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, where 
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where w is given such that divw = 0. These equations arise from a nonlinear iterationof the form ���u(m) + (u(m�1) � grad)u(m) + grad p(m) = f ; �div u(m) = 0, see [10].In this case F = �A+Nwhere A consists of a pair of uncoupled discrete Laplace operators, corresponding todi�usion, and N is a skew-symmetric matrix representing convection. We will alsoassume that the velocity and pressure discretizations are div-stable; see, e.g., [1], p.57, [8], pp. 10�, [16]. In matrix notation, this is equivalent to the condition2 � (p; BA�1BTp)(p;Mp) � �2 for all p ;(5)where (�; �) denotes the Euclidean inner product,  and � are constants that are in-dependent of the discretization mesh size h, and for �nite elements M is the pressuremass matrix, i.e., the Grammian matrix of basis functions de�ning the discrete pres-sure space.1 For �nite di�erences on uniform grids, a natural analogue is M = h2I .Let L denote the coe�cient matrix of (3). The following preconditioning matriceswere introduced in [3]: a block diagonal preconditionerQD =  F 00 1�M !(6)and a block triangular preconditionerQT =  F BT0 � 1�M ! :(7)It was shown in [3] that the eigenvalues of each of the preconditioned matrices AD =LQ�1D and AT = LQ�1T are uniformly bounded independent of the mesh size usedin the discretization. Numerical experiments also suggested that Krylov subspaceiterative methods such as the generalized minimal residual (GMRES) [13] and quasi-minimal residual (QMR) methods [5] can be used to solve the preconditioned systemwith iteration counts independent of the mesh size.We are concerned with the sensitivity of the eigenvalues of the preconditionedOseen matrix using the two preconditioners (6) and (7). Motivation for studying thislies in the fact that use of either preconditioner in an iteration entails applying theaction of the inverse of the matrix of either (6) or (7) to a vector at each step. These inturn require the computation of the action of F�1, which, if direct methods are used,will dominate the cost. An alternative that was considered in [3] is to approximatethe action of F�1 (i.e., compute an approximate solution to systems with coe�cientmatrix F ) using an inner iteration. Unless very stringent stopping criteria are usedhere, the resulting preconditioned operators can be viewed as perturbations of thoseof (6) { (7). Thus, we are interested the sensitivity of the eigenvalues to perturbation.If the preconditioned matrix is perturbed by matrix of size �, then the pertur-bations of eigenvalues will depend on � and also on parameters associated with the1 An inequality analogous to (5) also holds, with di�erent constants, if M is any matrix spectrallyequivalent to the mass matrix; for example, M could be the diagonal matrix consisting of the diagonalof the mass matrix [17]. In the sequel, we will not distinguish among such possibilities for M .2



underlying problem, speci�cally, the viscosity � and mesh size h. In this paper, weexamine these dependencies using a combination of analytic and experimental results.The analysis derives fromWilkinson's classical perturbation analysis [18], which showsthat if there are no nonlinear elementary divisors, the perturbations are of magnitudeO(�). The analytic bounds are stated as functions of � and h but they also depend onproperties of certain matrices associated with the Schur complement BF�1BT derivedfrom (4). The latter quantities are studied in a series of numerical experiments. Thecombination of analytic and experimental results indicates that there is an increasein sensitivity to perturbation as the viscosity decreases, with growth roughly linear in1=�. This e�ect can be mitigated to some extent by scaling the �rst equation of (4)(the momentum equation). The bounds also establish linear dependence on 1=h withthe preconditioner QT and quadratic dependence with QD, although the experimentalresults suggest that perturbations are considerably less sensitive to this parameter.An outline of the paper is as follows. In x2, we derive preliminary bounds andrelations for several operators associated with the preconditioned matrices. In x3, wederive the analytic perturbation bounds for the block tridiagonal preconditioner, andin x4, we present the analysis for the block diagonal preconditioner. For simplicity,the analysis is done for the case where the coe�cient matrix of (4) has full rank,although often in practice (and in our experiments) it is rank de�cient by one becausethe pressure p is uniquely de�ned only up to a constant. In x5, we show that theanalytic results carry over to this case. In x6, we present the experimental results,and in x7, we show how the analysis applies for the case of inexact computation of theaction of F�1.2. Preliminary results. In this section we derive preliminary bounds and re-lations for several operators associated with the preconditioners (6) { (7). We willassume that the discrete problem (3) arises from a standard �nite di�erence or low-order �nite element scheme on a uniform grid with mesh size h, and that the discreteproblem is scaled so that the extreme eigenvalues of the discrete Laplace operators ofA are contained in an interval of the form [c1h2; c2], where here and below ci denotesa generic constant that is independent of h and �. This is a natural scaling for �niteelements, and for �nite di�erences on a uniform grid it corresponds to the �ve-pointoperator with 4 in the diagonal entries and �1 in the o�-diagonal entries. With thisnormalization, BBT=h2 is also a scaled discrete Laplace operator and its eigenvaluesare contained in an interval of the same form. Let the discrete velocity and pressurespaces have dimension nu and np, respectively. For div-stable discretizations, nu � np,and typically nu is signi�cantly larger than np.2It will be convenient to use the symbol Q instead of 1�M in the matrices of (6).The preconditioned matrices are then given byAD =  F BTB 0 ! F�1 00 Q�1 ! =  I KTG 0 !(8)for the block diagonal preconditioner, andAT =  F BTB 0 ! F�1 F�1BTQ�10 �Q�1 ! =  I 0G H !(9)2 For two-dimensional problems, the vector u has two components of grid vectors, and stabilityconsiderations often also lead to more grid points for velocity than for pressure [8].3



for the block triangular preconditioner. The submatrices on the right of (8) { (9) areG = BF�1; KT = BTQ�1; H = GKT = BF�1BTQ�1:The identity matrices are of order nu.We recall some results from [3], which give bounds on the eigenvalues of H . LetS = BF�1BT denote the Schur complement matrix for (3), and letC = B F�1 + F�T2 !BT ; R = B F�1 � F�T2 !BT ;denote the symmetric and skew-symmetric parts of S, respectively. It is shown in [3]that 2�2�2 + �2 � (q; Cq)(q; Qq) � �2; j(q; Rq)j(q; Qq) � �22 ;(10)where  and � are as in (5) and � is the largest eigenvalue of A�1N , which is alsouniformly bounded independent of h [4]. Consequently, Bendixson's theorem [14, p.418] implies that the eigenvalues of H are contained in the box" 2�2�2 + �2 ;�2# � "��22 ; �22 #(11)in the complex plane.We �rst derive bounds on the singular values of G, which will be used in theperturbation analysisis for the block triangular preconditioner.Theorem 2.1. The largest singular value of G is bounded above by a quantity ofmagnitude O(1=�) which is independent of h as h! 0. The smallest singular value ofG is bounded below by a quantify of magnitude O(h) which is bounded independentof � as � ! 0.Proof. The singular values of G are the square roots of the eigenvalues of GGT ,and the largest and smallest of these eigenvalues are the extrema of (q; GGTq)=(q; q).This Rayleigh quotient can be rewritten as(q; GGTq)(q; q) = (F�TBT q; F�TBTq)(q; q) = (F�TBT q; F�TBTq)(F�TBT q; BTq) (F�TBT q; BTq)(q; q) :(12)We consider the two terms in the product on the right of (12) separately. For the �rstterm, the substitution w = F�TBT q gives(F�TBT q; F�TBT q)(F�TBT q; BTq) = (w;w)(w; FTw) = (w;w)(w; �F+FT2 �w) = 1� (w;w)(w;Aw) :Under the assumption on the scaling of the discrete Laplacian operators composingA, it follows that c1� � (F�TBT q; F�TBT q)(F�TBT q; BT q) � c2h�2� :(13) 4



The second term of the product in (12) is(q; BF�1BT q)(q; q) = (q; Cq)(q; q) = (q; Cq)(q; Qq) (q; Qq)(q; q) :(14)It is well known (see [17]) that the pressure mass matrix is spectrally equivalent toh2I , so that c1h2� � (q; Qq)(q; q) � c2h2� :(15)Thus, the bounds for the symmetric part in (10) together with (12) { (15) implyc1h2�2 + �2 � (q; GGTq)(q; q) � c2�2 :The singular values ofK will be used to analyze the block diagonal preconditioner.Lemma 2.2. The largest singular value of K is bounded above by a quantity ofmagnitude O � �h �. The smallest singular value is bounded below by a quantity ofmagnitude O(�).Proof. The largest singular value is kKk2 = kKTk2. Using KT = BTQ�1 andQ = 1�M , we have kKT k2 � � kBTk2 kM�1k2:But kM�1k2 = O(h�2), and our assumptions on B imply that kBTk2 = kBBTk1=22 =O(h). The smallest singular value is the inverse of k(KKT )�1k1=22 . Thenk(KKT )�1k2 � 1�2 kMk22 k(BBT)�1k2 = 1�2 c1h4 c2h�4:Consider an alternative scaling in problems (1) and (4) in which the �rst equationis multiplied by 1� . This does not change the solutions, but as we will show in xx3{4,it a�ects the sensitivity of discrete eigenvalues. For (4), scaling gives��u+ 1� (w � grad)u+ grad �1� p� = 1� f :(16)The new discrete problem is as in (3) except that F , p and f are replaced by F̂ = 1�F ,1� p and 1� f , respectively. Let Q̂ = �Q =M , Ĝ = BF̂�1, K̂T = BT Q̂�1, and Ĥ = ĜK̂T .The analogues of (11) and the bounds of Theorem 2.1 and Lemma 2.2 are given below.The proof follows from the facts that Ĝ = �G, K̂ = 1�K and Ĥ = H .Corollary 2.3. With the scaling of (16), the eigenvalues of Ĥ are contained inthe box (11); the singular values of Ĝ are bounded above by a quantity of magnitudeO(1) and below by a quantity of magnitude O(h�); and the singular values of K̂are bounded above by a quantity of magnitude O � 1h� and below by a quantity ofmagnitude O(1). 5



In the following, we will not speci�cally identify the matrices associated with thisscaling using the \hat"-symbol. Instead, we will use the notation of (8) { (9) torefer generically to both scalings. We will distinguish them as derived from either the\original" formulation (4) or the \scaled" formulation (16) of the Oseen equations.Finally, we will use the notation �G;K to denote the secant of the largest principalangle between Range(GT ) and Range(KT ). That is, if QG and QK are matrices whosecolumns represent orthogonal bases of Range(GT) and Range(KT), respectively, then�G;K = k(QTGQK)�1k2 = 1�min(QTGQK) ;(17)where �min denotes the smallest singular value (see [7, p. 584]). It is easily shown(e.g., using QR decompositions) that�G;K = kKT (GKT )�1Gk2:(18)3. Analytic bounds for the block triangular preconditioner. It is evidentfrom (9) that the eigenvalues of AT consist of � = 1 of multiplicity nu together withthe eigenvalues of H . We seek a factorizationAT = VTDTV�1T(19)that provides insight into the sensitivity of these eigenvalues to perturbation. We willlook for factors of the formDT =  I 0D21 � ! nunp ; VT =  V11 V12V21 V22 ! nunpnu np nu np(20)where the sub-blocks of DT and VT must be determined and the dimensions are asindicated. Let H have Jordan canonical form H = P�P�1. The requirement ATVT =VTDT is satis�ed if V11 = I; V12 = 0;G = (I �H)V21 + PD21; V22 = P:(21)We distinguish between two cases, 1 2 �(H) and 1 =2 �(H).Suppose �rst that H has no eigenvalues equal to 1. The choice D21 = 0 in (20)leads to V21 = (I �H)�1G. In this case, (19) represents a Jordan form for AT withVT =  I 0(I �H)�1G P ! ; V�1T =  I 0�P�1(I �H)�1G P�1 ! :(22)Let AT (�) = AT + �E be a perturbation of AT , whereE =  E11 E12E21 E22 ! :(23)The classical perturbation analysis of Wilkinson based on Gerschgorin theory [18, pp.71�] shows that for every eigenvalue � of AT with only linear elementary divisors,perturbations of � in �(AT (�)) are contained in a circle centered at � with radius of6



size c� where c is independent of �. The structure of VT can be used to obtain furtherinsight into the sizes of the perturbations. LetÊT = V�1T EVT =  Ê11 Ê12Ê21 Ê22 ! ;(24)so that we are concerned with the eigenvalues ofV�1T AT (�)VT = DT + �ÊT =  I 00 � !+ � Ê11 Ê12Ê21 Ê22 ! :(25)Here and in the following, the symbol \c" represents a generic constant that is inde-pendent of the parameters h, � and �.Lemma 3.1. If 1 62 �(H), then there are nu eigenvalues �̂ of AT (�) (countingmultiplicity) satisfying j�̂� 1j � � kÊ11k1 + c�2 kÊ12k1:(26)If there are m � np eigenvalues � of H with linear elementary divisors, then there arem eigenvalues �̂ of DT (�), distinct from those of (26), that satisfyj�̂� �j � � kÊ22k1 + c�2 kÊ21k1:(27)Proof. Multiplying the �rst block row on the right side of (25) by �=�, multiplyingthe �rst block column by �=� and then applying Gerschgorin's theorem leads to thebound ����̂� (1 + �[Ê11]ii)��� � �Xj 6=i ���[Ê11]ij���+ �2=�Xj ���[Ê12]ij��� ;where � is such that the Gerschgorin disks for the �rst and second blocks of the scaledmatrix are disjoint (see [18, p. 73]). Assertion (26) follows. The argument for (27) isidentical, applied to the second block row of (25).Thus, we can restrict our attention to the block diagonal entries of ÊT . Using(22){(24) we have Ê11 = E11 +E12(I �H)�1G ;Ê22 = �P�1(I �H)�1GE12P + P�1E22P :(28)The following result gives bounds on the perturbations of eigenvalues as functions ofthe viscosity � and mesh size h, for a perturbation satisfying kEk2 � 1.3Theorem 3.2. Assume kEk2 � 1. If 1 62 �(H), then the eigenvalues �̂ of AT (�)that are perturbations of � = 1 satisfyj�̂� 1j � 8>><>>: � c1�h + O(�2) for the original formulation;� c1h + O(�2) for the scaled formulation;(29)3 This assumption is stronger than the inequality jEijj � 1 used by Wilkinson; the latter conditionfollows from our assumption. 7



where c1 = c k(I � H)�1k2. For eigenvalues � of H with linear elementary divisors,the perturbations �̂ 2 �(AT (�)) satisfyj�̂� �j � 8>><>>: � c2�h + O(�2) for the original formulation;� c2h + O(�2) for the scaled formulation;(30)where c2 = c �(P ) k(I �H)�1k2.Proof. The relations (28) together with standard bounds on matrix lp-norms givekÊ11k1 � ch kÊ11k2 � ch �1 + k(I �H)�1k2 kGk2� ;kÊ22k1 � ch kÊ22k2 � ch �(P ) �k(I �H)�1k2 kGk2 + 1� :The conclusions follow from the upper bounds on kGk2 in Theorem 2.1.In the case 1 2 �(H), we use an alternative version of (20). By analogy with theanalysis above, let V21 = (I �H)yG where (I �H)y is the pseudo-inverse. ThenVT =  I 0(I �H)yG P ! ; V�1T =  I 0�P�1(I �H)yG P�1 ! :The similarity (19) then holds for the choiceDT =  I 0P�1�G � !where � is the orthogonal projection onto the null space of I �HT . The perturbationof DT associated with AT (�) is thenV�1T AT (�)VT = DT + �ÊT =  I 00 � !+  �Ê11 �Ê12�P�1�G+ �Ê21 �Ê22 ! :(31)First consider the eigenvalues ofH di�erent from 1 with linear elementary divisors.Let � be a parameter in (0; 1). Multiplying the second block row of (31) by �� and thesecond block column by ��� produces the matrix I 00 � !+  �Ê11 �1��Ê12���P�1�G+ �1+�Ê21 �Ê22 ! :(32)For any � 2 (0; 1) and small enough �, the Gerschgorin disk for a perturbation �̂ of� 2 �(H), � 6= 1, is disjoint from the disks corresponding to perturbations of theeigenvalue 1. Consequently, if � has only linear elementary divisors, thenj�̂� �j � �� kP�1�Gk1 +O(�):For eigenvalues equal to 1, multiplying the second block row of (31) by �1=2 andmultiplying the second block column by ��1=2 produces I 00 � !+  �Ê11 �1=2Ê12��1=2P�1�G+ �3=2Ê21 �Ê22 ! :(33) 8



Thus, for � = 1 with linear or quadratic elementary divisors, the perturbations satisfyj�̂� �j � �1=2 max�kÊ12k1; kP�1�Gk1�+ O(�):Bounding the matrix in�nity norms in (32) and (33) gives the following result.Theorem 3.3. If 1 2 �(H) with linear or quadratic elementary divisors, then theeigenvalues �̂ of AT (�) that are perturbations of � = 1 satisfyj�̂� 1j � �1=2 ch max�kPk2; kP�1k2 kGk2�+ O(�)(34)For � 2 �(H) di�erent from 1 with linear elementary divisors, the perturbations�̂ 2 �(AT (�)) satisfy j�̂� �j � �� chkP�1k2kGk2 + O(�)(35)for any � 2 (0; 1). Here kGk2 = O(1=�) in the original formulation and kGk2 = O(1)for the scaled formulation.Note that for any � 2 �(AT ) with nonlinear elementary divisors, bounds analogousto (29){(30) and (34){(35) can be obtained in which the dependence on � is of theform �1=r where r is the order of the largest Jordan block for �; see [18, p. 79].4. Analytic bounds for the block diagonal preconditioner. For the blockdiagonal preconditioner, we have results only in the case where the Schur complementmatrix H has no nonlinear elementary divisors. As in Theorem 3.2, the perturbationanalysis will be stated in terms of properties of P , a �xed matrix of eigenvectors of H .In addition, some of the bounds depend on �G;K, the secant of the largest principalangle between Range(GT ) and Range(KT ), as de�ned in (17).Consider the eigenvalue problem for AD, I KTG 0 ! up ! = � up ! :This leads to the conditionsKTp = (� � 1)u; Gu = �p(36)on the components of the eigenvectors. One solution corresponds to the eigenvalue� = 1; the assumption that B and therefore K have full rank then implies that anyassociated eigenvector satis�es p = 0, Gu = 0. We use two approaches to identifyeigenvalues � 6= 1 and corresponding eigenvectors.1. Substitution of u = � 1��1�KTp into the second equation of (36) givesGKTp = �(� � 1) p:That is, any eigenpair (�; p) of H = GKT leads to two eigenvalues�+ = 1 +p1 + 4�2 ; �� = 1�p1 + 4�2(37)of AD. The associated eigenvectors are u+p ! ;  u�p ! ;(38) 9



where u+ = � 1�+ � 1�KTp; u� = � 1�� � 1�KT p:(39)2. Alternatively, substitution of p = 1�Gu into the �rst equation of (36) givesKTGu = �(� � 1) u:KTG has a zero eigenvalue of multiplicity nu � np (the dimension of the null spaceof G), plus 2np nonzero eigenvalues. If (�; u) is an eigenpair with � 6= 0, then (37)de�nes a pair of eigenvalues of AD . In this case, the eigenvectors have the form up+ ! ;  up� ! ;(40)where p+ = � 1�+�Gu; p� = � 1���Gu:(41)It is straightforward to show that any u+ or u� from (39) is an eigenvector ofKTG, and any p+ or p� from (41) is an eigenvector of GKT . Therefore, we will usethe symbol \�" to refer to the pairs of eigenvalues and eigenvectors of AD , i.e., u�will refer to the �rst entries of either (38) or (40), p� to the second entries, and �� tothe associated eigenvalue. We have established the following result.Theorem 4.1. The eigenvectors of AD corresponding to the eigenvalue � = 1have the form  u0 ! where Gu = 0. The eigenvectors corresponding to eigenvaluesdi�erent from 1 have the form  u�p� !, where the associated eigenvalues �� satisfy(37), andHp� = �p�; KTGu� = �u�; p� = � 1���Gu�; u� = � 1�� � 1�KT p�:Let �� denote a diagonal matrix with entries f��g from (37). If the eigenvalues of Hhave only linear elementary divisors, then ADVD = VDDD, whereDD = 0B@ I 0 00 �+ 00 0 �� 1CA nu � npnpnp ; VD = 0BB@V U+ U�0 P+ P�1CCA nunp ;nu�np np np nu�np npnpin which the columns of V form an orthogonal basis of the null space of G andP� = GU���1� ; U� = KTP�(�� � I)�1:(42)We will normalize the matrices U� and P� as follows:U+ = U� = U = KTP;P+ = P (�+ � I);P� = P (�� � I):(43) 10



It is then easily veri�ed thatV�1D = 0B@ I 0 00 (�+ ���)�1 00 0 (�� � �+)�1 1CA0B@ � 0P�1+ G P�1P�1� G P�1 1CA ;where � = V T (I � U(GU)�1G) = V T (I �KT (GKT)�1G):(44)Now let AD(�) = AD + �E be a perturbation of AD where E is as in (23). Theeigenvalues of this perturbed matrix are the same as those ofV�1D AD(�)VD = DD + �ÊD = 0B@ I + �Ê11 �Ê12 �Ê13�Ê21 �+ + �Ê22 �Ê23�Ê31 �Ê32 �� + �Ê33 1CA ;(45)where ÊD = V�1D EVD. As in x3, Gerschgorin analysis implies that for small �, thee�ects of perturbation can be bounded using the perturbations on the block diagonalof (45). These are given byÊ11 = �TE11V;Ê22 = (�+ � ��)�1 hP�1+ G(E11U +E12P+) + P�1(E21U + E22P+)i ;Ê33 = (�� � �+)�1 hP�1� G(E11U +E12P�) + P�1(E21U + E22P�)i :(46)Theorem 4.2. If H has no nonlinear elementary divisors, then the eigenvalues �̂of AD(�) that are perturbations of � = 1 satisfyj�̂ � 1j � � ch (1 + �G;K) + O(�2)for both the original and scaled formulations of the discrete Oseen equations. Theperturbations of eigenvalues di�erent from 1 satisfyj�̂+ � �+j � 8>><>>: � �(P )�G;K � c1h2 + c2�h�+O(�2) for the original formulation;� �(P )�G;K ch2 +O(�2) for the scaled formulation;(47)and j�̂� � ��j � 8>><>>: � �(P ) � c1h2 + c2�h�+O(�2) for the original formulation;� �(P ) ch2 + O(�2) for the scaled formulation:(48)Proof. For the perturbations of � = 1, it follows from (18), (44) and (45) thatj�̂ � 1j � � c kÊ11k1 � � ch kÊ11k2 � � ch (1 + �G;K):11



For the perturbations of eigenvalues di�erent from 1, note that (37) and the bounds(11) on the eigenvalues of H imply that the norm of each of the diagonal matrices�+ � I; �� � I; (�+ � ��)�1;��1+ ; (�� � I)�1;(49)is bounded independent of � and h. Gerschgorin analysis givesj�̂� � ��j � � ch kÊjjk2 ;(50)where j = 2 corresponds to �+ and j = 3 to ��. Relations (43) and (46) then implykÊjjk2 � k(�+ � ��)�1k2 �kP�1� Gk2 + kP�1k2� �kKTk2 + k�� � Ik2� kPk2 :(51)Consider kP�1� Gk2. Using the expression for P� in (43), we havekP�1� Gk2 � k(�� � I)�1k2 kP�1k2 kGk2 ;and combining this with (51) giveskÊ33k2 � �(P ) k(�� � �+)�1k2 �k(�� � I)�1k2 kGk2 + 1��kKTk2 + k�� � Ik2� :Result (48) follows from (50), the boundedness of the matrices of (49), and the boundson kGk2 and kKTk2 in Lemma 2.2 and Corollary 2.3.For kP�1+ Gk2, �rst observe that (42) and (43) imply(P�1+ G)(KTP��1+ ) = I:Let (P�1+ G)T = Q1R1 and KTP��1+ = Q2R2 be QR factorizations, where R1 and R2are square and nonsingular. Then RT1QT1Q2R2 = I , andkP�1+ Gk2 = kR1k2 � kR�12 k2 k(QT1Q2)�1k2 = �G;K kR�12 k2:(52)But kR�12 k2 is the inverse of the smallest singular value of KTP��1+ , so thatkR�12 k2 � k�+P�1(KKT )�1P�T�+k1=22 � k�+k2 kP�1k2 k(KKT)�1k1=22 :From Lemma 2.2, Corollary 2.3 and the boundedness of k�+k2, the term on the rightis bounded by c=� kP�1k2 for the original formulation and c kP�1k2 for the alternativeformulation. Result (47) then follows from (50), (51) (with j = 2) and (52).Remark 4.1. The di�erence between (47) and (48) stems from the fact that k(�+ �I)�1k2 is not independent of �, so we cannot bound kP�1+ Gk2 directly. The resultsof x6 suggest that the perturbations do not behave di�erently, but we see no way toavoid including �G;K in (47).5. The rank-de�cient case. Unless an additional constraint is imposed on thepressure in (1){(2) or (4), the matrix of (3) will be rank de�cient by one. This is thecase for the test problems of x6. We outline here how the analysis above carries overin the rank-de�cient case. 12



For the block triangular preconditioner, ATVT = VTDT where, for 1 62 �(H), theanalogues of the matrices de�ned in (20) { (22) areDT =  I 00 � ! ; VT =  I 0(I �H)�1G P ! ; VyT =  I 0�P y(I �H)�1G P y ! :� is a square matrix of order np � 1 whose eigenvalues are the nonzero eigenvaluesof H , and P spans the associated invariant subspace. In particular, P y replaces P�1and VyT replaces V�1T . The analysis of perturbations of the nonzero eigenvalues of ATthen carries through verbatim with the inverse of the smallest singular value of P inplace of kP�1k2. The case 1 2 �(H) is generalized in a similar manner with (I �H)yin place of (I �H)�1For the block diagonal preconditioner, the analogue of the similarity transforma-tion of Theorem 4.1 is ADVD = VDDD whereDD = 0B@ I 0 00 �+ 00 0 �� 1CA nu�np+1npnp ; VD = 0BBBBB@ V U+ U�0 P+ P�1CCCCCA nunp :nu�np+1 np�1 np�1 nu�np+1 np�1 np�1Once again, all the analysis of x4 goes through with P referring to the matrix ofeigenvectors corresponding to nonzero eigenvalues of H , P y in place of P�1, and theinverse of the smallest nonzero eigenvalue of KKT in place of k(KKT )�1k2.6. Experimental results. We now present the results of numerical experimentsthat supplement the analysis of xx3{5. Our test problem is a discrete Oseen operator(4) on on 
 = (�1; 1)� (�1; 1), with Dirichlet boundary conditions u1 = u2 = 0 onthe three �xed walls (x = �1, y = �1, x = 1), and u1 = 1, u2 = 0 on the moving wall(y = 1). The coe�cients of the convection terms describe a circular vortexw1 = 2y(1� x2); w2 = �2x(1� y2):We discretize using bilinear �nite elements on a uniform rectangular n � n velocitygrids of width h = 2=n, augmented by streamline upwinding [9, p. 185]. To imposediv-stability, the pressure discretization uses \macro-elements" of width 2h; see [8,p. 30]. The hydrostatic pressure is not explicitly speci�ed, so that the matrices (3)are rank-de�cient by one. Additional details about this problem are given in [3]. Allcomputations were performed in MATLAB on either a Sun SPARC-20 workstation ora DEC-Alpha 2100 4/275 workstation.We �rst show in Figure 1 some sample distributions of eigenvalues of AT and AD,for � = 1=20 and n = 32. The plot on the left gives an indication of the rectangleenclosing the eigenvalues of H (see (11)); the plot on the right represents the result ofthe mapping � 7! �1�p1 + 4�� =2 of (37). Both pictures include the eigenvalue 1,of multiplicity nu = 2178 for AT and nu � np + 1 = 1890 for AD.We present our results primarily as tabulations of maximum perturbations andother quantities, for various choices of viscosity parameter � and grid parameter n.The rows and columns of the tables indicate behavior as either � ! 0 or n gets large(h! 0). Note that accurate discrete solutions to (4) are obtained only if � is not too13



Fig. 1. Eigenvalues of AT (left) and AD (right), for � = 1=20 and n = 32.
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small relative to h. This di�culty can be ameliorated to some extent by an appropriatechoice of discretization such as the streamline upwinding method used here [2],[9, p.262]. In practical experiments, it is often desired to compute solutions of a �xedaccuracy for a variety of values of � by letting h ! 0 and � ! 0 simultaneously. Inan e�ort to follow trends in the data, we will consider some combinations of � and hthat could produce inaccurate solutions.Our main results are in Tables 1 and 2. Table 1 shows the e�ects of perturba-tion of the block tridiagonal preconditioner, for two values of n and various �. Thisdata was obtained by computing the eigenvalues of a set of ten perturbed matricesAT (�) = AT + �E where � = 10�8 and E is a dense matrix with uniformly distributedrandom numbers in an interval [�an; an], where an = 16=n. (For this choice, kEk2 isapproximately constant for all n.) For � = 1, the table presents max�̂2�1(AT+�E) j�̂� 1j! /�;where �1(AT + �E) is the set of np eigenvalues that are closest to 1, and the maximumis over all the perturbations. For � 6= 1, the table shows max�̂2�01(AT+�E) j�̂� �j! /�;where �01(AT + �E) denotes the perturbations of � 2 �(AT ), � 6= 1 and � 6= 0.4Analogous results for the block diagonal preconditioner are shown in Table 2. Herewe also distinguish between the eigenvalues with positive and negative real parts.Before discussing this data, we present experimental results for three other quan-tities appearing in the bounds of xx3{4: �(P ), k(I � H)�1k2, and �G;K . These areshown in Tables 3, 4, and 5, respectively. Here �(P ) refers to the version used for the4 These were obtained by sorting �(AT ) and �(AT + E) for each E and comparing the orderedsets. For all tests, similar results were obtained for other values of �.14



Table 1Maximum normalized perturbations of eigenvalues of AT .n = 16 � 1 1=10 1=20 1=30 1=50 1=100Original � = 1 21.7 137.6 318.5 478.2 766.1 1509.5Formulation � 6= 1 21.4 80.5 201.1 313.4 529.9 1110.0Scaled � = 1 21.7 16.7 16.9 16.9 16.9 17.1Formulation � 6= 1 21.4 8.3 10.2 10.6 10.7 11.2n = 32Original � = 1 15.7 58.6 56.6 83.0 172.0 402.4Formulation � 6= 1 22.7 26.7 50.8 43.1 141.2 257.8Scaled � = 1 15.7 15.2 14.0 14.1 14.2 14.4Formulation � 6= 1 22.7 6.9 3.4 11.1 93.0 35.7
Table 2Maximum normalized perturbations of eigenvalues of AD.n = 16 � 1 1=10 1=20 1=30 1=50 1=100Original � = 1 13.4 13.5 13.7 14.2 14.8 15.8Formulation Re(�) < 0 11.6 7.5 6.5 9.8 16.2 31.9Re(�) > 1 10.1 8.3 7.6 10.6 16.5 32.1Scaled � = 1 13.4 13.5 13.7 14.2 14.8 15.8Formulation Re(�) < 0 11.6 45.3 9.0 10.0 15.6 20.7Re(�) > 1 10.1 44.3 9.4 10.5 15.9 23.4n = 32Original � = 1 12.9 12.9 13.0 13.0 13.1 13.7Formulation Re(�) < 0 55.6 5.1 2.8 9.4 74.9 51.2Re(�) > 1 46.6 7.4 4.0 8.4 71.8 58.0Scaled � = 1 12.9 12.9 13.0 13.0 13.1 13.7Formulation Re(�) < 0 55.6 48.7 19.0 60.4 505.6 324.3Re(�) > 1 46.6 47.7 19.6 57.6 516.7 301.115



Table 3Condition number of matrix P of eigenvectors of H.� 1 1=10 1=20 1=30 1=50 1=100n = 16 5.4 18.0 5.4 5.0 7.9 14.7n = 32 60.8 45.7 26.8 78.5 557.0 413.3n = 64 181.8 3876.0 2900.4 2029.1 5441.2 2.74e4Table 4Norm of (I �H)�1.� 1 1=10 1=20 1=30 1=50 1=100n = 16 100.8 16.2 17.1 17.1 16.5 16.6n = 32 70.8 70.9 23.4 16.7 43.2 17.3n = 64 697.0 2.59e4 1124.9 318.7 61.9 231.1rank-de�cient problem as outlined in x5. It was obtained by computing the matrix ofeigenvectors P of H , normalizing the columns of P to have unit l2-norm, and thencomputing the ratio of largest to smallest singular values of the submatrix of P cor-responding to the nonzero eigenvalues of H . (The normalization ensures that we arewithin a factor of pnp of the condition number of the optimally scaled version of P[15].) Note that �(P ) and �G;K exhibit a general tendency to increase as either � ! 0or n increases, with �(P ) being particularly volatile.Now consider the data of Table 1 for the block triangular preconditioner. Severaltrends are apparent:1. In the original formulation, the perturbations of both � = 1 and � 6= 1 areincreasing with 1=�. In the scaled formulation, the perturbations of � = 1 areinsensitive to �. This behavior is consistent with the results of Theorem 3.2.2. In the scaled formulation, the perturbations of � 6= 1 show some growth with1=� for n = 32, although there is no clear trend. This may derive from growthin the product �(P ) k(I �H)�1k2.3. There is little or no increase in perturbation size (and a decrease in somecases) with the change of grid size from n = 16 to n = 32. This contrastswith the bounds from the analysis, which degrade as h! 0.Next, consider Table 2.1. The perturbations of � 6= 1 for both the unscaled and scaled problems showsome growth with 1=�. The qualitative trends are similar, but the perturba-tions for the scaled formulations are larger. In contrast, the analysis (Theorem4.2) suggests that the scaled version would be smaller; therefore it appearsthat the upper bounds of this analysis are not giving a complete indication ofdependence on �.2. The perturbations of � = 1 are insensitive to � and there is essentially nodi�erence between the perturbations of the eigenvalues with positive and neg-ative real parts. As noted in Remark 4.1, we believe the dependence on �G;Kis an artifact of the proof.3. The dependence on the mesh size is more pronounced for the triangular pre-conditioning, although there is no consistent pattern.Thus, the analysis gives upper bounds on perturbation sizes, although it is notpossible to completely correlate the analytic bounds and experimental results. This16



Table 5Secant of largest principal angle between Range(GT ) and Range(KT ) (�G;K).� 1 1=10 1=20 1=30 1=50 1=100n = 16 1.11 1.65 2.51 3.29 4.53 6.51n = 32 1.16 1.72 2.76 3.77 5.57 8.96Table 6Maximum normalized perturbations of eigenvalues of H.� 1 1=10 1=20 1=30 1=50 1=100n = 16 3.8 4.7 2.4 2.4 3.2 5.3n = 32 8.3 4.8 3.4 10.8 73.5 31.1n = 64 28.4 226.4 134.1 61.7 130.8 402.3is likely due to the lack of a clear pattern in the behavior of �(P ) and k(I �H)�1k2,together with the use of norm inequalities throughout the analysis that are not nec-essarily tight. For example, the analysis combines bounds on matrix l2-norms derivedfrom the underlying di�erential operator with l1 norms derived from Gerschgorinbounds. We suspect that the factor of 1=h used to relate these quantities arti�ciallyinates the dependence of the bounds on the mesh size, although we see no way toavoid introducing this term. In general, both the analysis and experiments indicatea tendency for perturbations of the eigenvalues di�erent from 1 to increase with 1=�,but growth appears to be at worst linear and for the block triangular preconditioningit can be reduced by scaling.Finally, Table 6 examines the sensitivity to perturbation of the eigenvalues of thereduced matrix H . The entries are max�̂2�(H+�E) j�̂� �j!=�;The results also indicate that the perturbations increase as the viscosity decreases, andthey display some growth as the number of mesh points increase, roughly like thatfor the block diagonal preconditioner displayed in Table 2. Note that the dependenceon both 1=� and n is much less severe than that of �(P ) shown in Table 3. Onceagain, this stands in contrast with analytic bounds such as those obtainable from theBauer-Fike theorem [7, p. 342], which suggests perturbations proportional to �(P ).7. Inexact inner iteration. We conclude by examining the e�ect of inexactcomputation of the action of F�1. For brevity, we restrict our attention to the unscaledversion of AT ; similar analysis leads to essentially the same conclusions for AD. Ifthe action of F�1 is approximated using an iterative method for each system Fw = v,then F�1 can be replaced by F�1 + E in (9). The perturbed preconditioned matrixis then AT + E where E =  FE FEKTBE BEKT ! :17



For this analysis it will be useful to consider the complete version of (24),ÊT = 0BB@ FE(I +KT (I �H)�1G) FEKTPP�1(I � (I �H)�1)BE� (I +KT (I �H)�1G) P�1(I � (I �H)�1)BEKTP 1CCA :Suppose the approximate solution ~w satis�eskv � F ~wkkvk � �(53)for some tolerance � . Standard inequalities yield the bounds on the relative errorkw� ~wkkwk � kFk kF�1k �; kw� ~wkkwk � kFk kEk :Treating these as approximate equalities gives kEk � �kF�1k, it follows thatkÊ11k �� � kFk kF�1k �1 + kKTk k(I �H)�1k kGk� ;kÊ12k �� � kFk kF�1k kKTk kPk ;kÊ21k �� � kP�1k (1+ k(I �H)�1k) kBk kF�1k �1 + kKTk k(I �H)�1k kGk� ;kÊ22k �� � �(P ) kI � (I �H)�1k kF�1k kKTk:Using the l2-norm, let us consider the dependence of these bounds on the viscosity� under the assumption (derived from the experimental results presented above) thatthe inuence of P and H is not signi�cant. The bounds on kÊ11k, kÊ21k, and kÊ22kinclude the product kKTk kGk = O(�) �O(1=�), which is independent of �. Using thecoercivity and continuity of the convection-di�usion operator, it can be shown that asfunctions of �, kFk = O(1); kF�1k = O(1=�):(An algebraic proof can be found in [4, Theorem 1].) This implies that the bounds onkÊ11k and kÊ21k grow as 1=� decreases, whereas the bounds on kÊ12k and kÊ22k areindependent of �. If � is small, then as in x3 we can restrict our attention to the blockdiagonal entries, which indicates that the perturbations of eigenvalues di�erent from1 in this particular case do not depend on �. On the other hand, if � is large, thenit is not possible to exclude Ê21 from the Gerschgorin analysis, and the presence ofkF�1k in this bound suggests that perturbations in all eigenvalues grow like 1=�.Consider the implication of these observations on the performance of iterativemethods for solving the discrete Oseen equations (3). We demonstrated in [3] that theiteration counts of Krylov subspace methods such as GMRES with the preconditionerQT (7) are independent of the mesh size, but that there is some deterioration inperformance as � decreases. Now suppose an inner iteration with stopping criterion(53) is used to approximate the action of F�1. The analysis given here suggests that if� is large, there may be additional degradation of performance for small �. In contrast,if � is small then only � = 1 is sensitive to perturbation, which suggests that (extra)degradation of the inner iteration with decreasing � may not be as pronounced. Figure18



Fig. 2. Iterations of FGMRES with inexact convection-di�usion solves.
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2 shows the results of numerical experiments that corroborate these observations. The�gure plots iteration counts of right-preconditioned \exible" GMRES (FGMRES)[12] as a function of �, for solving the discrete problem (3). The inner iteration forthe convection-di�usion subproblems Fw = v was a line Gauss-Seidel method withstopping criterion (53).5 The test matrices were those used in x6; the right hand sidef consisted of normally distributed random numbers with mean 0 and variance 1. Theouter iteration used a zero initial guess and was stopped when the relative residual inthe Euclidean norm was less than or equal to 10�6. The results with inner iterationare compared with using a direct method for the action of F�1. They indicate thatfor the relatively modest tolerance � = 10�3, the inexact inner solves lead to littleincrease in outer iterations for any �. For less stringent � , additional outer iterationsare required and the number of additional iterations becomes larger as � decreases.Remark 7.1. It can be shown that for small � the perturbations of the eigenvaluesof the scaled system behave in the same way as the those for the unscaled system.However, scaling a�ects the relative weighting given to the two block equations of(3), which in turn may a�ect the iterative solver. Therefore, we have restricted ourattention here to the unscaled system.Acknowledgements. The author acknowledges helpful discussions with Santi-ago Arteaga, Luca Pavarino and Pete Stewart, and insightful comments from HansWeinberger. The numerical results with FGMRES used software produced by TimKelley [11]. REFERENCES[1] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York,1991.5 FGMRES allows the preconditioner to vary during the course of the iteration; it was used herebecause the number of inner iterations was not generally constant, i.e., the preconditioner is not a�xed linear operator. FGMRES is equivalent to GMRES when a direct solve is used for F�1.19



[2] A. Brooks and T. Hughes. Streamline upwind/Petrov-Galerkin formulations for convectiondominated ows with particular emphasis on the incompressible Navier-Stokes equations.Comp. Meth. Appl. Mech. Engng., 32:199{259, 1982.[3] H. Elman and D. Silvester. Fast nonsymmetric iterations and preconditioning for Navier-Stokesequations. SIAM J. Sci. Comput., 17:33{46, 1996.[4] H. C. Elman and M. H. Schultz. Preconditioning by fast direct methods for nonselfadjointnonseparable elliptic problems. SIAM J. Numer. Anal, 23:44{57, 1986.[5] R. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitianlinear systems. Numer. Math., 60:315{339, 1991.[6] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, NewYork, 1984.[7] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,Baltimore, second edition, 1989.[8] M. Gunzburger. Finite Element Methods for Viscous Incompressible Flows. Academic Press,San Diego, 1989.[9] C. Johnson. Numerical Solution of Partial Di�erential Equations by the Finite Element Method.Cambridge University Press, New York, 1987.[10] O. A. Karakashian. On a Galerkin-Lagrange multiplier method for the stationary Navier-Stokesequations. SIAM. J. Numer. Anal., 19:909{923, 1982.[11] T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.[12] Y. Saad. A exible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,14:461{469, 1993.[13] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solvingnonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856{869, 1986.[14] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York, secondedition, 1993.[15] A. van der Sluis. Condition numbers and equilibration of matrices. Numer. Math., 14:14{23,1969.[16] R. Verf�urth. A combined conjugate gradient-multigrid algorithm for the numerical solution ofthe Stokes problem. IMA J. Numer. Anal., 4:441{455, 1984.[17] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal.,7:449{457, 1987.[18] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

20


