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1. Introduction. This paper concerns properties of the eigenvalues of matrices
arising from the discrete linearized steady-state Navier-Stokes equations. The contin-
uous problem is

(1) —vAu+ (u-grad)u+gradp=1f in Q,
together with the incompressibility constraint
(2) —divu=0 1in Q,

subject to suitable boundary conditions on 9€2, where € is an open bounded domain
in R?. These equations constitute a fundamental problem in computational fluid
dynamics, see e.g., [1],[6],[8]. The two-dimensional vector field u represents the velocity
in Q, p represents pressure, and the scalar v is the viscosity, roughly speaking, the
ratio of convection to diffusion in the system.

A methodology for computing the numerical solution is to discretize (1)—(2) using
finite difference or finite element methods, and then to solve the resulting nonlinear
system by some iterative method. Linearization leads to a set of matrix equations of
the form

5

where u and p now represent discrete versions of velocity and pressure, respectively.
We will restrict our attention to the discrete Oseen equations

—vAu + (w-grad)u +gradp = f

(4) :
—diva=0
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where w is given such that divw = 0. These equations arise from a nonlinear iteration
of the form —vAu(™ + (u(m_l) - grad) ul™  grad pt™ = £, —divu(™ = 0, see [10].
In this case

F=vA+ N

where A consists of a pair of uncoupled discrete Laplace operators, corresponding to
diffusion, and N is a skew-symmetric matrix representing convection. We will also
assume that the velocity and pressure discretizations are div-stable; see, e.g., [1], p.
57, [8], pp. 10ff, [16]. In matrix notation, this is equivalent to the condition

(p, BAT'BTp)
(p, Mp)

where (-,-) denotes the Fuclidean inner product, v and I' are constants that are in-
dependent of the discretization mesh size h, and for finite elements M is the pressure
mass matrix, i.e., the Grammian matrix of basis functions defining the discrete pres-
sure space.! For finite differences on uniform grids, a natural analogue is M = h*I.

Let £ denote the coefficient matrix of (3). The following preconditioning matrices
were introduced in [3]: a block diagonal preconditioner

(6) QD:(Z(: %(])\/[)

and a block triangular preconditioner

F BT
(7) QT:(O _%M)

It was shown in [3] that the eigenvalues of each of the preconditioned matrices Ap =
,CQBI and Ay = ,CQ}I are uniformly bounded independent of the mesh size used
in the discretization. Numerical experiments also suggested that Krylov subspace
iterative methods such as the generalized minimal residual (GMRES) [13] and quasi-
minimal residual (QMR) methods [5] can be used to solve the preconditioned system
with iteration counts independent of the mesh size.

We are concerned with the sensitivity of the eigenvalues of the preconditioned
Oseen matrix using the two preconditioners (6) and (7). Motivation for studying this
lies in the fact that use of either preconditioner in an iteration entails applying the
action of the inverse of the matrix of either (6) or (7) to a vector at each step. These in
turn require the computation of the action of /=1, which, if direct methods are used,
will dominate the cost. An alternative that was considered in [3] is to approximate
the action of F=! (i.e., compute an approximate solution to systems with coefficient
matrix F') using an inner iteration. Unless very stringent stopping criteria are used
here, the resulting preconditioned operators can be viewed as perturbations of those
of (6) — (7). Thus, we are interested the sensitivity of the eigenvalues to perturbation.

If the preconditioned matrix is perturbed by matrix of size ¢, then the pertur-
bations of eigenvalues will depend on ¢ and also on parameters associated with the

(5) 7? < <T? forall p,

! An inequality analogous to (5) also holds, with different constants, if M is any matrix spectrally
equivalent to the mass matrix; for example, M could be the diagonal matrix consisting of the diagonal
of the mass matrix [17]. In the sequel, we will not distinguish among such possibilities for M.
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underlying problem, specifically, the viscosity v and mesh size h. In this paper, we
examine these dependencies using a combination of analytic and experimental results.
The analysis derives from Wilkinson’s classical perturbation analysis [18], which shows
that if there are no nonlinear elementary divisors, the perturbations are of magnitude
O(€). The analytic bounds are stated as functions of v and h but they also depend on
properties of certain matrices associated with the Schur complement BF~1 BT derived
from (4). The latter quantities are studied in a series of numerical experiments. The
combination of analytic and experimental results indicates that there is an increase
in sensitivity to perturbation as the viscosity decreases, with growth roughly linear in
1/v. This effect can be mitigated to some extent by scaling the first equation of (4)
(the momentum equation). The bounds also establish linear dependence on 1/h with
the preconditioner Q1 and quadratic dependence with Qp, although the experimental
results suggest that perturbations are considerably less sensitive to this parameter.

An outline of the paper is as follows. In §2, we derive preliminary bounds and
relations for several operators associated with the preconditioned matrices. In §3, we
derive the analytic perturbation bounds for the block tridiagonal preconditioner, and
in §4, we present the analysis for the block diagonal preconditioner. For simplicity,
the analysis is done for the case where the coefficient matrix of (4) has full rank,
although often in practice (and in our experiments) it is rank deficient by one because
the pressure p is uniquely defined only up to a constant. In §5, we show that the
analytic results carry over to this case. In §6, we present the experimental results,
and in §7, we show how the analysis applies for the case of inexact computation of the
action of F71.

2. Preliminary results. In this section we derive preliminary bounds and re-
lations for several operators associated with the preconditioners (6) — (7). We will
assume that the discrete problem (3) arises from a standard finite difference or low-
order finite element scheme on a uniform grid with mesh size &, and that the discrete
problem is scaled so that the extreme eigenvalues of the discrete Laplace operators of
A are contained in an interval of the form [cih?, c5], where here and below ¢; denotes
a generic constant that is independent of & and v. This is a natural scaling for finite
elements, and for finite differences on a uniform grid it corresponds to the five-point
operator with 4 in the diagonal entries and —1 in the off-diagonal entries. With this
normalization, BBT /h? is also a scaled discrete Laplace operator and its eigenvalues
are contained in an interval of the same form. Let the discrete velocity and pressure
spaces have dimension n,, and n,, respectively. For div-stable discretizations, n, > n,,
and typically n, is significantly larger than n,.?

It will be convenient to use the symbol @ instead of 1M in the matrices of (6).
The preconditioned matrices are then given by

F BT F1 0 KT
o () )-8 )

for the block diagonal preconditioner, and
F BT F~' 1Tt I 0
(9) AT_(B 0)( o o' )=\l n

2 For two-dimensional problems, the vector u has two components of grid vectors, and stability
considerations often also lead to more grid points for velocity than for pressure [8].
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for the block triangular preconditioner. The submatrices on the right of (8) — (9) are
G=BF"', K'"=BTQ™', H=GK"=BF'BTQ".

The identity matrices are of order n,.
We recall some results from [3], which give bounds on the eigenvalues of H. Let
S = BF~'BT denote the Schur complement matrix for (3), and let

F—l F—T F—l _ F—T
c-pl(i_*f BT, R=B|—— " )BT
2 2
denote the symmetric and skew-symmetric parts of 5, respectively. It is shown in [3]

that

2.,2
7 (0,Cq) _ 9
< < T2, RE, 2T
2 +v? 7 (q,Qq) ~ (¢,Qq)

where v and T are as in (5) and & is the largest eigenvalue of A1 N, which is also
uniformly bounded independent of h [4]. Consequently, Bendixson’s theorem [14, p.
418] implies that the eigenvalues of H are contained in the box

2.,2 2 2
Vv 9 -1 1=
(11) [62+V2,r]><l 2 ’2]

in the complex plane.

(10)

(¢, Rg)| _ T2
2 b

We first derive bounds on the singular values of G, which will be used in the
perturbation analysisis for the block triangular preconditioner.

THEOREM 2.1. The largest singular value of GG is bounded above by a quantity of
magnitude O(1/v) which is independent of h as h — 0. The smallest singular value of
(i is bounded below by a quantify of magnitude O(h) which is bounded independent
of vasv — 0.

Proof. The singular values of G are the square roots of the eigenvalues of GG,
and the largest and smallest of these eigenvalues are the extrema of (¢, GGTq)/(q,q).
This Rayleigh quotient can be rewritten as
(12) (¢.GGTq) _ (F"BYq, 1 TBYq) (F~"BTq, T BTq)(F~"B"q, Bq)

(¢:4) (¢:4) (F=TBTq, BTq) (¢:4)
We consider the two terms in the product on the right of (12) separately. For the first
term, the substitution w = F~7 BT ¢ gives

(F-TBTq, F-TBTq)  (w,w) (w,w) 1 (w,w)

(F-TBT¢, BTq)  (w, FTw) (w, (F-|—2FT) w) v (w, Aw)

Under the assumption on the scaling of the discrete Laplacian operators composing
A, it follows that

=TT =TT -2
(13) a1 < (F~*BYq,F~1 B*q) < cah ‘
v (F-TBTq,BTq) v




The second term of the product in (12) is

(14) (. BF~'BTq) _ (¢,Cq) _ (4,Cq) (¢, Qq)

(¢,9) (.9) (4.Qq) (¢,q)

It is well known (see [17]) that the pressure mass matrix is spectrally equivalent to
h?I, so that

Clh2 < (qu(Z) < Czhz‘
v (q.9) v

(15)

Thus, the bounds for the symmetric part in (10) together with (12) — (15) imply

ah? (4G _ e
2+t (¢ T vE

The singular values of K will be used to analyze the block diagonal preconditioner.

LeMMA 2.2. The largest singular value of K is bounded above by a quantity of
magnitude O (%) The smallest singular value is bounded below by a quantity of
magnitude O(v).

Proof. The largest singular value is ||[K||s = [|[K7T|s. Using KT = BTQ~! and
Q = LM, we have

14

K o < v [IBT |2 | M~

But ||[M ™|, = O(h™%), and our assumptions on B imply that ||BT|); = HBBTH%/2 =

O(h). The smallest singular value is the inverse of H(KKT)_IHé/Q. Then
Ty =1 1 2 T\-1 Looya -4
K KTY o < 5 33 1BBTY o = 5 eantean™

0

Consider an alternative scaling in problems (1) and (4) in which the first equation
is multiplied by % This does not change the solutions, but as we will show in §§3-4,
it affects the sensitivity of discrete eigenvalues. For (4), scaling gives

1 1 1
(16) — Au+ —(w-grad)u + grad (—p) - _f.
v v v

The new discrete problem is as in (3) except that F', p and f are replaced by F= %F,
%p and %f, respectively. Let Q = vQ = M, G = BF~', KT = BTQ~! and H = GKT.
The analogues of (11) and the bounds of Theorem 2.1 and Lemma 2.2 are given below.
The proof follows from the facts that G = vG, K = %K and H = H.

COROLLARY 2.3. With the scaling of (16), the eigenvalues of H are contained in
the box (11); the singular values of G are bounded above by a quantity ofmagnitudAe

O(1) and below by a quantity of magnitude O(hv); and the singular values of K
are bounded above by a quantity of magnitude O (%) and below by a quantity of
magnitude O(1).



In the following, we will not specifically identify the matrices associated with this
scaling using the “hat”-symbol. Instead, we will use the notation of (8) — (9) to
refer generically to both scalings. We will distinguish them as derived from either the
“original” formulation (4) or the “scaled” formulation (16) of the Oseen equations.

Finally, we will use the notation a x to denote the secant of the largest principal
angle between Range(GT) and Range(KT). That is, if Q¢ and Qx are matrices whose
columns represent orthogonal bases of Range(GT) and Range(K™), respectively, then

1
Umin(QgQI() ’

where 0,,;, denotes the smallest singular value (see [7, p. 584]). It is easily shown
(e.g., using @R decompositions) that

(17) Qg g = H(QgQK)_le =

(18) aex = |KT(GET)E),.

3. Analytic bounds for the block triangular preconditioner. It is evident
from (9) that the eigenvalues of Az consist of A = 1 of multiplicity n, together with
the eigenvalues of H. We seek a factorization

(19) Ar = VTDTVEI

that provides insight into the sensitivity of these eigenvalues to perturbation. We will
look for factors of the form

Do — I 0 Ty Vo — Vit Via | ny
(20) = D21 A np ’ = V21 V22 np
Ny Np Ny np

where the sub-blocks of Dy and Vr must be determined and the dimensions are as
indicated. Let H have Jordan canonical form H = PAP~!. The requirement A7Vr =
VrDr is satisfied if

(21) Vll = Iv V12 = 07
G:(I—H)V21+PD21, VQQIP.

We distinguish between two cases, 1 € o(H) and 1 ¢ o(H ).
Suppose first that H has no eigenvalues equal to 1. The choice Dy = 0 in (20)
leads to Va1 = (I — H)7'G. In this case, (19) represents a Jordan form for Ay with

I 0 . I 0
(22) Vr= ( (I-H)'G P ) o V= ( —PYI-H)"'G P )

Let Ar(€) = Ar + €€ be a perturbation of Az, where

Eyn Eng
23 &= .
(23) ( Eq1 Eg )

The classical perturbation analysis of Wilkinson based on Gerschgorin theory [18, pp.
71ff] shows that for every eigenvalue A of Agr with only linear elementary divisors,
perturbations of A in o(Ar(¢)) are contained in a circle centered at A with radius of
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size ce where ¢ is independent of €. The structure of V; can be used to obtain further
insight into the sizes of the perturbations. Let

24 — -1 — All A12
(24) b = Vi &V (E21 Eyy )7

so that we are concerned with the eigenvalues of

1 . s (10 By B
(25) Vi AT(G)VT—DT-I-&‘:T—(O A)+€(E21 Ezz)'

Here and in the following, the symbol “¢”
pendent of the parameters h, v and e.

LEMMA 3.1. If 1 & o(H), then there are n, eigenvalues A of Ap(¢) (counting
multiplicity) satisfying

represents a generic constant that is inde-

(26) A= 1] < €| Bulloo + e || Era|oc

If there are m < n, eigenvalues A\ of H with linear elementary divisors, then there are
m eigenvalues A of Dr(¢), distinct from those of (26), that satisfy

(27) A= A < el Enalloo + € || £t o

Proof. Multiplying the first block row on the right side of (25) by ¢/3, multiplying
the first block column by /€ and then applying Gerschgorin’s theorem leads to the
bound

‘/\ - (14 €[E11]n’)

< 62 ‘[Ell]ij + 62/52 ‘[EIQ]M ;
JF J

where /3 is such that the Gerschgorin disks for the first and second blocks of the scaled
matrix are disjoint (see [18, p. 73]). Assertion (26) follows. The argument for (27) is
identical, applied to the second block row of (25). O

Thus, we can restrict our attention to the block diagonal entries of Er. Using
(22)-(24) we have

(28) En = B+ Ew(I - H)'A,
Fyy = —P_I(I— H)_IGElgp + P_IEQQP.
The following result gives bounds on the perturbations of eigenvalues as functions of
the viscosity v and mesh size h, for a perturbation satisfying ||€]]s < 1.

THEOREM 3.2. Assume ||E|ly < 1. If 1 ¢ o(H), then the eigenvalues \ of Ar(e)
that are perturbations of A = 1 satisfy

Ly O(€é*) for the original formulation,

(20) PERTER I)

€ % + O(€*) for the scaled formulation,

? This assumption is stronger than the inequality |&;;| < 1 used by Wilkinson; the latter condition
follows from our assumption.



where ¢; = c||(I — H)™!||z. For eigenvalues A of H with linear elementary divisors,
the perturbations A € o(Ar(e)) satisty

. 24 O(e*) for the original formulation,
(30) A=A < vh

€ Ch—2 + O(€*) for the scaled formulation,

where ¢ = ¢ k(P) [|(I — H)™Y2.

Proof. The relations (28) together with standard bounds on matrix /,-norms give

- c . - c _1
1ulloe < 2 I1Eulls < 7 (L4 0= H) 72 1Gl2)
n C |~ c -1
1E22lloe < 2 I1E2sllz < 7 (P) (07 = H) 7 Jl2|Gll2 + 1)

The conclusions follow from the upper bounds on ||G||z in Theorem 2.1. O
In the case 1 € o(H ), we use an alternative version of (20). By analogy with the
analysis above, let Vo; = (I — H)TG where (I — H)' is the pseudo-inverse. Then

I 0 . I 0
Vr = ( (I-Htc p ) Vi = ( ~P~Y(I-H)lG P! )

The similarity (19) then holds for the choice

I 0
Dr = ( PUIG A)

where II is the orthogonal projection onto the null space of I — HT. The perturbation
of D7 associated with Ar(e€) is then

-1 . 5 I 0 €E11 €E12
(1) Vo Ar(QVr =Dr +efr = ( oA )t — PG + ¢Fyy €Eoy |

First consider the eigenvalues of H different from 1 with linear elementary divisors.
Let 7 be a parameter in (0, 1). Multiplying the second block row of (31) by €7 and the
second block column by ¢~ produces the matrix

I 0 €E11 61_77EA12
32 . . .
(32) ( 0 A ) + ( —"PTUIG + €17 FEyy cFloy

For any n € (0,1) and small enough ¢, the Gerschgorin disk for a perturbation A of
A€ o(H), A # 1, is disjoint from the disks corresponding to perturbations of the
eigenvalue 1. Consequently, if A has only linear elementary divisors, then

A=Al < PTG + O,

For eigenvalues equal to 1, multiplying the second block row of (31) by /2 and
multiplying the second block column by e~ 1/2 produces

I 0 €E11 €1/2E12
33 . R )
(33) ( 0 A ) t ( —2P~UIG 4+ 3/2Fy;  €Fy
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Thus, for A = 1 with linear or quadratic elementary divisors, the perturbations satisfy
A=Al < /2 max (|| Eralloe, [ PTHIG o0 ) + O(e).

Bounding the matrix infinity norms in (32) and (33) gives the following result.
TuEoREM 3.3. If'1 € o(H ) with linear or quadratic elementary divisors, then the
eigenvalues A of Ar(e€) that are perturbations of A = 1 satisfy

~ C _
(34) A1 < 2 = max ([|1P]l2. [P G l2) + Oe)

For A € o(H) different from 1 with linear elementary divisors, the perturbations

A € o(Ar(e)) satisfy
(35) A=Al < €”%HP_IHzHGHz+O(€)

for any n € (0,1). Here ||G||2 = O(1/v) in the original formulation and |G|z = O(1)
for the scaled formulation.

Note that for any A € o(. A7) with nonlinear elementary divisors, bounds analogous
to (29)—(30) and (34)—(35) can be obtained in which the dependence on ¢ is of the
form €'/7 where 7 is the order of the largest Jordan block for A; see [18, p. 79].

4. Analytic bounds for the block diagonal preconditioner. For the block
diagonal preconditioner, we have results only in the case where the Schur complement
matrix H has no nonlinear elementary divisors. As in Theorem 3.2, the perturbation
analysis will be stated in terms of properties of P, a fixed matrix of eigenvectors of H.
In addition, some of the bounds depend on ag ., the secant of the largest principal
angle between Range(GT) and Range(KT), as defined in (17).

Consider the eigenvalue problem for Ap,

I KT w o\ P U
G 0 p) \»p)’
This leads to the conditions

(36) KTp=(6-1)u, Gu = 0p

on the components of the eigenvectors. One solution corresponds to the eigenvalue
f = 1; the assumption that B and therefore K have full rank then implies that any
associated eigenvector satisfies p = 0, Gu = 0. We use two approaches to identify
eigenvalues # # 1 and corresponding eigenvectors.

1. Substitution of u = (ﬁ) K7Tp into the second equation of (36) gives

GETp=6(0—1)p.
That is, any eigenpair (A, p) of H = G KT leads to two eigenvalues

B A S SV )
-2 -2

of Ap. The associated eigenvectors are

5 ()

9

(37) 0



where

_ 1 -T _ 1 -T
(39) u+_<0+_1)lx P, u__<0__1)lx p.

2. Alternatively, substitution of p = %Gu into the first equation of (36) gives

KT'Gu=16(0-1)u.

KTG has a zero eigenvalue of multiplicity n, — n, (the dimension of the null space
of &), plus 2n, nonzero eigenvalues. If (A, ) is an eigenpair with A # 0, then (37)
defines a pair of eigenvalues of Ap. In this case, the eigenvectors have the form

) )

(41) Pt = (i) Gu, p_ = (%) Gu.

It is straightforward to show that any uy or u_ from (39) is an eigenvector of
K7¢, and any py or p_ from (41) is an eigenvector of GKT. Therefore, we will use
the symbol “£” to refer to the pairs of eigenvalues and eigenvectors of Ap, i.e., ug
will refer to the first entries of either (38) or (40), p+ to the second entries, and 64 to
the associated eigenvalue. We have established the following result.

THEOREM 4.1. The eigenvectors of Ap corresponding to the eigenvalue 6§ = 1

have the form ( Z)L ) where Gu = 0. The eigenvectors corresponding to eigenvalues

different from 1 have the form ( Zi , where the associated eigenvalues 01 satisfy
+

(37), and

1
Hpye = Apy, K'Guy =Mug, pg= (-) Guy, ug= (

KTp,.

Let ©4 denote a diagonal matrix with entries {0+ } from (37). If the eigenvalues of I
have only linear elementary divisors, then ApVp = VpDp, where

o — 1

0 0 M = Ty VULU_ | n,

Dp=|0 0, 0 n, : Vp = :
0 0 O_ np 0P P_J n,
[E L [

in which the columns of V form an orthogonal basis of the null space of G and
(42) P =GU:0OT', Us=KTP (0L -1
We will normalize the matrices Uy and Py as follows:
U, =U_=U=K"P,
(43) P, = P(O4 — 1),
P_=PO_-1).
10



It is then easily verified that

I 0 0 ) 0
vil=10 (0, -6_)"! 0 rotq P,
0 0 (O —04)! pPta pt
where
(44) o=vIiI-v@Gu)y'a)=vTu - KkT(GK")'a).

Now let Ap(€) = Ap + €€ be a perturbation of Ap where £ is as in (23). The
eigenvalues of this perturbed matrix are the same as those of

I + €E11 €E12 €E13
(45) VBI.AD(G)VD = DD + €(€D = €EA721 ®_|_ —|: €E22 €E23A 5
cFl3y cFl3y O_ + els3

where £p = VBIEVD. As in §3, Gerschgorin analysis implies that for small €, the
effects of perturbation can be bounded using the perturbations on the block diagonal
of (45). These are given by

Eyy = 0T BV,
(46)  Eyo = (04 —O0)7! [PFG(EnU + EnPy)+ P7H(EnU + ExnPy)|
Fay = (0_ = 0,)7 [PZIG(EnU + B Po) + P7H(EnU + ExnP.)| .

THEOREM 4.2. If H has no nonlinear elementary divisors, then the eigenvalues 6
of Ap(¢) that are perturbations of § = 1 satisfy

61| < 6% (14 agx) + O(é)

for both the original and scaled formulations of the discrete Oseen equations. The
perturbations of eigenvalues different from 1 satisfy

er(P)ag (C—l + 6—2) + O(€*) for the original formulation,

(47) 165 — 64] < he = wh
er(P)ag % +0(€) for the scaled formulation,
and
R er(P) (% + 6—2) + O(€*) for the original formulation,
(18) Ji_ -0 | < W vk
er(P) £ O(e*) for the scaled formulation.

12
Proof. For the perturbations of A = 1, it follows from (18), (44) and (45) that

X . ¢ - ¢
10 — 1] < ecl||Fii]le < €5 1412 < 65(1 + ag k).

11



For the perturbations of eigenvalues different from 1, note that (37) and the bounds
(11) on the eigenvalues of H imply that the norm of each of the diagonal matrices

0, -1, o_ -1, (04 —0_),

(49) ®—T—17 (@_ _ I)—l7

is bounded independent of v and h. Gerschgorin analysis gives
(50) B — 0] < €= 112
where j = 2 corresponds to @4 and j = 3 to O_. Relations (43) and (46) then imply
G (il < 1104 = 0™ 2 (1PF Gll2 + 1P 12) (157 (|2 + 102 = 1112) | P[l2.-
Consider || P='G||y. Using the expression for P_ in (43), we have
1P G < 10= = D7 (1P 2 1G])2,

and combining this with (51) gives
1Essllz < s(PYIO= = 0 2 (0= = D2 I Gll2 + 1) (1K |2 + 10- — 1]|2) -

Result (48) follows from (50), the boundedness of the matrices of (49), and the bounds
on ||G||2 and ||KT]; in Lemma 2.2 and Corollary 2.3.
For || PL'G|)2, first observe that (42) and (43) imply

(PG KTPOTY) =1

Let (P_FIG)T = (1R and KTP(D_T_1 = (2 Ry be QR factorizations, where Ry and R
are square and nonsingular. Then RTQTQ,Ry = I, and

(52) 1PF Gl = (1 Rall < 1B 2 110Q1 Q2) 7 Iz = avou 1R ]2

But [|R; (|2 is the inverse of the smallest singular value of KT POZ', so that
_ 17 70T \—1 p— 1/2 - - e TN—11/2
1RZ 2 < 104 P (K KT) T P10 < 04l 1P~ o (8 KT

From Lemma 2.2, Corollary 2.3 and the boundedness of ||©4 ]|, the term on the right
is bounded by ¢/v ||P~Y||; for the original formulation and ¢ || P71||; for the alternative
formulation. Result (47) then follows from (50), (51) (with j = 2) and (52). O

REMARK 4.1. The difference between (47) and (48) stems from the fact that ||(O4 —
I)7Y|z is not independent of v, so we cannot bound || P;'G||z directly. The results
of §6 suggest that the perturbations do not behave differently, but we see no way to
avoid including ag 5 in (47).

5. The rank-deficient case. Unless an additional constraint is imposed on the
pressure in (1)—(2) or (4), the matrix of (3) will be rank deficient by one. This is the
case for the test problems of §6. We outline here how the analysis above carries over
in the rank-deficient case.
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For the block triangular preconditioner, ArVy = VyDy where, for 1 € o(H ), the
analogues of the matrices defined in (20) — (22) are

(T o0 B I 0 . I 0
DT_(O A)’VT—((I—H)—lc; P)’VT—(—PT(I—H)—lc; PT)'

A is a square matrix of order n, — 1 whose eigenvalues are the nonzero eigenvalues
of H, and P spans the associated invariant subspace. In particular, P replaces P~1
and V} replaces V:Fl. The analysis of perturbations of the nonzero eigenvalues of At
then carries through verbatim with the inverse of the smallest singular value of P in
place of [|[P71||y. The case 1 € o(H) is generalized in a similar manner with (I — H )T
in place of (I — H)™!

For the block diagonal preconditioner, the analogue of the similarity transforma-
tion of Theorem 4.1 is ApYVp = VpDp where

I 0 0 ny—np+1 1% U_|_ U_ Ny
DPp=10 ®_|_ 0 np 5 Vp =

0 0 6./ n Ay

AT R |

Once again, all the analysis of §4 goes through with P referring to the matrix of
eigenvectors corresponding to nonzero eigenvalues of I, P! in place of P71, and the
inverse of the smallest nonzero eigenvalue of K K7 in place of [|[(KKT)~!,.

6. Experimental results. We now present the results of numerical experiments
that supplement the analysis of §§3-5. Our test problem is a discrete Oseen operator
(4) on on © = (—1,1) x (—1,1), with Dirichlet boundary conditions u; = us = 0 on
the three fixed walls (z = —1, y = —1, 2 = 1), and w3 = 1, uz = 0 on the moving wall
(y = 1). The coefficients of the convection terms describe a circular vortex

wy = 2y(1 — 2?), wy = —2x(1 — y?).

We discretize using bilinear finite elements on a uniform rectangular n X n velocity
grids of width h = 2/n, augmented by streamline upwinding [9, p. 185]. To impose
div-stability, the pressure discretization uses “macro-elements” of width 2h; see [8,
p. 30]. The hydrostatic pressure is not explicitly specified, so that the matrices (3)
are rank-deficient by one. Additional details about this problem are given in [3]. All
computations were performed in MATLAB on either a Sun SPARC-20 workstation or
a DEC-Alpha 2100 4/275 workstation.

We first show in Figure 1 some sample distributions of eigenvalues of Ar and Ap,
for v = 1/20 and n = 32. The plot on the left gives an indication of the rectangle
enclosing the eigenvalues of H (see (11)); the plot on the right represents the result of
the mapping A — (1 1+ 4/\) /2 of (37). Both pictures include the eigenvalue 1,
of multiplicity n, = 2178 for Ar and n, —n, + 1 = 1890 for Ap.

We present our results primarily as tabulations of maximum perturbations and
other quantities, for various choices of viscosity parameter v and grid parameter n.
The rows and columns of the tables indicate behavior as either v — 0 or n gets large
(h — 0). Note that accurate discrete solutions to (4) are obtained only if v is not too
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Fig. 1. Eigenvalues of Ar (left) and Ap (right), for v =1/20 and n = 32.
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small relative to h. This difficulty can be ameliorated to some extent by an appropriate
choice of discretization such as the streamline upwinding method used here [2],[9, p.
262]. In practical experiments, it is often desired to compute solutions of a fixed
accuracy for a variety of values of v by letting h — 0 and v — 0 simultaneously. In
an effort to follow trends in the data, we will consider some combinations of v and h
that could produce inaccurate solutions.

Our main results are in Tables 1 and 2. Table 1 shows the effects of perturba-
tion of the block tridiagonal preconditioner, for two values of n and various v. This
data was obtained by computing the eigenvalues of a set of ten perturbed matrices
Ar(€) = Ar + ¢F where ¢ = 107% and F is a dense matrix with uniformly distributed
random numbers in an interval [—a,, a,], where a, = 16/n. (For this choice, || E||2 is
approximately constant for all n.) For A = 1, the table presents

(A max |\ — 1|) /€,
AEO’l(.AT-I—EE)

where o1 (A1 + €l)) is the set of n, eigenvalues that are closest to 1, and the maximum
is over all the perturbations. For A # 1, the table shows

(A max |\ — /\|) /€,
/\Ecri(.AT—I—EE)

where (A1 + €¢E) denotes the perturbations of A € o(Ar), A # 1 and A # 0.4
Analogous results for the block diagonal preconditioner are shown in Table 2. Here
we also distinguish between the eigenvalues with positive and negative real parts.
Before discussing this data, we present experimental results for three other quan-
tities appearing in the bounds of §§3-4: w(P), ||(I — H) |2, and ag . These are
shown in Tables 3, 4, and 5, respectively. Here x(P) refers to the version used for the

* These were obtained by sorting o(Ar) and o(Ar 4+ E) for each E and comparing the ordered
sets. For all tests, similar results were obtained for other values of ¢.
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TABLE 1
Mazimum normalized perturbations of eigenvalues of Ar.

n=16 v 1 1/10 1/20 1/30 1/50 1/100

Original A=1|21.7 137.6 3185 478.2 766.1 1509.5
Formulation | A # 1 | 21.4 80.5 201.1 313.4 529.9 1110.0

Scaled A=1]21.7 167 169 169 16.9 17.1
Formulation | A# 1 | 21.4 8.3 10.2 10.6  10.7 11.2

n =32

Original A=1|157 586 56.6 83.0 172.0 4024
Formulation | A # 1 | 22.7 26.7 50.8 43.1 141.2 2578

Scaled A=1|157 152 14.0 14.1 14.2 14.4
Formulation | A #1 | 22.7 6.9 3.4 11.1 93.0  35.7

TABLE 2
Magzimum normalized perturbations of eigenvalues of Ap.

n =16 v 1 1/10 1/20 1/30 1/50 1/100
Original A=1 13.4 13,5 13.7 142 148 158
Formulation | Re(A)< 0 | 11.6 7.5 6.5 9.8 162 31.9
Re(A)>1]101 83 76 106 16.5 32.1
Scaled A=1 13.4 13,5 13.7 142 148 158
Formulation | Re(A) < 0 | 11.6 453 9.0 10.0 156  20.7
Re(A)>1110.1 443 94 105 159 234

n = 32
Original A=1 12.9 129 13.0 13.0 131 13.7
Formulation | Re(A) <0 | 55.6 5.1 28 94 749 51.2
Re(A\)>1]46.6 74 4.0 84 71.8 58.0
Scaled A=1 12.9 129 13.0 13.0 131 13.7
Formulation | Re(A) <0 | 55.6 48.7 19.0 60.4 505.6 324.3
Re(A)>11]46.6 47.7 19.6 57.6 516.7 301.1
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TABLE 3
Condition number of matriz P of eigenvectors of H.

v 1 1/10  1/20  1/30  1/50  1/100
n=16| 54 180 5.4 5.0 7.9 147
n=32| 608 457 268 785 557.0 413.3
n=064|181.8 3876.0 2900.4 2029.1 54412 2.74ed

TABLE 4
Norm of (I — H)™*.

v 1 1/10 1/20 1/30 1/50 1/100
n=16]100.8 162 17.1 17.1 16,5 16.6
n=32] 708 709 234 167 432 17.3
n=064]697.0 2594 1124.9 318.7 61.9 231.1

rank-deficient problem as outlined in §5. It was obtained by computing the matrix of
eigenvectors P of H, normalizing the columns of P to have unit [;-norm, and then
computing the ratio of largest to smallest singular values of the submatrix of P cor-
responding to the nonzero eigenvalues of H. (The normalization ensures that we are
within a factor of ,/n, of the condition number of the optimally scaled version of P
[15].) Note that x(P) and ag g exhibit a general tendency to increase as either v — 0
or n increases, with k(P) being particularly volatile.

Now consider the data of Table 1 for the block triangular preconditioner. Several
trends are apparent:

1. In the original formulation, the perturbations of both A = 1 and A # 1 are
increasing with 1/v. In the scaled formulation, the perturbations of A = 1 are
insensitive to v. This behavior is consistent with the results of Theorem 3.2.

2. In the scaled formulation, the perturbations of A # 1 show some growth with
1/v for n = 32, although there is no clear trend. This may derive from growth
in the product x(P)||(I — H)™Y,.

3. There is little or no increase in perturbation size (and a decrease in some
cases) with the change of grid size from n = 16 to n = 32. This contrasts
with the bounds from the analysis, which degrade as h — 0.

Next, consider Table 2.

1. The perturbations of A # 1 for both the unscaled and scaled problems show
some growth with 1/v. The qualitative trends are similar, but the perturba-
tions for the scaled formulations are larger. In contrast, the analysis (Theorem
4.2) suggests that the scaled version would be smaller; therefore it appears
that the upper bounds of this analysis are not giving a complete indication of
dependence on v.

2. The perturbations of A = 1 are insensitive to v and there is essentially no
difference between the perturbations of the eigenvalues with positive and neg-
ative real parts. As noted in Remark 4.1, we believe the dependence on ag x
is an artifact of the proof.

3. The dependence on the mesh size is more pronounced for the triangular pre-
conditioning, although there is no consistent pattern.

Thus, the analysis gives upper bounds on perturbation sizes, although it is not
possible to completely correlate the analytic bounds and experimental results. This
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TABLE 5
Secant of largest principal angle between Range(GT) and Range(KT) (0 x ).

v | 1 1/10 1/20 1/30 1/50 1/100

n=16|111 1.65 251 3.29 453 6.51
n=232|116 1.72 276 3.77 557 8.96

TABLE 6
Mazximum normalized perturbations of eigenvalues of H .

v 1 1/10 1/20 1/30 1/50 1/100
n=16 | 3.8 47 24 24 32 53
n=32]83 48 34 108 735 31.1
n=064]284 2264 1341 61.7 130.8 402.3

is likely due to the lack of a clear pattern in the behavior of x(P) and ||(I — H)™Y(|,,
together with the use of norm inequalities throughout the analysis that are not nec-
essarily tight. For example, the analysis combines bounds on matrix l3-norms derived
from the underlying differential operator with [., norms derived from Gerschgorin
bounds. We suspect that the factor of 1/h used to relate these quantities artificially
inflates the dependence of the bounds on the mesh size, although we see no way to
avoid introducing this term. In general, both the analysis and experiments indicate
a tendency for perturbations of the eigenvalues different from 1 to increase with 1/v,
but growth appears to be at worst linear and for the block triangular preconditioning
it can be reduced by scaling.

Finally, Table 6 examines the sensitivity to perturbation of the eigenvalues of the
reduced matrix H. The entries are

(A max |\ — /\|) /€,
A€o (H +eE)

The results also indicate that the perturbations increase as the viscosity decreases, and
they display some growth as the number of mesh points increase, roughly like that
for the block diagonal preconditioner displayed in Table 2. Note that the dependence
on both 1/v and n is much less severe than that of x(P) shown in Table 3. Once
again, this stands in contrast with analytic bounds such as those obtainable from the
Bauer-Fike theorem [7, p. 342], which suggests perturbations proportional to x(P).

7. Inexact inner iteration. We conclude by examining the effect of inexact
computation of the action of F'~1. For brevity, we restrict our attention to the unscaled
version of Ar; similar analysis leads to essentially the same conclusions for Ap. If
the action of F'~! is approximated using an iterative method for each system Fw = v,
then F~! can be replaced by F~! + E in (9). The perturbed preconditioned matrix
is then A7 + & where

e[ FE FEKT
~\ BE BEKT |-
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For this analysis it will be useful to consider the complete version of (24),

FE(I+ KT™(I- H)'G) FEKTP

&r = S

Suppose the approximate solution @ satisfies

[0 = Fal

[[2]]

(53) <rT

for some tolerance 7. Standard inequalities yield the bounds on the relative error

[ — @] [ — @]

] ]

Treating these as approximate equalities gives || F|| ~ 7||F~!]], it follows that

< [[EHE= ) < [ENHEN -

1Bull <s mUFIIFE (L4 KT = E)HIGE),

1l <~ TIENIEIIETN P,

1Enll <o mIP7HOH N =B DIBIIE (1 IKTIICE = H)IG])
£l <~ 7R(P)(L— (L~ H)HIEHIET.

Using the l5-norm, let us consider the dependence of these bounds on the viscosity
v under the assumption (derived from the experimental results presented above) that
the influence of P and H is not significant. The bounds on || Eqy], ||Ex ||, and || Eyq]|
include the product [|[KT|| ||G|| = O(v)-O(1/v), which is independent of v. Using the
coercivity and continuity of the convection-diffusion operator, it can be shown that as
functions of v,

1] = 0), [[F7H] = 0(1/v).

(An algebraic proof can be found in [4, Theorem 1].) This implies that the bounds on
| E11]| and || Eqy]| grow as 1/v decreases, whereas the bounds on || Eya|| and || Eqy|| are
independent of v. If 7 is small, then as in §3 we can restrict our attention to the block
diagonal entries, which indicates that the perturbations of eigenvalues different from
1 in this particular case do not depend on v. On the other hand, if 7 is large, then
it is not possible to exclude Ey; from the Gerschgorin analysis, and the presence of
||IF~Y| in this bound suggests that perturbations in all eigenvalues grow like 1/v.
Consider the implication of these observations on the performance of iterative
methods for solving the discrete Oseen equations (3). We demonstrated in [3] that the
iteration counts of Krylov subspace methods such as GMRES with the preconditioner
Qr (7) are independent of the mesh size, but that there is some deterioration in
performance as v decreases. Now suppose an inner iteration with stopping criterion
(53) is used to approximate the action of F~!. The analysis given here suggests that if
7 is large, there may be additional degradation of performance for small v. In contrast,
if 7 is small then only A = 1 is sensitive to perturbation, which suggests that (extra)
degradation of the inner iteration with decreasing ¥ may not be as pronounced. Figure
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Fia. 2. Iterations of FGMRES with inexact convection-diffusion solves.
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2 shows the results of numerical experiments that corroborate these observations. The
figure plots iteration counts of right-preconditioned “flexible” GMRES (FGMRES)
[12] as a function of v, for solving the discrete problem (3). The inner iteration for
the convection-diffusion subproblems Fw = v was a line Gauss-Seidel method with
stopping criterion (53).> The test matrices were those used in §6; the right hand side
[ consisted of normally distributed random numbers with mean 0 and variance 1. The
outer iteration used a zero initial guess and was stopped when the relative residual in
the Euclidean norm was less than or equal to 1076, The results with inner iteration
are compared with using a direct method for the action of F'~!. They indicate that
for the relatively modest tolerance 7 = 1072, the inexact inner solves lead to little
increase in outer iterations for any v. For less stringent 7, additional outer iterations
are required and the number of additional iterations becomes larger as v decreases.

REMARK 7.1. It can be shown that for small 7 the perturbations of the eigenvalues
of the scaled system behave in the same way as the those for the unscaled system.
However, scaling affects the relative weighting given to the two block equations of
(3), which in turn may affect the iterative solver. Therefore, we have restricted our
attention here to the unscaled system.
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