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Abstract

It is remarkable that despite the presence of large numbers of degrees of freedom, motion
control problems are e�ectively solved in biological systems. While feedback, regulation,
and tracking have served us well in engineering, as useful solution paradigms for a wide
variety of control problems including motion control, it appears that nature gives prominent
roles to planning and co-ordination as well. There is also complex interplay between sensory
feedback and motion planning to achieve e�ective operation in uncertain environments, for
example, in movement on uneven terrain cluttered with obstacles. Recent investigations
by neurophysiologists have brought to increasing prominence the idea of central pattern
generators, { a class of coupled oscillators {, as sources of motion \scripts" as well as a
means for coordinating multiple degrees of freedom. The role of coupled oscillators in
motion control systems is currently under intense investigation. In this paper we examine
some unifying themes relating movement in biological systems and machines. An important
insight in this direction comes from the natural groupings of degrees of freedom and time
scales in biological and engineering systems. Such grouping and separation can be treated
from a geometric viewpoint using the formalisms and methods of di�erential geometry,
Lie groups, and �ber bundles. Coupled oscillators provide the means to bind degrees
of freedom either directly through phase locking or indirectly through geometric phases.
This point of view leads to fresh ways of organizing the control structures of complex
technological systems.

1. Introduction

In optics, lithography applications in micro-electronics, and in a variety of other con-
texts, the need for high-resolution motion control with high accuracy is met by specialized
actuators that are quite di�erent in their principles of operation from every-day devices
such as electro-magnetic motors. One such device, manufactured by Burleigh Instruments
under the trademark INCHWORMTM is illustrated in Figure 1. This actuator, consisting
of three sleeves/tubes made from piezo-electric material, mounted on a frame and enclosing
a linear armature, works on the physical principle that the piezo-electric material deforms
under electrical stimulus (the outer sleeves independently clamp down, and the middle
sleeve stretches in length). Running the actuator through a succession of clamp-stretch-
unclamp-unstretch cycles, one generates incremental motion of the armature in a speci�ed
direction. It is possible to make linear movements as small as 4 nanometers. Other ac-
tuators based on piezo-electric e�ects are increasingly �nding their way into consumer
products, including ultrasonic motors for auto-focussing in cameras based on surface wave
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Figure 1. INCHWORMTM
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excitation (see [31] for detailed discussions of these devices). A common design principle in
these devices is a type of recti�cation of small cyclical motions to produce gross motions.

Turning to the natural world, much attention has been devoted to the systematic
understanding of how various microscopic organisms move in 
uids under various condi-
tions. Such movement being essential to reaching food particles, e�ciency considerations
have also been of interest (see [7] for related discussion). Apparently, c.f. Figure 2, the
paramecium gets around in a 
uid under conditions of very low Reynolds number through
a process of cyclical change in its boundary contour (or more precisely the envelope de-
termined by the oscillating cilia that make up the contour). In the work of Shapere and
Wilczek [28], under appropriate 
uid mechanical assumptions, this has been shown to be
the case via the mathematics of gauge theory (which has played an important role else-
where in modern physics and geometry over the last three decades). Here again a type of
recti�cation is at work.

While the low Reynolds number regime permits an essentially kinematic treatment
of the paramecium, in other contexts of animal movement, dynamic in
uences play an
important part (e.g. in walking, trotting and galloping gaits of quadrepeds c.f.[1], the
swimming movement of the lamprey [4], etc.). A rather striking illustration of this occurs
in the Basiliscus plumifrons, a type of lizard found in Central America that is capable of
engaging in short bursts (range less than 10 meters) of walking on water, supporting itself
through rapid pushing down (at 30 Hz frequency) by hind feet on the water. The reaction
forces so generated are su�cient for support (see [18]).

Our examples are meant to underscore the principle of movement generation by repet-
itive, cyclical variation in certain degrees of freedom (of a machine or an organism) while
constrained by interactions with the environment (e.g. ground contact, friction). Un-
derstanding this principle has had an important in
uence in recent research in control
theory and in robotics, as also explained by the companion papers of R.W. Brockett, J.E.
Marsden and R.M. Murray in this volume. Turning this principle into a quantitative tool
requires an understanding of the recti�cation mechanism alluded to above. It is precisely
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Figure 2. Paramecium

this mechanism, variously associated with geometric phases, area rules, and Lie bracket
generation that has had a crucial role as a tool for designing machines, and algorithms to
control them. In the context of motion generation, Brockett's paper [5] appears to be the
�rst to state clearly and prove a version of the rule. See also [25] [26].

Placing the recti�cation principle in the broader context of motion control architec-
tures for systems with many degrees of freedom is one of the goals of this paper. To clarify
matters further, a toy example is given in Section 2, involving a unicycle and an oscillator.

There is already a rich tradition in biology and neuroscience of modeling movement
via coupled oscillators. It is noteworthy that even in the presence of large numbers of
degrees of freedom, motion control problems are e�ectively solved in biological systems of
extraordinary variety. The work of Graham Brown [6] on half-centers and the fundamental
investigations, starting in the 1930's, of N.A. Bernstein [2], on strategies for motion control
continue to have in
uence in modern work (see Pearson's recent survey for a modern
perspective [27]). Bernstein clearly identi�ed a role for planning (i.e. feedforward control)
along with feedback, regulation and tracking, in motion control. In Bernstein's scheme,
adaptive restructuring of motion programs on-the-
y, through the use of a�erent feedback
pathways from mechano-receptors and other sensory modalities, had a prominent place.
More recent work of neurophysiologists has focussed attention on central pattern generators
(CPG's) in the nervous system as key to understanding the control of movement and
posture (see [8-10], [13][14]). As mathematical objects, CPG's are networks of coupled
oscillators and can be incorporated in the control architecture of a complex machine.
Thus, if the state variables of the nodes of a CPG are in turn coupled to the degrees of
freedom of the system to be controlled, it is possible to achieve coordination of the latter
by prescribed phase coherence of the oscillators. The system to be controlled may be a
multi-legged walking machine or a multi-�ngered, anthropomorphic mechanical hand with
built-in tactile sensors on the �ngers. Sensory feedback paths to correct CPG dynamics
would be necessary to provide a level of robustness to changes in the environment (e.g.
obstacles, failures). These elements lead us to the architecture of Figure 4, discussed
further in Section 3 of the paper.

In Section 4, we present a unifying geometric-mechanical picture of the ideas on rec-
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ti�cation. The language of principal bundles, and connections goes hand-in-hand with the
mechanical notions of con�guration spaces, symmetries and constraints. Complementing
the perspectives in the companion papers in this volume, we focus attention on the notion
of averaging in Lie groups and it relation to recti�cation. In Section 5, we discuss some
novel machines that illustrate the main ideas of this paper and point the way to further
extensions.

2. From Shape Change to Global Movement

Our purpose here is to show how suitable notions of shape, together with cyclical
shape change can yield global movement. In the case of the INCHWORMTM actuator, the
concept of shape can be identi�ed with two pieces of information: the continuous elonga-
tion/contraction of the middle sleeve and the discrete state of the clamp-pair (which one
is on or o�?). For each such \shape", there is an associated holonomic constraint, and
coordinated shape change together with switching of constraints leads to recti�cation and
the travel of the armature. In a setting more natural for geometric arguments, piecewise
holonomic constraints may be replaced by nonholonomic constraints, and this is best il-
lustrated by classical mechanical examples involving the constraint of no sliding of a knife
edge or rolling without slipping of a wheel on a surface. Consider for instance a unicycle
with rider as in Figure 3. The kinematic equations of the unicycle are given by,

_x = cos(�)u2

_y = sin(�)u2

_� = u1:

(1)

Here x and y denote the position of a �xed reference point on the unicycle and � de-
notes the orientation of the unicycle relative to a �xed laboratory/observer frame. Further,
u1 denotes the steering speed, and u2 denotes the heading speed, and these are assumed to
be controllable by the unicyclist. From Eqn 1, it is clear that the constraint of no sliding,

� _xsin(�) + _ycos(�) = 0; (2)

is maintained at all time.

Equations (1) and (2) can also be recast in the following equivalent form,

_g = g � (A1u1 +A2u2) (3)

where

g =

0
@ cos(�) �sin(�) x
sin(�) cos(�) y
0 0 1

1
A (4)
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Figure 3. Unicycle

evolves in the group of rigid motions in the plane, with

A1 =

0
@ 0 �1 0
1 0 0
0 0 0

1
A

A2 =

0
@ 0 0 1
0 0 0
0 0 0

1
A :

(5)

Imagine a typical unicyclist implementing pedaling and steering maneuvers that give rise to
ui(t) = �fi(t) where fi(:) are zero{mean periodic functions of time with a common period
T; and � > 0 is a small amplitude parameter. In this instance, the \shape variables"

~ui(t) =
tR
0

ui(�)d� are also periodic/oscillatory. Where does the unicycle end up? To get

a decent approximation to the exact solution, one resorts to averaging theory c.f. [19][21].
In fact g(t) is approximated up to quadratic terms in � by the formula

g(2)(t) = g(0) � exp

� 3X
i=1

z
(2)
i (t)Ai

�
; (6)

where, for i = 1; 2;

z
(2)
i (t) = ~ui(t) + z

(2)
i0 (7)

and

z
(2)
3 (t) =

t

T
Area1;2(T ) + z

(2)
30 : (8)

Here, the z
(2)
i0 are initial conditions, the matrix

A3 = A1A2 �A2A1 =

0
@ 0 0 0
0 0 1
0 0 0

1
A
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is the Lie bracket of A1 and A2 and,

Area1;2(T ) =
1

2

TZ
0

�
~u1(�) _~u2(�)� ~u2(�) _~u1(�)

�
d�; (9)

is the area of the loop in shape space executed by the unicyclist in the course of the chosen
oscillatory maneuver.

Formula (6) predicts a secular drift in the direction of the Lie bracket A3; and following
(8) and (9); illustrates the recti�cation principle as an area{rule. By a succession of
oscillatory maneuvers, the unicyclist can get around anywhere and manage parallel parking!
(For related ideas and references, see the paper of Murray in this volume.) This hinges
on the fact that the constraint (2) is nonholonomic or equivalently, the Lie bracket A3 is
linearly independent of A1 and A2; the directions trivially controllable by the unicyclist.
It is however important that the phase relations between the pedaling oscillations and the
steering oscillations be right, or else the area Area1;2(T ) will vanish, killing the secular
drift. This brings up the need for coupled oscillations. Appropriate shape variations may
be drawn from solutions to variational problems.

The unicycle example illustrates a geometric interpretation of shape and shape change.
For a six{legged insect (or machine) with legs capable of lift and swing, the shape space
may be a submanifold of a 6�3 {dimensional torus. Shape change in that case is achieved
via successively lifting and swinging the legs before returning to ground contact.

3. Scripts and Oscillators

Area rules of the type discussed in the last section have been used in developing com-
puter programs to synthesize feedforward control laws (motion scripts), in [19][21]. We
think of such programs as script generators, producing detailed streams of instructions to
machines. One such implementation is used to control an underwater vehicle [20][21]. In-
tegrating such script generators into a larger framework for intelligent control of movement
is a major challenge ({the framework has to accommodate uncertainty, limited sensing of
the environment, obstacles that move about, rough terrain etc.) and we argue that there
is much insight to be gained from deeper study of biological motion control systems.

The Russian physiologist N. Bernstein, in his studies of the movement problem, pro-
posed a variety of architectural principles. Given the large numbers of degrees of freedom
involved in even elementary motor acts, binding (or synchronization of) the degrees of
freedom into groups is necessary. Such binding has to be dynamic to accommodate vary-
ing stages in a movement. Bernstein viewed rythm generators or oscillators as the means
to implement binding. Bernstein also viewed as central to motor control, the ability to
change a motor program in the middle of a movement, possibly based on data from a�erent
sensory pathways. Much work, since Graham Brown's proposal of half-centers has gone
into understanding how neural circuitry could be organized to produce temporal patterns
of neuronal �rings that seem to be responsible for rythmic movements. See for instance
the compendium of papers [10]. The oscillations in the temporal patterns are assumed
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to be in correspondence with actual movements produced, for instance, a particular gait,
i.e. rythmic stepping, in a quadraped. A complex movement could be segmented into
distinctive gaits, and modules capable of piecing together such segments prior to initiation
of a movement and altering them `on-the-
y' are essential to intelligent control. Further it
is plausible that in biological systems, the higher cognitive elements engaged in movement
control primarily pay attention to a symbolic description of movement ignoring detailed
timing information. For instance, in the case of a six-legged insect, identifying the legs on
the left (respectively right) side of the body with the symbols Li (respectively Ri), where
the index i runs from 1 to 3, (3 stands for the hind legs, 2 for the middle legs, and 1 for
the front legs), one can refer to a gait pattern by a string of symbols, as in,

(a) R3; R2; R1; L3; L2; L1

(b) L2; R3L1; R2; R1L3

(c) R3L2R1; L3R2L1

These strings are to be interpreted as de�ning the sequence in which each leg is
lifted from the ground, and symbols in a group not separated by a comma correspond to
synchronized leg-lifts. Thus string (c) above represents the so-called alternating tripod
gait, being the fastest, and the string (a) above stands for the slowest. Both timing and
step length information are hidden, although it is experimentally observed that swing
times are independent of gait. A suitable control framework would need to be able to
accommodate descriptions of movement both at the symbolic and at the detailed timing
level. In fact one can even work out an admissible language for movements by stringing
together words as in (a) (b) (c).

SYMBOLIC

TIMING

OSCILLATORS RECTIFIER

SENSORY
PATHWAY

COMMAND
  CENTER

Global
Motion

  Script 
    for
  Shape

Figure 4. Architecture for Motion Control

Based on these insights from biology, one is led to a possible architecture for intelligent
control of movement as in Figure 4. Here the command center communicates a prescribed
global movement command to be transformed into symbolic and timing instructions which
are then implemented by a network of coupled oscillators that produce the script for shape
change. The recti�cation path produces the desired global movement. Sensory information
is returned to the command center and possibly to the oscillators to modify/correct the
motion commands and scripts. In practice, in legged animals or machines, this a�erent
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pathway may lead to script change (gait switching). For a robust, model-independent
approach to gait switching on the basis of bifurcation theory in the presence of symmetries,
see [11]. In our own work, the change in control authority that accompanies the failure of
actuators is one of the sources of script change [20].

The architecture sketched out here give prominence to what may be a missing ingre-
dient in much of the discussion of rythmic movements in biology, {namely the recti�cation
module. In his paper in the present volume Brockett takes the view that recti�cation is a
tool for `approximate inversion' of motion speci�cations over time and shows how oscilla-
tors do the job. It may be possible to suggest some biological experiments to determine
if indeed such approximate inverses are learned from repeated trials, lessening thereby
the need to store motion scripts. Finally, it should be added that there are software as-
pects to the control architecture we discussed that makes contact with current thinking in
re-con�gurable software for robotics, c.f. the work on CHIMERA [29].

We close this section by pointing out exciting new developments in the direction
of incorporating a combination of pattern generating oscillators, elasto-mechanics based
models of body movement and muscle response, and models of 
uid interaction with the
skin to capture the complexities of lamprey movement [4]. At least in one machine that we
have studied (see Section 5), several of these ingredients prove to be necessary for complete
understanding.

4. Unifying Geometry

The model (3) of the unicycle is not so special as it might seem at �rst glance. In
practice, the models of mechanics governing the behavior of a wide variety of machines,
admit certain unifying geometric elements. The possible system con�gurations constitute
the space Q. There is always the symmetry of Newtonian mechanics, namely indi�erence
of the dynamics to change of inertial observer. More generally, one has a Lie group G of
invertible transformations acting on Q that leave the Lagrangian of the system invariant
and possibly any applicable constraints as well. The equivalence classes de�ned by the
orbits of G can be brought to one-to-one correspondence with the space S = Q=G of
shapes. The triple (Q;G; S) is known as a principal bundle. Most of the examples one
encounters in mechanical settings can be given the structure of a trivial principal bundle,
i.e. the con�guration space looks like a product S�G; a simpli�cation we shall assume
from here on. Each con�guration will then be a pair q = (x; g).

If su�ciently many independent constraints (analogous to the constraint of no slid-
ing in the unicycle example) are present then, it is possible to construct a well-de�ned
splitting of the space of velocities (tangent bundle TQ of the con�guration space) at every
con�guration, into a set of symmetry directions along group orbits (also called vertical
directions) and a set of complementary directions, called horizontal directions, isomorphic
to the space of directions along which one can change the shape. One then says that the
bundle (Q;G; S) has acquired a principal connection. (See Figure 5 for a sketch of the
geometric set-up). The curvature of the connection has a great to deal to say about the
following question. In analogy with the unicyclist's problem, where do we end up in the
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con�guration space Q when we make a cyclic movement in the space of shapes? The con-
straints are su�cient to determine a relation between the evolution of g(t) and the shape
trajectory x(t), of the form,

_g = �g � �(x; _x) (10)

where � represents the connection form and is linear in _x: Despite the complication arising
from the connection form, Eqn. 10 is a good deal like Eqn. 3. The concept of holonomy
in di�erential geometry gives a formal answer to the above question. Drift in the group
variables can be built up by repetitively traversing the same loop in shape space. If the
shape velocity is of the form _x = � �f(t), where � is a small amplitude parameter then as in
Section 2, one can give an approximate solution to Eqn. 10 using the theory of averaging.
This is done in [19,21], leading to area-rules. Once again the area-rules yield constructive
procedures for generating suitable movements in shape space to achieve required transport
in con�guration space.

The unifying geometric point of view of this section is very useful in formulating
answers to constructive controllability questions arising in, the study of maneuvers of space-
based robotic devices [15][32], the problem of the paramecium at low Reynolds number
studied by Shapere and Wilczek [28], and a wide variety of nonholonomically constrained
problems. There is much that needs to be done to integrate this geometric viewpoint
into the control architecture presented in Section 3. In particular, the capability to adapt
motion scripts in this level of generality, based on sensory inputs, probably needs new
mathematical apparatus.

5. Some Interesting Machines

Some of the ideas we presented here have been tested in the laboratory and in simu-
lation. In the thesis of Manikonda [22], motion planning for nonholonomic robots in the
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presence of obstacles is investigated from a perspective close to the one we discuss. Over
the years, there has been growing interest in robotic machines that exploit principles of
movement found in biological systems. The excellent book of Hirose [12] contains many
examples of successful designs and algorithms. Encouraged by certain designs for redun-
dant manipulators developed by Joel Burdick and his students at Caltech, we investigated
a variety of machines that could be controlled via shape change. One such instance is
the nonholonomic variable geometry truss (NVGT) in Figure 6. This machine consists of
a pair of modules on idler wheels, rolling without slipping on a surface, with deformable
bodies. The intent is to drive this machine entirely by deformations of the body using the
connecting links, without any direct actuation of the wheels.

Figure 6. Two Module Nonholonomic Variable Geometry Truss

The NVGT �ts nicely into the framework of this paper. The con�guration space is the
cartesian product of 3 copies of the rigid motion group SE(2), and the symmetry group
is also SE(2). Thus the shape space is S = SE(2)�SE(2), representing the freedom to
alter the shape by changing the lengths of the connecting links in each module. Away from
certain singular con�gurations, determined to be those for which all three axles intersect
(possibly at in�nity) , the geometry of Section 4 applies and the `no sliding' constraints
�x a principal connection. Cyclical shape changes produce, snake-like movement of the
machine, c.f. [16][17][30].

It should be clear that additional modules could be attached to the NVGT of Figure
6, thereby increasing the number of constraints and the number of degrees of freedom. In
that case, as shown in [17][30], the problem becomes over-constrained thus limiting the
allowable shape changes. This in itself is not a disadvantage in selecting shape change
scripts.

Suppose now that one of the modules in Figure 6 is detached and we are left with
just one module. In this case the problem is under-constrained, and one does not quite
have the geometry of Section 4. One does not obtain a principal connection from the
`no sliding' constraints alone. There is a subtler symmetry in the problem, that arises
from the interaction between the original Newtonian symmetry and the constraints, which
yields a new momentum equation that the trajectories of the system must obey. The
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Figure 7. Computer Controlled Roller Racer

main ideas behind this new symmetry have only recently become clear in the work of
[3]. To illustrate this, a machine modeled on the patented toy Roller Racer (U.S. patent
#3663038 of May 16, 1972), c.f. Figure 7 was built. This device is a special case of the
single module nonholonomic variable geometry truss on wheels, with only a single degree
of shape freedom. The shape space in this case is the circle S1. It is remarkable, that in
this case the full theory of nonholonomic momentum equation applies and using this extra
equation, one formulates a principal connection on the bundle (S1�SE(2); SE(2); S1).
Motion control by periodic forcing of one degree of shape freedom is accomplished. Details
are to be found in [30].

The last-mentioned example uses dynamical information in an essential way and in
some sense there are parallels between this investigation and the work of [4] on the lamprey.
The rich variety of global motions can be best understood by the proper synthesis of
kinematic, geometric and dynamic information and the principle of recti�cation applied to
cyclical shape variations is an e�ective guide even in this mathematically complex setting.
An intelligent control architecture based on such synthesis would be of great interest.
Again nature would have taught us to build better machines.
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