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antee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian

measurement operators and for measurements obtained by non-uniform sampling
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We show how tensor completion can be used to solve multidimensional inverse
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We also derive condition number estimates for nonnegative least squares problems.

Tensor recovery promises to significantly accelerate N -dimensional NMR re-
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Chapter 1: Introduction

This thesis deals with tensor completion and applications to multidimensional

inverse problems. Tensor completion, the problem of reconstructing a multidimen-

sional data array from incomplete measurements, is a problem of fundamental im-

portance for high-dimensional data recovery. Applications of tensor completion

include machine learning, image processing, signal processing, computer vision, and

the efficient solution of multidimensional inverse problems.

Compressed sensing theory, pioneered in 2004-2006 by Candès, Tao, Donoho,

and Romberg, enables the recovery of sparse or compressible signals from a small

number of incoherent measurements. A fundamental result in compressed sensing

is that sparse signals can be approximately recovering by l1 norm minization, which

is computationally tractable.

Recht, Fazel, and Parrilo [59], Candès [32], and Candès and Plan [31] showed

that fundamental results in compressed sensing hold also for matrix recovery. For

compressed sensing of matrices, sparsity or approximate sparsity is replaced with a

low-rank or approximate low-rank assumption. While the recovery of a compressible

signal implicitly involves the identification of a basis (or frame) in which it is sparse

and the recovery of its coefficients, the recovery of a compressible matrix requires
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learning both its principle singular vectors and its principle singular values.

A number of tensor completion approaches have been studied. J. Liu, Mu-

sialski, Wonka, and Ye [98] first proposed an algorithm for tensor completion via

the minimization of a sum of nuclear norms. The algorithm works by unfolding,

or flattening, the tensor into a matrix along each axis. The unfolding approach

has been further studied by Tomioka [141, 140, 139], Gandy, Recht and Yamada

[64], Krishnamurthy and Singh [89], Yang [148], and Zhang, Yang and Huang [150].

Tensor factorization techniques have also been studied by Y. Liu, Shang, Fan, J.

Cheng, and H. Cheng [99, 100, 101]. Other approaches include Bayesian methods

by Zhao, Zhang, and Cichocki [151] and Bazerque, Mateos, and Giannakis [8].

Other tensor completion approaches aim to capture more high-dimensional

structure than unfolding methods. Rauhut, Schneider, and Stojanac have devel-

oped an iterative hard thresholding (IHT) algorithm for tensor completion that uses

the full higher-order singular value decomposition (HOSVD) structure [119, 122].

Rauhut and Stojanac have also developed algorithms using θ-norms [121], which

are relaxations of the true tensor nuclear norm, not a sum of nuclear norms of un-

foldings. Mu, Huang, Wright, and Goldfarb proposed unfolding a high dimensional

tensor into a matrix that is as square as possible [111].

Our work was initially motivated by the results of Cloninger and Czaja [42, 41].

Cloninger and Czaja developed an algorithm to solve discrete, separable Fredholm

integral equations using matrix completion. They observed that for highly ill-

conditioned inverse problems, the solution depends only on the projection of the

observed data onto a significantly lower dimensional space. They applied matrix
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completion to reconstruct the compressed data. By extending a probabilistic re-

stricted isometry property (RIP) result of Y. Liu [102] to the case of Parseval tight

frames, Cloninger and Czaja established a probabilistic recovery guarantee. They

showed that the resulting algorithm is highly effective for 2-dimensional nuclear mag-

netic resonance relaxometry. The algorithm was validated on experimental data in

[3].

Here, we extend the results of Cloninger and Czaja to the setting of tensor

completion applied to the solution of multidimensional ill-posed inverse problems.

We establish a deterministic restricted isometry property (RIP) based recovery guar-

antee for tensor recovery. We also establish probabilistic recovery guarantees for a

more general class of random measurement operators, sub-Gaussian maps.

In nuclear magnetic resonance (NMR) relaxometry and related applications,

N -dimensional experiments (N ≥ 2) promise two primary advantages over 1 or 2-

dimensional experiments. First, N -dimensional experiments provide significantly

richer information than 1-dimensional experiments [29]. Second, in [38], Celik,

Bouhrara, Reiter, Fishbein, and Spencer observed empirically that 2-dimensional

relaxometry problems exhibit better stability than similar 1-dimensional problems.

By extension, these results suggest that N -dimensional experiments (N ≥ 3) could

provide even better stability than 2-dimensional experiments.

This dissertation is organized as follows. In Chapter 3, we develop tensor re-

covery guarantees and algorithms for tensor recovery via sum of nuclear norms min-

imization. In Section 3.2 a restricted isometry property (RIP) recovery guarantee is

proved. Section 3.3 develops probabilistic tensor recovery guarantees for a general
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class of random measurement operators, sub-Gaussian maps. Section 3.4 obtains

recovery guarantees for non-uniform sampling from Parseval tight frames. Section

3.5 shows how the non-uniform sampling distribution can be tailored to minimize

the coherence of the random measurement operator, resulting in improved recovery

guarantees. Section 3.6 develops a fast fixed point continuation algorithm for tensor

completion, improving upon a previous algorithm by Yang, Huang, and Shi [148].

In section 3.7, we develop an algorithm, accelerated k-fold cross-validation, that

rapidly estimates the regularization parameter for tensor recovery that minimizers

a measure of generalization error.

Chapters 4, 5, and 6, described below, are joint with Dr. Richard G. Spencer

and Dr. Hasan Celik.

Chapter 4 introduces nuclear magnetic resonance (NMR) relaxometry and the

ill-conditioned inverse problems that arise in NMR.

In Chapter 5, we apply our results to solve ill-conditioned multidimensional

inverse problems arising in NMR relaxometry. For 3-dimensional experimental and

simulated NMR data, we demonstrate that our algorithm consistently reconstructs

distributions of relaxation parameters. The methods described can be applied to

T1-T2, T2-store-T2, T1-D-T2, and other experiments. In Section 5.6, we propose

a heuristic technique, generalized cross-validation, for the choice of regularization

parameter for multidimensional inverse problems.

Chapter 6 develops condition number estimates for Tikhonov regularized non-

negative least squares problems. These results can be applied to quantify the sta-

bility of multidimensional inverse problems.
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Chapter 2: Mathematical Preliminaries

2.1 Basic Notation

Let R denote the real numbers. Given sets A and B, let A×B = {(a, b) : a ∈

A, b ∈ B} denote the Cartesian product of sets. We denote by Rd = R × · · · × R

a d-dimensional Euclidean vector space over R with the standard basis e1, . . . , ed.

Rd1×d2 denotes the space of matrices of size d1 × d2. In our convention, vectors are

denoted by lowercase letters, such x, y ∈ Rd, and matrices are denoted by uppercase

letters, such as X, Y ∈ Rd1×d2 . The transpose of a matrix X is denoted X t. For any

integer n ≥ 1, let [n] be the set {1, . . . , n}. Given two real vector spaces V and W ,

let L(V,W ) denote the space linear maps T : V −→ W .

For N ≥ 1 and d1, . . . , dN ≥ 1, let Rd1×···×dN denote the space of N -dimensional

tensors, or real N -dimensional arrays, of size d1× · · ·× dN . Although Rd1×···×dN can

be viewed as an N -dimensional array, it is a (d1d2 · · · dN)-dimensional real vector

space. Tensors are denoted by boldface capital letters, such as X,Y. Tensors are a

natural generalization of vectors and matrices. Individual entries of a vector, matrix,

or tensor will be denoted by x[i1], X[i1, i2], or X[i1, . . . , iN ].

We define the following lp norms and inner products for vectors x ∈ Rd. ||x||p =

(
∑d

i=1 |xi|p)1/p for 1 ≤ p <∞. For p =∞, let ||x||∞ = maxi |xi|. For any set A, let
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|A| denote its cardinality. The sparsity of a vector x is defined by ||x||0 = |{i|xi 6= 0}|

and is equal to the number of nonzero entries in x. Despite the similar notation to

the ||x||p norms for p ≥ 1, sparsity ||x||0 is not a norm. The inner product of two

vectors x, y ∈ Rd is 〈x, y〉 =
∑

i=1d xiyi.

2.2 Linear Algebra

We state several standard facts from linear algebra. Given a matrixA ∈ Rd1×d2 ,

we define ker(A) = {x|Ax = 0} and im(A) = {Ax|x ∈ Rd2}. The n × n identity

matrix is denoted by Idn×n. The rank of a matrix A is denoted rank(A).

Definition 2.1 (Orthonormal matrix). A matrix U ∈ Rd1×d2 is said to have or-

thonormal columns if U tU = Idd2×d2 . U is said to have orthonormal rows if UU t =

Idd1×d1. A square matrix U is orthonormal if it has orthonormal columns and or-

thonormal rows.

Definition 2.2 (Singular value decomposition (SVD)). Let A ∈ Rd1×d2 with r =

rank(A) ≥ 1. The SVD of A consists of matrices U ∈ Rd1×r and V ∈ Rd2×r with

orthonormal columns and a diagonal matrix S = diag(σ1, . . . , σr) ∈ Rr×r, σ1 ≥ σ2 ≥

. . . ≥ σr ≥ 0, satisfying

A = USV t.

Definition 2.3 (Full singular value decomposition (full SVD)). Let A ∈ Rd1×d2. The

full SVD of A consists of orthonormal matrices U ∈ Rd1×d1 and V ∈ Rd2×d2, and a

rectangular matrix S ∈ Rd1×d2 with diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σmin(d1,d2) ≥ 0
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and all off-diagonal entries equal to 0, satisfying

A = USV t.

The following is a standard theorem [67].

Theorem 2.4 (Existence and uniqueness of SVD). Let A ∈ Rd1×d2 be nonzero.

Then, the SVD of A, of the form A = USV t, exists and is unique, up to possibly

replacing U and V with UΛ and V Λ, where Λ is a block diagonal matrix with blocks

corresponding to the distinct singular values of A, and where each block occurring

along the diagonal of Λ is orthonormal.

In the simple case in which all singular values are distinct, the SVD is unique

up to possible sign changes of the columns of U and V . In the more general case,

Theorem 2.4 states that if several singular vectors have the same singular value,

they can be transformed by an orthonormal transformation.

We define the following inner products and norms for matrices. Let X, Y ∈

Rd1×d2 . We define vec(X) to be the column vector in Rd1d2 obtained by concatenating

the columns of X. We define the inner product 〈X, Y 〉 = 〈vec(X), vec(X)〉 =∑d1

i1=1

∑d2

i2=1 X[i1, i2]Y [i1, i2]. The Frobenius norm for matrices is defined to be

||X||F =
√
〈X,X〉.

For p ≥ 1, the Schatten-p norms for matrices are defined as follows. Let

X = Udiag(σ1, . . . , σr)V
t be the SVD of X, and define ||X||Sp = (

∑r
i=1 σ

p
i )

1/p
. The

nuclear norm for matrices is defined to be ||X||∗ =
∑r

i=1 σi(X). The operator norm

for matrices is defined by ||X||2 = σmax(X).
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We have the following equality of norms. The nuclear norm ||X||∗ is equal to

the Schatten-1 norm ||X||S1 . The operator norm ||X||2 is equal to the Schatten-∞

norm ||X||S∞ . The Frobenius norm ||X||F is equal to the Schatten-2 norm ||X||S2 .

Given a nonzero matrix X ∈ Rd1×d2 of rank r ≥ 1 with singular value decom-

position Udiag(σ1, . . . , σr)V
t, we define σmax(X) = σ1(X) to be the largest singular

value of X. We define σr(X) to be the smallest nonzero singular value of X. We

define σmin(X) to be the smallest singular value in the full SVD of X. Hence, if X

is not full-rank, σmin(X) = 0 while σr(X) 6= 0. We define the condition number of

X to be

κ(X) =
σ1(X)

σr(X)
,

the ratio between the largest and smallest nonzero singular values of X.

Lemma 2.5. Let X be a matrix with rank(X) ≤ r. Then ||X||∗ ≤
√
r||X||F.

Proof. LetX = Udiag(σ1, . . . , σr)V
t be the SVD ofX. Then by the Cauchy-Schwarz

inequality,

||X||∗ =
r∑

k=1

σk ≤
√
r

√√√√ r∑
k=1

σ2
k =
√
r||X||F. (2.1)

2.3 Tikhonov Regularization

Given a kernel K ∈ Rm×n and a data vector y ∈ Rm, consider the least squares

problem

min
x∈Rn
||Kx− y||22 (2.2)
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If the kernel K is ill-conditioned, small changes in the data y could result

in large changes in the solution x. Tikhonov regularization is a standard method

to improve the conditioning of (2.2). Tikhonov regularization solves the following

problem instead of (2.2):

min
x∈Rn
||Kx− y||22 + α2||x||22 (2.3)

The following standard result shows that the Tikhonov regularized least squares

problem (2.3) is equivalent to a least squares problem [78, Equation 4.9].

Lemma 2.6. Let K ∈ Rm×n and y ∈ Rm. Define the augmented kernel

Kaug :=

 K

αIdn×n

 (2.4)

and the augmented data

yaug :=

 y

0n×1

 . (2.5)

Then (2.3) is equivalent to:

min
x∈Rn
||Kaugx− yaug||22 (2.6)

in the sense that x ∈ Rn is a solution of (2.3) if and only if x is a solution of (2.6).

The following result characterizes the SVD of Kaug.

Lemma 2.7. Let K be a matrix of size m × n and of rank r ≥ 1. Let K = USV t

be any full SVD of K, where U is m×m, V is n× n, U and V have orthonormal

columns, and S is an m × n diagonal matrix with diagonal entries σ1 ≥ · · · ≥
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σmin(m,n) ≥ 0. Then an SVD of the augmented matrix Kaug for α > 0 is given by

Kaug = Ũ S̃Ṽ t,

where

Ũ =

 US

αV

(StS + α2Idn×n

)−1/2

S̃ =
(
StS + α2Idn×n

)1/2

,

and

Ṽ = V.

Proof. We need to show that Ũ and Ṽ have orthonormal columns, that S̃ is diagonal

with positive, non-increasing diagonal entries, and that Kaug = Ũ S̃Ṽ t. Observe that

(
StU t αV t

) US

αV

 = StU tUS + α2V tV = (StS + α2Idr×r),

so the columns of the right factor on the left side above are orthogonal with norms

norms
√
σ2
i + α2 for i = 1, . . . , n, where for notational brevity we let σi = 0 if

i ≥ min(m,n). It follows that Ũ tŨ = Idr×r. Since Ṽ = V , orthonormality of the

columns of Ṽ follows from the same property for V .

Finally, we have

Ũ S̃Ṽ t =

 US

αV

(StS + α2Idn×n

)−1/2(
S2 + α2Idn×n

)1/2

V t

=

 USV t

αV V t


11



=

 K

αIdn×n


= Kaug.

The following lemma shows that if a matrix K is replaced by a submatrix

consisting of a subset of its columns, its largest singular value cannot increase.

Furthermore, if ker(K) = {0}, the smallest singular value cannot decrease. This

lemma can be used to bound the expressions appearing in the condition number

estimates in Chapter 6.

Lemma 2.8. Let K be a nonzero matrix of size m × n and of rank r. Let Λ ⊂

{1, . . . , n} be nonempty and let KΛ be the submatrix of K consisting of columns

from K with indices in Λ. Let σ1(K) and σr(K) denote the largest and smallest

nonzero singular values of K. Then

σ1(KΛ) ≤ σ1(K). (2.7)

If, in addition, we have kerK = {0}, then

σr(KΛ) ≥ σr(K) (2.8)

Proof. Let σmax(K) and σmin(K) denote the largest and smallest singular values of

K occurring in the full SVD of K. Then σ1(K) = σmax(K) and σmin(K) ≤ σr(K).

In general, σr(K) is always nonzero, since K is nonzero, but σmin(K) could be zero.

We use the following standard characterization of the maximum and minimum
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singular values of the full SVD of a matrix [136, Equation 6.4.7]:

σmax(K) = sup
||x||=1

||Kx||2 (2.9)

and

σmin(K) = inf
||x||=1

||Kx||2. (2.10)

Hence, by (2.9) we have

σ1(KΛ) = sup
||x||=1

||KΛx||2 ≤ sup
||x||=1

||Kx||2 = σ1(K).

If ker(K) = {0}, we have σr(K) = σmin(K). Since ker(K) = {0}, it follows

that ker(KΛ) = 0 also. Hence we also have σr(KΛ) = σmin(KΛ). Hence, by (2.10),

we have

σr(KΛ) = σmin(KΛ)

= inf ||x||=1 ||KΛx||2

≥ inf ||x||=1 ||Kx||2

= σmin(K)

= σr(K).

Corollary 2.9. If K is an m×n matrix, Λ ⊂ {1, . . . , n} is nonempty, and ker(K) =

{0}, then all the singular values of KΛ are contained in the interval [σmin(K),

σmax(K)] and the condition number of KΛ satisfies

κ(KΛ) ≤ κ(K). (2.11)

13



2.4 Tensor Notation

We introduce standard tensor notation as in [87, 72]. Tensors are denoted by

boldface capital letters, such as X,Y. Recall that matrices are denoted by plain

capital letters such as X, Y , and vectors are denoted by plain lowercase letters, such

as x, y. Individual entries are denoted by X[i1, . . . , iN ].

Definition 2.10 (Tensor). A tensor is any element X ∈ Rd1×···×dN , where N ≥ 1

and d1, . . . , dN ≥ 1.

We denote by Rd1×···×dN the space of tensors of size d1× · · · × dN . In contrast,

Rd1d2···dN denotes the space of column vectors of length d1d2 · · · dN .

Definition 2.11 (Lexicographical ordering). The lexicographical ordering on [d1]×

· · · × [dn] is defined by (i1, . . . , iN) < (j1, . . . , jN) ⇐⇒ i1 < j1 or for some 1 ≤ k <

N, i1 = j1, i2 = j2, . . . , ik = jk and ik+1 < jk+1.

Recall that for any integer n ≥ 1, [n] denotes the set {1, . . . , n}.

Definition 2.12 (Vectorization). Given a tensor X ∈ Rd1×···×dN , its vectorization,

vec(X),

is the column-vector of length d1d2 · · · dN in Rd1d2···dN obtained by arranging all the

entries of X into a column vector according to the lexicographical ordering on the

indices of X. Here d1 · · · dN denotes the product of numbers.

Definition 2.13 (Reshape). Given vector x ∈ Rd1d2···dN , reshape(d1, . . . , dN) is the
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result of arranging the entries of x into a tensor X ∈ Rd1×···×dN according to the

lexicographical order on [d1]× · · · × [dN ].

Definition 2.14 (Kronecker product). The Kronecker product of matrices X ∈

Rm1×m2 and Y ∈ Rn1×n2 is the matrix in X ⊗ Y ∈ R(m1n1)×(m2n2) defined by

X ⊗ Y :=


X[1, 1]Y · · · X[1, n1]Y

...
. . .

...

X[m1, 1]Y · · · X[m1, n1]Y

 (2.12)

The following standard result, found in [93] and other textbooks, characterizes

the SVD of a Kronecker product.

Theorem 2.15. Let K1, . . . , KN be matrices with SVD’s

Ki = UiSiV
t
i .

The reduced SVD for the Kronecker product, up to a possible permutation of the

order of the singular values and singular vectors, is given by

K1 ⊗ · · · ⊗KN = (U1 ⊗ · · · ⊗ UN)(S1 ⊗ · · · ⊗ SN)(V1 ⊗ · · · ⊗ VN)t.

The following definition generalizes the definition of rows and columns to ten-

sors.

Definition 2.16. (k-columns) Given a tensor X ∈ Rd1×···×dN , its k-columns are the

vectors in Rdk of the form X[i1, . . . , ik−1, :, ik+1, . . . , iN ] obtained by fixing all indices

except the k-th, with the k-th index ranging from 1, . . . , dk.

For a matrix, 1-columns are columns while 2-columns are rows.
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Definition 2.17. (Unfolding) Given a tensor X ∈ Rd1×···×dN , its k-th unfolding

is the tensor X(k) ∈ Rdk×(d1···dk−1dk+1···dN ) obtained by arranging all the k-columns

of X into a matrix, according to the lexicographical ordering on [d1] × · · · [dk−1] ×

[dk+1] · · · × [dN ].

Recall that for an integer n, [n] = {1, . . . , n}.

Definition 2.18 (Refolding). Given a vector x ∈ Rd1···dN , define refoldd1,...,dN (x)

to be the tensor in Rd1×···×dN obtained by arranging the entries of x into a tensor

according the the lexicographical ordering on [d1]× · · · × [dN ].

It is straightforward to show that unfolding and refolding are adjoint to each

other. This property will be useful later when analyzing first order conditions for

tensor optimization.

Given two vectors, v1 ∈ Rd1 and v2 ∈ Rd2 , their outer product v1 ◦ v2 =

v1v
t
2 ∈ Rd1×d2 is the matrix whose (i1, i2) entry is given by v1[i1]v2[i2]. The following

definition generalizes the outer product to more than two vectors.

Definition 2.19 (Outer product). Let vi ∈ Rdi for i = 1, . . . , N . The outer product

of v1, . . . , vN , denoted by v1 ◦ · · · ◦ vN ∈ Rd1×···×dN , is the tensor with entries

(v1 ◦ · · · ◦ vN)[i1, . . . , iN ] = v1[i1]v2[i2] · · · vN [iN ].

The following definition provides a concise way to extract a subset of the

entries of a tensor.

Definition 2.20. (Tensor sampling) Let X ∈ Rd1×···×dN . For any subset Ω ⊂ [d1]×

· · ·×[dN ] of the indices of X, let X[Ω] denote the vector in R|Ω| obtained by arranging
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the entries {X[i1, . . . , iN ] : (i1, . . . , iN) ∈ Ω} into a column vector, according to the

ordering lexicographical ordering inherited by Ω from [d1]× · · · × [dN ].

The following definition generalizes the action of a matrix on a vector to the

action of a matrix on a tensor.

Definition 2.21. (k-mode product) The k-mode product of a tensor X ∈ Rd1×···×dN

with a matrix U ∈ Rnk×dk is the tensor X ⊗k U ∈ Rd1×···dk−1×nk×dk+1×···dN obtained

by multiplying all the k-columns of X by U .

If X is a matrix, X ⊗1 U = UX and X ⊗2 U = XU ′.

As shown in [92], the k-mode product can be described in terms of unfolding

and matrix multiplication by

(X⊗k U)(k) = UX(k). (2.13)

Definition 2.22. (Tucker decomposition) A Tucker decomposition of a tensor X ∈

Rd1×···×dN consists of a core-tensor C ∈ Rr1×···×rN and collection of matrices Ui ∈

Rdi×ri, i = 1, . . . , N , satisfying

X = C⊗1 U1 ⊗2 U2 · · · ⊗N UN . (2.14)

C is called the core-tensor and Ui are called the Tucker factors.

The Tucker decomposition induces structure on vectorizations and unfoldings.

The following is a standard result [92].

Lemma 2.23. Suppose X = C⊗1 U1⊗2 U2 · · · ⊗N UN is a Tucker decomposition of

X. Then the following properties hold.
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• (Vectorization) We have

vec(X) = (UN ⊗ · · · ⊗ U1)vec(C). (2.15)

• (Unfolding) For all k = 1, . . . N ,

X(k) = Ukvec(C)(UN ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1). (2.16)

Definition 2.24 (Tucker rank). A tensor X ∈ Rd1×···×dN has Tucker rank (r1, . . . , rN)

if rank(X(i)) = ri for i = 1, . . . , N .

The Tucker rank is equivalent to the size of the core tensor in any higher-order

singular value decomposition (HOSVD) of X [92].

2.5 Optimization

Definition 2.25 (convex function). A function f : Rd −→ R is convex if for all

x, y ∈ Rd, and for all α ∈ [0, 1] we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Definition 2.26 (Subdifferential of convex function). Let f : Rd −→ R be a convex

function. Let x ∈ Rd. The subdifferential of f at x, denoted ∂f(x), is the set

∂f(x) = {v ∈ Rd : f(y) ≥ f(x) + 〈y − x, v〉 ∀y ∈ Rd}.

The following result is standard.

Lemma 2.27. Let f : Rd −→ R be a convex function and let x ∈ Rd. Then f attains

a global minimum value at x if and only if 0 ∈ ∂f(x).
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Proof. Suppose that 0 ∈ ∂f(x). Set v = 0 in the definition ∂f(x). It follows that

0 ∈ ∂f(x) if and only if for all y ∈ Rd,

f(y) ≥ f(x) + 〈y − x, 0〉 = f(x).

Hence the claim follows.

2.6 Finite Frames

Definition 2.28 ([17]). A frame for a d-dimensional real Hilbert space H is a set

of vectors {u1, . . . , un} ⊂ H such that there exist constants A,B > 0 for which

A||x||2H ≤
n∑
i=1

|〈ui, x〉|2 ≤ B||x||2H ∀x ∈ H.

A frame is tight if A = B and and a frame is a Parseval tight if A = B = 1.

Frames have significantly increased the scope and applicability of results in

harmonic analysis and compressed sensing [12, 11, 13, 14, 15, 16, 48, 47, 10, 49].

The redundancy and non-uniqueness in frame representations makes it easier to find

stable sparse representations [4, 117]. A topic of recent interest has been scalable

frames [40, 90].

Definition 2.29 (Analysis operator). The analysis operator T : H −→ Rn for a

frame {ui}ni=1 is given by

T (x)[i] = 〈x, uj〉,

for x ∈ Rd and i = 1, . . . , n.

Lemma 2.30. Let {ui}ni=1 be a Parseval tight frame. Then the analysis operator

T : H −→ Rn is an isometry.
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Proof. The result follows from the definition of a Parseval tight frame, since

||T (x)||22 =
n∑
i=1

|〈ui, x〉|2.

The following result is well-known.

Lemma 2.31. Let {ui}ni=1 be a Parseval tight frame for a d-dimensional Hilbert

space H. Then
n∑
i=1

||ui||2H = d.

Proof. Without loss of generality, assume that H = Rd. Let MT be the matrix

for T with respect to the standard basis for Rd. Then MT has rows given by uti,

i = 1, . . . , n. Since MT is an isometry, it must have exactly d nonzero singular values

all equal to 1. Since
∑n

i=1 ||ui||22 is equal to the Frobenius norm of MT and since the

Frobenius norm is equal to the sum of the squares of the singular values of MT , we

obtain
n∑
i=1

||ui||22 = ||MT ||2F =
d∑
i=1

σi(MT )2 =
d∑
i=1

1 = d.

In [137], geometric optimization over finite frames is studied.

2.7 Introduction to Compressed Sensing

Compressed sensing (CS) was pioneered by Candès, Tao, Romberg and Donoho.

In a series of papers [34, 36, 35, 55, 33, 33], they proved that under certain assump-

tions on a signal and on a linear measurement operator, signals can be recovered
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from a very small number of measurements. In Fourier analysis, the Shannon sam-

pling theorem sets a fundamental lower limit on the number of measurements needed

to reconstruct a band-limited function. Compressed sensing enables the recovery of

signals from fewer measurements than would be required for traditional methods.

Major additional contributions from DeVore, Baraniuk, Davenport, Rauhut, Wakin,

Cohen, and Dahmen quickly followed [5, 43, 52, 44, 116].

We briefly list several pioneering papers before describing central results in

more detail. In [34], Candès, Romberg, and Tao proved that it is possible to recon-

struct a discrete signal x ∈ Cd from random observations of its Fourier coefficients.

In [36], Candès and Tao proved recovery results for random Gaussian measurements

under the assumption that the observed signals x ∈ Rd obey a power-law decay.

In [35], Candès and Tao show that sparse signals can be exactly recovered by l1

minimization.

In [55], Donoho proved recovery results for signals that are sparse with respect

to an orthonormal basis or a tight frame. Donoho derived conditions on the sampling

operator under which these results hold and showed that good CS measurement

operators give what look like almost random linear combinations of the the signal

entries.

In [33], Candès and Romberg introduced a fundamental concept, incoherence,

and showed that incoherent measurements can be used to recover sparse signals from

a small number of measurements. Candès and Romberg observed that incoherence

can be used to ensure recovery from sampling operators constructed by randomly

choosing a subset of the rows of an orthonormal matrix.
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In compressed sensing, the goal is to recover a signal x0 ∈ Rd from linear

measurements of the form

y = A(x0) (2.17)

in the noise-free case, or

y = A(x0) + z (2.18)

in the noisy case, where A : Rd −→ Rm is a linear operator, y ∈ Rm are the observed

measurements, m is the number of measurements observed, and z ∈ Rm is a noise

vector. In the noise free setting, z = 0 .

If A is described by a matrix A, we define

A(x) = Ax,

so that each observation yi is given by yi =< A[i, :], x >, where A[i, :] is the i-th row

of A.

Compressed sensing is concerned with the case in which the dimension of the

signal to be recovered is much higher than the number of observations, i.e., m << d,

in which case the linear system (2.17) is undetermined. Hence, recovery cannot be

guaranteed for all signals x. A main theme in CS is that recovery can be guaranteed

provided two general assumptions hold: (1) the signal is sparse in some respect,

meaning that it contains a small amount of ‘information’, and (2) the operator A

approximately preserves the information in such sparse signals. There are several

ways to quantify these conditions and each leads to different recovery theorems.

The following is perhaps the simplest notion of sparsity [51, 6].

22



Definition 2.32 (r-sparsity). A vector x ∈ Rd is r-sparse if ||x||0 ≤ r, i.e., at most

r entries x[i] are nonzero.

Definition 2.33 (compressibility). A vector x ∈ Rd is said to be compressible if it

is approximately equal to an r-sparse vector.

While there are many ways to quantify compressibility, one is a power-law

decay.

Definition 2.34. (Power-law decay) [36] A vector x ∈ Rd obeys a power-law

decay with constants C > 0 and p > 0 if xdescending[i] ≤ Ci−1/p, where xdescending

denotes the result of arranging the entries of x in order of descending absolute value.

In [43], Cohen, Dahmen, and DeVore derived necessary and sufficient condi-

tions on the operator A to approximately recover best r-term approximations of a

given (possiblly non-sparse) vector x in terms of null space properties.

In [113], applications of compressed sensing to image representation and com-

pression are studied. The degree of sparsity, in biological and other datasets, plays

an important role in determining the applicability of compressed sensing methods

[69].

2.8 Restricted Isometry Property

The following property, introduced by Candès and Tao in [35], quantifies the

notion that the operator A should preserve information in sparse vectors.

Definition 2.35 (Restricted isometry property (RIP)). A linear operator A : Rd −→
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Rm satisfies the RIP of order r and constant δr > 0 if

(1− δr)||x||22 ≤ ||A(x)||22 ≤ (1 + δr)||x||22

holds for all r-sparse vectors x ∈ Rd.

If A satisfies the RIP with δr < 1, A acts as an approximate isometry on all

r-sparse vectors, thus preserving ‘most’ of the information in sparse vectors.

An alternate definition of RIP is sometimes used, without the squares.

Definition 2.36 (Restricted isometry property (RIP), square-free version). A linear

operator A : Rd −→ Rm satisfies the square-free RIP of order r and constant δ̄r > 0

if

(1− δ̄r)||x||2 ≤ ||A(x)||2 ≤ (1 + δ̄r)||x||2

holds for all r-sparse vectors x ∈ Rd.

We will consistently use δ̄r to denote the square-free RIP constant and δr to

denote the standard RIP constant.

Lemma 2.37. If A satisfies the square-free RIP with constant δ̄, then A satisfies the

standard RIP with constant δ = 2δ̄+δ̄2. If A satisfies the standard RIP with constant

δ, then A satisfies the square-free RIP with constant δ̄ for all δ̄ > 0 satisfying

δ ≤ 2δ̄ − δ̄2.

Proof. Assume thatA satisfies the square-free RIP with constant δ̄.We could deduce

that A satisfies the standard RIP with constant δ if 1− δ ≤ (1− δ̄)2 and (1 + δ̄)2 ≤

1 + δ. These inequalities are equivalent to δ ≥ 2δ̄ + δ̄2.
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Next assume that A satisfies the standard RIP with constant δ. We could

deduce the square-free RIP with constant δ̄ if (1− δ̄)2 ≤ 1− δ and (1 + δ̄)2 ≤ 1 + δ.

These inequalities are equivalent to δ ≤ 2δ̄ − δ̄2.

Alternative versions of the RIP, such as the statistical RIP, have been pro-

posed. In [146], the stability of recovery algorithms under the statistical restricted

isometry properties is studied. There are connections between compressed sensing

and randomized dimensionality reduction [75].

2.9 Recovery Algorithms in Compressed Sensing

A naive approach to solve (2.17) would be to search for the lowest rank solution,

i.e., to solve

min
x∈Rd : A=y

||x||0, (2.19)

in the noise-free case, or

min
x∈Rd : ||A−y||2≤ε

||x||0, (2.20)

in the noisy case.

Unfortunately, (2.19) and (2.20) are NP-hard [112]. The non-convexity of the

rank function creates significant difficulties. The set of vectors of sparsity r in Rd is

the union of d!
r!(d−r)! subspaces, so (2.19) could be solved by searching for solutions

to a large number of distinct systems of linear equations, but doing so is impractical

for all but very low dimensional problems.
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The problems (2.19) and (2.20) can be replaced by their convex relaxations

min
x∈Rd : A=y

||x||1, (2.21)

in the noise-free case, or

min
x∈Rd : ||A−y||2≤ε

||x||1, (2.22)

in the noisy case. Since the || · ||1 norm is convex, standard convex optimization and

linear programming techniques can be applied.

A fundamental result in CS is that under certain conditions, problems (2.21)

and (2.22) exactly or approximately recover the solutions of (2.19) and (2.20). The

following theorem was proven by Cohen, Dahmen, and DeVore [43, Theorem 4.3].

Theorem 2.38. Let x0 ∈ Rd, assume that measurements y = A(x0) are obtained ac-

cording to (2.17), and assume that the measurement operator A satisfies the square-

free RIP of order 2r with δ2r ≤ δ < 1/3. Then the solution x∗ of the minimization

problem (2.21) satisfies the error estimate

||x0 − x∗||1 ≤ C||x0 − xbest||1, (2.23)

where xbest is the best r-sparse approximation of x0 in the || · ||1 norm and C = 2+2δ
1−3δ

.

Hence, the RIP of order 2r is sufficient to guarantee that || · ||1 norm mini-

mization produces the best r-sparse approximation, up to a constant factor. If x0

is r-sparse, the right hand side in (2.23) vanishes, so recovery is exact.

Given a measurement operator A : Rd −→ Rm with associated matrix A ∈

Rm×d, it is possible to directly check whether the RIP of rank r holds by computing

the largest and smallest singular values of every r-column submatrix, i.e., every
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submatrix of the form A[:,Λ], where Λ ⊂ {1, . . . , d} and |Λ| = r. However, the

number of such submatrices is d!
r!(d−r)! , so this computation is impractical.

2.10 Incoherence

Since the RIP is difficult to verify deterministically, a large body of research

in CS has focused on proving that the RIP holds with high probability for various

random measurement operators A.

Probabilistic recovery guarantees have been proved for random measurement

operators A given by random Fourier submatrices, random Gaussian ensembles (ma-

trices in which each entry is independent, identically distributed (i.i.d.) Gaussian),

and Bernoulli ensembles, as described by Candès and Tao in [30]. Rudelson and

Vershynin provided recovery proofs for random Fourier and Gaussian measurements

[131].

More generally, Baraniuk, Davenport, DeVore, and Wakin proved that the RIP

holds with high probability for random Gaussian and Bernoulli measurements [5].

Their arguments elucidate a fundamental connection between the restricted isometry

property and covering numbers for finite dimensional unit balls in Euclidean space.

In [110], Mendelson, Pajor, and Tomczak-Jaegermann proved RIP-like results

for isotropic sub-Gaussian random measurements. Their argument involved bound-

ing the supremum of a Gaussian process and revealed fundamental connections to

the γ2 functional and the majorizing measures theorem of Guédon, Mendelson, Pa-

jor, and Tomczak-Jaegermann in [70].
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Intuitively, recovery of a sparse signal from a small number of measurements is

only possible if each measurement provides information about ‘most’ of the entries in

the signal. The necessity of such a condition is apparent by considering an operator

A defined by randomly selecting a subset Ω ⊂ {1, . . . , d} and setting A(x) = x[Ω],

i.e., only observing the entries x[i] for i ∈ Ω. If x is r-sparse with r << d, with

very high probability most of the observed entries will be 0, so A(x) captures almost

none of the information in the signal. In contrast, for a random Gaussian ensemble,

each measurement is a dense random linear combination of the entries of x, so each

measurement can be expected to capture a nontrivial amount of information about

the signal.

In [33], Candès and Romberg defined coherence, which quantifies the idea that

each measurement provide information about ‘most’ of the signal.

Consider a random measurement operator defined as follows. Let A ∈ Rd×d

be an orthonormal matrix. Choose a subset Ω ⊂ {1, . . . , d}, and define

A(x) = A[Ω, :]x, (2.24)

where A[Ω, :] is the submatrix of A consisting of the rows of A indexed by Ω. Hence,

if at1, . . . , a
t
d are the rows of A, the measurements take the form of inner products

< ai, x > for i ∈ Ω.

The following definition is from [33].

Definition 2.39 (Mutual coherence).

• The mutual coherence of an orthonormal matrix A ∈ Rd×d with respect to the
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standard basis is

ν(A) = max
i,j
|A[i, j]|

• If A,B ∈ Rd×d are two orthonormal matrices, the mutual coherence of A and

B is

ν(A,B) = max
i,j
|〈ai, bj〉|, (2.25)

where ai and bj are the rows of A and B, viewed as column-vectors.

Observe that if B = Idd×d, the second definition reduces to the first. Mutual

coherence measures the degree of similarity between the two bases. Since A and

B are orthonormal, mutual coherence always satisfies ν ≥ 1/
√
d. Values of ν near

1/
√
d indicate that measurements of the form < ai, x > capture robust information

about the representation of x with respect to the basis b1, . . . , bd. The discrete

Fourier transform matrix F ∈ Cd×d has coherence 1/
√
d while the identity matrix

Idd×d has coherence 1.

In [117], Rauhut, Schnass, and Vendergheynst extended compressed sensing

results to the case in which signals are sparse with respect to redundant dictionaries,

not just orthonormal bases.

2.11 Probability Theory

The following are standard definitions from probability theory [88].

Definition 2.40. Let Ω be a set. A collection F of subsets of Ω is a σ-algebra if

the following holds:
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• Ω ∈ F .

• If F ∈ F , then Ω\F ∈ F , where A\B denotes the points in A that are not in

B.

• If {Fi}∞i=1 ⊂ F , then ∪∞i=1Fi ∈ F , where ∪ denotes the set union.

Definition 2.41 (Probability measure space). A probability measure space is a triple

(Ω,F , P ) where Ω is a set, F is a σ-algebra on Ω, and P : F −→ [0, 1] is a function

satisfying:

• P (Ω) = 1.

• If F1, F2, . . . ∈ F are disjoint, then P (∪∞i=1Fi) =
∑∞

i=1 P (Fi).

Definition 2.42 (Random variable). Let D be a subset of Rd, for some d ≥ 1.

A random variable (RV) on a probability space (Ω,F , P ) with values in D is any

function f : Ω −→ D that is measurable with respect to F . In other words, for all

open sets U ⊂ D, the set f−1(U) ∈ F , where f−1(U) = {ω ∈ Ω : f(ω) ∈ U}.

When there is no ambiguity, we will describe a random variable as taking

values in a given set, without explicitly identifying the measure space (Ω,F , P ).

Definition 2.43 (Expectation). Let (Ω,F , P ) be a probability measure space and

let x : Ω −→ R be a real-valued random variable. The expectation of x is defined to

be

E[x] =

∫
Ω

xP,

where the integral is a Lebesgue integral with respect to the measure P .
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The expectation of a random variable is in general not guaranteed to exist.

Definition 2.44 (Rademacher random variable). A Rademacher random variable

is a random variable ε with values in {−1, 1} that satisfies P (ε = 1) = 1/2 and

P (ε = −1) = 1/2.

2.12 Structured Random Measurement Operators

In the book [60], Foucart and Rauhut show that the RIP holds with high

probability for measurement operators with independent, isotropic, sub-Gaussian

rows, a significant generalization of the setting of orthonormal measurements or

Gaussian or Bernoulli ensembles. In this setting, each row of the measurement

matrix A is an iid drawing from a random vector with values in Rd; however, the

entries in any given row need not be independent.

The following definitions appear in [57].

Definition 2.45 (sub-Gaussian random variable). A real-valued random variable x

is sub-Gaussian with constant c if for all p ≥ 1,

(E|x|p)1/p ≤ c
√
p.

Definition 2.46. If x is a sub-Gaussian random variable, its sub-Gaussian norm,

denoted ||x||ψ2, is defined to be the smallest constant c satisfying (E|x|p)1/p ≤ c
√
p

for all p ≥ 1.

The following appears in [57, Example 5.8].

31



Lemma 2.47. If x is a bounded real-valued random variable satisfying E[x] = 0 and

|x| ≤ c, then x is sub-Gaussian with ||x||ψ2 ≤ c.

The following definition appears in [57].

Definition 2.48 (sub-Gaussian and isotropic random vectors). Let x be a random

vector taking values in Rd.

• x is sub-Gaussian with constant c if for all z ∈ Rd with ||z||2 = 1, the random

variable 〈x, z〉 is sub-Gaussian with ||〈x, z〉||ψ2 ≤ c. The sub-Gaussian norm

of x is defined to be

||x||ψ2 = sup
z∈Rd : ||z||2=1

||〈x, z〉||ψ2 .

• x is isotropic if for all z ∈ Rd,

E
[
|〈x, z〉|2

]
= ||z||22.

The following is [60, Theorem 9.6]

Theorem 2.49. Let A be a random m × d matrix with independent, isotropic,

and sub-Gaussian rows with sub-Gaussian parameter c. There exists a constant

C > 0 depending only on the sub-Gaussian constant c such that if the number of

measurements satisfies

m ≥ Cδ−2

(
r log

(
ed

r

)
+ log

(
2

ε

))
then the measurement operator given by

A(x) =
1√
m
Ax

satisfies the RIP of rank r with constant δr ≤ δ with probability at least 1− ε.
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The following example is well known; see for example [60].

Example 2.50 (Bounded orthonormal system). Let U be an n × d matrix with

orthonormal columns. Let A be an m× d random matrix with iid rows of the form

√
nεiui, where u1, . . . , um are m rows of U , chosen uniformly at random with replace-

ment and ε1, . . . , εm are iid Rademacher random variables with values in {−1, 1}.

Then A is a random matrix with independent, isotropic, sub-Gaussian rows. More-

over, the sub-Gaussian constant is given by

c = max
i=1,...,n

√
n ||U [i, :]||2 .

Proof. By construction, the columns of A are iid.

Let x be the random vector obtained by drawing a row uniformly at random

from the rows U . To prove that z =
√
nεx is sub-Gaussian, observe that because

of the Rademacher variable ε, we have E[z] = 0. Also, we have ||z||2 ≤ c by the

definition of c. Hence by Lemma 2.47, z is sub-Gaussian.

To prove that z is isotropic, observe that for any w ∈ Rd,

E[| < z,w > |2] = 1
n

∑n
i=1 |
√
nεiU [i, :]w|2

= ||Uw||22

= ||w||22 (2.26)

where (2.26) follows because U has orthonormal columns.

The assumption that each vector is multiplied by a Rachemacher random

variable does not create any loss of generality. Indeed, given observations without
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the Rademacher random variables, one could reduce to the above case by multiplying

the rows of A and the observations y by the Rademacher random variables.

Since the constant appearing in Theorem 2.49 depends on the sub-Gaussian

constant c, the sub-Gaussian constant affects the number of measurements required

to guarantee RIP with high probability. In the above example, the columns of U

form a Parseval tight frame for Rd. The sub-Gaussian constant c can be interpreted

as a measure of coherence, as will be discussed in Chapter 3.

2.13 Matrix Completion

Initial results in CS sensing sought to recover discrete signals x ∈ Rd. Although

such an x is a d-dimensional vector, it can also be thought of as 1-dimensional, in

the sense that its entries x[i] are indexed by a single integer i. Similarly, while the

set of matrices Rd1×d2 is a (d1d2)-dimensional vector space, matrices X ∈ Rd1×d2

can be thought of as a 2-dimensional, since its entries X[i1, i2] are indexed by two

integers i1 and i2.

The results of CS can be directly applied to recover sparse matricesX ∈ Rd1×d2 .

Indeed, given a linear measurement operator A : Rd1×d2 −→ Rm, one could re-

formulate the problem in terms of standard CS recovery by vectorizing the ma-

trices and the corresponding operator. Indeed, after defining x = vec(X) and

Ã(x) = A(refold(d1,d2)(x)), one could directly apply CS with the operator Ã to re-

cover x. After recovering the vectorization x, one recovers X by X = refold(d1,d2)(x).

Unfortunately, this procedure ignores the substantial additional structure in matri-
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ces, or 2-dimensional arrays.

Often, matrices have additional structure that can only be described by using

the full matrix structure, such as low rank or approximate low rank properties. Such

matrices arise in numerous applications; one example is recommender systems. A

famous problem in this area is the Netflix problem [9], in which a matrix is used

to store user preferences for movies, with rows corresponding to users and columns

to movies. Since it can be expected that only a relatively small number of factors

determine a user’s preferences for movies, the resulting matrix can be expected to

be approximately low-rank.

Consider the general matrix completion problem in which X0 ∈ Rd1×d2 is a low-

rank matrix to be recovered, A : Rd1×d2 −→ Rm is a linear measurement operator,

the observed data y ∈ Rm is given by

y = A(X0) + z, (2.27)

and z ∈ Rm is a noise vector satisfying ||z||2 ≤ ε. In the noise-free case, we assume

z = 0. The goal is to recover X0 from the observations y.

In the simplest case, the measurement operator A is defined by directly ob-

serving a subset of the entries of X. In this case, let Ω ⊂ [d1] × [d2] be a subset of

the indices of X chosen uniformly at random and satisfying |Ω| = m. Define

AΩ(X) = X[Ω],

where X[Ω] denotes the entries X[i1, i2] for which (i1, i2) ∈ Ω, arranged into a

column-vector in Rm according to the lexicographical ordering on Ω inherited from

[d1]× [d2].
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Candès and Recht showed in [32] that (2.27) can be solved, in the noise-free

case with direct observations A = AΩ, via a convex relaxation similar to the l1

relaxation in CS. A naive approach would be to solve

min
X : X[Ω]=y

rank(X) (2.28)

Unfortunately, as for l0 minimization in the vector case, rank-minimization is NP-

hard. In the case of observations of matrix entries, Candès and Recht suggested the

following convex relaxation:

min
X : X[Ω]=y

||X||∗, (2.29)

where the nuclear norm is defined by ||X||∗ =
∑rank(X)

i=1 σi(X).

As in 1-dimensional CS, not all low-rank matrices are recoverable from random

observations. Indeed, consider the low rank matrix e1e
t
1 ∈ Rd×d, with all entries 0

except for a 1 in position (1, 1). Unless the number of observations m is on the

order of d2, with high probability all the observations will miss the nonzero entry,

resulting in y = 0. In [32], Candès and Recht proved that the solutions of (2.28)

and (2.29) are equal with high probability over the choice of Ω, provided that the

singular vectors of X0 satisfy certain incoherence properties.

In [68], Gross significantly generalized previous results in matrix completion,

showing that a d× d matrix with rank r can be recovered from O(drµGross log2(d))

measurements drawn randomly from any basis of Rd×d, where µGross is defined below

in Definition 2.51.

Gross considered the following random measurement operator. Let A1, . . . , Ad2

be an orthonormal basis for Rd×d with respect to the inner product 〈X, Y 〉 =
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〈vec(X), vec(Y )〉. For a subset Ω ⊂ [d2] satisfying |Ω| = m and chosen uniformly at

random, define the operator AΩ : Rd×d −→ Rm by letting

AΩ(X)[i] = (X,Aωi), (2.30)

where ω1, . . . , ωm are the entries of Ω ordered lexicographically.

The following definitions are from [68]. Let X0 be the matrix to be recovered

and assume X0 = U0S0V
t

0 is the SVD of X0. Define

T = {X|(Idd×d − U0U
t
0)X(Idd×d − V0V

t
0 ) = 0}

and define

PT (X) = U0U
t
0X +XV0V

t
0 − U0U

t
0XV0V

t
0 ,

so that PT defines an orthogonal projection onto T . The space T and the projection

PT depend on the true matrix X0; however, the dependence is suppressed from the

notation.

For x ∈ R define sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0. Similarly, if X is

a matrix, define sgn(X) = Usgn(S)V t, where X = USV t is the SVD of X and the

sgn function is applied to the singular values of X.

The following definition is from [68].

Definition 2.51 (Gross coherence). A d×d matrix X0 of rank r has Gross-coherence

µGross with respect to a basis A1, . . . Ad2 of Rd×d if either

max
i=1,...,d2

d||Ad||22 ≤ µGross

or both of the following hold:

max
i=1,...d2

d||PT (X)||2 ≤ 2rµGross
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and

max
i=1,...d2

d2(X, sgn(X0))2 ≤ 2rµGross,

where r = rank(X0).

The following recovery theorem applies to self-adjoint matrices. However, by a

simple argument any matrix completion problem can be reduced to the self-adjoint

case [68].

Theorem 2.52. ([68, Theorem 3]) Let X0 ∈ Rd×d be a self-adjoint matrix of rank

r with Gross-coherence µGross with respect to a basis A1, . . . , Ad2 of Rd×d. Let AΩ be

defined as in (2.30) and assume that noise-free observations of the form

y = AΩ(X0)

are obtained. There exists a constant C such that if the number of measurements

m ≥ CdrµGross(1 + β) log2(d), then the solution X∗ of the problem

min
X : AΩ(X)=y

||X||S1

is unique and equal to X0 with probability at least 1− d−β.

This recovery guarantee applies in very general settings, since there is no

requirement that the basis A1, . . . , Ad2 be orthonormal.

2.13.1 Matrix Restricted Isometry Property

Definition 2.53 (square-free RIP for matrix operators). Let A : Rd1×d2 −→ Rm

be a measurement operator. Let U ⊂ Rd1×d2 be a fixed set. Then A satisfies the
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square-free RIP with constant δ̄ over the set U if for all matrices X ∈ U , we have

(1− δ̄r)||X||F ≤ ||A(X)||2 ≤ (1 + δ̄)||X||F.

Yi-Kai Liu proved that the square-free RIP holds for random matrix measure-

ments of the same form as (2.30) with respect to an orthonormal basis A1, . . . , Ad2

for Cd×d. The following theorem is from [102, Theorem 2.1].

Theorem 2.54. Let 0 ≤ δ < 1 and let A1, . . . , Ad2 be an orthonormal basis of Rd×d

satisfying the first part of the definition of Gross-coherence (2.51), i.e.

max
i=1,...,d2

d||Ai||22 ≤ µ.

Let A be defined as in (2.30). There exists a constant C such that if the number

of measurements satisfies

m ≥ Cµrd log6(d)/δ2

then the operator AΩ satisfies the RIP with constant δ over the set of matrices

{X : ||X||∗ ≤
√
r||X||F} with probability at least 1− exp(−C).

Observe that the set {X : ||X||∗ ≤
√
r||X||F} contains all matrices X ∈

Rd1×d2 of rank at most r, so Liu’s result implies that with high probability the

square-free RIP holds over the set of matrices of rank at most r.

2.13.2 Singular Value Thresholding (SVT)

In [26], Cai, Candès, and Shen developed a simple algorithm to solve the

problem

min
X :A(X)=y

||X||∗ (2.31)

39



Definition 2.55 (Shrinkage). Let τ ≥ 0. For X ∈ Rd1×d2 with SVD given by

X = USV t, define

shrinkτ (X) = U max(0, S − τ)V t,

where the subtraction and maximum operations are applied pointwise to the singular

values of X.

For a fixed τ > 0, consider the modified problem

min
X : A(X)=y

τ ||X||∗ +
1

2
||X||2F (2.32)

It is shown in [26] that the solution of (2.32) converges to the solution of (2.31)

as τ −→∞. For a fixed value of τ > 0, the SVT algorithm solves (2.32).

Algorithm 2.56 ([26]). 1: procedure SVT(X0,A, y, {δi}i≥1, τ)

2: while not converged do

3: Xk = shrinkτ (A∗(zk−1))

4: zk = zk−1 + δk(y −A(Xk))

In [26], convergence of the above algorithm is proved under assumptions on

the step sizes δk. The following lemma is important in proving the correctness of

singular value thresholding algorithms.

The following is [26, Theorem 2.1].

Lemma 2.57. Let X0 ∈ Rd1×d2 and let τ ≥ 0. The solution of

min
X∈Rd1×d2

τ ||X||∗ +
1

2
||X −X0||2F

is given by shrinkτ (X0).
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2.13.3 Fixed Point Continuation

An alternative, but related, algorithm is fixed point continuation, as developed

by Ma, Goldfarb, and Chen in [106]. The algorithm works by solving a fixed point

equation that holds at the optimal solution of

||X||∗ +
1

2µ
||A(X)− y||22.

Fix a decreasing sequence of parameters µinit = µ1 > µ2 > µ3 · · · > µl =

µfinal > 0 and initialize X = X0.

Algorithm 2.58 ([106]). 1: procedure FPC(X0,A, y, {µi}i=1,...,l)

2: while not converged do

3: Select τ .

4: Y = X − τA∗(A(X)− y)

5: Xk = shrinkτµ(Y )

2.14 Introduction to Tensor Completion

Consider the following general tensor completion problem. LetA : Rd1×···×dN −→

Rm be a linear measurement operator and let X0 ∈ Rd1×···×dN be an unknown tensor.

We aim to recovery X0 from observations of the form

y = A(X0) + z,

where z ∈ Rm is a noise vector. In the literature, various operators A have been

considered. One special case is when Ω ⊂ [d1]× · · ·× [dN ] is a random subset of the
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indices of X of fixed cardinality m, and the operator A is given by

A(X) = X[Ω].

Recall that X[Ω] denotes the vector in Rm obtained by listing the entries X[i1, . . . , iN ]

for which (i1, . . . , iN) ∈ Ω in lexicographical order.

In [98], Ji Liu, Musialski, Wonka, and Ye proposed solving the following convex

optimization problem in the case of direct observations X[Ω]:

min
X∈Rd1×···×dN : X[Ω]=y

N∑
k=1

||X(i)||∗,

where y is the vector of observations of X[Ω] and X(i) is the i-th unfolding of X.

Liu et al. introduced variables Zi to represent the unfoldings X(i) to reduce the

interdependence between the summands in the objective function. The resulting

problem, after replacing the constraints Zi = X(i) with penalty terms in the objective

function, is:

min
X∈Rd1×···×dN ,Z1,...,ZN

(
N∑
k=1

||Zi||∗ +
1

2µ

N∑
k=1

||X(i) − Zi||2F

)

Sum of nuclear norms minimization is a standard approach for tensor comple-

tion and has been studied by Tomioka et al. [139, 140, 141], Signoretto, Lauthauwer,

and Suykens [134], Signoretto, Plas, Moor, and Suykens [135], Gandy, Recht, and

Yamada [64], Romera-Paredes and Pontil [130], Yang, Huang, and Shi [148], Al-

Qizwini and Radha [1], and Cao et al. [37].

One potential drawback of minimizing the sum of nuclear norms of unfoldings

is the loss of additional higher-order structure [111]. Mu, Huang, Wright, and

Goldfarb proposed an alternative strategy to preserve additional structure in the
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case of tensors of dimension N ≥ 4, unfolding a tensor by grouping its axes into

two approximately equally sized sets, and unfolding the tensor into a maximally

square-shaped matrix [111].

In the case of a matrices X ∈ Rd1×d2 , the operator norm ||X||2 is dual to the

nuclear norm ||X||∗, in the sense that

||X||∗ = sup
Y ∈Rd1×d2 : ||Y ||2≤1

〈X, Y 〉.

where recall that 〈X, Y 〉 denotes the Euclidean inner product of vec(X) and vec(Y ).

Based on this duality, a natural generalization of the nuclear norm to tensors

X ∈ Rd1×···×dN can be defined as follows. First, for X ∈ Rd1×···×dN , define the

operator norm by

||X||op = max
ui∈Rdi : ||ui||2≤1

〈X, u1 ◦ u2 ◦ · · · ◦ uN〉,

where ◦ denotes outer product. Then, the duality-based tensor nuclear norm can

be defined by

||X||duality,∗ = sup
Y∈Rd1×···×dN : ||Y||op≤1

〈X,Y〉.

In the case of 3-dimensional tensors, Yuan and Zhang [149] proved a recovery

guarantee for the recovery of incoherent tensors via the minimization of ||X||duality,∗.

Unfortunately, it is computationally intractable to minimize ||X||duality,∗ in practice,

since doing so is NP-hard, as shown by Friedland and Lim [63].

As a consequence of the intractability of minimizing the norm ||X||duality,∗, a

number of researchers have attempted to replace the norm ||X||duality,∗ with convex

relaxations that enable tractable minimization. In [120], Rauhut and Stojanac de-
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veloped a family of convex relaxations of ||X||duality,∗ in the case of 3-dimensional

tensors, called θ-bodies, using results from algebraic geometry.

In [122, 119], Rauhut, Schneider, and Stojanac developed an algorithm called

iterative hard threshold (IHT). The algorithm is the following:

Algorithm 2.59 ([119]). 1: procedure IHT(X0,A, y, {µi}i≥0, (r1, . . . , rN))

2: while not converged do

3: Y = X − µjA∗(A(X)− y)

4: Xk = H(r1,...,rN )(Y )

In the above, the operator H(r1,...,rN ) : Rd1×···×dN −→ Rd1×···×dN acts by com-

puting the HOSVD of Y, Y = C ⊗1 U1 · · · ⊗N UN and then replacing C with

C
[
[r1] × · · · × [rN ]

]
and replacing each Ui with Ui[:, 1 : ri] for i = 1, . . . , N . Under

restricted isometry and other assumptions, Rauhut et al. proved convergence of

IHT.

Krishnamurthy and Singh have studied adaptive sampling for low Tucker rank

tensor completion [89] in the case in which the Tucker factors have low coherence.

Krishnamurthy et al. show that their algorithm recovers a low Tucker rank tensor

X with high probability under incoherence assumptions. Their algorithm, however,

differs significantly from the non-uniform sampling we introduce in Chapter 3, since

they are not solving a nuclear norm minimization problem and are considering only

noise-free direct observations of tensor entries, as in the operator A(X) = X[Ω]

discussed earlier.

Other tensor completion and tensor decomposition approaches include Bayesian
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methods, as in the work of Zhao, Zhang, and Cichocki [151], Zhao, Zhou, Zhang,

Cichoki, and Amari [152], and Bazerque, Mateos, and Giannakis [8]. These methods

impose probabilistic prior assumptions on the Tucker or CP factorization of a tensor

to predict its true value.

Extensions of compressed sensing to multiple dimensions have also been devel-

oped, as in the work of Duarte and Baraniuk [56], Qun Li, Schonfeld, and Friedland

[95, 62], and Caiafa and Cichoki [28]. An overview of multidimensional compressed

sensing with applications is found in [27].
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Chapter 3: Tensor Completion and Recovery Guarantees

3.1 Overview

Given the success of nuclear norm minimization for low-rank matrix comple-

tion, a natural extension to the tensor case is obtained by defining the nuclear norm

of a tensor to be the the sum of the nuclear norms of its unfoldings. This approach,

first suggested in [98] and subsequently studied in [141, 111, 133] has proven highly

successful in applications. Since the unfolding operation loses some of the tensor

structure, this approach has suboptimal recovery guarantees in the case of Gaus-

sian measurement ensembles, in comparison to using a true tensor nuclear norm

[111, 149] incorporating the full structure; unfortunately, it is NP-hard to minimize

the true tensor nuclear norm when N ≥ 3 [79].

Recall that the nuclear norm ||X||∗ of a matrix is defined to be the sum of its

singular values. We consider the following standard extension of the nuclear norm

to tensors via unfolding:

Definition 3.1 (Nuclear norm of tensor). Given a tensor X ∈ Rd1×···×dN , its nuclear

norm,

||X||∗ =
1

N

N∑
k=1

||X(k)||∗, (3.1)
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is defined to the average of the nuclear norms of all its mode-k unfoldings, k =

1, . . . , N .

We consider the following general setting for approximately low-rank tensor

completion. Let X0 ∈ Rd1×···×dN be the tensor we wish to recover, where X0 need

not be low-rank. Assume that A : Rd1×···×dN −→ Rm is a given linear measurement

operator. We are given observations of the form

y = A(X0) + z, (3.2)

where z is a noise vector satisfying

||z||2 < ε (3.3)

for some ε > 0.

We aim to recover X0 by solving the constrained convex optimization problem:

min
X∈Rd1×···×dN : ||A(X)−y||2≤ε

||X||∗. (3.4)

This problem can be reformulated to its unconstrained Lagrangian form:

min
X∈Rd1×···×dN

||X||∗ +
1

2µ
||A(X)− y||22. (3.5)

The regularization parameter µ determines how much to weight the nuclear

norm. Larger values of µ tend to produce lower-rank solutions, as measured by

||X||∗, with larger residuals.
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3.2 Recovery Guarantees via Restricted Isometry Property (RIP)

In compressed sensing and in low rank matrix completion, an important in-

gredient of many recovery guarantees is the restricted isometry property, which

essentially guarantees that A acts as an approximate isometry on sparse vectors

or low-rank matrices. Several authors have extended the definition of RIP to the

tensor case. In [133] and [122], the RIP is defined using Tucker rank, while in [118]

a version of RIP is defined for hierarchical tensor decompositions.

We adopt the definition in [133], based on Tucker rank.

Definition 3.2 ([133]). The measurement operator A satisfies the square-free re-

stricted isometry property (RIP) of Tucker rank (r1, . . . , rN) with constant δ̄(r1,...,rN )

if for all tensors X ∈ Rd1×···×dN with rank(X) ≤ (r1, . . . , rN), the following bound

holds:

(1− δ̄(r1,...,rN ))||X||F ≤ ||A(X)||2 ≤ (1 + δ̄(r1,...,rN ))||X||2

Definition 3.3. A satisfies the square-free strong RIP of rank (r1, . . . , rN) with con-

stant δ̄(r1,...,rN ) if, for each k = 1, . . . , N , A satisfies the RIP of rank (d1, . . . , dk−1, rk,

dk+1, . . . , dN) with constant δ̄(r1,...,rN ).

The RIP and strong RIP can also be defined with squared norms; in that case,

the RIP constant is denoted δ(r1,...,rN ).

In [133], an RIP-based recovery guarantee is developed for (3.4) under the

assumption of noise-free measurements, i.e. with z = 0. However, as far as we

are aware, there is currently no known RIP-based measurement guarantee for (3.4)
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under inexact or noisy measurements. A guarantee has been shown for 3.5 in [141]

under a different assumption, called restricted strong convexity (RSC); however, the

RSC assumption is data dependent. In other words, whether or not the guarantee

is applicable is determined by the true tensor X0, which is unknown. In contrast,

our RIP-based guarantee will hold for arbitrary tensors X0.

We now state our recovery guarantee for (3.4), which is an extension of The-

orem 4 in [59] from the matrix case to the tensor case.

Theorem 3.4 (Tensor RIP recovery guarantee from noisy measurements). Assume

that the linear operator A satisfies the square-free strong RIP of rank (5r1, . . . , 5rN)

with RIP constants δ̄(5r1,...,5rN ) < δ̄5 and δ̄(3r1,...,3rN ) < δ̄3, where δ̄5 ≥ 0, δ̄3 ≥0, and

δ̄5 + (1 + δ̄3)
√

2
3
< 1. Let ε > 0. Then, for all X0 ∈ Rd1×···×dN and y ∈ Rm satisfying

||A(X0)− y||2 ≤ ε, the solution X∗ of (3.4) satisfies the error estimate

||X∗ −X0||F ≤ C0ε+ C1

(
1

1
N

∑N
k=1

√
rk

)
||X0 −Xbest||∗,

where Xbest is the best approximation to X0 in the || · ||∗ norm among all tensors X

satisfying rank(X) ≤ (r1, . . . , rN). The constants are given by

C0 =
2
(

1 +
√

2
3

)
1− δ̄5 − (1 + δ̄3)

√
2
3

and

C1 =
2√
3

 2− δ̄5 + δ̄3

1− δ̄5 − (1 + δ̄3)
√

2
3


Remark 3.5. This condition of Theorem 3.4 can be simplified slightly. Indeed, the

inequality δ̄(d1,...,dk−1,3rk,dk+1,...,dN ) ≤ δ̄(d1,...,dk−1,5rk,dk+1,...,dN ) follows form the definition
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of RIP, so it is always possible to choose δ̄3 ≤ δ̄5 (by decreasing δ̄3 if necessary).

Hence, the condition δ̄5 + (1 + δ̄3)
√

2
3
< 1 is implied by

δ̄5 < δ̄critical =:
1−

√
2
3

1 +
√

2
3

≈ 0.101. (3.6)

The proof of Theorem 3.4 uses a similar argument to the one in [59] for the

matrix case. We use the construction from [59] separately along each axis of the

tensor and then compute a weighted average of the results, with weights given by

√
rk/N .

Before starting the proof, we briefly outline the strategy used in [59] for matri-

ces. First, the difference between the solution to problem (3.4) and the true matrix,

E = X∗−X0, is decomposed into the sum of two matrices, E = E0 +Ec with certain

orthogonality properties, where E0 is rank at most 2r. The second matrix, Ec, is

split up into a finite sum of rank 3r matrices, Ec = E1 + E2 + · · · , of descending

norm. Finally, the norm of E0 + E1 and the norm of E2 + E3 + · · · are each ap-

proximated. The RIP properties are required because E0 +E1 is of rank at most 5r

while each Ei is of rank at most 3r. Our proof essentially repeats this construction

individually along each axis k = 1, . . . N , and combines the results.

We now state two useful lemmas. The following is [123, Lemma 2.3].

Lemma 3.6. If X, Y are matrices of size d1×d2 satisfying XY t = 0 and X tY = 0,

then

||X + Y ||∗ = ||X||∗ + ||Y ||∗.

The following is [123, Lemma 3.4].
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Lemma 3.7. Let X, Y be matrices of size d1 × d2. Assume that the SVD decompo-

sition of X is X = USV t. Define

Y2 = (Idd1×d1 − UU t)Y (Idd2×d2 − V V t)

and

Y1 = Y − Y2

Then the following holds:

1. Y = Y1 + Y2;

2. Y t
2X = 0 and Y2X

t = 0;

3. rank(Y1) ≤ 2rank(X);

4. 〈Y1, Y2〉 = 0.

A similar construction as in Lemma 3.7 is used [114] for the analysis of matrix

completion and in [141] for the analysis of tensor completion.

The following Lemma is from [123, Theorem 3.3].

Lemma 3.8. Let k ≥ 1. Let X ∈ Rd1×d2 be a nonzero matrix with singular value

decomposition X = Udiag(σ1, . . . , σr)V
t, where U ∈ Rd1×r and V ∈ Rd2×r. For

i = 1, . . . , dr/ke, define Ii = {(i− 1)k + 1, . . . ,min(ik, r)} and

Xi = UσIiV
t (3.7)

Then X = X1 +X2 + . . .+Xdr/ke, rank(Xi) ≤ k for all i, (Xi, Xj) = δ(i,j) all

i, j, and the following estimate holds:

∑
i≥2

||Xi||F ≤
1√
k
||X||∗ (3.8)
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Proof. The first three statements follow from the definition of X1, X2, . . . Xdr/ke.

For the last statement, observe that for all l ∈ Ii and m ∈ Ii−1, σl ≤ σm, since

the singular values are in non-increasing order. It follows that for all l ∈ Ii,

σl ≤ 1
k

∑
m∈Ii−1

σm. Hence

∑
i≥2

||Xi||F =
∑

i≥2

√∑
l∈Ii σ

2
l

≤
∑

i≥1

√
k 1
k2

(∑
m∈Ii σm

)2

= 1√
k

∑
i≥1

∑
m∈Ii σm

= 1√
k
||X||∗

Proof of theorem 3.4.

(Part 1: Setup.) We following the argument in [59], but extend from the matrix

to the tensor case. Let

R =
N∑
k=1

√
rk.

Define

E = X∗ −X0

and

∆ = X0 −Xbest.

E is the prediction error we aim to bound and ∆ is the amount by which the tensor

X0 differs from its best rank (r1, . . . , rN) approximation.

For each k = 1, . . . , N , consider the unfolding E(k). By Lemma 3.7 we can
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decompose E(k) into a sum of matrices

E(k) = Ek,0 + Ek,c

satisfying

rank(Ek,0) ≤ 2 rank(X
(k)
best) ≤ 2rk,

Ek,c(X
(k)
best)

t = 0, Et
k,cX

(k)
best = 0, and (Ek,0, Ek,c) = 0.

Using the construction in Lemma 3.8, with 3rk instead of k, we decompose

each Ek,c into a sum of matrices Ek,c = Ek,0 +Ek,1 + · · ·+Ek,L, where L = d rank(Ek,c)

3rk
e

and each Ek,l is of rank at most 3rk. It follows immediately that

E(k) = Ek,0 + Ek,1 + Ek,2 + . . . Ek,L,

where rank(Ek,0) ≤ 2rk and rank(Ek,l) ≤ 3rk for l ≥ 1.

Our goal is to bound the prediction error ||E||F. Since ||E||F = ||E(k)||F for all

k, we have

||E||F = ||E(k)||F

= ||Ek,0 + Ek,c||F

= ||Ek,0 + Ek,1 +
∑

l≥2Ek,l||F

≤ ||Ek,0 + Ek,1||F +
∑

l≥2 ||Ek,l||F (3.9)

Multiplying (3.9) by
√
rk and computing the average over k = 1, . . . , N , we

obtain

R||E||F ≤
1

N

N∑
k=1

√
rk||Ek,0 + Ek,1||F +

1

N

N∑
k=1

∑
l≥2

√
rk||Ek,l||F, (3.10)
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where R =
∑N

k=1

√
rk.

Hence, in order to bound ||E||F, it suffices to bound the two terms on the right

hand side of (3.10) separately.

(Part 2: bounding 1
N

∑N
k=1

∑
l≥2

√
rk||Ek,l||F.) By Lemma 3.8,

∑
l≥2

||Ek,l||F ≤
1√
3rk
||Ek,c||∗

for all k = 1, . . . , N .

Multiplying by
√
rk and computing the average over k = 1, . . . N , we obtain

1

N

N∑
k=1

∑
l≥2

√
rk||Ek,l||F ≤

1√
3

1

N

N∑
k=1

||Ek,c||∗ (3.11)

We also have

||X0||∗ ≥ ||X∗||∗ (3.12)

= ||X0 + E||∗

= ||Xbest + ∆ + E||∗

= 1
N

∑N
k=1 ||X

(k)
best + ∆(k) + E(k)||∗

= 1
N

∑N
k=1 ||X

(k)
best + ∆(k) + Ek,c + Ek,0||∗

≥ 1
N

∑N
k=1

(
||X(k)

best + Ek,c||∗ − ||∆(k)||∗ − ||Ek,0||∗
)

= 1
N

∑N
k=1

(
||X(k)

best||∗ + ||Ek,c||∗ − ||∆(k)||∗ − ||Ek,0||∗
)

(3.13)

= 1
N

∑N
k=1

(
||X(k)

0 −∆(k)||∗ + ||Ek,c||∗ − ||∆(k)||∗ − ||Ek,0||∗
)

≥ 1
N

∑N
k=1

(
||X(k)

0 ||∗ + ||Ek,c||∗ − 2||∆(k)||∗ − ||Ek,0||∗
)

= ||X0||∗ − 2||∆||∗ + 1
N

∑N
k=1 ||Ek,c||∗ −

1
N

∑N
k=1 ||Ek,0||∗ (3.14)

Inequality (3.12) follows because X∗ is an optimal solution of problem (3.4).
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Equation (3.13) follows from ||X(k)
best + E(k)||∗ = ||X(k)

best||∗ + ||E(k)||∗, which is a

consequence of Lemma 3.6, Ek,c

(
X

(k)
best

)t
= 0 and (Ek,c)

t Xbest = 0.

Rearranging (3.14), we obtain

1

N

N∑
k=1

||Ek,c||∗ ≤ 2||∆||∗ +
1

N

N∑
k=1

||Ek,0||∗ (3.15)

Combining inequalities (3.11) and (3.15) we obtain

1

N

N∑
k=1

∑
l≥2

√
rk||Ek,l||F ≤ 1√

3
1
N

∑N
k=1 ||Ek,c||∗

≤ 1√
3

(
2||∆||∗ + 1

N

∑N
k=1 ||Ek,0||∗

)
≤ 1√

3

(
2||∆||∗ + 1

N

∑N
k=1

√
2rk||Ek,0||F

)
(3.16)

= 2√
3
||∆||∗ +

√
2
3

1
N

∑N
k=1

√
rk||Ek,0||F, (3.17)

where (3.16) follows from rank(Ek,0) ≤ 2rk and Lemma 2.5.

(Part 3: bounding 1
N

∑N
k=1

√
rk||Ek,0 + Ek,1||F.)

For brevity, let refold(Z) denote refold(d1,...,dN )(Z) for any Z. For each k, we

have

E = refold(Ek,0 + Ek,1) +
∑
l≥2

refold(Ek,l)

The first summand has rank less than or equal to (d1, . . . , dk−15rk, dk+1, . . . , dN)

while all the remaining summands have rank less than or equal to (d1, . . . , dk−13rk,

dk+1, . . . , dN). The square-free strong RIP property of A implies that the RIP of

rank (d1, . . . , dk−15rk, dk+1, . . . , dN) holds for each k = 1, . . . , N . Hence, by these

RIP properties,
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||Ek,0 + Ek,1||F = ||refold (Ek,0 + Ek,1) ||F

≤ 1
1−δ̄5
||A (refold (Ek,0 + Ek,1)) ||2

= 1
1−δ̄5
||A(E)−

∑
l≥2A (refold(Ek,l)) ||2

≤ 1
1−δ̄5
||A(E)||2 + 1

1−δ̄5

∑
l≥2 ||A (refold(Ek,l)) ||2

≤ 1
1−δ̄5
||A(E)||2 + 1+δ̄3

1−δ̄5

∑
l≥2 ||Ek,l||F (3.18)

Since X∗ and X0 are both feasible solutions of problem (3.4),

||A(E)||2 = ||A(X∗ −X0)||2

= ||A(X∗)− y + y −A(X0)||2

≤ ||A(X∗)− y||2 + ||A(X0)− y||2

≤ 2ε (3.19)

Multiplying inequality (3.18) by
√
rk, averaging over k = 1, . . . , N , and com-

bining with (3.19), and (3.17), we obtain

1

N

N∑
k=1

√
rk||Ek,0 + Ek,1||F ≤ 1

1−δ̄5
R (2ε) +

(
1+δ̄3
1−δ̄5

)(
2√
3
||∆||∗ +

√
2
3

1
N

∑N
k=1

√
rk||Ek,0||F

)
.

(Recall that R = 1
N

∑N
k=1

√
rk.) Since 〈Ek,0, Ek,1〉 = 0, we have

||Ek,0||F =
√
||Ek,0 + Ek,1||2F − ||Ek,1||2F ≤ ||Ek,0 + Ek,1||F.

Hence, by collecting the term 1
N

∑N
k=1

√
rk||Ek,0 + Ek,1||F onto one side, we obtain

(
1− 1 + δ̄3

1− δ̄5

√
2

3

)
1

N

N∑
k=1

√
rk||Ek,0 + Ek,1||F ≤

2

1− δ̄5

Rε+
1 + δ̄3

1− δ̄5

2√
3
||∆||∗
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It follows that

1

N

N∑
k=1

√
rk||Ek,0 + Ek,1||F ≤ αRε+ β||∆||∗ (3.20)

where

α =
2

1− δ̄5 − (1 + δ̄3)
√

2
3

and

β =
2(1 + δ̄3)

√
3
(

1− δ̄5 − (1 + δ̄3)
√

2
3

)
(Part 3: Collecting results.) Finally, by (3.10), (3.20), and (3.17) we have

R||E||F ≤ 1
N

∑N
k=1

√
rk||Ek,0 + Ek,1||F + 1

N

∑
l≥2

√
rk||Ek,l||F

≤ αRε+ β||∆||∗ + 2√
3
||∆||∗ +

√
2
3

1
N

∑N
k=1

√
rk||Ek,0||F

Again, using ||Ek,0||F ≤ ||Ek,0 + Ek,1||F and (3.20) we have

R||E||F ≤ αRε+ β||∆||∗ + 2√
3
||∆||∗ +

√
2
3

(αRε+ β||∆||∗)

= α
(

1 +
√

2
3

)
Rε+

(
β(1 + 2√

3
) +

√
2
3

)
||∆||∗

Dividing by R = 1
N

∑N
k=1

√
rk, we arrive at the claim

||E||F ≤ C0ε+
C1||∆||∗

R
,

where

C0 =
2
(

1 +
√

2
3

)
1− δ̄5 − (1 + δ̄3)

√
2
3

and

C1 =
2
(
1 + δ̄3

) (
1 + 2√

3

)
√

3
(

1− δ̄5 − (1 + δ̄3)
√

2
3

) +

√
2

3
.

57



Remark 3.9. The requirement to split each Ek,c into a sum of rank 3 matrices may

seem artificial. However, if we instead we split of Ek,c into a sum of rank 2 matrices,

the expression
√

3 appearing in the proof would change to
√

2. Hence, the condition

on the RIP constants would reduce to δ̄5 + 1 + δ̄3 < 1, which is always false, since

RIP constants are nonnegative.

3.3 Probabilistic Recovery Guarantees

We have shown in Theorem 3.4 that recovery of a tensor X, with error con-

trolled by the difference between X and its best Tucker rank (r1, . . . , rN) approx-

imation, is guaranteed by solving the minimization problem (3.4), provided that

the random measurement operator A satisfies the strong square-free RIP of rank

(5r1, . . . , 5rN) with δ̄5 + (1 + δ̄3)
√

2
3
< 1. As remarked previously, this condition is

implied by δ̄5 < δ̄critical. Hence, in order to prove recovery with high probability, it

suffices to prove that the strong square-free RIP of rank (5r1, . . . , 5rN) holds with

constant δ̄5 < δ̄critical with high probability.

We consider random measurement operators, as described in the following

definition.

Definition 3.10 (Random measurement operator). Let (Ω,F , P ) be a probability

measure space. A random measurement operator A is a measurable function

A : Ω −→ L(Rd1×···×dN ,Rm),

where L(Rd1×···×dN ,Rm) is the space of linear maps from Rd1×···×dN to Rm.
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In [102], Yi-Kai Liu first proved that the RIP holds with high probability, in

the case of matrices, for a measurement operator drawn from random entries in an

orthonormal basis. In [42], Cloninger and Czaja extended Liu’s result to the case

of measurements drawn from a Parseval tight frame. Cloninger and Czaja com-

bined the resulting RIP guarantee with a recovery result of Fazel, Candès, Recht,

and Parillo [59] to obtain a general probabilistic recovery guarantee for measure-

ment operators obtained from a Parseval tight frame. Here, we extend the results

of Cloninger and Czaja in two respects. First we extend from the matrix to the

tensor case. Second, we obtain a recovery result for a more general class of random

measurement operators, isotropic, sub-Gaussian measurement maps.

For tensors, Rauhut, Schneider, and Stojanac proved in [122, 119], that Tucker

rank (r1, . . . , rN) RIP holds holds for random sub-Gaussian ensembles.

Definition 3.11 (Random sub-Gaussian ensemble). Let ω be a random tensor with

values in Rd1×···dN such that the entries ω[i1, . . . , iN ] for (i1, . . . , iN) ∈ [d1]×· · ·×[dN ]

are idd sub-Gaussian with the same sub-Gaussian norm. Then the measurement

operator A : Rd1×···rN −→ Rm defined by

A(X) = (X,ωi),

where ω1, . . . ,ωm are idd drawings of ω is a random sub-Gaussian ensemble.

A limitation of sub-Gaussian ensembles is that all the entries of the resulting

matrix must be i.i.d., which excludes important examples such as when each row is

drawn from a Parseval tight frame. We are thus interested in a more general class

of random measurement operators. The following definition is from [54].
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Definition 3.12 (sub-Gaussian map). Let (Ω,F , P ) be a probability measure space.

Let H be a d-dimensional real Hilbert space and let S = {x ∈ H : ||x||H = 1}. Let

m ≥ 1. Let A : Ω −→ L(H,Rm) be a random measurement operator. Then A is a

sub-Gaussian map with parameter ν if the following conditions hold:

• (Linearity) A is linear.

• (Independence) For all x ∈ S, the entries A(x)[1], . . . ,A(x)[m] are indepen-

dent.

• (Isotropy) For all x ∈ S, E||A(x)||22 = ||x||22.

• (sub-Gaussianity) For all x, y ∈ S and for all i = 1, . . . ,m,

||A(x− y)[i]||ψ2 ≤
√
ν

m
||x− y||H.

An important ingredient in the proof of the RIP is a covering number com-

putation. The following result was proved by Rauhut, Schneider, and Stojanac

[122, 119].

Theorem 3.13 ([119]). Let B(r1,...,rN ) = {X ∈ Rd1×···×dN : ||X||F = 1, rank(X) ≤

(r1, . . . , rN)}. Then for any 0 < λ < 1, the following condition holds:

N(B(r1,...,rN ), dEuclidean, λ) <

(
3(N + 1)

λ

)r1r2···rN+
∑N
k=1 dkrk

,

where N(B(r1,...,rN ), dEuclidean, λ) is the covering number of B(r1,...,rN ) with balls of

radius λ with respect to the Euclidean metric dEuclidean(X) =
√

(X,X).

Using the above covering number result, Rauhut, Schneider, and Stojanac

proved that the RIP holds with high probability for sub-Gaussian ensembles.
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In [54, Example 5.8], Dirksen proved the following theorem, which establishes

that the RIP holds with high probability for a sub-Guassian maps. Dirksen’s proof

uses the covering number result Theorem 3.13. In the following theorem, Dirksen

uses the standard RIP (not the square-free RIP).

Theorem 3.14 ([54]). Consider a sub-Gaussian measurement operator A : Ω −→

L(Rd1×···×dN ,Rm) with parameter µ. There exists an absolute constant C > 0, such

that for any 0 < δ < 1 and 0 < p < 1, we have P (δ(r1,...,rN ) < δ) > 1 − p, provided

that the number of measurements m satisfies

m ≥ C
µ2

δ2
max

{
log(

1

p
),

(
r1r2 · · · rN +

N∑
k=1

dkrk

)
log(N)

}
.

Dirksen’s proof of the above result uses generic chaining, a theory developed

by Talagrand [138] to bound the suprema of stochastic processes.

We now combine Theorem 3.14 with our previous recovery guarantee, Theorem

3.4, to obtain a general probabilistic recovery guarantee for sub-Gaussian maps.

Theorem 3.15. There exists a numerical constant C > 0 such that the following

holds. Define

δcritical = 2δ̄critical − δ̄2
critical ≈ 0.1918, (3.21)

where δ̄critical is defined by (3.6). Assume that δ > 0 satisfies δ < δcritical. If A :

Ω −→ L(Rd1×···×dN ,Rm) is a sub-Gaussian map with parameter ν and if the number

of measurements satisfies

m ≥ C
ν2

δ2
max

{
log(

N

p
), max
k=1,...,N

{rk
∏
j 6=k

dj + rkdk +
∑
j 6=k

d2
j} log(N)

}
, (3.22)
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then with probability greater than 1 − p over the choice of A, the following holds:

For all ε > 0 and for all X0 ∈ Rd1×···×dN and y ∈ Rm satisfying ||A(X0)− y||2 ≤ ε,

the solution X∗ of the minimization problem

min
X∈Rd1×···×dN : ||A(X)−y||2≤ε

||X||∗ (3.23)

satisfies

||X∗ −X0||F ≤ C0ε+ C1

(
1

1
N

∑N
k=1

√
rk

)
||X∗ −Xbest||∗, (3.24)

where Xbest is the best rank (r1, . . . , rN) approximation of X0 in the || · ||∗ norm.

The constants C0 and C1 are the same as in Theorem 3.4.

Proof. For each k = 1, . . . , N , we replace (r1, . . . , rN) with (d1, . . . , dk−1, rk, dk+1, . . . , dN)

and p with p
N

in the statement of Theorem 3.14. The assumption on m implies that

for all k = 1, . . . , N

m ≥ C
ν2

δ2
max

{
log(

N

p
),

(
rk
∏
j 6=k

dj +
N∑
j 6=k

d2
j + dkrk

)
log(N)

}
.

Hence, by Theorem 3.14 the random measurement operator A satisfies the RIP

of rank (d1, . . . dk−1, rk, dk+1, . . . , dN) with constant δ with probability greater than

1− p/N provided that the number of measurements m satisfies

m ≥ C
µ2

δ2
max

{
log(

N

p
),

(
r1r2 · · · rN +

N∑
k=1

dkrk

)
log(N)

}
.

By the union bound, the RIP of rank (d1, . . . dk−1, rk, dk+1, . . . , dN) holds for all

k = 1, . . . , N with probability greater than 1 − p. Hence, with probability greater

than 1− p, the strong RIP of rank (5r1, . . . , 5rN) holds with constant δ. By Lemma

2.37, the square-free strong RIP holds with constant δ̄ satisfying δ = 2δ̄ − δ̄2. Since

2δ̄ − δ̄2 = δ < δcritical = 2δ̄critical − δ̄2
critical
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and since x 7→ 2x−x2 is strictly increasing on [0, 1], it follows that δ̄ < δ̄critical. Hence,

by Theorem 3.4, the estimate (3.24) holds with probability at least 1− p.

3.4 Non-Uniform Sampling from Parseval Tight Frames

Here we show that sub-Gaussian measurement maps arise from non-uniform

sampling from Parseval tight frames, after appropriate rescaling of the frame ele-

ments. These results establish a theoretical basis for tensor completion via non-

uniform sampling from Parseval tight frames.

The example of sub-Gaussian maps obtained from uniform sampling from

frame elements is given by Eldar in [57]. We consider a more general setting in which

the entries of a frame {ui} are sampled with a non-uniform probability distribution

pi.

Definition 3.16 (Non-uniform sampling from a Parseval tight frame). Let H be

a d-dimensional Hilbert space. Let {uj}nj=1 be a Parseval tight frame for H. Let

{pj}nj=1 satisfy
∑n

j=1 pj = 1 and pj > 0 for j = 1, . . . , n. Let ω be a random vector

such that P (ω =
uj√
pj

) = pj, where
∑n

j=1 pj = 1 and pj > 0 for j = 1, . . . , n. Let

ω1, . . . ,ωm be i.i.d. realizations of the random variable ω and let ε1, . . . , εm be idd

Rademacher random variables with values in {−1, 1}, independent of the ωi random

variables. The random measurement operator A with values in L(H,Rm) generated

by {uj}nj=1 and {pj}nj=1 is defined for all x ∈ H by

A(x)[i] = 〈x, 1√
m
εiωi〉. (3.25)

The following result establishes that A, as defined above, is a sub-Gaussian
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map. The result also provides a theoretical basis for adjusting sampling strategies

to reduce coherence.

Theorem 3.17 (sub-Gaussian measurements via non-uniform sampling from a tight

frame). Let H be a d-dimensional real Hilbert space. Let {uj}nj=1 be a Parseval tight

frame for H and let {pj}nj=1 satisfy
∑n

j=1 pj = 1 and pj > 0 for j = 1, . . . , n. Then

the operator A defined by (3.25) is a sub-Gaussian map with parameter

ν = max
i=1,...,n

||ui||2H
pi

.

Proof. Observe that A is clearly linear and for all x ∈ S, A(x)[1], . . . ,A(x)[m] are

independent by construction. (Recall that S = {x ∈ H : ||x||H = 1}.)

To show isotropy, let x ∈ S and observe that

E||A(x)||22 =
∑m

i=1 |〈x,
εiωi√
m
〉|2

=
∑m

i=1

∑n
j=1 pj|

〈x,uj〉√
pjm
|2

= 1
m

∑m
i=1

∑n
j=1 |〈x, uj〉|2

= 1
m

∑m
i=1 ||x||2H

= ||x||2H,

where the second to last equality follows from the fact that {ui}ni=1 is a Parseval

tight frame.

Next, we show the sub-Gaussian property. Let x, y ∈ S. Observe that

A(x− y)[i] = 〈x− y, εiωi√
m
〉.

Because of the Rademacher random variable εi, we have E [A(x− y)[i]] = 0. Also,
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we have

||A(x− y)[i]||2 ≤ max
j=1,...,n

||x− y||H||uj||H√
pjm

.

Since A(x − y)[i] is bounded and has mean 0, by Lemma 2.47 it is sub-Gaussian,

with sub-Gaussian norm satisfying

||A(x− y)[i]||ψ2 ≤ max
j=1,...,n

||x− y||H||uj||H√
pjm

.

Let ν = maxnj=1
||uj ||2H
pj

. Then the above equation becomes:

||A(x− y)[i]||ψ2 ≤
√
ν√
m
||x− y||H,

which is the condition required in Definition 3.12. HenceA is a sub-Gaussian random

operator with parameter ν.

Remark 3.18. If in the previous result we sample the entries of {ui}ni=1 uniformly,

then pi = 1
n
. Hence, the formula for ν reduces to

ν =
n

max
i=1

n||ui||2H.

This formula for ν agrees up to a constant with the definition of incoherence used

by Cloninger and Czaja in [42]. Hence, the parameter ν of a sub-Gaussian map

is a natural generalization of the incoherence of a Parseval tight frame. These

observations motivate the following definition.

Definition 3.19 (Incoherence of sub-Gaussian map). The incoherence ν of a sub-

Gaussian map A with values in L(H,Rm) is defined to be the smallest parameter ν

satisfying the last condition of Definition 3.12.
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We now combine Theorem 3.17 on non-uniform sampling with the recovery

guarantee Theorem 3.15 to obtain a general tensor recovery result for non-uniform

sampling from Parseval tight frames.

Theorem 3.20 (Tensor recovery guarantee for non-uniform sampling from a Par-

seval tight frame). There exists C > 0 such that the following holds. Let {uj}nj=1

be a Parseval tight frame for Rd1×···×dN and let {pj}nj=1 satisfy
∑n

j=1 pj = 1 and

pj > 0 for j = 1, . . . , n. Let A be the random measurement operator with values in

L(Rd1×···×dN ,Rm) be defined by (3.25). Let p ∈ (0, 1) and let δ > 0 satisfy δ < δcritical,

where δcritical is defined by (3.21). If the number of measurements m satisfies

m ≥ C
ν2

δ2
max

{
log(

N

p
), max
k=1,...,N

{rk
∏
j 6=k

dj + rkdk +
∑
j 6=k

d2
j} log(N)

}
,

then with probability at least 1−p over A, for all ε > 0, X0 ∈ Rd1×···×dN and y ∈ Rm

satisfying ||A(X0)− y||2 ≤ ε, the solution X∗ of the minimization problem

min
X : ||A(X)−y||2≤ε

||X||∗ (3.26)

satisfies the error estimate

||X∗ −X0||F ≤ C0ε+ C1

(
1

1
N

∑N
k=1

√
rk

)
||X∗ −Xbest||∗,

where Xbest is the best rank (r1, . . . , rN) approximation of X0 in the || · ||∗ norm.

The constants C0 and C1 are the same as in Theorem 3.4.

Proof. By Theorem 3.17, the measurement operator A is a sub-Gaussian map with

parameter ν = maxi=1,...,n
||ui||2H
pi

. Hence, by Theorem 3.15, we obtain the required

probabilistic recovery guarantee.
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3.5 Choice of Non-Uniform Sampling Distribution

We describe three possible choices for the sampling probabilities. One choice

is uniform sampling, in which pj = 1
n

for j = 1, . . . , n. Two other possible choices

are minimally coherent non-uniform sampling and nearly minimally coherent non-

uniform sampling, which are described below.

In minimally coherent non-uniform sampling, the sampling probabilities are

chosen to minimize the coherence ν.

Theorem 3.21 (Minimally coherent non-uniform sampling). Assume that {uj}nj=1

is a Parseval tight frame for a d-dimensional real Hilbert space H and assume that

uj 6= 0 for all j = 1, . . . , n. Consider the non-uniform sampling operator (3.25).

The choice of probabilities {pj}nj=1 that minimizes the coherence

ν = max
j=1,...,n

||uj||2H
pj

is given by

pj =
||uj||2H
d

.

Furthermore, the optimal coherence is given by ν = d.

Proof. We aim to solve the following problem for (p1, . . . , pn):

min
p1,...,pn :

∑n
i=1 pi=1,pi≥0

(
max
j=1,...,n

||uj||2H
pj

)
The objective function converges to +∞ as any pj converges to 0, since each frame

element uj is assumed to be nonzero. Hence we can consider only (p1, . . . , pn) outside
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of a neighborhood B of 0. Without loss of generality, we may assume that B is an

open ball of radius r in the l1 norm. On the region [0, 1] × · · · × [0, 1] − B, the

objective function is continuous and defined on a compact domain, so an optimal

solution exists. Let (p1, . . . , pn) denote an optimal solution and let ν denote the

optimal objective value.

We claim that ν =
||uj ||2H
pj

for all j = 1, . . . , n. Indeed, suppose that equality

does not hold for some k. Then, by replacing pk with pk − ε and replacing pj

with pj + ε
n−1

for all j 6= k, the objective value would decrease. Furthermore,

since the l1 norm of (p1, . . . , pn) remains unchanged, the new point cannot enter B.

Hence (p1, . . . , pn) would remain feasible but would have a smaller objective value,

a contradiction.

Since ν =
||uj ||2H
pj

for all j = 1, . . . , n, it follows that pj = C||uj||2H for some C.

The constraint that
∑n

j=1 pj = 1 implies that C = 1∑n
i=1 ||uj ||2H

.

Finally, since {uj}nj=1 is a Parseval tight frame, by Lemma 2.31 we have∑n
i=1 ||ui||2H = d. Hence C = 1

d
and we conclude that each pj =

||uj ||2H
d

.

Finally, to compute the optimal objective value, we have for any j = 1, . . . , n,

ν =
||uj||2H
pj

=
||uj||2H(
||uj ||2H
d

) = d.

The above theorem shows that the coherence can be minimized by sampling

Parseval tight frame entries with probabilities proportional to ||uj||2H. The resulting

sampling strategy minimizes the ν2 factor occurring in the measurement bound

given by Theorem 3.20.
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One potential disadvantage of minimally coherent sampling is that if the ratio

between the largest ||uj||2H and the smallest ||uj||2H is very large, some probabilities

pj could be very small, resulting in very large scaling factors 1√
pj

. One way to avoid

this problem is to add a small quantity to all the sampling probabilities, to prevent

any pj from being too small.

Definition 3.22 (Nearly minimally coherent non-uniform sampling). Assume that

{uj}nj=1 is a Parseval tight frame for a d-dimensional Hilbert space H and assume

that uj 6= 0 for all j = 1, . . . , n. Consider the non-uniform sampling operator (3.25).

Let p0 > 0. Nearly minimally coherent non-uniform sampling is defined by setting

pj =

||uj ||2H
d

+ p0

n

1 + p0

.

As was observed by Cloninger and Czaja in [42], in relaxometry applications it

is often the case that only a very small fraction of the Parseval frame elements have

large norm. In such examples, nearly minimally coherent non-uniform sampling can

significantly reduce the coherence ν while avoiding excessively sparse sampling of

the low-norm frame elements.

3.6 Tensor Recovery Algorithm

We now describe a fixed point continuation technique for solving the regular-

ized tensor completion problem

min
X

1

N

N∑
k=1

||X(i)||∗ +
1

2µ1

||A(X)− y||22 (3.27)

In [148], Yang, Huang, and Shi first developed a fixed point continuation
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algorithm for (3.27). Their algorithm uses operator splitting, a technique in which

a quantity is added and subtracted to the first order equation, resulting in a new,

equivalent, optimization problem. We develop a similar algorithm, using similar

techniques; however, we generalize it to apply to settings with arbitrary noise levels

in the data.

3.6.1 Derivation

The derivation of our algorithm is essentially the same as in [148]. The primary

difference is that in [148], it is assumed that a single regularization constant µ

converges to 0. In [148], it is proved that as µ tends to 0, the resulting solution,

under mild assumptions, converges to a solution of

min
X : A(X)=y

||X||∗.

Hence, as µ −→ 0, the algorithm in [148] converges to a solution satisfying the

constraint A(X) = y exactly. We show that our algorithm converges, under mild

assumptions, to the solution of (3.27). This will enable the tuning of the parameter

µ1. The choice of µ1 will be discussed later.

We start with a derivation of the algorithm, which follows [148] closely. Assume

that X0 is a solution of (3.27). Since the objective function in (3.27) is convex, by

Lemma 2.27, X0 is a solution if and only if 0 is in the subdifferential of the objective

function at X0, where 0 denotes the zero tensor in Rd1×···×dN . Hence,

0 ∈ 1

N

N∑
k=1

(
∂||X(k)

0 ||∗ +
1

µ1

A∗ (A(X0)− y)

)
(3.28)
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Recall that ∂ denotes the subdifferential, as defined in Definition 2.26. For

brevity, define g(X) = A∗
(
A(X0)−y)

)
for all X. Let τ > 0 and let Y0 = X0 − τg(X0).

Multiplying (3.29) by τµ1 and then adding and subtracting X0, we obtain

0 ∈ 1

N

N∑
k=1

(
τµ1∂||X(k)

0 ||∗ + X0 − (X0 − τg(X0))
)

(3.29)

which is equivalent to

0 ∈ 1

N

N∑
k=1

(
τµ1∂||X(k)

0 ||∗ + X0 −Y0

)
Hence, by Lemma 2.27, X0 is an optimal solution of

min
X∈Rd1×···×dN

1

N

N∑
k=1

(
τ ||X(k)||∗ +

1

2µ1

||X(k) −Y
(k)
0 ||2F

)
(3.30)

if and only if X0 is an optimal solution of (3.27).

To reduce the interdependency between the two terms in the objective func-

tion, we introduce matrices Zi to approximate the unfoldings X(i), and solve the

problem

min
X,Z1,...,ZN

1

N

N∑
k=1

(
τ ||Zi||∗ +

1

2µ1

||Zi −Y
(k)
0 ||2F

)
under the constraint Zi = X(i) for i = 1, . . . , N . This problem can be relaxed to

min
X,Z1,...,ZN

1

N

N∑
k=1

(
τ ||Zi||∗ +

1

2µ1

||Zi −Y
(k)
0 ||2F +

1

2µ2

||Zi −X(i)||2F
)

(3.31)

In [148], Yang et al. proceed under the assumption µ1 = µ2. In the case

in which µ1 −→ 0 and µ2 −→ 0, the resulting solution converges to a tensor X

satisfying the constraint A(X) = y exactly, under mild assumptions, so no gener-

ality is lost by the simplification µ1 = µ2. However, in applications in which the

data is highly noisy, as can arise in magnetic resonance relaxometry applications,
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the regularization parameter µ1 must be chosen to appropriately balance bias and

variance in the solution. However, it is still appropriate to let µ2 −→ 0, to enforce

approximate equality X(i) ≈ Zi. Hence, we proceed with a similar derivation as in

[148], but without the simplifying assumption that µ1 and µ2 are equal.

We will analyze problem (3.31) using block-coordinate descent (BCD), in

which we fix all the variables X, Z1, . . . , ZN except for one, and then optimize over

the only non-fixed variable. The following useful result, also cited in [148], provides

a condition under which BCD converges.

We first state several definitions from [143].

Definition 3.23. A function f : Rn −→ R is quasiconvex if for all x, y ∈ Rn and

λ ∈ [0, 1], we have f(x+ λy) ≤ max{f(x), f(x+ y)}.

Definition 3.24. A function f : Rn −→ R is hemivariate if it is not constant on

any line segment.

Let X0 = (x1,0, . . . , xN,0) ∈ Rd1×· · ·×RdN be an arbitrary initial starting point.

The block coordinate descent (BCD) algorithm minimizes the function f(x1, . . . , xN)

by, at each stage, fixing all but one variables and minimizing with respect to the

non-fixed variable. The cyclic BCD proceeds by minimizing with respect to x1, then

x2, then x3,..., then xN , and then repeats cyclically starting again at x1.

Definition 3.25. A coordinate wise minimum of a function f : Rd1×· · ·×RdN −→ R

is a point (x1, . . . , xN) ∈ Rd1×· · ·×RdN such that for all k, we have f
(

(x1, . . . , xN)+

(0, . . . , zk, . . . , 0)
)
≥ f(x1, . . . , xN) for all zk ∈ Rdk .
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Definition 3.26. A point x is a stationary point of f if for all z, we have

lim inf
λ−→0+

f(x+ λz)− f(x)

λ
≥ 0.

The following is [143, Lemma 3.1].

Lemma 3.27. Let f : Rd1 × · · · × RdN −→ R be a function of the following form.

Suppose that there are functions f0 : Rd1×· · ·×RdN −→ R and functions fi : Rdi −→

R such that for all x = (x1, . . . , xN) ∈ Rd1 × · · · × RdN , we have

f(x1, . . . , xN) = f0(x1, . . . , xN) +
N∑
i=1

fi(x)

and assume that f0 is differentiable. If (x1, . . . , xN) is a coordinate-wise minimum

of f , then it follows that f is a stationary point of f .

The following is [143, Proposition 5.1].

Theorem 3.28. Let f be as in Lemma 3.27. Assume that the functions f0 and

f1, . . . , fN satisfy the following properties:

• f0, f1, . . . , fN are continuous.

• Let k ∈ {1, . . . , N} and assume that each xi is fixed for i 6= k. Then the

function xk 7→ f(x0, . . . , xN) is quasiconvex and hemivariate.

Starting at any initial point X0 ∈ Rd1×· · ·×RdN , let X1, X2, . . . be the sequence

of iterates generated by the cyclic BCD algorithm. Then, if the iterates Xi are

defined, either limk−→∞ f(Xk) = −∞ or every limit point of the sequence {Xk} is a

coordinate-wise minimum of f .
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The following lemma, which gives a formula for the solution of (3.31), with Y0

arbitrary, generalizes [148, Theorem 4.2].

Lemma 3.29. Let τ, µ1, µ2 > 0 and let Y0 ∈ Rd1×···×dN be any tensor. Then

(Xµ2 , Z1,µ2 , . . . , ZN,µ2) is a minimizer of (3.31) if and only if the following two equa-

tions hold:

Zi,µ2 = shrink( τµ1µ2
µ1+µ2

)
(
µ2Y

(i)
0 + µ1X

(i)
µ2

µ1 + µ2

)
, for i = 1, . . . , N, (3.32)

and

Xµ2 =
1

N

N∑
i=1

refold(Zi,µ2). (3.33)

The shrink and refold operators were defined in Definition 2.55 and Defintion

2.18.

Proof. The solution (Xµ2 , Z1,µ2 , . . . , ZN,µ2) depends on τ, µ1, and µ2; however, the

dependence on τ and µ1 is suppressed from the notation. This notational choice

will be convenient later, when we fix µ1 and τ and let µ2 −→ 0.

We aim to show that equations (3.32) and (3.33) are the update steps for cyclic

BCD.

First, we derive the update step for Zi,µ2 assuming X = Xµ2 and Zj = Zj,µ2

are fixed for all j 6= i. Hence Zi,µ2 satisfies the first order condition

0 ∈ τ∂||Zi,µ2||∗ +
1

µ1

refold(d1,...,dN )(Zi,µ2 −Y
(i)
0 ) +

1

µ2

refold(d1,...,dN )(Zi −X(i)
µ2

).

Collecting the Zi,µ2 terms and dividing by µ1 + µ2, we have

0 ∈ (
τµ1µ2

µ1 + µ2

)∂||Zi,µ2||∗ + refold(d1,...,dN )(Zi,µ2)− refold(d1,...,dN )(
µ2Y

(i)
0 + µ1X

(i)
µ2

µ1 + µ2

)
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Hence Zi,µ2 is an optimal solution of

min
Zi

(
τµ1µ2

µ1 + µ2

)
||Zi||∗ +

1

2

∣∣∣∣∣
∣∣∣∣∣Zi −

(
µ2Y

(i)
0 + µ1X

(i)
µ2

µ1 + µ2

)∣∣∣∣∣
∣∣∣∣∣
2

F

,

of which the optimal solution is given by (3.32) by Lemma 2.57. Hence (3.32) holds.

Now, we derive the BCD update formula for Xµ2 . If Xµ2 is optimal for (3.31)

when holding all the Zi = Zi,µ2 fixed for i = 1, . . . , N , then Xµ2 satisfies the first

order condition

0 =
1

N

N∑
i=1

1

µ2

refold(Zi,µ2 −X(i)
µ2

)

Since refold(X
(i)
µ2) = Xµ2 for all i = 1, . . . , N , we obtain (3.33).

Now, we aim to apply Theorem 3.28 to the objective function of (3.31). Let

fi(Zi) =
1

N

(
τ ||Zi||∗ +

1

2µ1

||Zi −Y
(k)
0 ||2F

)
and let

f0(X, Z1, . . . , ZN) =
1

N

N∑
k=1

(
1

2µ2

||Zi −X(i)||2F
)
,

so that (3.31) can be rewritten as

min
X,Z1,...,ZN

f0(X, Z1, . . . , ZN) +
N∑
k=1

fi(Zi).

Now, observe that f0, . . . , fN are continuous. Observe that if all but one of the

variables X, Z1, . . . , ZN are fixed, the resulting function g0 : X 7→ f(X, Z1, . . . , ZN)

or gi : Zi 7→ f(X, Z1, . . . , ZN) is quasiconvex and hemivariate. Since the objective

function is nonnegative, it follows by Theorem 3.28 that any limit point of the cyclic

BCD iterates is a coordinate-wise minimum of (3.31).

Now, suppose that (Xµ2 , Z1,µ2 , . . . , ZN,µ2) satisfies (3.32) and (3.33). Then

(Xµ2 , Z1,µ2 , . . . , ZN,µ2) is a fixed point of the cyclic BCD iteration, so it must be a
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coordinate-wise minimum. Next, by Lemma 3.27, it follows that (Xµ2 , Z1,µ2 , . . . , ZN,µ2)

is a local minimizer of (3.31).

To prove the opposite implication, suppose that (Xµ2 , Z1,µ2 , . . . , ZN,µ2) is a

local minimum of (3.31). It follows trivially that (Xµ2 , Z1,µ2 , . . . , ZN,µ2) is also a

coordinate-wise minimum, so the first order conditions (3.32) and (3.33), as derived

above, hold.

3.6.2 Fixed Point Iteration

We now state a fixed point algorithm for tensor completion, which is motivated

by the derivation in the previous section. This algorithm essentially equivalent to

the one in [148].

Algorithm 3.30.

1: procedure Fixed Point Iteration for TC(X0,A, y, µ, τ)

2: while not converged do

3: Yk = Xk − τg(Xk)

4: for i = 1, . . . , N do

5: Zi = shrink( τµ1µ2
µ1+µ2

)(µ2Y
(i)
k +µ1X

(i)
k

µ1+µ2

)

6: Xk+1 = 1
N

∑N
i=1 refold(Zi)
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3.6.3 Convergence

In [148], Yang et al. proved that Xµ2 converges to the minimizer of the con-

strained problem

min
X∈Rd1×···×dN : A(X)=y

1

N
||X(i)||∗

as µ1 = µ2 −→ 0. Here, we conduct a similar analysis, but instead we show that

Xµ2 converges to the minimizer X0 of (3.27) as µ2 −→ 0 and µ1 remains fixed. This

result is important in cases where the data is noisy, since µ1 controls the tradeoff

between the norm ||X||∗ and the residual ||A(X) − y||2, as is a standard result of

regularization theory [78].

We start by stating a simplified version of a useful lemma from [7, Theorem

9.2.2], which is also cited in [148].

Lemma 3.31 (Convergence of penalty method for constrained optimization). Let

U ⊂ Rd and let f : U −→ R be continuous. Let g1, . . . , gn : U −→ R be continuous

and consider the constrained minimization problem

min
x∈U : gi(x)=0,i=1,...,n

f(x) (3.34)

Let φi : U −→ R be continuous functions satisfying φi(0) = 0 and φi(x) > 0 if x 6= 0.

For all µ > 0, consider the unconstrained minimization problem

min
x∈U

f(x) + µ
N∑
i=1

φi(gi(x)) (3.35)

Assume that there exists a compact set U0 ⊂ U such for all µ > 0, every

solution of xµ of (3.35) satisfies xµ ∈ U0. Let µ1, µ2, µ3, . . . be any sequence satisfying
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µi > 0 and limi−→∞ µi = ∞, with corresponding solutions xµi of (3.35). Then any

accumulation point x̄ of xµi is an optimal solution of (3.34), limi−→∞ f(xµi) = f(x̄),

and

lim
i−→∞

µ

n∑
i=1

φi(fi(xµi)) = 0.

In [148], it is shown that the map described by one iteration of the above algo-

rithm is a contraction, and hence the algorithm converges under mild assumptions,

provided that τ is sufficiently small. We briefly summarize these results.

The following is [148, Lemma 5.3].

Lemma 3.32. Let A(X) = A(vec(X)), where A is the matrix representation of A.

The map T : Xk 7→ Xk+1 defined by the iteration in Algorithm 3.30 is a contraction,

provided that 0 < τ < 2
||A′A||2 . Furthermore, we have ||X−X′||F = ||T (X)−T (X′)||F

if and only if X−X′ = T (X)− T (X′).

It is straightforward to verify that the proof of [148, Lemma 5.3] holds in the

case µ1 6= µ2. In the following theorem we generalize [148, Theorem 5.1] to the case

in which µ1 6= µ2.

Theorem 3.33. Let A(X) = A(vec(X)), where A is the matrix representation of

A, and assume 0 < τ < 2
||A′A||S∞

. Assume that the map T defined by one iteration

of Algorithm 3.30 has at least one fixed point X∗ satisfying X∗ = T (X∗). Then, for

any starting point X0, the sequence X0,X1, . . . obtained from Algorithm 3.30 has at

least one accumulation point, Xlim. Furthermore, any such accumulation point is a

solution of problem (3.31) with Y0 = Xlim − τA(A(Xlim)− y).
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Proof. We follow the argument in [148]. Let X∗ be any fixed point of T . It fol-

lows that for all k, ||Xk+1 − X∗|| = ||T (Xk) − T (X∗)||F ≤ ||Xk − X∗||F, so the

sequence ||Xk+1−X∗|| is non-increasing. It follows that {Xk} is bounded, so it has

a convergent subsequence. Hence, we may assume {Xk} converges to Xlim.

Let L = limk−→∞ ||Xk+1 −X∗||. It follows that L = ||T (Xlim) − T (X∗)||F =

||Xlim − X∗||F, so by Lemma 3.32 we have T (Xlim) − T (X∗) = Xlim − X∗. Since

T (X∗) = X∗, it follows that T (Xlim) = Xlim.

Finally, we conclude that Xlim is a solution of (3.31) with Y0 = Xlim −

τA∗(A(Xlim)− y) by Lemma 3.29.

Finally, we prove that in the limit as µ2 −→ 0, we can obtain from Algorithm

3.30 a solution of (3.27). This result differs from [148, Theorem 5.3] in that we let

µ2 −→ 0 while fixing µ1, whereas they let µ1 = µ2 −→ 0.

Theorem 3.34. Let τ < 2
||AtA||2 and let µ1 > 0 be fixed. Assume that for all µ2 > 0,

the map T has at least one fixed point. Let µ2,i > 0 be a sequence of values of µ2

satisfying limi−→∞ µ2,i = 0. For any set of starting values Xi,0, i = 1, 2, . . ., let Xi,lim

be an accumulation point of the iterates generated by Algorithm 3.30, starting at Xi,0

and with µ2 = µ2,i, which exists by Theorem 3.33. Then, any accumulation point of

{Xi,lim} is a solution of (3.27).

Proof. Let Xlim be an accumulation point of {Xi,lim}. For all i = 1, 2, . . ., by

Theorem 3.33 Xi,lim is a solution of (3.31) with Y0 replaced by Yi,0 = Xi,lim −

τg(Xi,lim). For convenience, we restate (3.31):

min
X,Z1,...,ZN

1

N

N∑
k=1

(
τ ||Zi||∗ +

1

2µ1

||Zi −Y
(k)
i,0 ||2F +

1

2µ2,i

||Zi −X(i)||2F
)
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We view the first the first two terms

f(X, Z1, . . . , ZN) =
1

N

N∑
k=1

(
τ ||Zi||∗ +

1

2µ1

||Zi −Y
(k)
i,0 ||2F

)
as an objective function and the last term

g(X, Z1, . . . , ZN) =
1

N

1

2µ2,i

N∑
k=1

||Zi −X(i)||2F

as a penalty function for the constraints X(i) = Zi. Since the objective and penalty

functions satisfy the hypotheses of Lemma 3.31, it follows that any accumulation

point of {Xi,lim} is a solution of

min
X,Z1,...,ZN

1

N

N∑
k=1

(
τ ||Zi||∗ +

1

2µ1

||Zi −Y
(k)
i,0 ||2F

)
satisfying the constraints X(i) = Zi for i = 1, . . . , N . In the argument preceding

(3.30), it was shown that (3.27) and (3.30) are equivalent. Since the above prob-

lem is the same as (3.30), we conclude that it is equivalent to (3.27). Hence, any

accumulation point of {Xi,lim} is a solution of (3.27), as was claimed.

3.6.4 Homotopy Path of Regularization Paramaters: Version 1

Our goal is to solve (3.27). By Theorem 3.34, the solution of (3.27) can be

approximated arbitrarily well by the fixed-point iteration in Algorithm 3.30 for a

decreasing sequence of values of µ2, while holding µ1 fixed. However, in practice the

algorithm often converges very slowly if initialized with very small values of µ1 and

µ2. This leads us to the following homotopy path in the parameters (µ1, µ2).

Let µinit be an initial starting value for both µ1 and µ2. Let 0 < η < 1 be

fixed. Let µ1,final > 0 and µ2,final > 0 be fixed, where µ2,final < µ1,final.
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Algorithm 3.35.

1: procedure FPC for TC(X0,A, y, µinit, µ1,final, µ2,final, τ, η)

2: Let k = 0, µ1 ← µinit, µ2 ← µinit, and τ ← τinit.

3: while µ2 > µ2,final do

4: µ1 ← max(µ1η, µ1,final) . Decrease µ1 if above µ1,final

5: µ2 ← µ2η . Decrease µ2

6: while not converged do

7: Yk = Xk − τA∗ (A(Xk)− y)

8: Xk+1 = 1
N

∑N
i=1 refold

(
shrink( τµ1µ2

µ1+µ2

)(µ2Y
(i)
k +µ1X

(i)
k

µ1+µ2

))

In Algorithm 3.35, we start with µ1 = µ2 = µinit. At each iteration, both µ1

and µ2 are decreased by the factor η until µ1 = µ2 < µ1,final. Once µ1 reaches its

final value µ1,final, we continue decreasing µ2 until µ2 reaches its final value µ2,final.

Under the assumptions of Theorem 3.34, Algorithm 3.35 is guaranteed to converge

to a solution of problem (3.27), provided that µ2,final = 0.

While µ2,final can be chosen to be very small, µ1,final often needs to be signif-

icantly larger if the initial data y is noisy. Larger values of µ1,final result in more

noise filtering. A small value of µ2,final guarantees that the matrices Zi described

previously agree well with the unfoldings X(i) of the solution X.
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3.6.5 Homotopy Path of Regularization Paramaters: Version 2

We now aim to simplify the expressions in Algorithm 3.35. Observe that if we

define

τ̃ =
τµ2

µ1 + µ2

,

then

µ2Y
(i)
k + µ1X

(i)
k

µ1 + µ2

=
µ2(X

(i)
k −τA

∗(A(Xk)−y))+µ1X
(i)
k

µ1+µ2
(3.36)

= X
(i)
k − τ̃A∗(A(Xk)− y) (3.37)

Also, the shrink amount in Algorithm 3.35 simplifies to:

τµ1µ2

µ1 + µ2

= τ̃µ1.

If τ is fixed and we decrease µ1 = µ2, observe that τ̃ remains fixed. If µ1 and τ is

fixed, observe that τ̃ decreases as µ2 decreases. Hence the previous approach, which

involves fixing τ first and decreasing both µ1 = µ2 and then decreasing µ2 only, is

equivalent to the following alternative approach. First fix τ̃ and let µ1 decrease to

µ1,final. Then fix µ1 and let τ̃ decrease to τ̃final. This leads to the following algorithm.

For brevity of notation, we have replaced τ̃ with τ and µ1 with µ.

Let µinit be an initial starting value for µ. Let 0 < η < 1 be fixed. Let µfinal > 0

and τfinal > 0 be fixed.
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Algorithm 3.36.

1: procedure FPC for TC(X0,A, y, µinit, τinit, τfinal, η)

2: Let k = 0, µ← µinit, and τ ← τinit.

3: while τ > τfinal do

4: µ = max(µη, µfinal). . Decrease µ until it reaches µfinal.

5: if µ = µfinal then

6: τ = max(τη, τfinal) . Then decrease τ until it reaches τfinal.

7: while not converged do . Run fixed point iteration.

8: Yk = Xk − τA∗ (A(Xk)− y)

9: Xk+1 = 1
N

∑N
i=1 refold

(
shrinkτµ(Yk)

)
Algorithm 3.36 first fixes τ and lets µ decrease. Once µ has reached µfinal, µ is

fixed and the algorithm decreases τ until it reaches τfinal. The above computations

show that, up to possible differences in the values of the parameters, both Algorithm

3.35 and Algorithm 3.36 solve the same problem.

Under the assumptions of Theorem 3.34, Algorithm 3.36 is guaranteed to con-

verge to a solution of problem (3.27), provided that τfinal = 0. In our implementation,

we use Algorithm 3.36.

3.7 Choosing the Parameter τ

By Theorem 3.33, we must have τinit ≤ 2
||A∗A||2 . If A is a sub-Gaussian map,

then for any X, we have

E||A(X)||2F = ||X||2F.
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Hence, on average, A behaves like an isometry. Theoretical results on isotropic sub-

Gaussian random matrices, such as [145, Theorem 5.39] suggest that the singular

values of A remain near 1 with high probability.

In our simulations, τinit = 0.01 works well. Larger values of τinit resulted in

faster convergence. However, too larger a value of τinit causes divergence. We chose

τfinal = 0.001. Decreasing τfinal significantly does not appear to cause significant

improvement in solution accuracy.

3.8 Choosing the Regularization Parameter µ

Recall that Algorithm 3.36 approximately solves (3.27), rewritten here with µ

instead of µ1:

min
X

1

N

N∑
k=1

||X(i)||∗ +
1

2µ
||A(X)− y||22 (3.38)

The parameter µ controls the weight of the regularizer ||X||∗. The value of

µ controls the trade-off between the norm of the residual and the Tucker rank, as

measured by ||X||∗. There are a number of standard techniques for choosing a

regularization parameter, such as L-curve and the discrepancy principle [77, 78, 2].

However, such methods need not yield the optimal parameter µ and are inherently

qualitative. The discrepancy principle requires a choice of the maximal ratio by

which the residual can exceed its minimal value. The L-curve is based upon the

intuitive assumption that the optimal parameter lies near the corner of the curve

parametrizing the trade-off between log(||X||∗) and log(||A(X)−y||2). (The L-curve
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is usually presented with ||X||2 instead of ||X||∗.)

We propose to use k-fold cross-validation to choose µ. k-fold cross validation

is a standard statistical technique for choosing an optimal predictive model for a set

of inputs and outputs.

Assume that A is defined via non-uniform sampling from a Parseval tight

frame {ui}ni=1 for a d-dimensional Hilbert space H with probabilities {pj}nj=1 by

(3.25), rewritten here:

A(x)[i] = 〈x, 1√
m
εiωi〉,

where P (ωi =
uj
pj

) = pj for all j = 1, . . . , n and ω1, . . . , ωm are independent.

Consider the modified version of A, denoted Aall observations : Rd1×···×dN −→ Rn,

that gives all the possible observations (excluding the Rademacher random vari-

ables):

Aall observations(x)[j] = 〈x, 1√
n

ui√
pi
〉,

for X ∈ Rd1×···×dN and j = 1, . . . , n. While A only gives m out of n possible

observations, Aall observations gives all possible observations.

Now consider the following learning problem. Given only one realization of the

random operatorA, denotedA0, and observations of the form y0 = A(X0)+z, where

z is a noise vector satisfying ||z||2 ≤ ε, we aim to predict all possible observations,

i.e., we aim to predict Aall observations(X).

Let Xµ denote the solution of

min
X

1

N

N∑
k=1

||X(i)||∗ +
1

2µ
||A0(X)− y0||22 (3.39)

We can now view Aall observations(Xµ) as a predictor of Aall observations(X0). Hence, we
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aim to minimize the following expected squared generalization error:

min
µ>0

EA
[
||Aall observations(Xµ)−Aall observations(X0)||22

]
(3.40)

The expectation is taken over all realizations of the random operator A. In the

above, Xµ is the solution (3.39) and X0 is the true tensor. In contrast to the resid-

ual ||y − A(Xµ)||2, which is monotonically decreasing as µ decreases, the above

expectation estimates the true generalization error of all observations(Xµ) as a pre-

dictor of Aall observations(X0).

It is not possible to directly solve (3.40), since X0 is unknown. However, we

can estimate it via k-fold cross-validation as follows. Let T = {1, . . . ,m} and let

ωi,0 and εi,0 be the realizations of the random variables ωi and εi occurring in the

definition of A0. For a fixed integer k ≥ 1 (we use k = 10), partition T uniformly

at random into k sets of almost-equal size, T = T1 t S2 t · · · t Tk, where t denotes

the disjoint set union. For each i = 1, . . . , k, let Si = T\Ti, the set of indices in

{1, . . . ,m} that are not in Ti. Suppose |Ti| = ti and |Si| = si. Now, for each

i = 1, . . . , k, let Si = {l1, . . . , lsi}, define Ai : Rd1×···×dN −→ Rsi by

Ai(X)[j] = 〈X, 1
√
si
εlj ,0ωlj ,0〉 (3.41)

and define

yi[j] = y0[lj] (3.42)

for all i = 1, . . . , k and for all j = 1, . . . , si. The result is to partiton the observations

occurring in A0 into k almost-equally sized sets Ti randomly. Each operator Ai,

i = 1, . . . , k, includes the observations corresponding to k − 1 of the sets Ti.
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Now, for each i = 1, . . . , k, solve the problem

Xµ,i = argminX

1

N

N∑
k=1

||X(i)||∗ +
1

2µ
||Ai(X)− yi||22 (3.43)

Now we can view A0(Xµ,i)[Ti] as a predictor of y[Ti], where recall that x[T ] is the

vector with entries x[i] for i ∈ T . For any µ, the estimated squared generalization

error appearing inside the expectation in (3.40) can be approximated by

GE2
est =

1

k

n∑
k=1

||A0(Xµ,i)[Ti]− y0[Ti]||22. (3.44)

Hence, µ can be chosen to minimize GE2
est.

We are thus led to the following k-fold cross-validation (CV) method for se-

lecting µ. Let µ1 > µ2 > . . . > µl > 0 be decreasing sequence of µ values.

Algorithm 3.37.

1: procedure Slow k-fold CV for µ(A0, y0, {µj}lj=1)

2: for µ = µ1, . . . , µl do

3: for i = 1, . . . , k do

4: Solve 3.43 for Xµ,i using Algorithm 3.36.

5: Compute GE2
est(µ) via (3.44).

6: µ← argminµGE2
est(µ)

3.9 Accelerated k-Fold Cross-Validation for Selecting µ

Unfortunately, the above algorithm is very slow because it requires solving the

tensor completion problem once for each µ and for each fold i = 1, . . . , k. Here, we

show that it is possible to significantly accelerate k-fold cross-validation.
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Recall that algorithm Algorithm 3.36 works by initializing µ = µinit and de-

creasing µ by a factor η repeatedly. By recording the residuals at each intermediate

value of µ, it is possible to compute GE2
est(µ) for µ = µinitη

j for j = 0, . . . , l − 1,

where l is the number of µ values. However, to accelerate the algorithm, when

doing k-fold cross-validation, we entirely skip the second stage during which τ is de-

creased. Based on simulations, decreasing τ does not appear to significantly reduce

the generalization error. Hence, we propose the following accelerated k-fold cross

validation algorithm.

The following algorithm estimates the best µ among {µinitη
j}numµ−1
j=0 .

88



Algorithm 3.38.

1: procedure µ = fast k-fold CV (X0,A0, y0, µinit, numµ, η, τ)

2: Randomly partition observation indices {1, . . . ,m} into k sets T1, . . . , Tk and

define Ai and yi as in (3.41) and (3.42).

3: for i = 1, . . . , k do

4: . Solve TC problem with observations indexed by {1, . . . ,m} − Ti, as

follows:

5: Let k = 0, µ← µinit, and τ ← τinit.

6: for j = 0, . . . , numµ − 1 do

7: µ← µinitη
j

8: while not converged do . Run fixed point iteration.

9: Yk = Xk − τA∗i (Ai(Xk)− y)

10: Xk+1 = 1
N

∑N
i=1 refold

(
shrinkτµ (Yk)

)
11: . Estimate squared generalization error on Ti, as follows:

12: GE2
est[µj, i] = ||A0(Xµ,i)[Ti]− y[Ti]||22.

13: . Aggregate the estimated squared generalization errors:

14: for j = 0, . . . , numµ − 1 do

15: GE2
est[µj] = 1

k

∑k
i=1 GE2

est[µj, i].

16: . Choose µ to minimize the estimated generalization error:

17: µ← argmin
numµ−1
j=0

{
GE2

est[µj]
}
.

Algorithm 3.38 requires less than k times the computation of one tensor com-

pletion problem, as solved by Algorithm 3.36. The reason the computation time
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is less than k multiples, and not exactly k, is that the second stage, in which τ is

decreased, is omitted. Because each iteration of the first outermost loop in Algo-

rithm 3.38 is independent of other iterations, the algorithm is highly parallelizable.

When parallelized, the total computation time is less than that of solving one ten-

sor completion problem via Algorithm 3.36, ignoring parallelization overhead. Even

taking into account parallelization overhead, the run time of Algorithm 3.38 when

parallelized on k cores is usually less than 1 run of Algorithm 3.36, due to the time

savings from omitting the τ reduction stage.
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Chapter 4: Nuclear Magnetic Resonance Preliminaries

4.1 Relaxometry

Nuclear magnetic resonance (NMR) relaxometry and related experiments can

provide useful information about the chemical and physical properties of materials.

Relaxometry experiments aim to study the properties of a given sample. Examples

of samples of interest in medicine include cartilage [22, 125, 83, 96, 124, 128, 127, 126,

108, 129, 97, 91, 115], muscle [132, 21], and brain tissue [24, 23, 107]. Relaxometry

has also been applied in other areas, such as in food science [80] for quality control

and in oil logging (the detection of underground oil reserves) [61].

Quantum mechanical spin is associated with many atomic nuclei; these are

the ones that we can study with NMR. The most widely-studied is the nucleus of

the hydrogen atom, that is, the proton [58, 85], which is found in great abundance

in water and hence in water-containing materials. When placed in a magnetic field,

a particularly large magnetic moment is induced in water-containing materials [25],

which is what we study here.
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4.2 1-Dimensional Relaxometry Experiments

One dimensional NMR relaxometry experiments aim to quantify the distribu-

tion of a single parameter in a sample, such as the decay constant of longitudinal

magnetization (T1), the decay constant of transverse magnetization (T2), the de-

cay constant of longitudinal magnetization in a rotating frame (T1,ρ), or apparent

diffusion coefficient (ADC).

In experiments that measure the longitudinal relaxation time, T1, the evolution

of longitudinal magnetization is described by the differential equation

d
(
mlongitudinal(τ)

)
dτ

=
M0 −mlongitudinal(τ)

T1

,

where mlongitudinal(τ) is the longitudinal magnetization, τ is time, and M0 is the

equilibrium value of induced magnetization given by Curie’s law. For the case of an

inversion recovery experiment, mlongitudinal(τ = 0) = −2M0, so after the inversion

pulse,

mlongitudinal(τ) = M0

(
1− 2 exp(−τ/T1)

)
. (4.1)

In general, the observed signal consists of the superposition of T1 components, each

described by (4.1); hence, it can be modeled as an integral

mlongitudinal(τ) =

∫ ∞
T1=0

f(T1)
(

1− 2 exp(−τ/T1)
)
dT1, (4.2)

where mlongitudinal(τ) is the magnetization at time τ and f : (0,∞) −→ [0,∞)

describes the distribution of T1 constants in the sample. While f need not be

normalized, it can be viewed as a distribution describing the relative sizes of the T1

components in the sample.
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In practice, the longitudinal magnetization mlongitudinal(τ) is sampled at a dis-

crete set of times τ1 < τ2, · · · < τm. The integral in equation (4.2) can be approxi-

mated by a discrete sum. Let 0 < T1,1 < T1,2 < · · · < T1,n be a discretization of the

T1 values. Then (4.2) can be approximated as

m(τi) =
m∑
j=1

f(T1,j) (1− exp(−τ/T1,j))w[j], (4.3)

where w[j] are appropriately chosen quadrature weights.

Another 1-dimensional relaxometry experiment aims to measure the distri-

bution of T2, the decay constant of transverse magnetization. The evolution of

transverse magnetization is described by the differential equation

d
(
mtransverse(τ)

)
dτ

= −mtransverse(τ)

T2

,

where mtransverse(τ) is the transverse magnetization and τ is time. In the case

of Carr-Purcell-Meiboom-Gill (CPMG) experiments in which spin-echoes [74] are

formed through the application of radiofrequency pulses at time interval TE > 0,

the magnetization measured at the echo times iTE, for i = 1, . . . ,m, is given by

[25]

mtransverse(iTE) = M0 exp(−iTE/T2), (4.4)

where M0 is defined in the same way as above. T2 experiments have been applied

in the analysis and quantification of cartilage [129].

As in the case of T1, a sample in general has a continuous distribution of T2

values, so (4.4) can be replaced by

mtransverse(iTE) =

∫ ∞
T2=0

f(T2) exp(−iTE/T2)dT2, (4.5)
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where f(T2) describes the distribution of T2 values in the sample and the acquisition

times TE, 2TE, 3TE, . . .mTE are discrete multiples of TE. As for T1, the integral

(4.5) can be discretized. Let 0 < T2,1 < . . . < T2,n be a discrete set of T2 relaxation

times. Then (4.5) can be approximated for i = 1, . . . ,m by

mtransverse(iTE) =
n∑
j=1

f(T2,j) exp(−iTE/T2,j)w[j] (4.6)

where w[j] are quadrature weights.

Another parameter of interest is apparent diffusion coefficient (ADC), which

quantifies the diffusion of moving particles, such as water molecules, in a sample

[45]. In a diffusion experiment, the external diffusion sensitizing gradient strength g

is varied and the resulting signal is observed. For a sample with only one apparent

diffusion component equal to D, the observed signal can be modeled by the Stejskal-

Tanner formula [81]:

mdiffusion(b) = exp(−bD) (4.7)

where

b(g) = γ2g2δ2(∆− 1

3
δ). (4.8)

Here γ is the gyromagnetic ratio, delta is the duration of each gradient pulse, and ∆

is the delay between pulses. The exact dependence of b on g depends, in general, on

the specific experimental setup. However, (4.7) provides a simple equation relating

the experimentally controlled acquisition variable, b, and the unknown ADC value

D.

As for the T1 and T2 parameters, a given sample may contain a distribution
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of ADC values. Hence we obtain the signal equation

mdiffusion(b) =

∫ ∞
0

f(D) exp(−bD)dD (4.9)

where f : (0,∞) −→ [0,∞) is the unknown distribution of ADC values in the

sample, and D are the ADC values. As in the previous cases, this equation is

discretized as:

mdiffusion(bi) =
m∑
j=1

f(Dj) exp(−biDj)w[j] (4.10)

where w[j] are quadrature weights.

We have described three parameters of interest, T1, T2, and D. After appro-

priate substitutions, the distribution of each of these quantities in a sample can in

general be obtained by solving the 1-dimensional Laplace transform-type equation

m(τ) =

∫ ∞
0

f(t) exp(−τ/t)dt (4.11)

or, in practice, its discretization

m(τi) =

∫ ∞
0

f(tj) exp(−τi/tj)dt

Definition 4.1 (Laplace Transform). Given an integrable function f : [0,∞) −→ R,

its Laplace transform Lf is defined to be the function

(Lf)(τ) =

∫ ∞
0

f(λ) exp(−τλ)dλ

Let λ = 1
t

and f̃(t) = f(1
t
) 1
t2

. By changing variables

m(τ) =
∫∞

0
f̃(1

t
) 1
t2

exp(−τ/t)dt (4.12)

=
∫∞

0
f̃(λ) exp(−τλ)dλ (4.13)

= L(f̃)(τ) (4.14)
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Hence (4.11) becomes

m = Lf̃ .

It follows that f can be obtained indirectly by an inverse Laplace Transform

(ILT). Indeed, f̃ can be obtained as an ILT of m, and then f can be obtained via

f(t) = f̃(1
t
) 1
t2
.

In the context of NMR, we will primarily be concerned with the equation in

the form (4.11), not with the standard definition of the Laplace transform, as in

Definition 4.1.

The Laplace transform is an infinitely ill-conditioned operator, meaning that

arbitrarily small changes in m can result in arbitrarily large changes in the solution

f . As a result, solving for f is non-trivial and in general requires regularization

techniques [78]. These problems carry over to the discretized case, where the dis-

crete Laplace transform has rapidly decaying singular values, resulting in very large

condition numbers [20].

4.3 Multidimensional Relaxometry and Related Experiments

Multidimensional NMR experiments aim to compute the joint density function

f of one or more parameters. For example, in a T1- T2 experiment, f(t1, t2) denotes

the joint distribution of T1 and T2. In certain such experiments, the data m(τ1, τ2)

satisfies a multidimensional separable Laplace transform-type equation:

m(τ1, τ2) =

∫ ∞
T1=0

∫ ∞
T2=0

f(T1, T2) (1− 2 exp(−τ1/T2)) exp(−τ2/T2)dT1dT2

Other 2-dimensional experiments quantify the joint distribution of parameters
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such as D - T2 or T1 - T1,ρ. Also, two dimensional T2-store-T2 experiments quantity

the joint distribution of T2 with itself after a delay, which can be used to quantify

the exchange between components in a sample. 2-dimensional experiments have

seen growing applications in the chemical and biological sciences and permit a more

complete description of materials [29] [80]. Applications of T2-store-T2 include the

the quantification of pore sizes in cement [109].

Celik, Bouhrara, Reiter, Fishbein, and Spencer have shown empirically that 2-

dimensional relaxometry problems exhibit better stability than 1-dimensional prob-

lems [38], which provides an additional motivation to purse higher dimensional ex-

periments. These results suggest that N -dimensional experiments could provide

even greater stability than 1 or 2-dimensional experiments. Because of the greater

descriptive power and the potentially improved stability, it is of great value to have

available higher dimensional NMR experiments for materials and tissue characteri-

zation.

A 3-dimensional experiment acquires the joint distribution of 3 parameters,

such as T1, D, and T2. For one such an experiment, the observed data m(τ1, b, τ2)

is related to the distribution f(T1, D, T2) of parameters by the equation

m(τ1, b, τ2) =

∫ ∞
T1=0

∫ ∞
D=0

∫ ∞
T2=0

f(T1, D, T2) (1− 2 exp(−τ1/T1)) exp(−bD) exp(−τ2/T2)dT1dDdT2

In such an NMR experiment, the data m(τ1, b, τ2) is acquired on a grid of

values of τ1, b, and τ2. In many experiments, the acquisition time is proportional to

the total number of such points. Hence, high dimensional experiments, in which the

dimension N is 3 or greater, can take hours, days, or even weeks to acquire. This
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long acquisition time has substantially limited applications of higher dimensional

NMR relaxometry. By accelerating these experiments, compressive sensing offers to

make possible many biomedical applications that were previously impractical.

4.4 General Mathematical Setup

Let M ∈ Rm1×···×mN be the observed data tensor and let F ∈ Rn1×···×nN be the

discretized distribution of parameters to be solved for. We consider the following

N -dimensional separable linear equation

M = F⊗1 K1 ⊗2 K2 · · · ⊗N KN + Z, (4.15)

where each kernel Ki ∈ Rmi×ni . The tensor Z ∈ Rm1×···×mN consists of noise. We

assume that Z satisfies ||Z||F ≤ ε, for some ε > 0. Equation (4.15) is equivalent to

vec(M) = (KN ⊗KN−1 · · · ⊗K1)vec(F) + vec(Z),

where KN ⊗KN−1 · · · ⊗K1 denotes the Kronecker product of matrices.

Equation (4.15) is an example of an N -dimensional discrete separable Fredholm

integral equation of the first kind.

For notational convenience, we define the operatorK : Rn1×···×nN −→ Rm1×···×mN

by

K(X) = X⊗1 K1 ⊗2 K2 · · · ⊗N KN , (4.16)

so that (4.15) can be rewritten as

M = K(F) + Z. (4.17)
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4.5 Description of the Kernels Ki

Each kernel Ki can be viewed as a discretization of a continuous kernel κi :

[0,∞)× (0,∞) −→ R. We parametrize the domain of κi by (τi, ti), where τi is the

acquisition time corresponding to the i-th axis of the tensor M and ti is the value

of the parameter corresponding to the i-th axis of the tensor F.

Let 0 < τi[1] < · · · < τi[mi] be a fixed discretization of the acquisition time τi

and let 0 < ti[1] < · · · < ti[ni] be a fixed discretization of the parameter ti. Then

the kernel Ki ∈ Rmi×ni is defined by

Ki[l, k] = κ(τi[l], ti[k])wi[k], (4.18)

where 1 ≤ l ≤ mi, 1 ≤ k ≤ ni, and wi[1], . . . , wi[ni] are quadrature weights. The

quadrature weights can in general be defined by any quadrature rule, such as the

trapezoidal rule, Simpson’s rule, or Gaussian quadrature.

Standard practice in NMR is to discretize the points τi and ti by either linear

or logarithmic spacing.

Definition 4.2 (Linear spacing). Given a parameter x, its m-point linearly-spaced

discretization on the interval [xmin, xmax] consists of the points

xj = xmin + (xmax − xmin)
j − 1

m− 1
,

for j = 1, . . . ,m.

Definition 4.3 (Logarithmic spacing). Let 0 < xmin < xmax. Given a parameter x,

its m-point logarithmically-spaced discretization on the interval [xmin, xmax] consists
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of the points

xj = xmin exp

(
log(

xmax

xmin

)
j − 1

m− 1

)
,

for j = 1, . . . ,m,

Although more sophisticated quadrature rules are available, for simplicity we

use the following two rules. In the case of linear spacing, we let

w[j] = xj+1 − xj =
xmax − xmin

m− 1
,

for j = 1, . . . ,m. In the case of logarithmic spacing, we let

w[j] = xj+1 − xj = xj

(
exp

(
log(

xmax

xmin

)
1

m− 1

)
− 1

)
,

for j = 1, . . . ,m. Although the point xm+1 is not defined, the right hand side of the

above two equations can still be used to define wm. The resulting quadrature rules

approximate the integral on the slightly expanded interval [xmin, xmax + xmax−xmin

m−1
]

in the linear spacing case and on a similarly expanded interval in the case of log-

arithmic spacing, although no generality is lost as an approximation on the inter-

val [xmin, xmax] would be obtained by letting j range from 1, . . . ,m − 1, instead of

1, . . . ,m.

Hence, the kernels Ki are defined explicitly by (4.18), where the points 0 <

τi[1] < · · · < τi[mi] are linearly or logarithmically spaced on the interval [τi,min, τi,max]

and the points 0 < ti[1] < · · · < ti[mi] are linearly or logarithmically spaced on the

interval [ti,min, ti,max]. To be clear, each τi corresponds to the times at which exper-

imental measurements are obtained while each ti corresponds to a parametrization

of one of the desired parameters (such as T1, T2, or D).
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We will let Di = [τi,min, τi,max] × [ti,min, ti,max]. It follows that the operator

K defined in (4.16) is a discretization of the continuous function κ1 × · · · × κN

restricted to the subdomain D1 × · · · × DN . (In fact, it is an approximation on a

slightly expanded subdomain, due to the choice of the quadrature weights.)

Each kernel κi, and hence its discretization Ki, depends on the specific exper-

imental parameter ti being measured at the observation times τi. In the case of a

T1 inversion recovery experiment, we have

κT1(τ, t) = 1− 2 exp(−τ/t).

For a T2 CPMG experiment, we have

κT2(τ, t) = exp(−τ/t).

For an ADC experiment, we have

κD(τ, t) = exp(−τt).

By appropriate transformations, each of these kernels κi can reformulated as

the kernel of a Laplace transform. Hence, after an appropriate transformation, the

operator K is a discretization of a multidimensional Laplace transform.

In cases in which the distribution F exhibits details at very different scales

of (t1, . . . , tN), logarithmic spacing is useful to provide resolution at different time

scales. Logarithmic spacing has also been observed to provide better conditioning,

corresponding to a slower rate of decay of singular values in some problems [20]. For

these reasons, the use of logarithmic spacing is standard in NMR relaxometry.
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4.6 Nonnegative Least Squares (NNLS) and Tikhonov Regulariza-

tion

A solution of the equation (4.17) can sought by solving the following nonneg-

ative least squares (NNLS) problem:

min
F∈Rn1×···×nN : F≥0

||M−K(F)||2F, (4.19)

where the operator K is defined by (4.16).

The kernels Ki are highly ill-conditioned in relaxometry applications. Since

the matrix for K, when viewed as an operator on vectors vec(X), takes the form of a

Kronecker product KN ⊗· · ·⊗K1, by Lemma 2.15 the singular values of K take the

form of products
∏N

i=1 σi[li], for each (l1, . . . , lN) ∈ [rank(K1)] × · · · × [rank(KN)],

where σi[1], . . . , σi[rank(Ki)] are the singular values of Ki. Hence, if the singular

values decay rapidly for each kernel Ki, the singular values will also decay rapidly

for K. Moreover, the condition number κ(K) =
∏N

i=1 κ(Ki). Hence, if each κ(Ki)

is bounded below by O(κ0), κ(K) will be bounded below by O(κN0 ). Thus κ(K) is

extremely large and (4.19) is highly ill-conditioned. As a result, even small amounts

of noise in the observed data M can results in very large changes in the solution F,

resulting in a physically meaningless solution.

A standard technique to improve the contioning of ill-posed inverse problems

is regularization [78]. While there are large number of different regularization tech-

niques, a common idea in regularization is to introduce a term that penalizes ex-

cessively large solutions, with the goal of reducing the sensitivity of the solution to
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small changes in the observed data. We consider the follow Tikhonov regularized

nonnegative least squares (Tikhonov-NNLS) problem:

min
F∈Rn1×···×nN : F≥0

||M−K(F)||2F + α2||F||2F, (4.20)

The parameter α > 0 describes the relative weight of the regularizer ||F||2F,

with larger values of α corresponding to larger amounts of regularization. Under

appropriate statistical assumptions, increasing α results in a solution with smaller

variance and larger bias. Hence the choice of α represents a trade-off between bias

and variance.

4.7 Data Compression

In [144], Venkataramanan, Song, and Hürlimann introduced an accelerated

numerical algorithm, hereafter called the VSH algorithm, to solve (4.20). The VSH

algorithm exploits the rapid decay of the singular values of the kernel K to project

the observed data onto a lower-dimensional space. The projected data is then used

to solve a smaller NNLS problem, greatly reducing computational time. While the

algorithm was initially presented for 2-dimensional kernels of the form K2 ⊗ K1,

its derivation remains essentially unchanged for N -dimensional kernels of the form

KN ⊗ · · · ⊗K1.

Let Ki = UiSiV
t
i be the singular value decomposition of each kernel Ki, where

Ui ∈ Rmi×ri has orthonormal columns, Si ∈ Rri×ri is diagonal with diagonal entries

σi[1] ≥ σi[2] ≥ . . . σi[ri] > 0, Vi ∈ Rni×ri has orthonormal columns, and ri =

rank(Ki) > 0.
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Let U : Rr1×···rN −→ Rm1×···×mN denote the operator

U(X) = X⊗1 U1 ⊗2 U2 · · · ⊗N UN .

and let U t : Rm1×···mN −→ Rr1×···×rN denote the operator

U t(X) = X⊗1 U
t
1 ⊗2 U

t
2 · · · ⊗N U t

N .

Then U tU = IdRr1×···×rN and UU t is a projection onto the range of K.

Definition 4.4 (Compressed kernel and compressed data). Define the compressed

kernel K̃ : Rr1×···rN −→ Rn1×···×nN to be the operator defined by

K̃(X) = X⊗1 (S1V
t

1 )⊗2 (S2V
t

2 ) · · · ⊗N (SNV
t
N).

Define the compressed data M̃ ∈ Rr1×···×rN to be

M̃ = U t(M).

The entry M̃[i1, . . . , iN ] = M ⊗1 U [:, i1]t · · · ⊗N U [:, iN ]t, and hence are the

inner products of M with the singular vectors of K.

Lemma 4.5. The problems (4.20) and

min
F∈Rn1×···×nN : F≥0

||M̃− K̃(F)||2F + α2||F||2F, (4.21)

are equivalent, in the sense that both problems have the same set of solutions.

Proof. It suffices to verify that (4.20) and (4.21) have the same first order conditions.

First, observe that the first order conditions for (4.20) are

(
F⊗ (Kt

1K1) · · · ⊗ (KN
tKN)

)
[i1, . . . , iN ] + α2F[i1, . . . , iN ] ≥ 0, (4.22)
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for all (i1, . . . , iN) ∈ [n1] × · · · × [nN ], with equality whenever F[i1, . . . , iN ] > 0.

Similarly, the first order conditions for (4.21) are

(
F⊗ ((S1V

t
1 )tS1V1

t) · · · ⊗ ((S1V
t

1 )tS1V1
t)
)

[i1, . . . , iN ] + α2F[i1, . . . , iN ] ≥ 0, (4.23)

for all (i1, . . . , iN) ∈ [n1]× · · · × [nN ], with equality whenever F[i1, . . . , iN ] > 0.

Since each Ui has orthonormal columns, Kt
iKi = (UiSiV

t
i )tUiSiV

t
i = V t

i SiU
t
iUiSiV

t
i =

(SiV
t
i )tSiVi

t. Hence the first order conditions (4.22) and (4.23) are equivalent.

The VSH algorithm solves the compressed problem (4.21) instead of the full

problem (4.20). The primary advantage of solving the compressed problem instead of

the full problem is a significant reduction in computational time, if ri = rank(Ki) <<

min(mi, ni), where recall that Ki ∈ Rmi×ni .

In relaxometry applications, the kernels Ki are in fact full-rank; however, the

singular values σi[1], . . . , σi[ri] decay rapidly. One way to greatly reduce computa-

tional time is to fix a threshold 0 < ρ < 1, and replace each Ki with its low rank

approximation Ki,ρ obtained by retaining only the singular values σi[j] satisfying

σi[j] ≥ ρσi[1]. All of the analysis in this chapter holds in the case in which Ki is

replaced by such an approximation; however, the rank of Ki,ρ is greatly reduced,

resulting in a significantly smaller compressed data tensor M̃ and compressed ker-

nel K̃, and consequently faster computations. Replacing each Ki with Ki,ρ and ri

with the rank of Ki,ρ, the analysis in this chapter is not changed. Another effect of

thresholding, as we will see in Chapter 5, is that the tensor completion algorithm is

significantly less computationally expensive, since the tensor being completed will
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be the compressed tensor M̃.

We now describe the VSH algorithm from [144]. We aim to solve the com-

pressed problem (4.21). Let f = vec(F) and let m = vec(M). Let K̃i = SiV
t
i and

let K̃ = K̃N ⊗ · · · ⊗ K̃1. Let r = r1r2 · · · rN and let n = n1 · · ·nN . In [144], it is

shown using the first order conditions of (4.21) that if we define

c =
K̃f −m
−α2

,

then the optimal solution satisfies f = max(0, K̃tc). Using this, it is derived in [144]

that c solves:

min
c∈Rr

1

2
ct(G(c) + α2Idn×n)c− ctm, (4.24)

where

G = K̃diag(H(K̃[:, 1]tc), . . . , H(K̃[:, n]tc))K̃t

and H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0.

The derivatives of the objective function in (4.24) are easily computed, so

(4.24) can be solved rapidly using the inverse Newton method, as suggested in [144]

and used by Cloninger and Czaja in [42]. We use a line-search method in our

implementation.

Remark 4.6 (N-dimensional singular value thresholding). When constructing the

kernel K̃, it is not necessary to compute the full Kronecker product K̃i = SiV
t
i .

Indeed, suppose ρ > 0 is a threshold (e.g., ρ = 10−8). Since the SVD of K̃ is of the

form (SN ⊗ · · · ⊗ S1)(VN ⊗ · · · ⊗ V1)t, the columns of K̃ are of the form

(
σN [iN ] · · ·σ1[i1]

)
vN [:, iN ]⊗ · · · ⊗ VN [:, i1],
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for (iN , . . . , i1) ∈ [rN ]× · · · × [r1]. Let

I = {(iN , . . . , i1) ∈ [rN ]× · · · × [r1] : σN [iN ] · · ·σ1[i1] ≥ ρσN [1] · · ·σ1[1]}.

Let I = {ι1, . . . , ιr} be an enumeration of the elements of I. Now, let K̃ρ be the

matrix whose j-th column is(
N∏
k=1

σk[ιj(k)]

)
vN [:, ιj(N)]⊗ · · · ⊗ vN [:, ιj(1)].

Let mρ = M̃ [I], where M̃ [I] is the result of listing the entries of M̃ indexed by I

into a column-vector lexicographically. Then, we obtain the truncated SVD problem:

min
f≥0
||Kρf −mρ||22 + α2||f ||22.

In practice, the region of [r1] × · · · × [rN ] corresponding to I corresponds to an

approximate triangle in 2 dimensions (or simplex) in higher dimensions. Thresh-

olding the singular values in this manner further reduces computational time, even

beyond thresholding the individual kernels Ki. Indeed, it is possible that two sin-

gular values σ1[i] of K1 and σ2[j] of K2 are above the threshold, but their product

is below the threshold. Hence, applying N-dimensional thresholding further reduces

the size of the kernel and accelerates the VSH algorithm. An additional advantage

is noise-thresholding, although that is less significant since the Tikhonov regularizer

also reduces the effect of noise.
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Chapter 5: Compressed Sensing for Nuclear Magnetic Resonance Re-

laxometry

5.1 Overview

While there have been extensive applications of CS to magnetic resonance

imaging (MRI) [104, 103, 105, 82] using various types of sparsity, we are not aware

of any previous applications of CS to NMR relaxometry or related experiments other

than the algorithm developed by Cloninger and Czaja in [42, 41], which was further

validated in [3]. Unlike MRI, which requires Fourier methods, relaxometry problems

require the solution of discrete Laplace transform-type equations. The work [19]

applies sparsity-inducing regularizers to NMR relaxometry, but does not exploit

multidimensional tensor structure or address the problem of data reconstruction

from incomplete measurements.

In this chapter, we show how our tensor recovery results described in Chap-

ter 3 can be applied to greatly accelerate N -dimensional NMR relaxometry data

acquisition. While Cloninger and Czaja’s results apply only when N = 2, our re-

sults apply for all dimensions N ≥ 2. Furthermore, our results support non-uniform

sampling, while previous results required uniform sampling.
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In N -dimensional relaxometry experiments, acquisition time, which can be

hours, days, or weeks, has significantly limited previous biomedical applications.

By accelerating NMR data acquisition, our new results promise to enable many new

biomedical applications.

5.2 Compressed Sensing for 2-Dimensional NMR Relaxometry

In the 2-dimensional case, Cloninger and Czaja first developed an algorithm

for solving equations of the form

M = F ⊗1 K1 ⊗2 K2 + Z

from incomplete noisy measurements ofM using compressed sensing [42, 41]. Cloninger

and Czaja observed that the solution of

min
F≥0
||M − F ⊗1 K1 ⊗2 K2||2F +

α2

2
||F ||22

depends only on the compressed data M̃ = M ⊗1 U
t
1 ⊗2 U

t
2. Hence, the goal of a

compressed sensing recovery algorithm should be to recover M̃ . Since M̃ is much

smaller than M , it is reasonable to expect to recover it from a relatively small

number of measurements. Moreover, in the noise-free setting, the compressed data

M̃ has rapidly decaying singular values. As a result, Cloninger and Czaja suggested

the application of matrix completion to recover M̃ from observations of the entries

M [i1, i2] for (i1, i2) ∈ Ω, where Ω ⊂ [m1]× [m2] is a randomly chosen set of entries

of fixed cardinality |Ω|.
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For any measurement set Ω ⊂ [m1]× [m2], define AΩ : Rr1×r2 −→ R|Ω| by

AΩ(X) = (X ⊗1 U1 ⊗2 U2) [Ω].

Recall that for a matrix M , M [Ω] denotes the column-vector obtained by arranging

the entries M [i1, i2] for which (i1, i2) ∈ Ω into a vector, according the the lexico-

graphically ordering. Hence, the entries of AΩ(X) can be written as

X ⊗1 U1[i1, :]⊗2 U2[i2, :]

for (i1, i2) ∈ Ω.

Observe that in the noise free case, AΩ[M̃ ] = M [Ω], so the operator A applied

to M̃ is equivalent to the observation of M on a random subset Ω of its entries.

Cloninger and Czaja proposed solving the following problem to recover M̃ .

min
M̃∈Rr1×r2

||M̃ ||∗ +
1

2µ
||AΩ(M̃)− y||2F, (5.1)

where y = M [Ω] and µ is a regularization constant. Cloninger and Czaja showed

that this problem can be rapidly solved by a fixed point continuation iterative algo-

rithm developed by Ma, Goldfarb, and Chen [106].

By extending a result by Yi-Kai Liu [102], which established that the RIP holds

with high probability for random observations from an orthonormal measurement

set, to the case of a Parseval tight Frame, Cloninger and Czaja proved that the

solution of (5.1) approximately recovers M̃ with high probability, provided that the

number of measurements |Ω| is sufficiently large [42, 41].
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5.3 Tensor Completion Applied to NMR

We now extend Cloninger and Czaja’s algorithm for the solution of discrete

2-dimensional Fredholm integral equations to the tensor case. We will present two

algorithms: reconstruction by slices and reconstruction by N-dimensional tensor

completion. The slice algorithm, which only applies when the data is randomly

sampled in 2 out of N dimensions and fully sampled in the remaining N − 2 dimen-

sions, uses standard matrix completion techniques to recover 2-dimensional slices.

The N -dimensional tensor completion algorithm applies for any non-uniform sam-

pling strategy and uses the tensor recovery methods discussed in Chapter 3

In N -dimensional NMR relaxometry and related experiments, measurements

of the form

M[i1, . . . , iN ] = K(F) + Z[i1, . . . , in]

are acquired, where Z is a noise tensor. In N -dimensional experiments, acquisition

time, which can be days or weeks, presents a substantial challenge. We aim to

accelerate data acquisition by first acquiring only a subset of the entries of M and

second recovering M̃ using tensor completion. Since problems (4.20) and (4.21) are

equivalent, M̃ contains all the information needed to recover F. Furthermore, in

NMR applications, M̃ is usually approximately equal to a tensor with low Tucker

rank.

In the noise free case, the entry

M[i1, . . . , iN ] = M̃⊗1 U [i1, :] · · · ⊗N UN [in, :]
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= (M, U [i1, :]
t ◦ · · · ◦ U [in, :]

t) (5.2)

where (X,Y) = (vec(X), vec(Y )) denotes the Euclidean inner product of ten-

sors and U [i1, :]
t ◦ · · · ◦ U [in, :]

t ∈ Rr1×···×rN is the outer product of the vectors

U [i1, :]
t, . . . , U [iN , :]

t.

Since the columns of each U1, . . . , UN are orthonormal, it follows that the

columns of UN ⊗ · · · ⊗ U1 are also orthonormal. Hence, the rows of UN ⊗ · · · ⊗ U1

form a Parseval tight frame of Rr1···rN . Translating this result to tensors, it follows

that the set of tensors {U [i1, :]
t ◦ · · · ◦ U [in, :]

t}(i1,...,iN )∈[m1]×···×[mN ] forms a Parseval

tight frame for Rr1×···×rN .

Hence, observations of individual entries of the raw relaxometry data, of the

form M[i1, . . . , iN ], are equivalent (in the noise-free case) to inner products of the

compressed tensor M̃ with the entries of a Parseval tight frame, as given by (5.2).

This was a key observation of Cloninger and Czaja in [42] in the 2-dimensional case.

5.4 A Naive Approach: N -Dimensional NMR Data Recovery by Ma-

trix Completion on 2-Dimensional Slices

We now present a first algorithm for reconstruction of N -dimensional NMR

data via matrix completion on 2-dimensional slices. The algorithm only applies for

sliced sampling strategies, i.e., random sampling in two axes and full sampling in

the remaining axes. While sliced sampling is in general suboptimal, some experi-

ments necessitate such sampling becasuse subsampling in one of the axes does not

save time. For example, in a T1 - D - T2 CPMG experiment, for each TI and b
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point acquired, all the points in the TE axis are acquired. Hence, if we randomly

subsample the TI - D - TE grid, with high probability we will choose almost all of

the TI and b values, leading to very little if any acceleration. For these experiments,

we must randomly subsample only the TI and b directions in order to substantially

reduce acquisition time.

While the slice algorithm uses less N -dimensional structure than our main

algorithm presented in the next section, we present it as an example of how 2-

dimensional methods, such as those introduced previously by Cloninger and Czaja,

can be applied to higher dimensional problems.

The 2-dimensional slice sampling operator, which subsamples in axes 1 and

2 and fully samples in axes 3, . . . , N , is defined as follows. Let p ∈ Rm1×m2 be a

probability distribution on [m1]× [m2] satisfying p[i1, i2] > 0 for all (i1, i2) ∈ [m1]×

[m2]. Let ι be a random variable with values in [m1]×[m2] satisfying P (ι = (i1, i2)) =

p[i1, i2]. For ι1, . . . , ιm i.i.d. drawings of ι and for ε1, . . . , εm i.i.d. Rademacher

random variables, define Aslice : Rr1×r2 −→ Rm by

Aslice(X)[i] = 〈X, εi√
p[ιi(1), ιi(2)]m

U [ιi(1), :]t ◦ U [ιi(2), :]t〉.

Assume that one realization of Aslice is fixed, once and for all. Assume that for

each ι1, . . . , ιm ∈ [m1]×[m2] occurring in the the realization ofAslice, the observations

M[ιi(1), ιi(2), :, . . . , :] are acquired, for i = 1, . . . ,m. Since M is randomly sampled in

axes 1 and 2 and fully sampled in axes 3, . . . , N , the observations can be compressed

along axes 3, . . . , N . Define M̃3,...,N ∈ Rm1×m2×r3×···×rN by

M̃3,...,N = M⊗3 U
t
3 · · · ⊗N U t

N .
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For each fixed (j3, . . . , jN) ∈ [r3]× · · · × [rN ], the given observations can be used to

construct observations of M̃3,...,N . The following algorithm works by apply matrix

completion to each slice M̃3,...,N [:, :, j3, . . . , jN ] for (j3, . . . , jN) ∈ [r3]× · · · × [rN ].

Algorithm 5.1.

1: procedure M̃ = Tensor Completion for ND NMR by 2D slices(p,m, ε)

2: Choose εi ∈ {0, 1} and ιi ∈ [m1]× [m2], where P (ιi = (i1, i2) = p[i1, i2].

3: Collect experimental observations M[ιi(1), ι2(N), :, . . . , :], for i = 1, . . . ,m.

4: for (j3, . . . , jN) ∈ [r3]× · · · × [rN ] do

5: Define

y[i, j3, . . . , jN ] = Aslice(M̃[:, :, j3, . . . , jN ])[i]

= εi√
p[ιi(1),ιi(2)]m

M̃3,...,N [ιi(1), ιi(2), j3, . . . , jN ]

6: Reconstruct the slice M̃[:, :, j3, . . . , jN ] by solving

min
X∈Rr1×r2 : ||Aslice(X)−y[:,j3,...,jN ]||2≤ε

(||X||∗)

We first presented a slightly modified version of the slice algorithm in [73].

Since the observations are initially compressed along axes 3, . . . , N , the slice algo-

rithm only requires the solution of a relatively small number of matrix completion

subproblems. A drawback of the slice algorithm is that some multidimensional

structure is lost, since the problem is split into independent 2-dimensional prob-

lems. Furthermore, the sliced sampling strategy often exhibits suboptimal recovery

compared to full N -dimensional random sampling. In the following section, we de-
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scribe a full N -dimensional tensor completion algorithm for NMR, which uses the

results introduced in Chapter 3.

5.5 Non-Uniform Sampling of N -Dimensional Relaxometry Data

With the same notation as in the previous section, assume that p ∈ Rm1×···×mN

defines a probability distribution on [m1] × · · · × [mN ], i.e., on the indices of the

possible observations of the relaxometry data M. Assume that p[i1, . . . , iN ] > 0 for

all (i1, . . . , iN) ∈ [m1]×· · ·× [mN ]. We consider the following non-uniform sampling

strategy. Let m ≥ 1 be a fixed number of measurements. Let ι be a random variable

with values in [m1]× · · · × [mN ] satisfying

P (ι = (i1, . . . , iN) = p[i1, . . . , iN ]).

Let ε1, . . . , εm be i.i.d. Rademacher random variables and let ι1, . . . , ιm be m i.i.d.

drawings of ι. that are independent of the εi’s. Now define the random sampling

operator A : Rm1×···mN −→ Rm by

A(X)[i] = 〈X, εiU [ιi(1), :]t ◦ · · · ◦ U [ιi(N), :]t√
p[(ιi(1), . . . , ιi(N)]m

〉. (5.3)

We have thus arrived at the following algorithm for non-uniform sampling for

N -dimensional relaxometry problems.
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Algorithm 5.2.

1: procedure M̃ = Tensor Completion for ND NMR(p,m)

2: Let ε1, . . . , εm be i.i.d. Rademacher random variables in {−1, 1} and ι1, . . . , ιm

be i.i.d. realizations of ι, as described above.

3: for i = 1, . . . ,m do

4: Acquire experimental observation M[ιi(1), . . . , ιi(N)].

5: y[i]← A(M̃)[i] = εiM[ιi(1),...,ιi(N)]√
p[ιi(1),...,ιi(N)]m

.

6: Solve

M̃ = argminX∈Rr1×···×rN

(
||X||∗ +

1

2µ
||A(X)− y||22

)
. (5.4)

In the last step of the above algorithm, the parameter µ can be chosen using

accelerated k-fold cross-validation (Algorithm 3.38). The problem can then by solved

using fixed point continuation (Algorithm 3.36).

Theorem 5.3 (Non-uniform sampling tensor recovery guarantee for N -dimensional

NMR relaxometry). There exists a constant C such that the following holds. Let

ν = max
(i1,...,iN )∈[m1]×···×[mN ]

∏N
k=1 ||U [ik, :]||22

pi
.

Let 1 ≤ sj ≤ rj, for j = 1, . . . , N . Define A as above and let ε > 0 and p ∈ (0, 1).

Let δ < δcritical, where δcritical is the constant appearing in Theorem 3.20. If the

number of measurements satisfies

m ≥ C
µ2

δ2
max

{
log(

N

p
), max
k=1,...,N

{sk
∏
j 6=k

rj + skrk +
∑
j 6=k

r2
j} log(N)

}
,
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then with probability at least 1 − p over A, for every M̃0 ∈ Rr1×···×rN and y ∈ Rm

satisfying ||A(M̃0)− y||2 ≤ ε, the solution M̃∗ of (5.4) satisfies

||M̃∗ − M̃0||F ≤ C0ε+ C1

(
1

1
N

∑N
k=1

√
sk

)
||M̃0 − M̃best||∗,

where M̃best is the best rank (s1, . . . , sN) approximation of M̃0 in the || · ||∗ norm.

Proof. Since U [i1, :]
t ◦ · · · ◦ U [in, :]

t forms a Parseval tight frame, the result follows

from Theorem 3.20. The formula for ν follows because for a rank one tensor v1 ◦

· · · ◦ vN , we have ||v1 ◦ · · · ◦ vN ||F =
∏N

k=1 ||vk||F. Applying this result, we have

||U [i1, :]
t ◦ · · · ◦ U [i1, :]

t||2F =
∏N

k=1 ||U [ik, :]||22. The formula above for ν then follows

from the formula given in Theorem 3.17.

Theorem 5.4 (Minimally coherent non-uniform sampling for NMR relaxometry).

The minimally coherent choice of sampling probabilities for relaxometry are given

by

p[i1, . . . , iN ] =

∏N
k=1 ||U [ik, :]||22
r1r2 · · · rN

.

Proof. The result follows directly from Theorem 3.21. Observe that d in that theo-

rem is r1r2 · · · rN here.

For p0 > 0, an alternative sampling distribution is given by nearly minimally

coherent random sampling, as in Defintion 3.22:

p[i1, . . . , iN ] =

∏N
k=1 ||U [ik,:]||22
r1r2···rN

+ p0

m1m2···mN
1 + p0

.
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5.6 Choosing the Regularization Parameter α in NNLS

Recall that for relaxometry and related applications, we solve the Tikhonov

regularized nonnegative least squares (NNLS) problem (4.20), rewritten here as

min
F∈Rn1×···×nN : F≥0

||M−K(F)||2F + α2||F||2F,

using the VSH algorithm, as described in Chapter 4.

Of central importance in obtaining meaningful solutions is the appropriate

selection of the regularization parameter α. Intuitively, the parameter α determines

the degree to which noise is filtered out of the solution. Too small a value of α results

in a solution with extremely high variance while too small a value of α results in

extremely high bias, under appropriate statistical assumptions. Standard methods

for the selection of α include the L-curve and the discrepancy principle [78].

Here, we use a different method, called generalized cross-validation. Gener-

alized cross-validation (GCV) was first introduced by Craven and Wahba [46] and

further developed by Golub, Heath, and Wahba [66]. The method aims to estimate

the leave-one-out cross-validation error in the residual. We will apply GCV not to

the full problem, but rather to the compressed problem

min
f
||m− K̃f ||22 + α||f ||22, (5.5)

where f = vec(F), m = vec(M), K̃i = SiV
t
i , and K̃ = K̃N ⊗ · · · ⊗ K̃1. Let

r = r1r2 · · · rN and n = n1 · · ·nN .

GCV aims to estimate the leave-one-out CV error, which is obtained by solving

the problem with one m̃[i] omitted and then measuring the squared error on that
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point. By repeating r times, where m̃ ∈ Rr, and then averaging the r errors, we

obtain an estimate of the leave-one-out error.

It might seem that estimating the GCV error would be computationally cum-

bersome, but for linear problems it can in fact be done by only solving one inversion

problem for each α (rather than r problems for each α). It is shown in [2] that the

GCV error for the compressed problem is approximated by

GCVerror ≈
r||Kfα −m||22

trace(Idr×r − K̃K̃#)
,

where

K̃# = (K̃tK̃ + α2Idn×n)−1K̃t.

We implement VSH inversion for a fixed set of values of α, and choose the value

that minimizes the above approximation of GCVerror. By exploiting the simple SVD

structure K̃, the above approximation of GCVerror can be computed rapidly.

5.7 3-Dimensional Tensor Recovery on Simulated Data

We consider simulated 3-dimensional data. The kernels are of T2-type, i.e.,

κi(τ, t) = exp(−τ, t). In each dimension, we set the times τ to be 64 points log-

arithmically spaced on [0.1, 1] and we set t to be 64 logarithmically spaced points

on [0.1, 1]. Hence, M and F are tensors of size 64 × 64 × 64. We threshold the

kernels at ρ = 1−8 according to Remark 4.6. times the largest singular value.

The resulting compressed tensor is of size 8 × 8 × 8. The true distribution F

consists of 3 Gaussian peaks with standard deviation 0.01. The peak positions

are (0.2, 0.3, 0.2), (0.7, 0.2, 0.4), and (0.5, 0.5, 0.6). The sampling ratios used are:
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0.00015625, 0.0003125, 0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, and

0.5. For k-fold CV we set k = 10.

Figure 5.1: True simulated distribution F with peaks at (0.2, 0.3, 0.2), (0.7, 0.2, 0.4),

and (0.5, 0.5, 0.6)

SNR values used are 256, 4096, and 16384. Data of given SNR is constructed

as follows. Given the true uncompressed data M0, we define M = M0 + E, where

E contains i.i.d. mean 0 Gaussian random variables with standard deviation σ =

||M||∞/SNR.

The true value of F is plotted in Figure 5.1.
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5.7.1 Results at Sampling Ratio 0.0025 and SNR = 16384

The k-fold cross-validation estimated generalization error, at sampling ratio

0.0025 and SNR = 16384, is plotted in Figure 5.2. The GCV curve for α selection

is shown in Figure 5.3. The inversion results for various values of α are plotted in

Figure 5.4.

Figure 5.2: k-fold cross-validation curve at sampling ratio 0.0025 and SNR = 16384.

Results from 5 out of the 10 folds are displayed to illustrate the variation in the

solution. Each row shows inversion results for a different fold. Optimal µ = 3.10×

10−9. Optimal error = 9.7× 10−4.

121



Figure 5.3: Generalized CV curve for selection of α at sampling ratio 0.0025 and

SNR = 16384. Optimal α = 4.64× 10−6.
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Figure 5.4: Inversion results for various α at ratio 0.0025 and SNR = 16384. Each

row corresponds to a different fold in k-fold CV. The optimal α selected by GCV

corresponds to the 4th column.

5.7.2 Results at Sampling Ratio 0.01 and SNR = 16384

We again plot the k-fold CV error, GCV curve, and inversion results for the

simulated data, this time at sampling ratio 0.01. A comparison of Figures 5.4 and

5.7 shows that for fixed α, inversion results are more stable at higher sampling ratios.
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Figure 5.5: k-fold cross-validation curve at sampling ratio 0.01 and SNR = 16384.

Results from 5 out of the 10 folds are displayed to illustrate the variation in the

solution. Each row shows inversion results for a different fold. Optimal µ = 5.06×

10−9. Optimal error = 2.53× 10−4.
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Figure 5.6: Generalized CV curve for selection of α at sampling ratio 0.01 and

SNR = 16384. Optimal α = 3.59× 10−7.
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Figure 5.7: Inversion results for various α at ratio 0.01 and SNR = 16384. Each

column corresponds to a different choice of α. Each row corresponds to a different

fold in k-fold CV. The optimal α selected by GCV corresponds to the 2nd column.

5.7.3 Relative Errors vs. Sampling Ratio

We now plot the relative errors versus sampling ratio for tensor recovery at

SNR = 256, 4096, and 16384. The relative errors are calculated as ||M̃−M̃0||2/||M̃0||2,

where M̃0 is the true compressed tensor and M̃ is the recovered compressed tensor.

A comparison of figures 5.8, 5.9, and 5.10 shows that relative error tends to

decrease as SNR increases.
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Figure 5.8: Relative tensor completion error versus sampling ratio at SNR = 16384.

Figure 5.9: Relative tensor completion error versus sampling ratio at SNR = 4096.
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Figure 5.10: Relative tensor completion error versus sampling ratio at SNR = 256.

5.8 Application to T1 - D - T2 Experimental Data

We apply compressed sensing at sampling ratio 0.025 to T1 − D − T2 data

acquired on an olive oil sample. The experiment was performed by Hasan Celik.

The data M is 64×64×64, the solution F is 32×32×32, and the compressed

data M̃ is 6× 4× 8.
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Figure 5.11: T1 - D - T2 experimental inversion result without CS and with CS at

sampling ratio 0.025
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Figure 5.12: T1 - D - T2 experimental inversion result at sampling ratio 0.025.

Results from 5 out of the 10 folds are displayed to illustrate the variation in the

solution. Each row shows inversion results for a different fold.
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Figure 5.13: k-fold cross-validation curve at sampling ratio 0.025 and SNR = 16384

for T1 - D - T2 experimental data. Results from 5 out of the 10 folds are displayed

to illustrate the variation in the solution. Each row shows inversion results for a

different fold. The plateau on the left side suggests that the recovery accuracy is

limited by noise in the data. This suggests that the number of samples acquired

could likely be reduced without reducing recovery accuracy.
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Figure 5.14: Generalized CV curve for T1 - D - T2 experimental data for selection

of α at sampling ratio 0.025 and SNR = 16384
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Chapter 6: Stability Results for Nonnegative Least Squares

6.1 Introduction

Recall that NMR relaxometry and related experiments require the solution of

the Tikhonov regularized nonnegative least squares problem (4.20), rewritten here:

min
F∈Rn1×···×nN : F≥0

||M−K(F)||2F +
α2

2
||F||2F,

In NMR relaxometry and related experiments, the kernels Ki are, after a

suitable transformation, of Laplace transform type. In [38], Celik, Bouhrara, Reiter,

Fishbein, and Spencer observed empirically that the solution of (4.20), in cases in

which the solution has two distinct peaks, exhibits improved stability and resolution

properties in 2 dimensions than in 1 dimension.

Let y = vec(M) ∈ Rm, x = vec(F) ∈ Rn, and K = KN ⊗ · · · ⊗KN ∈ Rm×n.

Then (4.20) becomes

min
x∈Rn : x≥0

||y −Kx||2F +
α2

2
||x||2F (6.1)

The form of problem (6.1) is independent of the dimension N of the problem

(4.20). Hence, we will analyze the stability of (6.1). The resulting analysis will then

apply to (4.20) for any value of N ≥ 1.

We will analyze the stability of (6.1) with respect to perturbations in the data
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y and in the regularization α. First, we show how standard estimates can be applied

in the abscence of the non-negativity constraint x ≥ 0. Second, we show how those

results can be extended to problem (6.1) with non-negativity constraints.

6.2 Stability of Least Squares

We quote a theorem, [142][Theorem 18.1], that describes the stability of the

solution to least squares problems with respect to changes in the solution and the

kernel. Recall that for a non-zero matrix K, its condition number is defined to be

κ(K) = σ1(K)/σr(K), where r = rank(K).

We now state a more general definition of condition number.

Definition 6.1 (Relative condition number). Let X and Y be real finite-dimensional

Hilbert spaces with norms || · ||X and || · ||Y . The condition number of a function

f : X −→ Y at x ∈ X is given by

κf(x):x = lim
δ−→0+

sup
x̃ : ||x̃−x||X≤δ

(
||f(x̃)− f(x)||Y
||f(x)||Y

/
||x̃− x||X
||x||X

)

The relative condition number provides an upper bound on the amount by

which small relative changes in x are scaled by the transformation f , as measured

by the || · ||X and || · ||Y norms.

Theorem 6.2. Let K be an m × n matrix of full rank and let y ∈ Rm. Consider

the least squares problem

min
x∈Rn
||Kx− y||22 (6.2)
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with solution x∗ ∈ Rn. We define the following useful quantities:

ηK =
σmax(K)||x∗||2
||Kx∗||2

(6.3)

and

cos θK =
||Kx∗||2
||y||2

. (6.4)

Assume that the space of solutions x ∈ Rn is equipped with the || · ||2 norm, the space

containing the initial data y ∈ Rm is equipped with the || · ||2 norm, and the space of

kernels K ∈ Rm×n is equipped with the matrix norm || · ||2. Then the following hold:

1. The relative condition number of the solution x∗ ∈ Rn as a function the initial

data y ∈ Rm satisfies

κx∗:y ≤
κ(K)

ηK cos θK
. (6.5)

2. The relative condition number of the solution x∗ ∈ Rn as a function of the

kernel K ∈ Rm×n satisfies

κx∗:K ≤ κ(K) +
κ(K)2 tan θK

ηK
. (6.6)

Recall that for a non-zero matrix K ∈ Rm×n, σmin(K) denotes the smallest

nonzero singular value of K and σmax(K) denotes the largest singular value of K.

The matrix norm ||K||2 is equivalent to the largest singular value of K, i.e., ||K||2 =

σmax(K).

Theorem 6.2 can be applied to quantify the stability of unconstrained least

squares problems with Tikhonov regularization, as shown in the following corollary.

Recall that the augmented kernel Kaug and the augmented data yaug, as defined in
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Lemma 2.6, are given by

Kaug :=

 K

α Idn×n

 (6.7)

and

yaug :=

 y

0n×1

 . (6.8)

Corollary 6.3. Let K be an m × n matrix of full rank. Let y ∈ Rm and α > 0.

Consider the Tikhonov-regularized least squares problem

min
x∈Rn
||Kx− y||22 + α2||x||22. (6.9)

Assume that the space of solutions x ∈ Rn is equipped with the || · ||2 norm, the space

containing the initial data y ∈ Rm is equipped with the || · ||2 norm, and the space of

regularization constants α ∈ R is equipped with the absolute value | · | norm. Then

the following hold:

1. The relative condition number of the solution x∗ ∈ Rn of (6.9) as a function

the initial data y ∈ Rm satisfies

κx∗:y ≤
||y||2

σmin(Kaug)||x∗||2
. (6.10)

2. The relative condition number of the solution x∗ ∈ Rn of (6.9) as a function

of the regularization constant α > 0 satisfies

κx∗:α ≤
α

σmin(Kaug)
+
α||yaug −Kaugx

∗||2
σ2

min(Kaug)||x∗||2
(6.11)
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Figure 6.1: θK as defined in Theorem 6.2 is the angle between Kx∗ and y.

See [142, Figure 18.1].

im(K)

y-Kx*
θK

Kx*

y

Proof. By Lemma 2.6, (6.9) is equivalent to:

min
x∈Rn
||Kaugx− yaug||22. (6.12)

For both parts of the proof, we apply Theorem 6.2 to the problem (6.12).

We first prove (6.10). The transformation y 7→ yaug is an isometry. Hence, if

y is perturbed to ỹ, we have ||ỹ−y||2||y||2 = ||ỹaug−yaug||2
||yaug||2 . It thus follows from Definition

6.1, of relative condition number, that κx∗:y ≤ κx∗:yaug , where κx∗:y is the relative

condition number of x∗ with respect to changes in y and κx∗:yaug is the relative

condition number of x∗ with respect to changes in yaug. By Theorem 6.2,

κx∗:y ≤ κx∗:yaug

≤ κ(Kaug)
η(Kaug) cos θ(Kaug)

=
σmax(Kaug)
σmin(Kaug)

||Kaugx
∗||

||Kaug||||x∗||
||y||

||Kaugx∗||

= ||y||2
σmin(Kaug)||x∗||2 ,

where κ(Kaug), ηKaug , and θKaug are defined in the same way as was defined for K
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in Theorem 6.2. This proves (6.10).

Next, we prove (6.11). If α is perturbed to α̃, the augmented kernel

Kaug =

 K

α Idn×n


is perturbed to

K̃aug :=

 K

α̃ Idn×n

 .

Hence, we can view a perturbation of α as a perturbation of the kernel Kaug. Since

K̃aug −Kaug =

 0m×n

(α̃− α) Idn×n

 , (6.13)

we have ||K̃aug−Kaug||2
||Kaug||2 = |α̃−α|

||Kaug||2 = |α̃−α|
α

α
||Kaug||2 . It thus follows from Definition 6.1, of

relative condition number, that κx∗:α ≤
(
κx∗:Kaug

)
α

||Kaug||2 , where κx∗:α is the relative

condition number of x∗ with respect to changes in α and κx∗:Kaug is the relative

condition number of x∗ with respect to changes in Kaug. By Theorem 6.2,

κx∗:α ≤ κx∗:Kaug

(
α

||Kaug||2

)
≤

(
κ(Kaug) +

κ(Kaug)
2 tan(θKaug)

ηKaug

)(
α

||Kaug||2

)
=
(
σmax(Kaug)
σmin(Kaug)

+
σmax(Kaug)

2

σmin(Kaug)2
||yaug−Kaugx

∗||2
||Kaugx∗||2

||Kaugx
∗||2

σmax(Kaug)||x∗||2

)(
α

||Kaug||2

)
= α

σmin(Kaug)
+

α||yaug−Kaugx
∗||2

σ2
min(Kaug)||x∗||2

To obtain the second to last line, we used that tan(θKaug) = ||yaug−Kaugx∗||
||Kaugx∗|| , since

cos(θKaug) = ||Kaugx∗||
||yaug|| and the residual yaug −Kaugx

∗ is orthogonal to Kaugx
∗ by the
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first order conditions on x∗, as illustrated in Figure 6.1 (with Kaug instead of K and

yaug instead of y). We also used ηKaug = ||Kaug||||x∗||
||Kaugx∗|| .

Corollary 6.3 shows the solution x∗ of the Tikhonov regularized least squares

problem (6.9) is stable with respect to small perturbations in the data y or the

regularization constant α. Furthermore, the theorem provides explicit upper bounds

on the relative condition numbers of x∗ as a function of y or α. The corollary

shows that Tikhonov regularization can provide a physically meaningful solution

that is stable under small perturbations of y or α and provides a starting point for

a quantitative stability analysis of NMR relaxometry problems.

6.3 Extension to Nonnegative Least Squares

In NMR relaxometry and related applications, the solution x = vec(F) repre-

sents a non-negative distribution. Hence, in order to prevent the solution of (4.20)

from having negative entries, the non-negativity constraint x ≥ 0 must be imposed.

Hence, for a fixed kernel K ∈ Rm×n and data y ∈ Rm, we solve the following

Tikhonov regularized non-negative least squares problem:

min
x≥0
||Kx− y||22 + α2||x||22. (6.14)

In this section, we will extend the condition number results of Corollary 6.3,

which applied to the unconstrained Tikhonov regularized least squares problem

(6.9), to the Tikhonov regularized non-negative least squares problem (6.14). Our

main lemma, Lemma 6.6, shows that the problem with non-negativity constraints
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can be reduced, within a neighborhood of the initial data y and regularization param-

eter α, to an equivalent unconstrained least squares problem. Consequently, similar

bounds to those previously derived will hold for the problem with non-negativity

constraints.

We will use the idea of active-sets, which is used in the Lawson-Hanson algo-

rithm for nonnegative least squares [94]. Active sets describe the set of variables

xi that must be actively constrained to 0 and would otherwise result in a smaller

objective function value if allowed to be negative. We will prove that for (ỹ, α̃)

in a neighborhood of (y, α), the active set remains unchanged. Hence, locally the

non-negative least squares problem is equivalent to a least squares problem.

There is substantial existing theory on the sensitivity analysis of constrained

quadratic programs [65, 18, 86, 50, 84, 53, 71]. The stability of Tikhonov regularized

least squares problems has been considered in [39, 76, 147].

We start by stating a result by Daniel [50, Lemma 2.1] on the stability of

quadratic semidefinite minimization problems with constraints.

Lemma 6.4. Let A be a symmetric positive definite (SPD) matrix of size n × n

with smallest eigenvalue λ. Let a ∈ Rn. Let B ∈ Rb×n and C ∈ Rc×n be matrices.

Consider the problem

min
z∈Rn : Bz≥0, Cz=0

(
1

2
ztAz + zta

)
(6.15)

with solution z∗ ∈ Rn. If the matrix A is perturbed to Ã ∈ Rn×n and the vector a is

perturbed to ã ∈ Rn, and if

ε := max{||Ã− A||2, ||ã− a||2} < λ, (6.16)
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then the solution z̃∗ to the perturbed problem

min
z∈Rn : Bz≥0, Cz=0

(
1

2
ztÃz + ztã

)
(6.17)

satisfies

||z̃∗ − z∗||2 ≤
ε

λ− ε
(1 + ||z||2). (6.18)

Corollary 6.5. The solution of (6.14) depends jointly continuously y and α, for

α > 0.

Proof. The objective function in (6.14) can be rewritten as

||Kx− y||22 + α2||x||22 = (Kx− y)t(Kx− y) + α2xtx

= xtKtKx− xtKty − ytKx+ yty + α2xtx

= 1
2
xtAx+ xta+ constant

where A = 2(KtK + α2 Idn×n) and a = −2Kty.

By Lemma 2.7, A is SPD with smallest eigenvalue λ := 2(σmin(K)2 + α2).

Observe that if α is perturbed to α̃, thenA is perturbed to Ã = 2(KtK + α̃2 Idn×n),

so

||Ã− A|| = ||2(α̃− α) Idn×n|| = 2|α̃− α| (6.19)

If y is perturbed to ỹ, a is perturbed to ã = −2Ktỹ, so

||ã− a|| = || − 2Kt(ỹ − y)|| (6.20)

≤ 2σmax(K)||ỹ − y|| (6.21)

Assume that |α̃−α| < ε
2

and ||ỹ− y|| < ε
2σmax(K)

. It follows that ||Ã−A|| ≤ ε
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and |ã− a| < ε. Since ε < λ, by Lemma 6.4 we have

||x̃∗ − x∗|| ≤ ε

λ− ε
(1 + ||x∗||) =

ε

2(σmin(K)2 + α2)− ε
(1 + ||x∗||).

Hence, the solution x∗ is a continuous function of (y, α).

Our next lemma shows that for α̃ and ỹ in an open neighborhood of (α, y),

problem 6.14 is equivalent to a problem without non-negativity constraints.

Lemma 6.6. Consider the problem 6.14 with α > 0. There exists a nonempty set

Λ ⊂ {1, . . . , n} and a neighborhood N ⊂ Rm×R, containing (y, α), such that for all

(ỹ, α̃) ∈ N , the two minimizations problems

min
x≥0
||Kx− ỹ||22 + α̃2||x||22 (6.22)

and

min
x : xΛc=0

||Kx− ỹ||22 + α̃2||x||22 (6.23)

have the same (unique) solution.

Recall that if Λ ⊂ {1, . . . , n} and x ∈ Rn, xΛ ∈ R|Λ| is the vector with entries

xi for i ∈ Λ. Similarly, xΛc ∈ Rn−|Λ| is the vector with entries xi for i 6∈ Λ.

Proof. The proof involves an analysis of the first order conditions for (6.22) and

(6.23).

Let x∗ denote the solution to (6.14), let x̃∗ denote the solution to (6.22), and

let x̃∗∗ denote the solution to (6.23).

Step 1: Construction of N
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Define

Γ := {i|Kt
i

(
Kx∗ − y
−α2

)
6= 0} (6.24)

and

Γ̃ := {i|Kt
i

(
Kx̃∗ − ỹ
−α2

)
6= 0} (6.25)

By Corollary 6.5, the solution x̃∗ depends continuously on ỹ and on α̃, so

Kt
i

(
Kx∗−y
−α2

)
also depends continuously on (y, α). Hence, there exists neighborhood

N ⊂ Rm × R containing (y, α) such that for all (ỹ, α̃) ∈ N , we have Γ ⊂ Γ̃.

Step 2: Construction of index set Λ

Define

Λ := {i|Kt
i

(
Kx∗ − y
−α2

)
≥ 0} (6.26)

and

Λ̃ := {i|Kt
i

(
Kx̃∗ − ỹ
−α2

)
≥ 0}. (6.27)

Step 3: Proof that Λ̃ ⊂ Λ.

Suppose for contradiction that i ∈ Λ̃\Λ. Then, by the definitions of Λ and Λ̃,

we have

Kt
i

(
Kx∗ − y
−α2

)
< 0 (6.28)

and

Kt
i

(
Kx̃∗ − ỹ
−α2

)
≥ 0 (6.29)

By (6.28), we have i ∈ Γ. By the construction of N , we have Γ ⊂ Γ̃, so i ∈ Γ̃.

By the definition of Γ̃, we then have

Kt
i

(
Kx̃∗ − ỹ
−α2

)
6= 0. (6.30)
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Combining (6.29) and (6.30) we have

Kt
i

(
Kx̃∗ − ỹ
−α2

)
> 0. (6.31)

As argued above, Kt
i

(
Kx̃∗−ỹ
−α2

)
is a jointly continuous function of (ỹ, α̃). Hence,

by (6.28) and (6.31) and the intermediate value theorem, there exists a point ˜̃y on

the line from y to ỹ such that, if ˜̃x
∗

is the solution of the intermediate problem

min
x≥0
||Kx− ˜̃y||22 + α̃2||x||22,

we have

Kt
i

(
K ˜̃x

∗ − ˜̃y

−α2

)
= 0. (6.32)

Hence i 6∈ ˜̃Γ, where ˜̃Γ = {i|Kt
i

(
K ˜̃x
∗−˜̃y
−α2

)
6= 0} is defined in the same way as Γ was

defined in (6.25), but with ˜̃y instead of ỹ.

By refining the neighborhood N if needed, may assume N is convex. Hence

(˜̃y, α) ∈ N . By the construction of N , we have Γ ⊂ ˜̃Γ, so i 6∈ Γ. This contradicts

the initial assumption that i ∈ Γ. Hence, we conclude that the assumption was false

and it must be true that Λ̃ ⊂ Λ.

The first order conditions for (6.22) are

Kt
i (Kx− ỹ) + α2xi ≥ 0 (6.33)

with equality whenever xi 6= 0 and xi ≥ 0 for all i. The first order conditions for

(6.23) are

Kt
i (Kx− ỹ) + α2xi = 0 (6.34)

for all i ∈ Λ and xi = 0 for all i ∈ Λc.
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We aim to show that the two systems of inequalities (6.33) and (6.34) are

equivalent.

Step 4: Proof that (6.33) implies (6.34)

Suppose that x̃∗ satisfies equations (6.33), with x̃∗ instead of x. Since Λ̃ ⊂ Λ,

we consider separately three cases: i 6∈ Λ, i ∈ Λ̃, and i ∈ Λ\Λ̃.

Case 1: Suppose i 6∈ Λ. By Step 3 above, Λ̃ ⊂ Λ, hence i 6∈ Λ̃. Hence by

the definition of Λ̃, we have

Kt
i

(
Kx̃∗ − ỹ
−α2

)
< 0. (6.35)

If x̃∗i 6= 0, then by (6.33) we have x̃∗i > 0 and

Kt
i

(
Kx̃∗ − ỹ
−α2

)
= x̃∗i > 0, (6.36)

which contradicts (6.35). Hence x̃∗i = 0. This proves (6.34) in the case i 6∈ Λ.

Case 2: Suppose that i ∈ Λ̃. Then Kt
i

(
Kx̃∗−ỹ
−α2

)
≥ 0. Thus, Kt

i (Kx̃
∗− ỹ) ≤ 0.

If x̃i = 0, we conclude from (6.33) that Kt
i (Kx̃

∗ − ỹ) ≥ 0, so Kt
i (Kx̃

∗ − ỹ) = 0.

Hence 6.34 holds. If x̃i 6= 0, then (6.33) holds with equality, so we again conclude

that (6.34) holds.

Case 3: Now suppose that i ∈ Λ\Λ̃. Then by the definitions of Λ and Λ̃ we

have

Kt
i

(
Kx∗ − y
−α2

)
≥ 0 (6.37)

and

Kt
i

(
Kx̃∗ − ỹ
−α2

)
< 0. (6.38)

Suppose for contradiction thatKt
i

(
Kx∗−y
−α2

)
6= 0. By (6.37), we haveKt

i

(
Kx∗−y
−α2

)
>

0. By continuity and the intermediate value theorem, as in a previous argument,
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there exists an intermediate point (˜̃y, ˜̃α) between (y, α) and (ỹ, α̃) such thatKt
i

(
K ˜̃x
∗−˜̃y

−˜̃α
2

)
=

0. Hence i ∈ Γ and i 6∈ ˜̃Γ, which contradicts that Γ ⊂ ˜̃Γ by the construction of N .

Hence our assumption was false, so

Kt
i

(
Kx̃∗ − ỹ
−α2

)
= 0. (6.39)

Using (6.39), equation (6.33) simplifies to α2xi ≥ 0 with equality whenever

xi > 0. If xi > 0, this would give a contradiction, hence xi = 0. Hence (6.33) holds

with equality, so (6.34) holds.

This completes the proof that (6.33) implies (6.34).

Step 5: Proving the equivalence of (6.22) and (6.23)

Recall that (6.33) is the first order condition for problem (6.22) and (6.34) is

the first order condition for problem (6.23). We already showed that (6.33) implies

(6.34), hence an optimal solution of (6.22) is an optimal solution of (6.23). To prove

the reverse implication, it suffices to show that problem (6.23) has a unique solution.

Let x̃∗∗ be a solution of (6.23). Then x̃∗∗ satisfies the first order conditions

(6.34), with x̃∗∗ instead of x. Hence, x̃∗∗Λc = 0 and x̃∗∗Λ satisfies

(
Kt

ΛKΛ + α2 Id|Λ|×|Λ|
)
x̃∗∗Λ = Kt

Λỹ (6.40)

Since the matrix Kt
ΛKΛ+α2 Id|Λ|×|Λ| is symmetric positive definite, it is invert-

ible, and hence x̃∗∗Λ is uniquely determined. We conclude that (6.23) has a unique

solution, and hence (6.22) and (6.23) are equivalent.

Lemma 6.6 shows that the Tikhonov regularized non-negative least squares

problem is equivalent to a Tikhonov regularized unconstrained least squares prob-

lem. We can thus extend the previous stability results.
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Theorem 6.7. Consider the non-negative least squares problem with Tikhonov reg-

ularization (6.14), with α > 0. Assume that the space of feasible solutions {x ∈

Rn : x ≥ 0} is equipped with the || · ||2 norm, the space containing the initial data

y ∈ Rm is equipped with the || · ||2 norm, and the space of regularization constants

α ∈ (0,∞) is equipped with the absolute value | · | norm. Let x∗ be the optimal

solution of (6.14) and let Λ := {i|Kt
i

(
Kx∗−y
−α2

)
≥ 0}. Then the following holds:

1. The relative condition number of the solution x̃∗ ∈ Rn of (6.14) as a function

the initial data y ∈ Rm satisfies

κx∗:y ≤
||y||2

σmin((KΛ)aug)||x∗||2
. (6.41)

2. The relative condition number of the solution x∗ ∈ Rn of (6.14) as a function

of the regularization constant α > 0 satisfies

κx∗:α ≤
α

σmin((KΛ)aug)
+
α||yaug − (KΛ)augx

∗||2
σ2

min((KΛ)aug)||x∗||2
(6.42)

Recall that KΛ is the submatrix of K obtained by extracting the columns

K[:, i] for which i ∈ Λ.. The matrix (KΛ)aug is defined by

(KΛ)aug :=

 KΛ

α Idn×n



yaug :=

 y

0n×1

 .

Proof. By Lemma 6.6, there exists a neighborhood N containing (y, α) such that for

all (ỹ, α̃) ∈ N , the unconstrained problem (6.22) and the constrained problem (6.23)
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are equivalent. The conclusion follows by applying Lemma 6.6 to the unconstrained

problem (6.23).

Theorem 6.7 shows that standard stability results for least squares problems

can be extended to nonnegative least squares. The theorem provides a starting point

for the quantification of stability of N -dimensional NMR relaxometry problems.
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Conclusion

We have developed tensor recovery algorithms and recovery guarantees. These

methods enable the solution of N -dimensional inverse problems from a small number

of non-uniformly sampled noisy measurements. While the previous methods of

Cloninger and Czaja [41, 42] applied only to 2-dimensional inverse problems, our

methods apply to N -dimensional problems for all N ≥ 2.

In NMR relaxometry applications, N -dimensional experiments (N ≥ 3) pro-

vide significantly richer information than 1 or 2-dimesnional experiments [29]. How-

ever, previous biomedical applications of these high-dimensional experiments have

been limited by prohibitively long acquisition times. Our new methods enable sig-

nificant acceleration of these sophisticated experiments and may thus lead the way

to many new biomedical applications.

Our new contributions include theoretical recovery guarantees for sub-Gaussian

maps and non-uniform random sampling, heuristic techniques for regularization

parameter selection (including accelerated k-fold cross-validation and generalized

cross-validation), and the derivation of minimally coherent non-uniform random

sampling. These methods promise to significantly accelerate high-dimensional NMR

relaxometry data acquisition and improve the NMR data processing pipeline. These
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methods could also be applied to other data recovery and inverse problems.
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