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\Samuel Clemens." We might know that these are the same people, but theinformation retrieval systems have no way of knowing. Latent semantic indexing(LSI) is an approach to retrieval that attempts to represent such informationand thus �nd latent relationships in the information stored in its database.In the vector space model for information retrieval, discussed in Section 2,the database of documents is represented by an m � n term-document matrixwhere m is the number of terms and n is the number of documents. Thismatrix is typically less than 1% dense. Queries are represented as m-vectors,and a matrix-vector product produces an n-vector of scores that is used to rankthe documents in relevance.LSI is based on the vector space model, but the m � n term-documentmatrix is replaced by a low-rank approximation generated by the singular valuedecomposition (SVD). The SVD approximation is the sum of k rank-1 outerproducts of m-vectors ui with n-vectors vi, weighted by scalars �i:kXi=1 �iuivTi :This approximation to the term-document matrix is optimal in the sense ofminimizing the distance between that matrix and all rank-k matrices. LSI hasperformed well in both large and small tests; see, for example, Dumais [5, 6].LSI is described in Section 3.Thus far, only the singular value decomposition and its relatives, the ULVand URV decompositions [3], have been used in LSI. We propose using a verydi�erent decomposition, originally developed for image compression by O'Learyand Peleg [10]. In this decomposition, which we call the semi-discrete decompo-sition (SDD), the matrix is approximated by summing outer products just as inthe SVD, but the m-vectors and n-vectors only have entries in the set f�1; 0; 1g.This decomposition is constructed via a greedy algorithm and is not an optimaldecomposition; however, for equal query times, the SDD does as well as the SVDmethod and requires approximately one-tenth the storage. The trade-o� is thatthe SDD takes substantially longer to compute for sparse matrices, but this isonly a one-time expense. The SDD is discussed in Section 4, and computationalcomparisons with the SVD are given in Section 5.In many information retrieval settings, the document database is constantlybeing updated. Much work has been done on updating the SVD approximationto the term-document matrix [2, 9], but it can be as expensive as computing theoriginal SVD. E�cient algorithms for updating the SDD are given in Section 6.2 The Vector Space ModelBoth the SVD- and the SDD-based LSI models are built on the vector spacemodel, which we describe in this section.2



2.1 Creating the Term-Document MatrixWe begin with a collection of textual documents. We determine a list of key-words or terms by1. creating a list of all words that appear in the documents,2. removing words void of semantic content such as \of" and \because" (us-ing the stop word list of Frakes and Baeza-Yates [7]), and3. further trimming the list by removing words that appear in only one doc-ument.The remaining words are the terms, which we number from 1 to m.We then create an m� n term-document matrixA = [aij];where aij represents the weight of term i in document j.The most natural choice of weights is to set aij = fij , the number of timesthat term i appears in document j. Choosing the term weights properly iscritical to the success of the vector space model, so more elaborate schemeshave been devised.A term weight has three components: local, global, and normalization. Welet aij = gi tij dj;where tij is the term component (based on information in the jth documentonly), gi is the global component (based on information about the use of theith term throughout the collection), and dj is the normalization component,specifying whether or not the columns are normalized. Various formulas foreach component are given in Tables 1 { 3. In these formulas, � represents thesignum function �(t) = 8<: 1 if t > 0;0 if t = 0;�1 if t < 0:The weight formula is speci�ed by a three letter string whose letters representthe local, global, and normalization components respectively; for example, usingweight lxn speci�es thataij = log(fij + 1)qPmk=1 (log(fkj + 1))2 ;i.e., log local weights, no global weights, and column normalization.3



Symbol Formula for tij Brief Description Ref.b �(fij) Binary [11]t fij Term Frequency [11]c :5 �(fij) + :5� fijmaxk fkj� Augmented NormalizedTerm Frequency [7, 11]l log(fij + 1) Log [7]Table 1: Local Term Weight FormulasSymbol Formula for gi Brief Description Ref.x 1 No change [11]f log nPj �(fij)! Inverse Document Fre-quency (IDF) [11]p log n�Pj �(fij)Pj �(fij) ! Probabilistic Inverse [7, 11]Table 2: Global Term Weight FormulasSymbol Formula for dj Brief Description Ref.x 1 No Change [11]n �Pmi=1(gitij)2��1=2 Normal [11]Table 3: Normalization Formulas4



2.2 Query Creation and ProcessingA query is represented as an m-vectorq = [qi];where qi represents the weight of term i in the query. In order to rank thedocuments, we compute s = qTA;where the jth entry in s represents the score of document j. The documentscan then be ranked according to their scores, highest to lowest, for relevance tothe query.We must also specify a term weighting for the query. This need not be thesame as the weighting for the documents. Hereqi = gi t̂i;where gi is computed based on the frequencies of terms in the document collec-tion, and t̂i is computed using the same formulas as for tij given in Table 1 withfij replaced by f̂i, the frequency of term i in the query. Normalizing the queryvector has no e�ect on the document rankings, so we never do it. This meansthe last component of the three-letter query weighting string is always x. So,for example, the weighting cfx meansqi =  :5 �(f̂i) + :5 f̂imaxk f̂k!! log nPnj=1 fij! :A six-letter string, e.g. lxn.cfx, speci�es the document and query weights. Wewill use various weighting in our LSI experiments.3 LSI via the SVD3.1 Approximating the Term-Document MatrixIn LSI, we can use a matrix approximation of the term-document matrix gen-erated by the SVD. The SVD decomposes A into a set of n triplets of left (ui)and right (vi) singular vectors and scalar singular values (�i):A = nXi=1 �iuivTi :The vectors ui are mutually orthogonal and have norm one, the vectors vi aremutually orthogonal with norm one, and the non-negative scalars �i are orderedfrom greatest to least. The SVD is more commonly seen in matrix notation asA =U�VT5



where the columns of U are the left singular vectors, the columns of V are theright singular vectors, and � is a diagonal matrix containing the singular values.The SVD can be used to build a rank-k approximation to A by only usingthe �rst k triplets; i.e., A � Ak � kXi=1 �iuivTi :In matrix form, this is written asA � Ak � Uk�kVTk ;where Uk and Vk consist of the �rst k columns of U and V respectively, and�k is the leading k�k principal submatrix of �. It can be shown that Ak is thebest rank-k approximation to A in the Frobenius norm and in the Euclideannorm [8].3.2 Query ProcessingWe can process queries using our approximation for A:s = qTA � qTAk= qTUk�kVTk= (qTUk��k )(�1��k VTk )� ~qT ~A:The scalar � controls the splitting of the �k matrix and has no e�ect unless were-normalize the columns of ~A. We will experiment with various choices for �and re-normalization in Section 5.2.The SVD has been used quite e�ectively for information retrieval, as docu-mented in numerous reports. We recommend the original LSI paper [4], a paperreporting the e�ectiveness of the LSI approach on the TREC-3 dataset [5], anda more mathematical paper [2] for further information on the SVD for LSI.4 LSI via a Semi-Discrete Decomposition4.1 Approximating the Term-Document MatrixThe SVD produces the best rank-k approximation to a matrix, but generally,even a small SVD approximation requires more storage than the original matrixif the original matrix is sparse. To save storage and query time, we proposereplacing the SVD by the semi-discrete decomposition (SDD). We write the6



matrix approximation as a sum of triplets,Ak = kXi=1 dixiyTi = XkDkYTk ;where the m-vector xi and the n-vector yi have entries taken from the setf�1; 0; 1g, the scalar di is any positive number, and the matrices Xk, Yk, andDk are formed from the vectors and scalars as before. This decomposition doesnot reproduce A exactly, even if k = n, but the rank-k approximation can usesubstantially less storage. The SDD requires only the storage of 2k(n + m)values from the set f�1; 0; 1g and k scalars. An element of the set f�1; 0; 1gcan be expressed using log2 3 bits, although our implementation uses two bitsper element for simplicity. Furthermore, the SDD requires only single precisionscalars because it is a self-correcting algorithm; on the other hand, the SVD hasbeen computed in double precision accuracy for numerical stability. Assumingthat double precision scalars require 8 bytes and single precision scalars require4, and packing 8 bits in a byte, we obtain the following storage comparisonbetween a rank-k SVD and SDD approximation to an m � n matrix:Method Component Total BytesU km double precision numbersSVD V kn double precision numbers 8k(m + n + 1)� k double precision numbersX km numbers from f�1; 0; 1gSDD Y kn numbers from f�1; 0; 1g 4k + 14k(m + n)D k single precision numbersThe SDD approximation is constructed via a greedy algorithm, convergingmonotonically to A:Algorithm. (O'Leary and Peleg [10]) Let kmax be the rank of the desiredapproximation. This value can be determined ahead of time, or we can iterateuntil we obtain a desired accuracy. Set k = 1. Set the residual matrixA(c) = A.Choose tolerance; we use 0.01.For k = 1; : : : ; kmax1. Choose a non-zero vector y 2 f�1; 0; 1gn. We use a vector ofzeros with every hundredth element set to 1.2. Inner iteration:Set improvement= 1, change = 1.While improvement � tolerance,7



(a) Hold the current y �xed and solveminx2f�1;0;1gmd2< kA(c) � dxyTkF :(b) Hold the current x �xed and solveminy2f�1;0;1gnd2< kA(c) � dxyTkF :(c) Evaluate the change:new change = kA(c) � dxyTkF � kA(c)kF ;improvement = ���new change � changechange ��� ;change = new change:End While.3. Set xk = x; yk = y; dk = d. Set A(c) = A(c) � dkxkyTk .End For.O'Leary and Peleg showed that the subproblems in steps (2a) and (2b) can besolved optimally. Speci�cally, the subproblem in step (2a) is solved as follows:1. Let si = xi nXj=1 a(c)ij yj ;where xi = �1 is chosen so that si � 0 for all i = 1; : : : ;m.2. Order the si's so that si1 � si2 � � � � � sim .3. For j = 1; : : : ;m, let hj = 1j  jXk=1 sik!2 :4. Choose J such that hJ = maxjhj .5. For k = J + 1; : : : ;m, set xik = 0.6. Let d = mXi=1 si=0@J nXj=1 jyjj1A :8



The most expensive parts of the subproblem solution are the matrix-vectormultiply in step (1) and the sort in step (2). Because A is sparse, we neverform (the dense matrix) A(c) explicitly; instead, in step (1) we calculate Ayand Xk�1Dk�1YTk�1y. The calculation of Ay requires approximately the samenumber of multiplies and additions as there are nonzeros inA, and the computa-tion of Xk�1(Dk�1(YTk�1y)) requires k multiplies and no more than k2n+km2additions or subtractions. The m-long sort requires approximately O(m logm)operations.Note that step (6) does not need to be done when solving the �rst subproblemsince d is immediately re-calculated in the next subproblem. For the secondsubproblem, we do a transpose multiplication in the �rst step and an n-longsort in the second step. Thus, for each inner iteration, we have a multiplicationby A(c), a multiplication by (A(c))T, an m-long sort and an n-long sort. Thenumber of inner iterations is controlled by the tolerance threshold.4.2 Query ProcessingWe evaluate queries in much the same way as we did for the SVD, by computings = ~qT ~A, with ~A = D1��k YTk ; ~q = D�kXTk q:Again, we generally re-normalize the columns of ~A.For decompositions of equal rank, processing the query for the SDD requiressigni�cantly fewer oating-point operations than processing the query for theSVD: Operation SDD SVDAdditions k(m + n) k(m + n)Multiplications k k(1 +m + n)If we re-normalize the columns of ~A then each each method requires n additionalmultiplies and storage of n additional oating point numbers.5 Computational Comparison of the SDD- andSVD-Based LSI MethodsIn this section, we present computational results comparing the SDD- and SVD-based LSI methods. All tests were run on a Sparc 20. Our code is in C, withthe SVD taken from SVDPACKC [1].5.1 Methods of ComparisonWe will compare the SDD- and SVD-based LSI methods using three standardtest sets. Each test set comes with a collection of documents, a collection of9



queries, and relevance judgments for each query. The relevance judgments arelists of the documents relevant to each query. The test sets, each with over 1000documents, are described in Table 4.MEDLINE CRANFIELD CISINumber of Documents: 1033 1399 1460Number of Queries: 30 225 35Number of (Indexing) Terms: 5526 4598 5574Avg. No. of Terms/Document: 48 57 46Avg. No. of Documents/Term: 9 17 12% Nonzero Entries in Matrix: 0.87 1.24 0.82Storage for Matrix (MB): 0.4 0.6 0.5Avg. No of Terms/Query: 10 9 7Avg. No. Relevant/Query: 23 8 50Table 4: Characteristics of the test sets.We will compare the systems by looking at mean average precision, a stan-dard measure used by the information retrieval community.When we evaluate a query, we return a ranked list of documents. Let ridenote the number of relevant documents among the top i documents. Theprecision for the top i documents, pi, is then de�ned aspi = rii ;i.e., the proportion of the top i documents that are relevant.The N -point (interpolated) average precision for a single query is de�ned as1N N�1Xi=0 ~p� iN � 1� :where ~p(x) = maxrirn�x pi:Typically, 11-point interpolated average precision is used. Each of our data setshas multiple queries, so we compare the mean average precision and the medianaverage precision, expressed as percentages. In other papers, average precisiongenerally refers to mean average precision.5.2 Parameter ChoicesWe have two parameter choices to make for the SDD and SVD methods: thechoice of the splitting parameter �, and the choice of whether or not to re-normalize the columns of ~A. 10



SDD SVDRe-Normalize? Re-Normalize?� Yes No Yes No0 62.1 61.2 65.1 64.20.5 62.6 61.2 64.7 64.2-0.5 57.9 61.2 64.7 64.21.0 61.7 61.2 64.2 64.2-1.0 48.6 61.2 62.3 64.2Table 5: Mean average precision for the SDD and SVD methods with di�er-ent parameter choices on the MEDLINE data set with k=100 and weightinglxn.bpx.We experimented with the SVD and SDD methods on the MEDLINE dataset using the weighting lxn.bpx. The results are summarized in Table 5. In allfurther tests, we will use � = 0:5 with re-normalization for the SDD methodand � = 0 with re-normalization for the SVD method. We experimented usingother weighings and other data sets and con�rmed that these parameter choicesare always best or very close to it.5.3 ComparisonsWe tried the SDD and SVD methods with a number of weighings. We selectedthese particular weighings for testing in LSI based on their good performance forthe vector space method on these datasets. We present mean average precisionresults in Table 6 using a rank k = 100 approximation in each method; thistable also includes vector space (VS) results for comparison.To continue our comparisons, we select a \best" weighting for each data set.In Table 6 we have highlighted the \best" results for each data set in boldfacetype. We will use only the corresponding weighings for the remainder of thepaper, although further experiments show similar results for other weighings.In Figures 1 { 3, we compare the SVD and SDD methods on the data sets.In Figure 1, we present results for the MEDLINE data. The upper rightgraph plots the mean average precision vs. query time, and the upper leftgraph plots the median average precision vs. query time. (The query timeis the total time required to execute all queries associated with the data set.)Observe that the SDD method has maximal precision at a query time of 3.4seconds, corresponding to k = 140, a mean average precision of 63.6 and amedian average precision of 71.4. The SVD method reaches its peak at 8.4seconds, corresponding to k = 110, and mean and median average precisions of65.5 and 71.7 respectively. The performance of the SDD method is on par with11



MEDLINE CRANFIELD CISIWeight SDD SVD VS SDD SVD VS SDD SVD VSlxn.bfx 62.6 64.6 54.6 35.7 40.4 45.5 15.6 16.6 17.7lxn.bpx 62.6 65.1 54.6 35.6 39.9 45.5 15.2 16.9 17.8lxn.lfx 61.2 64.0 53.7 35.8 40.3 45.6 16.0 16.6 18.2lxn.lpx 61.3 64.3 53.8 35.5 40.1 45.7 15.5 16.9 18.3lxn.tfx 60.9 63.5 53.2 35.7 40.2 45.6 16.3 16.9 18.4lxn.tpx 60.9 63.8 53.4 35.4 39.9 45.6 15.7 17.0 18.3cxx.bpx 57.9 59.6 53.6 32.9 38.9 43.4 17.1 17.9 17.5cxn.bfx 58.4 62.5 53.6 33.1 38.7 44.1 17.8 16.5 17.4cxn.bpx 58.4 63.0 53.6 32.6 38.7 43.4 18.1 17.6 17.5cxn.tfx 56.8 61.5 52.5 33.3 38.8 43.9 17.1 16.9 18.2cxn.tpx 57.0 61.8 52.6 32.7 38.2 43.3 17.1 17.7 18.2Table 6: Mean average precision results for the SDD and SVD methods withk=100.the SVD method except for somewhat worse behavior on queries 26 and 27. Wehave no explanation for the SDD behavior on these two queries.In terms of storage, the SDD method is extremely economical. The middleleft graph plots mean average precision vs. decomposition size (in megabytes(MB)), and the middle right graph plots median average precision vs. thedecomposition size. Note that a signi�cant amount of extra storage space isrequired in the computation of the SVD; this is not reected in these numbers.From these plots, we see that even a rank-30 SVD takes 50% more storage thana rank-600 SDD, and each increment of 10 in rank adds approximately 0.5 MBof additional storage to the SVD. The original data takes only 0.4 MB, but SVDrequires over 1.5 MB before it even begins to come close to what the SDD cando in less than 0.2 MB.The lower left graph illustrates the growth in required storage as the rankof the decomposition grows. For a rank-600 approximation, the SVD requiresover 30 MB of storage while the SDD requires less than 1 MB.It is interesting to see how good these methods are at approximating the ma-trix. The lower right graph shows the Frobenius norm (F-norm) of the residual,divided by the Frobenius norm of the original matrix, as a function of storage(logarithmic scale). The SVD eventually forms a better approximation to theterm-document matrix, making it behave more like the vector space method.This is not necessarily desirable.The CRANFIELD dataset is troublesome for LSI techniques; they do notdo as well as the vector space method. From the upper two graphs in Figure 2we see that, for equal query times, the SDD method does as well as the SVD12
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method. The other graphs show that, as in the MEDLINE test, the SDD ismuchmore economical in terms of storage and achieves a somewhat less accurateapproximation of the matrix.In Figure 3 we compare the SVD and SDD methods on the CISI data. TheSDD method is better overall than the SVD method in terms of query time, andits mean average precision peaks higher than the SVD method | 19.1 versus18.3. Again, the storage di�erences are dramatic.MEDLINE CRANFIELD CISISDD SVD SDD SVD SDD SVDQuery Time (Sec) 3.4 3.6 63.8 77.3 4.3 4.4Dimension (k) 140 20 390 210 140 30Mean Avg Prec 63.6 51.8 44.9 44.5 19.1 15.2Median Avg Prec 71.4 55.7 37.3 37.4 19.4 12.2Decomp Storage (MB) 0.2 1.1 0.6 10.1 0.2 1.7Decomp Time (Sec) 245.4 4.7 1313.8 91.5 279.0 13.0Rel. F-Norm of Resid 0.85 0.90 0.63 0.59 0.85 0.89Table 7: Comparison of the SDD and SVD methods at the query time wherethe SDD has the highest mean average precision.Table 7 compares the two methods for the query time at which the SDDmethod peaks on mean average precision. On all three data sets, the SDDhas higher mean and median precisions than the SVD. Since all the methodshave similar performance in terms of the mean and median average precision,observe that the trade-o� is in the decomposition computation time and thedecomposition storage requirement; the SVD is much faster to compute, butthe SDD is much smaller.The results on the three data sets can be summarized as follows: the SDDmethod is competitive with the SVD method for information retrieval. For equalquery times, the SDD method generally has a better mean and median averageprecision. The SDD requires much less storage and may be the only choice whenstorage is at a premium. The only disadvantage is the long time required forthe initial decomposition, but this is generally a one-time-only expense. Furtherresearch should be done on improving the decomposition algorithm.6 Modifying the SDD when the Document Col-lection ChangesThus far we have discussed the usefulness of the SDD on a �xed documentcollection. In practice, it is common for the document collection to be dynamic:16



new documents are added, and old documents are removed. Thus, the listof terms might also change. In this section, we will focus on the problem ofmodifying a SDD decomposition when the document collection changes.SVD-updating has been studied by O'Brien [9]. He reports that updatingthe SVD takes almost as much time as re-computing it, but that it requiresless memory. His methods are similar to what we do in Method 1 in the nextsection.6.1 Adding or Deleting Documents or TermsSuppose that we are adding new documents to the collection. For now we willassume that this does not a�ect the set of terms and that no global weightingwas used on the matrix. Let A = � A(1) A(2) �represent the updated collection of documents where A(1) is the original matrixand A(2) is the matrix representing the new documents and is weighted in thesame way as A(1).Assume that X(1), D(1), and Y(1) are the components of the SDD decom-position for A(1). We propose two methods for updating this decomposition.Method 1: Append rows to Y(1). The simplest update method is to ap-pend new rows to Y(1). In other words, keeping X(1), D(1), and Y(1) �xed, wewish to compute Y(2) such thatA � X(1)D(1) � Y(1)Y(2) �T :Let kmax be the rank of the decomposition desired; generally this is the sameas the rank of the original decomposition. For each value of k = 1; : : : ; kmax, wemust �nd the vector y that solvesminkA(c) � dxyTkF ;where A(c) = A(2) � X(1)k�1D(1)k�1(Y(2)k�1)T , x is the kth column of X(1), and dis the kth diagonal element of D(1). We never access A(1), and this may beuseful in some situations. The solution y becomes the kth column of Y(2).The procedure to optimally solve this problem is the same as that used on thesubproblem discussed in Section 3.1, except that here d is �xed, so the de�nitionof hj in the third step is changed tohj = 2d jXk=1 sik � jd2 mXk=1 jxkj:17



Method 2: Re-Compute D and Y. Another possible method is to com-pletely re-compute D and Y, keeping X(1) �xed.Let kmax be the rank of the decomposition desired. For each k = 1; : : : ; kmax,we must �nd the d and y that solveminkA(c) � dxyTkF ;where A(c) = A � X(1)k�1Dk�1YTk�1 and x is the kth column of X(1). Thesolutions d and y become the kth diagonal element of D and the kth column ofY respectively.Neither method has any inner iterations, and so both are fast. We triedeach update method on a collection of tests derived from the MEDLINE data.We split the MEDLINE document collection into two groups. We did a decom-position on the �rst group of documents with k = 100, then added the secondgroup of documents to the collection, and updated the decomposition via eachof the two update methods. The results are summarized in Table 8. The secondmethod is better, as should be expected since we are allowing more to change.For the second method, the decrease in mean average precision is not very greatwhen we add only a small number of documents. As the proportion of newdocuments to old documents grows, however, performance worsens.Method 1 Method 2Documents Decomp Time Mean Time MeanOld New Time (Sec) (Sec) Avg Prec (Sec) Avg Prec929 104 134.5 5.0 59.72 5.6 61.48826 207 129.5 4.9 55.29 5.4 60.06723 310 125.9 5.1 53.49 5.5 60.84619 414 113.5 5.0 46.47 5.5 56.98516 517 107.9 5.0 37.77 5.5 55.04413 620 95.5 5.3 35.96 5.5 54.51309 724 83.6 5.1 19.33 5.5 46.56206 827 64.3 5.1 21.25 5.4 49.36103 930 63.0 5.2 11.17 5.2 39.91Table 8: Comparison of two update methods on the MEDLINE data set withk = 100.If we want to incorporate additional terms, we would be adding additionalrows to A. The two update methods discussed above can also be used in thissituation. If we want to add both new terms and new documents, we can addone and then the other.If we wish to delete terms or documents, we simply delete the correspondingrows in the X and Y matrices. 18



6.2 Iterative Improvement of the DecompositionIf we have an existing decomposition, perhaps resulting from adding and/ordeleting documents and/or terms, we may wish to improve on this decomposi-tion without actually re-computing it. We consider two approaches.Method 1: Partial Re-Computation In order to improve on this decom-position, we could reduce its rank by deleting 10% of the vectors and then re-compute them using our original algorithm. This method's main disadvantageis that it can be expensive in time. If performed on the original decomposition,it has no e�ect.Method 2: Fix and Compute. This method is derived from the secondupdate method. We �x the current Y and re-compute X and D; we then �xthe current X and re-compute the Y and D. This method is very fast becausethere are no inner iterations. This can be repeated to further improve theresults. If applied to an original decomposition, it would change it.We took the decompositions resulting from the second update method inthe last subsection and applied the improvement methods to them. We have arank-100 decomposition. For the �rst improvement method, we re-computed 10dimensions. For the second improvement method, we applied the method once.The results are summarized in Table 9. If we have added only a few documents,the �rst method improves the precision while the second method worsens it.On the other hand, if we have added many documents, then the second methodis much better. The �rst method could be improved by re-computing moredimensions, but this would quickly become too expensive. The second methodgreatly improves poor decompositions and is relatively inexpensive. It can beapplied repeatedly to further improve the decomposition.7 ConclusionsWe have introduced a semi-discrete matrix decomposition for use in LSI. Forequal query times, the SDD-LSI method performs as well as the original SVD-LSI method. The advantage of the SDD method is that the decomposition takesvery little storage, and the disadvantage is that the initial time to form thedecomposition is large. Since decomposition is a one-time expense, we believethat the SDD-LSI algorithm will be quite useful in application.We have also introduced methods to dynamically change the SDD decom-position if the document collection changes and methods to improve the decom-position if it is found to be inadequate.19



Method 1 Method 2Documents Prev Mean Time Mean Time MeanOld New Avg Prec (Sec) Avg Prec (Sec) Avg Prec929 104 61.48 18.0 60.83 13.8 61.24826 207 60.06 19.3 59.81 13.9 61.55723 310 60.84 20.8 60.76 13.7 61.92619 414 56.98 21.5 58.60 14.4 60.49516 517 55.04 20.4 56.76 13.5 58.19413 620 54.51 22.9 56.04 13.7 59.41309 724 46.56 20.1 47.90 13.4 55.03206 827 49.36 20.8 53.44 13.5 56.20103 930 39.91 18.9 45.36 13.3 52.08Table 9: Comparison of two improvement methods on the MEDLINE data setwith k = 100.AcknowledgmentsWe are grateful to Duncan Buell, John Conroy, Ken Kolda, Steve Kratzer, JoeMcCloskey, and Doug Oard for helpful comments.References[1] Michael Berry, Theresa Do, Gavin O'Brien, Vijay Krishna, and SowminiVaradhan. SVDPACKC (Version 1.0) Users' Guide. Technical Report CS-93-194, Computer Science Department, University of Tennessee, Knoxville,TN 37996-1301, 1993.[2] Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using linearalgebra for intelligent information retrieval. SIAM Review, 37:573{595,1995.[3] M.W. Berry and R.D. Fierro. Low-rank orthogonal decompositions forinformation retrieval applications. Numerical Linear Algebra with Applica-tions, 1:1{27, 1996.[4] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Lan-dauer, and Richard Harshman. Indexing by latent semantic analysis. Jour-nal of the Society for Information Science, 41:391{407, 1990.[5] Susan Dumais. Improving the retrieval of infomation from external sources.Behavior Research Methods, Instruments, & Computers, 23:229{236, 1991.20
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