SRC TR 85-8

VLSI ARCHITECTURES BASED ON
THE SMALL N ALGORITHMS

by

Joseph Ja' Ja'
and
Robert Michael Owens
Dept. of Electrical Engineering

University of Maryland
College Park, MD 20742

Abstract

Digltal convolution and the discrete Fourler transform are baslc operations whose
computational requirements are of great Importance In many applications. In this pa-
per, we propose a new type of VLSI architectures which are shown to be qulte sultable
to handle these operations. These archltectures wlll result in fully pipellned blt-serial
arrays which require no control units. Some prelimlnary implementations Indicate a

substantial speed-up galn over other existing deslgﬁs.

1. Introduction

Digital convolution and the discrete Fourler transform are baslc operations whose
computational requirements are of great lmportance to many applications such as slgnal
processing and lmage recognitlon. Many researchers have studled these operatlons and
have come up with different schemes to Implement them. The only hope for a substan-
tlal speed up lles in the efficlent use of parallelism and plpelining. Today with the ad-
vent of VLSi, hundreds of thousands of transistors can be lald out on a single chip.
This opens up the door to deslgning fast speclal-purpose hardware to perform these
operations. Several speclal architectures have been proposed and Implemented for vari-
ous digital operations. Recently the systolic approach ([KL],[KS]) has been advocated
by many researchers mainly because of the amount of parallellsm used and the regularl-
ty and the simplicity of the overall structure. We see a couple of disadvantages with

thils approach: I/O Interfacing and the amount of hardware requlred.

In this paper, we conslder classes of algorithms based on the so called small n al-
gorithms for convolution and discrete Fourler transform and show how to implement
them on a regular structure uslng the maximum amount of parallellsm In a certaln
sense. The baslc cells are bit-serlal adders and multipliers that can be lald out quite
compactly. Two types of bullding blocks will be sufficlent to Implement any class of al-
gorithms to be discussed In the next two sectlons. The overall structure of these algo-
rithms lends ltself well to parallel and pipellne implementation. Moreover, the overall
arlthmetlec requirements can be shown to be significantly smaller than those of the alter-

native algorithms.

2. Fast Convolution Algorithms

The cyclic convolution {y;} of two length n sequences {z; } and {A; }, CYC(n),

is deflned by:

n-1
yjzzhizj-—i' J =01, ~,n -1,
1=0
where 7—t 1s computed modulo n. We start by discussing a class of algorithms which
view the above problem as multiplying two polynomials modulo a third polynomlal as
follows. Let Y (z), X (z) and H (2) be three polynomlals defined by:
n-1 .
Y(z)= 3 ¥y 2°,
t =0

X(z)= nz—]l x; 2t

t =0

n -1 R
H(z)= % b z'.

{ =0

Then 1t Is easy to verlfy that

Y(2)= X (z)H(z)) mod(z" —1).

The computational complexity of thils problem has been studled by Winograd
([W2]) and algorithms using the fewest number of nonscalar multlplicatlons have been
developed. However these algorithms become Impractical for large values of » and only
the optimal algorlthms with small n are used. These algorithms (for short convolution)
are based on the Chinese Remalnder Theorem for polynomials ([AC], [W1]) and, when-
ever the data is real, do not use slnes or cosines or complex arlthmetlc. Moreover, these
algorithms use fewer arlthmetic operations than the radix 2 fast Fourler transform,
FFT based algorithms. For example, the convolution of (2, 2, Z,)7 zznd (ho by hy)T

can be computed as follows:

Qg =Ty + T+ Ty G =Tg~ Ty Gg==T; Ty, Gz = G, + @y

bo:(ho+h1+h2)/3’ b1=h0—h2, b2—_‘h1‘h2’ b3:(h1+h2)/3,

mo=agby, m;=2a,b, my=a,b,, mg=agzhby,

I

Ug my,—mg Uy = My— Mgy,

Yo=Mgo+ Ug Yy =Mgog—Ug— Uy, Yg= Mg+ u,.

Before we proceed, we dlscuss one possible representation of each of these small n algo-
rithms. Each of these algorithms conslists of three steps: a set of Input
additlons/subtractions, a set of elementwise multiplications, and a set of output

additions/subtractions. These operations can be represented by three matrices A, B,

and C such that:
Input Additlons:h =Ah x=Bx
Elementwlse Multiplicatlons: ¥ = h®x
Output Additions: y =C ¥

where ® 1s elementwise multiplicatlon. Notice that If the algorithm uses § multiplica-
tlons, then A and B are of slze 6Xn and C Is of slze n X§. Optimal algorithms have
been developed for 2<n <9 ([AC]). Note that in many practical cases, h can be as-
sumed fixed and all the Input additlons/subtractions involving the h;’s can be precom-
puted. For larger values of n, other schemes have been found. One such scheme Is the

Agarwal-Cooley algorithm ([AC]) which can be described as follows.

Let » be such that n = n, n, ' - n;, where the n;’s are relatively prime.
Then CYC (n) can be computed by using algorithms for CYC(n;), 1 < + <l Each of
these algorithms 1s represented by Al B and Ci, where Al and B! are of size 6; X ny;

and C' 1s of size n; X 6; . Then one can check that:

y=(CRC®Q - - QCH AR - - QAR AYh
AB'R - *B2R BY)x) (*)

where & Is the kronecker product. We now derlve a slightly different version which Is
more sultable for lmplementatlon. Assume that a 7, 1 < 7 < [exlists such that

nyng ' M /¥n; ngy, o my. Then equatlon (%) can be rewrltten as follows:

y=(C'® ' QCHR (CIK - R CH
(AR - RANR (AI'® - - RAYh
®BIR - BHQRB'R - - RBYx)

Let X, H, and Y be two I-dlmenslonal arrays of slze n; - - - n; X n;jy * " n, hold-

Ing the elements of x, h, and y, respectively, In row-major order form. Then one can

show that:
Y = C3(C'AYAH)T®B'B*X)' T (2.1)
where

61=CI®...®Cj—1 62=Cj®"'®Cl
A'=ANQ - QA' A=A - QA
B'=B"'® ---QB' B’=BQ -- QB

Notice that the baslc operations Involved In computing Y are of three types: 1)
Input/output additions of the form A X, such that the elements of A are elther -1, O,

and 1; 2) elementwise multiplication of the form X®Y; and 3) the transpose operation

of the form X7 .

3. Fast Algorithms for Computing the Discrete Fourier Transform

Recall that the discrete Fourler transform {y;} of a length n sequence {z;},

DFT (n), 1s glven by:

n-1 .
yp = 3 wh z;, 0 <k < n-1,
j=0

where w = ¢ 2™ /" We start by discusslng a class of algorithms that are different than
the FFT. For large values of n, these algorithms use substantlally fewer multiplications
and about the same number of additlons/subtractlons as those of the radix 2 FFT. The
baslc 1dea behlnd these algorithms 1s the reductlon of DFT (n) to a cyclic convolutlon
which, as described In the previous section, can be reduced to computing the product of

two polynomlals modulo a third polynomial.

Based on the reductlon to cyclic convolution method, several authors have
developed algorithms to compute DFT (n) for several values of n and In particular for
n =2,3,4,5,7,8, 9, 16. The general structure of such algorithms, like those for cy-
clic convolution, conslsts of a sequence of Input addltions/subtractlons followed by mul-
tiplicatlon steps followed by output additions/subtractions. These operations can be
represented by three matrices S, C, and T such that the Input/output relationship for

DFT (n) can be expressed by:
y=8SCTx

where C 1s a § X 8§ dlagonal matrix representing the & multiplications, T Is a 6 X n
matrix of 0, 1 -1 representing the Input additlons/subtractions, and S Is an n X 6 ma-
trix of 0, 1, —1 representing the output additlons/subtractions. Note that n S 16 and

6 < 18 for small n.

For larger values of n, DFT (n) can be computed by combining an appropriate
set of these small n algorithms. Let n = n,n, - - - n;, where the n;’s are relatlvely
prime. We will brlefly outline how to compute DFT (n) by using the algorithms for

DFT (n;), 1 < ¢ < I Each of these algorithms Is represented by Si Ci Ti — D, where

Ciis §; X 6;,1 <1< [l. It Is possible to reorder the entries of x and y so that
i=D'® .. ®D2®Dl—,

where & 1s the Kronecker product operation, and X and ¥ are the reordered Input and

output vectors. We thus obtaln

F=@6'C'THR - - Q2 C?2THR (S! C! THx

Good’s algorithm (also called the prime factor algorlithm) and Wilnograd's algo-

rithm (WFTA) differ on how to compute the above equation. Let X and Y be two I-

dimenslonal arrays of slzes n; X - - Xmny X X n,; such that XJ-I‘ e de jy = Z; and
Y, ... j,j, = ¥;, where (37» © " "+ Jg J,) Is the Chinese Remalnder representation
of 7.

Using the above notatlon and some elementary properties of the Kronecker pro-

duct, we can express Y In terms of X as follows:
Y= S'ciTs?c2Ty - (st Tx))T -)T,

The above equation 1s essentlally Good’s algorlthm based on the small n DFT ’s.
Winograd’s algorithm ls slightly harder to describe. Using elementary propertles of the

Kronecker product, we have
F=0'® - RSRSHCIY - - RCRCHTIR - R TR THX, (*)

which 1s essentially Winograd’s algorithm (WFTA). For our purposes we need to
rewrlte 1t In a different form using the multidimenslonal arrays Y and X. It s not hard

to see that the WFTA algorithm can be expressed as follows:

Y = SI(- - (S(S' COTHTA(- - - (TX)T -)T -)T)T™)T™ ..)T™

where C 1s an l-dlmenslonal array of slze §; X 8, X - - - X§; such that

C.

T8 "0,

§ = CMNiLi)C¥iniy) - Cly.y).

and T and T‘.’”’ denote the generalized transpose and the Inverse transpose operations

respectively ([ER]).

The above algorithm has a nested structure and starts by computing all the Input
additions, then computing all multlplications and finally applylng the output addiltions.
Compare this with Good’s algorithm which alternates between DFT’s computations,

each of which Involving Input additions, a set of multiplicatlons, and output additions.

If we examine the small n algorithms, we find that §; =~ n; (as a matter of fact
6; < n;+2 for all +). Slnce n = n; n;_, - - - n,, the number of multiplications used

by Winograd’s algorithm Is approximately n. Compare this with the FFT algorithm

which will use about 2n log(n /2) real multiplications.

We now derlve a slightly different version of Good’s algorithm which is more sult-
able for Implementation. Assume that a 37, 1< 37 </, exists such that

nyng - M ~n; nj,, - m. Then equatlon () can be rewrltten as follows:

F=0E' - 28HRET'R - RSHC'R - RSHR SR - RCY
(TR - QRTHR (THR - - @ THX .

Let X and Y be two arrays of slzes n, ny, -+ n;_, X n; n;,, - - - n holding the

elements of x and y, respectively, In row major order form. Then one can show that:

Y = (S'C'T(E*)C*TX)N)T (3.1).

where

Sl_§l - - QS! S?2=8l - - KRS

Cl=0'® - - QC! C?*=cClg - - C
T1=T3—1®...®T1 T2=Tl®"'®Tj

Likewise using a varlation of Wlnograd’s scheme, we can derlve:

Y = (S3S' cAHTH(TX)T)T (3.2).

So far we have seen two different algorithms which are based on the small n fast
algorithms: the first has the structure of the prime factor algorithm, and the second has
a nested structure Introduced by Wilnograd. We can also use the general structure of
the FFT algorithm to obtaln another type of algorithms based on the small n fast algo-
rithms. We now outllne such an approach. Let m = n, n,, where DFT (n,) and
DFT (n,) are glven by two Winograd-type algorithms (S,, C,, T,) and (S,, C,, T,).
Forany 0 <1< n-1land 0 < j < n-1wecan write ¢+ and J as ¢ = ¢, + 1,0, and

J = JyNao+ Jo. Then y = DFT (z)1s given by

no1 n,-1

.. . . 1 ..
8 1 o] :
y'_ﬁ_’_znl —_ E (w 1) 2]2(w 12 E (U.) 2) 1 lmj1n2+j2)‘
Jo=0 J1=0
Let
ol PNV
_ 2\81J1

Ziyjs = 23 W 004,

J1=0

For each fixed 7 2 %5, Is the dliscrete Fourler transform of n, polnts. Hence we can ap-

ply DFT (n,) n, times to obtaln all the 2; ;'s. We then have to scale these quantitles

by the factors w''/?

. Finally we can apply DFT (n,) n, tlmes to get the deslred quantl-
tles. We now translate thls algorithm Into matrix form. Let X be an n,Xn, array

representing the Input In row-major order form. Then the output Y Is given by

Y =8S2C2T2(W®S! C' T X)T (3.3),
where W 1s a constant n 1 X N, array glven by

Wi]' = W' 0<1 <n,;-1,0 <j < ng-1.

Note that in this case we are not assumlng that n,; and n, are relatively prime and that
there 1s a modest Increase In the number of multiplications, namely n. However as we
will see In the next sectlon this will not affect the overall performance In any slgnlficant
way. Notlce that the baslc operations Involved In computing Y In each of the three al-
gorithms glven 1n thls section are ldentlcal to those of cycllc convolution and are of
three types: 1) input/output additlons of the form A X, such that the elements of A are
elther —1, 0, and 1; 2) elementwise multlplication of the form X®Y; and 3) the tran-

spose operation of the form xT.

It 1s not hard to see that a slmilar class of algorithms can be designed for digital

flltering.

4. Component Structure

Recall from the previous two sectlons that only three operations are Involved in
computing elther the cyclic convolution or the discrete Fourler Transform. We propose

three hardware components to compute these operatlons.

1) the summation component will be used to compute AX, where the elements of A
are elther —1, O, or 1. This component will therefore be used to compute the
Input/output addltlons/subtractlons. It will be constructed from an array of serl-
al adders.

2) the scaling component will be used to compute X®Y. This component will be

constructed from a number of llnear array of digit onllne multipliers which will

10

perform all the corresponding multiplications.

3) the transpose component will be used to compute X7 . A two dimensional array

of dynamlic shift registers will be used to lmplement this component.

Once these components are avallable, the cyclic convolutlon or the dlscrete Fourler
transform can be be lmplemented for some n qulite easlly by Interconnecting these com-

ponents as shown In the next section.

To ald In the construction of the overall VLSI hardware, we propose that each of
the components has whenever posslible the followlng propértles.

1) The executlon rate of each component should be constant and therefore in-
dependent of the mathematical and physlcal characteristics of its size.

2) Each component should be constructed by Interconnecting In a regular way
smaller components of a few different types. The size of the subcomponents
should be small and Independent of the size of the problem. Furthermore,
glven the formal description, the design of a component should be stralghtfor-
ward.

3) The size of each component should be reallstic and should satisfy VLSI clrcult
denslty and slze constralnts.

4) The logleal and the physical Input/output characteristics of the varlous com-
ponents should be compatible so as to allow one component to be connected to
another 1n a straightforward manner. Furthermore, the number of intercon-
nections between components should be reallstlc.

We have shown In [OJ] that 1t 1s possible to achleve all the above goals for these baslc
hardware components. Below Is a brlef descriptlon of the summation component from

[0J].

Recall that the mathematical operation performed by the summution component

11

Is glven by Z = S X, where

S — [5}.’].,052‘ <nepo0<jJ< nl] ,

X = [X‘.’].,OSZ' <n,0<L 7 < nQ] ,
and

Z = [Z,-,]-,ogi <ne,0< 7 < nQJ
The elements of S are predeflned and are elther —1, 0, or 1. We will make use of this
fact by bullding them Into the summatlon component Itself rather than supplylng them
to the component as the operation 1s performed. Belng able to tallor the component in
this manner will decrease ts area and the number of Inputs. To reduce the area and
number of Inputs and outputs further, bit serlal arithmetic Is utllized in the design of
the component. By uslng bit serial arithmetic, we wlll be able to reduce the perimeter
required from O(p (n; + n,)) to O(n, +n,) and the area required from O(p n, n,) to
O(n, ny). We feel that serlal arithmetic Is necessary given the slze of the problems we

would llke to solve (as least 1024 point DFT') and the maximum complexity of VLSI

chlips 1n the forseeable future.

For reasons glven in [Ow], we propose left directed (least to most significant di-
glt) bit serlal arlthmetlc If the Input Is Integer data and right dlrected (most to least
significant bit) if the Input is fractional data. The following Is the left directed design
since 1t 1s the most complex of the two. The summation component can be constructed
by Interconnecting smaller subcomponents of only three different types (additlon, sub-
traction, and delay), which share the same rectangular shape. Each of these subcom-

ponents can be represented as shown In figure 4.1.

Zin
.)
Xin - - Xout
S
Tin - - Fout
| |
I‘out zout;

Figure 4.1. Summation Subcomponent.

12

The 1nput r;, s used to Indlcate that the first diglt of a element is belng supplied to the

subcomponent.

glven by figure 4.2.

Digit Online Addition Subcomponent

Zout = Fin
Tout = Tin
If r;, = O then
s =, + 2, —bc where ¢ Is
b+2<s < b-2
Zout =t + ¢
else
§ = Ziy + 2y
Zoyt = 1
Ifend
t =35

The functional description of the dlgit onllne addition subcomponent is

chosen such that

Flgure 4.2. Subcomponent Functional Deflnitlon.

where Z;, , Tin » and 2, are the values supplied to Inputs X;,, rj,, and z;, respectively in

the time interval prior to some clocking, Z,,;, Tpye» 2a0d 2,,; are the values generated at

13

OUtputs Xgu¢r Touts aNd Zg,, respectively In the Interval after that clocklng, and b 1s the
base of the number system belng used. The functional description of the subtraction

and delay subcomponents follows from the description of the addition subcomponent.

Digit onllne subcomponents of the three dlfferent types are interconnected as 1l-

lustrated by fligure 4.3 to form a diglt online summation component.

0 0

! L Ll
T T See || Sw | "] Saguo

L L L
T T s [T osa | Tl e

Xin

Lol Lol i \

1 1 ' i {
T T Sona | | St | T Sagin

L Lo Ll

Lo Lo Lo

Z

out

Figure 4.3. Summation Component.

Preliminary implementlons of our deslgn show that each of the subcomponents
can be lald out on an area of 170 mlcrons by 170 microns and that the subcomponents
have a delay of 40 nanoseconds. Hence, given the current restrictlons lmposed by
MOSIS, we will be able to faburicate an array of 24 X 24 subcomponents on a single

chip. This subcomponent has been submitted to MOSIS for fabrication.

5. Component Interconnection

Constder the cycllc convolutlon of two sequences where one of the Input Se-

14

quences Is predefined. Then, CYC (n) can be computed by an arlthmetlc unlt whose

overall hardware structure, as suggested by equation 2.1, 1s indlcated in figure 5.1.

X - |B’X c’X |- Y
N 1
xT H xT
1 I} 1
B'X —+|X®Yl—+ C'Xx

Flgure 5.1 Structure of Cyclic Convolution Interconnection.

where H = Xl(Kz H)T . The total chlp area Is approximately O(n), while the time
needed to compute the cyclic convolution Is approximately O(\/;z—). Hence, our design
achleves the A TZ lower bound of £2(n?). Also the hardware can be efficlently utillzed
by plpelining one problem after another through the subcomponents. Hence our design

achleves pipellning at the dlgit, word and problem levels.

Now conslder the discrete Fourler transform of a sequence. The transform
DFT (n) can be computed by an arithmetlc unlt whose overall hardware structure, as

suggested by equation 3.2, Is Indicated In figure 5.2.

X - | TX X | —-» Y
—l 1
XT C xXT
1 L |
T'X —»lX®Y|—+ S'X

Figure 5.2 Structure of First DFT Interconnectlon.

The total chlp area Is approxlmately O(n) and the time needed to compute DFT (n) 1s
approximately O(V'n). Hence, our deslgn achleves the A T? lower bound of Q(n?).

Note that the structures for the cyclic convolution and the DFT are ldentlcal.

15

The DFT can also be computed by an arlthmetic unit whose overall hardware

structure, as suggested by equatlon 3.1, 1s Indlcated In figure 5.3.

X - | T*X S'X —»IXT'—>Y
1 — 1
c'®Xx C:®X
I} 1
S’X — , xT l — T'X

Flgure 5.3 Structure of Second DFT Interconnection.

Agaln the total chlp area 1s approximately O(n) and the time needed to compute
DFT (n)1s O(vn). Hence, our deslgn achleves the A T2 lower bound of Q2(n2). Note
that In this case, the arrays C' and C? need not be supplled to the scallng component.

This fact can be used to reduce the slze of the scallng components In this case.

The disadvantage with the second interconnection for the DFT when compared
to the first Interconnection Is that the second has two scallng components whereas the
first has only one. The advantage with the second 1s that each of its two scallng com-
ponents 1s much smaller than that of the first. Hence, even though the second Intercon-
nectlon has more components, 1t may not have a larger chlp area than the first. Furth-
ermore, even If more hardware s needed by the second Interconnection scheme, the
throughput (number of problems which can be solved per unit of time) Is not less than
the throughput of the first Interconnection scheme.

The transtorm DFT (n) can also be computed by an arithmetlc unit those overall

4
hardware structure, as suggested by equation 3.3, Is Indicated 1n figure 5.4.

16

X — T X

w]
M
!

&

!
!
a

— -t
C'®X C*®X
W
|l 1 1

S*X —»l)@YJ-»IXT,—» T'X

Figure 5.4 Structure of Third DFT Interconnection.

The total chip area is approximately O(n) and the time needed to compute DFT (n) is
O(v'n). Hence, our design achleves the A T2 lower bound of (2(n2). Agaln note that
in thils case, the arrays C! and C? need not be supplied to the scaling component. This

fact can be used to reduce the slze of the scaling components.

Note, the third Interconnection has one more scalilng component than the second
Interconnection. However, as polnted out before, there Is more flexibility In choosing the
dimensions of the zomponents. Furthermore, while more hardware 1s needed by the
third Interconnection scheme, the throughput (number of problems which can be solved

per unlt of time) does not decrease.

8) Conclusion

Preliminary slmulatlon results lead us to belleve that a DFT processor of a few
chips can be constructed which Is capable of performing about 64,000 pipelined 1024
point DFT's per second. This rate approaches the rate needed by welghted zero-

crossing techniques for pattern recognition.

Future plans will strive to reduce the slze and delay of the subcomponents by
consldering other digit sets and other VLSI technologles and to automate the process

used to design a component for a glven appllication.

[AC]

[Atk]

[Av]

[CT]

(D]

[Detal.]

[ER]

[G]

[Jo]

[KP]

[KL]

MC]

[0J]

[Ow]

(Thl

17

References

Agarwal, R. and J. Cooley, "New algorithms for digital convolution,” TEEE
Trans. Acoustics, Speech and Signal Processing, 25, pp.392-410, 1977.

Atkins, D. E., "Introduction to the Role of Redundancy in Computer Arith-
metle,” Computer, Vol. 8, No. 8, pp. 74-76, June 1975.

Avlzienls, A., "Signed-digit Number Representations for Fast Parallel Arith-
metle,” IRE Transactions on Electronic Computers, pp. 389, 1961.

Cooley, J. and J. Tukey, "An algorithm for the machlne calculation of com-
plex Fourler serles,” Math. Comp., 19, pp.297-301, 1965.

Despaln, A.M., "Very Fast Fourler Transform Algorithms for Hardware Im-
plementation,” IEEE Trans Computers C-28. pp. 333-341, (May 1979).

Despaln, AM. etal., "VLSI Implementation of Diglital Fourler Transforms,”
Report No UCB/CSD82/111, Computer Sclence Divisilon, Unlversity of Call-
fornla, Berkeley, Ca.

Elllot, D. and K. Rao, Fast Transforms Algorithms, Analyses, Applications,
Academlc Press, 1982.

Good, 1., " The Interaction algorithm and practical Fourler analysis,” J. Roy-

al Stat.Soc., ser. B, vol.20, pp.361-372, 1958, Addendum, vol.22, pp.372-375,
1960.

Ja’Ja’, J. and R. Owens, "An architecture for a VLSI FFT processor,” IN-
TEGRATION: the VLSI Journal, 1(4), pp.305-316, 1983.

Kolba, D. and I. Parks, "A prime factor FFT algorithm using high speed
convolutlon,” IEEE Trans. Acoust., Speech and Signal Processing, ASSP-25,
pp. 281-294, 1977.

Kung, H.T. and C.E. Lelserson, ”Systolic Arrays (for VLSI),” Sparse Matriz
Proceedings 1978, edited by J.S. Derff and G.W. Stewart, SIAM, 1979, pp.
256-282.

Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-Wesley,
Reading, Mass., 1980.

Owens, R.M. and J. Ja'Ja’, A VLSI Chlp for the Winograd/Prime Factor
Algorithm to Compute the Discrete Fourler Transform,"-submltted fqr publi-
catlon to IEEE Transactions on Acoustics Speech and Signal Processing.

Owens, R.M., " Techniques to Reduce the Inherent Limitations of Fully Diglt
On-line Arithmetic,” IEEE Transactions on Compulers, 32(4), pp. 4068-411,
(April, 1983).

Thompson, C., "Fourler Transform 1n VLSIL” Technical Report, Computer
Sclence Dlvislon, Unlversity of California, Berkeley.

[Wi]

[(W2]

(W3]

18

Winograd, S., "On computing the discrete Fourler transform,” Proceedings
of Nat. Acad. Sci. USA 73, pp. 1005-1008, 1978.

Winograd, S., "On computlng the discrete Fourler transform,” Math. Comp.
32, pPp. 175-195, 1978.

Winograd, S., "On the multiplicative complexity of the discrete Fourler
transform,” Advances in Math. 32, pp. 83-117, 1979.

