torques near first
nominal bang-bang switchpoint the crank angle passes, the input closely follows the
time minimal bang-bang optimal path for more than half of the rotation of the

crank, rather than for only a small portion of the cycle.

2.4.3 Case 2: Minimum Cycle Time with One Unsynchronized Hip and Knee
Switch

The next case is similar to the first, except that the hip and knee switch

angles are now separated. The hip and knee input program is represented by:

U, for9439
thy (0) = U, for 6,> 6,
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Sknee Shp

Uz T
Hip < >
Input !
| 2
U——
U2 T
Knee - } —»
Input ! 7
4
U-

Figure 2.5: Input Schedule - Case 2

p U for6,<6
Ul )=\ for 6, 6,

Thus, the input signals follow the profile shown in Figure 2.5.

With the knee and hip inputs decoupled and switched once during the single
cycle, the computational results are presented in Table 2.3. The results show that
the optimal switchpoints are given by the following expression:

g JiTnforFon<6,<3-n
e\ F-nforf-n<6, <F-n

_ 6, for6, <6, <6,
6, for6, <6, <6,

shlp

Table 2.3: Results for Case 2

6, <6, <z-n2-n<6, <6,_|6,_ <6, <¥- |¥-n<6, <6,

112° 112° 292° 292°
6., 85° 265° 265° 85°
! rycte 0.435 0.432 0.431 0.434
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Both switchpoints occurred close to the first nominal bang-bang switchpoints
that the crank angle passed. The knee switch angle was close to the angle at which

the knee angle was minimized. The hip input occurred close to the point at which
the hip angle (&;) was minimized, indicating that the knee (as a point in space) had
reached its maximal elevation, which is an intuitive result. Additionally, there was
a slight improvement in the cycle time over Case 1, since both inputs were allowed
to switch independently. The differences in cycle times in Table 2.3 are
insignificant.

2.4.4 Case 3: Minimum Cycle Time with Two Unsynchronized Hip and Knee
Switches

To further extend the problem, the input conditions were changed to allow
two switches per cycle in both the hip and knee inputs, with the goal of further
minimizing the time for one cycle. Specifically, the input schedule for the hip and
knee inputs was changed to the following function characterized by two switch

points each

U for6<86, ,0>6,
“4ur( D=1y for 6, <656,

o [UiTor0<6, 050,
el D=y por e, <6<6

Sknee2

Again, the assumption that U; and U, are the same in magnitude and opposite in

sign remained. The computational results were as follows:
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Table 2.4: Results for Case 3

6, 122°, 297°
o, 85°, 265°
L ovcle 0.420

and the resulting input schedule resembled that in Figure 2.6.

Skneel shlpl Sknee 2 Sh:pz

Uz—l_“
Hip < , : >
Input : 5 0
: : 4
Ul—_
U,—
Knee < SN
Input : - 6,
Ul'—‘— . .

Figure 2.6: Input Schedule - Case 3

The addition of two more switchpoints into the problem helped to further
reduce the cycle time. When the two hip and knee inputs were optimized
independently, the knee switch angle stayed very close to the angle at which the
knee angle was minimized
or maximized. The hip inputs occurred very close to the points where the hip angle
(6,) was minimized or maximized, indicating that the knee (as a point in space) had
reached its maximal or minimal elevation. This is an intuitive result, in that little
input effort is wasted by forcing a joint in the opposite direction of its current

rotation. It also corresponds to the analytic results from Reference 6, Chapter 3,
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thereby computationally validating those resuits for this cycling model and set of

cycling parameters.

2.5 Conclusions

In this chapter, several aspects of cycling have been studied through the use
of the One Degree-of-Freedom model. First, given sufficient joint torque, effective
forward rotation of the crank can be induced and analyzed with the One Degree-of-
Freedom model. From analysis, it was found that the optimal control for minimum
time cycling is bang-bang input at the hips and knees with switchpoints near joint
angle extremals. Even if the input conditions are altered, the One Degree-of-
Freedom model will find optimal bang-bang switchpoints at the angles defined by
the analytic results; i.e. at the joint extremals. Through the formulation and
solution of the optimal control problems for minimum time cycling, it was shown
that the process of learning to pedal a bicycle can be modeled through a series of
solutions to increasingly difficult problems. For example, it was shown that, given
a bang-bang input profile for the joints, the cyclist can first learn where to pull up
and push down the legs, and then learn to adjust the movement of the thighs and
calves independently. Better performance - in this case a faster cycle time - is

achieved through increasingly complex coordination of the limbs.
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Chapter 3 Analysis of the Three Degree-of-Freedom System for
Upright Cycling

3.1 Introduction

In this chapter, control strategies for cycling in the upright position using the
Three Degree-of-Freedom model presented in Chapter 1 are examined. Upright
cycling is examined first because it is the most common position for pedaling a
bicycle. Again, this model is highly nonlinear and involves a large number of
parameters, making utilization of analytical techniques difficult. In Reference 6,
optimization of cycle time was not addressed due to the complexity introduced by
the ankle angle dynamics. Here, analysis of control strategies for the Three
Degree-of-Freedom model is approached from a computational perspective using a
realistic set of parameters and constraints, and incorporating known behaviors. .

The first step is to decouple the three equations composing the dynamics
from the form in section 1.3.1, in order to provide a clearer expression for the
behavior of the ankle angles and the crank angle. Next, a few straightforward
controls are attempted, but one consistent observation in all cases is the difficulty of
controlling the ankle angle and its effects on the crank dynamics. A “fixed-ankle”
approach is adopted for physical and for analytical reasons. The challenge in
controlling forward cycling for this model for the most part reduces to controlling

the ankle angles through the cycle. Several approaches are examined which narrow

25




the range in which the ankle angle lies, including the physical limitations of the
ankle angle, analysis of the terms which scale the input torques, and analysis of the
effort exerted to drive the cycle using feedback linearization. The results presented

illustrate the requirements to achieve forward cycling for this model.

3.2 Physical Limits of the Ankle Angle

The first consideration for the Three Degree-of-Freedom model is the
physical range within which the foot can move relative to the calf. Identification of
the physical range of the foot limits the scope of the analysis to that which can be
achieved in reality. The foot is not free to rotate fully through an entire range of
angles, but is constrained to a specific interval. The “knee-ankle-toe” angle

pictured in Figure 3.1, which measures the angle between the calf and the foot, is

expressed as

p=17-6,+6,
¢e[}/1,}/2]

where 6; is the ankle angle as defined in Figure 1.1, and 6; is the angle of the calf

relative to the horizontal. Thus, 6; is really the angle of the foot relative to the

calf

n -0, ankle
b O

foot

Figure 3.1: Ankle Geometry
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horizontal. The expression above can be applied to either the left or right limbs,
and, given a crank angle 6;, maps the angle between the calf and the foot ¢ into the

ankle angle 6;. Thus, this expression can be used to find the range of values for 6;
which represents the physical range of the foot. However, recall that
6, = (6,,0,)

so the values of 6; defining the physical range cannot be found by direct solution.
To define the boundaries of the physical range, we want to find the curves for 6,in
the interval [0, 2] such that ¢ = y, and ¢ = . The region between these curves
is the physical range of the ankle angle 6;. The ankle angle 6;(6, 7 can be
computed at any &,by finding solutions to the expression

(K6,.6,)-7) =(7-6,(6,,6)+6,~7) =0 y=7,7,
Computationally, this can be found by solving the expression with 8, fixed and 6;
varied until the conditions of the expression listed above are satisfied. The physical
ranges of the left ankle angle for upright cycling with the parameters listed in
Appendix A are shown in Figure 3.2; the solutions to the equation listed above
were found using MATLAB’s simplex search optimization function “fmins”. The
ranges for the right ankle are the same as those shown in Figure 3.2, but shifted

180°.
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Figure 3.2 illustrates several important points. First, recall from Figure 1.2
that €, >0 means that the foot is below the horizontal, and 6, <0 means that the
foot is above the horizontal. Thus, from Figure 3.2, the foot is freer to move when
below horizontal than above it. In fact, if the ankle is fixed throughout the cycle,
then the ankle cannot remain above the horizontal. The figure also shows that in
order for the foot to remain close to perpendicular to the caif (i.e. ¢=90°), the
ankle angle, 85, must be close to 90°, forcing the calf to be nearly parallel to the
horizontal and the foot to be nearly vertical. The curves will change slightly as the
cyclist parameters change; however, the parameters used to compute the curves in

this figure are considered to be representative of an actual cyclist.

180
150 + v= 180
y=150
120 +
y=120
80 |
60 { Y=60
g 304
h- ) y=30
2
g ° '
e 60 80 360
% 30/
«
-0 y=0
$0 +
~120 1
-150 4
-130

Crank Angle (deg)

Figure 3.2: Physical Range of Ankle Angle, Upright Cycling
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3.3 Reformulation of the Dynamic Equations

The dynamic equations for two-legged pedaling with the Three Degree-of-
Freedom cycling model are presented in section 1.3.1 and in section 2.2 of
Reference 6. The model consists of two thighs. two calves, and two ankles, with
the feet attached to the cycle pedals. The format of the dynamic equations in
Chapter 1 is not particularly useful for computation in that the three dynamic
variables - 6;, &5, O, - are included in each of the three differential equations
making up the model. To facilitate analysis and simulation, separate expressions
for each dynamic variable are required. The dynamics for the Three Degree-of-

Freedom model two-legged pedaling can be expressed in the vector form

0=7(8,0)+g(0)

where
93 . f;(033:93,93,%a94a94)
6=|6,| 7(6,6)=|1(6.6,.6.8.6,.6,)
6, /:(6,,6,,6,,6,,6,,6,)

where 6 is the angular acceleration, and u is the applied torque through the ankles,
hips, and knees. Thus, f represents the unforced angular acceleration, and g
represents the effects of the geometry on the input. Note that the f~functions are
functions of both position and velocity, whereas the g-functions are functions of
position only. Thus, the g-functions depend only on the cycle-cyclist geometry,

and not on the full state. The complete model dynamics are expressed as
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0, = £,(6,,0,,6,,6,.6,,8,) + & (6,,0,,0,)u, + &_(0,,6,,0,)u,, + &, (6:.,6,.6,)u,
+8; (05,65,60,)u,, +8, (0,,6,,6,)u, +g, (6,,6,,6,)u,

0, = £,(6:,6,,6,,0,.6,,6,) + & (6,,6,,6,)u, +&_(6:,6,,0,)u, +g; (6:,6,,6,)u,
+83, (605,6,,0)u,, + 8, (6;,6,,0,)u, +g; (6:,6,,6,)u,

0, = £,(6:,6,,6,,0,.,6,,0,) + g, (6:,6,,0)u, +g, (6,,6,,6)u, +g, (6,,6,,0,)u,
+g,, (65,0,.0)u,, +g, (6,,6,,0,)u, +g, (6,,6,,6,)u,

where
f=- 9, | ho MO - B Oy + Iy MO, T By
T () B (gl )+ (e + R )
fr= 'Qs' + - hllthIhIIZQS - huhx’zhéle' + h1,1huhl’2Q4 + hl’lh'llhllzuD
’ hl’l }5’1('(}111}11’2}71’1 )+ hl'l(-(hthZl )+ hu(hzz + hz’z )))
f - thhlllQ3 + huhzlle' - huhx’1Q4 - hllhllluD
) '(huhx’zhz'1 )+ ]11'1('(hlzhzl )+ hu(hzz + héz ))
with

Q3 =h149§+hlﬁ'92+h15.03.04
Qs' = }11’39;2 +hl'4942 +hl'59;9:1
O, = 8 + 1y 07 +(hyy + 1), +(hosB; + 1 0,)6,

where f, Q, and A functions are functions of the crank and ankle angle positions and

velocities. The g-functions are expressed as follows:
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Left Ankle terms

gsd(gs,g},94): h19hzzh1,1' hthZ‘)hl’l_ h]9hl’2h2’l + I"whxllhg':
'(hnhzlhl'l) + I’thzzhl,l' ]'111}!1'2}12'1 + huh{xh_;z

g (93,%,94)—_—. hlz(—(hl'9hZ’l) + hlllhzlg)
i h'12h21hl'1 - hllh22hl'l + huhl'zhzix - huhlllhz'z
g, (93,9;,@): hnhzzhx': - h:zh27hx’1 - hl7hl’2hZ’1 + hl7hl’1hz,2

" '(hthZlhl'l) + huhzzhxll" huhl'zhz'l + hllhl'IhZ'Z
g (93’03’04)= hlz('(hl,7h2'l) + }71’1172’7)

" hnhmhx’x - huhzzhl'l + huhnhz’1 - hu]"xllhzlz

g, (93,9;,94)2 hwhzzhxll' hthZBhI,I- hlshfzhz’1+ hlShl,th;Z
! "(h12thh1’1) + huhzzhlll' huh' h2;1+ hllhlllh'.:2
g, (93’93’94)2 hlz('(hl’shzll) + hl'lhlzx)
" huthhl'l - huhzzh'lll + huhl'2hz’1 - hHhI'IhZIZ

Right Ankle terms:

g;’ (93,03’94)2 (hwhn' huhzg)h;z
* -(hthZlhlll)+ huhzzhl’l' h]1hl'2hz’1+ huhlllh'ﬁ

g (6,,6,6,)= (Pl by ) + byl + b, - B AL,
’ '(hlzhzlhﬁ) + I"uhzzhl'x' hHhIIZhZ'l + huhl'lhz'2
g; (03793’94)= (hnhzn' hllh27)hl'2
: '(hxzhzlhx'l) + huhzzhx’l" huhx’zhz’x"' h“hx"hz’z
’ = "(I"12h21h1'7)+ hllh22h1'7+ h11h1'7hz'2' h11hx'2hz’7
£ (6,86 (ol )+ Bydoh - Bkl hyiR,
g;u(93’03’94) (hlSth - hnhzs) hx'z

) ‘(hlzhzlh;l) + huhzzhxll" huhllzl"zq+ huhflhz'z
(6,60, = rafuuis )+ Puhuhiy ¥ hulishty - bty
AR -(hlZ}Elhl’l)"- hllh22h1'1- hllhl,2h‘2,1+ }"uh;'lhz'z

4
&,
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Crank angle terms

g2.(6,,6,,6,)= ('(hl9hn)+ hllh‘zQ)hlll

R (Aol ) — Wby bl - byl + bRy,
g, (6,,6,.,6,)= Ay (ol ) + hh)
I b )+ hhly - o H BB,
£2,.(6,,6,,0,)= (-(h )+ by, ) By

" -(h‘thZIhl’l)+ huhzzh{l' hllhl,2h'z,1 + huhlllhz'z
- (93,93’94)= hu('(hx,7h£1)+ h1'1172’7)

" '(hlzh21hl’1)+hllhnhl’1_ huhllzhé1+ huhlllhzlz
g.(6,,6,,6,)= (Ul )+ Iyhog ) By

) '(hlzhthl’l)+ huhzzhl'l' hllhl’th,l + hllhlllhzlz
g4b(93,93,94)= hu("(hllshz’x)'*' hlllhzls)

(Ao 1)+ Wl h, - hyhohy + b
This reformulation of the dynamics helps to better identify the critical parts of the
system and to isolate the forced and unforced parts of the dynamics. Appendix B
providles MATLAB program listings illustrating how these equations were

implemented for simulation.

3.4 Analysis of the g-functions

The g-functions are functions of the ankle and crank angles only, not of
their velocities. Hence, the “weights” applied to the inputs by these functions
depend only on the geometry of the system. Since these terms multiply the inputs,
any combination of ankle and crank angles such that a g-function is zero identifies a
configuration such that the input applied to that g-function has no effect on the
associated dynamic state variable. These regions are the result of alignment of the

limbs in configurations which reduce the effect of the input torque transmitted to
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the joints. Thus, the ankle angle could get stuck if the velocity was near zero, or
the ankle angle could become unstable if the velocity was non-negligible.
Identification of these regions is important for fixing the ankle angles to prevent a
loss of control and possible instability. To find points at which the g-functions
were zero, the following method was used given the cyclist parameters specified in
Appendix A - compute an array z,, such that

Zx,,(93>94)=gx(93,9;,64)

x=3,,3,

6, within physical limits of Figure 3.2
6,=6,+kn, k=10, n=-5...+5

8, €[0,2 7]

Thus, the left and right ankle angles were constrained to be with £ 50° of one
another.  For upright cycling the physical range for the ankle angles is
approximately [-90°, 180°], based on Figure 3.2. Each array z was computed for a
specific instance of n, so that the set of arrays for a particular g-function shows how
the g-function varies from changes in the left-right ankle angle difference. Finally,
MATLAB’s “contour” function was used to find a locus of points in each z array
where g = 0. Figure 3.3 shows the resulting contours for upright cycling, with
“left” referring to the left ankle input term g3,, and “right” referring to the right
ankle input term g;,. The separate contours evident in Figure 3.3 represent
separate instances of n. The plot, in addition to showing that zero contours exist
for the ankle g-functions, shows that the contours do not vary greatly with the

difference in the left and right ankle angles. Hence, the contours are a robust
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Figure 3.3: Zero Functions of Ankle g-functions, Upright Cycling

representation of the zero regions of the ankle g-functions for the ankle angles of
interest. Control strategies for upright cycling for the Three Degree-of-Freedom
model should ideally avoid the regions where the ankle g-function contours become
zero in order to ensure control of the ankles over the entire crank cycle. From the
figures, these regions are approximately

6,,6, [5°,180°]

3.5 Minimal Time Cycling

As with the one Degree-of-Freedom model, the goal is to find a state
trajectory to minimize the cycle time cost function J over a full rotation of the

* crank, expressed as
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Ou(t,)=0,(t,)=0,
Unlike the One Degree-of-Freedom model, the ankle dynamics figure significantly
in the dynamics of the crank angle, and complicate identification of an optimal
strategy. Initial attempts at driving the cycle through bang-bang inputs in the hips,
knees, and ankles were unsuccessful, due to the divergent behavior of the ankle
angle. The unconstrained ankle angle tended to change position to the point where
the alignment of the foot, calf, and thigh reduced the effect of the inputs at the
ankle, knee, and hip. Thus, a strategy was adopted to use bang-bang input to drive
the hip and knee joints and minimize the impact of the ankles by minimizing
variation in 65 and &’; through the rotation of the crank angle. Only control
strategies which kept the ankle angles fixed or nearly fixed through the entire cycle

were considered; i.e.

6,(t)- 6,

<g, fort elt,,1]

‘930)— b3 <&y for ¢ e[t0>tl]

where 93,373 are the angles to which the left and right ankles are controlled, and &;

and &3 define how tightly the ankles are controlled. This strategy is advantageous
in that it can be implemented easily with strong position or velocity feedback

control or a combination of position and velocity feedback of the ankle angle.
Additionally, it simplifies the dynamics by keeping the ankle angular velocity 6,

and acceleration 93 close to zero. Finally, it has a basis physically - analysis of
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bicycle racers [Ref. 9] has shown that over a full crank rotation, the ankle angles

change relatively little compared to the hip and knee angle movements. Variation

in the ankle angle in a typical racer is limited to about 10° from the mean position,

which is horizontal (i.e. 8, =0°).

3.6 Ankle Feedback Input Strategies for Minimum Cycle Time

Next, the optimization problem presented in section 2.4.4 to learn the
optimal hip and knee switchpoints is repeated. Only the third case is considered, in
which two switches occurred per cycle, and the hip and knee switchpoints are
optimized separately. The left and right hip and knee inputs are assumed to be
opposite in polarity but synchronized with respect to switchpoints. The ankle inputs
are controlled through a combination of position and velocity control.

Additionally, the left and right ankles are controlled to the same fixed ankle angle.

Thus,

0 U 1 fOI’ 94 < eshipl > 64 > 0-7;,,;,1
uhip( 4)= U, for 6%1 <9,< 9%2

U for0,<6, ,0,>86

Sknee Sknee2

Ufor6, <06,<6

Sknee2

ublee(64)= {

4,(8)=K,(8,- 6,)+K,(8, -6,
*93 = ‘és
where K, is the gain for the position feedback, and K, is the gain for the velocity

feedback.
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Table 3.1: Optimal Hip and Knee Switchpoints with Ankle Feedback Control

K, | Ko | 6;control point | Zyce (seconds) | 6., Orineez Orpip: Ohin:

0 100 50° 0.79 6° 77° 183° 268°
100 100 30° 0.89 33° 44° 134° 295°
500 |0 50° 0.87 6° 77° 192° 268°
100 | 100 50° 0.88 57° 81° 193° 246°

The results for several different ankle control points and for various types of
ankle feedback control are summarized in Table 3.1. Clearly, the optimal
switchpoints can be “learned” for a variety of cases, but with quite different results
from the one-degree of freedom model analysis. The hip switchpoints are in the
vicinity of the nominal hip switchpoints for the one Degree-of-Freedom model.
However, the knee switchpoints are quite different, since the ankle and the knee are
connected by the calf, and changes in the ankle position greatly affect the knee
angle. Thus, the optimal switchpoints for the knee and hip inputs in the One
Degree-of-Freedom do not necessarily apply for the Three Degree-of-Freedom
model, and the optimal switchpoints may not fall at the points at which the hip and
knee angles reach extremal values. The cycle times are longer for the Three
Degree-of-Freedom model cases compared to the One Degree-of-Freedom results in
section 2.4 since a smaller hip and knee torque magnitude was used (see Appx. A).

Figure 3.3 shows the joints angles for the fourth case listed in Table 3.1.
The combination of position and velocity feedback control on the ankle input is
effective in controlling the ankle angle, and permits the crank arm to be driven by
the hip and knee torques. This figure shows that forward cycling can be facilitated

with a fixed-ankle strategy coupled with bang-bang inputs at the other joints.
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3.7 Feedback Linearization

To examine fixed ankle control further, we apply a technique known as
feedback linearization which will reduce the system dynamics to a simplified linear
form. Additionally, it will provide a method for computing the input signals
required to achieve the linearized dynamics. Hence, the linearized dynamics can be
configured to produce zero ankle velocity.

Again we express the Three Degree-of-Freedom system in a concise vector

format as

6= 7(6,0)+2(0)
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where

Z - | £(6,.6,6,8,6,.6,)
9= 93 > f(0’6)= f:;l(93>93793393904794)
0, £.(6:,6,,6,.6,,6,,0,)

[

o | 8,(65.64,6,) g, (6,,0,.6,) 8,,(6,,6,,6,) g, (6,,6,.0,) g, (6.6,.0,) g, (6,,6,,6,)
2(6,0)=| 25,(6,,6,,0,) g, (6,,6,,6,) g,(6,,6,.6,) g; (6,8,.6,) g, (6.0,.6,) g, (6,,6,,6,)
g4_,(93,93,04) g4,,(93,93,94) 84,’(93,93,94) 84,,(93,93,94) g4,,,(03,9;’34) g4"(03’03364)
— T
U=[uy u, wy W, uy ]
The feedback linearization input is defined as follows:
7=(-2'(®)7(2.6)- 7|
where
g(0)g* () =1

Applying this input strategy to the dynamics, we find

Thus, if we pick v as follows

K, 6,+K, 0,+K,
v=|K,0,+K, 6 +K,
K, 6,+K,6,+K,
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then the characteristic equations of the system are

Left Ankle: 1 - K, A, +K,
Right Ankle: 2, - K, A, +Ky,
Crank Angle: 4, - K, 1, +K,
Now, to lock the ankle angles at a specific value through the entire cycle, we set

the gains such that

<
I
~N o o

4.

which will enable the crank to accelerate at a constant rate while controlling the
ankle angles to their starting positions by zeroing their acceleration. With K, set to
a constant value, the time required to complete exactly one full cycle remains
constant no matter what the ankle angle is. Figures 3.4 and 3.5 show sample input
torque profiles for 6, =30°. The figures show a larger torque required at the top of
the cycle (TDC; see Appendix A) than at the bottom of the cycle (BDC).
Therefore, the limbs must exert more effort to push a foot through the top of the

cycle, but can essentially coast through the bottom of the cycle. This indicates a

possible unfavorable limb alignment at TDC.
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Figure 3.5: Right Limb Input Torques for Feedback Linearization with
Ankles fixed at 30 degrees
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3.7.1 Rank Analysis for Feedback Linearization
To successfully implement the fixed ankle strategy for feedback

linearization, we need to verify that rank( g(?)) =3 for all hip and crank angle

combinations in use, since (6) is 3x6. If the rank is less than 3 at any point, then
the feedback linearization strategy is not realizable for that combination of angles.
To measure rank computationally, the Singular Value Decomposition is used. The
Singular Value Decomposition Theorem (Ref. [10]) states that every mxn matrix H

of rank r can be transformed into the form

2

H=U[
0

0
O]V’, 3 = diag{o,,0,,..,0,}, 0,2 0,2..206,>0
with
vuv=0U0=1I, VV=VW=I
Thus, if rank( g(4_9)) <3, then o, =0. Identification of combinations of (8;,8;,6,)

such that o, =0 will pinpoint regions in which the alignment of the cyclist and

bicycle geometry compromises the cyclist’s ability to drive the crank.
One difficulty with this particular problem is that g(6) is a function of three
variables. We obviously want to compute g(60) for V6, € [0, 2n], but we only

need to look at ;and @’; over the physical range. Figure 3.6 shows pairs of left
- and right ankle angles against the crank angle such that o, ~0. Computationally,

the points displayed in the figure have o, <107, and were found by using the

MATLAB multivariable simplex-search optimization function “fmins” to minimize
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oy over (6,,6;,60,) for various starting angles incremented over the physically
realizable space of (6,,8,,6,). The symbols for the left and right ankle angles in
the plot represent pairs of ankle angles for a particular crank angle. The purpose of
the plot is not to identify every point of rank deficiency, but to illustrate that rank
deficiency occurs in distinct regions and in distinct angle combinations for upright
cycling. Several aspects of Figure 3.6 are notable. First, rank deficiency occurs
for 8, ~90° and for 8, ~270°; i.e. when one foot is near TDC. In these regions,
the position of the opposite ankle is largely irrelevant, as illustrated by its nearly
random distribution of rank-deficient points in contrast to the well-defined contour
of the foot near TDC. At this position, the foot is nearly aligned with the crank
arm, as illustrated in Figure 3.7, which shows the left leg geometry with the left
foot near TDC. The joints are labeled according to the convention in Figure 1.2.
As the figure shows, the foot is nearly in alignment with the crank arm. In this
situation, rotation of the knee will have little effect, since the tangent to the calf is
close to collinear with the foot and crank arm. Hence, even a large torque exerted
at the left knee will have little effect here. Figure 3.6 provides further confirmation
of an unfavorable limb alignment when one foot is near the top of the cycle, as seen

in Figures 3.4 and 3.5.
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3.7.2 Optimization of Ankle Angle

Given the fixed ankle strategy for feedback linearization, we can find a more
desirable ankle angle by computing the overall effort required to drive the cycle as
J:: w'dt = J;:(uj, +ul +u, il +ul u )t
6,(t)=6,(t,)+2x
for various ankle angles. Figure 3.8 shows the results over the full physical range
of the ankle angle, with the left and right ankles controlled to the same angle, and
with K. chosen as 10 to achieve a full rotation of the crank in a realistic time of
1.2 seconds. Figure 3.8 clearly shows that certain ankle angles will achieve full
rotation of the crank at a lower cost in input effort; in this case, the ideal ankle
angle would be about 10° for upright cycling. This is consistent with the analysis of

professional cycling racers in Reference 9 showing that the foot remains nearly

1.0E+15

10E+12 4

1.0E+9 +

10E+8 1

integral of Square{u)

10E+3 1

10E+0 + -+ ~+ + t+ + t +
80 80 30 0 30 60 90 120 150 180

Ankle Angle (deg)

Figure 3.8: Input Effort to Complete a Full Cycle vs. Fixed Ankle Angle
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horizontal through the full cycle and varies little from the mean position. The
figure also shows a significantly larger effort required in the region
6, €[75°, 105°], which is where rank deficiency in the g-matrix is evident in
Figure 3.6. Recall that the g-functions are functions only of the geometry, not of
the full state, so the large effort shown in Figure 3.8 in the region 6, €[75", 105°]
is a result of singularities in the g-matrix caused by the limb geometry. It is clear
to see that unfavorable limb alignments cause rank deficiency in the feedback
linearization g-matrix, sharply reducing the effect of the input torques and thereby
requiring a much larger effort to pedal through that geometry. Thus, we have
shown that joint angle geometries which will cause the cyclist difficulty can be
identified through rank analysis of the feedback linearization g-matrix, which can
be accomplished simply through substitution of cyclist parameters into the Three
Degree-of-Freedom model followed by computational analysis of the g-matrix in

section 3.7.

3.8 Variation of Seat Height

Analysis of the results in sections 3.4 and 3.7 clearly demonstrated the
difficulties in performing pedaling with the Three Degree-of-Freedom model using
the Apbendix A cyclist parameters. One method of possibly reducing or
" eliminating limb alignment problems is adjustment of the seat height. The distance
from the crank center to the seat, d, is pictured in Figure 1.2. From Appendix A,

the original seat height used for analysis in this chapter was d=0.6m. To examine
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the effects of changing the seat height, d was changed from 0.6m to 0.8m. The seat
was raised rather than lowered, since lowering the seat would merely push the thigh
and calf closer together through the cycle, exacerbating rather than reducing the
problem. A greater knee angle would avoid the alignment problem pictured in
Figure 3.7.

With d changed to 0.8m, the physical range computations of section 3.2
were repeated, the physical range of the left ankle is shown in Figure 3.9. The
limits of the physical range are similar to those in Figure 3.2; however, note that
the range with the seat raised is wider near TDC, indicating greater freedom for
foot movement there. Next, the g-function analysis computations of section 3.4
were repeated. With the seat raised to 0.8m, no zero contours of the ankle g-
functions were found within the physical range of the foot. For all ankle angles and
crank angles conforming to the conditions listed in section 3.4, it was found that

z,,(6,,6,,6,)> 0
2, (6,,6,,6,)> 0

Thus, the left ankle input term g3, and the right ankle input term g;.,, never cause
loss of control of the ankle angle by becoming zero. Additionally, since these
terms are always positive, the effect of the input torques on the model dynamics is
always in the same direction as the input torques - i.e. the g-functions do not
negatively multiply the input torques and reverse their effect. Hence, there are no
ankle angle regions to avoid in order to maintain control, as there are with the

lower seat position. Finally, the effort required to drive the crank through a full
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rotation was computed for the range of realistic ankle angles using feedback
linearization as described in section 3.7.2, and the result is shown in Figure 3.10.
The acceleration constant K, was set to 10, as it was in section 3.7.2, so the results
of figures 3.8 and 3.10 can be directly compared. The effort required to pedal the
cycle with the seat raised is similar to the previous case in Figure 3.8 in the regions
0, €[-90°, 0°],[120°, 180°], but is significantly lower in the region
6, €[0°, 120°], where g-matrix rank deficiency occurred with a lower seat height.
Hence, the data show that raising the seat reduces or eliminates alignment
problems, and allows a greater percentage of the input joint torques to be
transmitted to the crank arm. It is interesting to note that experimental data in
Reference 8 showing that greater power output can be obtained by raising the seat.
Choosing d=0.8m for the seat height, given the default parameter set
outlined in Appendix A, probably extended the seat too high to be realistic. In
comparison of Figure 3.8 and 3.10, the optimal ankle angle changed from
approximately 10° with d=0.6m to approximately 60° with d=0.8, which is not a
reasonable fixed ankle position, given the research presented in Reference 9
regarding actual bicycling racers. The ideal seat height would be just high enough
to avoid the g-matrix singularity exhibited in Figure 3.8, but not so high as to
require the foot to be significantly below the horizontal. For the parameter set used

in this analysis, an acceptable seat height would be in the range of 0.7m to 0.75m.
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3.9 Conclusions

In this chapter, the problem of controlling the Three Degree-of-Freedom
model in forward cycling has been examined. In determining the physical range of
motion for the foot, it was shown that the foot is generally freer to move below the
horizontal for upright cycling, and that the range of motion is not the same for all
possible crank angles. Next, the dynamic equations of the Three Degree-of-
Freedom model were analyzed in detail, and areas where loss of ankle control could
occur were identified. It was shown that position and velocity feedback control
implemented with the goal of holding the ankle angle fixed facilitated rotation of
the crank arm with bang-bang inputs at the hips and knees, and that the hip and
knee bang-bang switchpoints could be optimized as they were in Chapter 2 for
minimal time cycling. Finally, feedback linearization can be used to “reverse
engineer” the dynamics and compute the inputs required to achieve the desired
dynamics; in this analysis, constant acceleration of the crank. Perhaps most
significantly, subrank conditions in the g matrix were identified and shown to be the
result of unfavorable limb alignments, which when encountered, require greater
effort to drive the cycle. The rank analysis and effort analysis demonstrated a
method for mathematically identifying unfavorable cyclist geometries in the Three
‘ Degree-of-Freedom model. Finally, variation of the seat height was presented as a

"possible method for reducing or eliminating unfavorable limb alignments.
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Chapter 4 Results for Three Degree-of-Freedom Recumbent
Cycling

4.1 Introduction

In this chapter, the Three Degree-of-Freedom model utilized in Chapter 3 to
analyze upright cycling is used to examine similar aspects of recumbent cycling. A
recumbent cyclist sits behind the crank rather than sitting above it. Appendix A
provides the parameter sets used to configure the model for upright and recumbent
cycling. In this chapter, the physical limits on the range of the foot are presented,
the behavior of the g-functions is analyzed, and weak rank points are identified, and
the effort required to pedal over one cycle is presented to identify the optimal ankle
angles for pedaling in a recumbent position. A seat-crank distance d = 0.6m was

used throughout the analyses in this chapter.

4.2 Physical Limits for the Ankle Angle

As with upright cycling, the first consideration is the physical range within
which the foot can move relative to the calf. Identification of the physical range of
the foot limits the scope of the analysis to that which can be achieved physically.
In reality, the foot is not free to move through an entire range of angles, but is
constrained to a specific interval. For recumbent cycling, we would intuitively

expect that the foot would on average be above the horizontal. The “knee-ankle-
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toe” angle pictured in Figure 3.1, which measures the angle between the calf and

the foot, is expressed as

p=n—6,+06,
¢E[7p72]

where 6; is the ankle angle as defined in Figure 2 of Chapter 1, and 6; is the angle
of the calf relative to the horizontal. The expression above can be applied to either
the left or right limbs, and, given a crank angle 6,, maps the angle between the calf
and the foot ¢ into the ankle angle ;. Thus, this expression can be used to find
the range of values for 6; which represents the physical range of the foot. To
define the boundaries of the physical range, we want to find the curves for 6, in the
interval [0, 2x] such that ¢ = y, and ¢ = ». The region between these curves is
the physical range of 6;. Repeating the method from section 3.2, the curves of
056, 7 can be computed by finding solutions to the expression
(H8,,6,)~ 1) =(7-6,(6,,6)+6,-7) =0 y=1,7,
for incremental values of the crank angle 6,. Computationally, this can be found by

solving the expression with 6, fixed and &; varied until the conditions of the
expression listed above are satisfied.

The physical ranges of the ankle angle for recumbent cycling with the
parameters listed in Appendix A are shown in Figure 4.1. This figure illustrates
several points. First, the ankle angle for the most part is zero or less than zero,

indicating that the foot is above the horizontal, as hypothesized. Next, the physical
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range for recumbent cycling is similar to the physical range for upright cycling in
that there are clear regions where the range is smaller, indicating that the rotation of
the foot about the ankle has a larger effect on the calf angle, and regions where the
range is larger, indicating that movement of the foot about the ankle has a smaller
effect on the calf angle. For upright cycling (Figure 3.2), the smallest range is near
the top of the cycle, and the largest range is near the bottom of the cycle. For
recumbent cycling, the smallest range is near zero, and the largest range is near

180°.

Ankle Angle (deg)

Crank Angle (deg)

Figure 4.1: Physical Range of Ankle Angle, Recumbent Cycling

4.3 Analysis of the g-functions

The g-function analysis of Chapter 3 identifies joint angles at which control

at the ankle joint is reduced. Since these terms multiply the inputs, any
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combination of ankle and crank angles such that a g-function is zero identifies a
configuration such that the input applied to that g-function has no effect on the
associated dynamic state variable. These regions are the result of alignment of the
limbs in configurations which reduce the effect of the input torque transmitted to
the joints. Identification of these regions is important for fixing the ankle angles to
prevent a loss of control and possible instability. To find points at which the g-
functions were zero for recumbent cycling, the following method was used given
the cyclist parameters specified in Appendix A: compute a matrix z,, such that

an(03a94) =g,(0,,6,,6,)

x =343,

0, within physical limits of Figure 4.1
6,=6,+kn, k=10, n=-5...45

0, €[0,27]

Thus, the left and right ankle angles were constrained to be close to one another.
For a recumbent cycling position the physical range for the ankle angles is
approximately [-180°, 90°]. Each array z,, was computed for a specific instance of
n, so that the set of arrays for a particular g-function shows how the g-function
varies from changes in the left-right ankle angle difference. Finally, MATLAB’s
“contour” function was used to find a locus of points in each z,, array where g =
0. Unlike the upright cycling case in Chapter 3 with the seat height at 0.6m, no
.zero contours were found within the physical range of the foot for recumbent

cycling. For all ankle angles and crank angles conforming to the conditions listed

above, it was found that
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2, (6;,6,,6,)>0
2y (6,,6,,0,) >0

Thus, the left ankle input term g;,, and the right ankle input term g;.,, never cause
loss of control of the ankle angle by becoming zero. Additionally, since these
terms are always positive, the effect of the input torques on the model dynamics is
always in the same direction as the input torques - i.e. the g-functions do not
negatively multiply the input torques and reverse their effect. Hence, there are no
ankle angle regions to avoid in order to maintain control, as there are for upright

cycling with the seat height at 0.6m.

4.4 Feedback Linearization

As with the upright cycling model, feedback linearization can be applied to
provide a method for computing the input signals required to achieve the linearized

dynamics. Again we express the Three Degree-of-Freedom system in a concise

vector format as

0= 7(8,0)+2(0)
where

6] | [/6.6.6.8.0,6)
6=16 | f(66)=|16,6.6.6,0,0,)
94 f:t(63>93’93:93’94a0:t)

W

A g3‘(03’93’04) g3”(03’93794) g3u(93’03104) g3~(03903,94) 83"(03,0;,04) g3.,(93’03’04)
g(6,0)=|g;,(6,,68,,6,) g, (6,,6,,0,) g, (6,,6,.6,) g, (6,,6,.6,) g, (6,,6,06,) g:,(6,,6,,6,)
g4‘(03,03304) g4”(03’g3704) g4~(03,03,04) gdb(ej,atsaad) g4u(93’03’94) g4”(03733’04)
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=[ual Uy Uy Uy, Uy ukr]T

The feedback linearization input is the following:
7=(-2'(9)|7(@.6)-7]
where

g(0)g*(9)=1

Applying this input strategy to the dynamics, we find

Thus, if we pick Vv as follows

K, 6,+K, 0, +K,
v=|K,0+K, 0 +K,
K, 6,+K,6,+K,

then the characteristic equations of the system are

Left Ankle: 4 -K, 4, +K,

Right Ankle: 4 - Ky Ay + Ky

Crank Ankle: 7, - K, 4, + K,
Now, let us assume that our strategy is to lock the ankle angles at a specific point
through the entire cycle, and drive the crank with the hip and knee inputs. Using

feedback linearization, we set the gains such that
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0
v=| 0
K,

which will enable the crank to accelerate at a constant rate while controlling the
ankle angles to their starting positions by zeroing their acceleration. With K, set to
a constant, the time to complete one full cycle starting from zero remains constant
no matter where the ankle angle is fixed. Figures 4.2 and 4.3 show sample input
torque profiles for @, = 30°. The figures show that the torque required to drive the
crank through a full cycle is less than that required for upright cycling (Figs. 3.8,
3.10). For recumbent cycling, a larger torque is required at the beginning of the
cycle (approximatelyf, =0°) and near the midpoint of the cycle

(approximately 6, = 180°), indicating that the limb alignment in these regions is

10

Input Torques (Nmj

Crank Angle {deg)

Figure 4.2: Left Limb Input Torques for Feedback Linearization with
Ankles fixed at 30 degrees
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Input Torques (Nmj

Crank Angle (deg)

Figure 4.3: Right Limb Input Torques for Feedback Linearization with
Ankles fixed at 30 degrees

slightly less favorable than in other regions.

4.4.1 Rank Analysis for Feedback Linearization

To successfully implement the fixed-ankle strategy, we need to verify that
rank(g(?)) =3 for all hip and crank angle combinations in use, since g(6) is 3x6.
If the rank is less than 3 at any point, then the feedback linearization strategy is not
realizable for that combination of angles. To measure rank computationally, the
Singular Value Decomposition is used. The Singular Value Decomposition

‘ . Theorem (Ref. [10]) states that every mxn matrix H of rank r can be transformed

into the form
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z 0

H=U
e

le’, T =diag{o,,0,,.,0,}, 0,2 0,2.20,>0

with
uuv=0U0=1,V'V=VW=I

One difficulty with this particular problem is that g(6) is a function of three
variables. We obviously want to compute () for 6, € [0, 2x], but we only need
to look at &5 and &’; over the physical range. Figure 4.4 shows pairs of left and
right ankle angles against the crank angle such that o, 0. Computationally, the
points displayed in the figure have o, <10™®, and were found by using the
MATLAB multivariable simplex-search optimization function “fmins” to minimize
o; over (6,,60;,0,) for various starting angles incremented over the physically
realizable space of (6,,6;,6,). The symbols for the left and right ankle angles in
the plot represent pairs of ankle angles for a particular crank angle. What is notable
from the plot is that no rank deficiency occurs within the physical range of the
ankle angle. The only rank deficient regions are near 6, ~130°,6, = -220° and
0, ~305°,6;, ~ -220°, but the ankle angles lie outside the physical range of the
ankle angle as pictured in Figure 4.1. Hence, regions of unfavorable alignment of

the limbs are not encountered as often for the recumbent cycling parameters as for

the upright cycling parameters with the seat height at 0.6m.
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Figure 4.4: Ankle Combinations with Rank(g) < 3, Recumbent Cycling
4.4.2 Optimization of Ankle Angle

Given the fixed ankle strategy for feedback linearization, we can find a more

desirable ankle angle by computing the overall effort required to drive the cycle as

J:: w'dt = J:(uf, +ul, +ul, +uy, +ul +ul )t
6,(t)=06,(t,)+2x

for various ankle angles. Figure 4.5 shows the results over the physical ranges of

the ankle angle for recumbent cycling, with the left and right ankles controlled to

the same angle. The acceleration constant K4c set to 10 to achieve a full rotation of

the crank in a realistic time (1.2 sec), and to allow direct comparison of Figure 4.5

with Figure 3.8 and Figure 3.10. Figure 4.5 clearly shows that certain ankle angles

will achieve full rotation of the crank at a lower cost in input effort; in this case,

the ideal ankle angle would be approximately 45°. Thus, the foot would remain

60



1.00E+04
4
1 00E+03
o)
2 4
]
3
a
9 100E+2
(3
[
m
2
&
1 00E+01 4
-180 -150 120 80 €0 30 0 30 60 90
Ankie Angie (deg)

Figure 4.5: Input Effort Required to Complete a Full Cycle vs. Fixed Ankle
Angle, Recumbent Cycling
below the horizontal, and would remain near its maximum extent relative to the

calf.

4.5 Conclusions

In this chapter, the problem of controlling the Three Degree-of-Freedom
model for forward cycling in a recumbent position has been examined. In
determining the physical range of motion for the foot, it was shown that the foot is
generally freer to move above the horizontal for recumbent cycling, and that the
range of motion is not the same for all possible crank angles. Next, following the
analysis of Chapter 3, the g-functions of the Three Degree-of-Freedom model were

analyzed in detail, and areas where loss of ankle control could occur were shown
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not to exist. Feedback linearization was used to “reverse engineer” the desired
crank and ankle dynamics and compute the inputs required to achieve the desired
dynamics; in this analysis, constant acceleration of the crank. Subrank conditions
in the g matrix, the result of unfavorable limb alignments, were identified and
shown to be outside the physical range of the ankle angle. Throughout this chapter,
it became clear that less effort is required to propel the cycle in the recumbent
position than in the upright position given an equal seat-crank distance d, since

unfavorable alignments are encountered less often than in the upright position.
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Chapter 5 Conclusions and Future Research

In this thesis, dynamic models for human skeletal systems pedaling a bicycle
have been used to study several aspects of controlling the cycling. First, the
physiological basis for modeling locomotive behavior with control systems
techniques was presented. Next, controlling the one degree-of-freedom model was
studied. It was demonstrated that successively complex optimization problems
could be formulated and solved, with successively better results. This serves as a
model for learning locomotive behavior, in that the behavior is simple at first but
can be improved through increasingly complex coordination of the limbs.

Next, control strategies for the three degree-of-freedom model were
examined. The significant effects of the ankle angles on the rest of the model’s
dynamics led us to utilize a fixed-ankle strategy. Through analysis of the physical
limits of the foot and the dynamics equations, regions can be identified in which the
foot should be constrained for effective cycling. Feedback linearization was used to
show the ideal input torque profile for achieving a constant acceleration, and for
identifying the ankle angle resulting in the minimal effort to complete a full cycle.
Additionally, the feedback linearization analysis provided a method for identifying
regions of unfavorable limb alignment for a particular set of cyclist parameters, and
it was shown that adjustment of the seat height provides a method for avoiding

these alignments. Finally, results were developed for recumbent cycling and

compared to upright cycling.
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The work presented here could be extended in several directions. First,
optimization problems with different goals, such as achieving constant velocity,
could be examined for the one degree-of-freedom model. Additional steps in the
learning process could be added by developing more state and input conditions.
Finally, the signals required to drive the cycle could be implemented through the
use of Fourier or power series. For the more complex three degree-of-freedom
model, additional optimization goals could be examined, such as constant velocity.
Feedback linearization was shown to be an effective tool for developing input
torques to achieve specific state dynamics; the results of such computations could be
used to parameterize “ideal” input torques for implementation through Fourier or

power series which would provide a model for construction of muscle signals in the

spinal cord.



Appendix A Cycling Modeling Parameters

A.1 Cyclist Parameters

Table A.1 lists the physical quantities used to model the cyclist’s limbs for
both the three degree-of-freedom model and the one-degree-of-freedom model.
Figures 1.2 and 1.3 in Chapter 1 show how the limbs are arranged geometrically.
The values in Table A.1 were obtained through the author’s crude attempt to

measure himself and his red Giant Rincon mountain bicycle.

Table A.1: Physical Parameters for Model Limbs

Component Limb Length (m) | Mass (kg) | Radius (m)
1 Thigh 0.40 2.83 0.07
2 Calf 0.45 2.77 0.05
3 Foot (Ankle to Pedal) 0.21 1.82 0.04
4 Foot (Toe to pedal) 0.07 0.64 0.04
5 Crank Arm 0.17 1.70 0.01

Inertia terms were computed as
I, =3m,Gr; +1)

The input torques (in Nm) used for the One Degree-of-Freedom model were as
follows:

Uy, =-20 U, =+20
U, =-20 U, =+20
Uy, =-20 U, =+20
Uy, =-20 U, =+20
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The input torques (in Nm) used for the Three Degree-of-Freedom model were as
follows:

U, =-10 U, =+10
U, =-10 U, =+10

U, =-10 U, =+10

U, =-10 U, =+10

A.2 Bicycle Parameters

The position of the seat of the bicycle is characterized by d, the distance

from the crank center to the hip, and 7, the angle between HC and the vertical
intersecting the crank center (see Chapter 1, Figure 1.2). The lengths were
computed as follows:

d=0.60 m
h=dsn(s)
I =dcos(£)

The seat angles used to model upright and recumbent cycling are shown in Table

A.2.

Table A.2: Seat Position Angles

Position n é
Upright 5° 85°
Recumbent 70° 20°

- A.3 Angle Conventions

The crank angle 6, is referenced to the position of the crank arm attached to

the left foot. The right foot is attached to the opposite crank arm, which is 180°
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from the left crank arm. Hence, the right foot is always 180° from the left foot.
The convention for measuring 6; , 8, , and 6, is the same as in Reference 6 -
viewing the left side of the cycle, these angles rotate in a counter-clockwise manner
for forward rotation of the crank, and zero corresponds to the “3 o’clock” position.
Other authors use the notation TDC for top dead center and BDC for bottom dead
center to describe the position of the crank. Top dead center corresponds to the
maximal elevation of the pedal, and bottom dead center corresponds to the minimal
elevation of the pedal. In the convention used here, left TDC corresponds to a

crank angle of 90°, and left BDC corresponds to a crank angle of 270°.

The ankle angles 6; and 6';are measured on a set of axes rotated 180 from
the axes used for the other joint angles. Thus, an ankle angle of zero corresponds
to the foot in a position level to the horizontal with the toes pointing left. A
positive ankle angle indicates that the ankle is higher in elevation than the toes, and
a negative ankle angle indicates that the toes are higher in elevation than the ankle.
Referring to 6; as the ankle angle is a bit of a misnomer, since it is really the angle
of the foot relative to the horizontal. However, to maintain consistency, the

terminology of Reference 6 is used.
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Appendix B MATLAB Program Listings

This appendix provides listings of several of the MATLAB programs used to
generate the computational results presented in Chapters 2, 3, and 4 of this thesis.

The following program listings are provided:

Listing | Program Name Function

B.1 cyclist.m Cyclist and bicycle physical paramters

B.2 modell.m One degree-of-freedom state vector computation

B.3 model0.m Three degree-of-freedom state vector
computation

B.4 h func.m Computes h-functions for three DOF model

B.5 | theta.m Computes hip (8;) and calf (6, angles from
crank angle (6, and ankle angle (65)

B.1 CYCLISTM

4+ This file sets up the cyclist & cycle parameters
global 11 12 13 14 15

global rl r2 r3 r4 r5

global m1 m2 m3 m4 mb

global eta zeta

global d h 1 I1 12 13 14 I5 If

global 111 121 131 141 151

global 112 122 132 142 152

global g Khatl Khat2

global K1 K2 C

.45;
.40;
.19;
.07,
17
.07;
.05;
.04,
04,
.01;
2.83;
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5 0*(p1/180)
zeta = 85.0%(pi/180);

d = 0.60;
h = d*sin(zeta);
1 = d*cos(zeta);
I1 = (1/712)*m1*((3*r1*r1)+(11%11));
[2 = (1/12)*m2*((3*r2*r2)+(12%12));
13 = (1/12)*m3*((3*r3*r3)+(13*13));
14 = (1/12)*m4*((3*rd*rd)+(14*14));
I5 = (1/12)*m5*((3*r5*r5)+(15%15));
If = (1/12)*mf*((3*rfrrf)+(1f*11));
111 = 11/2;
112 = 11/2;
121 = 12/2;
122 = 12/2;
131 = 13/1;
132 = 13/2;
141 = 14/1;
142 = 14/2:
151 = 15/1;
152 = 15/2;

= 9.8;

% end of cyclist.m

B.2 MODEL1.M

function xdot = modell(t,x)

b4

% state space representation:

% x(1) = theta (crank angle)

% x(2) = dtheta = omega (crank velocity)
% xdot(l) = dtheta = x(2) = omega

% xdot(2) = ddtheta (crank acceleration)

% x(3) = switch

%

global ml m2 m3 m4 m5

global 11 12 13 14 15

global 111 112 121 122 131 132 141 142 151 152
global I1 I2 I3

global g eta zeta d h 1

ud = 0;
xdot = zeros(2.1);:
thetad = x(1):

thetal = Thetal(x(1));
theta2 = Theta2(x(1));
thetalp = Thetal(x(1)+pi);
thetaZp = Theta2(x(1)+pi);
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(15%sin(thetad-theta2))/(11*sin(theta2-thetal));

flp = (15*sin(thetad+pi-theta2p))/(11*sin(thetaZp-thetalp)):

f2 = (15*sin(thetal-thetad))/(12*sin(theta2-thetal));

f2p = (15*sin(thetalp-(thetad+pi}))/(12*sin(theta2p-thetalp));

z1 = cos(thetad-thetaZ)/sin(theta2-thetal);

z2 = sin(thetad-thetaZ)*cos(thetaZ2-thetal)/sin(theta2-thetal).”2;

pfl = (15/10)*(z1*(1-f2) - z2*(f2-f1));

z1p = cos(thetad+pi-thetaZp)/sin(thetaZ-thetalp):

z2p = sin(thetad+pi-thetaZp)*cos{thetaZp-thetalp)/sin(thetaZp-thetalp).*2;
pflp = (15/11)*(z1p*(1-f2p) - z2p*(f2p-flp)):

yl = cos(thetal-thetad)/sin(theta2-thetal);

y2 = sin(thetad-thetal)*cos(theta2-thetal)/sin(theta2-thetal).*2;
pf2 = (15/12)*(y1*(f1-1) + y2*(f2-fl1)):

ylp = cos(thetalp- (thetad+pi))/sin(thetaZp-thetalp);
y2p = sin(thetad+pi-thetalp)*cos(thetaZp-thetalp)/sin(theta2p-thetalp).*2;
pf2p = (15/12)*(ylp*(flp-1) + y2p*(f2p-flp)):

h11 = (mI*111*111*f1*f1);

h1l = h11 + m2*((15*15)+(122*122*f2*f2)+(2*122*15*cos (thetad-theta2)*f2));

hil = h11 + (m3*152%152)+(I1*f1*f1)+(12*f2*f2)+I3;

hlr = (mi*111*7111%f1*f1);

hlr = hlr + m2*((15%15)+(122%122*f2p*f2p)+(2*122*15*cos (thetad+pi-theta2p)*f2p))
le = hlr + (m3*152*%152)+(11*flp*flp)+(12*f2p*f2p)+13;

h21 = (I1+m1*111*111)*fl*pfl + (12+m2*122*122)*f2*pf2;

h21 = h21 + m2*122*15*(cos(thetad-theta2)*pf2 - sin(thetad-theta2)*(1-2)*f2);

h2r= (I1+m1*111*111)*flp*pflp+ (12+m2*122*122)*f2p*pf2p:
h2r = h2r + m2*122*15*(cos(thetad+pi-theta2p)*pf2p - sin(thetad+pi-thetazp)*(1-f
2p)*f2p);

h31 = m1*111*fl*cos(thetal) - m2*15*cos(thetad)-m2*122*cos(theta2)*f2;
h31 = g*(h31 - m3*152*cos(thetad));
h3r = ml*111*flp*cos(thetalp) - m2*15*cos(thetad+pi)-m2*122*cos(theta2p)*f2p;
h3r = g*(h3r - m3*152*cos(thetad+pi));
h4l = f1;
hdr = flp;
_h51 = d*15*cos(thetad-eta)/(11*12*sin(thetal-theta2)):
hor = d*15*cos(thetad+pi-eta)/(11*12*sin(thetalp-thetazp)):

U= U_ts(x(1),x(3));

xdot (1) = x(2);

xdot(2) = (h21+h2r)*x(2) .*2;
xdot(2) = xdot(2) +(h31+h3r);

xdot(2) = xdot(2) + h41*u(1l) + hdr*u(2);
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xdot (2)
xdot (2)
xdot (3)

xdot(2) + h51*u(3) + hbr*u(4);
(xdot(2) - ud)*(1/(h11+hlr));
0;

nwt n

B.3 MODEL0O.M

function xdot = modei0_f1(t,x)

p4 x(1) = thetad

b4 x(2) = dthetal
b4 x(3) = thetad

% x(4) = dthetas
% x(5) = thetad’
b4 x(6) = dthetald’
p4 x(7) = thetasd’
4 x(8) = dthetad'

global Kv31 Kv32 Kv33
global Kv3pl Kv3p2 Kv3p3
global Kv4l Kv42 Kv43
giobal uD

% compute f's

y = h_func(x(1:4));
hl = y(:,1);
h2 = y(:,2);
yd = h_func(x(5:8));
hld = yd(:,1);
h2d = yd(:,2);
hll = h1(1);
hl2 = h1(2);
h13 = h1(3);
hl4 = h1(4);
h15 = hl1(5);
hl6 = h1(6);
hl7 = h1(7):
h1l8 = h1(8);
h19 = h1(9);
h21 = h2(1):
h22 = h2(2):
h23 = h2(3);
h24 = h2(4);
h25 = h2(5);
h26 = h2(6);
h27 = h2(7);
h28 = h2(8);

h29 = h2(9);



J11 = hld(1);

Jj12 = nld(2);
j13 = h1d(3);
jl4 = h1d(4);
Jj15 = h1ld(5);
j16 = hl1d(6);
Jj17 = h1d(7):
j18 = hl1d(8);:
Jj19 = h1d(9);
j21 = h2d(1);
j22 = h2d(2);
j23 = h2d(3);
j24 = h2d(4);
j25 = h2d(5):
J26 = h2d(6);
j27 = h2d(7);
j28 = h2d(8):
Jj29 = h2d(9);
den = -(h12*h21*j11) + hl1*h22*j11 - h11*j12*j21 +h11*j11*j22;
if den == 0.0
den = 0.0001;
end;
Q3 h13*x(2).72 + hl4*x(4).72 + h15*x(2)*x{4);

QBp = JI3*x(6).72 + j14*x(4).72 + j15*x(6)*x(4);
04 h23*x(2) .72 + j23*x(6).72 + (h24+j24)*x(4).2;
M = @4 + (h25*x(2)+j25*x(6))*x(4):

f3n
f3

(-h12*%h21*j11*Q3-h11*h12*j21*Q3p+h11*h12*j11*Q4+h11*h12*j11*uD);
(-Q3/h11) + (f3n)/(hll*den);

f3pn = (-j11*h21*j12*Q3-h11*j12%j21*Q3p+j11*h11*j12*Q4+j11*h11*j12*uD);
f3p = (-Q3p/j1L)+ (f3pn)/(jll*den):

f4 = (h21*j11*Q3+h11*j21*Q3p-h11*j11*Q4-h11*j11*uD)/den;
v3 = Kv31*x(1) + Kv32*x(2) + Kv33;

vd = Kval*x(3) + Kv42*x(4) + Kv43;

v3p = Kv3pl*x(5) + Kv3p2*x(6) + Kv3p3:

fv = [f3 f3p f4]';

vv = [v3 v3p v4]':

% compute g's

g3_al = (h19*h22*j11 - h12*h29*j11 - h19*j12*j21 + h19*j11*j22)/(den);
g3_ar = -(h12*(-(j19%j21) + j11*j29))/(den):
g3_h1 = (h17*h22*j11 - hl2*h27*j11 - h17*j12*j21 + h17*j11*j22)/(den};
g3_hr = -(h12*%(-(j17*j21) + j11*j27))/(den);
g3_k1 = (h18*h22*j11 - h12*h28*j11 - h18*j12*j21 + h18*j11*j22)/(den);
g3_kr = -(h12*(-(j18*j21) + j11*j28))/(den):
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g3p_al = ((h19*h21 - h11*h29)*312)/(den):

gdp_ar = (-(h12*h21*j19) + h11*h22*j19 + h11*j19*j22 - h11*j12*329)/(den);
g3p_h1 = ((h17*h21 - hll*h27)*j12)/(den);

g3p_hr = (-(h12*h21*j17)+h11*h22*j17 + h11*j17*j22 - h11*j12*j27)/(den);
g3p k1 = ((h18*h21 - hll*h28)*j12)/(den);

g3p_kr = (-(h12*h21*j18) + h11*h22*j18 + h11*j18*j22 - h11*312*j28)/(den);
g4 _al = ((-(h19*h21) + h11*h29)*j11)/(den):

g4 ar = (h11*(-(jl9*j21) + jl1*j29))/(den);

g4 hl = ((-(h17*h21) + h1l*h27)*j11)/(den);

g4 _hr = (h11*(-(j17%j21) + j11*j27))/(den);

g4 k1 = ((-(h18*h21) + hll*hZ28)*jl1)/(den):

g4 _kr = (h11*(-(j18*j21) + j11*328))/(den):

v_g3 = [g3_al g3 _ar g3 hl g3 _hr g3 k1 g3 _krl;

v_g3p = [93p_al g3p_ar g3p_h1 g3p_hr g3p_k1 g3p krl;

v_g4 = [g4 al g4 _ar g4 hl g4 hr g4 k1 g4 kr]:

gv = [v g3; v g3p; v_g4l:

uv = U_f1(fv,gv,w);

xdt = fv + gv*uv;

xdot(1l) = x(2);
xdot(3) = x(4);
xdot(5) = x(6);
xdot(7) = x(8);
xdot(2) = xdt(1);
xdot (4) = xdt(3);
xdot(6) = xdt(2);
xdot(8) = xdt(3);

% return

B.4 H FUNC.M

function y = h_func(x)
% computes the h functions for model 0

global
global
global
global
global
global
global
global
global

% x(1)
% x(2)
% x(3)

11 12 13 14 15
rtr2r3 rdrb

ml m2 m3 m4 m5

eta zeta

dh 11112131415
111 121 131 141 151
112 122 132 142 152
g Khatl Khat2

K1 K2 C

= thetad

= dthetad
= thetad
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1 = zeros(9,1);
2 = zeros(9,1);

% x(4) = dthetad

% hl = [(hll h12 h13 h1l4 hl15 hl6 hl7 h18 h19]"
4 h2 = [h21 h22 h23 h24 h25 h26 hl7 hl18 h19]"
h =

h

y = Theta(x(1),x(3));
thetal = y(1);
theta? = y(2);

F11 = (13*sin(theta2-x(1)})/(11*sin(thetal-theta2)):
F12 = (15*%sin(theta2-x(3)))/(11*sin(thetal-theta2));
F21 = (13*sin(x(1)-thetal))/(12*sin(thetal-theta2));
F22 = (15*%sin(x(3)-thetal))/(12*sin(thetal-theta2));
tl = I1 + ml1*111.72;

12 = 12 + m2*122.%2;

t3 = 13 + [4 + m2¥13.%2 + m3*132.42 + m4*141.°2;

t4 = I5 + m3*152.72 + (m2+m3+md)*15.2;

t5 = 2%122*%13*m2;

£6 = 2%122%15*m2;

t7 = 2*15%(m2*13 + m3*132-m4*141):

t8 = ml*g*111;

t9 = m2*g*122;

t10 = (m2*13+m3*132-md*141)*g;
t11 = (m2+m3+md)*g*15+m5*g*152;
t12 = (m2+m3+md+mb5)*g*h:

t1*F11.72 + t2*%F21.72 + t3 + t5*cos{x(1)-theta2)*F21;
2*t1*F11*F12 + 2*%£2*%F21*F22 + t5*cos(x(1)-theta2)*F22;
B + t6*cos(x(3)-theta2)*F21 + t7*cos(x(3)-x(1));

t1*F12.%2 + t2*%F22.%2 + t4 + t6*cos(x(3)-theta2)*F22;

OO W m >
oo

X 0
N =
o

2*t2%F21+t6*cos(x(1)-theta?2):

2*t 2XF22+t6*cos(x(1)-theta2);

S1 = 1/(sin(thetal-theta2));

S2 = cos(thetal-thetaZ)/(sin(thetal-theta2).*2);

dF11dt3 = (cos(theta2-x(1))*S1*(F21-1)-sin(theta2-x(1))*S2*(F11-F21)):
dFl1dt3 = dF11dt3*(13/11):
dF11dt4 = (cos(theta2-x(1))*S1*(F22-1)-sin(theta2-x(1))*S2*(F12-F22));
dFlldt4 = dF11dt4*(13/11);

dF12dt3 = (cos(theta2-x(3))*S1*(F21-1)-sin(theta2-x(3))*S2*(F11-F21));
, dF12dt3 = dF12dt3*(15/11);
~dF12dt4 = (cos(theta2-x(1))*S1*(F22-1)-sin(theta2-x(1))*S2*(F12-F22));
dFl2dt4 = dF12dt4*(15/11);
dF21dt3 = (cos(x(1)-thetal)*S1*(1-F11)-sin(x(1)-thetal)*S2*(F11-F21));
dF21dt3 = dF21dt3*(13/11);
drF21dt4 = (cos(x(1)-thetal)*S1*(-F21)-sin(x(1)-thetal)*S2*(F12-F22));
dF21dt4 = dF21dt4*(13/11);
dF22dt3 = (cos(-thetal+x(3))*S1*(-F11)-sin(-thetal+x(3))*S2*(F11-F21));
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dF22dt3 = dF22dt3*(15/11);

dF22dt4 = (cos(-thetal+x(3))*S1*(1-F12)-sin(-thetal+x(3))*S2*(F12-F22));
dF22dt4 = dF22dt4*(15/11);

dAdt3 = 2*t1*F11*dF11dt3 + R1*dF21dt3 - t5*sin(x(1)-theta2)*(1-F21)*F21;
dAdtd = 2*t1*F11*dF11dt4 + R1*dF21dtd - t5*sin(x(1)-theta2)*(-F22)*F21;
dBdt3 = R1*dF22dt3 + RZ*dF21dt3 + 2*t1*(F12*dF11dt3 + F11*dF12dt3):

dBdt3 = dBdt3 - t5*sin(x(1)-thetal)*(1-F21)*F22;
dBdt3 = dBdt3 - t6*sin(x(3)-theta2)*(-F22)*F21.
dBdt4 = R1*dF22dt4 + R2*dF21dt4 + 2*t1*(F12*dF11dt4+F11*dF12dt4);

dBdt4 = dBdt4 - t5*sin(x(1)-theta2)*(-F22)*F22;
dBdt4 = dBdt4 - t6*sin(x(3)-theta2)*(1-F22)*F21;
dCdt3 = 2*t1*F12*dF12dt3 + R2*dF22dt3-t5*sin(x(1)-theta2)*(1-F22)*F21;
dCdt4 = 2*t1*F12*dF12dt4 + R2*dF22dt4-t5*sin(x(1)-theta2)*(1-F22)*F22;

hll = A;

hl1?2 = B/2;

h13 = dAdt3/2;

hi4 = (dBdt4 - dCdt3)/2;

h15 = dAdt4:

hl6 = -tB*cos(thetal)*F1l + t9*cos(theta2)*F21 + t10*cos(x(1));
hl7 = F11;

hl8 = F11 - F12;

hi9 = 1-F21;

h2l = B/2;

h22 = C;

h23 = (dBdt3 - dAdtd)/2:
h24 = dCdt3/2:

h25 = dCdt3;

h26 = -t8*cos(thetal)*F12 + t9*cos(theta2)*F22 + t1ll*cos(x(3));
h27 = F12;

h28 = F12 - F22;

h29 = -F22;

hl = [h1l h12 h13 h14 hl15 h16 hl7 h18 h19]"';
h2 = [h21 h22 h23 h24 h25 h26 h27 h28 h29]";
y = [hl h2];

% end of h_func.m

B.5 THETA.M

function y = Theta(theta3,theta4,params)

b4

AC2 = 13*13 + 15*15 - 2*13*15*cos{pi-thetad+thetald):
AC = (AC2).7(0.5);

cthetah = (13*cos(theta3) + 15*cos(thetad))/AC;
sthetah = (13*sin(theta3) + 15*sin(thetad))/AC;
thetah = atan2(sthetah,cthetah);

AHZ = (d.%2) + AC2 - 2*d*AC*sin(thetah+eta);

AH = sqrt(AH2);

cy = (d-AC*sin(thetah+eta))/(AH);
sy = -(AC/AH)*(cos(thetah)+eta);

cx = (AH2 + 11.72-12.%2)/(2*AH*11);
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sx = sqrt(l-cx.*2):

ow = (AH2 + 12.72-11.72)/(2*AH*12);
sw = sqrt(l-cw.*2):

cz = (AC-d*sin(thetah+eta))/(AH);
sz = -(d/AH)*cos(thetah+eta):

x = atan2(sx,cx);

y = atan2(sy.cy):

w = atan2(sw,cw);

z = atan2(sz,cz);

stl = sin(zeta - x - y);

ctl = cos(zeta - x - y);

st2 = sin(-pi + w + z + thetah):
ct2 = cos(-pi + w + z + thetah);

t1 = atan2(stl,ctl);
t2 = atan2(st2,ct2);
if (t2 < 0.0)

t2 = 2%pi+tl;
end
y = [t1 t2];
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Appendix C Correction to Time Optimal Bang-Bang Input
Results

There is an inaccuracy in Reference 6 which leads to an error in the analytic
results for the time optimal control problem for the one degree-of-freedom model.

The dynamics for the model are presented in Chapter 2, section 2.3 of Reference 6.
t

The following angles are used: 6, is the hip angle, 8 is the calf angle, and 8 is the

crank angle. The dynamics are represented by the following equation:

(m(6,)+ (6, + )0, - (m(6,) + (6, + 1) &, - (1 (6,) + 1 (6, + )
= h, (6, )uy + hy(6, + )y, + hy(6, Juy +h(6, + mu, —uy

where

h(8,)= 25202 5) sng ‘Z)) A 4)———————"21:"(’;(2’?;1;’)

On page 23 of Reference 6, the author states that

o 6,+6, when left foot is left of HC
" |(=- 6,)+(6, - 27)when left foot is right of HC

From Figure 1, HC is defined by 7, so the condition for the angle KAC can be

restated as

C o n—6,+6, for——n<94
<KAC = (7—0,)+(6, -27) forz— < @, <

Nl:a “|a
Q Q

The author then uses this statement to show that
h(6, 0 $-7<6,<¥-7
<0 ¥-p<f,<%-n
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Figure C.1: One Degree-of-Freedom Cycling Model

and then uses this result in section 3.2 and 3.3 of Reference 6 to show that the
bang-bang input switchpoints for the hip inputs occur at £—7n and 3-7.
However, this result is not correct, since the interval conditions on KAC are

incorrect. Since

lssin(94_02)
IISin(gz—el)

h4(04)=
the intervals defining the opposite signs of h,; are correctly defined by
6,- 6, =0,7, which are not coincident with 6, =Z-7n3%—-7n for every set of

cyclist parameters. This can be shown by the following geometric argument:

Suppose 8, =Z—mn and 6, = 6,. Then K, A, and C are colinear in Figure C.1, and
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are colinear with HC. The holonomic constraint of equation 2.3.1 in Reference 6

states that

I,sin 6, +1,sin 6, +1,sin §, - h=0 V6,

Note that, 8,,6,=%2-n= 6, =%-n and h=dsm(£- 7), so the constraint can be

restated as

hsm(5—m+Lsn(5 - m)+Lsin(f- n)-dsin(z-m=0 V6,
=>hL+L+l=d

However, if this holds true, then the crank obviously cannot move beyond

0,=%-1n since C, A, K, and H are all colinear, and K lies between A and H.
Thus,
C - 7—-6,+86, for——ns 6,<%-n
(7m—6,)+(6,-2n) for¥x-n<@g,<Z-n

only holds for a particular, non-realistic set of cyclist parameters and does not apply
in the general case. Consequently, the condition
>0 Z-n<6,<¥-
h(8,) 32 nN<o,<3—n
<0 ¥-n<0,<5-7n
should be restated as
h(6 ) a<f,<a+rw
<0 a+7<6, <a+2n
where « is such that

g - 6, forf, =«
> \0,-n forf,=a+n
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Geometrically, « is the crank angle at which KA and AC are colinear and at which
the hip angle ; reaches a minimum, and o+ is the crank angle at which KA and
AC are colinear and the hip angle 6, reaches a maximum. Carrying this through to
the optimal bang-bang input results presented in Chapter 3 of Reference 6, the hip
inputs should be switched at a and at a+#, not at £—7 and -7 as the
authorconcluded.  This explains why the computational results for separate
optimized switches in the hips and knees do not occur at the same angles for the hip
and knee. In fact, the computational results show that the hip switchpoints occur at

a and at a+7, not at £— n and 2= — 7, whereas the knee input switchpoints occur at
2 2 1 p p

Z—-n and ¥ -7, since that is where the minimum and maximum knee angles

occur.
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human skeletal system pedaling a bicycle are used as a basis for examining various
methods of implementing inputs that will control the cycling. Two models are used
- a three degree-of-freedom model implementing ideal torque inputs at the hip,

knees, and feet, and a one degree-of-freedom model involving inputs at the hip and



knee only. Both models are characterized by highly nonlinear dynamics, requiring
the use of nonlinear analysis, optimization theory, and computational methods for
examination. Control of the one degree-of-freedom model has been addressed in
previous work; here, parameterization of the control and the process of learning it
is examined. Next, control strategies for the more complex three degree-of-
freedom model are developed. Finally, results for upright and recumbent cycling

are compared using the three degree-of-freedom model.
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Chapter 1 The Study of Human Bicycling Models

1.1 Introduction

In this chapter, the physiological basis for the work in this thesis is
discussed. Past experimentation on brain-muscle communication is discussed; a
model for brain-muscle interaction is presented; and, the extent to which motor
control is learnable is examined. Finally, the mathematical models used to study a
skeletal system pedaling a bicycle are presented; the computational methods used

are discussed; and, the results of this thesis are summarized.

1.2 Past and Present Research

The human body contains various types of control systems, including
systems that control heart beat, body temperature, body weight, and eye movement.
Leg motion is a system that is thought to not involve much conscious, voluntary
intervention. To walk, most people do not have to concentrate consciously on
moving the foot forward for each step; rather, it is a behavior that, once learned,
can be “commanded” and executed with little thought. Similarly, once a cyclist
learns to pedal a bicycle, the behavior can be repeated and adapted to changing
conditions without much concentration on the part of the cyclist. Thus, the
emphasis here is on motor control at a level below volition and cognition.

Pedaling a bicycle is a suitable candidate problem to examine, since it

clearly contains elements of cognition in “commanding” the behavior and elements




of complex motor control. Additionally, it requires coordination of the motion of
muscles and bones through the complicated three dimensional trajectories necessary
to provide useful forward motion of the cycle (Ref. [2]).

Empirical data collected on this subject suggests a separation between
cognitive functions and motor control. The mesencephalic cat experiment by Shik,
Orlovsky, and Severin (Ref. [3]) demonstrated that walking could be induced in a
cat with a severed mesencephelon through stimulation of the brain stem. The
experiment and the resulting analysis showed that locomotion is controlled by
neurons in the spinal cord and feedback from the periphery, as noted by Levine and

Loeb in Reference 1, and is not necessarily a cognitive function.

This work is concerned with the dynamics and motor control aspects of
pedaling a bicycle, and not with the cognitive aspect of commanding it. The
problems to be examined include the development of signals that can achieve such
coordination to accomplish successful pedaling, and parameterization of these
signals. Experimental evidence has already shed some light on this approach by
showing that the stimulation to the brain stem required to induce motion is a train
of current pulses (Ref. [4]). But even if the structure of the signal is known, how is
it realized? Is the mechanism for creating these signals intrinsically built into the
body’s circuitry, or is such a mechanism developed and tuned through direct
" experience?

Previous studies on bicycle pedaling have addressed the question of whether

the process of acquisition of physical locomotive skills is “hard-wired” or is



“plastic (learnable)” (Ref. [1]). Early conjectural models tended toward the “hard
wired” concept in modeling a motor program as a collection of parameters that,
when received by the muscles, would initiate a specific action. However,
experimental evidence has shown that locomotor-related neural circuits exhibit
adaptive capacities (Ref. [4]), thus tending to the “plastic” model. Contemporary
models of motor programs, such as the one proposed by Levine and Loeb in
Reference 1, are collections of instructions which generate a variety of related
movements. In fact, physiological models have come neural networks, which are
systems whose parameters adjust over time and experience to meet the system’s
goals. Newell’s work (1991, Ref. [5]) formulates the process of motor control

behavior development in terms of solutions in a “perceptual-motor workspace”.

Research into the pedaling problem by Levine, Zajac, et. al (Ref. [2]) has
shown that the control to achieve maximal acceleration for a simple skeletal system
is bang-bang. Further, it indicates that peripheral feedback adjusts the timing, not
the shape, of the commands. Hence, there are several “levels” of control occurring
between the brain and the muscles. A model proposed by Levine and Loeb (Ref.

[1]) to account for this behavior is shown below in Figure 1.1.

We hypothesize that a pedaling subject is performing an action regulated not
by cognitive brain functions, but by motor control parameters tuned by time and
experience, as shown in Figure 1.1. Successful modeling of this motor control
system can provide a map for parameterization of the signals required to perform

the action, and a platform for studying how the acquisition of knowledge to perform
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Figure 1.1: Motor Control Model (adapted from Ref. 1)

such tasks occurs. The benefit of such knowledge is clearly applicable to treatment
of patients with motor control problems and to optimization of sports performance.
In summary, this work examines the signal patterns required to perform
cycling and the parameterization of those signals. Cyclist “learning” is modeled as
the process of solving optimization problems structured to model the acquisition of
the parameters required to achieve successful pedaling. Additionally, the models
are used to extract information useful to accomplishing successful pedaling. The

dynamic models for bicycling used in this thesis are presented in the next section.

1.3 Cycling Models

There are two dynamic models of a two-legged human cycling system that
are used to perform the analyses in this thesis, referred to here as the Three Degree-

of-Freedom model and the One Degree-of-Freedom model. Both models are only




concerned with physical human geometry below the hip, with the assumption that
the upper body is stationary. The One Degree-of-Freedom model is a reduction of
the Three Degree-of-Freedom model in which the feet are ignored as input sources
and are attached directly to the pedals. In all cases, the legs move in the same

plane. The mathematical equations for both models were derived in Reference 6,

sections 2.2 and 2.3.

1.3.1 Three Degree-of-Freedom Model

The geometry of the Three Degree-of-Freedom model is shown in Figure
1.2. The hip is kept fixed in the seat, and the upper body remains stationary. In
Figure 1.2, H is the hip joint, K, and K, are the left and right knee joints
respectively, A; and A, are the ankle joints, 7; and 7, are the toes, and B, and B, are
the fixed points on the feet to which the pedals are attached. The point C marks the
center of rotation of the crank. It is assumed that the right and left limbs are
equivalent in length, size, and mass. We define P;, P,, P;, P,, and Ps as the mass
centers of the segments HK;,, KA, AB, BT, and B,C. To parameterize this

system, we define the following lengths:
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Figure 1.2: Three Degree-of-Freedom Cycling Model Geometry

L=L+h,=HE+KF=HK =HK,
L=bi+b,=KPB+APF=KA =KA
=1L +l, =AP+BP =AB =AB,
ly=ly+l,=BP +TP =BT =BT
Iy=14,+1,=BP+CP,=BC=BC

The left limb angles in the model are defined as follows:

6, Hip Angle
0, Calf Angle
0, Ankle Angle
6, Crank Angle

The right limb angles are denoted by 6,. In Reference 6, it is shown that 6, and 6,
are functions of 6;, 6, and 6,. Since we also include the assumption that the feet

are fixed 180° apart in order to model “normal” cycling, then 9'4 is merely 6, + 7.




Thus, this model has three degrees of freedom - &; (the left ankle angle), 6 (the
right ankle angle), and 6, (the crank angle measured from horizontal to the left
foot). The conventions for measuring the angles are discussed in Appendix A.

The dynamic equations for two-legged pedaling are highly nonlinear, and

are expressed as follows
hllé_’s +hxzé4 +hl49§ +h1593 +hl§ 9394 = _hlﬁ +hl7uhl + hlSukI +hl9ua1
hub.; +hxzbs +hué32 +h14(94’12 +h|593a. = —hs + hiyu,, + huy, +hu,

Py O, + 1B+ (Pyy + 1,)0, + By & + hyy 82 + (B, + 1), + (B + 1 6,)6,

= hyg — Mg + Mgty + gty + gty + hogiy, + ogtty + Mgu, — 1y,
The functions hy, i,j=1..9, are functions of the crank and ankle angles (although
not of the velocity), and of the physical parameters of the cyclist. The input

torques are defined as follows:

u, Left Ankle Input
u, Right Ankle Input
u, Left Knee Input
u,, Right Knee Input
u,, Left Hip Input

u,, Right Hip Input
u,, Resistance Torque

The physical parameters used for this simulation are listed in Appendix A.
1.3.2 One Degree-of-Freedom Model

The One Degree-of-Freedom cycling model is a reduced case of the Three

Degree-of-Freedom model, and is shown in Figure 1.3. In the one Degree-of-




, Uhi H
K
‘_/’—\_ .
o, [ ™ n
9 d
2
KOk ;
A, ,
Y
72\\
C i
A,
—

Figure 1.3: One Degree-of-Freedom Cycling Model Geometry

Freedom model, the ankles are fixed to the pedals, and thus the feet play no part in
the dynamics. The ankle joints and the axis of rotation of the pedals effectively
coincide. Since the feet don’t play a role in pedaling the cycle, this model is only a
one degree of freedom system. All other angles of the system are a function of 6,
the crank angle, as shown in Reference 6. The dynamic equation representing two-

legged pedaling is expressed in the following equation:




