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Cardiovascular disease (CVD) is the leading cause of deaths worldwide. 

Prostate cancer is the most prevalent cancer in U.S. male population. Diet-induced 

hypercholesterolemia and chronic inflammation promote the development of both 

CVD and prostate cancer. Glyceollins are a group of soy phytoalexins possessing a 

variety of biological activities. This research project focused on characterizing 

glyceollins’ bioactivities in alleviating cholesterol dysregulation, prevention of 

prostate cancer, and regulating gut microbiome.  

The first part of the project aimed to evaluate glyceollins’ cholesterol-

lowering effect in-vivo. Male golden Syrian hamsters were fed high-fat diet with or 

without glyceollins supplementation for 28 days. Glyceollins supplementation led to a 

significant reduction of plasma VLDL, hepatic cholesterol esters and total lipid 

content. Consistent with changes in circulating cholesterol, glyceollins 



  

supplementation also altered expression of the genes related to cholesterol 

metabolism in the liver.  

The second part of the study aimed to evaluate glyceollins’ effect in reducing 

prostate cancer tumor growth in a xenograft model. An initial delayed appearance of 

tumor was observed in a PC-3 xenograft model. However, no difference in tumor 

sizes was observed in a LNCaP xenograft model. Extrapolation analysis of tumor 

measurements indicated that no difference in sizes was expected for both PC-3 and 

LNCaP tumors. Glyceollins had no effect on the androgen responsive pathway, its 

proliferation, cell cycle, or on angiogenesis genes in tumor and xenobiotic 

metabolism, cholesterol transport, and inflammatory cytokine genes in liver. 

Glyceollins’ low bioavailability might have led to the ineffectiveness in reducing 

tumor growth in-vivo. 

The microbiome has emerged as an important and integral part of the human 

physiology with a significant role in human health and disease. The third part of the 

study aimed to evaluate the effect of glyceollins on the gut microbiome in mice. Fecal 

and cecal samples collected from mouse feeding studies were analyzed for microbial 

population and composition. Glyceollins supplementation did not alter gut bacteria 

groups in cecal sample examined in this study. Glyceollins significantly affected total 

Enterobacteriaceae and Ruminococcus population in fecal samples collected at 24 h, 

indicating the impact and importance of time of collection in interpreting gut 

microbiome data in fecal analysis. 
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Introduction 

Cardiovascular disease (CVD) has been the leading cause of death worldwide 

since the 1970s. Prostate cancer is the most prevalent cancer in U.S. male population and 

accounts for 15% of all malignant cancer incidences. Diet-induced hypercholesterolemia 

and chronic inflammation promote the development of both CVD and prostate cancer. 

Despite the prevalence and severity of these chronic conditions, effective cures remain 

largely unavailable. Hence, prevention presents an important part of overall management 

strategy for these chronic diseases. Given the role of diet in the development of CVD and 

prostate cancer, modulation of diet is key in the prevention strategy. Soy is one of the 

major agricultural commodities in the U. S. and worldwide. Soy and soy-derived foods 

are rich sources of bioactive phytochemicals and well known for their health promoting 

effects, include protection against cardiovascular diseases and cancers such as prostate 

cancer. However, the precise bioactive component(s) as well as the mechanism(s) of 

action remain largely unresolved. Glyceollins are soy phytoalexins possessing a variety 

of biological activities, including antibacterial, antifungal, antiproliferative, 

antiestrogenic, antidiabetic, antioxidant and anti-inflammatory effects. 

Hence, the overall goal of this research was to elucidate the bioactive components 

of soy and the underlay mechanisms of action, and the focus was on the examination of 

the bioactivities of the novel soy-derived compounds glyceollins. The current research 

projects characterized glyceollins’ bioactivities in alleviating cholesterol dysregulation 

resulted from consumption of a western-style diet, and glyceollins’ effect on prostate 

cancer prevention. The specific objectives were:  
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1) To examine the hypothesis that glyceollins can alleviate metabolic and 

inflammatory disorders resulting from high fat/cholesterol diet.  

2) To determine the hypothesis, that glyceollins possess preventative effect 

against prostate cancer. 

3) To investigate the influence of diet and glyceollins supplementation on 

microbiome in the gastrointestinal tract. 
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Chapter 1: Literature Review 

 

1.1. Diet and chronic diseases 

A chronic disease is a human health condition or disease that is persistent or long-

lasting in effects. The World Health Organization (WHO) reported chronic conditions to 

be by far the leading cause of mortality in the world, representing 36 million deaths in 

2008 and over 63% of all deaths (WHO, 2013). Chronic illnesses cause about 60% of 

deaths in the U. S. in 2005, and CVD, cancer, chronic respiratory diseases, and diabetes 

were the four top causes of mortality in the general US population (CDC, 2009), among 

which CVD accounted for 30% of all deaths and cancer cost $263.8 billion in the U. S. in 

2010 (AACR, 2012). 

Over the past three decades, the role of diet in the prevention and control of 

morbidity and premature mortality due to chronic diseases, like CVD and cancer, has 

well been established by the vast population-based epidemiological studies (Kris-

Etherton, Eckel, Howard, St Jeor, & Bazzarre, 2001; Lichtenstein, Appel, Brands, 

Carnethon, Daniels, Franch, et al., 2006). Diet and genetic predisposition are identified to 

be the most important environmental factors in the development of chronic diseases 

(Simopoulos, 1990). Humans, as a species, have not changed genetically over the past 

tens or hundreds millenniums, however, major changes have taken place in food supply 

and diet compositions (Friend, 1990), thus diet is considered the dominant part in the 

soaring incidence of CVD and cancer (Freeman & Solomon, 2004; Spence, Jenkins, & 

Davignon, 2010). The link between dietary intake of cholesterol and elevated circulating 
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cholesterol level has been well established (Spence, Jenkins, & Davignon, 2010), and 

hypercholesterolemia is strongly correlated with CVD (Kinosian, Glick, & Garland, 

1994). Doll and Peto performed an extensive review in 1981, in which they determined 

that diet is the largest risk factor of cancer and attributable to approximately 35% of 

cancer deaths in the U. S. with percentage potentially ranging as low as 10% to as high as 

70% (Doll & Peto, 1981). Willett further studied several types of cancers and estimated 

that 75% (ranging from 20% to 80%) of prostate cancer deaths are avoidable by 

modification of diet (Willett, 1995). 

 

1.1.1. Hypercholesterolemia 

Hypercholesterolemia is a condition that high levels of cholesterol present in the 

blood caused by the imbalance between cholesterol uptake and excretion (van der Wulp, 

Verkade, & Groen, 2013). Hypercholesterolemia is strongly associated with CVD, such 

as atherosclerosis, and can further lead to myocardial infarction, stroke, and peripheral 

vascular disease. The pathways involved in the development of hypercholesterolemia are 

regulated via a complex interplay of enzymes, transport proteins, transcription factors and 

non-coding RNAs (van der Wulp, Verkade, & Groen, 2013).  

 

Current understanding of cholesterol metabolism, absorption, transport, 

catabolism and excretion, and potential targets in prevention of hypercholesterolemia in 

the respective stage will also be reviewed. 
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1.1.1.1. Cholesterol metabolism 

Cholesterol is a type of sterol (Fig. 1) and building block for all mammalian cell 

membranes (Maxfield & Tabas, 2005). It is essential for proper membrane permeability 

and fluidity. Also, cholesterol serves as a precursor for the biosynthesis of steroid 

hormones, bile acids, and vitamin D (Rezen, Rozman, Pascussi, & Monostory, 2011). 

 

Fig. 1.1. Structure of cholesterol. 

 

Physiologically, cholesterol is mainly de novo synthesized in the liver (Fig18), via 

a complex 37-step process, which starts with the rate-limiting enzyme 3-hydroxy-3-

methyl-glutaryl-CoA (HMG-CoA) reductase (Molina, Vazquez, & Gutierrez, 1991). A 

typical individual has a daily cholesterol synthesis of ~1 g, and a total body content of 

~35 g, primarily located within the membranes of cells. Cholesterol can also be derived 

from the diet. On average, daily dietary intake of cholesterol in the U. S. is 300 - 450 mg 

(Lecerf & de Lorgeril, 2011).  

Normally, the body has the ability to compensate for additional cholesterol 

consumption by reducing cholesterol synthesis. Therefore, under physiological condition, 

cholesterol intake in food has little, if any, effect on total body cholesterol content or 

concentrations of cholesterol in the circulation. This is achieved by excreting the 

cholesterol via the form of bile into the digestive tract, and about 95% of the excreted 
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cholesterol is re-absorbed back into circulation. The remainder is lost in the feces. The 

excretion and re-absorption of bile acids are known as the enterohepatic circulation, 

which is essential for the digestion and absorption of dietary fats. 

 

Fig. 1.2. Critical enzymes involved in synthesis of cholesterol. 

 

De novo synthesis of cholesterol is regulated by the cholesterol level that is 

present in circulation (Gylling, Strandberg, Tilvis, & Miettinen, 1994; Molina, Vazquez, 

& Gutierrez, 1991). Under normal physiological conditions, higher intake of dietary 

cholesterol will lead to a decrease in endogenous production, whereas lower intake will 

induce the increase of de novo synthesis (Lecerf & de Lorgeril, 2011). Upon the 

accumulation of cholesterol, inhibitory signals of the SREBP family of transcription 
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factors will be triggered and prevent further synthesis of cholesterol (Brown & Goldstein, 

1997). Downstream, a feed-forward pathway will be activated to increase the conversion 

of cholesterol into bile acids. Additionally, excess cholesterol will be actively removed 

from peripheral and transported back to the liver for excretion via the reverse cholesterol 

transport pathway (Lewis & Rader, 2005).  

 

1.1.1.2. Potential targets in cholesterol synthesis in prevention of hypercholesterolemia  

Inhibition of HMG-CoA reductase has been proven effective in inhibiting 

cholesterol synthesis and is widely used in therapeutic treatments (Pedersen, Kjekshus, 

Berg, Haghfelt, Faergeman, Thorgeirsson, et al., 2004). The reduction of hepatic 

cholesterol synthesis in liver is compensated for by increase in cholesterol uptake from 

circulation resulting in lower plasma cholesterol levels (Ma, Gil, Südhof, Bilheimer, 

Goldstein, & Brown, 1986). Other targets involve the non-rate-limiting steps in 

cholesterol synthesis (such as CYP51 and squalene synthase) have also been studied, but 

their effectiveness in reducing cholesterol synthesis has not been proven (Korošec, 

Ačimovič, Seliškar, Kocjan, Tacer, Rozman, et al., 2008; Wasko, Smits, Shull, Wiemer, 

& Hohl, 2011).  

 

1.1.1.3. Biomarkers in cholesterol synthesis 

Sterol Regulatory Element-Binding Protein (SREBP) 1 and 2 are in charge of 

sensing of intracellular cholesterol in the endoplasmic reticulum, which is one of the 

primary mechanisms of cholesterol regulation (Lobaccaro, Repa, Lu, Caira, Henry-

Berger, Volle, et al., 2001). There are three isoforms of SREBPs: SREBP-1a, SREBP-1c 
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and SREBP-2. SREBP-1a is responsible for stimulation of regulatory genes involved in 

both cholesterol and fatty acid synthesis, SREBP-1c stimulates lipogenesis, and SREBP-2 

is responsible for regulation of cholesterol-synthesizing enzymes and LDL receptor in 

case of cholesterol depletion (Chang, Chang, Ohgami, & Yamauchi, 2006). Non-

activated SREBPs are located at the nuclear envelope and endoplasmic reticulum 

membranes. In the presence of cholesterol, SREBP is bound to sterol regulatory element-

binding protein cleavage-activating protein (SCAP) and insulin-induced gene (Insig)-1 to 

form a complex (Fig. 20). When cholesterol levels drop, Insig-1 dissociates from the 

SREBP-SCAP complex, and the remaining complex migrates to the Golgi apparatus, 

where SCAP will activate S1P and S2P, which will then enzymatically cleave SREBP. 

After that, the cleaved SREBP migrates to the nucleus and acts as a transcription factor to 

bind to the SRE, and initiates a number of downstream events, among which are the LDL 

receptor and HMG-CoA reductase. LDL receptor binds to circulating LDL and take the 

LDL into the cell. When cholesterol levels are high, synthesis can be turned off, and both 

LDL receptor and HMG-CoA reductase expression are reduced. HMG-CoA reductase 

contains both a cytosolic domain, which is responsible for its catalytic function, and a 

membrane domain, which is more susceptible to destruction by the proteasome as 

cholesterol concentration increases (Guo, Li, Wu, Xie, Zhang, & Cui, 2008; Lagace, 

Storey, & Ridgway, 2000; Rawson, 2003; Weber, Boll, & Stampfl, 2004).  

 

1.1.1.4. Cholesterol absorption and transport 

Transport of cholesterol is an intricate process. Cholesterol is only slightly soluble 

in water, and free cholesterol concentration is very low in water-based bloodstream. 
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Cholesterol in the form of free or cholesterol esters and triglycerides are mainly 

transported in the circulation within lipoproteins. Amphipathic molecules, such as 

phospholipids, are wrapped on the surface of the lipoprotein particle. Additionally, 

proteins (e. g. apolipoprotein E, apolipoprotein B100) serve as cell-targeting signaling 

molecules are also exposed on the surface. Several types of lipoproteins namely, 

chylomicrons, VLDL, IDL, LDL, and HDL, are classified according to the increasing 

density. The cholesterol within all these various lipoproteins is identical, with part of 

cholesterol carried in free form, and some carried as fatty acyl esters. Lipoproteins differ 

themselves by possessing distinct apolipoproteins so that each lipoprotein can be 

recognized by specific receptors on cell membranes. In other words, the apolipoproteins 

on the surface are molecular identifications that determine the start and end points for 

cholesterol transport. Chylomicrons carry fats from the intestine to muscle and other 

tissues that need fatty acids for energy or fat production. They are the least dense type of 

cholesterol transport molecules and contain apolipoprotein B-48, apolipoprotein C, and 

apolipoprotein E in the shells. Cholesterol that is not used by peripheral tissues remains 

in chylomicron remnants, which are more cholesterol-rich, will be taken up by the liver 

from circulation. Liver produces VLDL, which contain excess triacylglycerol and 

cholesterol. VLDLs contain apolipoprotein B100 and apolipoprotein E in the shells. After 

released into the bloodstream, triacylglycerol in VLDL are cleaved and absorbed, and the 

remaining form IDL molecules, which contain an even higher percentage of cholesterol. 

The IDL molecules can either be metabolized and directly picked up through the LDL 

receptor on the liver cell surfaces, or continue to lose triacylglycerol in the bloodstream 

until they become LDL molecules, which contain the highest percentage of cholesterol 
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within them. LDL molecules are the major carriers of cholesterol in the circulation, and 

each one contains approximately 1,500 molecules of cholesterol ester. The surface of the 

LDL molecule contains only one molecule of apolipoprotein B100, which can be 

recognized by the LDL receptor in peripheral tissues. Upon binding of apolipoprotein 

B100, LDL will be taken into the cells, and the cholesterol can be used for membrane 

biosynthesis or esterified and stored within the cell. Synthesis of the LDL receptor is 

regulated by SREBP, the same regulatory protein controlling de novo synthesis of 

cholesterol. When a cell has abundant cholesterol, LDL receptor synthesis is blocked so 

that new cholesterol in the form of LDL molecules cannot be taken up. On the other 

hand, more LDL receptors will be made if the cell is deficient in cholesterol. HDL 

particles are responsible for transporting cholesterol back to the liver for excretion or to 

other tissues that use cholesterol to synthesize hormones in a process known as reverse 

cholesterol transport. Due to the high prevalence of high circulating cholesterol in the 

western population, more HDL is usually thought to be “good” for health.  

 

1.1.1.5. Potential targets in cholesterol absorption and transport in prevention of 

hypercholesterolemia 

Despite the considerable amount of research and effort in inhibiting cholesterol 

absorption and transport, current treatments are usually nonspecific and require relatively 

high doses to achieve modest effect in lowering circulating LDL. However, recent 

findings in plant sterol/stanols, which are rich in cooking oils, wheat cereals, nuts and 

seeds and structurally similar to cholesterol, may present an alternative approach in 

controlling cholesterol absorption. Plant sterol can be transported via ABCG5/8 with 
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comparable efficiency as cholesterol (Wang, Sun, Zhang, Ma, Xu, Belani, et al., 2006), 

and effectively lower circulating LDL levels in human (Guardamagna, Abello, Baracco, 

Federici, Bertucci, Mozzi, et al., 2011). Thus, ABCG5/8 may be a better target than LDL 

in reducing cholesterol absorption and transport. 

 

1.1.1.6. Biomarkers in cholesterol absorption and metabolism 

LXR is a member of the nuclear receptor family of transcription factors and is 

closely related to several other nuclear receptors, such as the PPARs, FXR and RXR. 

LXR can dimerize with RXR and is an important transcriptional regulator of cholesterol, 

fatty acid, and glucose homeostasis. LXR can be activated by excessive cholesterol, 

either dietary or endogenous, and 1) stimulate cholesterol removal from the cell, 

transportation to the liver and biliary excretion; 2) enhance reverse cholesterol transport; 

3) inhibit intestinal cholesterol absorption; and 4) inhibit cholesterol synthesis and uptake 

by the cells (Beltowski, 2008). Activation of the LXR/RXR heterodimer can lead to an 

increase of intestinal expression of the energy-dependent transporter protein ABCA1, 

which is critical in cellular cholesterol efflux and dietary cholesterol absorption. It 

completely blocks intestinal absorption of cholesterol (McNeish, Aiello, Guyot, Turi, 

Gabel, Aldinger, et al., 2000; Repa, Turley, Lobaccaro, Medina, Li, Lustig, et al., 2000). 

In addition to ABCA1, LXR directly regulates another two members of the ABC 

superfamily, ABCG5 and ABCG8 (Lee & Carr, 2005), which are involved in actively 

efflux cholesterol and plant sterols back into the intestinal lumen. In addition, ABCG5 

and ABCG8 located at the surface of hepatocytes can facilitate efflux of cholesterol and 

plant sterols into bile (Jakulj, Vissers, Tanck, Hutten, Stellaard, Kastelein, et al., 2010). 
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Two forms of LXR receptors (α and β) exist. LXRα plays critical a role in the control of 

cholesterol synthesis (Peet, Turley, Ma, Janowski, Lobaccaro, Hammer, et al., 1998). 

Knock-down of LXRα can significantly increase the expression of the cholesterol 

synthesis transcriptional regulator SREBP-2, as well as HMG-CoA reductase and 

synthase, FPP synthase, and SQS (Alberti, Schuster, Parini, Feltkamp, Diczfalusy, 

Rudling, et al., 2001; Peet, et al., 1998), suggesting a role of LXRα in down-regulation or 

suppression of cholesterol synthesis pathways (Millatt, Bocher, Fruchart, & Staels, 2003).  

PPARs are a group of nuclear receptor proteins that function as transcription 

factors, which play essential roles in the regulation of cellular differentiation, 

development, metabolism (carbohydrate, lipid, protein), and tumorigenesis (van Raalte, 

Li, Pritchard, & Wasan, 2004). 

PPARα plays a major role as a regulator of fatty acid catabolism and targets genes 

such as FAS, ACACA, and SREBP-1 (Ferre & Foufelle, 2010; Goldstein & Brown, 

1997). PPARα is also very important in lipoprotein metabolism, especially in the 

metabolism of triglyceride-rich lipoproteins (Staels, Dallongeville, Auwerx, Schoonjans, 

Leitersdorf, & Fruchart, 1998). Activation of PPARα in the liver will shift free fatty acid 

metabolism from triglyceride synthesis to catabolism, increase the activity of LPL (Heller 

& Harvengt, 1983), and thus reduce the secretion of VLDL particles from liver 

(Schoonjans, Staels, & Auwerx, 1996). LPL is the key enzyme in the hydrolysis of 

triglycerides and also mediates the uptake of atherogenic triglyceride-rich lipoproteins 

remnants by the liver (Schoonjans, PeinadoOnsurbe, Lefebvre, Heyman, Briggs, Deeb, et 

al., 1996; Staels, Vudac, Kosykh, Saladin, Fruchart, Dallongeville, et al., 1995). On the 

other hand, impaired PPAR function leads to increased hepatic triglycerides content, 
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elevated VLDL production, impaired clearance of triglyceride-rich lipoproteins in the 

periphery, and increased plasma triglyceride levels (Duval, Muller, & Kersten, 2007). 

PPARα activation also up-regulates the synthesis of apo A-I and A-II, two major 

HDL apolipoproteins in the liver, and promote HDL maturation through the increased 

hydrolysis of triglyceride-rich lipoproteins. (Bisgaier, Essenburg, Barnett, Auerbach, 

Haubenwallner, Leff, et al., 1998; Vu-Dac, Chopin-Delannoy, Gervois, Bonnelye, 

Martin, Fruchart, et al., 1998; Vudac, Schoojans, Kosykh, Dallongeville, Fruchart, Staels, 

et al., 1995).  

The PPAR nuclear receptors appear to play a central role in the regulation of 

LXRα expression. Activators of both PPARα and PPARγ are shown to induce LXRα 

expression (Chawla, Boisvert, Lee, Laffitte, Barak, Joseph, et al., 2001; Chinetti, 

Lestavel, Bocher, Remaley, Neve, Torra, et al., 2001). The binding of the nuclear 

receptor PPARα to a PPAR response element (PPRE) in the 5’ flanking region of LXRα 

gene can up-regulated expression of LXRα mainly by increasing transcriptional rate 

(Laffitte, Joseph, Walczak, Pei, Wilpitz, Collins, et al., 2001; Tobin, Steineger, Alberti, 

Spydevold, Auwerx, Gustafsson, et al., 2000). PPARα up-regulation will induce ABCA1 

expression through the nuclear LXRα to promote cholesterol efflux (Chinetti, et al., 

2001). PPARα induces the hepatic expression of LXRα, then LXRα up-regulates the 

expression of CYP7A1, a protein that is key in promoting conversion of cholesterol to 

bile acids in the liver (Hafner, Rezen, & Rozman, 2011). Once LXRα is activated, LXR-

dependent pathways and genes described in the previous section will be activated and 

lead to down-regulation of cholesterol synthesis pathways. 
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1.1.1.7. Cholesterol catabolism and excretion 

Cholesterol can be converted into a variety of bile acids in the liver (Javitt, 1994), 

and CYP7A1 is the key enzyme involved in bile acid synthesis (Handschin, Gnerre, 

Fraser, Martinez-Jimenez, Jover, & Meyer, 2005). Bile acids are usually conjugated with 

glycine, taurine, glucuronic acid, or sulfate. A mixture of conjugated and nonconjugated 

bile acids, along with cholesterol, is excreted from the liver into the bile. Approximately 

95% of the bile acids are re-absorbed from the intestines, and the remainder is lost in the 

feces (Wolkoff & Cohen, 2003). The excretion and re-absorption of bile acids form the 

basis of the enterohepatic circulation, which is essential for the digestion and absorption 

of dietary fats. Up to 1 g per day of cholesterol enters the colon, which may originate 

from the diet, bile, and desquamated intestinal cells, and is further metabolized by the 

colonic bacteria into a nonabsorbable sterol, coprostanol. Free cholesterol, bile acids, and 

the metabolites are then excreted in the feces. 

Cholesterol is susceptible to oxidation and can easily be oxidized into derivatives 

known as oxysterols. Three different oxidation mechanisms have been identified, which 

are 1) autoxidation, 2) secondary oxidation to lipid peroxidation, and 3) cholesterol-

metabolizing enzyme oxidation (Bosinger, Luf, & Brandl, 1993). Oxysterols can exert 

inhibitory actions on cholesterol biosynthesis (Kandutsch, Chen, & Heiniger, 1978). 

Oxysterols are also involved in bile acid biosynthesis, transport of cholesterol, and 

regulation of gene transcription (Russell, 2000). 
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1.1.1.8. Diet and hypercholesterolemia 

Hypercholesterolemia is typically due to a combination of environmental and 

genetic factors, with dietary choices being an important part of the environmental factors 

(Bhatnagar, Soran, & Durrington, 2008). It is well known that diet has an important effect 

on circulating cholesterol (Howell, McNamara, Tosca, Smith, & Gaines, 1997). Dietary 

cholesterol can regulate cholesterol synthesis in humans, in which liver is the major organ 

senses the increase in uptake, and increased intake of dietary cholesterol will suppresses 

hepatic cholesterol synthesis (Stange & Dietschy, 1985; van der Wulp, Verkade, & 

Groen, 2013). In recent years, the intestine has come into focus as an important control 

point in cholesterol homeostasis, and approximately 50% of the non-esterified cholesterol 

is absorbed in the intestine (Lichtenstein, 1990). Genetic predisposition also plays a 

major role in hypercholesterolemia, potentially adding to lifestyle factors and multiplying 

the risk of late complications (Matsushima & Teramoto, 1998). 

Consumption of a western-style diet, which is generally high in fat and 

cholesterol, is associated with an increased level of cholesterol and further leads to a 

higher level of LDL in the blood. Excessive LDL that is not taken up by the peripheral 

tissues will remain in the circulation and be oxidized and taken up by macrophages. 

These macrophages will become engorged and form foam cells. Foam cells are often 

trapped in the walls of blood vessels and contribute to atherosclerotic plaque formation. 

These plaques are the main causes of heart attacks, strokes, and other serious medical 

problems. Thus, the dietary control of cholesterol level may play a critical role in the 

management of CVD. 
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1.1.2. Prostate cancer 

Prostate cancer is identified as the most prevalent cancer in U.S. population in 

2011 and accounts for 15% of all malignant cancer incidences (AACR, 2012). Many 

factors, including genetics, hormones, race, age, diet, and the environment have been 

identified to be responsible for the initiation and development of prostate cancer.  

Treatment of prostate cancer generally involves surgery, various forms of 

radiation therapy, cryosurgery, with hormonal therapy and chemotherapy generally 

reserved for more advanced disease (Macpherson, Ng, Lakhani, Price, Venitz, & Figg, 

2002; Tammela, 2012). The age and underlying health of the man, the extent of 

metastasis, histology and response of the cancer to initial treatment are important in 

determining the outcome of the disease (Bostwick, Burke, Djakiew, Euling, Ho, 

Landolph, et al., 2004). However, none of these therapeutic strategies is an effective cure 

for this disease.  

The causes of prostate cancer remain largely unknown (Hsing & Chokkalingam, 

2006). In the process of understanding the initiation and progression of prostate cancer, a 

wide variety of pathways and biomarkers have been identified, which reflect changes in 

cell morphometry; DNA ploidy; chromosomal gains and losses; cytoplasmic 

differentiation; cytoskeletal proteins; cell adhesion, proliferation, and apoptosis; growth 

factors and their receptors; oncogenes and tumor suppressor genes; AR gene mutations; 

and metastasis suppressor genes (Bostwick, et al., 2004). 
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1.1.2.1. Role of steroid hormones in prostate cancer 

Androgens and estrogens are two groups of steroid hormones involved in the 

metabolism, inflammation, immune functions, and development of sexual characteristics 

(Holmes & Shalet, 1996). Aside from androgens’ physiological role, androgens also play 

an important part in prostate cancer progression and metastases (Chan, Stampfer, & 

Giovannucci, 1998; Huggins & Hodges, 1972). Estrogens are also presented in male, 

though in lower concentration. More and more evidence supports the role of estrogen in 

the regulation of prostate cancer, which may act through two different ways: 1) indirect 

androgens lowering effect, and 2) direct target estrogen receptors presented on prostate 

cells (Bonkhoff & Berges, 2009). The role of these steroid hormones in prostate cancer is 

reviewed in the following section. 

Androgens are a group of male sex hormones (e. g. testosterone and 

dihydrotestosterone), which control the differentiation and maturation of male 

reproductive organs, including the prostate gland. Binding of androgens to the androgen 

receptor leads to the expression of target genes (Dehm & Tindall, 2006). Androgens may 

also post-transcriptionally regulate gene expression by modulating the stability of 

mRNAs (Sheflin, Zou, & Spaulding, 2004). Multiple signaling pathways have been 

demonstrated to be critical for prostate cancer initiation and progression (De Marzo, 

DeWeese, Platz, Meeker, Nakayama, Epstein, et al., 2004; Ramsay & Leung, 2009), with 

the androgen signaling pathway being one of the most prominent (Tindall & Tindall, 

2011). 

It has long been proposed that androgens promote prostate carcinogenesis 

(Huggins, 1967; Huggins & Hodges, 1972). A number of epidemiological studies have 
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supported a link between circulating androgen levels and risk of prostate cancer, although 

the correlation is not conclusive (Isbarn, Pinthus, Marks, Montorsi, Morales, 

Morgentaler, et al., 2009; Morgentaler, 2006). A ‘saturation’ model of androgen action 

on androgen-dependent growth was suggested (Morgentaler & Traish, 2009), which 

states that physiological levels of androgen play an important role in both normal and 

malignant prostate cell proliferation; however, elevated levels of androgens alone do not 

necessarily lead to uncontrolled cell proliferation. Although epidemiologic data suggest 

that androgens alone are not sufficient to promote prostate carcinogenesis (Hsing, 2001), 

abundant biological data make it clear that androgens promote prostate cancer cell 

proliferation. Animal studies also demonstrated that androgens are very strong tumor 

promoters for prostate carcinogenesis. Even low doses of testosterone can induce prostate 

cancer in rodents. When rats are simultaneously treated with estradiol and testosterone, 

prostate cancer incidence is markedly increased, and even a short course of estrogen 

treatment results in a high incidence of prostate cancer (Bosland, 2006). Furthermore, 

ligand-independent activation of androgen receptor (AR) signaling may play a critical 

role in initiation and progression of prostate cancer (Debes & Tindall, 2004; Dehm & 

Tindall, 2006). 

Androgen is known to regulate the alterations and overexpression of the 

TMPRSS2 gene and the ETS transcription factor genes in prostate cancer (Lin, Ferguson, 

White, Wang, Vessella, True, et al., 1999; Tomlins, Rhodes, Perner, Dhanasekaran, 

Mehra, Sun, et al., 2005; Vaarala, Porvari, Kyllonen, Lukkarinen, & Vihko, 2001). 

TMPRSS2 is a membrane-bound serine protease mostly limited to prostate luminal 

epithelial cells (Afar, Vivanco, Hubert, Kuo, Chen, Saffran, et al., 2001; Vaarala, Porvari, 
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Kellokumpu, Kyllonen, & Vihko, 2001), and ETS transcription factors, namely ERG and 

ETV1, are involved in multiple processes, including cell proliferation and cancer cell 

invasion (Hsu, Trojanowska, & Watson, 2004). Current understanding indicates most 

prostate cancers involve a TMPRSS2 ETS translocation and ERG gene overexpression 

(Petrovics, Liu, Shaheduzzaman, Furasato, Sun, Chen, et al., 2005; Soller, Elfving, 

Lundgren, & Panagopols, 2006). Thus, androgen’s induction and promotion of 

expression of ETV1 and ERG are reported to contribute to prostate carcinogenesis.  

Androgens also regulate the expression of both IGF-1 through the androgen 

response elements in the IGF-1 promoter region (Wu, Zhao, Zhao, Pan, Wu, Zhang, et 

al., 2007) and the expression of IGF-1R through a nongenomic event (Pandini, Mineo, 

Frasca, Roberts, Marcelli, Vigneri, et al., 2005). Androgens also modulate the IGF-1 

signaling pathway through regulation of IGF-binding protein expression. Increased levels 

of IGF-1 are known to associate with prostate cancer (Kaaks, Lukanova, & 

Sommersberg, 2000). Increased expression of growth factors and the receptors promotes 

prostate cell proliferation, migration, and tumor angiogenesis, thereby facilitating prostate 

carcinogenesis and cancer progression. 

EGF is another gene that appears to be subject to androgen regulation. Inhibition 

of the EGF receptor can completely suppress androgen-induced proliferation of LNCaP 

cells. Androgens enhance the expression of EGFR, while reduce expression of ERBB2 in 

LNCaP cells (Pignon, Koopmansch, Nolens, Delacroix, Waltregny, & Winkler, 2009). 

Furthermore, ligand dependent or ligand-independent activation of AR promotes 

EGF/EGFR signaling during prostate cancer progression (Dehm, Schmidt, Heemers, 
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Vessella, & Tindall, 2008; Libertini, Tepper, Rodriguez, Asmuth, Kung, & Mudryj, 

2007). 

In addition to the regulation of growth factors and respective receptors, androgens 

also affect the downstream effectors, such as PI3K/AKT. The PI3K/AKT pathway is one 

of the most frequently altered signaling pathways in a variety of human cancers and plays 

a critical role in prostate carcinogenesis and its progression (Vivanco & Sawyers, 2002; 

Yuan & Cantley, 2008). Activation of AKT significantly induces the progression of 

prostate cancer (Sarker, Reid, Yap, & de Bono, 2009). Proliferation and survival of 

androgen responsive LNCaP cells depend on the activation of PI3K/AKT, while 

inhibition of AKT or PI3K significantly attenuates androgen-induced cell proliferation 

(Sun, Yang, Feldman, Sun, Bhalla, Jove, et al., 2003). Androgen independent prostate 

cancer cell proliferation is also correlated with increased activity of PI3K/AKT (Murillo, 

Huang, Schmidt, Smith, & Tindall, 2001).  

Estrogens are the primary female sex hormone, however substantial levels of 

estrogens are presented in the male, although markedly less than androgens. Prostate 

growth, differentiation and function are primarily controlled by androgens, but estrogens 

modulate these effects in several ways. Estrogens regulate the development and function 

of prostate throughout stages of a man’s life (Prezioso, Denis, Klocker, Sciarra, Reis, 

Naber, et al., 2007). Estrogens can directly affect prostate through external hormone or 

through estradiol produced by local aromatisation of testosterone (Harkonen & Makela, 

2004). Indirectly, estrogen regulation can interfere with androgen production. 

Upon aging, serum estrogens are known to increase and androgens decrease, 

which temporally coincide with the increasing incidence of prostate cancer and indicated 



 

 

21 

a possible causal relationship with each other. However, no conclusive clinical evidence 

of a strong correlation between elevated serum estrogen or estrogen/androgen ratio and 

the increased incidence of prostate cancer has been established despite extensive studies 

(Eaton, Reeves, Appleby, & Key, 1999; Gann, Hennekens, Ma, Longcope, & Stampfer, 

1996). However, strong in vitro study evidence shows that excessive or constant exposure 

to estrogens can promote the development of prostatic alterations, disorders and even 

malignancies (Ho, 2004). In previous studies, estrogen was found to stimulate DNA 

synthesis and induce metaplastic epithelial morphology both in human and rat prostate, 

with synergistic effect observed when combined treatment with androgen (Nevalainen, 

Harkonen, Valve, Ping, Nurmi, & Martikainen, 1993; Nevalainen, Valve, Makela, 

Blauer, Tuohimaa, & Harkonen, 1991).  

Estrogen regulation has also been considered as one of the hormonal risk factors 

in association of development of prostate cancer and influences a wide range of genes, 

including IGF (Bosland, 2000; Henderson & Feigelson, 2000; International Prostate 

Health Council Study, 2000). Estrogen also regulate the expression of prostate specific 

genes (Martikainen, Harkonen, Vanhala, Makela, Viljanen, & Suominen, 1987; 

Nevalainen, Valve, Makela, Blauer, Tuohimaa, & Harkonen, 1991). The presence of 

estrogen receptors in the prostate suggests that estrogens may act directly on the prostate. 

In human and rodent prostates, ERβ is the predominant ER subtype, and is expressed in 

the majority of the epithelial cells, with ERα expressed in a limited amount and 

sometimes absent. 

ERα and ERβ are both expressed in prostate epithelium. ERα and ERβ exhibit 

similar binding affinity for 17β-estradiol, but their specific roles can be quite distinct, 
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both complementary and antagonistic (Kuiper, Carlsson, Grandien, Enmark, Haggblad, 

Nilsson, et al., 1997). In the human prostate, estrogens mediate epithelial elements 

signaling through ERβ and play a role in repressing cellular proliferation. Absence of the 

ERβ gene leads to the accumulation of cells. ERβ regulates cellular proliferation by 

suppressing estrogen-mediated ERα-signaling pathways that promote AR synthesis 

(Bektic, Berger, Pfeil, Dobler, Bartsch, & Klocker, 2004; Paech, Webb, Kuiper, Nilsson, 

Gustafsson, Kushner, et al., 1997). In this way, 17β-estradiol can trigger distinct effects 

depending on the ratio of ERα and ERβ in the cell. Activation of ERβ also induces cell 

cycle arrest at G2/M phase and cellular apoptosis through p53-independent up-regulation 

of p21 expression and the down-regulation of cyclin B1 (Hedlund, Johannes, & Miller, 

2003). The antiestrogen effect is shown to induce p21 expression and S phase cell cycle 

arrest in Du145 and PC3 prostate cancer cells (Rohlff, Blagosklonny, Kyle, Kesari, Kim, 

Zelner, et al., 1998). In vivo studies indicated that antiestrogens effectively inhibit 

development and progression of experimental and even clinical prostate cancer in a 

transgenic adenocarcinoma of the mouse prostate (TRAMP) model (Gingrich, Barrios, 

Morton, Boyce, DeMayo, Finegold, et al., 1996). 

 

1.1.2.2. Androgen responsive pathway markers 

Association between androgen and risk of prostate cancer makes androgen 

responsive genes ideal to assess the effect of bioactive compounds on androgen-

dependent pathway and androgen-dependent cancer development. 

Prostate-specific antigen (PSA) is a 34 kD, single-chain glycoprotein of 237 

amino acids, which is produced almost exclusively by prostatic epithelial cells. PSA is a 
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serine protease with chymotrypsin-like, trypsin-like, and esterase-like activities. PSA 

detected in the serum is mainly in the form of a complex with α 1-antichymotrypsin, with 

a minor fraction of free PSA (Malm & Lilja, 1995). PSA mRNA and protein can be up-

regulated by androgen in an androgen receptor-dependent fashion (Payton-Stewart, 

Schoene, Kim, Burow, Cleveland, Boue, et al., 2009). Serum concentrations of PSA 

appear to be correlated with circulating level of androgens and activation of androgen 

receptors. PSA production may be elevated by conditions other than cancer, including 

prostatitis, prostatic intraepithelial neoplasia, acute urinary retention, and renal failure 

(Malm & Lilja, 1995). PSA is particularly sensitive and accurate in the detection of 

residual cancer, recurrent cancer, and cancer progression after treatment, irrespective of 

the treatment modality. PSA can accurately predict cancer status and detect recurrence 

several months before detection by any other method (Oesterling, 1991). PSA is also a 

sensitive and specific immunohistochemical marker for tumors of prostatic origin 

(Goldstein, 2002). Although PSA has been recommended against clinical testing due to 

the risk of over-diagnosis and potential harm (USPSTF, 2012), the use of PSA as an 

indicator in scientific research of prostate cancer is still valid.  

NKX3.1 is a putative prostate tumor suppressor that is expressed in a largely 

prostate-specific and androgen-regulated manner. Human NKX3.1 locates on human 

chromosome 8p21, a region that experiences a high loss of heterozygosity in human 

prostate cancer. Loss of NKX3.1 protein expression is a common finding in human 

prostate carcinomas and prostatic intraepithelial neoplasia (He, Sciavolino, Wing, 

Augustus, Hudson, Meissner, et al., 1997; Vocke, Pozzatti, Bostwick, Florence, Jennings, 

Strup, et al., 1996). The NKX3.1 gene knockout mouse develops prostatic intraepithelial 



 

 

24 

neoplasia, which is the presumed precursor to prostate cancer in humans (Abdulkadir, 

Magee, Peters, Kaleem, Naughton, Humphrey, et al., 2002; Bhatia-Gaur, Donjacour, 

Sciavolino, Kim, Desai, Young, et al., 1999). On the contrary, over-expression of 

NKX3.1 suppresses growth and tumorigenicity of prostate cancer cells in culture (Kim, 

Bhatia-Gaur, Banach-Petrosky, Desai, Wang, Hayward, et al., 2002), which suggested 

NKX3.1 to be a tumor suppressor gene. NKX3.1 expression can be regulated by 

androgens and 17β-estradiol (Korkmaz, Korkmaz, Ragnhildstveit, Kizildag, Pretlow, & 

Saatcioglu, 2000). No expression of NKX3.1 is detected in androgen-independent PC3 

cells, while in androgen-dependent LNCaP cells, NKX3.1 can be upregulated upon 

androgen stimulation (Korkmaz, Korkmaz, Manola, Xi, Risberg, Danielsen, et al., 2004).  

 

1.1.2.3. Role of angiogenesis in prostate cancer 

Angiogenesis is the physiological process of generating new blood vessels from 

pre-existing vessels (Nicholson & Theodorescu, 2004). Tumor formation and growth 

need the support of rich supply of blood, and developing tumors are shown to be able to 

recruit their own blood supply and promote angiogenesis (Fidler, 1995; Gimbrone, 

Cotran, Folkman, & Leapman, 1972). Tumor cells are known to overexpress angiogenic 

factors or alter the regulation of endogenous angiogenic factors to establish an imbalance 

between proangiogenic and antiangiogenic factors in order to induce neovascularization 

(Folkman & Klagsbrun, 1987; Liotta, Steeg, & Stetlerstevenson, 1991). Angiogenesis 

also has important implications in cancer progression to distant sites, since tumor cell 

migration into the circulatory system through surface area of vessels within the tumor 

(Liotta, Kleinerman, & Saidel, 1976). 
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During angiogenesis, endothelial cells are signaled to switch from a resting state 

to rapid growth (Folkman, Watson, Ingber, & Hanahan, 1989). Tumor cells are known to 

secrete diffusible factors, among which VEGF is the most studied angiogenic growth 

factor (Senger, Perruzzi, Feder, & Dvorak, 1986). Human tumor biopsies exhibit 

enhanced expression of VEGF mRNAs by malignant cells and VEGF receptor mRNAs in 

adjacent endothelial cells, which correlates with microvessel density. On the other hand, 

normal prostate cells express much less VEGF (Ferrer, Miller, Andrawis, Kurtzman, 

Albertsen, Laudone, et al., 1998).  Blockage of VEGF function can completely suppress 

the prostate cancer-induced angiogenesis and cease tumor growth at the pre-vascular 

growth phase (Borgstrom, Bourdon, Hillan, Sriramarao, & Ferrara, 1998).  

 

1.1.2.4. Angiogenesis markers 

Angiogenesis plays a role in tumorigenesis and metastasis. Proteins involved in 

angiogenesis can be used to assess tumor development and effect of bioactive on this 

pathway as a mechanism. 

Vascular endothelial growth factor (VEGF) is a signal protein that stimulates 

vasculogenesis, which is a vital part in promoting angiogenesis in a wide variety of 

normal and neoplastic tissues, and is a potent mitogen for endothelial cells. VEGF's 

normal function is to create new blood vessels during embryonic development, new 

blood vessels after injury, muscle following exercise, and new vessels to bypass blocked 

vessels. When VEGF is overexpressed, it can contribute to disease. Cancers need to 

express VEGF to grow beyond certain size and metastasize (Kollermann & Helpap, 

2001). VEGF has been demonstrated in prostate cancer epithelial cells in 
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immunohistochemical studies (Kollermann & Helpap, 2001; Stewart, Panigrahy, Flynn, 

& Folkman, 2001), which is significantly reduced after androgen-deprivation therapy 

(Kwak, Jin, Lee, Park, & Lee, 2002; Latil, Bieche, Pesche, Valeri, Fournier, Cussenot, et 

al., 2000). Blockage of VEGF inhibits androgen-independent prostate cancer growth in 

xenograft models due to the induction of endothelial cell apoptosis (Fox, Higgins, 

Maiese, Drobnjak, Cordon-Cardo, Scher, et al., 2002; Sweeney, Karashima, Kim, Kedar, 

Mian, Huang, et al., 2002), while exogenous VEGF promotes the growth of xenograft 

tumors (Gridley, Andres, & Slater, 1997). Androgen-independent prostate cancer showed 

significantly elevated plasma VEGF concentrations than that of localized prostate cancer, 

and VEGF levels are correlated inversely with survival (George, Halabi, Shepard, 

Vogelzang, Hayes, Small, et al., 2001). Current evidence suggests that cancer cells 

express VEGF for angiogenesis to ensure cancer development, so that circumventing 

oxygen diffusion will no longer be a rate-limiting step in the growth of prostate cancer. 

VEGF expression can be mediated and potentiated by cytokines include TNF (Giraudo, 

Primo, Audero, Gerber, Koolwijk, Soker, et al., 1998), TGF-β (Pertovaara, Kaipainen, 

Mustonen, Orpana, Ferrara, Saksela, et al., 1994), IGF-1 (Warren, Yuan, Matli, Ferrara, 

& Donner, 1996), IL-1β (Li, Perrella, Tsai, Yet, Hsieh, Yoshizumi, et al., 1995), and IL-6 

(Cohen, Nahari, Cerem, Neufeld, & Levi, 1996), as well as others. 

Platelet endothelial cell adhesion molecule (PECAM) is also known as CD31, 

which is a 130-kD protein belonging to the immunoglobulin superfamily. It is expressed 

on platelets, monocytes, neutrophils, certain types of T cells and endothelial cell 

intercellular junctions (Newman, 1997). Engagement of PECAM on the surface of 

leukocytes activates of integrins and promotes their adhesion and migration (Berman & 
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Muller, 1995; Reedquist, Ross, Koop, Wolthuis, Zwartkruis, van Kooyk, et al., 2000). 

Functionally, PECAM is shown to play a role in inflammation, angiogenesis and vascular 

development (Privratsky, Newman, & Newman, 2010). PECAM takes effect in the 

adhesion cascade leading to leucocyte–endothelial transmigration during inflammation, 

which serves as a scaffolding molecule in a number of signaling pathways (Ilan & Madri, 

2003). PECAM recruitment and activation will lead to modulation in a number of cellular 

pathways, including the MAP kinase cascades, which play essential roles in a number of 

cell processes by regulating transcription or translation, and AKT activation regulating 

cell survival. Additionally, PECAM has been shown to contain immunoregulatory 

tyrosine-based inhibitory motifs within its cytoplasmic domain. Phosphorylation of these 

residues results particularly in inhibition of tyrosine kinase-mediated signaling, 

proliferation and cellular activation (Newman, 1999). Binding of PECAM and/or soluble 

PECAM inhibits transendothelial migration of leukocytes and angiogenesis, while 

PECAM-deficient mice exhibit abnormalities in their inflammatory and angiogenic 

responses (DeLisser, ChristofidouSolomidou, Strieter, Burdick, Robinson, Wexler, et al., 

1997; Duncan, Andrew, Takimoto, Kaufman, Yoshida, Spellberg, et al., 1999; Solowiej, 

Biswas, Graesser, & Madri, 2003). 

 

1.1.2.5. Role of inflammation in prostate cancer 

Chronic inflammation is a risk factor of several forms of human cancer and ~20% 

of adult cancers are indicated to be related to chronic inflammation (Sfanos & De Marzo, 

2012). Several conditions may contribute to the initiation of prostatic inflammation, 

including infections, dietary components, physical trauma, hormonal changes and urine 
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reflux (De Marzo, Platz, Sutcliffe, Xu, Gronberg, Drake, et al., 2007). Most inflammation 

condition in prostate cancer tissues is chronic, with lymphocytes and macrophages 

involved, however, the factors leading to the chronic inflammation are yet to be identified 

(Sfanos & De Marzo, 2012). 

In prostatic atrophy, inflammatory cell infiltrations are usually observed. It is 

associated with a high frequency to encompass large regions of the prostate, which are 

referred to as proliferative inflammatory atrophy. Atrophic epithelial cells can regenerate 

in response to cellular damage (De Marzo, Marchi, Epstein, & Nelson, 1999). 

Furthermore, genome alterations, which are associated with prostate cancer, are usually 

identified in atrophic lesions (De Marzo, et al., 2007; Nelson, De Marzo, & Isaacs, 2003; 

Putzi & De Marzo, 2000). Previous studies described that 28% instances prostate cancer 

are closely adjacent to areas with chronic inflammation, indicating the merge of these two 

conditions (Wang, Bergh, & Damber, 2009b). 

Some of the hallmark gene expression changes usually found in prostate cancer 

have been observed in proliferative inflammatory atrophy. NKX3.1 and p27 are down-

regulated in prostate atrophy, which is indicative of initiation of prostate cancer (Bethel, 

Faith, Li, Guan, Hicks, Lan, et al., 2006; De Marzo, Marchi, Epstein, & Nelson, 1999). 

p53 expression, together with Ki-67, CK5, COX-2 and GSTP1 expression, also increase 

in areas of acute inflammation (Wang, Bergh, & Damber, 2009a).  

 

1.1.2.6. Inflammation markers 

Cytokines exert cytostatic and immunomodulatory effects on cancer cells, and 

influence prostate cancer development through regulation of the antitumor immune 
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response and angiogenesis (McCarron, Edwards, Evans, Gibbs, Dearnaley, Dowe, et al., 

2002). Cytokines form a highly entangled system linking cancer and inflammation 

(Coussens & Werb, 2002; Maeda & Omata, 2008). The involvement of inflammation in 

prostate cancer discussed in the previous section suggested that the exposure to cytokines 

may be risk factors in both prostate cancer and inflammation.  

TNF-α is strongly expressed in prostate cancer compared with benign prostatic 

tissue, which makes it a strong risk factor for prostate cancer (Chetcuti, Margan, Mann, 

Russell, Handelsman, Rogers, et al., 2001; de Miguel, Royuela, Bethencourt, Santamaria, 

Fraile, & Paniagua, 2000). TNF-α inhibits chemotaxis and proliferation of cancer cell 

lines (Nakajima, Dellipizzi, Mallouh, & Ferreri, 1995; Ritchie, Spangelo, Krzymowski, 

Rossiter, Kurth, & Judd, 1997), induces bcl-2-mediated programmed cell death (Kramer, 

Steiner, Sokol, Handisurya, Klingler, Maier, et al., 2001), activating NF-κB 

(Gunawardena, Murray, Swope, & Meikle, 2002), and inducing cyclooxygenase-2 

expression (Subbarayan, Sabichi, Llansa, Lippman, & Menter, 2001). The effects of 

TNF-α are mediated by TNF-RI and TNF-RII, both of which are expressed by prostate 

cancer cell lines (Nakajima, DelliPizzi, Mallouh, & Ferreri, 1996). TNF-α also plays an 

important role in inflammation by mediating the proliferation and differentiation of 

immune cells, and development of immune response (Miagkov, Kovalenko, Brown, 

Didsbury, Cogswell, Stimpson, et al., 1998). TNF-α is one of the major inflammatory 

mediators secreted by activated macrophage and involved in many crucial events for the 

initiation of both acute and chronic inflammation, such as regulating the production of 

several cytokines, up-regulation of adhesion molecule expression, and activation of 

leukocyte-specific chemotactic cytokines (Simmonds & Foxwell, 2008).  
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IL-1β can initiate signal transduction by activation of NF-κB and the MAPKs 

during an inflammatory process (Dinarello, 2004). The activation of NF-κB pathway will 

in turn induce further expression of a series of cytokines, including IL-1β, TNF-α, IL-6, 

and promote an inflammatory process. MCP-1 is a potent chemoattractant for monocytes 

during local immune response and plays an important role in the initiation of 

atherosclerosis. It has been demonstrated that MCP-1 expression is regulated through NF-

κB pathway, and MCP-1 can also be stimulated by TNF-α, IL-1β, and IL-6 (Arefieva, 

Kukhtina, Antonova, & Krasnikova, 2005; Steube, Meyer, & Drexler, 1999).  

 

1.1.2.7. Cancer proliferation markers 

Proliferation is a hallmark of cancer development where cell growth becomes 

uncontrolled. Proliferation marker can be used to assess efficacies of efficacy of prostate 

cancer prevention. 

Proliferating cell nuclear antigen (PCNA) is an auxiliary protein for DNA 

polymerase-α involved in DNA repair, replication, post-replication modifications and 

chromatin assembly, which reaches peak expression during the G1- and G2-phases of the 

cell cycle and can be used as an index of the proliferative activity of cancers. The PCNA 

labeling index is indicated to be lowest in benign epithelium and increases progressively 

in differentiated prostate cancer (Limas & Frizelle, 1994; Nemoto, Kawamura, 

Miyakawa, Uchida, Hattori, Koiso, et al., 1993). Many studies have shown that the 

PCNA index is related to cancer stage (Cher, Chew, Rosenau, & Carroll, 1995; Limas & 

Frizelle, 1994) and a high PCNA labeling index may indicate progression of prostate 

cancer (Idikio, 1996; Spires, Banks, Davey, Jennings, Wood, & Cibull, 1994), while 
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patients with a lower PCNA expression survive significantly longer than those with 

higher ones (Vesalainen, Lipponen, Talja, Alhava, & Syrjanen, 1994). 

The Ki-67 antigen is a nuclear protein that is expressed by non-G0 proliferating 

cells (Cattoretti, Becker, Key, Duchrow, Schluter, Galle, et al., 1992). It was shown that 

Ki-67 labeling indices correlate with cancer, with higher indices indicating more 

progressed cancer stage (Bubendorf, Sauter, Moch, Schmid, Gasser, Jordan, et al., 1996; 

Sadi & Barrack, 1991), which may assist to discriminate between organ-confined and 

metastatic cancer (Cattoretti, et al., 1992; Cher, Chew, Rosenau, & Carroll, 1995; Harper, 

Goddard, Wilson, Matanhelia, Conn, Peeling, et al., 1992). Ki-67 expression is also 

correspond to other factors involved in cancer, such as epidermal growth factor receptor 

(GlynneJones, Goddard, & Harper, 1996), mutant p53 (Thompson, Mellon, Charlton, 

Marsh, Robinson, & Neal, 1992), and chromosomal aberrations (Henke, Kruger, Ayhan, 

Hubner, & Hammerer, 1993).  

 

1.1.3. Link between cholesterol and prostate cancer 

Cholesterol has also been shown to play a role in prostate cancer. It has long been 

reported that cholesterol and other lipids accumulate in solid tumors (White, 1909). The 

association between high circulating cholesterol and increased risk of prostate cancer has 

been reported by a number of cohort studies (Kok, van Roermund, Aben, den Heijer, 

Swinkels, Kampman, et al., 2011; Magura, Blanchard, Hope, Beal, Schwartz, & 

Sahmoun, 2008; Mondul, Clipp, Helzlsouer, & Platz, 2010; Platz, Clinton, & 

Giovannucci, 2008; Shafique, McLoone, Qureshi, Leung, Hart, & Morrison, 2012), 

furthermore, men with low cholesterol showed a reduced risk of high-grade prostate 
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cancer (Platz, Till, Goodman, Parnes, Figg, Albanes, et al., 2009). The role of cholesterol 

in prostate cancer development has also been demonstrated in animal and cell models 

(Llaverias, Danilo, Wang, Witkiewicz, Daumer, Lisanti, et al., 2010; Xue, Yang, 

Newmark, & Lipkin, 1997), which suggested that cholesterol level may play a role in 

progression and metastasis of prostate cancer (Jacobs, Stevens, Newton, & Gapstur, 

2012; Kok, et al., 2011; Shafique, McLoone, Qureshi, Leung, Hart, & Morrison, 2012). 

Epidemiological studies and pre-clinical models have established hypercholesterolemia’s 

role in the progression of prostate cancer, in which cholesterol functions as a mediator of 

cell proliferation, membrane dynamics, inflammation and steroidogenesis, thus providing 

multiple avenues for this lipid to contribute to prostate cancer progression (Pelton, 

Freeman, & Solomon, 2012). Additionally, the regulation of cholesterol-related pathways 

(such as SREBP-2, HMG-CoA reductase) has been suggested as potential treatment of 

prostate cancer (Freeman & Solomon, 2004; Krycer, Phan, & Brown, 2012). Hence, 

dietary modulation of fat/cholesterol may potentially prevent prostate cancer 

development. 

 

1.1.4. Role of inflammation in prostate cancer 

The relationship between inflammation and cancers is well documented. It can 

trace back to as early as 1863, when Virchow hypothesized that cancers tended to occur 

at sites of chronic inflammation (Balkwill & Mantovani, 2001). Accumulated 

epidemiologic studies support that chronic inflammatory diseases are frequently 

associated with increased risk of cancers (Coussens & Werb, 2002; Philip, Rowley, & 

Schreiber, 2004). It was indicated that reactive oxygen and nitrogen species generated by 
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inflammatory cells (Okada, 2002; Reuter, Gupta, Chaturvedi, & Aggarwal, 2010), 

inflammatory cytokines, chemokines, and enzymes (Coussens & Werb, 2002) all 

contribute to and facilitate cancer development via multiple signaling pathways (Yang, 

Hsieh, Ho, & Lin, 2005).  

The involvement of inflammation in prostate cancer has also caught a great deal 

of attention. Inflammatory cell infiltrations are usually observed, associated with a high 

frequency to encompass large regions of the prostate in proliferative inflammatory 

atrophy. Previous studies described that 28% prostate cancer instances are closely 

adjacent to areas with chronic inflammation, indicating the merge of these two conditions 

(Wang, Bergh, & Damber, 2009b). 

 

1.1.5. The effects of diet on inflammation 

The dramatic changes in dietary composition since the industrial revolution and 

modernized agriculture, and our unchanged physiology, have resulted in a systemic stress 

induced by simply intake of food (Bosma-den Boer, van Wetten, & Pruimboom, 2012). 

The stress will spur inflammatory response and lead to long-term persistent inflammation 

(Kutuk & Basaga, 2003). The western-style diet, in particular, which is high in fat and 

cholesterol, is known to be the leading cause of overweight and obesity (Dausch, 1992). 

Obesity can add up to inflammation, due to the increased expression of cytokines coming 

from the adipocytes (Miranda-Garduno & Reza-Albarran, 2008). Thus, moderation of 

diet is an important part of reducing chronic inflammation and related conditions. 
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1.1.6. Microbiome in gastrointestinal tract and health 

The word “microbiome” was coined in 2001 to signify "the ecological community 

of commensal, symbiotic, and pathogenic microorganisms that literally share our body 

space" (Lederberg & McCray, 2001). Microbial cells (~1014 cells) outnumber human 

cells by about 10 times, which makes it a very large and complex ecosystem between the 

human body and the residing microorganisms (Hattori & Taylor, 2009; Savage, 1977). 

Recent advances in DNA sequencing technologies have allowed comprehensive 

examination of microbial communities without the need to culture the specific microbes 

in the laboratory.  

Although the exact influence and mechanism remains unknown, previous studies 

have gathered evidence that human microbiome may affect human development, 

physiology, immunity, and nutrition (Dethlefsen, McFall-Ngai, & Relman, 2007). 

Introduction of distal gut microbiota into germ-free animals led to a marked increase in 

adiposity and body fat content within 2 weeks (Backhed, Ding, Wang, Hooper, Koh, 

Nagy, et al., 2004; Turnbaugh, Ley, Mahowald, Magrini, Mardis, & Gordon, 2006). 

Recipients of the microbiota from an obese donor animal had a significantly greater 

increase in adiposity than the ones receiving microbiota from a lean donor, indicating that 

the gut microbiota from obese animals had an increased and transmissible capacity in 

promoting adiposity (Turnbaugh, Ley, Mahowald, Magrini, Mardis, & Gordon, 2006). 

These studies revealed a potential role of the microbiome in the development of obesity 

and other subsequent chronic conditions. 

Considering the overwhelming number and ubiquity of microorganisms, the 

crosstalk between bacteria and human cells can be playing a central role in the 
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maintenance of health (Hattori & Taylor, 2009). Previous studies have identified 

biomarkers associated with inflammation and functional changes in the intestinal 

microbiome between diseased and healthy human subjects (Karlsson, Tremaroli, 

Nookaew, Bergstrom, Behre, Fagerberg, et al., 2013), and high-fat diet-induced obesity 

in animal models appeared to be associated with changes in the gut microbiome and gut 

inflammation (Albenberg & Wu, 2014; Chen, He, & Huang, 2014). Changes in 

inflammatory status may lead to other chronic conditions in human. 

Long-term and short-term diet patterns can shape the structure and activity of 

human gut microbiome (David, Maurice, Carmody, Gootenberg, Button, Wolfe, et al., 

2014). At early stage of life, breast feeding promotes the colonization of Bifidobacteria 

(up to 90% of flora) in infant, while, formulated milk harbors more diverse microbiome 

in infant, including Bacteroides, Clostridium, and Enterobacteriaceae (Martin & Walker, 

2008; Martin, Jimenez, Heilig, Fernandez, Marin, Zoetendal, et al., 2009). Another study 

showed that, people on a plant-based diet have significantly lower levels of Bacteroides 

spp., Bifidobacterium spp., Escherichia coli, and Enterobacteriaceae spp. than those on an 

animal-based diet (Zimmer, Lange, Frick, Sauer, Zimmermann, Schwiertz, et al., 2012). 

Changes in microbiome can be observed within as short as 24 hours shifting from high-

fat, low-fiber to low-fat, high-fiber diets (Wu, Chen, Hoffmann, Bittinger, Chen, 

Keilbaugh, et al., 2011). Additionally, individual differences in the response of the 

microbial community to dietary change, and in microbial fermentation of dietary 

substrates in the colon needs to be accounted for in the analysis of human microbiome 

(Walker, Ince, Duncan, Webster, Holtrop, Ze, et al., 2011). Understanding the interaction 
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between diet and microbiome may be a critical part in studying diet and the influence on 

human health. 

 

1.2. Health benefit of soy 

Soy (Glycine max) plays an important role in the world’s food supply and 

economy. The United States became the world’s leading producer of soy since 1955 and 

has remained so for over half a century (Liu, 1997).  U. S. production of soy in 2011 was 

83 million metric tons, which accounted for more than 30% of world production (FAO, 

2013). Moreover, soy-food sales increased significantly after a 1999 decision by the U. S. 

Food and Drug Administration to allow soy-food labels to display health claim that soy 

protein may reduce risk of heart disease (FDA, 1999). Following sections summarized 

current knowledge on soy’s health promoting effects. 

 

1.2.1. Protection against cardiovascular disease 

Soy’s cardiovascular protective effects in human subjects have been reviewed and 

highlighted in a meta-analysis of 38 controlled clinical trials in an effort to reveal the 

correlation between consumption of soy and lipid levels (Anderson, Johnstone, & 

Cooknewell, 1995). Analysis showed that the average consumption of 47 g soy 

protein/day resulted in significant decreases of total cholesterol (9.3%), LDL cholesterol 

(12.9%) and triglycerides (10.5%). On the other hand, a recent review by the American 

Heart Association Nutrition Committee found a merely 3% decrease in LDL with soy 

protein consumption from 8 randomized trials providing approximately 50 g soy 

protein/day, and no apparent benefit in 14 other trials (Sacks, Lichtenstein, Van Horn, 
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Harris, Kris-Etherton, Winston, et al., 2006). The responses appeared to be highly 

dependent on the cholesterol level of the subjects. The meta-analysis performed by 

Anderson and colleagues included earlier studies with strongly hyperlipidemia (total 

cholesterol > 250 mg/dL) patients. It was expected that extreme hyperlipidemia would 

benefit from greater percentage reductions in total and LDL cholesterol, while patients 

with moderate or minor hyperlipidemia were recruited in the later study, which might 

result in the lower efficacy observed. 

Epidemiological studies have long linked soy consumption to a reduced risk for 

cardiovascular disease, and soy protein, soy-derived isoflavones, and sterol were to some 

extent involved in the discussion. (Clerici, Setchell, Pirro, Morelli, Castellani, Giuliano, 

et al., 2004; Sacks, et al., 2006; Sirtori, Galli, Anderson, Sirtori, & Arnoldi, 2009; 

Tripathi & Misra, 2005; Xiao, 2008). A recent review identified soy proteins to be 

partially responsible for the lipid-lowering effects of soy (Sirtori, Galli, Anderson, Sirtori, 

& Arnoldi, 2009). It has also been suggested that isoflavones may act on vascular tissue 

to improve circulation (Ghosh, 2009; Ghosh & Scheepens, 2009; Xiao, 2008). However, 

the active components of soy remain unclear.  

One proposed mechanism of soy’s cardio-protective effects involves the 

inhibition of LDL oxidation and reduction of formation of plaque in the arteries. Soy 

extracts (Astadi, Astuti, Santoso, & Nugraheni, 2009; R. Takahashi, Ohmori, Kiyose, 

Momiyama, Ohsuzu, & Kondo, 2005) and peptides (Rho, Lee, Il Chung, Kim, & Lee, 

2009; Rho, Park, Ahn, Shin, & Lee, 2007) have both been shown to reduce the oxidation 

of LDL cholesterol in vitro or in vivo. It was also reported that the anthocyanins found in 

color seed coat of soy displayed potent anti-oxidant properties and was able to inhibit 
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LDL oxidation (de Pascual-Teresa, Moreno, & Garcia-Viguera, 2010; Kong, Chia, Goh, 

Chia, & Brouillard, 2003; R. Takahashi, Ohmori, Kiyose, Momiyama, Ohsuzu, & Kondo, 

2005). A more recent hypothesis involves the liver’s LDL receptors, which may be 

affected by soy consumption to enhance their uptake of LDL from the serum and 

consequently lower serum LDL levels (Van Horn, McCoin, Kris-Etherton, Burke, 

Carson, Champagne, et al., 2008). 

 

1.2.2. Protection against obesity-related metabolic syndrome 

A more recent trend of soy research involves examining the potential in 

mitigating obesity and related complications (Azadbakht & Esmaillzadeh, 2008; Orgaard 

& Jensen, 2008). The actual efficacy is still under investigation. Mechanistically, the 

estrogen-like activity of soy isoflavones may be playing a role in regulating adipogenesis 

by binding to estrogen receptors, thus decreasing lipoprotein lipase activity, and PPAR 

may also be involved in the regulation (Orgaard & Jensen, 2008).  Levels of genistein, a 

soy isoflavone, ranging from 0.1 to 1.0 μM have been shown to inhibit adipogenesis, 

while higher concentrations (25-50 μM) enhanced adipogenesis, showing a biphasic 

effect (Orgaard & Jensen, 2008). However, evidence in the animal model and in-vitro 

study did not always apply well to human, which made it inconclusive whether 

consumption of soy will benefit obese population. While, many human clinical 

experiments did not show any decrease in body weight as expected, but improvements in 

blood lipids (Orgaard & Jensen, 2008) or improvements in insulin resistance was 

observed (Bhathena & Velasquez, 2002).  
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1.2.3. Cancer protective effects of soy 

Soy has also exhibited potential in reducing the risk of certain types of cancer (M. 

Messina, 2006; Nagata, Sonoda, Mori, Miyanaga, Okumura, Goto, et al., 2007; Oba, 

Nagata, Shimizu, Shimizu, Kametani, Takeyama, et al., 2007; Valachovicova, Slivova, & 

Sliva, 2004). Among the cancers investigated, breast and prostate cancers are of 

particular interest due to the sensitivity to sex steroid hormones. 

Epidemiological studies among Asian population had long connected the lower 

breast cancer incident with consumption of soy products, which was usually attributed to 

soy isoflavones (Trock, Hilakivi-Clarke, & Clarke, 2006; Wu, Yu, Tseng, & Pike, 2008). 

Alongside the modest protective effects, concern has also been expressed that the 

estrogenic activity of soy isoflavones may lead to adverse effects on progression and 

recurrence of breast cancer (Magee & Rowland, 2012). On the other hand, there were 

some reviews citing a number of human clinical and epidemiological studies indicating 

no evidence of risk in human (Messina, 2008; Messina & Wu, 2009; Messina & Wood, 

2008). Preventative effect of soy against prostate cancer was also indicated and reviewed 

in previous researches (Messina, 2003), and it is also indicated in clinical trials of the 

therapeutic effect of prostate cancer (Ahmad, Forman, Sarkar, Hillman, Banerjee, 

Doerge, et al., 2008; Banerjee, Li, Wang, & Sarkar, 2008). However, other randomized, 

controlled intervention study did not support that soy consumption can benefit men with 

prostate cancer, while not excluding the possibility of soy’s effect in preventing prostate 

cancer (Bosland, Kato, Melamed, Taneja, Lepor, Torre, et al., 2001). Despite the amount 

of effort from experimental and epidemiological studies, soy products’ effect in breast 

and prostate cancer prevention or therapy is largely unresolved. 
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Mechanisms of cancer prevention by soy can be attributed to isoflavones. 

Previous studies suggested that multiple mechanisms of action might be responsible for 

soy’s bioactivity. Isoflavones have been shown to affect the cell cycle, apoptosis, 

differentiation, proliferation, growth, and cell signaling (Banerjee, Li, Wang, & Sarkar, 

2008; Messina, Kucuk, & Lampe, 2006; Zhou, Gugger, Tanaka, Guo, Blackburn, & 

Clinton, 1999). Isoflavones also exhibited antioxidant capacity. They are well-known 

scavengers for reactive oxygen species, but recent research is suggestive of additional 

antioxidant activity beyond direct scavenging of radicals. Genistein in particular has been 

shown to activate transcription factors such as estrogen receptor and stimulate gene 

expression in breast cancer cells (Banerjee, Li, Wang, & Sarkar, 2008). Genistein can 

also inhibit androgen responsive gene expression (Lazarevic, Karlsen, & Saatcioglu, 

2008). These results indicated that the genistein may have broad ability to impact overall 

cellular homeostasis through a variety of mechanisms/pathways. 

 

1.2.4. Protection against other chronic diseases 

Aside from the diseases mentioned above, soy consumption has also been linked 

to the effects in other chronic diseases, though not as extensively studied. Diabetes 

metrics, cognitive function and immune function are among the list of conditions that can 

potentially benefit from consumption of soy or its components (Bhathena & Velasquez, 

2002; Cederroth & Nef, 2009; Lee, Lee, & Sohn, 2005; Ryan-Borchers, Park, Chew, 

McGuire, Fournier, & Beerman, 2006). As with the diseases discussed above, it remains 

unclear whether it is isoflavones, proteins, fiber or some other components causing the 

supposed beneficial effects. The complexity of soy components makes it very hard to 
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dissect out the exact active component(s) or compound(s) responsible for any particular 

bioactivity. Compounds may counteract with each other, or show distinct activities 

resulting from different concentration or ratio. Thus, the study of each individual 

component is proven to be necessary and important to gather scientific evidence and 

knowledge to support soy’s health promoting effects. 

 

1.2.5. Bioactive components of soy 

Isoflavones, tocopherols, carotenoids, and phytosterols are the main bioactive 

components in soy (Liu, 1997). Isoflavones are a class of polyphenolics found almost 

exclusively in legumes and most prominently in soybeans. Isoflavones are structurally 

similar to that of estradiol, which bind weakly to estrogen receptors, eliciting weak 

estrogenic responses and earning the title of ‘phytoestrogen’ (Cederroth & Nef, 2009). 

Genistein, daidzein and glycitein are the predominating isoflavones in soy (Fig. 1.3) (Liu, 

1997). Biological activities of soy isoflavones include prevention against atherosclerosis 

and other CVD, obesity, osteoporosis, and cancer (Clair & Anthony, 2005; Gil-Izquierdo, 

Penalvo, Gil, Medina, Horcajada, Lafay, et al., 2012; Orgaard & Jensen, 2008; Sarkar & 

Li, 2003; Taku, Melby, Nishi, Omori, & Kurzer, 2011; Weaver & Cheong, 2005). Due to 

genistein’s estrogenic effect, it was shown that genistein can alter the expression of genes 

involved in estrogen-mediated pathways and induce proliferative response in breast 

cancer cells at 1-5 μM, while higher concentration (25 μM) of genistien can induce 

apoptosis and inhibition of proliferation (Lavigne, Takahashi, Chandramouli, Liu, 

Perkins, Hursting, et al., 2008). It was also reported that genistein and daidzein affect 

androgen responsive pathways in prostate cancer cells (Takahashi, Lavigne, Hursting, 



 

 

42 

Chandramouli, Perkins, Kim, et al., 2006). These findings indicated that the biological 

activities of soy isoflavones are dose-dependent and involved in multiple pathways.  

Tocopherols are members of the Vitamin E family and can act as antioxidants by 

scavenging peroxyl radicals (Britz, Kremer, & Kenworthy, 2008; Liu, 1997). Carotenoids 

also possess antioxidant activity, as their highly conjugated structures are extremely 

vulnerable to oxidation in the presence of light, heat, and oxygen (Lee, Shannon, So, 

Sleper, Nelson, Lee, et al., 2009). Plant sterols are found in soybean oils mostly in the 

non-esterified form. Plant sterols have a base structure very similar to that of human 

cholesterol.  The esterified sterols have been shown to reduce serum cholesterol levels 

when consumed in sufficient quantities (Phillips, Ruggio, Toivo, Swank, & Simpkins, 

2002). 

 

Fig. 1.3. Structure of genistein, daidzein, and glycitein. 

 

 

Other soy phytochemicals have not been studied as extensively. Recently, a novel 

group of phytochemicals, glyceollins, which are also soy phytoalexins, was identified for 

the potential biological activities. The chemical and biological properties of glyceollins 

are reviewed in the following sections. 
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1.3. Identification, Isolation of soy phytochmicals glyceollins 

Glyceollins are one of the major groups of phytoalexins in soybean. It was first 

reported in elicited soybean by Zahringer et al. in 1977 (Zahringer, Ebel, Kreuzaler, & 

Grisebach, 1977). A good number of studies have been conducted to elucidate the 

biosynthesis of glyceollins in soybean. Banks and Dewick (1983) pointed out that 

phenylalanine, daidzein, 7,2’,4’-trihydroxyisoflavone, 3,9-dihydroxypterocarpan and 

glycinol are precursors for biosynthesis of glyceollin I, II and III (Banks & Dewick, 

1983). In the following decades, plant scientists had shown interest in glyceollins mainly 

for its antifungal and antibacterial effects in soybean (Olah, Schmitthenner, & Walker, 

1982; Parniske, Fischer, Hennecke, & Werner, 1991; Wyss, Boller, & Wiemken, 1991), 

and a number of fungi were identified to be effective elicitors, e.g. Rhizopus oryzae 

(Simmons, Vincken, Roidos, Bovee, van Iersel, Verbruggen, et al., 2011), Mucor 

ramosissimus (Garcez, Martins, Garcez, Marques, Pereira, Oliveira, et al., 2000), 

Diaporthe Meridionalis (Modolo, Cunha, Braga, & Salgado, 2002), Aspergillus sojae 

(Kim, Suh, Kim, Park, Joo, & Kim, 2010). It was determined that, glyceollins are in 

relatively low amount in unstressed soy (1 to 9 µg/g fresh weight of soy, depending on 

the different parts of soy). While, after induction, glyceollins concentration can go up to 

43 to 955 µg/g fresh weight of soy, depending on the different elicitors and parts of soy 

(Boue, Carter, Ehrlich, & Cleveland, 2000; Degousee, Triantaphylides, & Montillet, 

1994; Kraus, Spiteller, Mithofer, & Ebel, 1995). In addition to the effort in isolating 

glyceollins from elicited soy, chemical synthesis was also studied. However, due to the 

time-consuming and multiple steps needed in contiguous ring systems preparation, as 

well as the maintenance of rigorous stereo-control, only glyceollin I has been synthesized 
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to date with limited preparation capacity (Khupse & Erhardt, 2008; Khupse, Sarver, 

Trendel, Bearss, Reese, Wiese, et al., 2011; Luniwal, Khupse, Reese, Liu, El-Dakdouki, 

Malik, et al., 2011; Luniwal, Khupse, Reese, Fang, & Erhardt, 2009). 

 

1.4. Biological activities of soy phytochemical glyceollins 

Glyceollins are a group of phytoalexins with antibiotic activity that are 

synthesized in response to infection. Phytoalexins are inducible chemicals involved in 

plants’ self-defense system (Jeandet, Douillt-Breuil, Bessis, Debord, Sbaghi, & Adrian, 

2002), which are low molecular weight, possess anti-microbial activities, and are 

biosynthesized de novo in response to stress, including microbial attack, heavy metal 

salts, or UV radiation (Chamberl.Dw & Paxton, 1968; Murch & Paxton, 1980; Paxton, 

1971). Aside from the anti-microbial activity, some phytoalexins are also indicated to 

exhibit chronic disease prevention and health-promoting effects in human (Boue, 

Cleveland, Carter-Wientjes, Shih, Bhatnagar, McLachlan, et al., 2009).  

Glyceollin I, II, and III (Fig. 2) are the most common isomers isolated from 

soybean (Banks & Dewick, 1983). A number of biological activities were reported by 

previous studies, including antiproliferation (Lee, Kim, Chun, Park, Kim, Kim, et al., 

2010; Payton-Stewart, Khupse, Boue, Elliott, Zimmermann, Skripnikova, et al., 2010; 

Salvo, Boue, Fonseca, Elliott, Corbitt, Collins-Burow, et al., 2006), antiestrogenic 

(Burow, Boue, Collins-Burow, Melnik, Duong, Carter-Wientjes, et al., 2001), 

antibacterial (Weinstein & Albersheim, 1983), antinematode (Huang & Barker, 1991; 

Veech, 1982), antifungal activities (Lee, Kim, Lee, Jeon, Cui, Lee, et al., 2010; 

Lozovaya, Lygin, Zernova, Li, Hartman, & Widholm, 2004), insulinotropic (Park, Ahn, 
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Kim, Lee, Kim, & Kim, 2010) and attenuation of vascular contraction activity in rat 

(Song, Baek, Jeon, Seo, Kim, Cui, et al., 2010). Hence, accumulating facts suggested that 

glyceollins possess the potential to be a health promoting phytochemical and deserve 

further investigation and characterization. Due to the recentness of discovery of 

glyceollins’ health promoting activities and the limited accessibility of this group of 

compounds, it is noteworthy that most of these reports come from Park and colleagues 

and Boue and colleagues. 

Among the biological activities, glyceollins’ insulinotropic, antiestrogenic, 

antioxidant, anti-inflammation, and antiproliferation effects are of particular relevant to 

this project and are reviewed in the following sections. 

 

 

Fig. 1.4. Structure of glyceollins. 

 

1.4.1. Insulinotropic effect of glyceollins 

Park and colleagues (Park, Ahn, Kim, Lee, Kim, & Kim, 2010; Park, Kim, Kim, 

Kim, & Kim, 2012) performed two studies investigating glyceollins’ role in improving 

glucose homeostasis, they concluded that glyceollins act through regulating glucose 

utilization in adipocytes and modulating β cell function and survival. It was shown that 

glyceollins could improve insulin-stimulated glucose uptake and decrease triacylglycerol 
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accumulation in 3T3-L1 mouse adipocytes. 5 μM glyceollins increased basal glucose 

uptake by 150%. While co-incubation of glyceollins and insulin further stimulated 

maximal glucose uptake above basal levels than that of either stimulus alone. 

Mechanistically, glucose transporter GLUT4 mRNA and protein expression significantly 

increased upon exposure of 5 μM glyceollins for 3 h in 3T3-L1 adipocytes (Boue, 

Isakova, Burow, Cao, Bhatnagar, Sarver, et al., 2012). In addition, glyceollins slightly 

improved glucose-stimulated insulin secretion in Min6 pancreatic β cells, and they 

potentiated insulinotropic actions in dysfunction β cell. This was associated with 

decreased β cell apoptosis because of the attenuation of endoplasmic reticulum stress. 

Glyceollins also potentiated GLP-1 secretion to enhance insulinotropic actions in 

enteroendocrine cells (Park, Ahn, Kim, Lee, Kim, & Kim, 2010). Glyceollins treatment 

reduced blood glucose levels in diabetic mice and prediabetic rats in oral glucose 

tolerance testing. The improvement was associated with increased serum insulin levels, 

hepatic glycogen accumulation and decreased triglyceride storage. It was proposed that 

glyceollins improved glucose homeostasis partly by enhancing hepatic insulin sensitivity 

in type 2 diabetic mice (Boue, et al., 2012; Park, Kim, Kim, Kim, & Kim, 2012). 

 

1.4.2. Antiestrogenic and antiproliferative effect of glyceollins 

Both estrogenic and antiestrogenic activities have been identified in soy 

phytochemicals, Daidzein, the precursor of glyceollins, is known to be weakly estrogenic. 

However, glyceollins have been shown to be antiestrogenic (Burow, et al., 2001; Jiang, 

Payton-Stewart, Elliott, Driver, Rhodes, Zhang, et al., 2010). Mechanistically, glyceollins 

exert greater antagonism toward ERα than ERβ in transiently transfected HEK 293 
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human embryonic kidney cells. It was observed that glyceollins’ antiestrogenic effect on 

ER signaling could lead to a marked suppression of 17β-estradiol-induced proliferation in 

MCF-7 cells (Burow, et al., 2001). Among the three glyceollin isomers, it was shown that 

glyceollin I is the most potent antiestrogenic agent. Glyceollin I could effectively inhibit 

estrogen response element (ERE) transcription and endogenous gene expression in MCF-

7 cells (Payton-Stewart, et al., 2010). 

The antiestrogenic effect was further tested by Zimmermann et al. in athymic 

mice model, and resulted in a 53.4% and 73.1% suppression of MCF-7 and BG-1 tumor 

growth, respectively (Zimmermann, Tilghman, Boue, Salvo, Elliott, Williams, et al., 

2010). Trefoil factor 1 and progesterone receptor were reported to be affected by 

glyceollins treatment, and responsible for their breast cancer protective effect (Wood, 

Clarkson, Appt, Franke, Boue, Burow, et al., 2006).  

Furthermore, glyceollins were also noticed for the effect in suppressing 

tumorigenesis in triple-negative breast carcinoma MDA-MB-231 (ER-, PgR- and 

Her2/neu-) cells. Modest suppression of MDA-MB-231 cell tumor growth in vivo was 

observed upon glyceollins treatment, and a distinct change in microRNA expression 

profiles and proteomes in MDA-MB-231 was identified to be responsible for glyceollins’ 

effect. This study indicated that, aside from antiestrogenic effect, glyceollins could also 

exert antitumor activity in triple-negative breast carcinoma cell systems via alteration of 

microRNA and proteomic expression profiles (Rhodes, Tilghman, Boue, Wang, Khalili, 

Muir, et al., 2012).  

Glyceollins’ antiproliferative effect was also studied in LNCaP human prostate 

cancer cell. It was shown that glyceollins exerted the growth inhibitory effects through 
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inhibition of G1/S progression and correlated with an up-regulation of CDKN1A and 

CDKN1B mRNA and protein levels. Furthermore, glyceollins inhibited LNCaP cell 

growth and cell cycle through a 17-β-estradiol-mediated event instead of an androgen-

mediated event. In addition, glyceollin treatments led to down-regulated mRNA levels 

for androgen responsive genes (Payton-Stewart, et al., 2009). 

 

1.4.3. Antioxidant property of glyceollins 

Soy extract is known for its antioxidant capacity, and a number of phytochemicals 

have been identified, among them genistein and daidzein were the focus of previous 

studies (Slavin, Cheng, Luther, Kenworthy, & Yu, 2009; Slavin, Kenworthy, & Yu, 

2009; Tripathi & Misra, 2005). Structurally, glyceollins (Fig. 2) are similar to genistein 

and daidzein (Fig. 1). Glyceollins have also been reported for their antioxidant activity. 

Kim et.al reported that glyceollins possess potent reducing ability, and can inhibit lipid 

peroxidation, scavenge radicals including singlet oxygen, superoxide anion, 2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl 

(DPPH). In vitro model also indicated glyceollins significantly suppress H2O2-induced 

ROS production in hepa1c1c7 mouse hepatoma cells (Kim, Suh, Kim, Park, Joo, & Kim, 

2010).  

Additionally, glyceollins were shown to induce NADPH:quinone reductase in a 

dose-dependent manner in both Hepa1c1c7 mouse hepatoma and BPRc1 cells. 

Glyceollins also increased the expression of HO1, γ-GCL, and GR by promoting nuclear 

translocation of the Nrf2. Furthermore, glyceollins could upregulate phosphorylation of 

AKT and antioxidant response element-mediated reporter gene expression, which 
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indicated that glyceollins may induce Nrf2-mediated phase 2 enzyme genes through 

activation of the PI3K signaling pathway (Kim, di Luccio, Kong, & Kim, 2011). 

 

1.4.4. Anti-inflammatory effects of glyceollins 

Anti-inflammatory effect of glyceollins was also examined. Glyceollins (0.3 - 3 

μg/mL) was able to inhibit NO production and iNOS, IL-6 and COX-2 gene expression 

induced by lipopolysaccharide (LPS) in RAW264.7 mouse macrophage cells. 

Mechanistically, glyceollins were shown to suppress the LPS-induced phosphorylation of 

NF-κB p65 and regulate NF-κB activity (Kim, Sung, & Kim, 2011).  

 

1.5. Animal models for human diseases 

Due to ethical concern of using human subjects in scientific research, developing 

and characterizing animal models that resemble human metabolism are of great 

importance. Despite the enormous effort and success in human cell model research, only 

part of the need for studying human metabolism can be met, an intact animal is needed 

for many areas of study (Suckling & Jackson, 1993). Especially in nutrition and food 

science area, food is very complex itself with the food content interacting with each 

other, and food-body interaction is well beyond the analysis capability of cell models. 

The use of an animal model makes it possible to investigate both a specific endpoint and 

the big picture of metabolism in a physiological context. 

The major concern of employing laboratory animals is to understand the nature of 

the models in terms of applicability to the particular scientific questions, and also the 
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potential alternatives. It will be very hard to seek an animal model that is identical to 

human physiology in every aspect, and researches get increasingly expensive when 

pursuing animal models genetically closely related to human, e.g. monkey or 

chimpanzee, not to mention the ethical concern involved. Even though a compromise has 

to be made, a suitable animal model is key to the success of a scientific research. It is 

important to identify the structures or pathways related to the research question in the 

model animals, and characterize and determine the similarity between animal and human 

counterparts, and also understanding the limitation of the model. 

In the field of dietary components’ effect in cholesterol metabolism and cancer 

prevention, the need for animal models is well established and clearly recognized. Such 

complex systems that involve the digestion and absorption of the food and components, 

transport between different tissues, plus metabolism and effect on cholesterol profile or 

cancer development, cannot be studied in depth without the use of animals. The best 

research strategy is to couple animal models with cell culture systems to gain 

understanding of both the overall influence and the underlying mechanisms at different 

levels.  

Fortunately, the basic pathways and systems of cholesterol metabolism and cancer 

development have been studied for decades and well defined, which makes the search of 

appropriate animal models a targeted endeavor.  

Several types of animal models that are widely used, including a wide range of 

strains of mice, rats, hamsters, rabbits, and other animals. In the following parts, the 

choices of animal models for each specific aim will be discussed. 
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1.5.1. Hamster as model for cholesterol metabolisms 

Since cholesterol has to be transported via lipoproteins, dysregulation of 

cholesterol inevitably leads to fluctuation of lipoprotein levels. Plasma lipoproteins and 

the metabolism are among the most studied attributes in animal models (Suckling & 

Jackson, 1993). Thus, the comparisons between human and animal plasma lipoprotein 

profile and metabolism must be made. However, studies indicated that plasma 

lipoproteins in model animals are significantly different from that of human. In most 

animal species, HDL is the major plasma lipoprotein, whereas in human LDL is the 

dominant lipoprotein, despite wide variations between individuals.  

 

Table 1.1. Plasma lipoprotein profiles in model animals. 

 HDL (mg/dL) VLDL (mg/dL) LDL (mg/dL) 

Human * ~ 40 ~ 60 ~ 100 

Swiss mouse 534 41 69 

Sprague-Dawley rat 240 107 58 

Dog 343 15 26 

African green monkey 447 22 196 

Hamster  46 20 49 

(Chapman, 1986; Quig, Arbeeny, & Zilversmit, 1991) 

* Due to the large discrepancy exist in human lipoprotein levels, data represent desirable 

lipoprotein levels recommended by American Heart Association are used for comparison. 

 

 

Another major difference between human and model animals is the cholesteryl 

ester transfer activity associated with the cholesteryl ester transfer protein (CETP). CETP 

is responsible for promoting the exchange of cholesteryl ester and triglyceride between 

lipoproteins, which results in the net transfer of cholesteryl ester from HDL to LDL in 

human. This is one of the reasons that human and hamster have higher plasma LDL 
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(Chapman, 1986; Quig, Arbeeny, & Zilversmit, 1991). Lipoprotein metabolism in rats is 

very different. Rat is especially efficient in clearance of chylomicron and VLDL 

remnants from the circulation, which causes the low LDL levels of the rat. Additionally, 

CETP is absent in the rat (Oschry & Eisenberg, 1982).  

As for cholesterol synthesis, rat shows the highest hepatic cholesterol synthesis 

rate (100%), with squirrel monkey shows about 40% of this rate, the rabbit 20%, human 

about 16% and the guinea pig and hamster even less. Similarly, hepatic ACAT activities 

were shown to be high in the rat and low in the rabbit, human and hamster (Suckling & 

Stange, 1985).  

LDL receptor is the major component in the liver in charge of clearance of plasma 

LDL. LDL receptor activity is controlled and regulated qualitatively by drug or diet, but 

the extent to which varies considerably among species. Hamster can substantial lower its 

hepatic LDL receptor activity in response to dietary saturated fat, which is comparable to 

that in human. While the rat hepatic LDL receptor is much less sensitive (Spady, 

Meddings, & Dietschy, 1986).  

Hamster is widely accepted as a model for lipoprotein metabolism. It has 

cholesteryl ester transfer activity in the plasma and has a significant amount of LDL, 

which is an advantage over other model animals in terms of resemblance to that of human 

(Chapman, 1986; Jiang, Moulin, Quinet, Goldberg, Yacoub, Agellon, et al., 1991; Quig, 

Arbeeny, & Zilversmit, 1991). The synthesis of cholesterol and the regulation of the LDL 

receptor in hamster are sensitive to dietary fat, particularly to saturated fat, in a similar 

way to human (Fernandez, Wilson, Conde, Vergara-Jimenez, & Nicolosi, 1999; Spady, 

Meddings, & Dietschy, 1986). Previous study has shown that dietary cholesterol resulted 
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in decreased hepatic cholesterol synthesis in hamsters (Daumerie, Woollett, & Dietschy, 

1992; Woollett, Spady, & Dietschy, 1989). Between the two strains of golden Syrian 

hamsters, Charles River Laboratories strain (Wilmington, MA) showed a better response 

to dietary treatment than Bio Breeders strain (Watertown, MA) (Dorfman, Smith, 

Osgood, & Lichtenstein, 2003).  

 

1.5.2. Xenograft model for prostate cancer 

Xenograft model is an established model in prostate cancer research. Xenograft is 

established by injecting established human prostate cancer cells into nude mice, usually 

co-injection with matrigel to increase the success rate (Lim, Liu, Sutkowski, Braun, Lee, 

& Kozlowski, 1993; Pretlow, Delmoro, Dilley, Spadafora, & Pretlow, 1991). More 

recently, fragments of primary cell cultures from prostate carcinomas obtained from 

biopsies, surgery, or intraperitoneal fluid can also be used to initiate xenograft 

(vanWeerden, deRidder, Verdaasdonk, Romijn, vanderKwast, Schroder, et al., 1996; 

Wainstein, He, Robinson, Kung, Schwartz, Giaconia, et al., 1994). The success rate in 

nude mice, which is immunodeficient athymic that lacked T-cell-mediated immunity, was 

slightly lower than that in SCID mice, which lacked both T-cell-mediated and B-cell-

mediated immunity (Lim, Liu, Sutkowski, Braun, Lee, & Kozlowski, 1993; Sato, Gleave, 

Bruchovsky, Rennie, Beraldi, & Sullivan, 1997). However, the absolute absence of 

adaptive immunity always poses a concern in terms of physiological relevance. Xenograft 

models are particularly useful in characterizing the stages of cancer progression, 

including the emergence of androgen-independence, and assessing the efficacy of cancer 

preventative treatment (Stearns, Ware, Agus, Chang, Fidler, Fife, et al., 1998). LNCaP 
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and PC-3 tumor cell xenograft are both well-established xenograft models (Bex, 

Lummen, Rembrink, Otto, Metz, & Rubben, 1999; Gridley, Andres, & Slater, 1997; 

Thalmann, Sikes, Wu, Degeorges, Chang, Ozen, et al., 2000; Tymchuk, Barnard, Heber, 

& Aronson, 2001). Normally, the xenograft can retain the cytogenetic, biologic, and 

molecular features of the original cancer, even after multiple passages. Also, mouse-

derived endothelial cells have been identified between the intravascular space and human 

tumor cells, suggesting contribution of mouse tissues to the vasculature of the tumor 

growth (Lehr, Skelly, Buhler, Anderson, Delisser, & Gown, 1997). Thus, xenograft 

model is suitable for investigating tumor growth, as well as the involvement of 

angiogenesis and other physiological events. 

 

1.6. Real-time polymerase chain reaction 

Polymerase chain reaction (PCR) is a basic molecular biology laboratory 

technique that amplifies a targeted DNA sequence, and real-time polymerase chain 

reaction is a PCR technique that simultaneously amplifies and quantifies the targeted 

DNA. The procedure of real-time PCR follows the general principle of polymerase chain 

reaction. The key feature of real-time PCR is that the amplification of DNA is detected 

and quantified at the end of each thermal cycle, comparing to the standard PCR, in which 

the PCR product is detected at the end of the entire reaction. Common detection methods 

include: (1) non-specific fluorescent dyes that intercalate with any double-stranded DNA, 

such as SYBR Green method, and (2) sequence-specific DNA probes consisting of 

oligonucleotides, which is designed to hybridize with the complementary sequence in 
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target DNAs, and a fluorescent reporter, which can be detected only after hybridization, 

such as Taqmen method. 

Real-time PCR is mainly used to provide quantitative measurements of gene 

transcription. By quantifying the density of fluorescence which is proportional to the 

concentration of DNA molecules, real-time PCR can be used to determine the genetic 

expression (such as messenger RNA) level of a particular gene changes over time, such 

as in the response of tissue and cell cultures to a phytochemical treatment, progression of 

cell differentiation, or in response to changes in environmental conditions. Real-time 

PCR can also be used to identify the microorganism by targeting species-specific DNA 

sequences and quantify the absolute copy number of target DNAs in the sample. The 

copy number of DNAs can be further calculated to correlate or represent the number of 

cells or bacteria. 
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The overarching goal of this research is to advance our understanding of potential 

health beneficial effect of soy. Based on existing evidence, we hypothesize that 

components from soy may exert effects on multiple chronic diseases including diet-

induced metabolic syndrome and cancers. We focus on examining the effects of the novel 

soy phytochemicals glyceollins on 1) alleviating metabolic and inflammatory disorders 

resulting from high fat/cholesterol diet and 2) effect on prostate cancer prevention. The 

specific aims for this proposal are: 

 

Specific Aim 1: To test the hypothesis that glyceollins can lower diet induced 

increase in cholesterol levels in plasma and liver. Soy is known to modulate cholesterol 

level and prevent cardiovascular diseases. However, the active component(s) and the 

underlying mechanism remain unclear. Existing literature suggested glyceollins as a 

candidate for soy’s cholesterol-lowering effect. This hypothesis will be tested using a 

hamster model of diet induced metabolic dysregulation. Hamsters fed high-fat diet with 

or without glyceollins supplementation will be assessed for glyceollins’ ability to 

modulate cholesterol and lipid profiles in plasma and liver. Molecular analysis of 

lipid/cholesterol metabolisms will be determined to elucidate mechanisms of action. 

 

Specific Aim 2: To test the hypothesis that glyceollins can prevent prostate 

cancer. Our previous study revealed that glyceollins inhibit androgen responsive LNCaP 

prostate cancer cell growth in culture through inhibition of androgen-dependent 

pathways. The effect of glyceollins in vivo is not known. A prostate cancer cell xenograft 

model will be used to test the effects of glyceollins. The following questions will be 



 

 

57 

addressed: 1) whether glyceollins differentially affect androgen-dependent and androgen-

independent cell-derived tumor, and 2) what is the molecular mechanisms of action of 

glyceollins. Marker gene expressions in proliferation, angiogenesis, and androgen 

responsive pathways will be determined to elucidate these questions. 

 

Specific Aim 3: To test the hypothesis that glyceollins supplementation will affect 

gut microbiome composition or population. Human microbiome is a very large and 

complex ecosystem, which has been shown to influence human development and health. 

Recent studies indicated that short and long-term diet can influence the structure and 

activity of the human microbiome.  Glyceollins are a group of phytoalexins, which is 

synthesized by plants to protect against pathogenic attack. In this study, the influence of 

low and high-fat and glyceollins supplemented diet on microbiome in animal models will 

be studied. Certain predominant species of gut bacteria will be selected, and their 

temporal changes will be measured. 
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Chapter 2: Lipid and cholesterol-lowering activity of soy-derived 

glyceollins 

 

 

Huang, Xie, Boue, Bhatnagar, Yokoyama, Yu, Wang. (2013) Cholesterol-Lowering 

Activity of Soy-Derived Glyceollins in the Golden Syrian Hamster Model. Journal of 

Agricultural and Food Chemistry 61 (24), 5772-5782. 

 

 

2.1. Abstract 

Hypercholesterolemia is one of the major factors contributing to the risk of 

cardiovascular disease (CVD), which is the leading cause of death in the developed 

countries. Consumption of soy foods has been recognized to lower the risk of CVD, and 

phytochemicals in soy are believed to contribute to the health benefits. Glyceollin is one 

of the candidate phytochemicals synthesized in stressed soy that may account for many 

unique biological activities. In this study, the in vivo cholesterol-lowering effect of 

glyceollins was investigated. Male golden Syrian hamsters were fed diets including 1) 36 

kcal% fat diet, 2) 36 kcal% fat diet containing 250 mg/kg diet glyceollins, or 3) chow for 

28 days. Hepatic cholesterol esters and free cholesterol, hepatic total lipid content, 

plasma lipoproteins, fecal bile acid, fecal total cholesterol, and cholesterol metabolism 

related gene expressions were measured. Glyceollins supplementation led to a significant 

reduction of plasma VLDL, hepatic cholesterol esters and total lipid content. Consistent 

with changes in circulating cholesterol, glyceollins supplementation also altered 
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expression of the genes related to cholesterol metabolism in the liver. In contrast, no 

change in plasma LDL and HDL, and fecal bile acid or cholesterol content was observed. 

The cholesterol-lowering effect of glyceollins appeared not to go through the increase of 

bile excretion. These results supported glyceollins’ role as a novel soy-derived 

cholesterol-lowering phytochemical that may contribute to soy’s health effects.  

 

 

2.2. Introduction 

Hypercholesterolemia is one of the major factors contributing to the onset and 

progression of cardiovascular diseases (CVD), which is the leading cause of death in the 

adult population of industrialized societies (Ortega, Palencia, & Lopez-Sobaler, 2006). It 

is estimated that, by 2020, CVD will continue to be the leading cause and account for 

37% of all deaths (Thomsen, Hansen, Christiansen, Green, & Berger, 2004). Therefore, it 

is imperative to develop preventive strategies against this disease. Besides genetic 

predisposition, increased consumption of high-fat and high cholesterol diets add to the 

risk of CVD (German, Xu, Walzem, Kinsella, Knuckles, Nakamura, et al., 1996; Lecerf 

& de Lorgeril, 2008).  Mechanistically, previous studies have revealed that diet may 

modulate oxidative status and chronic inflammation, which may play a pivotal role in 

atherosclerosis (Hansson, 2009; Kaperonis, Liapis, Kakisis, Dimitroulis, & Papavassiliou, 

2006). Dietary intervention would be an economical and efficient preventive measure. 

Soy is one of the primary agricultural commodities in the United States (Slavin, 

Cheng, Luther, Kenworthy, & Yu, 2009). Soy and soy-derived foods are well-known for 

their health effects and are a rich source of health-promoting bioactive phytochemicals 

(Friedman & Brandon, 2001). Previous research indicated that soy possesses cholesterol-
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lowering effects (Messina & Messina, 2010; Tripathi & Misra, 2005), but the precise 

mechanism and the active components remain unclear (GatchalianYee, Arimura, Ochiai, 

Yamada, & Sugano, 1997; Wilson, Nicolosi, Kotyla, & Fleckinger, 2007). Glyceollins 

(Fig. 2.1), which are synthesized in response to environmental stresses, such as infection, 

are a family of phytoalexins isolated from soy and possess antibiotic activity. Soy 

phytoalexins also include bioactive isoflavones such as genistein and daidzein (Fig. 2.1) 

(Aggarwal, Takada, & Oommen, 2004).  

 

 

 

 

 

 
 

 

 
 

Fig. 2.1. Structures of glyceollins (I, II, and III) and soy phytochemicals genistein, 

daidzein. 
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Glyceollins have been reported to exhibit antitumor (Lee, et al., 2010; Payton-

Stewart, et al., 2010; Salvo, et al., 2006), antiestrogenic (Burow, et al., 2001), 

antibacterial (Weinstein & Albersheim, 1983), antinematode (Huang & Barker, 1991; 

Veech, 1982), antifungal (Lee, et al., 2010; Lozovaya, Lygin, Zernova, Li, Hartman, & 

Widholm, 2004), antidiabetic (Boue, et al., 2012; Park, Ahn, Kim, Lee, Kim, & Kim, 

2010; Park, Kim, Kim, Kim, & Kim, 2012) and vasodilatory effects in rat (Song, et al., 

2010). Glyceollins were also reported to possess antioxidant and anti-inflammatory effect 

(Kim, di Luccio, Kong, & Kim, 2011; Kim, Suh, Kim, Park, Joo, & Kim, 2010; Kim, 

Sung, & Kim, 2011). The antioxidant and anti-inflammatory properties of glyceollins 

suggest the potential of glyceollins to prevent, delay or treat cardiovascular condition. 

Hence, accumulating evidence suggest that glyceollins have the potential to be health 

promoting phytochemicals and deserve further investigation and characterization. 

Additionally, the contribution of glyceollins to the cholesterol and lipid lowering-effect 

of soy has not been reported. 

The golden Syrian hamster (Mesocricetus auratus) is widely accepted as a suitable 

animal model for studying human cholesterol metabolism (Chapman, 1986; Suckling & 

Jackson, 1993). The lipid profiles and susceptibility to dietary cholesterol of golden 

Syrian hamster is similar to human (Arbeeny, Meyers, Bergquist, & Gregg, 1992; 

KrisEtherton & Dietschy, 1997; Suckling & Jackson, 1993). The current study takes 

advantage of this model to test the hypothesis that glyceollins may exert cholesterol and 

lipid-lowering effect. Hamsters were fed a high-fat diet or a glyceollins supplemented 

high-fat diet. Plasma lipid profiles, liver, fecal lipid contents and microbiome, the 

expression level of cholesterol and lipid metabolism related genes in the liver were 
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determined to elucidate the cholesterol-lowering activity of glyceollins and the potential 

mechanisms involved. 

 

2.3. Materials and methods 

Animals and diets. Male golden Syrian hamsters (approximately 80 g, LVG 

strain, Charles River, Wilmington, MA, USA) were given free access to water and rodent 

chow to acclimatize to the environment for 1 week prior to the experiment. For the 

experiment, hamsters were fed a high-fat diet (36 kcal% fat diet), a high-fat diet with 

supplemental glyceollins supplement (36 kcal% fat diet containing 250 mg/kg diet 

glyceollins.), or chow (8728C Teklad Certified Rodent Diet, Harlan Laboratories, Inc, 

Frederick, MD, USA). The experimental diets were formulated and purchased from 

Research Diets, Inc., New Brunswick, NJ, USA. Animals (10 per group) were fed with 

the respective diet for 4 weeks with water available ad libitum. Food intake was recorded 

twice a week and body weights were measured weekly. Diets consisted of 18% protein, 

45% carbohydrate, and 36% fat on a caloric basis supplemented with 0.14% cholesterol. 

Diet compositions are listed in Table 2.1. Glyceollins were given as a mixture of 68% 

glyceollin I, 21% glyceollin II, and 11% glyceollin III. Glyceollins mixture was isolated 

and purified as described previously (Payton-Stewart, et al., 2009; Virgilo A. Salvo, 

Boué, Fonseca, Elliott, Corbitt, Collins-Burow, et al., 2006). The animal use and care 

protocol (Protocol # 10-014) for this study was reviewed and approved by the USDA, 

ARS, Beltsville Area Animal Care and Use Committee (BAACUC). 
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Table 2.1. Diet compositions 

  
High-fat1 

High-fat+ 

Glyceollins1 
Chow2 

  gm% kcal% gm% kcal% gm% kcal% 

Protein 21.0 18.0 21.0 18.0 24.3 32.0 

Carbohydrate 52.0 45.0 52.0 45.0 40.2 54.0 

Fat 19.0 36.0 19.0 36.0 4.7 14.0 

Others     23.8  

Total  100.0  100.0  100.0 

kcal/gm 4.58  4.58  3.00  

        

Ingredient gm kcal gm kcal gm kcal 

Casein 222.0 888.0 222.0 888.0   

DL-Methionine 3.0 12.0 3.0 12.0   

Corn Starch 453.0 1812.0 453.0 1812.0   

Maltodextrin 100.0 400.0 100.0 400.0   

Sucrose       

Cellulose 53.0 0.0 53.0 0.0   

Corn Oil 100.0 900.0 100.0 900.0   

Butter 80.0 720.0 80.0 720.0   

Menhaden Oil 20.0 180.0 20.0 180.0   

Mineral Mix 45.0 40.0 45.0 40.0   

Choline 

Bitartrate 
3.0 0.0 3.0 0.0   

Cholesterol 1.5 0.0 1.5 0.0 0.05 0.0 

Glyceollins 0.0 0.0 0.27 0.0 0.0 0.0 

Total 1080.5 4952.0 1080.5 4952.0 1000.0 3000.0 

 
1High-fat and High-fat+Glyceollins diets were formulated and purchased from Research 

Diet (New Brunswick, NJ); 2Chow diet was purchased from Harlan Laboratories 

(Frederick, MD). 

 

Plasma, tissue and fecal sample collection. Hamsters were subject to 12 h 

fasting prior to sacrifice and anesthetized with CO2. Blood was collected by cardiac 

puncture with syringes previously rinsed with potassium EDTA solution (15% w/v), and 

plasma was separated after centrifugation at 1500 rpm for 30 min at 4 °C. Livers and 

adipose tissues were collected, and one part of the tissue immediately frozen in liquid 

nitrogen for analysis, the other part was preserved in RNA Stabilization Solution was 
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purchased from Ambion (Austin, TX, USA) and kept at -80 °C. At the end of the fourth 

week, 48 h fecal samples were collected from the bottom of the cage and kept at -80 °C. 

Plasma lipoprotein analysis. Plasma lipoprotein cholesterol concentrations were 

determined by size exclusion chromatography as previously described (German, et al., 

1996). Briefly, an Agilent 1100 chromatograph was employed with a postcolumn 

derivatization reactor, consisting of a mixing coil (1615-50 Bodman, Aston, PA, USA) in 

a temperature-controlled water jacket (Aura Industrials, Staten, NY, USA). A Hewlett-

Packard (Agilent, Palo Alto, CA, USA) HPLC pump 79851-A was used to deliver 

cholesterol reagent (Roche Diagnostics, Indianapolis, IN, USA) at a flow rate of 0.2 

mL/min. Bovine cholesterol lipoprotein standards (Sigma Aldrich, St. Louis, MO, USA) 

were used to calibrate the signal on the basis of peak areas. 15 µL of plasma was injected 

via an Agilent 1100 auto sampler onto a Superose 6HR HPLC column (Pharmacia LKB 

Biotechnology, Piscataway, NJ, USA). The lipoproteins were eluted with a pH 7.0 buffer 

solution containing 0.15 M sodium chloride and 0.02% sodium azide at a flow rate of 0.5 

mL/min. Plasma lipoprotein concentration was calculated based on a standard curve. 

Liquid chromatography-mass spectrometry analysis of plasma concentration 

of glyceollins. LC-ESI-MS and LC-ESI-MS/MS analyses were conducted on an Agilent 

1100 series LC system (Agilent, Santa Clara, CA) coupled to a TSQ Vantage™ Triple 

Quadrupole Mass Spectrometer (Thermo Scientific, Middletown, VA). Separation was 

performed on an Agilent Eclipse XDB C18 column (4.6 × 150 mm ID, 5 μm). Ten 

microliters was injected onto the column held at 25 °C. The binary mobile phase 

consisted of mobile phase A (water with 0.1% formic acid) and mobile phase B 

(acetonitrile with 0.1% formic acid). The gradient was 0-4 min 30% A to 2% A and hold 
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at 2% A for 10 min; 14-16 min 2% A to 30% A and hold at 30% A for 7 min; the flow 

rate was 0.200 mL/min. The UV absorbance detector was set at 285 nm. For positive ion 

LC-ESI-MS and LC-ESI-MS/MS analyses, electrospray parameters were set at the 

following: sheath gas pressure of 60 psi, ionspray voltage of 3500 V, auxiliary gas 

pressure of 15 psi, collision gas pressure of 1.5 mTorr, capillary temperature of 268 °C. 

Declustering potential and collision energy were maintained at -12 V and 16 eV, 

respectively. Parent and product mass scan were performed at 339.000 and 229.042.  

Hepatic lipid extraction. Livers were excised and immediately frozen in liquid 

nitrogen, and then stored at –80 ºC prior to analysis. The extraction method was modified 

from Folch method (Ametaj, Bobe, Lu, Young, & Beitz, 2003; Folch, Lees, & Sloane 

Stanley, 1957). Approximately 0.15 g of frozen liver was minced and transferred into a 

test tube. 6 mL of chloroform/methanol (2:1, v/v) was then added, followed by a 2 min 

homogenization and 30 s of sonication at 30% power level. Samples were then incubated 

with shaking for 2 h on a platform shaker. After incubation, 2 mL of double distilled 

water was added. Samples were then centrifuged for 20 min at 500 g. After 

centrifugation, the bottom layer was carefully aspirated into a new test tube and incubated 

overnight. It was then filtered through a 0.22 µm filter and dried by stream of nitrogen. 

The dried lipid was weighed and redissolved in isopropanol with 10% Triton X-100 and 

used for triglyceride and cholesterol analysis as described below.  

Triglyceride, total cholesterol and free cholesterol in the liver. Hepatic 

triglyceride, total cholesterol and free cholesterol were enzymatically determined using 

commercial kits (Triglyceride-SL, Genzyme Diagnostics PEI Inc., PE, Canada; 
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Cholesterol E and Free Cholesterol E, Wako Chemicals, Richmond, VA, USA) following 

manufacturer’s protocols.  

Fecal bile acids and cholesterol extraction. Fecal bile acids and cholesterol 

were extracted using a modified protocol (Allen, Bristow, & Yu, 2004). Fecal samples 

were collected during 48 h period on days 26-28 after initiation of the experiment. The 

samples were lyophilized, pulverized using pestle and mortar, and weighed. A dried fecal 

sample (0.10 g) was hydrolyzed in 1.0 mL of 2 M KOH at 50 °C for 5 h. The cooled 

mixture was then extracted with two 6-mL portions of diethyl ether to remove 

nonsaponifiable components. Subsequently, 1 mL of 20% sodium chloride followed by 

0.2 mL of 12 M hydrochloric acid was added to the remaining mixture. The acidified 

mixture was extracted with two 6-mL portions of diethyl ether, and the pooled ether 

extracts were evaporated by nitrogen and redissolved in 0.5 mL of ethanol. The samples 

were used for fecal bile acid and cholesterol determination as follows. 

Fecal bile acids and cholesterol analysis. Fecal bile acid content was 

enzymatically determined by 3α-hydroxysteroid dehydrogenase (3α-HSD) (Liu, Wang, 

Yao, Gao, & Yu, 2010). β-nicotinamide adenine dinucleotide hydrate (NAD), nitroblue 

tetrazolium chloride (NBT), diaphorase, 3α-HSD, and cholic acid were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). NAD, NBT, diaphorase, and 3α-HSD were 

prepared in 0.01 M phosphate buffer at pH 7.0. The reaction mixture included 40 μL of 

sample or standard with 4 µL of Triton X-100, 50 µL of NAD (2.5 mM), 50 µL of NBT 

(0.61 mM), 50 µL of diaphorase (625 U/L), 50 µL of 3α-HSD (625 U/L). The mixture 

was incubated for 60 min at ambient temperature, after which 40 µL of phosphoric acid 

(1.33 M) was added to stop the reaction. The absorbance of each reaction mixture was 
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measured at 530 nm. Cholic acid in ethanol was used to generate a standard curve, and 

the amount of fecal bile acid obtained was determined using the standard curve. 

Cholesterol was determined by the same assay as for liver described above.  

Total RNA isolation, cDNA synthesis and gene expression analysis from liver 

and adipose tissue. To determine the gene expression changes, liver and adipose 

preserved in RNALater were cut into 0.1 to 0.2 g pieces and homogenized using a 

Precellys 24 (Bertin Technologies, Villeurbanne, France). RNeasy Mini Kit and RNeasy 

Lipid Tissue Mini Kit (Qiagen, Valencia, CA, USA) were used for total RNA isolation 

for liver and adipose, respectively. StrataScript First Strand complementary DNA 

Synthesis kit from Stratagene (Santa Clara, CA, USA) was used to reverse transcribe 

complementary DNA. Real-time PCR was performed on an Applied Biosystems 7900HT 

Sequence Detection System using Fast SYBR Green Master Mix by Applied Biosystems 

(Carlsbad, CA, USA). Primers used in this study are listed in Table 2.2. Relative mRNA 

expression levels were calculated using the delta Ct method (J. S. Yuan, Reed, Chen, & 

Stewart, 2006). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was 

used as the house-keeping gene for calculations. 
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Table 2.2. Sequences of Real-time PCR primers 

Genes Direction Sequence (5’-3’) 

SYBR Green primers  

GAPDH 
Forward GAACATCATCCCTGCATCCA 

Reverse CCAGTGAGCTTCCCGTTCA 

HMGCoAR 
Forward CGAAGGGTTTGCAGTGATAAAGGA 

Reverse GCCATAGTCACATGAAGCTTCTGTA 

LDLR 
Forward TGAGGAACATCAACAGCATAAAC 

Reverse ATCCTCCAGGCTGACCATCTGT 

LXRα 
Forward ATTGCCATCAGCATCTTCTCT 

Reverse GCATCCGTGGGAACATCAGT 

PPARα 
Forward CTCCACCTGCAGAGCAACCA 

Reverse CGTCAGACTCGGTCTTCTTGAT 

ABCG5 
Forward TGATTGGCAGCTATAATTTTGGG 

Reverse GTTGGGCTGCGATGGAAA 

ABCG8 
Forward TGCTGGCCATCATAGGGAG 

Reverse TCCTGATTTCATCTTGCCACC 

CYP7A1 
Forward GGTAGTGTGCTGTTGTATATGGGTTA 

Reverse ACAGCCCAGGTATGGAATCAAC 

CYP51 
Forward GAGAGAAGTTTGCCTATGTGCC 

Reverse TGTAACGGATTACTGGGTTTTCT 

SREBP 
Forward GCGGACGCAGTCTGGG 

Reverse ATGAGCTGGAGCATGTCTTCAAA 

FA Synthase 
Forward AGCCCCTCAAGTGCACAGTG 

Reverse TGCCAATGTGTTTTCCCTGA 

ACOX 
Forward TTACATGCCTTTGTTGTCCCTATC 

Reverse CGGTAATTGTCCATCTTCAGGTA 

IL-1β 
Forward GGTTGAATCTATACCTGTCCTGTGTG 

Reverse TTTTCCATCTTCTTCTTTGGGTATT 

IL-6 
Forward AGACAAAGCCAGAGTCATT 

Reverse TCGGTATGCTAAGGCACAG 

TNF-α 
Forward AACGGCATGTCTCTCAA 

Reverse AGTCGGTCACCTTTCT 

TGF-β 
Forward ACGGAGAAGAACTGCT 

Reverse ACGTAGTACACGATGGG 

IFN 
Forward GGCCATCCAGAGGAGCATAG 

Reverse CCATGCTGCTGTTGAAGAAGTTAG 

TaqMan primers  

GAPDH 

Forward GAACATCATCCCTGCATCCA  

Reverse CCAGTGAGCTTCCCGTTCA  

Probe CTTGCCCACAGCCTTGGCAGC 

LPL 

Forward TTTAACTACCCCCTGGACAATGTC  

Reverse ACCTTCTTGTTGGTCAGACTTCCT  

Probe AGCCTTGGAGCCCACGCTGCT 



 

 

69 

Statistical analysis. All end point assays for each sample were conducted in 

triplicate, and the average was used for group analysis, data for each treatment group 

were presented as mean ± standard error. Significance level of differences in means was 

detected using one-way ANOVA and Tukey’s test. Statistics analysis was performed 

using IBM SPSS Statistics 19.0 (2010, IBM Corporation, Armonk, NY, USA) or 

Graphpad Prism 6 (2012, Graphpad Software, La Jolla, CA, USA). Statistical 

significance was defined at p ≤ 0.05.  

 

2.4. Results 

Body Weight and Food Intake. There was no difference in body weight or body 

weight gain between any of the diet treatments during the experimental period (Table 

2.3). Food intake was significantly higher in the group fed with chow diet, but caloric 

intake was higher in the high-fat diet, and high-fat diet supplemented with glyceollins 

groups due to their higher fat content (Table 2.3).  

 

Table 2.3. Effect of different diets on body weight and food intake 

 High-fat Glyceollins Chow 

body weight (g) 95.83 ± 5.30a 95.91 ± 4.04a 96.87 ± 3.94a 

body weight gain (g) 17.48 ± 4.98a 18.95 ± 6.54a 20.83 ± 3.97a 

food intake (g/day) 5.82 ± 0.43a 5.89 ± 0.60a 7.59 ± 0.31b 

calorie intake (kcal/day) 26.67 ± 1.97b 26.97 ± 2.76b 22.76 ± 0.93a 

Body weight and food intake was presented as mean ± SEM (n = 10). Significance level 

of differences in means was detected using one-way ANOVA and Tukey’s test. Numbers 

marked with different letter are significantly different from each other at p ≤ 0.05. 

 

 

Plasma Lipoprotein Cholesterol Content. Compared to the chow diet, 

consumption of the high-fat diet significantly elevated very low-density lipoprotein 
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(VLDL) (366%), low-density lipoprotein (LDL) (482%), and total lipoprotein levels 

(51%) in hamster plasma (Fig. 2.2). Animals on high-fat diet supplemented with 

glyceollins showed significantly lower (30% less) VLDL than animals on the high-fat 

diet. We also found a trend in reduction of LDL by 19% and total lipoprotein level by 9% 

in the animals fed with glyceollins, however reductions in LDL and total lipoprotein level 

did not reach statistical significance (Fig. 2.2). There was no difference in high-density 

lipoprotein (HDL) level between the animals on different diets. 

 

 

 
Fig. 2.2. Effects of glyceollins supplement on plasma lipoprotein cholesterol level. 

Hamster plasma from different diet groups was harvested and Plasma lipoprotein 

cholesterol concentrations were determined by size exclusion chromatography as 
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described in Material and Methods. A) Very Low-Density Lipoprotein (VLDL), B) Low-

Density Lipoprotein (LDL), C) High-Density Lipoprotein (HDL), and D) Total 

Lipoprotein. Each column represents the mean ± SEM (n = 10). Columns marked with 

different letters are significantly different from each other at p ≤ 0.05. 

 

 

Cholesterol and Lipid Content of Liver. In animals fed the high-fat diet, hepatic 

cholesterol esters and free cholesterol increased 759% and 27%, respectively, compared 

to that of animals on the chow diet, and cumulatively resulted in 266% increase in total 

cholesterol (Fig. 2.3). Glyceollins supplementation in the high-fat diet reduced hepatic 

cholesterol esters and free cholesterol by 20% and 14% (Fig. 2.3B, 2.3C). Overall, the 

total lipid content in liver of high-fat diet animals was 82% higher than those on chow 

diet (Fig. 2.3E). Total lipid in the liver of glyceollins supplemented animals were 18% 

lower than high-fat diet fed animals. There were no differences in hepatic triglyceride 

level between the animals from different diet groups (Fig. 2.3D). Consistent with lower 

lipid level in glyceollins treated animals, we also observed that the livers of the 

glyceollins fed animals appeared dark red, smooth and more similar to that of chow fed 

animal, whereas livers in high-fat diet animals were pale and spotted (data not shown). 
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Fig. 2.3. Effects of glyceollins on hepatic triglyceride and cholesterol level. Livers were 

harvested from animals on different diets and hepatic lipid extracted and enzymatically 

determined as described in Materials and Methods. A) Hepatic Total Cholesterol, B) 

Hepatic Cholesterol esters, C) Hepatic Free Cholesterol, D) Hepatic Triglycerides, and E) 

Hepatic Total Lipid Content. Each column represents the mean ± SEM (n = 10). Columns 

marked with different letters are significantly different from each other at p ≤ 0.05. 

 

 

Bile Acid and Cholesterol Content of Feces. There was no significant difference 

between the diet groups for fecal bile acid content (Fig. 2.4). Compared to animals on the 

chow diet, higher fecal total cholesterol (170%) levels were detected in high-fat diet fed 

animals, but there was no difference between animals fed with or without glyceollins. 
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Fig. 2.4. Effects of glyceollins on fecal bile acid and cholesterol level. Two-day fecal 

samples were collected for animals on different diets and fecal bile acid and total 

cholesterol was extracted and determined as described in Materials and Methods. A) 

Fecal Bile Acid, and B) Fecal Total Cholesterol. CA equiv stands for cholic acid 

equivalents. Each column represents the mean ± SEM (n = 10). Columns marked with 

different letters are significantly different from each other at p ≤ 0.05. 

 

 

Relative Expression of Genes Related to Cholesterol and Bile Acid 

Metabolism. Expression of hepatic genes related to cholesterol, bile acid, and fatty acid 

metabolism were determined to elucidate potential mechanisms of action. There was no 

difference in the expression of the mRNA levels of LDL receptor, which binds to LDL 

particles in circulation, between animals fed with different diets (Fig. 2.5A). Compared to 

the chow diet, the high-fat diet significantly decreased the hepatic mRNA level of the 

HMG-CoA reductase (32%) (Fig. 2.5B), which is the rate-limiting enzyme of the 

mevalonate pathway involved in cholesterol synthesis. Animals fed the glyceollins 

supplemented diet showed a similar decrease in hepatic HMG-CoA reductase as animals 

fed the high-fat diet. Another rate limiting enzyme in cholesterol synthesis, CYP51, 

which converts lanosterol to cholesterol, was down-regulated ~80% in high-fat diets with 

or without glyceollins supplemented as compared to chow diet (Fig. 2.5C). Liver X 

receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α, transcription 
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factors regulating fatty acid β-oxidation, did not exhibit differences between the diets 

(Figs. 2.5D, 2.5E).  

 

Fig. 2.5. Effects of glyceollins on liver LDL receptors, cholesterol synthesizing enzymes, 

and cholesterol metabolizing transcription factors mRNA levels. Livers were harvested 

from animals on different diets, total mRNA extracted and mRNA level determined using 

Real Time PCR as described in Materials and Methods A) liver LDL receptor, B) 

HMGCoAR, C) CYP51, D) LXRα and E) PPARα gene. Results express as relative 

expression levels (mean ± SEM, n = 10) to chow diet. Columns marked with different 

letters are significantly different from each other at p ≤ 0.05. 

 

 

ABCG5 and ABCG8 function as half-transporters to limit intestinal absorption 

and promote biliary excretion of sterols. High-fat diet significantly elevated both ABCG5 

and ABCG8 mRNA expression by 309% and 128%, respectively (Figs. 2.6A, 2.6B). 

Animals fed glyceollins supplemented diet expressed significantly lower levels of 

ABCG5 (29%), and ABCG8 (25%) mRNA as compared to the high-fat diet (Figs. 2.6A, 

2.6B). CYP7A1 encoding the enzyme for the initial rate-limiting step of bile acid 

synthesis, was increased by 63% in glyceollins supplemented diet, though did not reach 
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statistical significance (Fig. 2.6C), while high-fat diet and chow diet exhibited similar 

expression level of CYP7A1.  

 

 
Fig. 2.6. Effects of glyceollins on liver cholesterol transporting and catabolizing enzymes 

mRNA levels. Livers were harvested from animals on different diets, total mRNA 

extracted and mRNA level determined using Real Time PCR as described in Materials 

and Methods A) ABCG5, B) ABCG8, and C) CYP7A1. Results were expressed as 

relative expression levels (mean ± SEM, n = 10) to chow diet. Columns marked with 

different letters are significantly different from each other at p ≤ 0.05. 

 

 

The mRNA levels of fatty acid synthase (FAS) and acyl-CoA oxidase (ACOX), 

genes encoding the rate-limiting enzymes in peroxisomal β-oxidation, were not affected 

by the different diets (Figs. 2.7A, 2.7B). Sterol Regulatory Element-Binding Protein 

(SREBP)-1c is a transcription factor that binds to the sterol regulatory element DNA 
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sequence upstream of genes for fatty acid biosynthesis. Animals on the high-fat diet, with 

or without glyceollin, had higher hepatic SREBP-1c expression (~170%) than animals on 

chow diet (Fig. 2.7C). 

The LPL gene encodes lipoprotein lipase, which has the dual functions of 

triglyceride hydrolase and ligand bridging factor for receptor-mediated lipoprotein 

uptake. In this study, LPL expression level in liver was elevated in the high-fat diet by 

158%, while glyceollins supplementation reduced liver LPL by 27% (Fig. 2.7D). On the 

other hand, adipose LPL mRNA levels were significantly lower (35%) in animals that 

consumed glyceollins as compared to animals on the high-fat or chow diets (Fig. 2.7E). 

Fig. 2.7. Effects of glyceollins on lipid metabolizing genes in liver and adipose tissue. 

Livers and adipose tissues were harvested from animals on different diets, total mRNA 

extracted and mRNA level determined using Real Time PCR as described in Materials 

and Methods. A) FA synthase, B) ACOX, C) SREBP, D) Liver LPL, and E) Adipose 

LPL. Results were expressed as relative expression levels (mean ± SEM, n = 10) to chow 

diet. Columns marked with different letters are significantly different from each other at p 

≤ 0.05. 
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Glyceollins Reduced Inflammation Cytokine Expressions in the Liver. In 

liver, we observed inhibition of high-fat diet induced increase in IL-6 and TGF-β in the 

animals supplemented with glyceollins (Fig. 2.8). TGF-β in particular, as described 

above, is an important regulator of hepatic stellate cells and liver fibrosis (20). These 

results thus support an anti-inflammatory effect of glyceollin in liver. In our short term 

feeding model, although changes in cholesterol/lipid occurred, we did not observe 

differences in inflammatory markers, such as IL-1β, IL-6, or IFNγ, within the diet groups 

in the adipose tissue. These results suggest longer feed period may be necessary to 

observe an effect by glyceollins on inflammation parameter in adipose.  

 

Fig. 2.8. Effects of glyceollins on inflammatory cytokine genes in liver. Livers were 

harvested from animals on different diets, total mRNA extracted and mRNA level 

determined using Real Time PCR as described in Materials and Methods. A) IL-1β, B) 

IL-6, C) TNF-α, D) TGF-β, and E) IFNγ. Results were expressed as relative expression 

levels (mean ± SEM, n = 10) to chow diet. Columns marked with different letters are 

significantly different from each other at p ≤ 0.05. 
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Fecal Microbiome in Hamster. In the 4-week feeding study in hamster model, 

Bifidobacteria was significantly reduced by high-fat diet (87% comparing to chow diet 

group) and a significant increase in Lactobacillus (140%) was observed (Fig. 2.9A). 

High-fat diet also induced Ruminococcus (940%), Bacteroidetes (814%), and Firmicutes 

(1021%) comparing to chow diet group, however, due to the huge individual differences 

within and across groups, none of these changes achieved statistical significance (Fig. 

2.1A). In animals fed high-fat diet supplemented with glyceollins, a trend of increase was 

observed in Akkermansia, Ruminococcus, Bacteroidetes, and Firmicutes, however, no 

significant change was observed comparing to the high-fat diet group (Fig. 2.9B).  
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Fig. 2.9. Fecal microbiome in hamsters consuming high-fat, high-fat supplemented with 

glyceollins, or chow diet. Comparisons were made between chow and high-fat groups 

(A), and high-fat and high-fat supplemented with glyceollins (B), and presented as 

percent change. Statistical significance was defined at p ≤ 0.05 and marked with asterisk. 

 

 

Plasma Concentration of Glyceollins. In animals fed high-fat and chow diets, 

glyceollins were undetected in plasma by mass spectrometry. Average concentration of 

glyceollins was determined to be 0.14 ± 0.025 μM in supplemented animals, ranging 

from 0.05 to 0.32 μM. Daily consumption of glyceollins in the diet was calculated to be 

~5.57 μmol, at the end of study, average animal body weight was 96.87 g, and hamster 
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has a blood volume of 78 mL/kg (Drexelmed.edu). Thus, about 19% of ingested 

glyceollins was detected in circulation in hamster model. 
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2.5. Discussion  

Glyceollins are a family of major phytoalexins and phytoestrogens in stressed soy 

(Boue, Burow, Shih, Carter-Wientjes, & Cleveland, 2004; Kim, Lim, Kim, & Kim, 2012) 

(Fig. 2.1). We have previously shown that a soy protein diet enriched with isoflavones 

and glyceollins reduced cholesterol in postmenopausal female Cynomolgus monkeys 

(Wood, Boue, Collins-Burow, Rhodes, Register, Cline, et al., 2012), which suggested that 

glyceollin might be responsible for the effects in cholesterol reduction. This study 

assessed the short term (4 weeks) effect of glyceollins supplementation on lowering 

cholesterol level in animals fed with a high-fat western style diet. As shown in Fig. 2.2A, 

glyceollins significantly reduced the plasma concentration of VLDL by 30% in hamsters 

fed on high-fat diet. VLDL is responsible for transporting endogenous triglycerides, 

phospholipids, cholesterol, and cholesterol esters. Elevated VLDL is a critical factor in 

the onset and progression of cardiovascular conditions (Nielsen & Karpe, 2012; Shelness 

& Sellers, 2001). The higher circulating level of VLDL in animals consuming a high-fat 

diet is reflective of increased lipid and cholesterol intake. Our results suggested 

glyceollins supplementation, by reducing high-fat diet induced increase of VLDL, may 

be useful to prevent potential detrimental effects of high-fat intake. The plasma 

concentrations of LDL and total lipoprotein were also slightly lowered by 19% and 9% 

upon glyceollins supplementation (Figs. 2.2B, 2.2D), while HDL level was unaffected 

(Fig. 2.2C).  

The consumption of the high-fat diet induced an increase of hepatic cholesterol 

esters and free cholesterol compared to the chow diet (Fig. 2.3). However, glyceollins 

supplementation significantly reduced hepatic cholesterol esters, free cholesterol, and 
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total lipid content. These effects of glyceollins suggest less cholesterol resided in liver, 

and less is available for packaging into VLDL, therefore leading to lower circulating 

VLDL level. Additionally, livers from glyceollins fed animals were dark red and smooth, 

were similar to chow fed animals. The high-fat diet animals’ livers, on the other hand, 

were pale and mottled, which was suggestive of lipid accumulation. These results 

supported our previous conclusion suggesting that glyceollins supplementation may 

contribute to the reduction of cholesterol level in plasma (Wood, et al., 2012). 

Typical dietary cholesterol reducing agents, such as cholestyramine, increase 

fecal bile acid excretion (Suckling, Benson, Bond, Gee, Glen, Haynes, et al., 1991). 

However, fecal excretion of bile acid and cholesterol appeared not to be responsible for 

glyceollins’ effect on VLDL, and no change in these parameters was observed in this 

study (Fig. 2.4). 

To further elucidate the mechanism of glyceollins action, we also examined the 

expression of genes involves in lipid metabolism. Our results indicated the changes in 

gene expression due to feeding glyceollins were limited but also appeared reflective of 

glyceollins effect on liver lipid and cholesterol contents. Since the LDL receptor 

functions to bind and internalize circulating LDL-cholesterol, and liver removes ~70% 

LDL from the circulation through LDL receptors, it can be a source of increased hepatic 

cholesterol. In this study, liver LDL receptor gene expression did not appear to change 

significantly regardless of the type of diet (Fig. 2.5A). ABCG5 and ABCG8, two 

transporters for cholesterol excretion, were significantly up-regulated by high-fat diet as 

compared to chow. However, expressions of both genes in animals fed with glyceollins 

were significantly lower than animals consuming high-fat only diet (Figs. 2.6A, 2.6B). 
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LPL, a dual function enzyme involved in cholesterol/lipid transport, was significantly up-

regulated in high-fat diet fed animals compared to chow fed animals. The glyceollins 

supplemented diet significantly lowered hepatic LPL expression compared to the animals 

fed high-fat only diet. The changes in ABCG5, 8 and LPL appeared to be reflective of 

hepatic lipid/cholesterol status in glyceollins fed animals. We did observe a trend of bile 

synthetic enzyme CYP7A1 up regulation and increased bile acid excretion in glyceollins 

fed animals compared to high-fat only animals. However, there was a large difference 

between animal in these parameters and was not statistically significant. It is possible that 

a longer feeding period or increase in animal number might confirm this observation and 

warrant further study. One unique observation in our study was glyceollins fed animals 

appeared to have significantly lower adipose LPL mRNA level than high-fat or chow fed 

animals. This result suggested that glyceollins might have an effect on adipose tissues, 

such as prevent accumulation of lipid in adipose tissues. Since our study was designed to 

investigate short term effects and no body weight or adipose weight changes were 

observed, further long term studies would be necessary to elucidate the biological 

significance and mechanisms of glyceollins’ effect on adipose LPL.  

Consumption of a high-fat, high cholesterol diet can lead to gene changes that 

would compensate for changes in dietary intake. In our current hamster study, as 

expected, significant down regulation of cholesterol synthesis related gene HMG-CoA 

reductase and CYP51 (Fig. 2.5B, 2.5C) were observed in hamsters on the high-fat diets 

compared to the control group. This is consistent with the fact that abundant cholesterol 

is available to cells upon consumption of high-fat diet, de novo synthesis of cholesterol 

appeared to be unnecessary. As important as HMG-CoA reductase is in the process of 
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cholesterol synthesis, no effect was observed in this study, which suggested a lack of 

glyceollins influence on this cholesterol synthesis pathway both in a hamster model. 

Similar results were also observed for SREBP-1c, however in this case the high-fat diet 

lead to significant up-regulation of this gene as compared to the chow fed animals. 

Glyceollins did not affect SREBP-1c expression when compared to high-fat diet animals. 

Our results indicated that several pathways appeared not to be affected by dietary 

perturbation at the transcriptional level. We did not observe significant differences in 

LXRα, PPARα, FAS or ACOX mRNA expression between the different diets. None of 

these pathways were affected by glyceollins supplementation. These data would support 

the notion that, under our experimental condition and bioavailability of glyceollins in 

hamster, cholesterol synthesis and excretion were the main pathways animals used to 

adapt to the high-fat diet.  

In this study, high-fat diet and glyceollins’ effect on microbiome was also 

investigated. High-fat inhibited Bifidobacteria and induced Lactobacillus in the fecal 

microbiome (Fig. 2.9A). Bifidobacteria and Lactobacillus are known to be involved in 

energy metabolism in gut microbiome (Cani & Delzenne, 2009; Ley, Backhed, 

Turnbaugh, Lozupone, Knight, & Gordon, 2005), previous studies have also reported diet 

conversion high in fat content can alter population of Bifidobacteria and Lactobacillus 

(Brinkworth, Noakes, Clifton, & Bird, 2009; Zeng, Liu, Jackson, Yan, & Combs, 2013). 

However, there were other reports indicating opposite changes induced by high-fat diet in 

these microorganisms (Cani, Bibiloni, Knauf, Neyrinck, Delzenne, & Burcelin, 2008; 

Zhao, Liu, Xie, Wang, Cui, Yang, et al., 2011), which indicated that alterations in 
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microbiome may be highly dependent on animal models, diet compositions, and also 

fecal collection methods. 

For the first time, our study gathered direct evidence that glyceollins 

supplementation in a high-fat diet significantly reduced VLDL, hepatic cholesterol esters, 

hepatic free cholesterol and hepatic total lipids, as well as hepatic inflammatory cytokines 

in animals. The effects of glyceollins on hepatic lipid and cholesterol levels appeared to 

contribute to molecular changes in hepatic ABCG5, 8 and LPLs mRNA levels. However, 

the actual molecular mechanism of cholesterol-lowering effect of glyceollins in-vivo 

remains unclear and needs further investigation. Given that glyceollins are naturally-

derived phytochemicals in stressed soy, our results suggested that the inclusion of 

glyceollins in diet may benefits the population by lowering VLDL cholesterol and 

decreasing the risk for cardiovascular disease. 
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Chapter 3: Prostate cancer preventative effect of glyceollins in 

xenograft mouse model 

 

3.1. Abstract 

Glyceollins are soy-derived phytoalexins that have been proposed to be candidate 

cancer preventive compounds. Prostate cancer is identified as the most prevalent cancer 

in U.S. population. Previous research has shown that the glyceollins significantly 

inhibited the androgen-responsive LNCaP cell growth by regulating cell cycle and 

androgen-mediated pathway. The present study aimed to evaluate glyceollins’ effect in 

reducing prostate cancer tumor growth in a xenograft model. Androgen responsive 

LNCaP cell and androgen independent PC-3 cell were used to establish cancer cell tumor 

xenograft in animals fed control or glyceollins supplemented diets. An initial delayed 

appearance of tumor was observed in PC-3 xenograft model, however, no difference in 

tumor sizes was observed in LNCaP xenograft. Extrapolation analysis of tumor 

measurements indicated that no difference in sizes was expected for both PC-3 and 

LNCaP tumors at 100 days after injection. Glyceollins showed no effect on androgen 

responsive, proliferation, cell cycle, and angiogenesis genes in tumor and xenobiotic 

metabolism, cholesterol transport, and inflammatory cytokine genes in liver. Glyceollins’ 

low bioavailability (0.054 ± 0.013 µM) might have led to the ineffectiveness in reducing 

tumor growth in-vivo. 
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3.2. Introduction 

Prostate cancer is identified as the most prevalent cancer and the third as a cause 

of cancer deaths in U.S. population in the past two decades, and accounts for 15% of all 

malignant cancer incidences (AACR, 2014; Fitzpatrick, Schulman, Zlotta, & Schroder, 

2009; Palapattu, Sutcliffe, Bastian, Platz, De Marzo, Isaacs, et al., 2005). Many factors, 

including genetics, hormones, race, age, diet, and the environment have been identified to 

be responsible for the initiation and development of prostate cancer. However, the exact 

causes of prostate cancer remain largely unknown, and there is currently no effective cure 

for this disease (Hsing & Chokkalingam, 2006; Violette & Saad, 2012). Therefore, 

developing and validating preventive strategies becomes critical to the control of prostate 

cancer’s occurrence and impact (Meadows, 2012; Umar, Dunn, & Greenwald, 2012). 

Both population and experimental studies have implicated the importance of diet in 

prevention and reduction of cancer, including prostate cancer (Llaverias, et al., 2010; 

Meadows, 2012; Wang, Khor, Shu, Su, Fuentes, Lee, et al., 2012). Vegetables, legumes, 

and fruits are known to be rich in phytochemicals and were found to contribute to a 

decreased risk of cancer (Androutsopoulos, Papakyriakou, Vourloumis, Tsatsakis, & 

Spandidos, 2010; R. Chan, Lok, & Woo, 2009; Willett, 1995). Therefore, food-derived 

products or compounds are of great interest and importance as chemopreventive agents.  

Previous studies indicated a correlation between consumption of soy products in 

Asian population with a decreased incidence of chronic diseases, such as cardiovascular 

disease and cancer (Ahmad, et al., 2008; Azadbakht & Esmaillzadeh, 2008; Clair & 

Anthony, 2005; Hwang, Kim, Jee, Kim, & Nam, 2009). Soy isoflavones, such as 

genistein and daidzein, have been widely studied as candidate of diet-derived compounds 
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for disease prevention (Sarkar & Li, 2003; Taku, Melby, Nishi, Omori, & Kurzer, 2011; 

Verdrengh, Jonsson, Holmdahl, & Tarkowski, 2003). Glyceollins are a group of 

phytoalexins, derived from the precursor daidzein, and the biosynthesis of which is 

increased under stress, e.g. UV light, low temperature or fungal infection (Kim, Lim, 

Kim, & Kim, 2012; Zimmermann, et al., 2010). Recent studies have shown glyceollins’ 

inhibitory effect on estradiol-induced proliferation and ERα signaling in breast cancer 

cells and xenograft animal model (Payton-Stewart, et al., 2010; Zimmermann, et al., 

2010). Our previous research found that the glyceollins significantly inhibited the 

androgen-responsive LNCaP cell growth, while glyceollins exert little growth inhibitory 

effects on the androgen independent PC-3 cells. The growth inhibitory effects of the 

glyceollins on LNCaP cells appeared to be due to an inhibition of G1/S progression and 

correlated with an up-regulation of CDKN1A and 1B at mRNA and protein levels. In 

addition, glyceollins treatments led to down-regulated mRNA levels of several androgen-

responsive genes including PSA, supporting a role of glyceollins in androgen-mediated 

pathway (Payton-Stewart, et al., 2009). These findings suggest that glyceollins may 

possess preventative properties towards prostate cancer. However, the exact effect and 

mechanisms remain unclear. 

In this study, the hypothesis that glyceollins can prevent or reduce prostate cancer 

tumor growth in xenograft model was tested. Glyceollins’ effect on androgen responsive 

genes was first determined in-vitro. Then androgen responsive LNCaP cell and androgen 

independent PC-3 cell were used in xenograft model fed formulated rodent diet 

supplemented with or without glyceollins. An initial delayed appearance of tumor was 

observed in PC-3 xenograft model, however, no difference in tumor sizes was observed 
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in LNCaP xenograft. Extrapolation analysis of tumor measurements indicated that no 

difference in sizes was expected for both PC-3 and LNCaP tumors at 100 days after 

injection. Mass spectrometry analysis revealed that glyceollins’ low bioavailability might 

have led to the ineffectiveness in reducing tumor growth in-vivo. 

 

3.3. Material and methods 

Chemicals and diets. Soy (Asgrow Soybean Seed, Treatment code: 0, 

Germination: 85%, Origin: NC) was acquired from Monsanto Company (St. Louis, MO). 

The fermentation process of soy was modified and standardized in order to ensure the 

elicitation of glyceollins and maximize its concentration. Soy was cut to pieces with a 

food processor and fermented with baking yeast (1% w/w) for 96 h. Glyceollins were 

then purified following previously published methods (Payton-Stewart, et al., 2009). 

Powder AIN-93M diets with or without glyceollins (250 mg/kg diet) were prepared by 

Research Diets (New Brunswick, NJ) and stored at -20 ºC until weekly feedings.  

Cell treatment and gene expression analysis in LNCaP and PC-3 cells. To 

determine the glyceollins’ effect on the attachment of LNCaP and PC-3, cells were plated 

in 6 well plates (Costar, Corning Incorporated, Corning, NY) with glyceollins at the 

indicated concentrations (5, 10, and 25 μM). After 8 h, plates were washed twice with 

1×PBS, attached LNCaP and PC-3 cells were harvested, and total protein was determined 

using BCA Protein Assay (Thermo Scientific Pierce, Rockford, IL). 

To determine the mRNA expression levels of proliferation gene expressions, 

LNCaP cells were cultured in 6 well plates overnight. Glyceollins were added into the 

media at the indicated concentrations (1, 2, 5, 10, and 25 μM). LNCaP cells were 
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incubated in PRMI media with 10% fetal bovine serum and 1% antibiotic/antimycotic. 

After 24 h or 48 h, culture media were discarded, and cells were collected.  

RNA isolation and real-time PCR were performed according to the previously 

published protocol (Huang, Fletcher, Niu, Wang, & Yu, 2012). Cells were washed with 

1×PBS and TRIzol reagent was added for total RNA isolation. StrataScript First Strand 

complementary DNA Synthesis kit was used to reverse transcribe complementary DNA. 

Real-time PCR was performed on Applied Biosystems ViiA™ 7 Real-Time PCR System 

using TaqMan Universal PCR Master Mix. The TaqMan gene expression assays were 

acquired from Applied Biosystems (Carlsbad, CA) and used for gene detection. The 

mRNA amounts were normalized to an internal control, TATA-binding protein (Tbp) 

mRNA. The following amplification parameters were used for PCR: 50 °C for 2 min, 95 

°C for 10 min, and 46 cycles of amplification at 95 °C for 15 sec and 60 °C for 1 min. 

Tumor xenograft model. LNCaP and PC-3 human prostate cancer cells were 

obtained from the American Type Culture Collection (Manassas, VA) and grown in 

RPMI-1640 supplemented with 2 mM L-glutamine, 10% Fetal Bovine Serum (FBS), 100 

U/ml penicillin, and 100 µg/ml streptomycin (Invitrogen, Carlsbad, CA) at 37 °C in a 5% 

CO2 atmosphere. Male athymic nude mice (BALB/c nu/nu, 20-22 g, 5-6 weeks old; 

Charles River, Frederick, MD) were individually housed in filter-top cages at the USDA 

BHNRC animal facility and consumed food and fresh tap water ad libitum. Food 

consumption and body weights were recorded twice a week. After an acclimation period 

of 2 weeks, during which mice were fed control AIN-93M diet, the mice were 

randomized into 4 experimental groups, with 12 animals in each group. The animals (24 

animals each) received control AIN-93M or glyceollins supplemented diet. Two weeks 
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later, LNCaP and PC-3 human prostate cancer cell xenografts were established in the 

mice by injection s.c. in the flank (one injection each flank) with LNCaP or PC-3 cells 

(2×106 cells) in 50 µL of phosphate-buffered saline (PBS) and 50 µL Matrigel (BD 

Biosciences, Mansfield, MA). Animals injected with LNCaP cells and fed control diet 

were designated as Group L, and animals fed glyceollins diet as Group LG. Animals 

injected with PC-3 cells and fed control diet were designated as Group P, and animals fed 

glyceollins diet as Group PG.  Cancer preventive efficacy of the treatments was assessed 

twice a week by measuring tumor volume (cm3) calculated as 0.523 x [length (cm) × 

width2 (cm2)] (Hudson, Perkins, Hursting, Young, Kim, Wang, et al., 2012). Mice were 

remained on their respective diets for 8 weeks after cell injection. All animal 

experimental protocols were performed in accordance with the National Institutes of 

Health guidelines and approved by the USDA, ARS, Beltsville Area Animal Care and 

Committee (BAACUC). 

Plasma and tissue collection. Animals were sacrificed at the fourth (PC-3 

xenograft) and eighth (LNCaP xenograft) weeks after tumor injection when tumors 

reached 2-3 cm3 in volume. Animals were anesthetized with CO2 and blood were 

obtained by cardiac puncture with syringes previously rinsed with potassium EDTA 

solution (15% w/v), and plasma was separated after centrifugation at 1500 rpm for 30 

min at 4 ºC. Liver and tumor were collected and quickly frozen in liquid nitrogen and 

stored at -80 ºC. 

Liquid chromatography-mass spectrometry analysis of plasma concentration 

of glyceollins. LC-ESI-MS and LC-ESI-MS/MS analyses were conducted on an Agilent 

1100 series LC system (Agilent, Santa Clara, CA) coupled to a TSQ Vantage™ Triple 
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Quadrupole Mass Spectrometer (Thermo Scientific, Middletown, VA). Separation was 

performed on an Agilent Eclipse XDB C18 column (4.6 × 150 mm ID, 5 μm). Ten 

microliters was injected onto the column held at 25 °C. The binary mobile phase 

consisted of mobile phase A (water with 0.1% formic acid) and mobile phase B 

(acetonitrile with 0.1% formic acid). The gradient was 0-4 min 30% A to 2% A and hold 

at 2% A for 10 min; 14-16 min 2% A to 30% A and hold at 30% A for 7 min; the flow 

rate was 0.200 mL/min. The UV absorbance detector was set at 285 nm. For positive ion 

LC-ESI-MS and LC-ESI-MS/MS analyses, electrospray parameters were set at the 

following: sheath gas pressure of 60 psi, ionspray voltage of 3500 V, auxiliary gas 

pressure of 15 psi, collision gas pressure of 1.5 mTorr, capillary temperature of 268 °C. 

Declustering potential and collision energy were maintained at -12 V and 16 eV, 

respectively. Parent and product mass scan were performed at 339.000 and 229.042.  

Total RNA isolation, cDNA synthesis and gene expression analysis from liver 

and adipose tissue. To determine the gene expression changes, liver and adipose tissues 

preserved in RNALater were cut into 0.1 to 0.2 g pieces and homogenized using a 

Precellys 24 (Bertin Technologies, Villeurbanne, France). RNeasy Mini Kit and RNeasy 

Lipid Tissue Mini Kit (Qiagen, Valencia, CA, USA) were used for total RNA isolation 

for liver and adipose, respectively. StrataScript First Strand complementary DNA 

Synthesis kit from Stratagene (Santa Clara, CA, USA) was used to reverse transcribe 

complementary DNA. Real-time PCR was performed on an Applied Biosystems ViiA™ 

7 Real-Time PCR System using TaqMan Universal PCR Master Mix and TaqMan® 

Probe-Based Gene Expression assays by Applied Biosystems (Carlsbad, CA, USA). 

Relative mRNA expression levels were calculated using the delta Ct method (J. S. Yuan, 



 

 

94 

Reed, Chen, & Stewart, 2006). TATA-binding protein (Tbp) expression was used as the 

house-keeping gene for calculations. 

Statistical analysis. All end point assays for each sample were conducted in 

triplicate and the average was used for group analysis, data for each treatment group were 

presented as mean ± standard error. Significance level of differences in means was 

detected using one-way ANOVA and Tukey’s test. Statistics analysis was performed 

using IBM SPSS Statistics 19.0 (2010, IBM Corporation, Armonk, NY, USA) or 

Graphpad Prism 6 (2012, Graphpad Software, La Jolla, CA, USA). Statistical 

significance was defined at p ≤ 0.05.  

 

3.4. Results 

Glyceollins’ Effect on Androgen Dependent Pathway in LNCaP Cells. 

Glyceollins, as low as 1 μM, significantly reduced androgen responsive genes PSA and 

NKX3.1 expression in LNCaP cells, 70% and 75% respectively (Fig. 3.1).  

 
Fig. 3.1. Glyceollins’ effect on PSA and NKX3.1 gene expression in LNCaP cells. 

Significant difference in expression level was marked with asterisk (*, p ≤ 0.05; **, p ≤ 

0.001). 

 

A. PSA

0 1 2 5 10 25
0.0

0.5

1.0

1.5

Glyceollins (mM)

R
e

la
ti
v
e

 m
R

N
A

 L
e

v
e

ls

********

**

B. NKX3.1

0 1 2 5 10 25
0.0

0.5

1.0

1.5

Glyceollins (mM)

R
e

la
ti
v
e

 m
R

N
A

 L
e

v
e

ls

******
****



 

 

95 

Body Weight and Food Intake. There were no difference in body weight or 

body weight gain between any of the diet treatments during the experimental period 

except for the last measurement, in which group LG animals showed a significant higher 

food intake and body weight (Fig. 3.2). Food intake of group L and LG animals 

significantly decreased at the eighth week after injection, as the tumors on the flanks 

started to hinder the movement of the animals. 

 
Fig. 3.2. Body weight and food intake. Animals injected with LNCaP cells and fed 

control diet was designated as Group L, and animals fed glyceollins diet as Group LG. 

Animals injected with PC-3 cells and fed control diet was designated as Group P, and 

animals fed glyceollins diet as Group PG.   

 

 

LNCaP and PC-3 Tumor Growth. Palpable and measureable LNCaP tumors 

were recorded on the fourth week after the injection, and PC-3 tumors were recorded on 

the sixth day after the injection (Fig. 3.3). PC-3 tumor was solid, pale, and no blood 

vessel were observed in the tumor; whereas LNCaP tumor was dark red with dense blood 

vessel. Although control group (L) showed higher tumor volume than the glyceollins 

treatment group (LG), no significant difference in LNCaP tumors size were detected 

throughout the experiment period. On the other hand, PC-3 tumors of glyceollins 

treatment group (PG) were significantly smaller than that of the control group (P). PC-3 
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tumors grew at a much fast rate and reached 930 and 688 mm3 5 weeks after the 

injection, and LNCaP tumors reached 419 and 266 mm3 9 weeks after the injection. 

 
Fig. 3.3. Tumor growth in LNCaP and PC-3 xenograft. Tumor size was measured twice a 

week. Significant difference in tumor volume between control and glyceollins treatment 

was marked with asterisk (p ≤ 0.05). 

 

 

Extrapolation of tumor volume data to 100 days after injection indicated that no 

difference in of tumor size between the control and treatment groups (Fig. 3.4). LNCaP 

tumors reach similar sizes in control and glyceollins treated animals at around 110 days, 

and PC-3 tumors reach similar at around 75 days. 

 
Fig. 3.4. Extrapolation of LNCaP and PC-3 tumor growth. Extrapolation analysis was 

performed using the measurement data in this study and performed using Prism 

Graphpad. 
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in the media. After 8 h of incubation, attached cells were harvested and it was determined 

that 25 μM and 10 μM glyceollins reduced attachments of LNCaP and PC-3 in-vitro, 

respectively (Fig. 3.5), lower concentrations did not affect their attachments. 

 

Fig. 3.5. In-vitro LNCaP and PC-3 attachment assay. LNCaP and PC-3 cells were plated 

in 6-well plates with indicated concentration of glyceollins. Attached cells were measured 

by total protein and significant difference between control and glyceollins treatment was 

marked with asterisk (p ≤ 0.05). 

 

 

Glyceollins’ Effect on Gene Transcription in LNCaP Tumors. LNCaP tumors 

were analyzed for the androgen responsive (PSA), proliferation (Ki-67, PCNA), 

apoptosis (Bcl-2, Bax), cell cycle (CDKN1A, CDKN1B) and angiogenesis (VEGF, 

PECAM) genes to determine glyceollins’ effect on these pathways (Fig. 3.6). A 

significant but minor (9%) reduction in PCNA gene expression was observed in tumors 
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Fig. 3.6. Expression of Androgen Responsive, Proliferation, Apoptosis, Cell Cycle, and 

Angiogenesis Markers in LNCaP Tumors. Significant difference between control and 

glyceollins treatment was marked with asterisk (p ≤ 0.05). 

 

 

LNCaP tumors were analyzed for inflammatory gene markers (TNFα, IL-1β, IL-

6, COX-2, and EMR1) expressions. No change was observed in inflammatory cytokine 

expressions of TNFα, IL-1β, IL-6, and COX-2, and there was no change in macrophage 

marker EMR1 between control and glyceollins treatment groups. 
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Fig. 3.7. Expression of Inflammatory Markers in LNCaP Tumors. Significant difference 

between control and glyceollins treatment was marked with asterisk (p ≤ 0.05). 

 

 

Proliferation Markers in PC-3 Tumors. PC-3 tumors were analyzed for the 

proliferation marker, Ki-67, to determine glyceollins’ effect on cell proliferation (Fig. 

3.8). In this study, no change was observed in the expression of Ki-67 in PC-3 tumors. 
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Fig. 3.8. Expression of Proliferation Markers in PC-3 Tumors. Significant difference 

between control and glyceollins treatment was marked with asterisk (p ≤ 0.05). 

 

 

Glyceollins’ Effect on Gene Transcription in LNCaP Tumor Animal Livers. 

Gene expressions of phase I and phase II enzymes in livers of LNCaP tumor animals 

were analyzed in this study. No difference in expression levels of CYP1A1, CYP2D10, 

CYP2C55, CYP3A11 (Fig. 3.9) and NQO1, UGT1A1 (Fig. 3.10) was detected. 
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Fig. 3.9. Expression of CYP450 genes in Livers of LNCaP Tumor Animals. Significant 

difference between control and glyceollins treatment was marked with asterisk (p ≤ 0.05). 
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Fig. 3.10. Expression of Phase II Enzyme Genes in Livers of LNCaP Tumor Animals. 

Significant difference between control and glyceollins treatment was marked with 

asterisk (p ≤ 0.05). 

 

 

Gene expressions of ABC family transport were analyzed in this study. A 

significant but minor (22%) increase in ABCG5 gene expression was observed in livers 

of glyceollins supplemented animals (Fig. 3.11). No change was observed in the 

expression of ABCA1, ABCG1, and ABCG8 (Fig. 3.11). 
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Fig. 3.11. Expression of Cholesterol Transport Genes in Livers of LNCaP Tumor 

Animals. Significant difference between control and glyceollins treatment was marked 

with asterisk (p ≤ 0.05). 

 

 

Gene expressions of IL-1β, IL-6, COX-2, and TGF-β were analyzed in livers of 

LNCaP tumor animals. No difference in expression levels of these inflammatory markers 

was detected (Fig. 3.12). 
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Fig. 3.12. Genes Expressions of Inflammation Markers in LNCaP Tumor Animal Livers. 

Significant difference between control and glyceollins treatment was marked with 

asterisk (p ≤ 0.05). 

 

 

Plasma Concentration of Glyceollins. In animals fed with the control diet, 

glyceollins were undetected in plasma by mass spectrometry. Average concentration of 

glyceollins was determined to be 0.054 ± 0.013 μM in supplemented animals, ranging 

from 0.004 to 0.12 μM. Daily consumption of glyceollins in the diet was calculated to be 

~3.61 μmol, at the end of study, average animal body weight was 20.04 g, and mouse has 

a blood volume of 79 mL/kg (Drexelmed.edu). Thus, about 2.3% of ingested glyceollins 

was detected in circulation in this athymic nude mouse model. 
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3.5. Discussion 

This study examined the anti-tumor effects of glyceollins on androgen 

responsive LNCaP and androgen independent PC-3 human prostate cancer cells in-

vivo. An initial delayed appearance of tumor was observed in PC-3 xenograft model, 

however, no difference in tumor sizes was observed in LNCaP xenograft. 

Extrapolation analysis of tumor measurements further support that no difference in 

tumor sizes between the diet group for both PC-3 and LNCaP tumors even at 100 

days after injection. In-vitro analysis showed that, glyceollins was able to 

significantly reduce the mRNA expression of androgen responsive genes PSA and 

NKX3.1 in LNCaP prostate cancer cells at as low as 1 μM (Fig. 3.1). This 

observation was consistent with our previous report, in which glyceollins was able to 

inhibit LNCaP cell growth through inhibition of G1/S progression and up-regulation 

of CDKN1A/1B (Payton-Stewart, et al., 2009). However, no effect was observed in 

LNCaP tumor growth in xenograft model (Fig. 3.3) and androgen responsive genes 

(Fig. 3.6). The disconnection between in-vitro and in-vivo data may be explained by 

the low bioavailability of glyceollins in the athymic nude mouse model. Analysis of 

plasma revealed that only 2.3% of glyceollins contained in the diet was absorbed into 

the circulation, achieving 0.054 ± 0.013 μM in the blood stream. In this study, 

glyceollins were able to affect the androgen responsive genes in-vitro at as low as 1 

μM, while, in our animal model, oral intake of 250 mg/kg glyceollins merely 

achieved 0.054 ± 0.013 μM in circulation, which is about 5% of the concentration 

used in in-vitro assays. 
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In our previous study, hamster fed with 250 mg/kg glyceollins diet achieved 

0.14 ± 0.025 μM glyceollins in circulation, and cholesterol-lowering effect was 

observed. At the same supplementation level, hamster absorbed 19% glyceollins from 

diet, whereas mouse only absorbed 2.3%. Two factors may have significantly affected 

the bioavailability of glyceollins in the animal models: 1) species differences between 

hamster and athymic nude mouse; and 2) composition of a diet, such as fat content. 

Species differences exist in animal models, which can significantly affect the 

bioavailability of exogenous compounds, such as phytochemicals and drugs (Gad, 

2007). Thickness and length of the small intestine, gut transit time, and differences in 

facilitated or active transport all play a role in gastrointestinal absorption of 

exogenous compounds. Blood flow to organs, extent and avidity of compounds 

binding to plasma proteins, and the extent of clearance of the compounds can affect 

the distribution process (Gad, 2007). Distinct xenobiotic metabolism systems (Phase I 

and Phase II enzymes) in different animal models can also impact the metabolism and 

retention of specific compounds (Liska, 1998). Thus, physiological differences in 

athymic nude mouse and hamster may significantly affect the bioavailability of 

glyceollins. On the other hand, the composition of a diet may also affect the uptake of 

glyceollins in the animals. Hamsters were fed high diet (36% calorie from fat) 

supplemented with 250 mg/kg glyceollins, while low fat diet (10% calorie from fat) 

was used in the mouse study (Huang, Xie, Boue, Bhatnagar, Yokoyama, Yu, et al., 

2013). The differences in fat contents may affect the absorption of glyceollins in the 

diet. Further study is needed to understand the extent of the impact of animal models 

and diet composition on the bioavailability of glyceollins.  
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This study indicated that glyceollins supplementation could delay the initial 

appearance of PC-3 tumor (Fig. 3.3). PC-3 is an androgen independent cell line, and 

analysis of proliferation factor Ki-67 in the PC-3 tumor showed no change of 

expression, thus, the delayed appearance of tumor might be the result of reduced 

attachment of PC-3 cells. In-vitro analysis did show reduced cell attachment, 

however, a significant reduction was only observed at concentration higher than 10 

μM. Considering the limited bioavailability and plasma concentration of glyceollins, 

10 μM was a concentration unlikely to achieve in-vivo. 

Inhibition of PCNA, a cell proliferation factor, was observed in glyceollins 

supplemented LNCaP tumor. However, the minor change may be of little biological 

significance, and no difference was detected in LNCaP tumor growth and other 

transcriptional factors. An increase of ABCG5 in LNCaP tumor animal livers was 

observed, which indicated glyceollins may facilitate the efflux of cholesterol from the 

liver through ABCG transport. In our previous study in hamster, ABCG5 was reduced 

in glyceollins treated animals compared to high-fat diet animals (Huang, et al., 2013). 

The discrepancy may result from the difference in diet compositions and 

physiological conditions. Hamster was fed high fat diet while the mouse was fed low-

fat diet. The increased consumption of dietary fat and cholesterol led to an increase in 

circulating and hepatic lipid and cholesterol in hamster. The decreased of ABCG5 in 

the hamster model was concluded to be the consequence of reduced circulating and 

hepatic cholesterol (Huang, et al., 2013). 

Based on the previous observation in cell model, the present study aimed to 

analyze glyceollins’ anti-tumor effect in LNCaP and PC-3 prostate cancer xenograft 
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models. The growth inhibition effect in-vitro was not observed in the xenograft 

models, regardless of their androgen responsiveness. The ineffectiveness of 

glyceollins in-vivo might result from the limited bioavailability of glyceollins in 

athymic nude mouse model through ingestion with low-fat diet. Further study in the 

attempt to increase the bioavailability and elucidate high-fat diet’s effect on 

absorption of glyceollins is warranted to evaluate glyceollins’ potential in prevention 

and relief of prostate cancer. 
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Chapter 4. Effect of Glyceollins on gut Microbiome  

 

4.1. Abstract 

Microbiome has emerged as an important and integral part of the human 

physiology with a significant role in human health and disease. Diet and dietary 

components have been shown to shape and alter the population and composition of 

human gut microbiome. A relation between soy consumption and change in 

microbiome has been reported previously. However, the precise component(s) 

contributed to soy’s effect on microbiome remain unclear. The current study aimed to 

evaluate the effect of glyceollins, a group of phytoalexin isolated from soy, on the gut 

microbiome in animal models. Fecal and cecal samples collected from mouse feeding 

studies were analyzed for microbial population and composition. Glyceollins 

supplementation did not alter gut bacteria groups in cecal sample examined in this 

study. Glyceollins significantly affected total Enterobacteriaceae and Ruminococcus 

population in fecal samples collected at 24 h, indicating the impact and importance of 

time of collection in interpreting gut microbiome data in fecal analysis.  

 

4.2. Introduction 

Research in human microbiome has demonstrated that microbial cells (~1014 

cells) outnumber human cells by about 10 times, which makes it a very large and 

complex ecosystem between the residing microorganisms and human body (Hattori & 

Taylor, 2009; Savage, 1977). Among the bacteria in the gastrointestinal tract, 
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Bacteroidetes and Firmicutes are the dominant phyla and account for over 90% of gut 

microbiome in mouse and human, with Ruminococcus, Lactobacillus and Prevotella 

being the major families or genera in these phyla (Eckburg, Bik, Bernstein, Purdom, 

Dethlefsen, Sargent, et al., 2005; Frank, Amand, Feldman, Boedeker, Harpaz, & 

Pace, 2007; Ley, Backhed, Turnbaugh, Lozupone, Knight, & Gordon, 2005; Ley, 

Peterson, & Gordon, 2006). Researches have shown a correlation of increase in 

Firmicutes to Bacteroidetes ratio to an increase in energy harvesting from diet and the 

pathology of obesity (Turnbaugh, Hamady, Yatsunenko, Cantarel, Duncan, Ley, et 

al., 2009; Turnbaugh, Ley, Mahowald, Magrini, Mardis, & Gordon, 2006; 

Turnbaugh, Ridaura, Faith, Rey, Knight, & Gordon, 2009). High fat diet was shown 

to induce an increase in Lactobacillus, and it was also involved in simple sugar 

degradation (Guarner & Malagelada, 2003; Zeng, Liu, Jackson, Yan, & Combs, 2013; 

Zhao, et al., 2011). Ruminococcus and Prevotella were shown to be involved in 

polysaccharides metabolism, especially fiber, in the gastrointestinal tract (Walker, et 

al., 2011; Wu, et al., 2011). More importantly, Enterobacteriaceae, Akkermansia and 

Bifidobacteria have been shown to be involved in energy metabolism and balance, 

and an increase in carbohydrate intake was shown to elevate Enterobacteriaceae and 

Bifidobacteria population, while Akkermansia population was negatively associated 

with consumption of polysaccharides (Amar, Burcelin, Ruidavets, Cani, Fauvel, 

Alessi, et al., 2008; Backhed, et al., 2004; Sonoyama, Fujiwara, Takemura, 

Ogasawara, Watanabe, Ito, et al., 2009; Turnbaugh, Baeckhed, Fulton, & Gordon, 

2008; Turnbaugh & Gordon, 2009). Bifidobacteria population was also shown to 
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correlate positively with cholesterol intake and metabolism (Martinez, Wallace, 

Zhang, Legge, Benson, Carr, et al., 2009). 

The link between long-term dietary pattern and chronic diseases has been well 

documented (Galland, 2010; Tyrovolas & Panagiotakos, 2010; WHO/FAO, 2002), 

and the gut microbiome forms the interface between diet and human body (Cho & 

Blaser, 2012). The interaction between bacteria and human cells is central to the 

protective role of intestinal commensal bacteria for maintenance of health (Brestoff & 

Artis, 2013). Putative effects of microbiome on pathology or prevention of metabolic 

diseases, such as obesity, diabetes, and cardiovascular disease are mounting attention 

in recent years (Cani, 2013). Although the exact influence and mechanism remains 

unknown, previous studies have gathered evidence that human microbiome may 

affect human development, physiology, immunity, and nutrition (Dethlefsen, McFall-

Ngai, & Relman, 2007). Clinical trials and comparisons of intestinal microbiomes 

between diseased and healthy subjects have identified biomarkers associated with 

inflammation and functional metagenomic changes (Karlsson, et al., 2013). Recent 

studies demonstrated that the composition of the microbiome, along with its gene 

expression and functional metabolic pathways, could change rapidly when animals 

were switched from low-fat to high-fat diets (Turnbaugh & Gordon, 2009; 

Turnbaugh, Ridaura, Faith, Rey, Knight, & Gordon, 2009). Hence, understanding the 

interaction between diet components and microbiome may be a critical part in 

studying their influence on human health.  

A relation between soy consumption and change in microbiome has been 

reported. 3-month consumption of soymilk has been shown to alter the microbiome in 
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overweight and obese men including a potentially beneficial alteration of the 

Firmicutes to Bacteroidetes ratio (Fernandez-Raudales, Hoeflinger, Bringe, Cox, 

Dowd, Miller, et al., 2012). However, the precise component(s) contributed to soy’s 

effect on microbiome remain unclear. Phytoalexins are a group of phytochemicals 

induced by stress factors, such as fungal and bacterial infection, wounding, freezing 

and UV light exposure (Darvill & Albersheim, 1984). Glyceollins are phytoalexins 

accumulated in stressed soy to defend the plant from bacteria and fungi infection 

(Schmidt, Parniske, & Werner, 1992), and previous researches have reported 

glyceollins’ in-vitro anti-bacterial activity (Fett & Osman, 1981; Tzi, Ye, Wong, 

Fang, Chan, Pan, et al., 2011).  Therefore, we hypothesize that phytoalexin, such as 

glyceollins, may contribute to soy’s effect on the microbiome.  

In our literature review, we found one critical and unresolved problem in 

microbiome research appeared to be variable collection time of the fecal sample 

between studies. There appeared to be a wide discrepancy in control of fecal sample 

collection procedure and time among human and animal model studies. Some studies 

used instructions or laboratory protocol to guide the participants to collect fecal 

samples (David, et al., 2014; Karlsson, et al., 2013; Matsuki, Watanabe, Fujimoto, 

Takada, & Tanaka, 2004), while others did not specify the collection procedure 

(Eckburg, et al., 2005; Walker, et al., 2011; Wu, et al., 2011; Zimmer, et al., 2012). 

Most reports did not mention the collection time point in terms of length of time 

elapsed after excretion. A previous study indicated that the fecal microbiome was 

stable over a 72 h period (Roesch, Casella, Simell, Krischer, Wasserfall, Schatz, et 

al., 2009). However, other study showed that a change of gastrointestinal physiology 
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could rapidly alter microbiome within 24 h (David, et al., 2014; Li, Wu, Baldwin, Li, 

& Li, 2012). Hence, further study warranted to further elucidate the stability of the 

fecal microbiome and optimal collection time. 

The primary aim of this study is to evaluate glyceollins’ effect on the gut 

microbiome in a mouse model. The secondary goal is to compare fecal and cecal 

samples microbial population and composition. Lastly, we seek to evaluate the impact 

of collection time on the fecal microbiome. 

 

4.3. Materials and methods 

Mouse diet and feeding. Male athymic nude mice (BALB/c nu/nu, 20-22 g, 

5-6 weeks old; Charles River, Frederick, MD) were fed control AIN-93M diet and 

AIN-93M supplemented with 250 mg/kg glyceollins (12 animals each group). Mice 

were remained on their respective diets for 10 weeks. At the end of the tenth week, 2 

h and 12 h fecal samples were collected from the bottom of the cage. At the time of 

animals sacrifice, 24 h fecal samples were collected from the bottom of the cage, and 

cecal samples were collected from the ceca, flash frozen in liquid nitrogen and kept at 

-80 °C. 

Gut microbiome analysis. Microbial DNA will be extracted using QIAamp 

DNA Stool Mini Kit from Qiagen following manufacturer’s protocol. Briefly, 100 mg 

of fecal sample will be weighed and placed in a 2 mL tube, homogenized with 

Precellys (Bertin Technologies, France). DNA will be eluted from the column with 

200 μL AE buffer. The concentration of DNA elution will be determined by its 

absorbance at 260 nm, followed by serial dilutions to the final concentration of 0.4 
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ng/mL. Real-time PCR was performed on an Applied Biosystems ViiA™ 7 Real-

Time PCR System using Fast SYBR Green Master Mix by Applied Biosystems 

(Carlsbad, CA). A reaction system of 10 μL SYBR® Green Real-Time PCR Master 

Mix, 0.25 μL 500 nM custom-made oligo primers, 4.5 μL water and 5 μL DNA was 

used. Total bacteria were measured using primers detecting sequence universal in 91 

bacteria species (Parnell & Reimer, 2012). Primers specific for Bifidobacteria 

(Parnell & Reimer, 2012), Lactobacillus (Parnell & Reimer, 2012), Akkermansia 

(Parnell & Reimer, 2012), Prevotella (Parnell & Reimer, 2012), Enterobacteriaceae 

(Parnell & Reimer, 2012), Ruminococcus (Wang, Bose, Kim, Hong, Kim, Kim, et al., 

2014), Bacteroidetes (Wang, et al., 2014), Firmicutes (Wang, et al., 2014) were used 

to determine the population of respective microorganisms. Primer sequences are 

listed in Table 4.1. The following amplification parameters were used for PCR: 50 °C 

for 2 min, 95 °C for 10 min, and 46 cycles of amplification at 95 °C for 15 sec and 60 

°C for 1 min, followed by a dissociation stage. 
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Table 4.1. Sequence of Real-time PCR Primers 

Bacteria Direction Sequence (5’-3’) 

Total bacteria 
Forward ACTCCTACGGGAGGCAG 

Reverse GTATTACCGCGGCTGCTG 

Bifidobacteria 
Forward TCGCGTCYGGTGTGAAAG 

Reverse CCACATCCAGCRTCCAC 

Lactobacillus 
Forward GAGGCAGCAGTAGGGAATCTTC 

Reverse GGCCAGTTACTACCTCTATCCTTCTTC 

Akkermansia 
Forward CAGCACGTGAAGGTGGGGAC 

Reverse CCTTGCGGTTGGCTTCAGAT 

Prevotella 
Forward TCCTACGGGAGGCAGCAGT 

Reverse CAATCGGAGTTCTTCGTG 

Enterobacteriaceae 
Forward CATTGACGTTACCCGCAGAAGAAGC 

Reverse CTCTACGAGACTCAAGCTTGC 

Ruminococcus 
Forward GGCGGCCTACTGGGCTTT 

Reverse CCAGGTGGATAACTTATTGTGTTAA 

Bacteroidetes 
Forward GGARCATGTGGTTTAATTCGATGAT 

Reverse AGCTGACGACAACCATGCAG 

Firmicutes 
Forward GGAGYATGTGGTTTAATTCGAAGCA 

Reverse AGCTGACGACAACCATGCAC 

 

Statistical analysis. All end point assays for each sample were conducted in 

triplicate, and the average was used for group analysis, data for each treatment group 

were presented as mean ± standard error. Significance level of differences in means 

was detected using one-way ANOVA and Tukey’s test. Statistics analysis was 

performed using IBM SPSS Statistics 19.0 (2010, IBM Corporation, Armonk, NY, 

USA) or Graphpad Prism 6 (2012, Graphpad Software, La Jolla, CA, USA). 

Statistical significance was defined at p ≤ 0.05.  
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4.4. Results 

Comparison of Cecal Microbiome in Animals Fed Control or Glyceollins 

Diet. We determined the relative bacterial abundance in cecal samples. No change 

was observed in selected bacteria species examined after 10 weeks of glyceollins 

supplementation as compared to the control diet (Fig. 4.1). Although an average of 

45% decrease and 62% increase in Bifidobacteria and Akkermansia population, 

respectively, were observed in cecal sample (Fig. 4.1), due to the large individual 

difference in bacteria population, no statistical significance was detected. 

 

Fig. 4.1. Cecal microbiome in mouse consuming control or glyceollins supplemented 

diet. Comparisons were made between control and glyceollins supplemented diet, and 

presented as percent change ± SE. Statistical significance was defined at p ≤ 0.05 and 

marked with asterisk. 
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microbiome analysis, a temporal comparison of fecal samples collected at 2, 12 and 

24 hours after changes of bedding were analyzed for their microbiome content. No 

significant change in the microorganism population was observed between the 2 h 

and 12 h fecal samples of the two diet groups (Fig. 4.2). Although an average of 

506% and 264% increases in Akkermansia were observed at 2 h and 12 h, 

respectively, no statistical significance was detected due to large inter animal 

differences. Significant increases of Enterobacteriaceae (96%), and Ruminococcus 

(708%) were observed in fecal samples collected over a 24 h period (Fig. 4.2). 

Akkermansia showed the most variance between individual animals in cecal or fecal 

samples. Average Akkermansia in the 24 hours fecal samples from glyceollins treated 

group was 1000-fold higher comparing to that of the control group. However, the 

individual difference resulted in no statistical significance (Fig. 4.2). 
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Fig. 4.2. Fecal microbiome in mouse consuming control or glyceollins supplemented 

diet accumulated in 2 h, 12 h, and 24 h. Comparisons were made between control and 

glyceollins supplemented diet, and presented as percent change. Statistical 

significance was defined at p ≤ 0.05 and marked with asterisk. 
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Comparison of Cecal and Fecal Microbiome. Total bacteria in cecal and 

fecal samples were further compared (Fig. 4.3). Cecal samples were designated as 0 

hour and compared with the 2, 12, and 24 hours fecal samples. Total bacteria 

population from animals consumed control diet showed no significant change over 24 

h period. On the other hand, there was a significant decrease in total bacteria in fecal 

samples from animals fed with glyceollins supplemented diet at 24 h (Fig. 4.3). The 

decreased total bacteria in glyceollins supplemented animal feces were also 

significantly lower than that in control animal feces. 

 

Fig. 4.3. Changes of total bacteria in mouse consuming control or glyceollins 

supplemented diet over a 24 h period time course. Relative bacteria levels were 

normalized to cecal bacteria. Comparisons were made between control and 

glyceollins supplemented diet. Statistical significance was defined at p ≤ 0.05 and 

marked with asterisk. 
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population was detected in Lactobacillus. By contrast, population of Bifidobacteria, 

Akkermansia, Prevotella, Ruminococcus, Bacteroidetes, and Firmicutes remained at 

the same level. A decrease in Enterobacteriaceae was observed (Fig. 4.4). At the 12 h 

time point, increased bacteria population were observed for Lactobacillus, with 

Prevotella, Ruminococcus, Akkermansia, Bacteroidetes. Firmicutes remained at the 

same level, and decreases in population were observed in Bifidobacteria and 

Enterobacteriaceae (Fig. 4.4). At 24 h, population of Bifidobacteria, Prevotella, 

Enterobacteriaceae, Bacteroidetes, and Firmicutes were lower than that in 0 hour 

(cecal) samples, while Lactobacillus, Akkermansia, and Ruminococcus remained at 

the same level as that in 0 hour (cecal) samples (Fig. 4.4). In samples from animals 

fed the glyceollins diet, similar trend of changes as that of the control diet animals 

were observed except that no significant change was observed in Bifidobacteria at 12 

and 24 h, and no change was observed in Bacteroidetes at 24 h. 
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Fig. 4.4. Changes of microbiome in mouse consuming control or glyceollins 

supplemented diet over a 24 h period time course. Relative bacteria levels were 

normalized to cecal bacteria. Comparisons were made between 0 h cecal samples and 

fecal samples at different time points, and statistical significance was defined at p ≤ 

0.05 and marked with asterisk.  stands for control group and stands for glyceollins 

supplemented group. 
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4.5. Discussion 

There are several interesting observations in our study on the gut microbiome. 

In this study, we first evaluated glyceollins’ effect on the gut microbiome in cecal 

samples. Soy has been reported to alter microbiome, however, the precise active 

component has been not identified (Fernandez-Raudales, et al., 2012). This is the first 

report on the effect of a specific soy component on the gut microbiome. Despite the 

phytoalexin properties of glyceollins, we did not observe any significant change in 

microbiome as compared to the cecal samples from animals fed a control diet. 

Glyceollins have been reported to possess anti-bacterial activities and growth 

inhibitory effect on some bacteria. Previous study has shown that glyceollins 

inhibited growth of certain strains of Bacillus, Staphylococcus, and Xanthomonas 

(Fett & Osman, 1982). However, the bacteria strains determined in this study did not 

match the ones tested in the previous study, and the exact species or stains affected by 

glyceollins require further elucidation.  

Another interesting observation was fecal samples collected from animals 

consuming a glyceollins supplemented diet showed significant changes over a 24 h 

period (Fig. 4.3). A sharp decrease in total bacteria after 24 h was observed in the 

glyceollins supplemented group, and was significantly less than that of the control 

diet group. Total bacteria in fecal samples from animals fed control diet did not 

change significantly over a 24 h period. Therefore glyceollins appeared to affect total 

bacteria, albeit after 24 h outside of gut. Hence, the sample collecting process (time of 

collection) couple with a treatment might in part contribute to an observed change in 

the fecal microbiome. 
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Previous study has shown that the fecal microbiome was relatively stable after 

excretion to 72 h, and the change in bacterial communities was about 10% within 24 

h (Roesch, et al., 2009). Interestingly, our study showed that specific groups of fecal 

bacteria changed significantly as early as 2 h. Species specific changes in bacteria 

were observed in this study (Fig. 4.4), which might result from 1) compositions of 

aerobic and anaerobic bacteria in each phyla, families or genera, or 2) the roles of 

specific bacteria in energy metabolism and balance of diet-derived component. 

Lactobacillus and Enterobacteriaceae showed significant increase and decrease, 

respectively, comparing to the cecal microbiome (Fig. 4.4). Cecal samples were 

directly collected from ceca dissected from the animals and immediately frozen in 

liquid nitrogen. Thus, cecal microbiome is likely to be more reflective of the gut 

microbiome in-vivo, while the fecal microbiome was subject to environmental 

factors, such as oxygen exposure. Gut microbiome are composed of aerobic and 

anaerobic bacteria, with anaerobic bacteria being the predominant population. 

Firmicutes are facultative anaerobic and Lactobacillus is microaerophilic (Ichimura, 

1962), which can survive and grow with or without oxygen. Majority of 

Enterobacteriaceae are anaerobic, and Bifidobacteria, Ruminococcus, Bacteroidetes, 

and Prevotella are strictly anaerobic (Evaldson, Heimdahl, Kager, & Nord, 1982; 

Janssen, 1991; Mahowald, Rey, Seedorf, Turnbaugh, Fulton, Wollam, et al., 2009; 

Walker, et al., 2011). Thus, exposure to oxygen may reduce the growth or affect the 

survival of anaerobic bacteria (Evaldson, Heimdahl, Kager, & Nord, 1982; Peterson, 

1997). However, no precise pattern of change in specific bacteria population could be 

concluded based on their aerobic/anaerobic properties and exposure time. Hence, 
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according to our finding, the influence of collection time on the fecal microbiome 

cannot be neglected, and if possible, cecal samples should be used to assess the gut 

microbiome in animal study. 

The oxidation and fermentation of diet-derived fecal components might shift 

the energy metabolism of microbiome and affect their population, leading to an 

increase or decrease of specific bacteria (Albenberg & Wu, 2014; David, et al., 2014). 

AIN-93M diet used in this study was a casein-based diet, which could preferentially 

support the growth of Lactobacillus (Zhang, Ren, Zhao, Zhao, Xu, & Zhao, 2011). 

Lactobacillus was also known to be involved in lipid and simple sugar metabolism 

(Guarner & Malagelada, 2003; Zhao, et al., 2011), and the increase of Lactobacillus 

would lead to faster degradation of lipid and carbohydrate in the feces. Bifidobacteria 

and Enterobacteriaceae were also active in metabolizing polysaccharides (Backhed, et 

al., 2004; Turnbaugh, Baeckhed, Fulton, & Gordon, 2008; Turnbaugh & Gordon, 

2009). The increased degradation of polysaccharides by Lactobacillus might have led 

to the decrease in population of Bifidobacteria and Enterobacteriaceae. 

Trend of changes were observed in several species at all time points, for 

example, 2, 6, 4, and over 1200 folds increase were observed in Akkermansia at 0, 2, 

12, and 24 h, respectively (Fig. 4.1), however, no statistical significance was detected. 

This appeared to result from the huge individual differences between animals in this 

study. Akkermansia was relatively abundant and readily detected in fecal 

microbiome. The exact reason of such discrepancy is not clear. Therefore, the 

consistency of gut microbiome between individual animals is critical to controlling 

the quality and reliability of a study. To this end, a gnotobiotic mouse model was 
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developed by transplanting gut microbiome from a single human donor into germ-

free mice (from same litter), appeared establish consistent microbiome in 

experimental animals (Gootenberg & Turnbaugh, 2011; Turnbaugh, Baeckhed, 

Fulton, & Gordon, 2008). The animals used in our study were from an identical 

genetic background (BALB/c nude mouse, strain: CAnN.Cg-Foxn1nu/Crl inbreed), 

raised in the same laboratory environment, and fed rodent chow diet. We believe that 

diversity in the gut microbiome would mimic more of a real life situation and suggest 

that, in human population, the microbiome may be more challenging to dissect.  

In summary, this study examined the effect of dietary intake of glyceollins on 

major phyla, families and genera of microbiome. However, no effect was observed 

for glyceollins on the microbiome under our experimental conditions. Change in 

microbiome can occur to specific species (Turnbaugh, Baeckhed, Fulton, & Gordon, 

2008), and a more global investigation using metagenomic techniques may be 

necessary to pinpoint the specific change in gut microbiome induced by glyceollins 

treatment. Time of fecal collection could play an important role in the outcome of 

microbiome population and composition. 
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Summary 

It is promising and important to investigate soy’s health promoting potential 

as an important agriculture commodity. The present study focused on characterizing 

the soy-derived phytoalexins glyceollins’ bioactivities in alleviating cholesterol 

dysregulation, prevention of prostate cancer, and regulating gut microbiome. 

Glyceollins supplementation in high-fat diet was shown to significantly reduce 

circulating and hepatic cholesterol, as well as hepatic inflammatory cytokine 

expressions. Glyceollins’ effects in preventing prostate cancer and regulating gut 

microbiome were not observed in our experimental condition, however, further study 

may be performed to conclude glyceollins biological efficacies.  

This project provided scientific evidence for the health beneficial effects of 

the readily accessible soy phytochemicals, and may promote the use of soy as healthy 

dietary component and enhance food and agriculture economy.   
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Future perspective  

Molecular mechanism of glyceollins’ cholesterol-lowering and anti-

inflammatory effect and glyceollins’ long-term effect on metabolic disorder induced 

by western style diet may be investigated in future studies. The in-vivo absorption, 

distribution and metabolism of glyceollins upon ingestion need to be characterized to 

pinpoint glyceollins’ molecular target(s). Deep sequencing and metabolomic tools 

may be used to elucidate glyceollins’ mechanism of actions at transcriptional and 

translational levels. 

Improvement of glyceollins’ bioavailability may enhance glyceollins’ 

biological efficacy, including anti-tumor effect. Modification of diet formulation and 

delivery mechanisms may help to increase the absorption of glyceollins and prevent 

the degradation or metabolism of glyceollins in the gastrointestinal tract or in the 

liver.  

Glyceollins may affect specific group(s) or species of gut microorganisms in 

the gut and may induce temporal change(s) in gut microbiome. Metagenomic tools 

can be used to reveal the specific change(s) in gut microbiome and multiple time 

points may be studied and correlated to the health outcomes in the animals to 

understand the potential health implication of alteration of gut microbiome. 
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