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Bacteriophage-encoded peptidoglycan hydrolases, or endolysins, have been 

investigated as an alternative to antimicrobials due to their ability to lyse the bacterial 

cell wall upon contact. However, pathogens are often able to invade epithelial cells 

where they can repopulate the mucosal surface after antibiotic or endolysin 

prophylaxis. Thus, there is growing interest in endolysins that can be engineered, or 

inherently possess, a capacity to internalize in eukaryotic cells such that they can 

target extracellular and intracellular pathogens. Previously, one streptococcal specific 

endolysin, PlyC, was shown to control group A Streptococcus localized on mucosal 

surfaces as well as infected tissues. To further evaluate the therapeutic potential of 

PlyC, a streptococci/human epithelial cell co-culture model was established to 

differentiate extracellular vs. intracellular bacteriolytic activity. We found that a 



  

single dose (50 μg/ml) of PlyC was able to decrease intracellular streptococci by 96% 

compared to controls, as well as prevented the host epithelial cells death. In addition, 

the internalization and co-localization of PlyC with intracellular streptococci was 

captured by confocal laser scanning microscopy. Further studies revealed the PlyC 

binding domain alone, termed PlyCB, with a highly positive-charged surface, was 

responsible for entry into epithelial cells. By applying site-directed mutagenesis, 

several positive residues (Lys-23, Lys-59, Arg-66 and Lys-70&71) of PlyCB were 

shown to mediate internalization. We then biochemically demonstrated that PlyCB 

directly and specifically bound to phosphatidic acid, phosphatidylserine and 

phosphatidylinositol through a phospholipid screening assay. Computational 

modeling  suggests that two cationic residues, Lys-59 and Arg-66, form a pocket to 

help secure the interaction between PlyC and specific phospholipids. Internalization 

of PlyC was found to be via caveolae-mediated endocytosis in an energy-dependent 

process with the subsequent intracellular trafficking of PlyC regulated by the PI3K 

pathway. To the best of our knowledge, PlyC is the first endolysin reported that can 

penetrate through the eukaryotic lipid membrane and retain biological binding and 

lytic activity against streptococci in the intracellular niche. 
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Chapter 1: Introduction and literature review 

Pathogenesis of  Group A streptococcal infections 

Types of infection and significance 

Streptococcus pyogenes (group A Streptococcus or GAS) is a Gram-positive 

human pathogen that typically colonizes the skin and mucosal surface, capable of 

causing an exceptionally broad spectrum of diseases that range from mild superficial 

conditions, such as pharyngitis ('strep throat'), tonsillitis, and impetigo, to cellulitis in 

the deeper tissues. However, GAS may also elicit severe life-threatening 

complications, including pneumonia, bacteremia, necrotizing fasciitis (‘flesh-eating 

disease’), and streptococcal toxic shock syndrome (STSS). In addition, some GAS 

infections can lead to post infectious autoimmune sequelae such as acute rheumatic 

fever, streptococcal arthritis, and post-secondary glomerulonephritis [for an extensive 

review, see (Cunningham 2000)]. One of most common childhood illnesses in the 

United States is streptococcal pharyngitis, which accounts for an estimated 15 million 

outpatient physician visits each year (Hing, Hall et al. 2008). In the United States, the 

economic burden of streptococcal pharyngitis among children has been estimated 

between $224 million to $539 million per year (Pfoh, Wessels et al. 2008). 

Furthermore, 9,000-11,500 cases of invasive GAS disease occur annually, resulting in 

1,000-1,800 deaths. STSS and necrotizing fasciitis each comprise an average of about 

6%-7% of these invasive cases (CDC 2008). Overall, group A streptococcal disease 

remains a major worldwide health concern, and the World Health Organization has 
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estimated that severe GAS infections causes more than 500,000 deaths globally each 

year (Carapetis, Steer et al. 2005). 

Virulence factors  

Group A Streptococcus ensures itself a successful pathogen by adapting to the 

diverse physiological environment on/in the human host. For pathogenicity, GAS 

produces various virulence factors that interact with the host at many cellular and 

tissue levels. The cell surface of GAS accounts for many of the bacterium's 

determinants of virulence, especially those associated with colonization, 

internalization, and evasion of phagocytosis and the host immune responses. 

Antigenic components on the surface include the group specific carbohydrate, which 

is the basis for the Lancefield stereotyping method (Facklam 2002), cell wall 

peptidoglycan, lipoteichoic acid (LTA), and a variety of surface proteins, such as M 

protein, C5a peptidase, fimbrial proteins and fibronectin-binding proteins (protein F). 

Moreover, several extracellular products from GAS have been elucidated as virulence 

factors, including proteases, DNases, streptokinase, hyaluronidase, super antigens, 

and hemolysin (Cunningham 2000). The function of the virulence factors and their 

roles in the regulatory pathogenic network is summarized below (Figure 1-1). In 

addition, Mga is a key transcription factor in the regulatory network upon expression 

of GAS virulence genes, has been characterized as a multiple gene regulator for 

virulence in group A streptococci. Its major role is to activate the transcription of 

several virulence genes that including those for M protein (emm), C5a peptidase 

(scpA), M-like proteins (mrp, enn, and fcR), serum opacity factor (sof), and secreted 

inhibitor of complement (sic) (McIver 2009). 
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Figure 1-1. GAS virulence factors interact with the host at various levels  

Importantly, many of the known streptococcal virulence factors play a role in different stages 

of infection. At the organism level, these virulence factors are involved in facilitating 

dissemination throughout the body circulation and can induce systemic toxicity. At the cell or 

tissue level, these factors contribute to the pathogenicity of GAS by mediating adherence to 

host cells, promoting internalization and invasion, and  then evading phagocytosis. Modified 

from (Cunningham 2000; Tart, Walker et al. 2007). 

Interaction of bacterial surface proteins with host proteins of extracellular 

matrix as well as cell surface receptors are crucial during the host-pathogen 

interaction process. It is now realized that GAS utilizes whole sets of adhesins such as 

lipoteichoic acids (LTA), M protein, serum opacity factor, and multiple fibronectin-

binding proteins to establish direct contact with the host tissue (Nitsche-Schmitz, 

Rohde et al. 2007; Nobbs, Lamont et al. 2009). Both the M proteins (Ellen and 
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Gibbons 1972) and LTA (Beachey and Simpson 1982) are attached externally to the 

cell surface and mediate bacterial adherence to host cells. The key mediator on GAS 

surface is the streptococcal fibronectin (Fn)-binding protein, that can be detected in 

about 80% of all GAS isolates (Goodfellow, Hibble et al. 2000). Fn-binding protein 

has been shown to promote streptococcal adherence to the amino terminus of 

fibronectin, which acts as bridging molecule between streptococci and the α5β1 

integrin on the eukaryotic cells (Hanski, Horwitz et al. 1992; Ozeri, Rosenshine et al. 

1998). Once adhered, GAS possess the ability to internalize and survive in an 

intracellular environment (Figure 1-2) (Fluckiger, Jones et al. 1998). The capability 

of GAS to promote internalization by human non-phagocytic cells was observed at 

mid 1990s (LaPenta, Rubens et al. 1994). Although the intracellular fate of GAS after 

internalization is not well understood, studies have been suggested that internalization 

of GAS is associated with recurrent streptococcal infection (Ogawa, Terao et al. 

2011), because GAS, in a rare event, can circuvent host defence by escaping from 

fusion with the lysosomes, externalize by inducing apoptosis of host cell and 

sebsequently repopulate the mucosal surface after antibiotic prophylaxis (Marouni 

and Sela 2004; Kwinn and Nizet 2007). 

In addition, GAS can use various virulence factors to avoid phagocyte 

engagement, inhibit complement and opsonization, block phagocytotic uptake, 

promote host cell apoptosis, and resist specific effectors or phagocyte killing by 

antimicrobial peptides and reactive oxygen species (Kwinn and Nizet 2007).. In 

summary, internalization by host cells has important implications in the pathogenesis 

of streptococcal infections. 
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Figure 1-2. Attachment and internalization of streptococci by epithelial cell 

Streptococci were observed being engulfed by membrane extension upon internalization into 

epithelial cell. Intracellular streptococci are found enclosed in cytoplasmic vacuoles.  

Magnification, 12,700 X (A) and 24,300 X (B) (Fluckiger, Jones et al. 1998).  
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Vaccine development 

To date, no effective vaccine for GAS is commercially available. However, 

GAS vaccine development has been primarily focused on the highly variable N-

terminus (determining serotype) of the M protein, which led to successful phase I/II 

clinical trials of a 26-valent recombinant M protein vaccine in 2005 (McNeil, 

Halperin et al. 2005). However, epidemiological surveys show that the 26-valent 

vaccine would provide good coverage of circulating strains of GAS in developed 

countries (over 72%) but low coverage in many developing countries (as low as 24% 

in the Pacific region) (Steer, Law et al. 2009). Most recently, the 26-valent vaccine 

was reformulated into a 30-valent vaccine to increase the coverage of circulating emm 

types in the United States, Canada and Europe as well as developing countries (Dale, 

Penfound et al. 2011). In preclinical studies, the 30-valent vaccine has been shown to 

induce functional opsonic antibodies against all emm types of GAS represented in the 

vaccine. And a phase I clinical evaluation of the 30-valent vaccine in adult volunteers 

is expected in 2013. 

Alternatively, interest in using the conserved region at the carboxyl C-

terminus of M protein for vaccine development has increased (Zaman, Abdel-Aal et 

al. 2012). In addition, other candidates, including streptococcal C5a peptidase, 

streptococcal carbohydrate, fibronectin-binding proteins, cysteine protease and 

streptococcal pili, have been recently reported in several vaccine studies (Shet, 

Kaplan et al. 2003; Sabharwal, Michon et al. 2006; Steer, Batzloff et al. 2009), 

supporting further investigation of novel GAS vaccine development. 
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Despite considerable progress having been made with several vaccine 

candidates, as mentioned above, there remain significant hurdles to GAS vaccine 

development. These include safety concerns, lack of understanding of immune 

sequelae, insufficient epidemiological data and minimal development of combination 

antigen vaccines (Steer, Dale et al. 2013). As such, more investment and 

collaboration is required to develop a safe and effective GAS vaccine. 

Treatment strategy and current challenge 

Even though most antibiotics are still effective against GAS, antibiotic 

treatment failure in cases of streptococcal infection have been frequently reported 

(Conley, Olson et al. 2003; Baldassarri, Creti et al. 2006; Passali, Lauriello et al. 

2007). 

GAS are traditionally considered as extracellular pathogens. However, many 

of them have a remarkable capability to internalize into human eukaryotic cells 

(Nitsche-Schmitz, Rohde et al. 2007; Nobbs, Lamont et al. 2009). This has a crucial 

influence not only on bacterial persistence, but also on the progression of infection 

into deeper tissues. Evidence that intracellular habitation of GAS has in vivo 

relevance comes from an examination of tonsils that were excised from patients with 

recurrent tonsillitis. The presence of viable intracellular streptococci in these tonsils 

suggested that the internalization by host cells created a bacterial reservoir by 

avoiding direct contact with antibiotics, which is responsible for the recurrence of the 

infection (Osterlund and Engstrand 1997; Osterlund, Popa et al. 1997). Significant 

efforts have been taken to investigate this unique pathogenic niche as well as new 
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ways to control intracellular pathogens, including the need for alternative 

antimicrobials that can work in both extracellular and intracellular environments. 

Alternative antimicrobials: bacteriophage and its encoded endolysin 

Bacteriophage: 

Bacteriophage are viruses that target and replicate within bacteria in a species-

specific manner (Clokie, Millard et al. 2011). They were first discovered in 1915 by 

Frederick Twort (Twort 1915) , and in 1917 Felix d'Herelle realized that they had the 

potential to kill bacteria (d'Herelle 1917). As a natural killer, the idea of developing 

bacteria-fighting viruses as an antimicrobial agent against infections was first 

established in the 1930s. (Larckum 1932), only to be abandoned because the 

discovery of antibiotics against bacterial disease. However, in an era when traditional 

antibiotics are rapidly losing their effectiveness, the interest to develop bacteriophage 

for therapeutic use is being revisited (Alisky, Iczkowski et al. 1998; Merril, Scholl et 

al. 2003; Kutter, De Vos et al. 2010). For the past few decades, many studies have 

demonstrated the therapeutic potential of bacteriophage against Gram-positive or-

negative pathogens in vivo [for an extensive review, see (O'Flaherty, Ross et al. 

2009)]. One advantage of using whole phage as therapeutic agents is the 

‘amplification mode’; that is, the lytic cycle in which one phage enters a bacterium 

and replicates, releasing hundreds of phage progenies after lysis, which then go on 

and infect adjacent bacteria and so on. On the other hand, an inevitable concern with 

phage therapy is the rapid development of resistance to phage infection, since bacteria 

have evolved strategies to survive in the phage-infested environment. Scientists have 

developed a cocktails of phages designed to circumvent resistance. This approach has 



 

 9 
 

proven successful in limited clinical settings (Merabishvili, Pirnay et al. 2009) with a 

Phase II clinical trial currently being carried by 'Ampliphi Biosciences Corporation'. 

However, development of a consistent composite mixture of phage that is acceptable 

to the FDA is unlikely to be straightforward due to concerns of potential transfer of 

toxin genes or foreign DNA (Sulakvelidze, Alavidze et al. 2001). 

Bacteriophage-encoded endolysin: 

Although bacteriophage continue to generate interest as an alternative to 

antibiotics, focus is shifting to the use of purified phage components as an alternative 

protein-based antibacterial agents due to their bacteriolytic activity. Bacteriophage 

encode endolysins (peptidoglycan hydrolyses) that function to lyse the bacterial cell 

wall for release of phage progeny during the latter stage of the phage lytic cycle 

(Fischetti 2008). Timing of lysis is initiated by holins, which perforate the bacterial 

membrane and allow the cytoplasmically accumulated endolysins access to the highly 

cross-linked peptidoglycan (Wang, Smith et al. 2000). Significantly, in the absence of 

holins or parental bacteriophage, exogenous addition of these purified endolysins can 

also lyse the peptidoglycan of susceptible Gram-positive organisms. Once the 

structural peptidoglycan is compromised, internal turgor pressure, measured at 20-50 

atmospheres for Gram-positive organisms (Arnoldi, Fritz et al. 2000), causes a rapid 

osmotic lysis of the bacterial membrane resulting in cell death. With few exceptions, 

this enzyme-mediated “lysis from without” phenomenon – a term which has been 

used to describe a variety of phenomena in which an extracellular agent destroys a 

bacterial cell envelope (Abedon 2011) – is restricted to Gram-positive species as the 

Gram-negative peptidoglycan is protected by an outer membrane that is not 
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permeable to an exogenous enzyme under normal conditions. Nonetheless, 

peptidoglycan hydrolases encoded by Gram-positive phage represent an attractive 

therapeutic option (Loessner 2005; Borysowski, Weber-Dabrowska et al. 2006; 

Donovan 2007; Hermoso, Garcia et al. 2007; Fischetti 2010). 

• Basic modular structure of endolysin 

Endolysins from Gram-positive infecting bacteriophage typically display a modular 

structure with one or more catalytic domains and a cell wall binding domain (Garcia, 

Garcia et al. 1988; Garcia, Garcia et al. 1990) depicted in Figure 1-3.  

 

Figure 1-3  Modular structure of endolysin  

(a) Basic architecture of endolysin (Fischetti 2008). (b) Crystal structure of Cpl-1 endolysin 

from phage Cp-1 (Hermoso, Monterroso et al. 2003). Note that the catalytic domain is in 

yellow, the linker region (L) that connects the catalytic domain to the cell wall binding 

domain (in magenta) is colored by dark gray.  
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For the catalytic domain, one of the best characterized endolysin activities is 

the cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase 

(Bateman and Rawlings 2003; Rigden, Jedrzejas et al. 2003) with active site residues 

that are conserved across many species and have been shown to be essential for 

activity by site-directed mutagenesis (Pritchard, Dong et al. 2004; Nelson, Schuch et 

al. 2006). Other catalytic domains exist and have been described in more detail by 

Nelson et al. (Nelson, Rodriguez et al. 2012). Meanwhile, bacteriophage derived 

endolysin also possess a cell-wall binding domain (CBD) that recognizes epitopes on 

the cell wall surface. These epitopes can be carbohydrates, teichoic acids, or peptide 

moieties of the peptidoglycan in a species- or even strain-specific manner 

(Schmelcher, Tchang et al. 2011). Frequently the CBD has been found to be required 

for ‘lysis from without’ activity of the endolysin as the catalytic domain alone has 

highly diminished activity against the host organism, presumably as a consequence of 

catalysis occurring after only random encounters between the catalytic domain and 

the sessile bond of the peptidoglycan, or the enzyme is completely inactive (Porter, 

Schuch et al. 2007). In contrast, however, there are other reports where deleting the 

CBD does not affect the lytic activity (Low, Yang et al. 2005) or even results in 

increased lysis from without (Cheng and Fischetti 2007; Horgan, O'Flynn et al. 2009; 

Gerova, Halgasova et al.). In addition to a catalytic domain and a CBD, Gram-

positive phage endolysins often have a flexible linker sequence of 10-20 amino acids 

that connect two globular (catalytic and cell wall binding) domains. However, little 

information is known about the function of this linker region. 
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In contrast to Gram-positive bacteria, the Gram-negative peptidoglycan is 

contained within the periplasmic space between the inner and outer bacterial 

membranes. It is relatively thin (5-10 layers) compared to the Gram-positive 

peptidoglycan (up to 40 layers) and lysis “from within” is via a holin and endolysin 

during the phage lytic cycle. Accordingly, endolysins from phages that infect Gram-

negative hosts are typically comprised of a single globular catalytic domain, which in 

most case supplies one of the two glycosidase activities. The catalytic domains do not 

appear to require any specific binding domain to recognize and digest the Gram-

negative peptidoglycan. 

The two notable exceptions include the Pseudomonas phage endolysins 

KZ144 and EL188, which harbor a distinct N-terminal cell wall binding domain in 

addition to a catalytic domain (Briers, Volckaert et al. 2007). Moreover, the binding 

domains alone were shown to be sufficient to directly bind to purified Pseudomonas 

aeruginosa cell walls (Briers, Schmelcher et al. 2009).  

Although the modular nature of phage endolysins was initially described in 

the early 1990’s (Diaz, Lopez et al. 1990; Garcia, Garcia et al. 1990; Diaz, Lopez et 

al. 1991; Croux, Ronda et al. 1993), it has not been until recently that exploiting the 

modular nature of endolysins has become a major biotechnological focus for the 

development of endolysin.  

• Cell wall architecture and catalytic activities of endolysins  

In order to preserve bacterial cell structural integrity, the peptidoglycan is an 

essential scaffold/polymer found on the outside of the cytoplasmic membrane of most 

bacteria. As its name implies, the main structural features of peptidoglycan are linear 
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glycan strands cross-linked by short peptide stems, which in turn are cross-linked 

either directly together or through a peptide “bridge” (Figure 1-4). The hetero-

polymer glycan strand is conserved in both Gram-positive and -negative bacteria and 

composed of alternating N-acetylmuramic acid (MurNAc) and N-acetylglucosamine 

(GlcNAc) residues coupled by β(1→4) linkages. The peptide stem is covalently 

attached to the glycan polymer by an amide bond between each MurNAc and an L-

alanine residue, which is the first amino acid of the "peptide" part. The rest of the 

peptide stem contains alternating L- and D-form amino acids that are conserved in 

Gram-negative organisms, but is diverse for Gram-positive ones. For many Gram-

positive organisms, the third residue of the stem peptide is L-lysine, which is cross-

linked to an opposing stem peptide on a separate glycan polymer through an 

interpeptide bridge, the composition of which varies between species. For instance, 

the interpeptide bridge of S. aureus is pentaglycine whereas di-alanine is present in S. 

pyogenes (depicted in Figure 1-4). In Gram-negative organisms and some genera of 

Gram-positive bacteria (i.e., Bacillus and Listeria), a meso-diaminopimelic acid 

(mDAP) residue is present at position number three of the stem peptide instead of L-

lysine. In these organisms, mDAP directly crosslinks to the terminal D-alanine of the 

opposite stem peptide (i.e. no interpeptide bridge). Whether an interpeptide bridge is 

present or not, the joining of opposing stem peptides gives rise to the three 

dimensional lattice that is a defining characteristic of the bacterial peptidoglycan.   
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Figure 1-4. Structure of the peptidoglycan and cleavage sites by the endolysins   

Glycosidase cleave the carbohydrate backbone. (A)  N-acetylglucosaminidase cleaves on the 

reducing side of GlcNAc. (B) Lysozymes or muramidases are N-acetylmuramidases that 

cleave on the reducing side of MurNAc. Another glycosidase-like enzyme that cleaves this 

same bond but does not require hydrolysis of water is the lytic transglycosylase. (C) The N-

acetylmuramoyl-L-alanine amidase cleaves the first amide bond between the peptide moiety 

(L-alanine) and the glycan moiety (MurNAc). (D) Numerous endopeptidase cleavage sites 

are present on the pepdidoglycan.  Note, X is the transpeptide bridge, the length and 

composition of which varies depending on species. (Shen 2012).  

Due to a moderately conserved overall structure of the PG, there are only a 

limited number of covalent bonds that are available for cleavage by endolysins. 

Generally, endolysins (as well as autolysins and exolysins) can be classified into three 

different groups depending on their cleavage specificity: those that cleave between 

two sugar residues (i.e., glycosidases and lytic transglycosylases), those that cleave 

between a sugar residue and an amino acid (i.e. N-acetylmuramoyl-L-alanine 

amidases), and those that cleave between two amino acids (i.e. endopeptidases), each 
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of which is summarized (Figure 1-4.) and select examples are presented in Table 1-

1. 

Table 1-1. Summary of in vitro studies with Gram-positive phage endolysins 
(Shen 2012). 

Endolysin          Target  Catalytic activities 
by homology 

  In vitro 
activity 

   
Reference 

λSa2  Streptococcus 
agalactiae 

Glycosidase + 
endopeptidase 

Activity on 
purified 
peptidoglycan 
as analyzed by 
mass spec 

(Pritchard, 
Dong et al. 
2007)  

Cpl-1  Streptococcus 
pneumoniae 

N-
acetylmuramidase 

5 log decrease 
of cfu in 30 sec 
with 100 µg 

(Garcia, 
Garcia et 
al. 1987)  

PAL Streptococcus 
pneumoniae 

N-acetylmuramoyl-
L-alanine amidase 

4 log decrease 
of cfu in 30 sec 
with 100 U/ml 

(Loeffler, 
Nelson et 
al. 2001) 

PlyGBS 
( B30) 

Streptococcus 
agalactiae 

N-
acetylmuramidase 
+ endopeptidase 

2 log decrease 
of cfu in 60 min 
with 40 U 

(Pritchard, 
Dong et al. 
2004; 
Cheng, 
Nelson et 
al. 2005)  

PlyC Streptococcus 
pyogenes 

N-acetylmuramoyl-
L-alanine amidase 

7 log decrease 
of cfu in 5 sec 
with 10 ng 

(Nelson, 
Loomis et 
al. 2001)  

Ply700 Streptococcus 
uberis 

N-acetylmuramoyl-
L-alanine amidase 

0.5 log decrease 
of cfu in milk in 
15 min with 50 
µg/ml 

(Celia, 
Nelson et 
al. 2008) 

PlyG Bacillus 
anthracis/cereu
s 

N-acetylmuramoyl-
L-alanine amidase 

6 log decrease 
of cfu in 15 min 
with 20 U 

(Schuch, 
Nelson et 
al. 2002) 

PlyB Bacillus cereus N-
acetylmuramidase 

OD600 decrease 
from 0.45 to 
0.05 with 2.5 
µM.  PlyG also 
had similar 
results 

(Porter, 
Schuch et 
al. 2007) 

Φ11 Staphylococcus 
aureus 

N-acetylmuramoyl-
L-alanine amidase 
+ endopeptidase 

OD600 decrease 
from 0.3 to 0.15 
in 20 minutes 
with 20 µg/ml 

(Navarre, 
Ton-That 
et al. 1999)  
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LysK Staphylococcus 
aureus 

N-acetylmuramoyl-
L-alanine 
amidases + 
endopeptidase 

3 log decrease 
of cfu in 1 hour 
with crude 
lysate 

(O'Flaherty
, Coffey et 
al. 2005) 

ClyS Staphylococcus 
aureus 

N-acetylmuramoyl-
L-alanine amidase 

3 log decrease 
of cfu in 30 min 
with 250 µg 

(Daniel, 
Euler et al. 
2010) 

Ply511 Listeria 
monocytogenes 

N-acetylmuramoyl-
L-alanine amidase 

OD600 decrease 
from 1.6 to 0.25 
in 20 minutes 
with 180 U/ml 

(Gaeng, 
Scherer et 
al. 2000) 

PlyPSA Listeria 
monocytogenes 

N-acetylmuramoyl-
L-alanine amidase 

OD600 decrease 
from 1.0 to 0.2 
in 10 min with 
2.8 nmol 

(Korndorfe
r, Danzer 
et al. 2006)  

Ply500  Listeria 
monocytogenes 

L-alanyl-D-
glutamate 
endopeptidase 

OD600 decrease 
from 1.0 to 0.2 
in 1 min at 4.8 
µg/ml or 3 min 
at 1.6 µg/ml 

(Schmelch
er, Tchang 
et al. 2011) 

Ply118 Listeria 
monocytogenes 

L-alanyl-D-
glutamate 
endopeptidase 

OD600 decrease 
from 1.6 to 0.5 
in 20 minutes 
with 60 U/ml 

(Gaeng, 
Scherer et 
al. 2000) 

 

• Summary of in vitro studies of endolysin 

Upon direct contact with Gram-positive bacteria, endolysin actively digests 

the cell wall peptidoglycan that results in bacterial cell osmotic lysis (Figure 1-5). 

During the past decades, numerous citations have reported in vitro activity (i.e. lysis 

from without) of endolysins against Gram-positive pathogens. The "substrate" for 

these enzymes is complex (often the three dimensional superstructure of the 

peptidoglycan as well as secondary binding sites for the CBDs). Thus, synthetic small 

molecular weight chromogenic or fluorogenic compound are rarely adequate as 

substrates for these enzymes.  Instead, isolated cell walls or even whole cells remain 

the substrates of choice. As such, the most common assay involves the use of a 
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spectrophotometer to measure the loss of turbidity of a suspension of live cells due to 

lysis from without (i.e. drop of OD600nm per unit time).  This method has been used to 

describe a “unit” of enzyme activity based on the dilution of an endolysin solution 

needed to reduce the optical density by half in a defined amount of time (Fischetti, 

Gotschlich et al. 1971; Loeffler, Nelson et al. 2001).  While approaches that rely on 

turbidometric analysis are simplistic and easy to use, they are an indirect measure of 

lysis (and cell death) and subject to numerous biological factors. First, the phase of 

growth affects the thickness of the peptidoglycan, which in turn can affect the 

apparent rate of lysis. An enzyme tested on mid-log cells may have several orders of 

magnitude greater activity than the same enzyme assayed on stationary phase cells. 

Likewise, the turgor pressure of the cell is important as is the osmolarity of the 

solution. Similarly, cells in media lyse much more slowly than cells resuspended in 

distilled water. 

Also, as cells lyse, they release DNA and other cellular components, causing 

the viscosity of the reaction tube to rise, altering condition for further lysis less 

efficient. Finally, because endolysins are often species specific, it is difficult to 

compare the activity of one enzyme against another when the substrate is a different 

bacterial species. Despite these caveats, Mitchell and colleagues have developed a 

mathematical approach to estimate kinetic constants based on a turbidometric 

reduction assay (Mitchell, Nelson et al. 2010).   
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Figure 1-5. Electron micrograph of bacteria treated by the endolysins  

(a) Bacillus anthracis is treated with PlyG endolysin (Schuch, Nelson et al. 2002). (b) 

Staphylococcus aureus is treated with ClyS endolysin (Daniel, Euler et al. 2010). (c) 

Streptococcus pneumoniae is treated with PAL endolysin (Loeffler, Nelson et al. 2001). (d) 

Streptococcus pyogenes is treated with PlyC endolysin (Nelson, Loomis et al. 2001). Note 

that in each image, the endolysin is weakened the cell wall causing the cytoplasmic 

membrane to externalize. Total magnification is x50,000, scale bar is 0.5 μm. 

Another common type of in vitro endolysin assay is based on colony counts 

whereby a known amount of bacteria is exposed to an endolysin for a given amount 

of time, serially diluted, and then plated on growth media. Activity is then reported as 
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a log-fold decrease in colony forming units (cfu) over a defined interval. While this 

method is often used to quantify cell death, the high affinity of the CBDs for the 

bacterial surface can allow for a situation where the reported activity (i.e. rate of cell 

death) is overestimated. For example, an endolysin may bind the bacterial surface via 

the CBD in seconds, but catalytic lysis may not immediately occur. If the endolysin 

remains bound during the serial dilution step, actual lysis and cell death may take 

place on the agar plate at a later time point. As such, reported activity especially for 

short incubations times can be overestimated.  

Table 1-1 contains a list of in vitro results for many endolysins that produce 

lysis from without on Gram-positive organisms. This list is not intended to be 

comprehensive.  Instead, its purpose is to provide activity data for many of the 

endolysins mentioned in this chapter including in terms of the diversity of activity 

displayed by these enzymes in different assays. A thorough inspection of this table 

will reveal something already obvious to those in the field, namely that not all 

endolysins are created equal. Some kill/lyse very efficiently in seconds at microgram 

or even nanogram quantities whereas others need much higher doses and longer 

incubation times to show any lytic activity.   

• Summary of in vivo studies of endolysin 

Although endolysins have been studied extensively for their role in the 

bacteriophage replication cycle for over half a century, particularly the T-even phage 

that infect Gram-negative hosts. It has only been in the past twenty years that 

scientists have begun evaluating the use of endolysins in animal infection models of 
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human disease. Table 1-2 shows a complete list to date of all reported in vivo 

therapeutic trials that utilize endolysins which are further summarized below. 

Table 1-2.  Summary of in vivo studies with endolysins, adapted from (Shen 2012) 

Bacteria Endolysin Reference 
Streptococcus pyogenes C1* (Nelson, Loomis et al. 2001) 
Streptococcus agalactiae PlyGBS (Cheng, Nelson et al. 2005) 
Bacillus anthracis PlyG (Schuch, Nelson et al. 2002) 
  PlyPH (Yoong, Schuch et al. 2006) 
Streptococcus pneumoniae Cpl-1 (Loeffler, Nelson et al. 2001) 
  Cpl-1 (Loeffler, Djurkovic et al. 2003) 
  Cpl-1 (Loeffler and Fischetti 2003) 
  Cpl-1 (Jado, Lopez et al. 2003) 
  Cpl-1 (Entenza, Loeffler et al. 2005) 
  Cpl-1 (McCullers, Karlstrom et al. 2007) 
  Cpl-1 (Grandgirard, Loeffler et al. 2008) 
 Cpl-1 (Witzenrath, Schmeck et al. 2009) 
 PAL (Loeffler and Fischetti 2003) 
  PAL (Jado, Lopez et al. 2003) 
Staphylococcus aureus MV-L (Rashel, Uchiyama et al. 2007) 
  CHAPk (Fenton, Casey et al. 2010) 
 LysGH15 (Gu, Xu et al. 2011)  
 ClyS** (Daniel, Euler et al. 2010)  
  P-27/HP (Gupta and Prasad 2011) 
 ClyS** (Pastagia, Euler et al. 2011) 
 Chimeras (Schmelcher, Powell et al. 2012) 
 PlySs2 (Gilmer, Schmitz et al. 2013) 
*Renamed PlyC according to (Nelson, Schuch et al. 2006)     
**Chimeric construct from the bacteriophage Twort and ΦNM3 endolysins 

Fischetti and co-workers were the first to use a purified endolysin 

therapeutically in an in vivo model of streptococcal infection (Nelson, Loomis et al. 

2001). It was found that oral administration of an endolysin (250 U) from the 

streptococcal C1 bacteriophage, named PlyC in a subsequent publication (Nelson, 

Schuch et al. 2006), provided protection from colonization in mice challenged with 

107 GAS. Furthermore, when 500 U of this enzyme was administered orally to 9 

heavily colonized mice, no detectable streptococci were observed 2 hours post-
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endolysin treatment and only one mouse had any measurable streptococcal counts 24 

and 48 hours later. 

PlyGBS, which is 97% identical to B30 endolysin (Pritchard, Dong et al. 

2004), is another phage endolysin that is active against  GAS as well as groups B, C, 

G, and L streptococci. This enzyme was tested in a murine vaginal model of 

Streptococcus agalactiae (i.e. group B streptococci) colonization to see if PlyGBS 

could be a potential therapeutic for pregnant women to prevent transmission of 

neonatal meningitis-causing streptococci to newborns (Cheng, Nelson et al. 2005). A 

single vaginal dose of 10 U was shown to decrease colonization of pathogenic group 

B streptococci by ~3 logs. Significantly, PlyGBS was found to have a pH optimum 

~5.0, which is similar to the range normally found within the human vaginal tract.  

Furthermore, this enzyme did not possess bacteriolytic activity against common 

vaginal microflora such as Lactobacillus acidophilus, suggesting a pathogen-specific 

therapeutic that, unlike broad range antibiotics, would likely reduce the concern of 

resistance development in exposed commensal bacteria. 

Several phage endolysins have also been used against germinating spores and 

vegetative cells of Bacillus species. 50 U of PlyG, an endolysin isolated from the B. 

anthracis γ phage, was shown to rescue 13 out of 19 mice in an intraperitoneal mouse 

model of septicemia and extended the life of the remaining mice several fold over 

controls (Schuch, Nelson et al. 2002). Notably, this enzyme displayed a favorable 

temperature profile and was able to remain fully active after heating to 60°C for an 

hour. Moreover, the extreme lytic specificity of this enzyme toward B. anthracis and 

not other Bacillus species was exploited for diagnostic purposes in a luminescent-
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based ATP assay of B. anthracis cell lysis. A second Bacillus endolysin, PlyPH, also 

active against B. anthracis, is unique in that it has high activity over a broad pH 

range, from pH 4.0 to 10.5. This enzyme also protected 40% of mice in an 

intraperitoneal Bacillus infection model compared to 100% death in control mice 

(Yoong, Schuch et al. 2006). Taken together, the robust and specific properties of the 

Bacillus endolysins make them amenable to therapeutic treatment and diagnostics of 

B. anthracis. 

 The most extensively studied endolysins in animal models are Cpl-1, an N-

acetylmuramidase from the Cp-1 pneumococcal phage, and PAL, an N-

acetylmuramoyl-L-alanine amidase from the Dp-1 pneumococcal phage. 100 U/ml 

PAL was shown to need only 30 seconds to cause an ~4 log drop in viability of 15 

different S. pneumoniae serotypes representing multi-drug resistant isolates as well as 

those that contain a thick polysaccharide capsule (Loeffler, Nelson et al. 2001). In a 

mouse model of nasopharyngeal carriage, 1,400 U of PAL was shown to eliminate all 

pneumococci. In another study, Cpl-1 was shown to be effective in both a mucosal 

colonization model and in blood via a pneumococcal bacteremia model (Loeffler, 

Djurkovic et al. 2003). Because the catalytic domains of PAL and Cpl-1 hydrolyze 

different bonds in the pneumococcal peptidoglycan, these two enzymes were shown 

to be synergistic in a mouse intraperitoneal infection model (Jado, Lopez et al. 2003). 

(See the next section for more information about synergy) In a study on the 

effectiveness of endolysins against in vivo biofilms, Cpl-1 was shown to work on 

established pneumococcal biofilms in a rat endocarditis model (Entenza, Loeffler et 

al. 2005). Infusion of 250 mg/kg was able to sterilize 105 cfu/ml pneumococci in 
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blood within 30 minutes and reduce bacterial titers on heart valve vegetations by >4 

log cfu/g in 2 hours. In an infant rat model of pneumococcal meningitis, an 

intracisternal injection (20 mg/kg) of Cpl-1 resulted in a 3 log decrease of 

pneumococci in the cerebrospinal fluid and an intraperitoneal injection led to a 

decrease of 2 orders of magnitude (Grandgirard, Loeffler et al. 2008). Additionally, 

Cp-1 was shown to save 100% of mice from fatal pneumonia when administered 24 

hours after infection and 42% of mice when administered 48 hours after infection, a 

time point at which bacteremia was fully established (Witzenrath, Schmeck et al. 

2009). Finally, Cpl-1 treatment of mice colonized with S. pneumoniae in an otitis 

media model was shown to significantly reduce co-colonization by challenge with 

influenza virus (McCullers, Karlstrom et al. 2007). Given that pneumococci are early 

colonizers to which additional pathogens and viruses might adhere, eliminating this 

population could have a multiplier effect on controlling infectious diseases. 

The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) as a 

primary source of nosocomial infection and community-acquired MRSA as an 

emerging public health threat has generated a considerable amount of interest in 

identifying and evaluating highly active staphylococcal endolysins. The first 

staphylococcal-specific endolysin investigated in vivo was MV-L, which was cloned 

from the ΦMR11 bacteriophage (Rashel, Uchiyama et al. 2007). This enzyme rapidly 

lysed all tested staphylococcal strains in vitro, including MRSA and vancomycin-

intermediate/resistant clones. In vivo, this enzyme reduced MRSA nasal colonization 

~3 logs and provided complete protection in an intraperitoneal model of 

staphylococcal infection when administered 30 minutes post-infection. At 60 minutes 
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post-infection, the same amount of MV-L provided protection in 60% of mice vs. 

controls. More recently, an endolysin from the GH15 phage, LysGH15, showed 

100% protection in a mouse intraperitoneal model of septicemia (Gu, Xu et al. 2011). 

Likewise, CHAPk, a truncated version of the endolysin LysK, effected a 2 log drop in 

nasal colonization of mice when given 1 hour post challenge (Fenton, Casey et al. 

2010). Lastly, ClyS is the first engineered endolysin to be tested in an animal model 

(Daniel, Euler et al. 2010). This enzyme is a chimera between the N-terminal catalytic 

domain of the Twort phage endolysin (Loessner, Gaeng et al. 1998) and the C-

terminal cell wall-binding domain of the ΦNM3 phage endolysin. Like MV-L, ClyS 

displayed potent bacteriolytic properties against multi-drug resistant staphylococci in 

vitro. In a mouse MRSA decolonization model, 2-log reductions in viability were 

observed 1 hour following a single treatment of 960 μg of ClyS.  Similarly, a single 

dose (1 mg) of ClyS provided protection when administered 3 hours post-

staphylococcal challenge in an intraperitoneal septicemia model. Additionally, ClyS 

was shown to be effective and synergistic with oxacillin when treating topical 

infections of S. aureus (Pastagia, Euler et al. 2011).   

• Synergy studies 

Studies have shown that some endolysins can synergistically work with other 

endolysins or with some antibiotics both in vitro and in vivo. Synergy studies 

typically use a checkerboard broth microdilution method that allows for the 

concurrent determination of the minimal inhibitory concentration (MIC) of each 

(endolysin or antibiotic).The fractional MIC values of each agent are then put on an 

X/Y plot, which is called an isobologram. A linear relationship corresponds to an 
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“additive” effect. For example, if 0.5 MIC of agent A + 0.5 MIC of agent B displays 

the same efficacy as 1.0 MIC of either agent A or B, the two agents are additive. 

However, if the relationship has an inverse, non-linear curve, the effect is said to be 

“synergistic” (i.e., if 0.25 MIC each of agents A and B were equal to 1.0 MIC of 

either agent alone). 

Using this method, the pneumococcal Cpl-1 endolysin, a muramidase, was 

shown to be synergistic with the PAL, an L-alanine amidase, and the bacteremic titer 

was reduced to a greater extent than by either endolysin alone (Jado, Lopez et al. 

2003; Loeffler and Fischetti 2003). Since these enzymes hydrolyze different bonds, 

synergy is believed to be due to a greater destabilization of the three-dimensional 

peptidoglycan matrix. Cpl-1 was also found to be synergistic with penicillin as well 

as gentamicin (Djurkovic, Loeffler et al. 2005). In a similar fashion, the 

staphylococcal endolysin LysH5 was found to be synergistic with nisin, an 

antimicrobial peptide (Garcia, Martinez et al. 2010), and LysK was shown to be 

synergistic with lysostaphin, a staphylococcal exolysin in another recent in vitro study 

(Becker, Foster-Frey et al. 2008). Finally, ClyS, a fusion endolysin described above, 

was shown to be synergistic with oxacillin and vancomycin in vitro and with oxacillin 

in vivo in a mouse model of S. aureus septicemia (Daniel, Euler et al. 2010). The 

approach of combining lysins with antibiotics generally gives rise to increased 

antibacterial efficacy. 

• Immunogenicity 

As endolysins are globular proteins, they would be expected to elicit 

antibodies which may render them inactive and could hinder their therapeutic 
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development when administrated systemically. Toward this end, two decisive papers 

use in vivo models to address this issue. The first study from Loeffler and colleagues 

showed that intravenous injection of Cpl-1, a pneumococcal endolysin, into mice 

three times a week for four weeks resulted in positive IgG antibodies against the 

endolysin in 5 out of 6 mice (Loeffler, Djurkovic et al. 2003). Next, these 

“immunized” mice and naïve control mice were challenged with intravenous 

pneumococci followed by a 200 µg dose of Cpl-1 10 hours post challenge. 

Surprisingly, pneumococcal titers were reduced to the same level in both groups of 

mice at 15 minutes. In vivo analysis showed that in five out of six cases, mice that 

received three intravenous doses of Cpl-1 tested positive for immunoglobulin G (IgG) 

against the enzyme but this only had a moderate inhibitory effect on activity. 

Moreover, when rabbit hyperimmune serum was raised against the pneumococcal 

endolysin Cpl-1, it was found that lytic activity in vitro was slowed but not blocked. 

Similar in vitro results were seen with B. anthracis and S. pyogenes endolysins 

summarized in (Fischetti 2005). 

In the second study, Jado and colleagues challenged mice with pneumococci 

followed by treatment with either of the pneumococcal endolysins, Cpl-1 or PAL 

(Jado, Lopez et al. 2003). Ten days later they confirmed the recovered mice had high 

IgG antibody titers to both enzymes, re-challenged the mice with pneumococci, and 

retreated with the endolysin. Significantly, pneumococcal titers fell 2-3 logs upon 

administration of the enzymes and all mice survived with no signs of anaphylaxis or 

adverse side events. These studies suggest that while antibodies can readily be raised 

to endolysins due to their proteinaceous nature, the antibodies do not effectively 
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neutralize the bacteriolytic actions of these enzymes in vitro or in vivo. Another 

potential use of endolysins can also be envisioned to apply topically, to mucous 

membranes (oral, nasal, or vaginal cavities) in order to minimize the effects of 

immune response .  

• Resistance development 

Resistance development is another obvious concern about the therapeutic use 

of endolysins. To date, there are no reports of strains sensitive to an endolysin 

developing resistance to the same endolysin. However, in fact, there have been a few 

reports where researchers have actively tried, but failed, to develop resistance to 

endolysins. In one study, S. pneumonia, S. pyogenes, and B. anthracis were exposed 

to sublethal doses of Cpl-1, PlyC, and PlyG, respectively summarized in (Fischetti 

2005). Surviving colonies were grown and once again exposed to sublethal doses of 

the corresponding endolysin. In some cases, over 100 rounds of screening took place. 

At different cycles, surviving colonies were tested with lethal doses and resistance 

was never observed.   

In a separate study, resistance to an endolysin was investigated more formally 

(Schuch, Nelson et al. 2002). Here, Bacillus species were screened for spontaneous 

resistance to PlyG, a Bacillus-specific endolysin, as well as two antibiotics, 

streptomycin and novobiocin. Resistant colonies were readily isolated for both 

antibiotics at a frequency of ~1 × 10-9, but no resistance was found for PlyG at the 

same screening frequency. Next, bacilli were exposed to a chemical mutagen known 

to induce random mutations and the screening was repeated. This time, spontaneous 

resistance to the antibiotics occurred at frequencies of ~1 × 10-6 but no resistance was 
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observed for PlyG (0.5-50 U) even at a frequency >5 × 10-9. Therefore, even under 

conditions that promote spontaneous resistance to antibiotics by ~3 logs, no resistance 

could be detected for this endolysin. 

An explanation for the lack of observed resistance to endolysins has been put 

forth by Fischetti (Fischetti 2005). In brief, he postulates that phage and their 

bacterial hosts have co-evolved over the millennia such that phages have evolved to 

target conserved bonds in the peptidoglycan in order to guarantee survival of the 

progeny phage. As such, resistance, if present, would be a rare event. Nonetheless, 

resistance to these enzymes will always be a real concern. Most famously, resistance 

has been well documented for lysostaphin, an exolysin secreted by Staphylococcus 

simulans (Thumm and Gotz 1997). While this enzyme is not a phage endolysin, it is a 

peptidoglycan hydrolase with a similar catalytic and binding domain to many known 

phage endolysins (Schindler and Schuhardt 1964). 

A unique streptococcal endolysin: PlyC 

Endolysins from bacteriophage that infect Gram-positive bacteria are 

generally between 25–40 kDa in size, composed of two or more domains, and are the 

product of a single coding gene (Fischetti 2008). The notable exception is an 

endolysin from the streptococcal bacteriophage C1, termed PlyC, which is uniquely 

composed of two separate gene products, PlyCA and PlyCB (Figure 1-6a). Further 

biochemical and biophysical characterization of this enzyme uncovered that the PlyC 

holoenzyme (114 kDa) contains one PlyCA subunit and eight identical PlyCB 

subunits (Figure 1-6b and e). A putative cysteine, hisidine-dependent 
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amidohydrolase/peptidase (CHAP) domain within PlyCA was confirmed to contain 

 

Figure 1-6. Biochemical characterization of the PlyC endolysin  

(a) Gene structure of plyC gene. (b) SDS/PAGE of PlyC shows the presence of the 50-kDa 

PlyCA and 8-kDa PlyCB subunits. However, cross-linking of PlyC by BS3 shows a strong 

band at around ~120 kDa (arrow), suggesting that PlyC is a multimeric endolysin. (c) 

Putative active-site mutants of PlyCA (C333S and H420A) displays no lytic activity, whereas 

non-active-site mutants (C268S, C345S, and C404S) shows near wild-type activity. (d) 

PlyCB labeled with Alexa Fluor 488 specifically labels S. pyogenes. Total magnification is 

1000X. (e) Extinction-coefficient analysis for two stoichiometric  models of PlyC. Images are 

adapted from (Nelson, Schuch et al. 2006). 

the catalytic activity and point mutagenesis established Cys-333 and His-420 as the 

active-site residues (Figure 1-6c). Furthermore, PlyCB was found to self-assemble 

into an octamer. This complex alone was able to direct streptococcal cell-wall-

specific binding (Figure 1-6d). Finally, extinction-coefficient analysis suggested that 
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the stoichiometry of the 8 PlyCB:1 PlyCA model does fit the linear regression of the 

standard proteins (Nelson, Schuch et al. 2006).  

The therapeutic potential of this lytic enzyme was also described in vitro 

(Figure 1-7a) and in an in vivo model of upper respiratory streptococcal colonization 

(Nelson, Loomis et al. 2001). This study showed that 1,000 units (~10 ng) of enzyme 

is sufficient to sterilize a culture of 107 group A streptococci within 5 seconds. 5 ng of 

PlyC was given orally to 9 heavily colonized mice (107 per mouse), no detectable 

streptococci were observed 2 h after endolysin treatment (Figure 1-7b), suggesting 

that this approach could be used to either eliminate or reduce streptococci from the 

upper respiratory mucosal epithelium of either carriers or infected individuals, thus 

reducing group A streptococci associated disease. 

 

Figure 1-7. In vitro and in vivo efficacy of PlyC against GAS 

 (a) a thin-section electron micrograph of GAS treated for 15 seconds with PlyC. The cell 

wall is weakened, allowing the membrane to subsequently extrude through the hole. 50,000X. 

(b) Mouse colonization by GAS treated with PlyC (1000 units) or buffer. Images are adapted 

from (Nelson, Loomis et al. 2001). 
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Last year, the crystal structure of PlyC was solved (McGowan, Buckle et al. 

2012), which confirmed the 8PlyCB:1PlyCA stoichiometry of the holoenzyme 

(Figure 1-8). Surprisingly, the structural and biochemical studies identified two 

distinct catalytic domains in PlyCA: The aforementioned C-terminal CHAP domain 

as well as an N-terminal glycosidase (GyH) domain, both of which contribute to cell 

lysis. Synergy or cooperation between the CHAP and GyH domains may, in part, 

explain the extreme lytic activity displayed by PlyC compared with traditional 

endolysins. Another unique feature of PlyC that stands out in comparison with other 

endolysins (with a single CBD domains) is the presence of the octameric cell wall 

binding subunit, PlyCB, which forms a symmetrical ring. Structure-guided 

mutagenesis revealed several key residues contributing to 8 identical binding grooves 

in the outer aspect of the PlyCB octameric ring (McGowan, Buckle et al. 2012). In 

summary, this novel structure might explain why PlyC is at least 1,000x more active 

than any other known endolysin. 

Most recently, we successfully demonstrated that PlyC retained its 

bacteriolytic properties against group A streptococcal biofilm bacteria, destroying the 

biofilm in a layer by layer process (Shen, Koller et al. 2013). Taken together, the 

significant amount of information known about this unique endolysin, encouraged me 

to exploit the feasibility of engineering PlyC to target and control intracellular 

streptococci that are usually associated with refractory streptococcal infection.  
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Figure 1-8. Crystal structure of PlyC 

(a) The 3.3-Å X-ray crystal structure of PlyC whereby PlyCB monomers are colored 

alternately in magenta/cyan and labeled monomers A–H. The PlyCA molecule is colored by 

domain as indicated. The model show the N-terminal residues 1–205 in light blue, the linker 

1 (residues 206–227) in red, the helical structure (residues 226–288) that docks PlyCA to 

PlyCB in yellow, the second disordered linker 2 (residues 289–308) in a dashed red line, and 

the CHAP domain (residues 309–465) in green. Regions of disordered/absent density are 

depicted by dashed lines. (b) The PlyCB CBD alone colored alternately in magenta/cyan and 

labeled A–H. (McGowan, Buckle et al. 2012). 
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Chapter 2:  Identification of intracellular bacteriolytic 
activity of PlyC against internalized GAS 
 

Background 

Failure of antibiotic treatment to eradicate GAS 

Traditional antibiotic treatment has been demonstrated to be unable to 

eradicate group A streptococci in up to 30% of patients with pharyngotonsillitis 

(Neeman, Keller et al. 1998). Several hypotheses have been proposed to explain the 

treatment failure, such as coexistence of oropharyngeal beta-lactamase-producing 

bacteria, interference by aerobic and anaerobic commensals, and penicillin tolerance 

by biofilm formation (Ellen and Gibbons 1972; Beachey and Simpson 1982; 

Goodfellow, Hibble et al. 2000; Lembke, Podbielski et al. 2006; Ogawa, Terao et al. 

2011). Yet at present, more studies support the hypothesis that adoption of an 

intracellular niche may protect group A streptococcus from antibiotic treatment. 

Adherence to and internalization into host cells not only significantly contribute to the 

pathogenesis of group A streptococcal infections, but also cause eradication failure 

and persistent throat carriage. Given the fact that traditional antibiotics are unable to 

penetrate the host cell membrane (Darouiche and Hamill 1994; Thulin, Johansson et 

al. 2006), internalized GAS can repopulate on the mucosal surface after antibiotic 

prophylaxis. Therefore, there is growing interest to develop a novel antimicrobial that 

can target intracellular streptococci responsible for persistence. 
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Intracellular delivery of endolysin by fusing a cell-penetrating peptide 

Intracellular delivery using cell-penetrating peptides (CPPs; also known as 

protein transduction domains) has been recognized as a novel method of efficiently 

introducing exogenous proteins into eukaryotic cells. These CPPs are a group of 

small cationic peptides that have a remarkable ability to drive proteins and cargos 

across the membrane by direct diffusion or fluid phase endocytosis (Fonseca, Pereira 

et al. 2009).  The presence of cationic residues, such as lysine and arginine, are the 

key elements that mediate binding and interact by forming bidentate hydrogen bonds 

with sulfate, phosphate or carboxylate anions on the plasma membrane (Rothbard, 

Jessop et al. 2004). One of the most well-characterized cell-penetrating peptides, 

termed 'TAT', is a transduction domain derived from the HIV Tat (transactivator of 

transcription) protein. This short peptide, with an amino acid sequence of 

RKKRRQRRR, can be genetically fused to various nanoparticulate pharmaceutical 

carriers, such as proteins, liposomes, nanoparticles, and then transport those 

macromolecular cargoes into cells in vitro and in vivo (Wadia, Stan et al. 2004; Gump 

and Dowdy 2007; Torchilin 2008). Although bacteriophage-encoded endolysins have 

shown their therapeutic potential against bacteria pathogens in vitro and in vivo 

(Loeffler, Nelson et al. 2001; Cheng, Nelson et al. 2005; Celia, Nelson et al. 2008). 

No efforts have been reported to test or engineer these endolysins to target pathogens 

in intracellular niches. Therefore, the hypothesis we wanted to test is that whether or 

not TAT fusions to endolysins can facilitate the intracellular delivery and subsequent 

elimination of internalized GAS. 
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Results 

Establishment of a GAS/human epithelial cell co-culture model and 

validation of internalized GAS 

In order to determine the intracellular bacteriolytic efficacy of TAT-labeled 

and wild-type endolysins against internalized GAS, we first established a 

GAS/human epithelial cell co-culture assay (Figure 2-1a) to evaluate the rate of GAS 

adherence and invasion. In this model, epithelial cells were grown to 80% confluent 

monolayers in 24-well tissue culture plates (approximately 2 x 105 cells/well). 

Overnight pathogenic GAS strain D471 was washed in sterile phosphate-buffered 

saline (PBS), resuspended in serum-free media, and the concentration was adjusted to 

~2 x 107 colony forming units (CFU) and incubated with epithelial cells at a 

multiplicity of infection (MOI) = 100 bacterial cells/ one epithelial cell for 1 hour. 

Then, the epithelial cells were lysed and lysis solution was serially diluted and plated 

on THY agar plates for enumeration of viable CFUs (for details, see method section  

See J). As depicted in Figure 2-1b, both A549 and Hep-2 cell lines showed similar 

percentage of adhered (~3% for Hep-2, 8% for A549) and internalized (0.01% for 

Hep-2, 0.08% for A549) GAS compared to the initial inoculums of bacteria. These 

results are consistent with previous reports from other groups (Jadoun, Ozeri et al. 

1998; Ryan, Pancholi et al. 2001). Furthermore, the adherent and internalized GAS 

(stained by fluorescence-labeled wheat germ agglutinin) were visualized and 

validated in a z-stack analysis by confocal microscopy (Figure 2-1c). 
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Figure 2-1. Schematic illustration, CFU count and confocal microsocopy of co-culture 

assay 

(a) Schematic flow chart illustrating the co-culture model. (b) Determination of rate of 

adherent  and internalized GAS colonies in the co-culture model with A549 cells (light gray 

bars) or Hep-2 cells (dark gray bars). (c) Visulization of adherent and internalized GAS into 

Hep-2 cells by confocal microsocpy. Nucleus (blue) is highlighted by DAPI staining, GAS 

(green) is pre-stained with wheat germ agglutinin-Alexa Fluor 488 conjugates. Note that the 

interval between each slice is 2 μm, in a total of 6 μms in the Z-axis.  Z3 is the closest focal 

plane to coverslip. Scale bar is 20 μm. 

Wild-type PlyC possesses an inherent activity against internalized GAS 

Next, three recombinant TAT-labeled streptococcal specific endolysins B30 

(Donovan, Foster-Frey et al. 2006), Ply700 (Celia, Nelson et al. 2008) and PlyC were 

constructed by using a Quick-change Site-Directed Mutagenesis Kit, over-expressed 

in E.coli, purified by the method previously described (Donovan, Foster-Frey et al. 

2006; Nelson, Schuch et al. 2006; Celia, Nelson et al. 2008). Wild-type and TAT-

labeled endolysins displayed similar in vitro bacteriolytic activity by the turbidity 

reduction assay (data not shown). The intracellular bacteriolytic activity was then 

evaluated in the co-culture model as previously described (Figure 2-1a). Neither 

wild-type or TAT-labeled Ply700 or B30 showed any efficacy against internalized 

GAS (Figure 2-2). In contrast, TAT-labeled PlyC possessed an ability to eliminate 

intracellular GAS. Much to our surprise, wild-type PlyC contained the same 

intracellular killing activity as TAT-labeled PlyC. Thus, the rest of this dissertation is 

focused on elucidating how wild-type PlyC is able to translocate the plasma 

membrane and kill intracellular streptococci when other endolysins cannot.   
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Figure 2-2. CFU count of recovered internalized GAS post-endolysin treatment  

The co-culture was first treated with 10 μg/ml penicillin and 200 μg/ml gentamicin for 1 

hour, the antibiotic was then removed and incubated with growth medium in the presence of 

wild-type or TAT-labeled endolysin (50 μg/ml) for another hour before lysis and enumerate 

recovered GAS colonies.  

Intracellular bacteriolytic activity of PlyC is dose-dependent and relies on 

its enzymatic activity 

To investigate whether PlyC killing of internalized GAS is dose-dependent, 

various concentrations of PlyC were added to the co-culture as previously described 

(Figure 2-1a). Figure 2-3 illustrates a dose-dependent response with half of the 

internalized streptococci killed by as little as 0.08 μg/ml of PlyC, 90% eliminated 
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with 10 μg/ml and 2 logs of killing with 50 μg/ml. In addition, heat-denaturing PlyC 

prior to addition to the co-culture completely abolished PlyC's intracellular activity, 

suggesting that this intracellular killing phenomenon requires PlyC enzymatic 

activity. 

 

Figure 2-3. Intracellular killing activity of PlyC is dose-dependent  

The co-culture was first treated with 10 μg/ml penicillin and 200 μg/ml gentamicin for 1 

hour, afterwhich the antibiotic was then removed and the co-culture wasincubated with 

growth medium in the presence of various concentration of PlyC for another hour before lysis 

and enumeration of recovered GAS colonies. The denatured PlyC was performed by heating 

the PlyC in medium at 70ºC for 30 min before the experiment. 
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Fate of internalized GAS and host epithelial cells with antibiotic or PlyC 

treatment for additional 24 hours 

Figure 2-1b demonstrated that ~ 1% of adherent GAS became internalized in 

epithelial cells. We therefore wanted to determine the fate not only of the intracellular 

GAS, but also of the infected epithelial cells under various treatments in the co-

culture system (Figure 2-4.) When antibiotics are removed from the co-culture and 

epithelial cells harboring intracellular GAS are incubated for an additional 24 hours, 

massive bacterial growth is visible in the growth medium, accompanied by significant 

epithelial cell death (99.4%) as determined by a trypan blue dye exclusion assay, 

suggesting that internalized GAS are able to repopulate the mucosa after antibiotic 

prophylaxis (Marouni and Sela 2004). When we repeat the same experiment but 

supplement with media in the presence of antibiotic (10 μg/ml penicillin and 200 

μg/ml gentamicin) during additional 24 hour incubation, no GAS can be detected in 

the supernatant (data not shown) and only 4.7 % of internalized GAS were recovered 

from host cells after lysis. However, a significant amount of epithelial cell death 

(88.5%) was observed, indicating that antibiotic prophylaxis does not protect 

epithelial cells from GAS-mediated autolysis and furthermore, intracellular GAS 

persist even in the presence of extracellular antibiotics. Alternatively, when the media 

was supplemented with 50 μg/ml PlyC for the 24 hour incubation, no intra- or 

extracellular GAS were recovered. Moreover, ~70% of the epithelial cells remained 

viable demonstrating that internalized GAS were completely eliminated by the PlyC 

endolysin.  
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Figure 2-4. Fate of internalized GAS and host epithelial cells with antibiotic or PlyC 

treatment for additional 24 hours  

The co-culture was first treated with 10 μg/ml penicillin and 200 μg/ml gentamicin for 1 

hour. The antibiotic were then removed and replaced with fresh growth medium ''Medium 

control'', or fresh medium supplemented with antibiotics ''Penicillin+Gentamicin'' for 

additional 24 hour incubation. For the PlyC group, the co-culture was first treated with PlyC 

50 μg/ml for 1 hour, the endolysin was then removed and supplemented with normal growth 

medium in the presence of 50 μg/ml PlyC for additional 24 hour incubation. The internalized 

GAS (dark gray bars) was plated onto THY agar plate after host cell lysis for numeration. 

The recovered host epithelial cells (light gray bars) were detached by trypsinization and then 

stained with Trypan Blue and counted by haemocytometer. 
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PlyC shows a similar efficacy against internalized GAS in a model of 

primary human tonsil epithelium 

We realize that our co-culture model relies on cancer epithelial cell lines, 

which does not represent a clinically relevant cell type. As such, we also tested PlyC 

in a co-culture model with human primary tonsil epithelial cells isolated and cultured 

(see material and method for details) at The Rockefeller University. Although we did 

not see any effect with a low concentration of PlyC (1 or 10 μg/ml), ~ 90% of 

internalized GAS were eliminated when treated with a higher concentration of PlyC 

(50 μg/ml) (Figure 2-5) . 

 

Figure 2-5. CFU count from co-culture model with human primary tonsil cells  

The co-culture was first treated with 10 μg/ml penicillin and 200 μg/ml gentamicin for 1 hour 

after which the antibiotic was removed and the cell were incubated in the presence of various 

concentration of PlyC for 1h before lysis and enumeration of GAS. 
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Confocal microscopy shows that fluorescently-labeled PlyC internalizes 

and co-localizes with intracellular GAS 

Endolysin are capable of killing only extracellular bacteria by digesting the 

cell wall upon contact, while their access to intracellular Gram-positive pathogens is 

restricted by the plasma membrane of the infected host epithelial cells. Previously, we 

have demonstrated that PlyC directs itself to the binding ligands on the bacterial cell 

wall with high affinity because of its cell wall binding domain. Thus, the decoration 

with fluorescently-labeled PlyC primarily occurs at the all over the surface of chain-

like streptococcal cell (Figure 1-6 d). To test our hypothesis that PlyC possesses an 

inherent ability to internalize and eliminate intracellular GAS, we employed confocal 

laser scanning microscopy to capture the event of fluorescence-labeled PlyC entering 

epithelial cells and co-localizing with intracellular GAS. As Figure 2-6 depicts in a 

single focal plane at peri-nucleus, fluorescence labeled PlyC (red) co-localizes with 

GAS bacteria (green) at a peri-nuclear location in the merged image. Note that wild-

type PlyC was used in the experiment, the cell wall of GAS were ruptured and no 

visible intact chain-like streptococci were observed through the Z-stack compared to 

Figure 2-1c. These evidence suggests that internalized PlyC retains its bioglocial 

function (enzymatic activity and affinity to bacterial cell wall) after internalization in 

the intracellular environment. Furthermore, the maxium projection constructed by the 

entire Z-stack images shows that all intracellular GAS were targeted and ruptured by 

internalized PlyC, and no extracellular GAS was detected outside or between the host 

cell boundary indicated by the actin filaments statining. 
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Figure 2-6. Confocal microscopy of internalization of PlyC targeting intracellular GAS 

A single focal plane at the nucelus (Cyan, DAPI stained), GAS bacteria (green, wheat germ 

agglutinin-Alex488 stained phalloidin), the PlyC endolysin (red, Alexa fluor 555 conjugated), 

and actin structure (Magenta, Alexa fluor 647 conjugated) are shown in the same focal plane. 

Note the fluorescence labeled PlyC (red) was co-localized with GAS bacteria (green) at a 

peri-nuclei localization in the merged image. The maximum projection is constructed by 

stacking images from all z-sections together. Scale bar is 10 μm. 

Conclusion 

S. pyogenes causes a broad spectrum of disease ranging from mild infections 

to life-threatening complications when colonizing the skin or mucosal membranes. As 

an exclusive human pathogen, it is associated with extensive morbidity and mortality 

worldwide. Although traditional antibiotics (e.g. penicillin, the major choice when 

treating group A streptococcal infections) are still effective, GAS can circumvent 
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antibiotics by adhering to and internalizing into host epithelial cells, and subsequently 

residing as intracellular pathogens. This internalization makes the streptococci 

refractory to antibiotic treatment and allows them to repopulate the mucosal surface 

after antibiotic prophylaxis has ended. Thus, there is a need to develop a novel 

antimicrobials that can penetrate the lipid membrane and eliminate the internalized 

GAS.  

In order to achieve this goal, we first applied a protein engineering approach 

to geneticially modify streptoccal endolysins that have successfully demonstrated 

their bacteriolytic activity against GAS in vitro. This enzyme-based engineering 

strategy is carried out by fusing a cell penetrating peptide, termed 'TAT', which has a 

demonstrated ability to drive large molecules such as globular proteins or 

nanoparticles  across the plasma membrane (Torchilin 2008), to several streptococcal-

specific endolysins (including B30,  Ply700,  and PlyC).  To assay the efficacy of 

TAT-labeled endolysins against internalized GAS, a streptococci/human epithelial 

cell co-culture model was established. In this assay, we were able to differentiate the 

non-adherent, adherent  (i.e. extracellular), and internalized GAS, which was also 

validated by confocal microscopy. Surprisingly, none of the TAT-labeled endolysins 

showed better intracellular bacteriolytic activity than wild-type endolysins, although 

they depicted comparable extracellular bacteriolytic activity. However, wild-type 

PlyC possessed the best intracelluar killing efficacy against internalized GAS. Thus, 

we investigated more formally this unique finding for wild-type PlyC.  

First, we established that the intracellular bacteriolytic activity of PlyC is 

dose-dependent, with 50 μg/ml being sufficient to kill 96% of internalized GAS. 
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Second, heat-denatured PlyC did not show any intracellular bacteriolytic activity 

suggesting this unique property is due to enzymatic activity of PlyC. Third, the 

extracellular repopulation by internalized GAS after antibiotic treatment was 

confirmed. Although the majority of internalized GAS (95%)  were cleared after an 

additional 24-hour incubation in the presence of antibitoics, an extensive amount 

(88.5%) of host cell death was also observed. This is because the host cells undergo 

autolysis induced by internalized bacteria, which were therefore exposed to 

antibiotics in the supernatant and killed. In contrast, a second dose of PlyC was able 

to completely sterilize the co-culture and resuce ~ 70% of epithelial host cells. 

Furthermore, those recovered GAS colonies from either treatment group were grown 

in liquid culture for MIC (Minimum Inhibitory Concentration) and MBC (Minimum 

Bactericidal Concentration) testing. These values did not change after intracellular 

growth, (data not shown) suggesting that surviving GAS did not develop resistance to 

PlyC or penicillin, which is consistent with previous reports (Fischetti 2005). To the 

best of our knowlege, this is the first report to show intracellular killing of GAS, or 

any bacteria, using an endolysin. In addition, our results were extended to primary 

human tonsilar epithelial cells, which are the major reservoir for streptococcal 

colonization and invasion. The results look similar to what we observed from a co-

culture model with immortalized epithelial cell lines, again supporting the possibility 

of using the PlyC endolysin therapeutically for recurrent streptococcal infection. 

Finally, we were able to employ confocal microscopy to obtain direct evidence that 

PlyC not only internalized, but co-localizes with GAS and remained functionally 

active in the intracellular niche. 
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In summary, Chapter 2 describes the identification and characterization of 

intracellular bacteriolytic activity of PlyC against internalized streptococci. However, 

these findings only raise additional questions. For example, the domain/motif/residue 

that mediates internalization of PlyC, and the potential molecules or receptors on the 

plasma membrane of host cells remains unclear. The above questions will be 

addressed in Chapter 3. 
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Chapter 3: Elucidating the interaction between PlyC and the 
plasma membrane upon internalization 
 

Background 

The evidence in the previous chapter has demonstrated that PlyC can enter 

into the epithelial cell. In a spatial manner, PlyC has to bind and interact with the 

plasma membrane before it can be internalized. However, the domain/motif/residues 

of PlyC that mediate this interaction remain unclear.  

To answer the above question, we decided to explore the recent crystal 

structure of the PlyC holoenzyme (McGowan, Buckle et al. 2012). The structural 

report confirmed that PlyC is assembled from two components: PlyCA and PlyCB 

with a single PlyCA moiety tethered to a ring-shaped assembly of eight PlyCB 

molecules (Figure 3-1a and b). Interestingly, when we generated a map of the 

electrostatic surface potential of PlyC based on the crystal structure (Figure 3-1c and 

d), a highly positive-charged surface on PlyCB, composed of a total of 48 surface 

exposed cationic residues (2 arginines and 4 lysines in each monomer of the PlyCB 

octamer) was discovered. Appreciably, two recent studies revealed that the cationic 

cell-penetrating-peptide TAT, interacts with different surface molecules on the 

plasma membrane upon internalization. In the first study, evidence was provided that 

a TAT-labeled bacteriophage was internalized utilizing chondroitin sulfate 

proteoglycans as specific cell surface receptors by biochemical and genetic assays 

(Kim, Shin et al. 2012). The second study used solid-state NMR to show that the 

structural interface between TAT and anionic lipid bilayers contained arginine-

phosphate salt bridges that interact through hydrogen bonding (Su, Waring et al. 
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2010). Both studies suggest that the interaction is mediated by anionic lipid 

phosphates or sulfate proteoglycans via electrostatic interactions to the cationic TAT 

peptide. The positive-charged surface of PlyC, in particular the bottom face of PlyCB 

octamer, led us to hypothesize that PlyC mimics the cationic nature of TAT during 

entry into eukaryotic cells. To test this hypothesis, several biochemical assays, along 

with site-directed mutagenesis, were conducted. The results are subject of this 

chapter. 

 

Figure 3-1. Structure and electrostatic surface potential of PlyC  

(a) The 3.3-Å X-ray crystal structure of PlyC whereby PlyCB monomers are colored 

alternately in magenta/cyan and labeled monomers A–H. The PlyCA molecule is colored by 

domain as indicated. The Cα atoms of the model show the N-terminal residues 1–205 in light 
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blue (GyH domain, glycosidase activity), the disordered linker 1 (residues 206–227) in red, 

the helical structure (residues 226–288) that docks PlyCA to PlyCB in yellow, the second 

disordered linker 2 (residues 289–308) in a dashed red line, and the CHAP domain (amidase 

activity, residues 309–465) in green. Regions of disordered/absent density are depicted by 

dashed lines. (b) The PlyCB domain (top and side view) alone colored alternately in 

magenta/cyan and labeled A–H. (c) Electrostatic surface potential of PlyC as oriented in a. 

Surfaces are color-coded according to electrostatic potential (calculated by the Poisson–

Boltzmann solver within CCP4MG). Lys and Arg residues were assigned a single positive 

charge, and Asp and Glu residues were assigned a single negative charge; all other residues 

were considered neutral. The calculation was done assuming a uniform dielectric constant of 

80 for the solvent and two for the protein interior. The ionic strength was set to zero. The 

color of the surface represents the electrostatic potential at the protein surface, going from 

blue (potential of +10 kT/e) to red (potential of −10 kT/e), where T is temperature, e is the 

charge of an electron, and k is the Boltzmann constant. The probe radius used was 1.4 Å. (d) 

The same surface with altered orientation as indicated. Images are adapted from (McGowan, 

Buckle et al. 2012) 

Results 

PlyCB domain is responsible for internalization of PlyC 

The electrostatic potential map of PlyC suggests that most surface exposed 

cationic residues are located in the PlyCB domain. To narrow down which domain is 

responsible for internalization, we were able to clone, express and purify PlyCA and 

PlyCB respectively, described in (McGowan, Buckle et al. 2012). The purified PlyCA 

(50 kDa) and PlyCB (octamer is 64 kDa, monomer is ~8 kDa) subunits alone were 

shown in the SDS-PAGE gel in Figure 3-1a. Each subunit was then cross-linked to 

AlexaFluor555 and confirmed for proper folding of each domain by gel filtration 

(data not shown). Figure 3-1b shows that only fluorescence-labeled PlyCB or PlyC 

holoenzyme were found to be internalized, whereas PlyCA by itself failed to 

internalize.  
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Figure 3-2. Characterization of internalization ability of PlyC, PlyCA and PlyCB  

(a) SDS-PAGE gel of PlyC holoenzyme, catalytic PlyCA subunit and cell wall binding 

subunit PlyCB. (b) A549 cells were incubated with PlyC-Alexa555 (red), PlyCB-Alexa555 or 

PlyCA-Alexa555 in serum-free F12K medium for 30 min at 37ºC, fixed by 4% PFA in PBS 

and subsequently stained with and DAPI (nucleus, blue). Arrows indicate the internalized 

PlyC or PlyCB subunit. Scale bar is 20 μm. 

Site-directed mutagenesis and characterization of various PlyCB mutants 

Figure 3-1a indicates that the PlyCB octamer possesses a highly positive-

charged surface due to multiple lysine (Lys, K) or arginine (Arg, R) residues in each 

monomer, several of which marked in Figure 3-3a. Thus, by site-directed 
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mutagenesis, single surface exposed positive-charged residues were mutated to 

glutamic acid (Glu, E), which is a negatively charged amino acid due to an extra 

carboxyl groups on its side chain. Constructs were then over-expressed and purified 

by a protocol previously described (Nelson, Schuch et al. 2006). Four out of five 

constructs, including PlyC(PlyCBK70E,K71E), PlyC(PlyCBK23E), PlyC(PlyCBK59E), and 

PlyC(PlyCBR66E), were soluble and able to be purified as shown by SDS-PAGE 

(Figure 3-3b). However, the PlyC(PlyCBR29E) was not used in subsequent studies 

because of its insolubility. Mutations were confirmed by sequencing (data not shown) 

as well as analyzing the purified enzymes by mass spectrometry (Figure 3-3c). Note, 

PlyCA does not ionize in mass spectrometry but the PlyCB octamer ionizes as a 

monomer. As we expected, wild-type PlyCB monomer is 7856.9 daltons, a mutation 

from Lys to Glu generated a loss of 0.8 daltons, and a mutation from Arg to Glu 

causes a decrease in molecular weight lower by 27.2 Daltons. These results are 

consistent with our calculations based on the known molecular mass of Lys (146.2 

g/mol), Arg (174.2 g/mol), and Glu (147.1 g/mol). Furthermore, analytical gel 

filtration showed that all constructs had a retention volume of ~ 12.3 ml, consistent 

with the 114 kDa wild-type PlyC holoenzyme (Figure 3-3d). Finally, we employed 

infrared spectroscopy, a well-established tool to investigate the structure and 

dynamics of proteins based on the position of characteristic amide I and amide II 

vibrational bands (Kupser, Pagel et al. 2010), which provides a direct measure of the 

underlying secondary structure. The super-imposable spectra of the mutants with 

wild-type PlyC confirmed that there were no major differences in secondary structure 

(Figure 3-3e).  In summary, various analytical methods verify the correct mutations 
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and proper folding/secondary structure conformation for all constructs except 

PlyC(PlyCBR29E), which presumably misfolds and is insoluble.  
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Figure 3-3. Biochemical and biophysical characteristics of PlyC and its mutants  

(a) Electrostatic surface potential of PlyC as oriented in Figure 3-1d. Lys and Arg residues 

were assigned a single positive charge, and Asp and Glu residues were assigned a single 

negative charge; all other residues were considered neutral. The surface exposed Arg, Lys 

and Glu in one PlyCB monomer were marked. The right panel (backbone of PlyCB colored 

in Cyan) is the enlarged view of the surface exposed Arg and Lys in one PlyCB monomer. 

The images were generated and labeled by PyMOL software. (b) SDS-PAGE gel images of 

purified PlyC and its mutants. Note that PlyC(PlyCBR29E) was insoluble, and thus did not 

show on the gel. (c) Mass spectrometry of PlyC, PlyC(PlyCBK23E), and PlyC(PlyCBR66E). (d) 

Analytic gel filtration of PlyC and its mutants. Note, all constructs has a similar retention 

volumes. (e) Infrared spectroscopy of PlyCB, PlyC(PlyCBK23E), PlyC(PlyCBK59E), and 

PlyC(PlyCBR66E). Note that all constructs tested has a similar Amide-I and-II peaks. 
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Benchmark extracellular and intracellular bacteriolytic activity of 

mutants against wild-type PlyC 

The extracellular and intracellular bacteriolytic activities of PlyC mutants 

were benchmarked against wild-type PlyC (Figure 3-4) by turbidity reduction assay 

and co-culture assay, respectively. Constructs of PlyC(PlyCBK23E) and 

PlyC(PlyCBK70E,K71E) showed no effect on extracellular activity, but partially 

diminished (~ 50%) the intracellular bacteriolytic activity of PlyC against internalized 

GAS, In addition, constructs of PlyC(PlyCBR66E) and PlyC(PlyCBK23E,K59E), almost 

abolished both extracellular and intracellular activity. Furthermore, PlyC(PlyCBK23A), 

which has a change from positive to neutral charge, also showed a moderate decrease 

in terms of intracellular activity but no change on extracellular activity. Similarly, 

PlyC(PlyCBD21A), a mutation to a non-charged residue did not affect intracellular or 

extracellular activity at all, suggesting that intracellular bacteriolytic activity of PlyC 

is truly dependent on surface-exposed positively-charged residues.  
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Figure 3-4. Extracellular and intracellular bacteriolytic activity of PlyC 

Normalized extracellular and intracellular bacteriolytic activity of PlyC and PlyC mutants ( 

selected residues of PlyCB). Extracellular activity was measured and normalized by turbidity 

reduction assay, and intracellular activity was obtained and normalized from co-culture 

assayed as previously described.   

Fluorescence microscopic characterization of PlyCB mutants 

Next, to determine whether the diminished intracellular activity is truly due to 

the effect of binding to streptococci or a defect to internalization, both wild-type and 

mutants of PlyCB were conjugated to AlexaFluor555 and tested for binding to 

streptococci and uptake by epithelial cells. Figure 3-5 showed that mutation at Lys-
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23 and Lys-59 are involved in internalization but not streptococcal binding, whereas 

Arg-66 mediates both binding to streptococci and the internalization capacity. 

Moreover, and a charge-conserved mutation (Arg-66 to Lys-66) was able to retain 

both phenotypes. 

 
Figure 3-5. Fluorescent microscopic characterization of PlyCB and its mutants  

Microscopy of fluorescent-labeled PlyCB on GAS (left column) and internalization into 

epithelial cell (right column). Arrows point the internalized PlyCB. Scale bar is indicated in 

each column. The scale bar is 5 μm in left column, and 10 μm in right column. 
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Neither heparan sulfate nor chondroitin sulfate serve as cell surface 

receptor that mediates the internalization of PlyCB 

Next, we wanted to identify the ligand on the plasma membrane mediate the 

interaction with PlyCB. Previous studies have shown that uptake of TAT is initiated 

by non-specific electrostatic interaction with negatively charged glycosaminoglycans 

(GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS), linked to cell 

surface core proteins to form heparan sulfate proteoglycan (HSPG) and chondroitin 

sulfate proteoglycan (CSPG) (Tyagi, Rusnati et al. 2001; Richard, Melikov et al. 

2005). To determine whether PlyCB also utilizes negatively charged GAGs (HS or 

CS) as cell surface receptors for the cellular uptake, we first examined the effects of 

soluble GAGs, such as heparin and chondroitin sulfate-B (CS-B), on PlyCB 

internalization into A549 epithelail cells (Figure 3-6b and c). The presence of  

excess exogenous heparin, a close structural homologue of HS, had no effect on 

internalization of PlyCB. Similarly, exogenous CS-B did not impede PlyCB entry. 

Furthermore, the effects of enzymatic removal of cell surface GAGs was examined 

by treating A549 cells with specific GAG lyases, such as heparinase III to remove 

endogenous HS and chondroitinase ABC to remove endogenous CS-B (Tyagi, 

Rusnati et al. 2001) prior to PlyCB incubation. Again, no significant inhibitory effects 

were observed upon PlyCB internalization when using those two enzymes 

respectively (Figure 3-6d and e). Overall, these results provide evidence that, unlike 

TAT, cell surface HSPGs are not the cellular receptors responsible for internalization 

of PlyCB endolysin. 
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Figure 3-6. Effects of the presence of soluble GAGs or GAG lyase on internalization of 

PlyCB 

(a) A549 cells were incubated with PlyCB-Alexa555 (red) in serum-free medium F12K for 

30 min at 37ºC, fixed by 4% PFA in PBS and stained with and DAPI (nucleus, blue). (b) 

Cells were pre-treated with 50 μg/ml of chondroitin sulfate-B for 30 min then incubated with 

PlyCB-Alexa555 before being fixed and stained with DAPI. (c) Cells were pre-treated with 

100 IU/ml of heparin for 30 min then incubated with PlyCB-Alexa555 before being fixed and 

stained with DAPI. (d) Cells were pre-treated with 20 mIU/ml of chondroitinase ABC for 1 

hour then incubated with PlyCB-Alexa555 before being fixed and stained with DAPI. (e) 

Cells were pre-treated with 5 mIU/ml of Heparinase III for 1 hour then incubated with 

PlyCB-Alexa555 before being fixed and stained with DAPI. Arrows indicate the internalized 

PlyCB. Scale bar is 20 μm. 
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Phospholipid-PlyCB interaction screening assay 

Structural studies on membrane-bound TAT revealed that TAT binding to the 

membrane-water interface is stabilized not only by electrostatic attraction to the 

anionic lipids (Arg-phosphate salt bridge), but also by intermolecular hydrogen 

bonding with the lipid phosphates and water  (Su, Waring et al. 2010). This finding 

led us to hypothesize that the phosphate moiety on the lipid membrane is responsible 

for interacting with cationic surface of PlyCB for internalization. To further elucidate 

the phospholipid molecules involved in this uptake event, we performed a 

phospholipid (PIP) screening assay, which is a protein-lipid overlay technique 

combined with Western blot that is designed specifically for identification of  

phosphoinositide-protein interactions. Figure 3-7 shows that PlyCB specifically and 

directly interacts with phosphatidylinositol (PtdIn), phosphatidic acid (PA) and 

phosphatidylserine (PtdSer), but not phosphatidylethanolamine (PtdEtn) or 

phosphatidylcholine (PtdCho). In addition, phosphorylated PtdIns, such as 

PtdIns(3)P, PtdIns(3,4)P2, and PtdIns(3,4,5)P3 did not bind to PlyCB, suggesting that 

the binding motif requires some restricted confirmation or local structure. Further 

comparison to wild-type PlyCB revealed that PlyCBK59E and PlyCBR66E  only bind to 

PA and PtdSer, but not PtdIns, suggesting that PtdIns might be a key molecule on the 

membrane that secures this interaction with positively-charge residues on PlyCB. If 

so, this might explain the previous observations that fluorescent labeled mutants 

K59E and R66E failed to internalize. 
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Figure 3-7. Biochemical characterization of PlyCB and PlyCB mutants by 

phospholipids screening assay  

Layout of phospholipids screening assay (left panel) and result (right panel) of lipid binding 

test of His-tagged PlyCB, PlyCBK59E, PlyCBR66E. Note that the His tagged PlyCBK23E was 

insoluble when over expressed (data not shown). 

Predicted molecular docking of PlyCB with specific phospholipids 

PtdSer and PtdIns are the major anionic glycerophospholipids in eukaryotic 

plasma membranes (Fadeel and Xue 2009). In quiescent cells, PtdSer is exclusively 

located at the inner (cytoplasmic) leaflet of the plasma membrane under normal 

circumstances, but becomes exposed on the surface of the cell undergoing apoptosis 

(Calderon and Kim 2008), phagocytosis (Dias-Baruffi, Zhu et al. 2003) or cellular 

uptake (Hirose, Takeuchi et al. 2012). In addition, PtdIns is a component normally 

found in the cytosolic side of eukaryotic cell membranes and play important roles in 

lipid raft signaling and membrane trafficking (Bevers, Comfurius et al. 1999; Pike 

2003). 
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Obtaining a co-crystal of PlyCB and phospholipids is failed due to the long 

fatty acid chains. However, to elucidate the structural insights of interaction between 

PlyCB and specific phospholipids, we examined a molecular docking model (Figure 

3-8a and b) suggesting that PlyCB monomer contains a binding pocket, the 'mouth' 

of which includes the cationic residues such as Lys-59 and Arg-66. The interface 

contains multiple hydrogen bonds, which help secure the protein-phospholipids 

interaction. Moreover, attempts to dock PlyCBR66E and PtdIns were unsuccessful, 

presumably due to the reduced volume of the pocket in the PlyCBR66E mutant that 

was unable to accommodate the inositol ring of PtdIns, which is consistent with the 

observation from phospholipids screening assay in Figure 3-7. 

 
Figure 3-8. Molecular docking of specific phospholipids with PlyCB  

Inter-molecule docking of PlyCB monomer and PtdIns (a) and PtdSer (b) by using DOCK6.6 

suite software (Lang, Brozell et al. 2009). Note that the fatty acid chains of two phospholipids 

were trimmed off to avoid unnecessary complication during modeling. Yellow dashed line 

represent the hydrogen bonding between specific phospholipids and a pocket-like structure 

formed by Arg-29, Lys-59, Arg-66 on the surface of PlyCB monomer. 
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Structural effects of the PlyCBR66E 

Figure 3-3a suggests PlyCB possesses a pocket-like structure that contains 

the cationic residues such as Arg-29, Lys-59 and Arg-66. To further study the 

structure-function relationship of PlyCB binding to the plasma membrane, the 1.8-Å 

X-ray crystal structure of PlyCBR66E was obtained. Superimposing the structure of the 

PlyCBR66E mutation on wild-type PlyCB (Figure 3-9) reveals that the Glu-66 

(mutation) side chain maintains the same location as Arg-66 (wild-type), and a 

hydrogen bond to Glu-36 is preserved. However, Arg-29 of PlyCBR66E adopts a new 

conformation that enables it to hydrogen bond with both Glu-66 and Glu-36. The 

implication of the R66E structure is that, since the local structure appears well-

ordered, the movement of Arg-29 and subsequent ability to hydrogen bond Glu-66 

and/or Glu-36 preclude binding of phosphate moieties in the crucial pocket. Thus the 

effects of R66E shown in the phospholipids binding or cellular uptake are probably 

due to the observed changes at the R66E and R29 sites, and not due to general 

disruption of local secondary structure. 
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Figure 3-9 Structural effects of the R66E mutation in PlyCB  

Crystal structures of the wild-type (blue carbons) and mutant (yellow, with green to 

emphasize the 3 key residues Arg-29, Glu-36, and Arg/Glu-66; electron density shown. Both 

structures are at 1.8-Å resolution. The orange sphere shows the location of a putative 

phosphate site observed to be strongly occupied in the presence of phosphate-bearing ligands. 

Note that this site holds a water molecule in the native structure, but the site is empty in the 

mutant, apparently disrupted by the mutation of Arg-66. 

Conclusion 

This chapter aims to provide insight into the interactions between the plasma 

membrane and PlyC upon internalization. First, we found a highly positive-charged 
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surface exposed on the PlyCB octamer based on the crystal structure of PlyC. A total 

of 16 arginine and 32 lysine residues are identified to be exposed on the surface 

PlyCB. This finding led us hypothesize that internalization of PlyC mimics cell-

penetrating peptides, which are also a group of peptides enriched for cationic residues 

such as lysine and arginine. However, it should be noted that cell-penetrating peptide 

are typically 10 amino acids in length whereas PlyC is a holoenzyme composed nine 

subunits (1 PlyCA: 8 PlyCB) with the cationic face of the PlyCB octamer spread over 

a diameter of 80 angstroms. Nonetheless, we sought to investigate the role of 

internalization, if any, of these cationic residues on the PlyCB surface. Fluorescent-

labeling of the subunits and holoenzyme revealed that the PlyCB octamer alone or in 

context of the holoenzyme, but not PlyCA, is sufficient for translocation into 

epithelial cells. As such, further studies were focused on PlyCB.  

Next, we sought to determine whether the internalization of PlyC was 

mediated or initiated by electrostatic interactions with the cationic residues on PlyCB. 

There are two existing membrane-associated negative-charged species, 

glycosaminoglycans (sulfate group) and phospholipid (phosphate group), both of 

which have been implied to interact with catioinic cell-penetrating peptides upon 

internalization in the literature. Therefore, to test glycosaminoglycan theory, we 

conducted internalization assay in competition with chondroitin suflate-B and 

heparin. Additionally, we treated cells with chondrotinase and heparinase to remove 

native glycosaminoglycans. However, none of these conditions inhibited or affected 

the internalization of PlyCB.  
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After ruling out a glycosaminoglycans candidate, we turned our attention to 

phospholipid screening assay (i.e.'PIP strips'), which allowed us to identify whether 

any of the specific phospholipid species interacted with PlyCB. We found that PlyCB 

specifically and directly interacts with PtdIn, PA and PtdSer, but not PtdEtn or 

PtdCho, all of which are the common species on the plasma membrane (van Meer, 

Voelker et al. 2008). The structural differences between different phospholipids 

species also tells us that all three species have a backbone of phosphatidic acid, which 

contains two long hydrophobic chain, one glycerol and phosphate group, with a side 

chain that differs from various species. The fact that PlyCB does not interact with 

PtdEtn or PtdCho, which has the same PA backbone suggests that side chain must 

have a carboxyl group (like PtdSer) or hydroxyl group (like PtdIns) to form either 

hydrogen bonding or salt bridge interaction with cationic residues on the PlyCB.  

Site-directed mutagenesis was used to create a series of single mutation to 

determine whether the cationic residue(s) play a role mediating the internalization of 

PlyC into epithelial cell. Given the fact that PlyCB forms a homo octameric ring 

structure, any single point mutant potentiates a change of eight residues on the PlyCB 

surface. We biochemically and biophysically characterized each mutant, including 

SDS-PAGE for purity, mass spectrometry for purity and verification of mutation, 

analytic gel filtration for confirmation of holoenzyme formation, and infrared 

spectroscopy for detecting secondary structure change and proper folding. All results 

suggest that the mutants were properly expressed and folded. Next, these mutants 

were benchmarked for their extracellular and intracellular bacteriolytic activity, 

streptococcal surface binding, and intracellular localization. The results suggest that 
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reversing the charge of residues Lys-23, Lys-59 and Arg-66 impairs the 

internalization ability of PlyCB. Furthermore, PIP screening assay provided more 

details elucidating the insights into how PlyCB interacts with the specific 

phospholipids species on the membrane that could potentially mediate the binding 

and entry into epithelial cells. Finally, two molecular docking models predict that 

there is a binding pocket formed by Lys-59, Arg-66 that interacts with PtdIns and 

PtdSer via multiple hydrogen bonds and electrostatic interactions, suggesting that 

unlike cationic cell-penetrating peptides, PlyC, utilizes a novel binding pocket or 

motif to interact with specific phospholipid hydroxyl moieties in the membrane, 

ultimately resulting in internalization of the PlyC endolysin.  
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Chapter 4: Probing the uptake and trafficking mechanisms 

of PlyC 

Background 

The obseravation that PlyC co-localized with internalized GAS in the 

intracellular environment by confocal microsocopy, led us to hypothesize that 

internalization of PlyC and GAS might share a similar route when entering the host 

cells. To illustrate which particular pathway PlyC ultilizes when entering epithelial 

cells, inhibitors that block specific endocytic pathways, including macropinocytosis, 

clathrin-mediated endocytosis, caveolae-mediated endocytosis, etc. were screened. 

Therefore, this chapter is focused on identifying the exact process of PlyC uptake and 

transport within epithelial cells. Since the previous chapter has demonstrated that 

PlyCB subunit and PlyC possess equivalent capacity when internalized, fluorescently-

labeled PlyCB subunit and confocal microscopy were used to study the 

internalization and trafficking mechanism. 

 

Results 

Internalization of PlyC does not compromise membrane integrity  

The first question to be addressed is whether cell membranes still maintain 

integrity while PlyC is internalized. Propidium iodide (PI), a fluorescent molecule 

that is membrane impermeable and excluded from viable cells, was employed to 

assay the effect of PlyC internalization on membrane integrity (Figure 4-1a). As an 

alternative, trypan blue is a vital stain used to selectively dye dead tissues or cells. 

http://en.wikipedia.org/wiki/Vital_stain�
http://en.wikipedia.org/wiki/Biological_tissue�
http://en.wikipedia.org/wiki/Cell_%28biology%29�
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This dye exclusion method was used to detect membrane disruption upon PlyC 

uptake. Figure 4-1b showed that there was no statistical difference between the 

growth media control (no PlyC) and growth media with PlyC (2 or 100 μg/ml) after 1 

hour incubation. Both assays suggested that internalization of PlyC does not 

compromise the membrane integrity of epithelial cells. 

 
Figure 4-1. Membrane integrity test after incubation with PlyC 

(a) Propidium iodide staining by fluorescence microscopy. The left panel showed that 

epithelial A549 cells (nucleus was stained by DAPI, blue) were pre-permeablized with Triton 

X-100, and then stained with propidium iodide (red). The right panel showed A549 cells that 

were pre-incubated with 100 μg/ml of PlyC for 1 hour and then stained with propidium 

iodide. Scale bar is 20 μm.  (b) Trypan blue assay on A549 cells or A549 cells incubated with 

2 or 100 μg/ml for 1 hour. 

Internalization of PlyCB is dependent on temperature and interaction 

with lipid raft domains 

At 37ºC, internalized PlyCB forms a vesicle-like structure, that has a diameter 

of ~ 0.5 μm (Figure 4-2a).  To elucidate the internalization mechanism of PlyC, low 

temperature (4ºC) and specific endocytic inhibitors were employed. First, we found 

that shifting the temperature to 4°C impaired the internalization of PlyCB (Figure 4-

2b), suggesting this process is energy-dependent and thus probably requires active 
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transport machinery (Fretz, Penning et al. 2007). Next, internalized PlyCB was shown 

to co-localize with AlexaFluor555-labeled cholera toxin subunit B (CTxB-Alexa555), 

a known lipid raft marker which binds to GM1 gangliosides (Latif, Ando et al. 2003), 

suggesting a possible interaction with lipid raft microdomains upon PlyCB entry 

(Figure 4-2c). Furthermore, PlyCB internalization was partially inhibited and not co-

localized with CTxB by chelation of cellular cholesterol when pre-treating with 

filipin III (Figure 4-2d), suggesting that PlyCB entry is mediated by a lipid-raft 

dependent process such as caveolae-mediated endocytosis (Lee, Lin et al. 2008). In 

contrast, cytochalasin D (CytD), a representative macropinocytosis inhibitor that 

induces depolymerization of actin filaments (Wakatsuki, Schwab et al. 2001), did not 

affect the internalization of PlyCB (Figure 4-2e and f). Next, fluorescence-labeled 

transferrin, a ubiquitous marker of clathrin-mediated endocytosis, was not observed to 

co-localize with internalized PlyCB in either the absence (Figure 4-2g) or presence 

(Figure 4-2h) of monodansylcadaverine (MDC), which has been demonstrated to 

specifically inhibit clathrin-dependent endocytosis (Wang, Rothberg et al. 1993), 

suggesting that PlyCB entry is not associated with clathrin-mediated endocytosis.  
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Figure 4-2. Internalization of PlyCB is dependent on temperature and interaction with 

lipid raft domains 

(a) A549 cells were incubated with PlyCB-Alexa488 (green) in serum-free medium F12K for 

30 mins at 37 ºC, then were fixed by 4% PFA in PBS and stained with and DAPI (nucleus, 

blue). (b) No PlyCB internalization was observed when incubating PlyCB-Alexa488 with 

cells at 4ºC. (c) Cells were incubated with PlyCB-Alexa488 (green) and CTxB-Alexa555 
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(red) in serum-free medium F12K for 30 min at 37 ºC, fixed and subsequently stained with 

DAPI (blue). (d) Cells were pre-treated with Filipin III for 30 min, then incubated with PlyC-

Alexa488 and CTxB-Alexa555 before being fixed and stained with DAPI. (e) cells were pre-

treated with serum-free F12K media or in the presence of CytD (d) for 30 min, then incubated 

with PlyCB-Alexa555 (red) in serum-free media for an additional 30 min before being fixed 

and stained with AlexaFluor488 Phalloidin (actin filaments of cytoskeleton, green) and 

DAPI. Note that actin filaments were depolymerized due to the treatment with CytD. (g) 

Cells were incubated with PlyCB-Alexa555, then fixed and stained with FITC-conjugated 

antibodies against human transferrin receptor (FITC-transferrin, green) and DAPI. (h) Cells 

were pre-treated with MDC then incubated with PlyCB-Alexa555 before being fixed and 

stained with FITC-transferrin and DAPI. White circle represents the magnifier view. Arrows 

indicate the internalized PlyCB. Scale bar is 10 μm. 

Internalized PlyCB is associated with endocytic pathway  

Next, we sought to determine whether internalization of PlyC utilizes a natural 

endocytic pathways (actin, early endosomes, late endosomes and lysosomes) when 

transported inside the epithelial cells. Therefore, the internalization of fluorescently 

labeled PlyCB, and subsequent distribution to different subcellular localizations, was 

analyzed by confocal microscopy. Z-stack analysis (Figure 4-3a) reveals internalized 

PlyCB (red) co-localized with actin filaments (green) as arrows pointed at Z1 to Z3 

section, suggesting the intracellular trafficking of PlyC might be carried by structural 

elements of the cytoskeleton. In addition, Z-stack analysis and time course 

experiments were employed to determine whether internalized PlyC co-localized with 

two subcellular markers, early endosome and lysosome, in a time-lapse manner. 

Figure 4-3b demonstrated that the fluorescent signal for PlyCB-Alex555 was 

detected in the vesicular compartments found in peripheral region of the cytosol as 

early as 5 minutes after incubation, and was also observed to co-localize with early 

endosome in more than 90% of cells within 15 minutes (data not shown). Intracellular 
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trafficking of the PlyCB was spread throughout the cytosol, which seems to be a 

different pattern from other reports on the cellular uptake of the cell-penetrating 

peptides, which are initiated at specific sites (Duchardt, Fotin-Mleczek et al. 2007; 

Hirose, Takeuchi et al. 2012). Over time (30 to 60 min), more internalized PlyCB was 

transported from early endosomes to the perinuclear region. In contrast, internalized 

PlyCB did not fuse to lysosome compartments after 90 minutes of incubation, 

although a fraction of internalized PlyCB was also found in peripheral region (Figure 

4-3c). Taken together, the PlyC endolysin, once internalized, is transported from early 

endosomes to lysosomes, which is consistent with normal intracellular trafficking. 
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Figure 4-3. Internalized PlyCB is associated with endocytic pathway 

(a) A549 cells were incubated with PlyCB-Alexa555 in serum-free medium F12K for 30 min 

at 37ºC, fixed and stained with Alexa Fluor488 phalloidin (actin filaments of cytoskeleton) 

and DAPI. The first three sections (Z1 to Z3) from the Z-stack images (8 slices in total 6 μm) 

are shown. Note the internalized PlyCB (pointed by arrows) is co-localized (shown in yellow) 

with actin filaments. (b) Cells were transfected with CellLight early endsome-GFP (green) 24 

hours prior to treatment of with PlyC-Alexa555. Z-stack fluorescent images of cells incubated 

with PlyCB-Alexa555 were acquired at various time points (6 slices within a total of 6 μm). 

Upper panel shows the focal plane where PlyC-Alexa555 co-localizes with early endosome 

compartments as indicated by the arrow. The lower panel represented the section where 

internalized PlyC resides at a perinuclear location as indicated by the arrow. (c) Cells were 

transfected with CellLight lysosome-GFP (green) 24 hours prior to treatment with PlyCB-

Alexa555 (red). Cells are fixed with 4% PFA after 30, 60, and 90 min incubations with PlyC. 

One representative image from each time point was shown. The arrows pointed to the co-

localization of PlyCB and lysosomal compartment. Scale bar is 20 μm. 

Intracellular trafficking of PlyCB is regulated by PI3K pathway. 

When treated with wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor that 

inhibits fluid-phase macropinocytosis but not receptor-mediated endocytosis (Yao, Li 

et al. 2009), the internalized PlyCB was found to co-localize with the swollen 

vacuole-like structure (or vesicle) induced by wortmannin (Figure 4-4a, b c and d), 

suggesting that intracellular trafficking of PlyC is regulated by PI3K pathway. 

Furthermore, treatment of wortamannin significantly reduce the cellular uptake of the 

70 kD FITC-labeled dextran Figure 4-4e and f), a known marker for 

macropinocytosis/fluid-phase uptake (Falcone, Cocucci et al. 2006), confirming the 

inhibitory effect of wortmannin.  
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Figure 4-4. Intracellular trafficking of PlyCB is regulated by PI3K pathway 

(a, b, c, d) A549 Cells were first transfected with CellLight Actin-RFP (red) at 24 hour prior 

to incubation with PlyCB-Alexa488 (green) in the presence of wortmannin, cells were then 
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fixed and stained with DAPI. Note that internalized PlyC is co-localized with swollen 

vacuole structure (~ 2 μm) induced by wortmannin in the merged image. (e) Fluid-phase 

uptake of dextran-FITC by macropinocytosis. (f) Wortmannin inhibits the uptake of dextran. 

Arrows indicate the internalized PlyC-Alexa488 or dextran-FTIC. Scale bar is 20 μm. 

Conclusion 

The confocal microscopy performed in this chapter clearly revealed that 

internalization of PlyCB is accompanied by several events. During entry, PlyCB first 

interacts with lipid raft microdomains (Figure 4-2c and d), yet the internalization 

process does not compromise the membrane integrity (Figure 4-1a and b). Second,  

we show through Z-stack analysis that internalized PlyC, once inside the cells, resides 

within ~0.5 μm vesicle-like structures in the cytosol and peri-nuclear location (Figure 

4-2a). Furthermore, the internalized PlyCB is partially associated with actin filaments 

(Figure 4-3a), early endosomes (Figure 4-3b) and lysosomes (Figure 4-3c) in a 

spatial and temporal and manner, suggesting that PlyCB entry utilized a traditional 

endocytic pathway. However, internalized PlyC was not completely degraded by 

fusion with early endosomal and lysosomal compartments, and eventually reached a 

perinuclear destination. Given the fact that PlyC has a broad pH spectrum (4 to 11) in 

terms of lytic activity against GAS (Nelson, Schuch et al. 2006), this is might be a 

potential benefit for PlyC to retain its functional activity in low pH environments, 

such as early endosome (pH ~6.5) and lysosome (pH ~5.5). Our observation from our 

co-culture assay (in Chapter 2) has also confirmed PlyC's intracellular bacteriolytic 

efficacy, since internalized GAS also share certain characteristics 

(endosome/lysosome pathway) upon trafficking through host cells. On the other hand, 

changing the temperature to 4°C completely blocks the internalization of PlyCB 



 

 78 
 

(Figure 4-2b), suggesting the uptake process probably requires some active transport 

machinery, instead of a direct diffusion process. Toward this end, several specific 

endocytic inhibitors and their corresponding control markers were employed to 

elucidate the pathway that mediates the uptake of PlyCB. Filipin III, a specific 

inhibitor can partially inhibit internalization of PlyCB, suggesting that PlyCB entry is 

mediated by a lipid-raft dependent process such as caveolae-mediated endocytosis. 

Moreover, wortmannin, which is considered a macropinocytosis inhibitor, appeared 

to inhibit intracellular trafficking of internalized PlyCB by forming the swollen 

vacuole like structure (~2 μm) in diameter (Figure 4-4a, b, c, and d), although they 

do not block the uptake of PlyCB, suggesting that intracellular trafficking is 

dependent on the signaling that is possibly associated with PI3K. Notably, entry of 

GAS into epithelial cells is also dependent on s PI3K- associated pathway (Wang, 

Yurecko et al. 2006), suggesting that uptake of GAS or PlyC endolysin shares similar 

characteristics. 

In summary, internalization of PlyC is mediated by interacting with the 

plasma membrane, and the fate of internalized PlyC is regulated by a traditional 

endocytic pathway. It should also be acknowledged that intracellular enzyme delivery 

might take advantage of more than one pathway, depending on various factors such as 

enzyme concentration, cell line utilized, and cell density (Fonseca, Pereira et al. 

2009). Taken together, our results provide a better understanding of the mechanisms 

involved in internalization and transport of PlyC in an intracellular environment.  
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Chapter 5:  Thesis discussion and future perspectives 

Comparison of the internalization mechanism of GAS and other bacteria 

Although GAS is traditionally considered an extracellular pathogen,  

internalization of GAS has recently been reported (LaPenta, Rubens et al. 1994; 

Greco, De Martino et al. 1995). The proposed mechanisim invovles the fibronectin-

binding protein on the GAS surface, which promotes streptococcal adherence to the 

amino terminus of fibronectin and acts as a bridging molecule between streptococci 

and the α5β1 integrin on the eukaryotic cells. The cellular receptors responsible for 

internalization of GAS are integrins capable of fibronectin binding (Molinari, Talay et 

al. 1997; Ozeri, Rosenshine et al. 1998). Following integrin receptor mediated 

endocytosis, this process leads to a sequential event involving fusion with endocytic 

compartments (endosomes and lysosomes). In the lysosomes, the ingested GAS can 

be degraded within nonphagocytic cells (Nakagawa, Amano et al. 2004). However, a 

subpopulation, GAS can circuvent host defence by escaping from fusion with the 

lysosomes, externalize by inducing apoptosis of host cell and sebsequently repopulate 

the mucosal surface after antibiotic prophylaxis (Marouni and Sela 2004; Kwinn and 

Nizet 2007). 

Likewise, other intracellular Gram-positive bacteria, such as Staphylococcus 

aureus, Listeria monocytogenes, Mycobacteria, also utilize specific cell surface 

receptor-mediated internalization for their entry (Clemens and Horwitz 1996; 

Ellington, Reilly et al. 1999; Pentecost, Kumaran et al. 2010). In addition to the 

comparable uptake mechanism, these bacteria are able to not only escape the 
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endosomes or prevent fusion with lysosomes, but they are also able replicate within 

the host cell (Jarry and Cheung 2006; Pentecost, Kumaran et al. 2010; Manzanillo, 

Shiloh et al. 2012). 

Comparing internalization and intracellular trafficking of GAS and PlyC 

Eukaryoic cells are able to internalize foreign proteins from the surrounding 

medium by endocytosis (Doherty and McMahon 2009; Ziello, Huang et al. 2010). In 

the endocytic pathway, internalized proteins are delivered to early endosomes, 

followed by recycling part of this network of tubules and cisternae (containing 

receptors) back to the plasma membrane, while other components of the endosome 

are transported to late endosomes and lysosomes for degradation. In this disseration, 

confocal microsocopy demonstrates that PlyC internalizes through lipid raft-

dependent macropinocytosis, which is not exact same mechanism of entry for GAS 

(receptor-mediated). Nontheless, the observation that PlyC co-localizes with early 

endosomal and lysosomal compartmetns as well as internalized GAS in the 

intracellular environment, suggests that they share a similar intracellular trafficking 

routes after entry into the host cells. As such, this evidence supports the potential 

application of PlyC targeting intracellular GAS. 

Comparing internalization mechanisms of TAT (cell-penetrating peptide) and PlyC 

Although the ability of cell-penetrating peptides (i.e. TAT) to translocate 

across the plasma membrane has been documented extensively, the internalization 

mechanism(s) that underlie this phenomenon still remain unclear. It has been 

demonstrated that various properties of these peptides, including net charge, molecule 
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length, associated cargo, as well as temperature, and specific cell lines all play a role 

on the mechanism of peptide or peptide-associated protein uptake (Mueller, 

Kretzschmar et al. 2008). To date, cellular entry of these peptides has been 

categorized into two different modes: energy-dependent endocytosis and energy-

independent direct translocation across the plasma membrane (Fonseca, Pereira et al. 

2009). Although most studies support the endocytic mechanisms for cellular uptake, 

one recent report of three cell-penetrating peptides: penetratin,  nona-arginine (R9),  

and TAT suggests that both modes can be observed in a single system depending on 

the peptide concentration (Duchardt, Fotin-Mleczek et al. 2007). 

Recent reports (Wadia, Stan et al. 2004; Kaplan, Wadia et al. 2005) suggest 

that transduction of TAT occurs by lipid raft-dependent macropinocytosis (a 

specialized form of fluid-phase endocytosis) in an energy dependent manner. The 

current model for TAT mediated protein transduction is proposed as 3-step process 

that involves binding of TAT to the cell surface, stimulation of macropinocytotic 

uptake of TAT and cargo into macropinosomes and endosomal escape into the 

cytoplasm (Gump and Dowdy 2007). In the first step, binding to the cell surface is 

thought to be through electrostatic interaction with acid regions of surface proteins, 

sulfated glycans, membrane phospholipid head groups or a combination of all might 

be involved. In the case of PlyC internalization, we are able to demonstrate that 

substitution of the positive-charged residues dramatically reduces the efficiency of 

PlyC internalization. Specific phospholipids (not the sulfated proteoglycan) were 

identified to mediate the interaction with PlyC. In addition, by using various 

endocytic inhibitors and corresponding cellular markers, we are able to elucidate that 
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internalization of PlyC is mediated by interacting with lipid raft domains on the 

plasma membrane in an energy-dependent manner, which also share similar 

characteristics to the second step of TAT transduction via endocytosis. The final step 

in TAT transduction is escape from macropinosomes into cytoplasm after fusion with 

endosomes or lysosomes. Although we do not have the direct evidence that 

macropinosomes are involved, we find that PlyC co-localizes with early endosomal 

and lysosomal compartments in a time and spatial manner, as well as associated with 

the macropinocytosis pathway by screening with specific inhibitors. This evidence 

suggests that internalization of PlyC is comparable to uptake of TAT. However, there 

are some differences in terms of cell-entry mechanisms as more structural insights are 

obtained when probing the internalization mechanism of PlyC. Unlike the short 

cationic peptides, PlyC utilizes its positive-charged binding pocket to interact with 

specific phospholipids on the plasma membrane upon internalization.  In addition, 

transduction of TAT is dependent on cytoskeleton rearrangement (Tunnemann, 

Martin et al. 2006), whereas we show that depolymerization of actin filaments by 

cytochalasin D  does not inhibit cellular uptake of PlyC.  

Fusion to cell-penetrating peptide enable endolysin to kill intracellular bacteria 

Endolysin are capable of degrading only extracellular bacteria, while their 

access to intracellular pathogens is restricted by the plasma membrane of the infected 

host cell. The hypothesis that endolysins can kill intracellular bacteria upon their 

induction into cytoplasm of human host cells by fusion with cell-penetrating peptides 

has been developed (Borysowski and Gorski 2010), although to date no such study 

has been reported yet. In this dissertation, we found that TAT-labeled endolysins did 
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not show any intracellular bacteriolytic activity compared to the wild-type endolysins 

or in the case of PlyC, did not show enhanced activity compared to wild-type PlyC. 

Several possibilities can explain these observations: 1. TAT-labeled endolysins did 

not enter the cells; 2. They successfully internalized but failed to have direct contact 

with intracellular bacteria; 3. They lost their active confirmation for enzymatic 

activity after internalization. To address above questions, techniques or tools such as 

confocal microscopy, flow cytometry and Western blot can be applied. In addition, it 

will be worth trying TAT or other cell-penetrating peptides with different endolyins 

with specificity against Staphylococcus aureus or Listeria monocytogenes, two 

pathogens known to internalize in mamalian cells. 

Structure-function relationship 

In the infection cycle of bacteriophage, lysis is controlled by a holin, which 

modulates pore formation in the bacterial plasma membrane. This process allows the 

cytoplasmically accumulated endolysins to access and digest the peptidoglycan 

(Wang, Smith et al. 2000) in order to release phage progeny. Previous studies have 

demonstrated that there is a putative holin located upstream of the PlyC endolysin 

operon in the C1 bacteriophage genome (Nelson, Schuch et al. 2003). The fact that 

we failed to prove that PlyCB possesses an additional pore formation (i.e. holin-like) 

function from membrane integrity test, helps us to rule out the hypothesis that PlyCB 

behaves like a holin upon internalization of PlyC into epithelial cell. 

In terms of a structure-function homology relationship, previous work reveals 

that in the PlyCB octamer, each monomer is comprised of a four-stranded β-sheet 

capped on each side by a short α-helix. Oligomerization is mediated through 
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strand/helix hydrogen bonding interactions at each interface (Figure 3-1a). Sequence 

BLAST searches show that PlyCB contains no significant similarity to any other 

protein in the database. However, structural similarities search using DALI and 

VAST reveal distant structural similarity between the PlyCB monomer and two type 

III secretion proteins (PDB 2W0R, and 3BZR), which function to adhere at the 

surface of a eukaryotic cell to subvert the target cell. Furthermore, we have noted 

several interesting parallels between PlyC and a family of type III secretion proteins 

known as the A-B toxins. This family of toxins is so termed because of their two-

component protein composition: An A domain comprises the enzymatic “activity” 

and a ring-shaped homo-oligomers that encompasses the B (binding) domain. A 

recent crystal structural report on the anthrax toxin, an A-B toxin family member, 

revealed that an octameric ring-shaped homo-oligomer of the B domain (known as 

the protective antigen) forms a membrane-spanning channel that allows the A domain 

(lethal factor and edema factor) to be endocytosed into eukaryotic cell (Kintzer, 

Thoren et al. 2009). Similarly, PlyC is a multimeric protein consisting of PlyCA, a 

CHAP/glycosidase activity domain and 8 identical PlyCB subunits which forms an 

octamer ring that directs binding and is responsible for initial binding to the 

membrane. It should be noted that PlyC as well as most A-B toxins are phage 

encoded (Collier 2001; Johnson and Bradshaw 2001; Rossetto, Seveso et al. 2001; 

Wagner and Waldor 2002; Nelson, Schuch et al. 2006). Therefore, it is rational to 

consider that PlyC may share some evolutionary relatedness to the A-B toxins, which 

evolved from ancestral genes common to all phage, such as those in the lytic system. 
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Figure 5-1. Structural view of B domain of the anthrax toxin and PlyCB subunits of the 

PlyC endolysin  

(a) X-ray crystal structure of the B domain of the anthrax toxin in the octameric 

oligomerization state (PDB 3HVD). Monomer subunit chains are colored uniquely. (b) X-ray 

crystal structure of PlyCB with monomers colored alternately in magenta/cyan and labeled as 

A–H (PDB 4F87). Note the similar arrangement between (a) and (b). 

Despite the similar structural arrangement and functional patterns we 

observed between PlyC and members of type III secretion proteins, there are also 

notable differences between the predicted mechanisms of interaction with the 

membrane. First, the cell surface receptors for the A-B toxins are either carbohydrates 

or the carbohydrate portion of gangliosides (Collier 2001; Johnson and Bradshaw 

2001; Rossetto, Seveso et al. 2001; Wagner and Waldor 2002), whereas we propose 

that PlyC specifically and directly interacts with PtdIns and PtdSer on the membrane. 

Second, in A-B toxins, the A subunit dissociates from the B subunits, translocates 

through the beta-barrel pore of the B subunits, and enters the cytoplasm while B 
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subunits remain on the membrane's outer surface. In contrast, the cationic pocket of 

PlyCB initiates the internalization process, through which both PlyCB and PlyCA (as 

the PlyC holoenzyme) are internalized via endocytosis. Finally, the fundamental 

difference in function is that A-B is toxic to eukaryotic cells, however, PlyC is only 

toxic or lethal to pathogenic group A strepcocci but not eukaryotic cells, which 

represent a potential therapeutic use. 

Future directions 

Future work will be focused on biophysically characterizing the interaction 

between PlyC and the lipid membrane. A collaboration is already in place with Dr. 

Mathias Lösche at Carnegie Mellon University to study these interactions by surface 

plasmon resonance to determine the binding affinity, as well as by neutron scattering 

to probe molecular dynamics of this protein-lipid interaction. In addition, a 

collaboration is in place with Dr. Travis Gallagher at the National Institute for 

Standards and Technology to obtain high resolution crystal structure of PlyC in 

complex with phosphatidylinositol and phosphatidylserine.   

Another planned experiment involves demonstration of intracellular killing by 

PlyC in an in vivo model. Our laboratory was recently equipped with a state-of-art in 

vivo imaging system (IVIS), which allows us to follow fluorescent or luminescent 

labeled streptococci in real time within an animal. Once streptococci colonize and 

become internalized, treatment with antibiotics will only be able to clear extracellular 

streptococci due to the inability of antibiotics to internalize into eukaryotic cells. 

Thus, the intracellular killing efficacy of PlyC against this particular population of 
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internalized streptococci can be evaluated and monitored in a temporal and spatial 

manner.  

From a translational point of view, the highly efficient trans-membrane action 

of PlyCB raises the possibility that PlyCB or its derivatives could be developed as a 

cellular delivery platform. For instance, PlyCA might be replaced by different types 

of functional enzymatic domains or cargo, such as nanoparticles, radionuclides, 

quantum dots, or contrast agents. Using PlyCB as a transportation backbone, it will be 

worthwhile to generate chimerical endolysins that effectively target other traditional 

intracellular bacterial pathogens, such as S. aureus and Listeria species. Significantly, 

another graduate student in the laboratory, Ryan Heselpoth, is currently replacing the 

PlyC catalytic domains with various orthologous domains. In addition, the fact that 

internalized PlyCB is primarily associated with the lysosomal compartments can be 

useful for the delivery of recombinant lysosomal enzymes which are known to be 

deficient in particular genetic diseases, such as the lysosomal storage disorders.  

Therapeutic perspective 

The feasibility of using the PlyC endolysin as an effective topical antibacterial 

agent to eliminate upper respiratory colonization of mice by GAS has been 

demonstrated (Nelson, Loomis et al. 2001). It has been shown that intracellular 

bacteria survive not only due to avoiding host cell phagocytosis, but also because the 

antibiotic concentration in those particular intracellular niches are often too low to be 

bactericidal. To date, several methods and materials have been developed to enhance 

the intracellular delivery of antibiotics. In the early stage, several antibiotics were 

encapsulated into liposomes as drug delivery systems to improve their intracellular 
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accumulation. Representative studies focused on intracellular Mycobacterium 

(Onyeji, Nightingale et al. 1994), S. aureus (Bonventre and Gregoriandis 1978), and 

Listeria monocytogenes (Bakker-Woudenberg, Lokerse et al. 1988). All studies show 

intracellular efficacy of liposome-entrapped antibiotics was significantly increased 

and able to reduce the viable colony number compared to free antibiotics. However, 

drawbacks to liposome-based strategies include stability issues during storage and 

after administration in biological fluids.  

To solve these problems, polymeric nanoparticles were developed as 

alternative delivery systems to liposomal carriers. With this advanced technique, the 

stability was improved and a controlled release of the encapsulated antibiotics against 

intracellular bacteria is achieved. These nanoparticles are primarily designed to 

transport and release the drugs at lysosomal compartments, where intracellular 

bacteria primarily reside. Moreover, the polymeric particles were proved to strongly 

enhance phagocytosis and are suitable for intracellular delivery of antibacterial agents 

(Lecaroz, Gamazo et al. 2006; Seleem, Munusamy et al. 2009). However, some 

bacterial pathogens, such as streptococci, have evolved strategies to evade 

phagolysosomal fusion for degradation, which allows them to survive in the cytosol 

prior to autophagy and repopulate after inducing apoptosis of the host cell (Kwinn 

and Nizet 2007). Therefore, target-specific antimicrobials that can go intracellular and 

possesses intracellular bacteriolytic activity in various compartments such as the 

cytosol, phagosome, and lysosome will be highly desirable. Our results show that the 

PlyC endolysin not only meets all of the above requirements, but offers additional 

advantages including lack of toxicity to host cells, exclusive targeting of pathogenic 
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GAS, and extreme lytic activity against GAS (10 ng of PlyC is sufficient to sterilize a 

culture of 107 GAS within 5 seconds) (Nelson, Loomis et al. 2001). In addition, our 

laboratory is currently focused on improving structural stability of PlyC for longer 

shelf life, since the thermodynamic profile of PlyC is lower than other endolysins 

(unpublished observation). Previous studies reveal the lack of thermal stability is only 

observed for the PlyCA domain, whereas the PlyCB octameric ring will not 

disassemble until temperatures above ~ 90°C (unpublished observation). By directed 

evolution and rational site-directed mutagenesis, members of the laboratory have 

already significantly increased the thermostability profile of PlyC for therapeutic use.  

Concluding remarks. 

It has been suggested that internalization into epithelial cells, along with 

biofilm formation, are the major mechanisms associated with recurrent streptococcal 

infection (Ogawa, Terao et al. 2011). Although not part of this dissertation, we 

recently demonstrated that PlyC retained its bacteriolytic properties against group A 

streptococcal biofilm bacteria, destroying the biofilm in a layer by layer process 

(Shen, Koller et al. 2013). In this dissertation, we report for the first time that a 

bacteriophage-encoded endolysin can effectively eradicate intracellular streptococci 

and we further elucidate the mechanism of its uptake. Taken together, these data 

reinforce the potential development of the PlyC endolysin as a topical application to 

combat refractory streptococcal infection that occurs on the skin or mucous 

membranes. Additionally, this dissertation provides a rationale to further investigate 

the intracellular potential of other bacteriophage endolysins for therapeutic 

application.  
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Appendices 

Materials, methods , and protocols  
 

Contents 

A. List of constructs and E.coli stocks 

B. Molecular cloning 

C. Bacterial storage and growth 

D. Growth of E.coli for expression and purification of PlyC or PlyCB constructs 

E. Protein Analysis. 

E1  SDS-PAGE for purity analysis 

E2  Bradford assay to determine protein concentration 

E3  Mass spectrometry to confirm correct mutation 

E4  Analytic gel filtration analysis 

E5  Infrared spectroscopy 

F. Fluorescent-labeling PlyC and mutants 

G. Lytic activity of PlyC and its mutants by spectrophotometric lysis assay  

H. Immortal epithelial cell culture 

I. Primary epithelial cell culture 

J. GAS/epithelial cell co-culture assay 

K. Confocal microscopy 

K1  Low temperature experiments (4°C) 

K2  Subcellular localization of internalized PlyCB 
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K3  Treatment of clathrin-mediated endocytosis inhibitor 

K4  Treatment of macropinocytosis inhibitor 

K5  Treatment of caveolae-mediated endocytosis inhibitor 

K6  Competition assay by glycosaminoglycans 

K7  Membrane permeability assay 

L. Trypan blue assay 

M.        Phospholipids screening assay 

N.        Computational docking 
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A.   List of constructs and E.coli stocks 

Name PlyC 
Description Wild-type endolysin encoded by C1 

bacteriophage 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGKES
YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 6  

 
 

Name PlyCA 
Description Catalytic domain of PlyC 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Antibiotics Amp+ 
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Protein sequence SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 

Protein M.W. (kDa) 50 
Protein concentration (mg/ml) 1.7 

 
 

Name PlyCB  
Description Octameric cell wall binding subunit of 

PlyC  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGKES

YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 11.8  

 
 

Name PlyCBK23E 
Description PlyCB mutant  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
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INISKSDVEAIRKAMKK 
Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 15.6  

 
 

Name PlyCBR29E 
Description PlyCB mutant  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYEAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIRKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) insoluble  

 
 

Name PlyCBK59E 
Description PlyCB mutant  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
INISESDVEAIRKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 14.2 

 
 

Name PlyCBR66E 
Description PlyCB mutant  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIEKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 14 
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Name PlyCBR66K 
Description PlyCB mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIKKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 9.1 

 
 

Name PlyCBR66A 
Description PlyCB mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIAKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 22 

 
 

Name PlyCBK67E 
Description PlyCB mutant  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIREAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) insoluble 

 
 

Name PlyCBK70E,K71E 
Description PlyCB mutant  
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 
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Antibiotics Amp+ 
Protein sequence (monomer) SKINVNVENVSGVQGFLFHTDGEESY

GYRAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIRKAMEE 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) insoluble 

 
 

Name PlyC(PlyCBK23E) 
Description PlyC mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGEESY
GYRAFINGVEIGIKDIETVQGFQQIIPS
INISKSDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 6.1 

 
 

Name PlyC(PlyCBR29E) 
Description PlyC mutant 
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Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGKES
YGYEAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) insoluble 

 
 

Name PlyC(PlyCBK59E) 
Description PlyC mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
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VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGKES
YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISESDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 12 

 
 

Name PlyC(PlyCBR66E) 
Description PlyC mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
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ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGKES
YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIEKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 10 

 
 

Name PlyC(PlyCBK70E, K71E) 
Description PlyC mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGKES
YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIRKAMEE 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 14.5 

 
 



 

 100 
 

Name PlyC(PlyCBK23A) 
Description PlyC mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGAES
YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 9.2 

 
 

Name PlyC(PlyCBK23E, K59E) 
Description PlyC mutants 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
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CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTDGEESY
GYRAFINGVEIGIKDIETVQGFQQIIPS
INISESDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 4.8 

 
 

Name PlyC(PlyCBD21A) 
Description PlyC mutant 
Plasmid pBAD 24 
Restriction site used SmaI and HindIII 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence PlyCA: 

SKKYTQQQYEKYLAQPANNTFGLSP
QQVADWFMGQAGARPVINSYGVNA
SNLVSTYIPKMQEYGVSYTLFLMYT
VFEGGGAGNWINHYMYDTGSNGLE
CLEHDLQYIHGVWETYFPPALSAPEC
YPATEDNAGALDRFYQSLPGRTWGD
VMIPSTMAGNAWVWAYNYCVNNQ
GAAPLVYFGNPYDSQIDSLLAMGAD
PFTGGSITGDGKNPSVGTGNATVSAS
SEANREKLKKALTDLFNNNLEHLSG
EFYGNQVLNAMKYGTILKCDLTDDG
LNAILQLIADVNLQTNPNPDKPTVKS
PGQNDLGSGSDRVAANLANAQAQV
GKYIGDGQCYAWVGWWSARVCGY
SISYSTGDPMLPLIGDGMNAHSIHLG
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WDWSIANTGIVNYPVGTVGRKEDLR
VGAIWCATAFSGAPFYTGQYGHTGII
ESWSDTTVTVLEQNILGSPVIRSTYDL
NTFLSTLTGLITFK 
 
PlyCB monomer: 
SKINVNVENVSGVQGFLFHTAGKES
YGYRAFINGVEIGIKDIETVQGFQQIIP
SINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 114 
Protein concentration (mg/ml) 9.2 

 
 

Name PlyCB-His6  
Description N-term His tag of PlyCB 
Plasmid pBAD 24 
Restriction site used EcoRI and XbaI 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) HHHHHHSKINVNVENVSGVQGFLFH

TDGKESYGYRAFINGVEIGIKDIETVQ
GFQQIIPSINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 64 
Protein concentration (mg/ml) 0.7  

 
 

Name PlyCBK23E-His6 
Description N-term His tag of PlyCBK23E 
Plasmid pBAD 24 
Restriction site used EcoRI and XbaI 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) HHHHHHSKINVNVENVSGVQGFLFH

TDGEESYGYRAFINGVEIGIKDIETVQ
GFQQIIPSINISKSDVEAIRKAMKK 

Protein M.W. (kDa) 72 
Protein concentration (mg/ml) insoluble  

 
 

Name PlyCBK59E-His6 
Description N-term His tag of PlyCBK59E 
Plasmid pBAD 24 
Restriction site used EcoRI and XbaI 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
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Protein sequence (monomer) HHHHHHSKINVNVENVSGVQGFLFH
TDGKESYGYRAFINGVEIGIKDIETVQ
GFQQIIPSINISESDVEAIRKAMKK 

Protein M.W. (kDa) 72 
Protein concentration (mg/ml) 1.1 

 
 

Name PlyCBR66E-His6 
Description N-term His tag of PlyCBR66E 
Plasmid pBAD 24 
Restriction site used EcoRI and XbaI 
Expression strain BL21(DE3) 

 

Antibiotics Amp+ 
Protein sequence (monomer) HHHHHHSKINVNVENVSGVQGFLFH

TDGKESYGYRAFINGVEIGIKDIETVQ
GFQQIIPSINISKSDVEAIEKAMKK 

Protein M.W. (kDa) 72 
Protein concentration (mg/ml) 1.8 

 
Site directed single mutation are highlighted as yellow. 

B.   Molecular cloning 
 

PCR and subcloning were performed according to Molecular Cloning 

(MacCallum 2000). Site directed mutagenesis was conducted per manufacturer 

(Affymetrix, Santa Clara, CA) protocols. All constructs were verified by DNA 

sequencing before being transformed into expression strains BL21(DE3).  

C.   Bacterial storage and growth  
 

Streptococci were routinely grown in THY medium (Todd-Hewitt broth 

supplemented with 1% [wt/vol] yeast extract.  

A single colony of DH5α or BL21(DE3) strain containing the correct 

construct was inoculated and grown in LB-Miller (Luria broth containing 10 g/L 

NaCl) medium with 100 μg/ml ampicillin. The overnight bacteria was pelleted and 
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resuspended in fresh LB with 1/3 volume of 80% glycerol before being stored in a -

80°C freezer.  

 

D.  Growth of E.coli for expression and purification of PlyC or 
PlyCB constructs 

• Grow pre-culture by inoculating 10 μl frozen BL21(DE3) bacteria stock into 

100mL overnight into LB media with ampicillin (100 μg/ml). Shake at 250 

rpm, 37ºC for overnight. 

• Dilute the pre-culture into 2 flasks of 1.5L LB-medium at 1: 30 ratio. Shake at 

250 rpm, 37ºC overnight. 

• When OD600nm (the cell density) reaches 1.2, supplements with a final 

concentration of 0.25% arabinose to induce protein expression at 37ºC  (26ºC 

for His-tag PlyCB constructs) overnight. 

• Harvest the cells by centrifugation at 6,000 rpm for 20 min at 4ºC 

• Resuspend the pellets in PBS (50ml per 1.5L culture) and add a final 

concentration of 1mM phenylmethanesulfonylfluoride (PMSF), a protease 

inhibitor. 

• Pre-chill the cell suspension on ice water for 10min, then sonicate at 30% duty 

cycle, power level 7,10 min. 

• Centrifuge at 17,000 rpm for 1h at 4ºC to separate the supernatant from pellet. 

• Load supernatant through ceramic hydroxyapatite (CHA) column 

• Run 1 column volume (CV) of 250mM phosphate buffer (pH 7.2) to wash off 

non-specific binding proteins to CHA. 
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• Elute PlyC or PlyCB with 1.5 CV of 1M phosphate buffer (pH 7.2). 

• Dialyze the PlyC or PlyCB sample against 20mM phosphate and 100mM 

NaCl buffer at 4ºC overnight.  

• Inject the dialyzed PlyC sample through a 26/60 S200 gel filtration column 

controlled by an AKTA FPLC and collect the fractions corresponding to the 

dominant peak for further SDS-PAGE analysis. 

• Purified enzymes were routinely stored in PBS at 4°C and were stable for 

several months. 

E.   Protein Analysis 
 

E1  SDS-PAGE for purity analysis 
 

• Prepare loading samples by mixing 5 μl protein and 5 μl 2х Laemmli sample 

buffer, with 0.5 μM  β-mercaptoethanol. 

• Heat samples at 100 ºC for 5 min. 

• Load 10 μl sample as well as marker into each well of a 12.5% mini gel for 

protein electrophoresis at 250 volts for 35 min. 

• Stain the gel with Coomassie blue solution and destain with the destain 

solution. 

Coomassie blue stain 
 
50%  ethanol                       50 mL 

0.25%  Coomassie R250    0.31 g 

40% H2O                            40 mL                     

10% Acetic acid                 10 mL 
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Total                                   100 mL  

Destain solution 

5% ethanol                        25 mL 

7.5% acetic acid               37.5 mL                     

87.5% H2O                       447.5 mL   

Total                                 500 mL 

E2  Bradford assay to determine protein concentration 
 

• Prepare a series of  diluted bovine serum albumin (BSA) with 0.15 M NaCl 

buffer to final concentrations of 0 (blank = NaCl buffer only), 250, 500, 750 

and 1000 µg/ml. 

• Add 20 µL of each of the above to 1mL Bradford solution (BIO-RAD Inc. 

CA, USA)in a cuvette spectrophotometer, wait 5 min and then read at to a 

wavelength of 595 nm and generate a standard curve based on the absorbance 

and the known concentration. 

• Repeat the step 2 with PlyC samples to obtain the absorbance, which will be 

simultaneously converted to concentration based on the standard curve created 

by step 2. 

E3  Mass spectrometry to confirm correct mutation 
 

Matrix solution: 

20 mg/mL sinapinic acid 

50% acetonitrile 

0.1% trifluoroacetic acid 
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Mix well and store in aliquots at -20°C 

• Mix 1 μl protein sample and 1 μl matrix solution on a 100-well sample plate. 

The protein solution should be at least 1 mg/ml and with a very low ionic 

concentration. 

• Put the sample plate at 37°C with circular air to allow the drop to dry faster. 

• Insert the plate into the mass spectrophotometer and acquire data. 

• Compare the mass spec peak position of mutants with the wild-type PlyCB 

(note that only PlyCB can be detected with mass spec). 

E4   Analytic gel filtration analysis 
 

Purified PlyC or mutants were injected into Superose 12 (GE Healthcare), a 

prepacked gel filtration column with high resolution on FPLC system. Run with PBS 

at a flow rate of 0.5 mL/min. Collect the fraction that corresponding to the dominant 

peak for SDS-PAGE analysis. 

E5   Infrared spectroscopy 
 

Samples of PlyCB or mutants were placed in a 7 µm Biotools Biocell and 

transmission infrared spectra were collected with an MCT detector in a Nikon 

Hyperion microscope with a Bruker Vertex 80 FTIR spectrometer.  480 scans were 

taken for both background and sample spectra. Contributions from water vapor were 

subtracted and secondary structure was evaluated using Bruker's OPUS 6.5 software. 

F.  Fluorescent-labeling PlyC and mutants 
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5 mg of each of purified PlyC, PlyCA, PlyCB or indicated mutants was 

reacted with the carboxylic acid, succinimidyl ester of Alexa Fluor 555, or Alexa 

Fluor 488 (Molecular Probes) according to the manufacturer’s instructions. Unreacted 

dye was removed from the labeled protein by application to a 5-ml HiTrap desalting 

column (GE Healthcare) equilibrated with PBS. Cross-linked protein samples were 

subjected to analytical gel filtration on a Superose 12 column (GE Healthcare) 

calibrated with gel-filtration standards (BIO-RAD Inc. CA, USA). 

G.  Lytic activity of PlyC and PlyC mutants by spectrophotometric 
lysis assay 

S. pyogenes (strain D471) was grown overnight at 37°C, washed in PBS, and 

resuspended to the desired concentration with the optical density OD600nm of 1.0 

determined by spectrophotometer. 100 µl containing D471 was mixed with 100 µL of 

purified PlyC or mutants (1 µg) in a 96 well plate.  The OD600 was measured on a 

SpectraMax 190 (Molecular Devices) every 15 sec over a 20 min time period to 

monitor OD changes that correlate to lysis of the bacteria. PlyC mutants' activity was 

normalized against wild-type PlyC endolysin which represented 100% activity in the 

20 min assay.   

H.   Immortal epithelial cell culture 
 

Hep-2 (Human Larynx Carcinoma cell line, CCL-23) cells were obtained 

from ATCC and cells were routinely grown in Eagle's Minimum Essential Medium 

supplemented with 10% (v/v) fetal bovine serum (FBS). A549 (Human Lung 

Carcinoma cell line, CCL-185) were cultured in F-12K medium supplemented with 

10% FBS at 37ºC , 5% CO2 and 95% relative humidity. 
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I.   Primary epithelial cell culture 
 

The experimental protocol received Institutional Review Board approvals 

from both the Rockefeller University (VAF-0621-1207) and the Weill Cornell 

Medical College (nos. 0803009695 and 0806009857) and individual patient consent 

for the use of tissue in research applications was obtained prior to the surgical 

procedure. Human primary tonsil epithelial cells were isolated and grown in 

Dulbecco's modified Eagles medium (DMEM) (Gibco BRL, Grand Island, NY, USA) 

supplemented with 10% FBS and antibiotic / anti-mycotic cocktail (penicillin [100 

µg/ml], streptomycin [100 µg/ml], amphotericin B [2.5 µg/ml].   

J.   Streptococci/epithelial cell co-culture assay 
 

In order to evaluate the intracellular bacteriolytic efficacy of TAT-labeled 

endolysins against internalized GAS, we first established a co-culture assay to 

evaluate the rate of GAS adherence and invasion. In this model, epithelial cells were 

grown to 80% confluent monolayers in 24-well tissue culture plates (approximately 2 

x 105 cells/well). Overnight pathogenic GAS strain D471 was washed in sterile 

phosphate-buffered saline (PBS), resuspended in serum-free media, and the 

concentration was adjusted to ~2 x 107 colony forming units (CFU) and incubated 

with epithelial cells at a multiplicity of infection (MOI) = 100 bacterial cells/ one 

epithelial cell for 1 hour.  Next, each well was washed 3x in PBS and 100 μl of a 

0.25% trypsin-0.02% EDTA solution was added to each well to detach cells from the 

bottom of wells. Then, 400 μl of a 0.025% Triton X-100 solution in PBS was added 

to lyse the epithelial cells. Ruptured cells were visible within 5-10 minutes. Finally, 

the lysis solution was serially diluted and plated on THY agar plates for enumeration 
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of viable CFUs, which represent both adhered and internalized streptococci. For 

determination of internalized cell counts, 10 μg/ml penicillin and 200 μg/ml 

gentamicin was added to the co-culture for 1 hour prior to lysis to kill non-adherent 

and adherent but not internalized bacterial cells. These antibiotics are not taken up by 

the epithelial cells so internalized bacteria can be serially diluted and plated on blood 

agar plates for enumeration after epithelial cell lysis. Thus, we can truly differentiate 

non adherent vs. adherent vs. internalized GAS. To determine the efficacy of 

endolysins for eliminating internalized GAS, post-antibiotic treated co-cultures were 

washed 3x in PBS and incubated with endolysin for one hour before lysis and further 

enumeration of recovered GAS colonies. 

K.   Confocal microscopy 
 

Epithelial cells were seeded onto 12-mm2 cover slips in 24-well tissue culture 

plates. When reaching 80% confluence, cells were washed twice with PBS prior to 

incubation with 20 μg/ml AlexaFluor labeled PlyC, PlyCB or mutants in serum-free 

medium for 30 min. The cells were again washed three times with PBS, fixed by 4% 

paraformaldehyde (PFA), and mounted with ProLong® Gold Antifade Reagent with 

4',6-diamidino-2-phenylindole (DAPI) on glass slide for microscopic examination 

using a Carl Zeiss 710 inverted microscope in combination with the Zeiss Argon laser 

scanning confocal imaging system. Images and z-stack analysis were obtained with a 

100x/1.7 objective lens, analyzed by Zen 2010 digital imaging software (Carl Zeiss). 

K1  Low temperature experiments (4°C)  
 

Cells were washed three times with ice cold PBS prior to incubation with 20 

μg/ml AlexaFluor labeled PlyCB  in a refrigerator (4 °C) for 30 min.  
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K2  Subcellular localization of internalized PlyCB  

For the observation of intracellular distribution of internalized PlyCB, cells 

were transfected with CellLight® early endsome-GFP (green), CellLight® lysosome-

RFP (red), or CellLight® actin-GFP (green) 24 hours prior to counter staining with 

20 μg/ml PlyCB-Alexa555, or PlyCB-Alexa488 for 30 min, respectively. The cells 

were then washed with PBS twice, fixed by 4% PFA, and then mounted with 

ProLong® Gold Antifade Reagent with DAPI on a glass slide. Finally, the 

fluorescence distribution was acquired by confocal microscopy. 

K3  Treatment of clathrin-mediated endocytosis inhibitor  

Cells on the coverslip were washed with PBS and pretreated with 50 μM 

monodansylcadaverine (MDC) or medium only as a control at 37°C for 30 min, then 

washed with PBS twice and incubated with 20 μg/ml PlyCB-Alexa555 in the 

presence MDC for additional 30 min. The cells were then washed with PBS twice and 

fixed by 4% PFA. Followed by another 2x PBS wash, cells were permeablized with 

0.02% Triton x-100 for 15 min, washed with PBS twice and incubated with FITC 

Mouse Anti-Human CD71 (Transferrin Receptor, 1 µg/mL in 1% BSA-PBS) for 30 

min. After another 2X washing with PBS, cells were mounted with ProLong® Gold 

Antifade Reagent with DAPI on a glass slide for confocal microscopy. 

K4  Treatment of macropinocytosis inhibitor 

Cells were washed with PBS and pretreated  with 0.5 μM CytD or medium 

only as a control at 37°C for 30 min followed by a 2X PBS wash and incubated with 

20 μg/ml PlyCB-Alexa555 in the presence of CytD for additional 30 min. The cells 

were then washed with PBS twice and fixed by 4% PFA. Following another 2x PBS 
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wash, cells were incubated with 5 μg/ml AlexaFluor®488 Phalloidin (green) to stain 

the actin filaments of cytoskeleton, then washed with PBS twice and mounted with 

ProLong® Gold Antifade Reagent with DAPI on a glass slide for confocal 

microscopy. 

Alternatively, cells were washed with PBS and pretreated  with 3 mM 

amiloride or 0.5 μM wortmannin at 37°C for 30 min then washed with PBS twice and 

incubated with 20 μg/ml PlyCB-Alexa488 or dextran-FITC (control marker for 

macropinocytosis) in the presence of amiloride or wortmannin for additional 30 min. 

The cells were then washed with PBS twice and fixed by 4% PFA and mounted with 

ProLong® Gold Antifade Reagent with DAPI on a glass slide for confocal 

microscopy. 

K5  Treatment of caveolae-mediated endocytosis inhibitor 

Cells were washed with PBS and pretreated with 1 μg/ml Filipin III (which 

inhibits caveolar endocytosis) at 37°C for 30 min, then washed with PBS twice and 

incubated with 20 μg/ml PlyCB-Alexa488 in the presence Filipin III for additional 30 

min. Followed by another 2x PBS wash, cells were incubated with 5 μg/ml 

AlexaFluor555 cholera toxin subunit B (red) for 30 min to stain lipid raft domains. 

Then the cells were washed with PBS twice and fixed by 4% PFA and mounted with 

ProLong® Gold Antifade Reagent with DAPI on a glass slide for confocal 

microscopy. 

K6  Competition assay by glycosaminoglycans 

Cells were pre-treated with 50 μg/ml of Chondroitin sulfate-B, 100 IU/mL of 

heparin, 20 mIU/mL of chondroitinase ABC or 5 mIU/mL of Heparinase III for one 



 

 113 
 

hour prior to incubation with PlyCB-Alexa555 before fixed and mounted with 

ProLong® Gold Antifade Reagent with DAPI on a glass slide for confocal 

microscopy. 

K7  Fluorescent membrane permeability assay 

Cells were either permeablized with 0.02% Triton X-100 (positive control) or 

incubated with 100 μg/ml PlyC at 37°C for 30 min, washed with PBS twice and fixed 

by 4% PFA and mounted with ProLong® Gold Antifade Reagent with DAPI on a 

glass slide for confocal microscopy. 

L.   Trypan blue assay 
 

Cells were seeded into 24-well tissue culture plates. When 80% confluent, 

cells were washed twice with PBS prior to incubation with various concentrations (0, 

2, 100 μg/ml)  of PlyC at 37°C for 30 min. Next, cells were washed 3x in PBS and 

100 μl of a 0.25% trypsin-0.02% EDTA solution was added to each well to detach 

cells from the bottom of wells. The trypsinized cells were mixed with 1:1 [vol/vol] 

with a trypan blue solution (Thermo Scientific) at 37°C for 30 min, and then counted 

in a haemocytometer for total number of cells and viability. 

M.   Phospholipids screening assay 
 

Phospholipids screening assay is a protein-lipid overlay technique combined 

with Western blot that is designed specifically for identification of phosphoinositide-

protein interactions. The assay (Invitrogen, Carlsbad, CA) is based on a nitrocellulose 

membrane on which 15 distinct phospholipids pre-spotted. Manufacture's protocol is 

slightly modified and shown as follows: 
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• Block the membrane. Use TBS-T + 3% fatty acid–free BSA, and gently 

agitate for one hour at room temperature. 

• Incubate the membrane. Incubate using 1 μg/ml of PlyCB-His6, PlyCBK59E-

His6, or PlyCBR66E-His6 in 25 ml of TBS-T + 3% fatty acid–free BSA for 20 

hours at room temperature. 

• Wash the membrane. Wash the membrane with TBS-T + 3% fatty acid–free 

BSA three times using gentle agitation for ten minutes each time.  

• Primary antibody. Incubate the membrane with 1:1000 (0.1μg/ml) His Tag 

monoclonal antibody (GeneScript) for 4 hours at room temperature. 

• Wash the membrane. Wash the membrane with TBS-T + 3% fatty acid–free 

BSA three times using gentle agitation for ten minutes each time.  

• Secondary antibody. Incubate the membrane with 1:2000 (0.5μg/ml) goat anti-

mouse IgG antibody (H&L) [HRP] (GeneScript) for 4 hours at room 

temperature. 

• Wash the membrane. Wash the membrane with TBS-T + 3% fatty acid–free 

BSA three times using gentle agitation for ten minutes each time.  

• Detection. SuperSignal™ West Pico Chemiluminescent Substrate kit (Thermo 

Scientific) was used to detect the signal on the PIP membrane accompany 

with mini-medical series 90 film developer manufactured by AFP IMAGING 

(Elmsford, NY, USA). 

TBS-T: 10 mM Tris–HCl, pH 8.0, 150 mM NaCl, containing 0.1% (v/v) Tween® 20 

detergent 
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TBS-T + 3% BSA: 100 mL of TBS-T plus 3 g of fatty acid–free bovine serum 

albumin (BSA) 

N.   Computational docking 
 

The binding of Phosphatidylinositol and Phosphatidylserine to a PlyCB 

monomer was computationally modeled using the following procedure. The 

corresponding structures of ligands and protein were obtained from crystal structures 

(PDB code: 1UW5, 3BIB, and 4F87 respectively), and were prepared using the UCSF 

Chimera package (Pettersen, Goddard et al. 2004) to add polar hydrogen atoms and 

partial charges. The long ends of the fatty acid chains were trimmed off to avoid 

unnecessary complication in the modeling. Then the DOCK6.6 suite of programs 

(Lang, Brozell et al. 2009) was used for the molecular docking. In brief, the 

DOCK6.6 suite finds the potential binding sites and represents them as spheres. It 

then searches reasonable ligand binding poses by matching the ligand atoms with the 

binding site spheres, evaluated by a set of force-field based scoring functions. The 

flexibility of ligand is well treated in the fragmentation-fashioned search algorithms. 

The computationally generated potential candidates were then further scrutinized 

manually to avoid unreasonable artifacts. The best fit results were demonstrated using 

the PyMOL 0.99rc6 software  (DeLano Scientific LLC, Palo Alto, CA). 
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