

ABSTRACT

Title of Dissertation: ADDRESSING GEOGRAPHICAL

CHALLENGES IN THE BIG DATA ERA

UTILIZING CLOUD COMPUTING

 Hai LAN, Doctor of Philosophy, 2020

Dissertation directed by: Professor, Kathleen Stewart,

Department of Geographical Sciences

Processing, mining and analyzing big data adds significant value towards solving

previously unverified research questions or improving our ability to understand

problems in geographical sciences. This dissertation contributes to developing a

solution that supports researchers who may not otherwise have access to traditional

high-performance computing resources so they benefit from the “big data” era, and

implement big geographical research in ways that have not been previously possible.

Using approaches from the fields of geographic information science, remote sensing

and computer science, this dissertation addresses three major challenges in big

geographical research: 1) how to exploit cloud computing to implement a universal

scalable solution to classify multi-sourced remotely sensed imagery datasets with

high efficiency; 2) how to overcome the missing data issue in land use land cover

studies with a high-performance framework on the cloud through the use of available

auxiliary datasets; and 3) the design considerations underlying a universal massive

scale voxel geographical simulation model to implement complex geographical

systems simulation using a three dimensional spatial perspective. This dissertation

implements an in-memory distributed remotely sensed imagery classification

framework on the cloud using both unsupervised and supervised classifiers, and

classifies remotely sensed imagery datasets of the Suez Canal area, Egypt and Inner

Mongolia, China under different cloud environments. This dissertation also

implements and tests a cloud-based gap filling model with eleven auxiliary datasets in

biophysical and social-economics in Inner Mongolia, China. This research also

extends a voxel-based Cellular Automata model using graph theory and develops this

model as a massive scale voxel geographical simulation framework to simulate

dynamic processes, such as air pollution particles dispersal on cloud.

ADDRESSING GEOGRAPHICAL CHALLENGES IN THE BIG DATA ERA

UTILIZING CLOUD COMPUTING

by

 Hai Lan

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2020

Advisory Committee:

Professor Kathleen Stewart, Chair

Professor Leila De Floriani

Professor Tatiana Loboda

Professor Yichun Xie

Professor Xin-Zhong Liang

© Copyright by

Hai Lan

2020

ii

Dedication

To Lianfang Zhao (赵莲芳), Jintang Lan (兰金堂),

Yaqi Wang (王亚琦), and Colin Lan (兰皓洋)

For their love, support, encouragement, and companionship

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor,

Prof. Kathleen Stewart. She accepted me at the most difficult time during my

academic career. Without her guidance, strongly support and encouragement, it is

impossible for me to finish the long journey of pursuing my PhD. It is my honor and

lucky to have you as one of the most important persons in my life who is keeping me

on the right track and overcome obstacles in scientific research.

I would also thank to Prof. Yichun Xie from Eastern Michigan University. He

led me to the door of scientific research and has kept advising me since I started my

GIS studies in the U.S. He also provided the ground survey dataset to support the

experiments in Chapter 2 and Chapter 3 of my dissertation.

My sincere thanks also go to other members in my dissertation advisory

committee. Thanks to Prof. Tatiana Loboda for advising me and correcting me many

times from the perspective of remote sensing and for giving me a lot of very valuable

comments on my dissertation draft. She guided me on how to organize the remote

sensing parts in my dissertation in the correct direction. I would also thank Prof. Leila

De Floriani and Prof. Xin-Zhong Liang for spending time to talk with me and

advising me on how to improve this dissertation and prepare for the defense

presentation.

Special thanks to Prof. Michael Batty, CASA of University College London,

Prof. Jimmy Lin, Chair in the School of Computer Science at the University of

Waterloo and Prof. Huy T. Vo in the Department of Computer Science and

iv

Engineering, New York University. Thank you for your strongly support,

enlightenment and advising.

Thanks to all the colleagues and friends, Cheng, Xin, Yanjia, Junchun, Yao,

Zhiyue and Zheng in Center for Geospatial Information Science, UMD. It is a great

pleasure to work with them and thanks for their support and companionship. My

thanks to Ruibo Han, Jack Ma, and Jonathan Resop to offer me the chance to work

with you as a TA in the MPGIS program. I would also thank Rachel Berndtson, who

helped me a lot with patience to administrative issues.

Last but not the least, I would like to thank my wife Yaqi, my son Colin and my

parents for their deepest love and unconditional support. It is impossible to finish this

long march without them.

v

Table of Contents

Dedication ... ii

Acknowledgements .. iii

Table of Contents .. v

List of Tables .. vii

List of Figures .. viii

List of Abbreviations .. x

Chapter 1 : Introduction .. 1

1. Background and Motivation ... 1

2. Dissertation Structure.. 6

2.1 Chapter 2: A Cloud-based Computing Framework to Unfold Processing

Efficiencies for Pixel-Wise Remotely Sensed Imagery Data Classification 8

2.2 Chapter 3: Data Gap Filling for Land Use and Land Cover Study using

Cloud-based Distributed Markov Chain Cellular Automata 9

2.3 Chapter 4: Massive Voxel Cellular Automata Using Giraph: Application to

Air Pollutant Particles Dispersal ... 10

Chapter 2 : A Cloud-based Computing Framework to Unfold Processing Efficiencies

for Pixel-wise Remotely Sensed Imagery Data Classification 13

1. Introduction ... 13

1.1 The Rapid Expansion of Remotely Sensed Data in Big Data Era 13

1.2 Computing as A Resource for Big Data Processing 16

1.3 Cloud Computing for Processing Remotely Sensed Images 19

2. Study Area and Dataset ... 23

3. Method .. 29

3.1 Cloud-based Distributed NDVI/NDWI Threshold Classification 29

3.2 Cloud-based Distributed SVM Classification ... 37

4. Results and Discussion ... 40

4.1 Experiment Environment .. 40

4.2 Experiments Results.. 41

5. Conclusions ... 50

Chapter 3 : Data Gap Filling for Land Use and Land Cover Study Using Cloud-based

Distributed Markov Chain Cellular Automata .. 53

1. Introduction ... 53

1.1 Significance of Land Use and Land Cover Change 53

vi

1.2 Missing Data in LULC Change Research ... 54

1.3 Gap Filling Modeling Approaches.. 56

2. Study Area and Dataset ... 59

2.1 Study Area .. 59

2.2 Data Availability ... 63

3. Method .. 64

3.1 Workflow .. 64

3.2 LULC Classification ... 67

3.3 Sub-regions Clustering.. 68

3.4 Implementing Cloud-based Markov Chain - CA Model 71

4. Results and Discussion ... 80

4.1 Experiment Environment .. 80

4.2 Simulation Results and Accuracy Assessment ... 81

5. Conclusions ... 91

Chapter 4 : Massive Voxel Cellular Automata Using Giraph: A Use Case of Air

Pollutant Particles Dispersal ... 93

1. Introduction ... 93

2. Big Voxel CA Implementation ... 97

2.1 HPC Solutions ... 99

2.2 Cloud Solutions ... 100

3. Giraph-based Cellular Automata .. 104

3.1 Rethink CA in Giraph ... 104

3.2 Implementing Massive GoL CA with Giraph .. 107

3.3 Performance Tests and Discussion ... 108

4. Massive Scale Voxel Air Pollutant Particle Dispersal Simulation 114

4.1 Physical Model.. 115

4.2 Graph-Based Voxel Air Pollutant CA .. 117

4.3 Experiment Results and Discussion .. 120

5. Conclusions ... 129

Chapter 5 : Conclusions and Future Work .. 131

1. Conclusions and Limitations... 131

2. Significant contributions ... 136

3. Future work ... 139

Bibliography ... 141

vii

List of Tables

Table 2-1: Detailed acquisition time of each dataset. ... 27

Table 2-2. Computing environment for Landsat 8 classification on local cloud

environment .. 40

Table 2-3. Computing environment for MODIS classification on AWS 41

Table 2-4. Data size and processing time ... 42

Table 3-1. IMAR LULC classes including grassland subclasses 60

Table 3-2. Suitability factors... 74

Table 3-3. Computing environment .. 81

Table 3-4. Transition matrix ... 81

Table 3-5. Overall accuracy assessment without using sub-region strategy 86

Table 3-6. Overall accuracy assessment by using sub-region strategy 86

Table 3-7. Sub-regions accuracy assessment .. 87

Table 4-1. Computing environment for 1 trillion cells GoL experiment 108

Table 4-2. Computing environment for air pollutant CA experiments 122

Table 4-3. A comparison of Jjumba’s study and ours .. 127

viii

List of Figures

Figure 1-1. Conceptualization model of the three studies in this dissertation organized

in two research perspective ... 7

Figure 2-1. Study area at SC area with remotely sensed imagery dataset coverage at

three different scales ... 26

Figure 2-2. Study area at IMAR ... 28

Figure 2-3. Spark-based remote sensing image processing workflow 31

Figure 2-4. Algorithm for NDVI/NDWI threshold classification 33

Figure 2-5. Algorithm for result visualization .. 35

Figure 2-6. Detailed workflow for images classification and visualization 36

Figure 2-7. Algorithm for Spark-based distributed SVM classification 39

Figure 2-8. Visualization of NDVI/NDWI threshold classification results for time

series from 2013 to 2017... 44

Figure 2-9. Processing time of large-size Landsat dataset under different

configurations ... 46

Figure 2-10. Visualization of SVM classification result in IMAR 47

Figure 3-1. Landsat 8 OLI images at IMAR from on August 2016 60

Figure 3-2. Data gap in IMAR on August 2016 ... 62

Figure 3-3. Workflow for cloud based LULC gap filling process 65

Figure 3-4. Six clusters generated by county-based multivariate geographic k-

medoids clustering analysis .. 70

Figure 3-5. Algorithm of distributed calculating probability matrix using Apache

Spark ... 73

Figure 3-6. Algorithm of distributed processing Markov CA model with Apache

Giraph ... 79

Figure 3-7. Overall results. (a) actual LULC mapping for 2016 and (b) LULC

mapping with simulated gap filling for 2016 .. 85

Figure 3-8. LULC maps of three grassland areas: (A) simulated Hinggan League area

(meadow grassland), (B) real Hinggan League area, (C) simulated Xilingol League

area (steppe grassland), (D) real Xilingol League area, (E) simulated Bayan Nur area

(desert grassland), and (F) real Bayan Nur area ... 89

Figure 4-1. Radenski’s cloud-based 2D GoL algorithm ... 101

Figure 4-2. Marques’s 2D/3D GoL algorithm on MapReduce 102

Figure 4-3. workflow to accelerate voxel CA models .. 106

Figure 4-4. A 3D Von Neumann neighborhood scheme .. 107

ix

Figure 4-5. Voxel GoL CA implementation on Giraph .. 108

Figure 4-6. Comparison results of GoL: default hash vs. customized partitioning .. 109

Figure 4-7. Giraph-based GoL with customized partitioning 111

Figure 4-8. Partitioning strategy of a voxel GoL CA ... 112

Figure 4-9. Traditional voxel air CA vs. Graph-based voxel air CA 119

Figure 4-10. Air pollutant particles dispersal CA on Giraph 121

Figure 4-11. Visualization of first timestep of single source air pollutant diffusion

simulation .. 123

Figure 4-12. Single source air pollutant natural diffusion simulation for 50 timesteps

... 124

Figure 4-13. Multi-sources air pollutant natural diffusion simulation 125

Figure 4-14. One-billion-cells single source air pollutant dispersal simulation for

1000 timesteps .. 126

x

List of Abbreviations

AWS: Amazon Web Service

CA: Cellular Automata

GEE: Google Earth Engine

GoL: Game of Life

HDFS: Hadoop Distributed File System

HPC: High Performance Computing

IMAR: The Inner Mongolia Autonomous Region

LULC: Land Use Land Cover

MCE: Multi-Criteria Evaluation

Mllib: Machine Learning Library

RS: Remotely Sensed

SR: Sub Region

SVM: Support Vector Machine

1

Chapter 1 : Introduction

1. Background and Motivation

The arrival of the “Big data” era brings new opportunities and challenges to

scientific research in various research areas (Lynch, 2008). By processing and

analysing big data, researchers can add significant value to solving previously

unverified research questions or gain a better understanding of problems in scientific

research.

Geographical science, along with many other fields of study, is a data-driven

science (Goodchild et al., 2012). Remotely sensed (RS) data is one of the main

geospatial data sources that are accessible to support research studies in geographical

science, as well as in earth science, environmental science and urban planning. RS

imagery datasets support studies of sustainable ecosystems, such as land use land

cover (LULC) ecosystem dynamics, sustainable urban ecosystems, and natural

phenomena descriptions especially of large areas (Townshend, Justice, Li, Gurney, &

McManus, 1991). Over the past few decades, space-borne and air-borne earth

observation sensors have continually provided large volume datasets. For example,

Landsat 8, the latest Landsat mission launched in 2013, can collect more than 700

images per day, corresponding to approximately 86 Terabytes of data per year (Y. Ma

et al., 2015), 14 times as much data as collected in the 1980s (Wulder & Coops,

2014). And with the arrival of the Big Data era, where new data generated by

processing and data mining, co-exists with the massive volumes of observed RS

imagery data along with additional meteorological, environmental, hydrological and

2

even biological data, all will be stored and used as massive new data to support

further scientific investigations (Yang, Yu, Hu, Jiang, & Li, 2017). With such large

datasets, there comes many challenges in managing, storage, accessing and

processing these datasets.

RS imagery datasets classification converts RS imagery dataset into valuable and

meaningful information to further support geographical research (M. Li, Zang, Zhang,

Li, & Wu, 2014). More specifically, different types of RS imagery datasets record

LULC information for a large geographical area, even globally, with a certain

temporal frequency. Mining LULC data from those imagery datasets provides

essential information to many observation-based research studies, such as socio-

economic studies, environmental applications, and urban planning (L. Ma et al.,

2017). On the other hand, classified RS imagery data can be applied in modeling-

based research such as complex geo-process simulation as inputs to drive simulation,

calibrate models and validate results.

However, both observation-based research and modeling-based geographical

research that need to process big data or consume big data will inevitably lead to a big

computational burden (Y. Ma et al., 2015). For example, big volumes of RS imagery

data need to be collected, pre-processed, and classified to support a large coverage

high-resolution LULC dynamics study at a single time or within a time series. For

modeling-based research, e.g., large scale (note that in this dissertation, the term

“scale” refers to the study area extent. We do not refer to “scale” as it is used in

cartography, but refer to e.g., a larger study area extent as being at larger scale), geo-

complex systems simulation and prediction, in addition to processing the remotely

3

sensed data as part of its input, it also requires that the models themselves are capable

of supporting big data processing and be capable of generating meaningful results in a

reasonable time. For this part, theoretically, it would be ideal to utilize a universal

computing model that can solve the major problems of complex systems at a massive

scale (Heppenstall, Crooks, See, & Batty, 2011). Then, it would be desirable to

optimize this big model for big data and to utilize this model to address big data

challenges in many areas. This effort will contribute more than just the optimization

of a single specific model that can only be used in a narrow area. Therefore, three

major requirements emerge for big geographical research in big data era that include:

1) that remotely sensed datasets can be accessed in a computationally efficient way;

2) these datasets can be classified using existing or novel classifiers with high

computational performance; and 3) a model that can consume big geographical input

data and accommodate diverse geospatial complex systems simulation. Hence, how to

address the challenges of implementing big geographical data processing and driving

big models for large scale complex scenarios simulation within a reasonable

processing time need to be carefully considered.

Traditionally, big geographical datasets can be processed on supercomputer and

high performance computing (HPC) clusters with proper algorithms in high efficiency

(Mineter, Dowers, & Gittings, 2000). However, most geographical researchers do not

have access to a supercomputer and HPC computing resources, which makes it nearly

impossible to do large scale geographical research that exceeded the computing

capacity of single workstation hence blocks them to fully benefit from this big data

era to further make significant progress on geographical scientific research. In this

4

dissertation, we introduce an alternative way – using cutting edge cloud computing

technologies to support geographical researchers to handle big geographical data

processing and large-scale models processing.

Cloud computing is a type of network computing framework that can be used to

allocate and share the software and hardware resources on the internet based on user

needs (Marques et al., 2013). By using this technology, the remote service providers

can supply the same powerful performance network services as a "supercomputer"

that can reach millions or even billions of tasks being computed in a few seconds.

Many cloud-based geographical processing web-services have been published and

hosted on different cloud platforms such as Google Earth Engine (GEE) (Gorelick et

al., 2017) and Microsoft Machine Learning AI (Salvaris, Dean, & Tok, 2018). They

allow normal user to access to their cloud-based resource and further perform cloud-

based RS image processing with simple scripting. However, those web services could

not fully solve the problems we mentioned before. Using GEE as an example, it is not

a fully opened environment that allows normal users to acquire specific amount of

computing resource; monitor how many resource is able to use at specific stage;

inquire how many users before their submitted applications in the task queue, and

find out when their applications will be finished or failed. Therefore, it is not realistic

to use GEE to run very large scale (cannot fit ~ 600 Landsat 8 images classification in

a single run according to our test) geographical related process for normal users.

In this dissertation, we applied open source cloud computing frameworks based

on Hadoop distributed file system (HDFS) ecosystem to build customized cloud

computing environments on both local and commercial cloud platform (Borthakur,

5

2007). Using these technologies, users can link their workstations by gathering all

available bare mental resources together to support their research, which is not

possible for HPC structure because HPC cluster does not support normal hardware.

Users can also build a customized system with (in theory) unlimited computing

capacities to implement the processing of data and models on commercial cloud

computing platforms such as Amazon web services (AWS) (Amazon, 2015) and

Microsoft Azure (Wilder, 2012), albeit limited by computing frameworks and budgets

in real life. Another benefit for using those cloud platforms is users can easily access

to different RS dataset from cloud data warehouse directly, for example AWS S3

(Calera, Campos, Osann, D’Urso, & Menenti, 2017), without downloading them to

local machines, which could significantly reduce the data transfer cost especially for

very large geographical research. Also, some pre-processed data have been deposited

on those cloud platforms, e.g. Landsat 8 surface reflectance images, which might be

useful for geographical research in some cases.

This dissertation makes a significant contribution to increasing our

understanding about using cutting edge cloud computing technologies to support

geographical researchers in fully exploiting the benefits from big data to better solve

research questions in geographical science. In order to achieve this goal, this

dissertation focuses on addressing three major challenges with big geographical

research respectively:

1) How to design and implement a universal scalable solution with alterable core

function for classifying multi-scale remote sensing datasets in multi-spatial, multi-

spectral or multi-temporal cases with only minor adjustments, and capable of

6

exploiting benefits from cloud computing to access and process RS imagery datasets

on local computing clusters and cloud platform in an effective and efficient manner

based on performance assessment.

2) How to couple traditional Markov Chain - Cellular Automata (CA) models

with a high-performance cloud computing framework in order to exploit accessible

computing resources for LULC data gap filling using multivariable ground truth

datasets as auxiliary and produce accurate results based on testing.

3) How to re-think and rebuild traditional CAs with respect to modeling,

computational implementation, and computing resource access with cloud computing

framework to accommodate massive scale voxel-based complex geographic systems

in cloud environments.

2. Dissertation Structure

This dissertation investigates how to address the above three challenges for

geographical research in the big data era using cloud computing technologies.

Chapter 1 introduces the background, motivation, and the overall structure of this

dissertation. Chapters 2, 3 and 4 each focus on one of the three major challenges.

Those challenges are organized from two main perspectives, research dimension and

research type (Figure 1-1).

7

Figure 1-1. Conceptualization model of the three studies in this dissertation organized

in two research perspective

From the perspective of research type, two directions are considered: 1)

observation-based research; and 2) model-based studies. Assuming researchers can

access massive volume, multi-source, high quality data sets, they will need a

computing framework to mine those data and convert them into valuable and useful

information. Chapter 2 focuses on research involving LULC classification to show

how to process a LULC task with multi-source remote sensing imagery dataset in

efficient and effective ways using a cloud computing framework. However, in applied

studies especially for large-area studies, researchers are not always able to guarantee

that all data are perfect quality. Missing information is quite common in large-area

and long time series research (Shen et al., 2015). Chapter 3 focuses on migrating an

existing and mature LULC data gap filling model–Markov Chain-CA–on the cloud to

further enhance this model using cloud computing technologies and makes it a better

fit for the big data era. This study is a mix of both observation-based research and

modeling-based studies. Chapter 4 is purely modeling-based, where with this research

we investigate how to implement a universal model to process a massive scale

complex geo-simulation using a voxel CA on the cloud.

8

From the perspective of different types of spatial framework, these three topics

can be treated in 2-dimensional (2D) and 3-dimensional (3D) space. The processing

in both Chapter 2 and Chapter 3 uses a 2D spatial perspective because for pixel-based

remotely sensed imagery data processing and LULC related studies, all information is

stored as a flat surface. However, to simulate complex geographical phenomena

requires models to be built in 3D for most cases to better describe and analyze the

details of the system in each dimension. By extending the computational framework

developed in Chapter 3, Chapter 4 moves to a 3D representation where a voxel-based

CA model will be applied to implement a massive voxel GoL CA and to

accommodate an air pollutant particle dispersal simulation in 3D with synthetic data

on cloud, which are used for testing the computational performance of our cloud-

based voxel CA on both standard performance testbed in literature and actual

geographical application.

2.1 Chapter 2: A Cloud-based Computing Framework to Unfold Processing

Efficiencies for Pixel-Wise Remotely Sensed Imagery Data Classification

Chapter 2 focuses on investigating a scalable geographical data processing

framework by using cloud computing to support RS imagery datasets accessing and

processing in an effective and efficient manner as determined by performance

assessment on multi-sourced RS imagery datasets classification in different scales on

different computing environments. The motivation of this study aims to seek an

alternative approach to HPC solutions to handle large scale geographical research in

the big data era. In this chapter, RS imagery classification is selected as an example

task to demonstrate the flexibility, extensibility and accessibility of an open source

9

scalable framework that has been developed by exploiting Apache Spark (Sun, Chen,

Chi, & Zhu, 2015), to implement parallel, in-memory image processing with an

ability to rapidly classify multi-spatial, multi-spectral or multi-temporal RS images

for either a single time point or for a time series. This framework is deployed on a

local cloud environment and commercial cloud platform with direct AWS S3 data

access to test the feasibility of the approach. Two study areas: Suez Canal, Egypt and

Inner Mongolia, China are chosen with two RS imagery datasets, Landsat 8 OLI and

MODIS, at different scales. These datasets are used as test environments to verify the

practicability and performance of our framework using two different classification

approaches, NDVI/NDWI threshold classification method and a Support Vector

Machine (SVM) classifier in distributed mode on the cloud. Tests using this

framework demonstrate that the framework can be used on multi-sourced remotely

sensed imagery datasets with alterable classifiers and different cloud platforms, to

implement the classification tasks using only minor parameter adjustments rather than

having to fully rebuild a brand new tool. This work demonstrates that this framework

could be a possible solution to support RS imagery dataset processing in big data era.

2.2 Chapter 3: Data Gap Filling for Land Use and Land Cover Study using Cloud-

based Distributed Markov Chain Cellular Automata

An inevitable issue during the application of the framework presented in Chapter

2 is that to classify RS imagery datasets especially for big study area, it is not unusual

to be faced with missing data due to poor weather conditions or possible sensor

malfunctions during data collection. This issue appears more obvious once

researchers are trying to collect remotely sensed data to support large coverage study

10

areas or studies with long time series. A possible solution to overcome this issue is to

apply a gap filling algorithm to make up those missing data gaps. However, another

challenge lies with gap filling the classified datasets generated by the framework in

Chapter 2, is that the algorithm cannot be processed using a single workstation

without supporting a large-scale processing framework. Therefore, the motivation of

Chapter 3 is to solve this issue in LULC related studies by offering researchers an

open source cloud-based gap filling framework that: 1) integrates seamlessly with

existing cloud-based RS imagery processing framework and 2) is capable of handling

LULC data gap filling and provide a complete LULC map in selected study areas.

Follow this idea, we applied cloud-based and open source distributed

frameworks, Apache Spark and Apache Giraph to build an infrastructure to fill gaps

within a LULC dataset that supports big geographical research. This infrastructure

was built with a Markov Chain - Cellular Automata model that fully exploited the

scalability and high performance of cloud computing. This study further explores the

feasibility, accuracy performance of this framework by using whole Inner Mongolia,

China as a study area for gap filling test. Ground truth data that included biophysical

data, ground feature information and socioeconomic data is collected from 2000 to

2016 to support this study. An accuracy assessment is performed to prove the

feasibility of this framework.

2.3 Chapter 4: Massive Voxel Cellular Automata Using Giraph: Application to Air

Pollutant Particles Dispersal

The results of the research in Chapters 2 and 3 can provide a completed LULC

map to support observation-based geographical research, and they can also be applied

11

as input datasets to drive model-based geographical studies. However, the

computational framework in Chapter 2 and Chapter 3 cannot directly accelerate

geographical models except by providing big input datasets. The cloud-based CA

model developed in Chapter 3, is developed using a 2D spatial perspective, while

actual complex geographical systems will often require 3D representation in space to

fully analyze details in all dimensions. In Chapter 4, the 2D cloud-based CA is

extended to make this CA model fully capable of handling massive scale geospatial

complex systems modeling and simulation. In this chapter, we reconstruct the

traditional CA model from the perspective of modeling, computational schema and

computing resource accessing to migrate a traditional 2D CA into 3D space. We

present an approach using Giraph, an open source HDFS-based large scale graph

processing framework, to implement massive scale voxel CA models. We

demonstrate the scheme on two test applications. First, on a 1 trillion cell 3D Game of

Life (GoL) (Conway, 1970) CA model testbed, where processed on AWS cloud

platform, we achieved an average processing time of about eight minutes per time

step for this test. In comparison with existing 1 trillion scale approach in literature,

the computing efficiency is about 90 times faster than theirs (Marques et al., 2013). In

addition to the GoL test model, we further explored a real geographical model – air

pollutant particle dispersal simulation on the cloud. By integrating an existing air

pollutant particles dispersal physical model (Jjumba & Dragicevic, 2015) with our

computational voxel CA framework, we successfully simulate the air pollutant

particles advection and diffusion with 1 billion cell scale at local cloud environment.

After performance assessment, we found our solution could process 1 billion cells

12

simulation for 47.3 seconds per step while the original MATLAB based series

programming approach took at least 24 hours.

13

Chapter 2 : A Cloud-based Computing Framework to Unfold

Processing Efficiencies for Pixel-wise Remotely Sensed

Imagery Data Classification1

1. Introduction

1.1 The Rapid Expansion of Remotely Sensed Data in Big Data Era

Data provided by remote sensing have long presented as a critical resource in

monitoring, measuring, and explaining natural and physical phenomena. Indeed,

remote sensing might justly be characterized as one of the first “big data” sciences

(Goodchild et al., 2012). Steadfastly, advances in the sensing capabilities of remote,

Earth-observing platforms have continued to produce more and more data, with

increasing observational breadth and finesse of detail. These developments carry a

dual benefit and problem: analysis and inquiry in the environmental and Earth

sciences are routinely awash with data, but also often struggle to match pace in

building empirical knowledge from those data because the data are incoming with

such haste and heft. Strategies to manage big remotely-sensed data are required to

fully exploit the benefits those data hold for applied scientific inquiry, and the topic

of how computing might be leveraged to ease pathways between science and sensing

holds significant currency across many fields, with particularly rapid adoption of

1 An earlier version of the research described in this chapter has been published in

Journal of Sensors as Lan, H., Zheng, X., & Torrens, P. M. (2018). Spark Sensing: A

Cloud Computing Framework to Unfold Processing Efficiencies for Large and

Multiscale Remotely Sensed Data, with Examples on Landsat 8 and MODIS Data.

Journal of Sensors. (Lan, Zheng, & Torrens, 2018)

14

high-performance computing (Yang, Yu, Hu, Jiang, & Li, 2017) and cloud computing

in the geographical sciences (Lee, Gasster, Plaza, Chang, & Huang, 2011). Remote

sensing imagery is a commonly used source to support those studies of sustainable

ecosystems, such as ecosystem dynamics, grassland degradation, and urban

ecosystem restoration, especially in large areas (Wulder & Coops, 2014).

Traditionally, studies with pure remotely sensed data involved only a few scenes

of data in a limited study area, or they rely on low-resolution remotely-sensed images

in large-area experiments (Z. Wang, Zhong, Lan, Wang, & Sha, 2017). Those

traditions are changing as new data have dramatically altered the underlying substrate

for analysis. For example, in the past few decades, the space-borne and air-borne

earth observation sensors are continually providing large volume data sets. For

example, Landsat 8, the latest Landsat mission launched in 2013, can collect more

than 700 images per day, corresponding to approximately 86 Terabytes of data per

year (Y. Ma et al., 2015), which is 14 times as much as that in the 1980s (Wulder &

Coops, 2014). Processing the massive volume of remotely sensed data is now not the

only problem: the intrinsic complexity of those data is also an important issue that

must be considered.

The sensors that are actuated in remote sensing are usually designed to serve

specific requirements of analysis for different fields of study. To fulfil those different

needs, sensors are usually tasked to capture images at different resolutions. For

example, high-resolution satellite sensors such as WorldView-4 can produce imagery

with a spatial resolution of 0.31-m in panchromatic vistas, and 1.24-m spatial

15

resolution in multispectral vistas (Satellite Imaging Corporation, 2017b), while the

QuickBird platform can image the Earth with 0.61-m spatial resolution in

panchromatic form and 2.44-m spatial resolution in multispectral form (Satellite

Imaging Corporation, 2017a). These resolutions, on the order of fractions of a meter

to a few meters in spatial resolution, presented significant opportunities to monitor

the Earth, and represent the state of the art in Earth-observing imaging detail.

Concurrently, other remote sensing platforms are tasked with refreshing observations

of the whole Earth’s surface, aiming for coverage of large areas with temporal

consistency, rather than small-area detail. For example, relatively medium-resolution

sensors, such as Landsat, and relatively low-resolution sensors, such as MODIS, are

deployed as long-term Earth observatories. Landsat provides 15-m panchromatic and

30-m multispectral imagery, which is very widely used in studies of large-area

grassland degradation and urban land cover dynamics (Lan & Xie, 2013). MODIS

offers 250-m multispectral imagery and can build a mosaic view of the entire Earth

once every few days. MODIS data has been widely adopted in global-scale research

studies, particularly those trained on studying vegetation canopies for investigation of

world-wide forest cover dynamics (Friedl et al., 2002).

Many sensors support multispectral imaging. For example, WorldView-4 data

includes four spectral bands, and Landsat 8 OLI/TIRS provides 11 spectral bands. For

some spectrally sensitive studies, higher spectral resolution imagery is required. In

those studies, hyperspectral sensors (such as Hyperion, which generates 220 bands

between 0.4–2.5 µm (U.S. Geological Survey, 2011)) can produce detailed spectral

data over a very small wavelength range. Furthermore, different sensors offer

16

different temporal resolution in their rate of imaging as well as the timing of their

coverage of subjects under their purview. For example, the WorldView-4 satellite is

capable of revisiting views every 4.5 days (sometimes sooner), while Landsat can

deliver repeats views every 16 days (Turner et al., 2003). Higher temporal resolution

in return views facilitate study of dynamics on the Earth surface, so that the time

series and the time interval between visits become significant attributes of the

observation, alongside the spatial resolution and spectral range. Therefore, methods to

streamline a feasible, effective, and efficient approach to processing archived and

continually-incoming multi-spatial, multi-spectral, and multi-temporal remote sensing

data are an ongoing requirement across many potential applications of remote sensing

to applied scientific inquiry.

In this research, possible scalable solutions were introduced to address issues of

processing multi-scale remote sensing datasets in multi-spatial, multi-spectral or

multi-temporal cases. The aim was to implement a tool that can process different

proposed remote sensed tasks with only minor adjustments rather than fully rebuild

new toolkits. Furthermore, this solution should be fully capable of exploiting benefits

from cutting-edge cloud computing technologies, resources and platforms to help

researchers process and analyze remotely sensed datasets that was difficult to process

on local machines in an effective and efficient manner.

1.2 Computing as A Resource for Big Data Processing

Many researchers have made significant progress in advancing feasible,

effective, and efficient processing for multi-prong attributes of remotely sensed data,

using developments in computer engineering. In particular, research into how

17

graphical processing units (GPUs) and cluster-based high-performance computing

(HPC) might be leveraged to advance image processing for remote sensing has been

particularly fruitful (Q. Huang et al., 2013). More recently, cloud computing is

increasingly being considered as a resource in processing remotely sensed imagery,

largely because of cloud computing’s native abilities to scale computing in kind as

the data being processed also scale. Furthermore, significant cloud computing

resources are now available commercially, on a “pay as you go” model, from

providers such as Amazon Web Services (AWS) (Amazon, 2015), Microsoft Azure

(Wilder, 2012), and Google’s Compute Engine (Sanderson, 2009). These resources

can be brought to bear on image processing tasks as IaaS (Infrastructure as a Service),

PaaS (Platform as a Service) or SaaS (Software as a Service).

Cloud computing is useful in providing some of the flexibility required to match

pace between incoming data, large existing data silos, and evolving analytical needs

in image processing that authors alluded to in the introduction. Cloud computing

affords this flexibility by allowing users to allocate and share software and hardware

resources on the Internet in a distributed fashion, by splitting large computational

tasks into many small parallel computing tasks, then assigning them to as many

computing instances as are required to achieve computing goals based on data size,

data fusion, resource use, or computing time. After all the distributed nodes of the

cloud service have completed their assigned tasks, the results are bundled and

returned to the users’ local database. In this way, virtual instances, applications, and

software are provided on an as-requested basis, and users may pay for those services

as demanded. This affords a user access to a theoretically limitless size computing

18

capacity (although very strong limits of available financial budgets to pay for the

services quickly dock theoretical capacities to tangible practical realities in many real

instances).

A promising community of computing frameworks have co-developed alongside

cloud computing hardware, and several of these frameworks hold significant promise

for processing remotely sensed imagery of the Earth’s surface. For example,

MapReduce was introduced by Dean and Ghemawat (Dean & Ghemawat, 2008), ten

years ago. In the decade since, a number of open source implementations of the

MapReduce model have emerged as promising frameworks for mediating the

computing between image processing for remotely sensed data and cloud resources

that are available to distribute and/or accelerate that computing on commercial (or

user-run) clouds. Chief among these open source implementations of MapReduce is

Apache Hadoop. While Hadoop MapReduce relies on reading and writing data to a

disk, another variant, Apache Spark (Apache Software Foundation, 2018a) maintains

data partitions in memory (a so-called in-memory computing framework). Spark also

provides a network buffer for each reducing task, rather than merging outputs into a

single partition, with the result that Spark can be one hundred times faster than

Hadoop MapReduce on some big data tasks (Guller, 2015). Nevertheless, one

advantage that Hadoop might hold over Spark is that Hadoop allows parallel

processing of large amounts of data that are bigger in physical storage size than the

available memory. In fact, many remote sensing datasets are of a size that is so

massive that they exceed the memory available in local machines or small clusters.

Furthermore, physical disk resources are usually much less expensive in financial cost

19

(of owning or accessing) than memory resources are. So, in cases for which limited

memory may become a constraining factor, Hadoop presents as a better option in

some cases for processing large amounts of remote sensing data.

However, cloud computing frameworks are agile relative to resource constraints.

And that novel advances in cloud computing technologies and cloud platforms allow

Spark to leverage resources from and across different cloud computing platforms,

with the possibility that memory limitations may no longer loom as a constraint for

big remote sensing data processing scenarios. Consider, if memory as a resource that

can be drawn upon on an as-needed basis, researchers can access theoretically

unlimited memory on the cloud. Furthermore, Spark can run on a single workstation,

as well as local computing clusters and cloud platforms. And, Spark could access

diverse data sources, such as Amazon S3, Hadoop Distributed File System (HDFS),

Cassandra, and HBase. In other words, Spark can access not only local private data

warehouses, but can also reach cloud-stored remote sensing datasets, and do so via

the cloud platform directly, with the ability to process those data on the cloud, and

then stream back the required results.

1.3 Cloud Computing for Processing Remotely Sensed Images

One of the common computing solutions to the burden of processing, analyzing,

and managing large-scale remote sensing data is to parallelize the remote sensing

processing tasks: to spread the burden over multiple computing units to reduce the

overall processing time (Y. Ma et al., 2015). For example, Huang and her colleagues

used the Message Passing Interface (MPI) as a computing framework for their work

on dust storm simulation and forecasting on the Amazon EC2 commercial cloud

20

service (Q. Huang et al., 2013). They deployed MPI on the Amazon cloud and

applied loosely coupled nested models to process a high-resolution dust storm dataset.

Their performance tests showed efficient and economical results. Cavallaro et al.

(Cavallaro, Riedel, Bodenstein, et al., 2015) used GPUs to implement a support

vector machine (SVM) classifier with MPI and openMPI frameworks. As an

alternative to using HPC computing frameworks, other researchers have developed

their own bespoke parallel large-scale remote sensing data processing platforms. For

example, Wang et al. (L. Wang, Ma, Yan, Chang, & Zomaya, 2018) developed

pipsCloud, which is a cloud-based approach to process remote sensing on-demand

and in real-time. To further enhance performance, Wang et al. (L. Wang et al., 2018)

used Hilbert-R+ tree indexing.

The turn toward development of tools by remote sensing scientists, leveraging

computing techniques but departing in ways that are special to remote sensing

applications is a wonderful development for remote sensing science. Nevertheless,

bespoke solutions (particularly in academic settings) cannot feasibly contribute the

massive levels of computing available now commercially, with the result that

absolute performance will always lag behind that which might otherwise be available

on the marketplace. Also, applying MPI or self-developed systems often requires

significant research and development effort into programming, debugging, and tuning

the computing system and environment, and one might perhaps make an argument

that the time devoted to these tasks could be used on the applied science instead. In

some cases, building these systems on a bespoke basis is very challenging. For

example, consider MPI, programming tasks designed for serial computing and

21

converting them to parallel form can be significantly burdensome, and particularly so

for some complex image processing algorithms. Moreover, the networking security,

near ubiquitous availability, and fast-moving hardware compatibility (for example in

shared memory clusters) of commercial platforms offer significant practical

advantages. Some existing work points to the potential advantages that are obtainable

in cloud processing of big geospatial data. For example, Chen and Zhou (Chen &

Zhou, 2015) demonstrated that Apache Hadoop can be leveraged for partitioning

using a Mean Shift algorithm. With a local mode test, they successfully increased the

processing speed by ~2 times (Chen & Zhou, 2015). Also, Giachetta (Giachetta,

2015) introduced a Hadoop-based geospatial data management and processing

toolkit, AEGIS, which was compared against existing MapReduce-based frameworks,

such as SpatialHadoop, Hadoop-GIS, HIPI and MrGeo with spatial join, query, and

aggregation operations (Giachetta, 2015).

As mentioned in the introduction, compared to MapReduce-based approaches,

solutions based on Apache Spark have been found to generate results at higher

efficiency. For example, Shangguan et al. applied K-means clustering with Spark on

an OpenStack-based cloud computing platform to process a 7-band Landsat TM data

with 5244 rows and 5205 columns. They concluded that when K is a small value such

as 10, the paralleled K-means model does not show better performance than normal,

but at K=80, I=20, the algorithm in parallel ran 1600 sec faster, at 712 seconds

(Shangguan & Yue, 2018). Absardi et al. used Spark to compare the performance and

accuracy of processing big RS imagery dataset by using multi-layer perceptron

algorithms (MLPC) and linear Support Vector Machine (SVM). They adopted

22

Landsat 7 ETM+ images from 6 Iranian cities and achieved 88% average accuracy

with SVM while 92% with MLPC. Additionally, they found that the MLPC took

longer with HDFS, compared to a Spark standalone mode, which averaged 105

seconds (Absardi & Javidan, 2017). Lunga et al. demonstrated a novel RS data

processing flow, RESFlow, which integrated Spark and deep learning on a NVIDIA

DGX platform to process RS imagery dataset. They tested the model on many

different study areas including Ethiopia, South Sudan, Yemen, Zambia, Alabama,

Arizona, Puerto Rico, and New Mexico using Digital Globe constellations. By using

Spark, they processed 21,028 TB of imagery data and output maps at area rate of

5.245 sq.km/s, a total of 453,168 sq.km/day, which reduced a 28-day workload to 21

hours (Lunga, Gerrand, Yang, Layton, & Stewart, 2020). Wang et al. developed a

new image segmentation method using Scala with Spark and GeoTrellis framework

on IntelliJIDEA. They tested it with 8 Sentinel-2 images, which covered rural areas,

urban regions, and suburban zones. They decomposed those images into sub-images

and ran their algorithms in parallel with different computers to get the final reduced

result, which shown a performance lifting according to their experiments (N. Wang,

Chen, Yu, & Qin, 2020). Sun et al. (Sun et al., 2015) used MLlib in Spark to test the

multi-iteration singular value decomposition (SVD) algorithm on high-resolution

hyperspectral remote sensing images. Compared with the Apache Mahout

(MapReduce) approach, they found that the Spark approach can essentially trounce

MapReduce in their tests, once Spark is able to access enough hardware resources.

Another study using Spark to process remote sensing data, by Huang and his

colleagues (W. Huang, Meng, Zhang, & Zhang, 2017) demonstrated a series of

23

comprehensive performance tests, using Spark to implement different types of

algorithms in remote sensing. Huang et al. (W. Huang et al., 2017) discussed the

performance of each of the tests on different running environments, including local,

standalone and Yet Another Resource Negotiator (YARN). They also proposed a self-

defined, strip-based partitioning approach to replace the default hash partitioning

method (W. Huang et al., 2017). In this research, we will use Spark as a medium to

develop a large scale RS imagery dataset processing framework that be able to handle

tasks of classifying multi-source RS images with alterable classifiers as well as be

capable to be deployed on different types of cloud platforms with only minor

parameters adjustment.

2. Study Area and Dataset

To prove the applied utility of the proposed scheme, four experiments were

performed, and two different remote sensed imagery datasets were involved. The first

experiment used the Landsat 8 Operational Land Imager (OLI) dataset at three

different scales to test a workflow of classification and visualization algorithms with

Spark on a local cloud environment. To further study the tuning performance of this

scheme, a second experiment was designed to run this tool under different execution

configurations with the same Landsat 8 dataset. The third experiment was to

demonstrate that the classifier in this framework was alterable, and that this

framework was capable of handling actual classification tasks in a geographical

study. In this experiment, we used a cloud-based distributed Support Vector Machine

(SVM), one of the most commonly used classification methods to replace the

NDVI/NDWI threshold classifier in our framework and tested it on data for Inner

24

Mongolia, China. The last experiment was designed to demonstrate that this tool can

consume remote sensed imagery datasets from different sources and can be deployed

on different cloud environments using only minor parameter adjustments. Using the

NDVI/NDWI threshold classification method presented above, a MODIS dataset on

Amazon EC2 a commercial cloud platform, was processed.

Landsat 8 scans the entire planet surface in a 16-day period (U.S. Department of

the Interior & U.S. Geological Survey, 2018). Equipped with the latest OLI sensor,

Landsat 8 provides unprecedented spectral information with two additional spectral

bands in the whole Landsat instruments family. In addition to offering a 15-m

panchromatic band and a 30-m multispectral band, as in many previous products,

Landsat 8 also includes a Quality Assessment (QA) band to support pixel-based

cloud, shadow, and terrain occlusion filtering. A relatively short revisit period,

medium spatial resolution, and seven spectral bands make Landsat 8 OLI products

commonly used and freely accessible remote sensing imagery datasets for science

that rely upon spatial, spectral, and temporal Earth attributes for environmental

research. Furthermore, the Landsat 8 dataset is currently available for public use on

cloud platforms, such as Amazon S3 (Amazon Web Services Inc, 2018a) and Google

Earth Engine (GEE), making it a great data source to serve remote sensing datasets

processing in the cloud.

Like Landsat 8 OLI, MODIS satellite datasets are available on Amazon S3

(Amazon Web Services Inc, 2018b) and GEE since 2017. MODIS provides a variety

of planet observation products with daily temporal resolution. In this study,

MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid

25

V006 (MOD09GA) will be used as secondary data input, which can provide 7 bands

of surface spectral reflectance with 500-meter spatial resolution. In addition, 1-

kilometer resolution observation and geolocation statistics bands are also offered in

this product.

The coverage of each of the datasets for the Suez Canal (SC) area is illustrated in

Figure 2-1 (Figure 2-1). Three scales of Landsat 8 imagery datasets at small-,

medium-, and large- scale were used as input data sources in the experiments. This

multi-scale approach allowed us to assess whether our tool can perform multi-scale

remote sensing image processing with only minor parameter adjustments, and to

assess whether a wide array of remote sensing imagery datasets can be processed by

our proposed framework in real scenarios. Because remote sensing images, which are

collected by different sensors at different spatial resolutions, with various bands of

spectral information, and at diverse temporal scales, are essentially formed by pixels,

pixel-based algorithms implemented via Spark in the cloud should be capable of

performing a very wide array of pixel-based processing and analysis. However, to

further demonstrate that the tool can handle multi-source remote sensing images, a

MODIS dataset that fitted the same coverage as the large-size Landsat 8 dataset was

26

used to test the framework.

Figure 2-1. Study area at SC area with remotely sensed imagery dataset coverage at

three different scales

To verify the capability of this framework and to classify the remotely sensed

images in a time series, one image per year was chosen from a imagery dataset of the

Suez Canal (SC) spanning 2013 to 2017 to generate a time series. Small-size and

medium-size images were approximately matched to one single scene of a Landsat

image. Hence, images that were acquired on a similar date for each year were selected

to reduce the land use land cover (LULC) changes caused by seasonal variation

factors as is common in time series related research. However, the large dataset was

formed by using over 15 scenes of original images. In this case, it was not possible to

guarantee that each tile of this dataset could be filled by images with the same date

for each year. Hence, by broadening the filter criteria to month, it was possible to

ensure we could obtain enough tiles to form the whole area. Another important factor

27

was that the chosen images were preferably of high quality to reduce any cloud and

haze problems (i.e., gaps). For the MODIS dataset, with relatively coarse spatial

resolution and large coverage per scene, it took about half of a single scene to fit the

large-size Landsat dataset coverage. Also, the acquisition time matched the dates of

the small- and medium-size Landsat dataset because MODIS provides daily products.

The detailed acquisition time of each dataset is listed in Table 2-1.

Table 2-1: Detailed acquisition time of each dataset.

 2013 2014 2015 2016 2017

SC_Small 4/29 3/31 4/19 3/4 4/5

SC_Medium 4/29 3/31 4/19 3/4 4/5

SC_Large Apr Mar Apr Apr Apr

MODIS 4/29 3/31 4/19 3/4 4/5

IMAR N/A N/A N/A Aug N/A

The reason for the choice of the study area shown in Figure 2-1 was that in the

SC area, the LULC mainly included sparse and dense vegetation, a natural water

body, the SC (with water), and bare sands and rocks. Thus, the study area was an

excellent test area for our NDVI/NDWI threshold classification method to detect

detailed LULC and generate accurate results. Another reason for the choice of the

study area was that the SC has been expanding since 2013 and another branch has

been constructed (Suez Canal Authority, 2013). This expansion can be clearly

monitored as demonstrated by the classification results.

A second study area located in Inner Mongolia (IMAR), China was also used for

this research (Figure 2-2). As the SVM classifier was a supervised classification

approach that required an available ground truth dataset as a training dataset, the

IMAR region was chosen due to the ground truth data availability in this area. A high

accuracy LULC vector mapping dataset that was generated based on visual

28

interpretation assisted by sample plots was available for 2000, 2010 and 2016 for this

region. The training dataset was extracted using the 2016 LULC map. Landsat 8

images were acquired for this area on August 2016 with approximately 600 scenes.

Figure 2-2. Study area at IMAR

In these experiments, all remote sensing image datasets were exported from

GEE, a cloud-based platform that serves remote sensing data sources with customized

criteria (Gorelick et al., 2017). For example, setting (1) the region boundaries to

acquire data belonging to our study area, and (2) the cloud mask to filter cloud pixels

on images before exporting the data to our cloud computing drive. Landsat 8 and

MODIS (MOD09GA) both provided surface reflectance produced on GEE. If other

datasets are used, a strictly image-based atmospheric correction should be followed to

remove any haze impact on those images (Chavez, 1996).

29

3. Method

In this research, we extended recent developments in cloud computing as a

resource for processing remotely sensed imagery. Specifically, a Spark-based remote

sensing image processing tool capable of classifying multi-source remote sensed

imagery datasets with alterable classifiers was deployed on a cloud platform. We

applied Normalized Difference Vegetation Index (NDVI)/Normalized Difference

Water Index (NDWI) threshold classification method as a testbed to assess the

feasibility and performance of the developed cloud computing tool. Also, a robust

SVM classifier was tested with this framework to verify the capability of this

framework using an additional, popular method for classification. One of the key

advantages of this approach was its ability to easily and straightforwardly support

users’ access to different remotely sensed imagery datasets that archived on cloud

data warehouse and process LULC classification on them download those data to

local machines before the classification results were generated. Moreover, a

visualization approach to save text-based output from the analysis in common picture

format, allowed users to examine results easily and quickly.

3.1 Cloud-based Distributed NDVI/NDWI Threshold Classification

The approach presented in this study was based on the YARN cloud

environment. The goal, in using YARN, was to facilitate the availability of the

processing environment in ways that were widely applicable to real-world scenarios.

YARN has been widely used in many current cloud environments (X. Fan, Lang,

Zhou, & Zang, 2017). Unlike traditional versions of Hadoop MapReduce, YARN

allows for allocation of system resources as containers to the various applications. In

30

other words, different computing frameworks can be deployed on a single physical

cluster in a noninterfering manner. In YARN mode, a Spark framework is composed

of a master instance and many workers. The master instance is responsible for

negotiating with the YARN Resource Manager to request enough computing

resources, as needed, by analyzing the Spark applications submitted by clients. Once

the master instance is loaded, it will schedule the tasks to executors with allocated

containers. Until all tasks have been finished, Resource Manager will revoke all

allocated resources for further possible tasks.

Resilient Distributed Datasets (RDD) form the basic abstraction of a dataset in

Spark. RDDs can be created from an external dataset, or from existing RDDs. In this

research, for cases using an NDVI/NDWI threshold classification method, RDDs

were created from the original remote sensing images stored in HDFS. For each

image, three RDDs were created for green, red, and near-infrared bands for the NDVI

and NDWI LULC classification at the initial stage. RDDs contain the data partitions

and the metadata records. According to the Spark mechanism, RDDs go through a

series of transformations and action operations to process the data partitions in a

distributive manner. Transformation operations of RDDs were executed on individual

partitions of an RDD and those operations returned a new RDD. Action operations

summarize information from an RDD by user-defined functions and return a result.

For example, the join operation, as a commonly used transformation operation in

Spark, involves joining partitions belonging to two RDDs and creating a new one. In

this case, the data blocks will not be moved at the current stage because of the lazy

31

mechanism. However, action operations, such as count, will process the data

partitions in RDD and perform real computing.

Based on the features of Spark, a workflow was designed (Figure 2-3). The first

step in that workflow was to extract each band of a raster dataset by using the

Geospatial Data Abstraction Library (GDAL), which was an open-source translator

library for raster and vector geospatial data formats (Qin, Zhan, & Zhu, 2014). Each

line of the extracted data contained the geographical coordinates and the Digital

Number (DN) value of the raster cell in the original raster dataset. These files were

then put into the HDFS as data input sources for distributive processing.

Figure 2-3. Spark-based remote sensing image processing workflow

The second step was to perform parallel processing and image(s) classification

with the pre-defined classifier(s). As introduced earlier, for each image that must be

processed by this tool, three RDDs will be created for green, red, and near-infrared

bands. The basic units of the RDD were key-value pairs. In this case, the

geographical coordinates were set as the key, and the DN value of a raster cell was

the value. In this manner, parallel LULC classifications could be conducted across

many computer units in a cloud computing cluster. The extent of parallel processing

depended on the Spark application configuration and the cluster hardware

specifications. Because the basic parallel processing unit was pixel-wise, this method

was highly flexible and scalable, allowing raster datasets to be partitioned in any

32

manner, regardless of the spatial structures of the raster. However, partitioning

strategies still must be considered seriously, as an appropriate partitioning strategy

will help to optimize the performance with better usage of the computing resources of

the cluster. Spark supports hash partitioning and range partitioning by default; these

applications were appropriate for many case studies. However, according to the

results of research by Huang et al. (W. Huang et al., 2017), the partition scale should

not be too small or too large. A very small partition scale will result in low-

performance computing and even increase the fault recovery cost. A very large

partition scale may lead to an out-of-memory error. Inspired by their strip-based

partitioning method, splitting data into chunks with a configured HDFS block size

was needed in the following experiments.

33

Figure 2-4. Algorithm for NDVI/NDWI threshold classification

The details of an algorithm to use NDVI/NDWI threshold as a classification method

on remote sensing images is shown in Figure 2-4. Several transformation operations

were performed on each partition in RDDs. For k input GeoTiFF remote sensing

images, the algorithm first parsed the dimension of them. Moreover, the RDDs were

marked by a time sequence in the time series. For each data chunk, in each image

RDD the NDVI/NDWI threshold classifier was applied to each pixel to calculate the

classification indication values. The NDVI (Rouse Jr, Haas, Schell, & Deering, 1974)

can be calculated as:

34

NDVI =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷

The range of NDVI is from negative one to one, with different ranges to denote

sparse vegetation, dense vegetation, barren rock and sand, and water. However,

NDVI may not always correctly distinguish water bodies, especially when there is a

noisy signal in the water area (mud for example). To further improve the accuracy of

classification, NDWI was applied according to McFeeters (McFeeters, 1996) as

follows:

NDWI =
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅

NDWI was able to distinguish water features with the positive values indicator.

From the perspective of algorithm implementation, RDDs of three bands were joined

as a single RDD for NDVI/NDWI calculation of each raster cell with mapping

operations. LULC classification can, therefore, be conducted in parallel using the

calculated NDVI/ NDWI results. Once the LULC features were classified by

NDVI/NDWI indicators, each feature was labelled with a class ID.

35

Figure 2-5. Algorithm for result visualization

The final step was to visualize the LULC classification results, as illustrated in

pseudo code (Figure 2-5). With all k numbers of LULC results generated by

Algorithm 1 for each image pair, visualization images were created in PPM format

from the output RDD, which was a lowest common denominator color image file

format (Frery & Perciano, 2013). Although redundant, PPM was an easy format to

write and manage text-based outputs into human-readable figures. The RDDs of

LULC classifications from Algorithm 1 were scanned and values of key-value pairs

were converted to colors according to a user-defined RGB color scheme. Those

RDDs were then sorted to the original order and reduced in a manner such that each

key-value pair represented a row of the original raster image. Finally, to produce a

PPM-format image, those RDDs were appended to the PPM file header to create

complete PPM images.

36

Figure 2-6. Detailed workflow for images classification and visualization

An overview of the steps in the process is shown in Figure 2-6. Four steps were

applied including: (1) read and parse each pair of input images and create RDDs for

green, red, and near-infrared bands; (2) split data into chunks and process them in

37

parallel; (3) gather results and assign labels to each pixel; and (4) reconstruct whole

images by sorting output RDDs and visualize them in PPM format.

3.2 Cloud-based Distributed SVM Classification

NDVI/NDWI threshold classification was a simple unsupervised classification

method that was designed as a testbed in this study to demonstrate the feasibility and

performance of our framework. However, more robust classifiers are often needed in

actual geographical research. For example, researchers applied unsupervised

classification methods such as ISODATA (Ball & Hall, 1965) and K-Means to

classify remotely sensed images without ground truth dataset (Ferro-Famil, Pottier, &

Lee, 2001). With the support of ground truth data, researchers could use supervised

classifiers to achieve classification results with high accuracy than simply applying

unsupervised classification approaches. SVM is one of the most commonly used

supervised classifiers (Cavallaro, Riedel, Richerzhagen, Benediktsson, & Plaza,

2015). In this study, we developed a distributed cloud based SVM using our

framework to demonstrate 1) the classifier in our framework could be adjusted to

support different classification tasks without a major change of the framework; 2) our

framework can be applied in a geographical research setting that required highly

accurate remotely sensed image classification.

SVM is a supervised machine learning model that is able to support

classification, regression and outliers detection (Chuang, Su, Jeng, & Hsiao, 2002).

The general idea of the SVM model is to seek the hyperplanes that separate the

training samples with maximum margins in the space where training samples are

located (Cortes & Vapnik, 1995). It requires labeled training dataset for each category

38

as input to train the classifier and to further categorize the unlabeled portion of a

dataset. In this study, we adopted the SVM function from Apache Spark machine

learning library (Mllib) to support SVM classification using our framework on the

cloud (Meng et al., 2016). Spark Mllib provided a basic linear SVM classification

function to address binary classification problems with linearly separable datasets in

high computing efficiency. However, in terms of remotely sensed imagery dataset

classification for geographical research, a multi-class remotely sensed imagery

classifier was a must because only in certain rare cases, the images may need to be

separated into two classes. On the other hand, spectral information of multi-spectral

images or hyper-spectral images (requiring principle components analysis) was used

as vectors to train the SVM classifier with labels. This involved the non-linearly

separable issue that is common in high-dimensional vector scenarios. Hence, the

original SVM was not able to be applied directly to most of the remotely sensed

imagery classification tasks without some modifications.

To solve these issues, we developed a distributed cloud-based algorithm (Figure

2-7) by extending the SVM function in Spark Mllib with a kernel trick (Haasdonk,

2005) and a one-against-all computing strategy (Y. Liu & Zheng, 2005) to make it fit

with multi-class non-linear classification found in geographical research.

39

Figure 2-7. Algorithm for Spark-based distributed SVM classification

The first step of this algorithm was to transform the training dataset with kernel

function to map the samples into a higher dimension, which helped solve the non-

linear-separable issue. In this study, a Gaussian radial basis function (RBF) was

applied for kernel trick processing (Chang, Hsieh, Chang, Ringgaard, & Lin, 2010).

The second step was based on a one-against-all computing strategy to separate the

training dataset into n types of patterns. Here n was equal to the total number of

classes that the images needed to be classified. For each pattern in n, the entire

training dataset was separated into two groups. One group included one class training

sample and another group included all the remaining training samples. Then, a binary

SVM training function was applied to train those datasets into n classifiers. This

binary SVM training function was supported by Spark Mllib. After that, the third step

was to import the vector information from the remotely sensed images that required

40

to be classified, and test each pixel for each classifier. By using the predict function in

Spark Mllib, the probability values of confidence for label pixels to each class were

returned. Comparing the probability values of a specific pixel for different classifiers,

the pixel could be labeled with the classifier that provided the highest probability of

confidence. The final step was to output the pixel labels with the coordinates in the

input image using a visualization algorithm (Algorithm 2) to re-construct the entire

image with the classified results in different colors.

4. Results and Discussion

4.1 Experiment Environment

Two experimental environments were used for this research for local cloud

environment testing and real commercial cloud platform testing respectively. The

local computing cluster contained 1008 computing vcores and 5.12 Tb memory

available with 2 Pb HDFS storage (Table 2-2). The Amazon EC2 based computing

cluster was another computing environment. A three nodes cluster was built and all

nodes in it were involved in computing (Table 2-3). The total number of vcores on

AWS environment was 8 and the overall memory was 32 G. 20 G storage per node

were attached. Both environments configured HDFS block size as 128 M and replica

factor as 3.

Table 2-2. Computing environment for Landsat 8 classification on local cloud

environment

Hardware Software

Role Count CPU RAM Name Version

2 256 G Apache Spark 2.2.0

41

Master

Node

2 x Intel Xeon E5-

2680v4 2.4GHz
Apache Giraph 1.2.0

Computing

Node
18

2 x Intel Xeon E5-

2690v4 2.6GHz
256 G

Centos 6.9

Java Server VM
1.8.0_152

64Bit

Network 10 Gbps Cloudera 5.12.0

Table 2-3. Computing environment for MODIS classification on AWS

Hardware Software

Role

(instance

type)

Count CPU RAM Name Version

Master

Node

(t2.xlarge)

1

Intel Broadwell E5-

2686v4 2.3 GHz

16 G
Apache Spark 2.2.0

Apache Giraph 1.2.0

Computing

Node

(t2.large)

2
Intel Broadwell E5-

2686v4 2.3 GHz
8 G

Ubuntu Server 14.04 LTS

Java Server VM
1.8.0_152

64Bit

Network 1 Gbps Cloudera 5.12.0

4.2 Experiments Results

In this section, we discuss the application of the workflow on multi-scale and

multi-source remote sensing datasets to test the performance and feasibility of the

Spark-sensing scheme. The performance of the tool and the visualization of the

experimental results is shown. The flexibility, extensibility and accessibility gained

by using the Spark-based solution for remote sensing image dataset processing is

discussed further.

The first experiment was performed on a 20-node YARN computing cluster. In

this experiment, a multi-scale remote sensing image dataset with the Spark-based

NDVI/NDWI threshold classification algorithm was successfully processed. The

detailed data size and processing times is shown in Table 2-4. The processing time

42

was recorded under configurations with default block size, 50 executors with 20 cores

each, and 20G executor memory. The MODIS dataset and SC_small took 54 seconds

and 67 seconds respectively to finish the classification tasks with NDVI/NDWI

threshold classification approach. It seems like the performance of them was just

similar as they were processed with a desktop series software (e,g, ENVI). The reason

is it will take time to launch a cloud-based job includes submit job, read dataset from

HDFS, processing, generate results and recycle system garbagy so that if the

processing time is even shorter than other parts in the lifecycle of a cloud computing

job, the overall performance is not quite obvious good in comparison with some

desktop solutions. However, for tasks like SC_large or IMAR, the performance of

Spark-based computing was significant faster than using desktop solutions. For

example, in IMAR classification process with SVM, a desktop solution took extreme

longer time (over 24 hours) than finished it with cloud computing approach in about

38 minutes according to our tests.

Table 2-4. Data size and processing time

 MODIS SC_small SC_medium SC_large IMAR

Image Size ~0.25 G ~1.2 G ~10 G ~ 107.4 G ~1050 G

Classifier NDVI/NDWI NDVI/NDWI NDVI/NDWI NDVI/NDWI SVM

Processing

Time
54 s 67 s 276 s 1018 s 2284 s

Furthermore, Spark can offer highly efficient processing for remote sensing

images, especially with a relatively large cluster (with available resources more than

the resource needs of a specific task), a sufficient computing resource can support the

entire distributed computing process, ensuring that the processing time does not

significantly increase as the data size increases. From the perspective of algorithm

design, by anatomizing the overall processing time in each operation time-consuming

43

segment, the join operations were found to be very time-consuming, especially for a

dataset with massive numbers of pixels. By contrast, mapping operations for

classification were much faster than the join operations. Hence, designing an image

processing algorithm with fewer join operations and appropriate partitioning to

reduce the data blocks moving may enhance the performance. We found that

repartitioning operations should also be avoided because these can result in a very

time-consuming shuffle process.

The LULC feature uses four classes (other represents non-classified pixels or no

data): dense vegetation, sparse vegetation, barren areas, build-ups and sand, and water

areas and wetlands (Figure 2-8). In the legend, colors are set for the classification

results by pixel. Other indicates those areas in the images with no data or with

erroneous data. In this figure, the changes between each pair of images can be clearly

seen. With the maps of 2014 and 2015 as an example, the results show that April

2014 was very dry for this area and during this year, the new branch of the Suez

Canal was being built and filled with water. It also showed that there was new

vegetation growing along the Canal; such vegetation may be new farmland because

most of the vegetation regions were in artificial (human built) shapes.

44

Figure 2-8. Visualization of NDVI/NDWI threshold classification results for time

series from 2013 to 2017

In addition to enhancing overall performance with the algorithm design, the

second experiment was developed to further study if the execution configurations

may affect processing performance. Only the large-size Landsat 8 dataset was used in

this experiment to assess the processing time with different execution configurations.

According to Spark performance tuning official documents (Apache Software

Foundation, 2018b), the executor numbers, executor cores and executor memory were

three main factors that may effect on performance of Spark-based applications.

Budgeting available computing resources in advance was usually needed for users to

gain satisfying processing performance. Here, three different configuration sets were

assigned as following: (1) 10 executors with 100 G memory and 100 cores each as set

1; (2) 50 executors with 20 G memory and 20 cores each as set 2; and (3) 500

executors with 2 G memory and 2 cores as set 3. These three configuration sets were

designed with same total computing vcores and memory. It is also worth pointing out

45

that block size may sometimes effect performance as well. As discussed above,

repartition operations (especially for increasing partitions) usually should be avoided

to eliminate unnecessary shuffle processes. Under this circumstance, partitions will be

mainly decided by block size during I/O process when RDDs were created. If the

block size were too small, massive numbers of partitions will be created especially

with a very large input dataset, which will lead to increasing the overhead of tasks

management, though a coalesce operation may be applied to decrease the partitions

sometimes without shuffling. If the block size were too large, only a few partitions

will be created so that not all the cores in the available computing resource can be

sufficiently utilized. In other words, the feature of parallelism was not fully exploited

to enhance the performance. Here, three different block sizes were set during the

experiments. The performance changes with processing the dataset under different

execution configurations and different block sizes are presented in Figure 2-9. The

shortest run was offered by 50 executors with 20 G memory and 20 cores each under

default block size. With the same executor configuration set, the performance was a

bit lower with the 64 M block size, which may result from the total tasks number

being increased with smaller block size. However, the execution time for each task

was not significant reduced with the corresponding settings. The performance of the

same configuration set with 256 M block size was also beaten by the case with the

default block size. This was due to the partitions generated under this block size being

too few, so that parts of the executors were not active during processing. This

problem became more obvious when applying configuration set 3. Because the

number of executors in this case was far more than tasks for this case, and too many

46

computing resources were in idle, this lead to the lower performance. The execution

configuration set 1 showed very similar performance with set 2 under each block size

setting. However, by monitoring the utilization of cores with set 1, this was lower

than with set 2. This may mean that with increasing numbers of executors and

decreasing the number of cores per executor, may lift the utilization of cores and may

also help enhance the overall performance in some cases especially for very large

datasets with relatively limited computing resources.

Figure 2-9. Processing time of large-size Landsat dataset under different

configurations

The third experiment adopted a distributed cloud based SVM into our framework

to process over 1050 GB of Landsat 8 images with a classification task set in IMAR.

Cloud cover was inevitable for remotely sensed images in such a large area during the

one month acquired period. Hence, a cloud removal pre-processing step was

performed using a cloud mask attached with the Landsat 8 dataset. The pixels that

were covered by cloud were labeled as “No Data” and were ignored during sample

points extraction and classification.

47

To train the SVM classifiers, 30000 training sample points were extracted from

the LULC map in 2016 and were applied to train 7 classifiers according to the pre-

defined number of classes. Those sample points were generated by using a stratified

random strategy to make sure there were enough sample points for each class. The

overall processing time was 2284 seconds (Table 2-4) and the visualization of 7

LULC classes was generated using Algorithm 2 (Figure 2-10).

Figure 2-10. Visualization of SVM classification result in IMAR

48

As we have discussed, the developed tool can be deployed on commercial cloud

platforms with no change (if the hardware configuration is highly different, strategies

of balancing workload may need to be reconsidered). The last experiment was

designed to use this framework on Amazon EC2 to process a MODIS dataset.

Different from Landsat 8 products with band 4 as RED, band 5 as NIR and band 3 as

Green, MODIS (MOD09GA) products set the RED band as band 1, NIR as band 2

and GREEN as band 4. Except for changing the band index for input, the processing

tool was ready to launch with no additional adjustment needed in coding. This

experiment ran on 3 nodes of Amazon EC2 cloud computing cluster. By applying 2

executors with 2 cores and 4 G memory each, the experiment was successfully

completed in 54 seconds. It is worth pointing out that 54 seconds processing time was

not fast with such a small input dataset as ~0.5 scene MODIS image was only about

50 M. In this case, most of the time was occupied by job submission, task

management, resource allocation etc., and so the performance of Spark applications

was only showed to be significantly improved with the relatively large dataset.

However, this experiment still was able to demonstrate that the proposed framework

can be deployed on actual commercial platforms to process multi-source remote

sensing images with only minor parameter adjustments.

These experiments represent a robust solution for constructing remote sensing

image processing tools for multiple purposes that were flexible (the ability of the tool

to fit multi-source datasets at different scales), extensible (the ability of the tool to

expand and accommodate the volume of computing to be resolved) and accessible

(the ability of the tool to access data from multiple storage platforms and locations on

49

local resources, data centers, and the cloud). The test image datasets in these

experiments were Landsat 8 with 30 meters spatial resolution and MODIS images

with 500 meters spatial resolution. However, it should be noted that the input dataset

can be any raster-based images with different spatial, temporal, and spectral

resolutions, because the algorithm implemented in our experiment was a pixel-based

processing algorithm. Following a similar mechanism, all pixel-based algorithms can

be implemented by processing the DN values of each pixel to generate required

results under this framework. Hence, regardless of whether this workflow was applied

to an existing dataset or used with a next-horizon dataset that will be collected in the

future with current sensors or new sensors, this solution was capable of handling the

tasks with only minor changes in coding, thereby saving the high cost usually invoked

in reprogramming different tools for different research goals.

 With the Spark-based implementation, as demonstrated in the experiment, the

main structure of this tool does not require modification as the volume of dataset

changes. It is possible for example, that even if a Landsat 8 dataset that covers a

complete year (47.33 Tb) (Y. Ma et al., 2015) is involved in processing at the same

time, by the support of cloud platforms, in theory users can always gain sufficient

computing resources (memory especially, for Spark). Consider that Amazon EC2 now

provides the “x1e.32xlarge” instance, which contains 128 virtual CPUs, ~4 Tb

memory, and ~4 Tb storage. Users can apply fewer than 20 instances to implement

in-memory computing with Spark-based approaches for this dataset in many different

processing purposes. Nevertheless, to maintain the high performance of the tool, the

partitioning strategies should be tailored based on real execution environments,

50

especially for clusters with unevenly distributed computing resources and networking

performance.

As discussed in the introduction, Spark-based approaches can easily access

HDFS, Amazon S3, Cassandra, and HBase. Benefitting from cloud storage and

management development, an increasing amount of data has been stored in the cloud

and is open to the public. The approach as demonstrated, provided cloud-based data

resources to support users in performing a “pure” cloud analysis and in creating new

products from it, without transferring unnecessary original and intermediate data to

local storage before the final results are generated. This solution can also support data

from multiple sources at the same time. For example, users can access cloud-stored

public data as part of their data source and can also access and load their private data

stored on local HDFS in a single Spark application.

5. Conclusions

In this study, we demonstrated that the current state-of-the-art for remote sensing

in big data era, involving RS datasets being generated from existing and next-

generation satellites and earth observation platforms was, in many cases, proceeding

at paces that outstrip our analytical capabilities to keep up with the information

products associated with those data. While data and analysis are out of alignment,

researchers perhaps have missed opportunities to build the necessary science that

might otherwise be attainable if data and analysis could be better-connected. In this

study, we discussed a set of current and widely-used approaches that have been

developed in previous studies as a means to cater to the call of the community for an

effective and efficient computing framework to process remote sensing datasets.

51

Based on a comparison with other possible approaches, using Spark to build a robust

scalable tool in a cloud environment was demonstrated to be an important and

practical option to match data with analysis at scale. To this end, a Spark-based multi-

scale remote sensing classification has been introduced, and its successful

deployment and experimental testing in a cloud environment has been shown.

The approach in this study suggests several promising advantages. First, the

scheme for Spark-sensing offers considerable flexibility for processing remote

sensing datasets in multi-spatial, multispectral, or multi-temporal cases, Indeed,

shifting between resolutions and spectrums is possible with slight adjustments,

thereby significantly saving the time and cost of re-programming brand new toolkits

for different purposes. Second, this scheme makes it possible to exploit the benefits of

cloud platforms to gain (theoretically) unlimited computing resources, with highly

efficient performance to potentially support very big RS imagery datasets processing.

Third, the presented approach is natively highly accessible to multisource data

storage, even in the cloud, which is useful in reducing data transformation costs.

The tools and framework discussed in this study were obviously a prototypical

framework and thus, improvements can still be made. The work here serves to

demonstrate the general principle and mechanisms necessary to launch experiments in

this area, and hopefully this research will encourage others in the community to build

on this foundation. One extension of our approach could include the implementation

of more complex remote sensing image processing algorithms, especially with respect

to classification (e.g., random forest, or even non-pixel-based classification approach

such as objected oriented classifiers), to extend the types of cases encountered in

52

different research areas. Another improvement could be explored in designing better

partitioning strategies to further enhance the computing performance. Moreover,

using a dataset from the cloud directly may reduce the unnecessary data transfer from

the data source to the cloud environment, which may better fit the usage in real-world

problem-solving environments.

53

Chapter 3 : Data Gap Filling for Land Use and Land Cover

Study Using Cloud-based Distributed Markov Chain Cellular

Automata

1. Introduction

1.1 Significance of Land Use and Land Cover Change

Alteration of land surface conditions affects the earth ecosystem functions

significantly and profoundly in many different ways (Lambin et al., 2001; Mitsova,

Shuster, & Wang, 2011). For example, changes in land use, such as deforestation and

urbanization resulting from human activities, have become important factors that

impact the global carbon cycle and the global climate (Foley et al., 2005). In addition,

land cover changes can also affect local and global climate from both a biophysical

and biochemistry perspective (Feddema et al., 2005). For example, changes in albedo

and roughness of surface due to vegetation structure alteration may affect surface

energy, such as momentum and heat transport (McGuffie, Henderson-Sellers, Zhang,

Durbidge, & Pitman, 1995). Environmental factors and human activities together can

both contribute to these changes. However, in past few decades, the unprecedented

expansion of development and the rapid pace of urbanization makes human activity a

principal factor that affects climate through ongoing land use and land cover (LULC)

change (Singh, Mustak, Srivastava, Szabó, & Islam, 2015). For this reason,

understanding the current state and trend of regional and global LULC change are

54

very important topics for regional and global sustainable systems research and

development (Fan, Wang, & Wang, 2008).

Many research studies have been undertaken to explore the effects of LULC

change on climate. In general, observation and modeling are two main directions for

this research (Y. He, Lee, & Warner, 2017). For example, temperature records were

applied by Kaufmann and Stern as observational evidence to analyze global climate

change under human influence (Kaufmann & Stern, 1997). Douglas et al. modeled

the moisture and energy fluxes from the perspective of biophysics to explore the

impact of agricultural land use in India (Douglas et al., 2006). Pielke and colleagues

reviewed LULC change studies via modeling and observational evidence for each

continent across the globe (Pielke Sr et al., 2011). In these studies, both observational

and modeling studies required LULC maps as input to detect the pattern of changes in

LULC over time. However, due to the limited availability of large area and long-term

LULC maps, previous climate studies sometimes simply applied a single map from a

specific year to represent the LULC for an entire study period (Zhu, 2012). This

research presents an approach that offers high quality large-scale (i.e., datasets that

are beyond the computational capacity of a single workstation) LULC dataset where

data gaps are minimized, to support related research.

1.2 Missing Data in LULC Change Research

In 1991, Townshend et al. claimed in their research that only remotely sensed

(RS) data could potentially provide accurate and repeatable global LULC for

monitoring change (Townshend et al., 1991). From then on, many researchers

(Dewan & Yamaguchi, 2009; J. Liu et al., 2014) employed remotely sensed data to

55

generate LULC maps. However, this research either applied relatively low temporal

frequency of acquired images or employed mixed data sources from multiple

different satellites to build an LULC time series. The main reason is that it is

computationally challenging, and missing data has been a stumbling block to building

a high resolution LULC dataset for large scale and long term time series using the

same optical RS dataset data source for a continuous period, and for the same time

intervals (X. Li, Shen, Li, & Zhang, 2016).

The problem of missing RS data occurs mainly due to two reasons: one is that

aging sensors may experience hardware failures and a second reason relates to

weather. Under the first scenario if there is a malfunction, a satellite cannot send

accurate and correct ground information back as usual. For example, the scan line

corrector of Landsat 7 enhanced thematic mapper plus (ETM+) has permanently

malfunctioned since 2003 (Zeng, Shen, & Zhang, 2013), which impedes the use of

Landsat ETM+ datasets for research purposes after 2003. When satellites are

scanning cloudy areas or areas where rain is falling on the earth’s surface, those thick

clouds or haze may obscure the land surface, and in turn result in missing ground

information for those areas. Although many different cloud removal approaches have

been developed to support various cases (Gafurov & Bárdossy, 2009; Tseng, Tseng,

& Chien, 2008), those algorithms cannot always return optimal results especially

when the input images are heavily cloud-contaminated. Hence, a critical research

need is to develop efficient methods to reconstruct missing data in imagery dataset

since gaps in remotely sensed data are inevitable, especially for longer term and large

scale LULC studies (X. Li et al., 2016).

56

1.3 Gap Filling Modeling Approaches

Shen and his colleagues reviewed current reconstruction approaches to address

missing data issues in optical remotely sensed datasets (Shen et al., 2015). The four

classes of methods that they derived have been the focus of much research: 1) spatial-

based methods (Ballester, Bertalmio, Caselles, Sapiro, & Verdera, 2000; C. Zhang,

Li, & Travis, 2007); 2) spectral-based methods (Gladkova, Grossberg, Shahriar,

Bonev, & Romanov, 2012; Shen, Zeng, & Zhang, 2011); 3) temporal-based methods

(Melgani, 2006; J. Zhang, Clayton, & Townsend, 2011); and 4) hybrid methods (Qin

et al., 2014). Spatial-based methods involve filling in for missing data by traditional

interpolation methods or further enhancing interpolation techniques using spatial

relationships. Spectral-based methods use redundant information found in other

normal bands to derive the data in missing bands. Temporal-based methods apply

data that were for the same geographical region but with different acquisition times as

supplementary information to calculate the missing data. Finally, hybrid methods use

multitemporal and multispatial datasets to support filling missing gap for the same

time period and for the same locations. One example used a Markov Chain Cellular

automata model to reconstruct the missing data in a time series gap for LULC

mapping as well as for predicting future data based on current known information

(Halmy, Gessler, Hicke, & Salem, 2015).

Markov Chain models are stochastic models that have been widely used for

predicting LULC change at different scales (Baker, 1989). Markov Chain models

contain a series of random values. The probabilities of those values at specific time

steps are dependent only on the value at the previous time step (Fan et al., 2008). This

57

is part of a basic assumption of Markov Chain models from physics where the

probability of the state in a system at a certain time point can be determined by the

state at a previous known time point (Bell & Hinojosa, 1977). Applying this principal

in LULC studies, researchers assume that the LULC can be regarded as a stochastic

process and the different LULC classes can be treated as states of a chain, which

makes this model a simple approach to modeling LULC change (Weng, 2002).

Markov analysis is suitable for spatially dependent LULC data because the statistical

independence of the data will not be necessarily checked for those data (Overmars,

De Koning, & Veldkamp, 2003). More importantly, unlike Geomod (Pontius Jr &

Chen, 2006) or other approaches that simulate one-way transitions from one class to

another, Markov Chain models can be used to simulate all classes in LULC change.

However, Markov modeling itself offers no spatially explicit support. In other words,

the transition probabilities that can be derived from observed data sets can potentially

predict accurate change among LULC classes, but the spatial distribution of these

changes will not be represented explicitly (Ye & Bai, 2007). Fortunately, this

shortcoming of Markov Chain analysis can be addressed by integrating other models

that can add spatial properties to the results (Halmy et al., 2015).

A cellular automata (CA) model is a spatial and dynamic model that can be

utilized to simulate and represent complex spatial and dynamic processes in many

research fields (Mendes, Santos, Martins, & Vilela, 2001; Qiu, Kandhai, & Sloot,

2007; Zhao, Billings, Coca, Ristic, & DeMatos, 2009). In geospatial science, the CA

model has been extensively used to simulate dynamics of land use change and other

natural geo-processes (Di Gregorio, Kongo, Siciliano, Sorriso-Valvo, & Spataro,

58

1999; C. He, Okada, Zhang, Shi, & Li, 2008) The simple modeling and

computational efficiency of CA models make them a possible choice for modeling

LULC dynamics at multiple scales. Grid-based dynamics are structured to operate

locally and be controlled by transition rules that are designed by modelers and are the

same for each grid cell (Fonstad, 2006).The states of all cells are updated

simultaneously based on the progression of time and according to transition rules.

Integrating Markov chain models with CA models is a robust approach for

simulating LULC change at different scales (Guan et al., 2011). With the addition of

spatial information from a CA model, the Markov-CA has the advantage of

simulating two-way transitions among all LULC classes (Theobald & Hobbs, 1998).

However, even though the Markov-CA model has been widely used in LULC change

prediction and information reconstruction, the fact is, until now, the vast majority of

CA-based models are implemented to run on a single computer or single workstation,

with the result that computing capacity is often limited. Because CA-based models

are theoretically scalable to any size, improving the computational capabilities of

cellular automata can be of significant benefit to researchers. Especially in the Big

Data era, to design an approach for how to make CA-based models benefit from big

data input and how these models can be accelerated via cloud computing, will better

support LULC change analysis and gap filling procedures especially for large areas

and longer term time series research.

In this study, we discuss a workflow that uses a cloud-based Markov CA

simulator to support LULC analyses including gap filling. We developed a distributed

computational framework to support our study using a cloud environment. We tested

59

our framework to implement gap filling for a LULC dataset collected for The Inner

Mongolia Autonomous Region (IMAR), China with 30-meter resolution LULC

mapping from 2000, 2010 and 2016 as input data. Eleven environmental and human

factors including digital elevation model (DEM), slope, precipitation, temperature,

population density, livestock density, compensation policy, water area, roads,

railways, and other human land use are applied as constraint and restraint factors to

calibrate the Markov-CA model. LULC classes were not expected to change into

other classes as a result of the impact of any of the constraint factors. On the other

hand, some classes were possibly changed into other types of LULC classes under the

impact of some of the restraint factors. The accuracy of gap filling is calculated using

a confusion matrix and kappa statistics.

2. Study Area and Dataset

2.1 Study Area

The IMAR is located in northern China (Figure 3-1). It is the third largest

province in China with 103 counties (or banners as named by the local Mongolian

population). The overall area is about 1.18 million square kilometers extending from

37°24′N to 53°23′ N and 97°12′E to 126°04′E. The shape of IMAR is

long and narrow. The climate is variable across the region as in the western part of

IMAR it is semi-arid, while the eastern and northern areas correspond to a semi-

humid climate.

60

Figure 3-1. Landsat 8 OLI images at IMAR from on August 2016

The major land cover in IMAR is grassland. The Hulunbeir Grassland, located in

northern IMAR, is one of the largest natural grasslands in the world. In this study, we

classified IMAR into ten LULC classes (Table 3-1). In this table, there are seven

grassland classes classified by using Ivanov moisture coefficient (Kononova, 1961).

Table 3-1. IMAR LULC classes including grassland subclasses

Class ID Classes Subclass ID Subclasses

1
Temperate Meadow-

steppe (TMS)

30011 Plain and hilly area of meadow steppe subclass

30012 Mountain land of meadow steppe subclass

30013 Sand land of meadow steppe subclass

2
Temperate steppe

(TS)

30021 Plain and hilly area of steppe subclass

30022 Mountain land of steppe subclass

30023 Sand land of steppe subclass

3
Temperate Desert-

steppe (TDS)

30031 Plain and hilly area of desert-steppe subclass

30032 Mountain land of desert-steppe subclass

30033 Sand land of desert-steppe subclass

4
Temperate Steppe-

desert (TSD)
30070 Temperate Steppe-desert subclass

5
Temperate Desert

(TD)

30081 Gravel soil of desert subclass

30082 Sand soil of desert subclass

61

30083 Salt soil of desert subclass

6
Lowland Meadow

(LM)

30151 Lowland meadow subclass

30152 Salinized lowland meadow subclass

30154 Marshy lowland meadow subclass

7
Montane Meadow

(MM)

30161 Low-middle hills of mountains meadow subclass

30162 Subalpine of mountains meadow subclass

8 Marsh (MA) 30180 Marsh

9 Water Area (WA) w N/A

10 Non-grassland (NG)

f Forest

s Sand

r Road

1 Human Land Use and all others non-grassland

 In recent decades, researchers have studied IMAR focusing on the LULC

classification (Lan & Xie, 2013), grassland degradation (Tong, Wu, Yong, Yang, &

Yong, 2004), ecosystem stability (Bai, Han, Wu, Chen, & Li, 2004), long term

climate change trends (Xie et al., 2018) and net primary productivity (Z. Wang,

Zhong, Lan, Wang, & Sha, 2019). In these studies, RS images from Landsat and

MODIS are important data sources for both input and validation. However, the

images are often affected by weather conditions and unable to generate products with

acceptable quality due to the high degree of gaps in the data. For example, the

Landsat 8 OLI images in Figure 3-1 represent the best quality images available for

August 2016. After running a cloud removal algorithm with band 9 of Landsat 8 as

input, the cirrus clouds are detected and removed. The portions of Figure 3-2 in

yellow, shows cloud covered areas during August 2016 that correspond to where data

gaps exist in IMAR during this time period.

62

Figure 3-2. Data gap in IMAR on August 2016

There are in total, ~ 1.28 billion (1281956192) pixels/cells per band in this study

area, and approximately 0.49 billion (492899116) pixels were covered by cloud

during this month, i.e., the cloud coverage was over 38.45%. In the northern part of

the region, where cloud coverage was above 85%, clouds were a major obstacle that

potentially impedes LULC research on this region.

In this study, we undertake gap filling for the remotely sensed dataset for the

entire IMAR region. The processing framework we propose was able to handle and

process the entire area during a single run. To assess the accuracy of our simulated

results, we focused in particular on three locations in IMAR, the Hinggan League

region, Xilingol League, and Bayan Nur region. The main objectives of this study

63

were: 1) to develop a workflow to be able to process LULC data gap filling and easily

to be extended to very large scale with sufficient computing resources; 2) to

implement a cloud-based Markov Chain CA model and test it using a cloud

computing environment; 3) to apply historical LULC data and auxiliary data collected

from 2000 and 2010 as training data to simulate the LULC coverage for 2016, and 4)

to assess the accuracy of the gap filling results.

2.2 Data Availability

A very high accuracy LULC vector mapping dataset that was generated by visual

interpretation assisted with sample plots that were available for 2000, 2010 and 2016

for the IMAR region, and which were used as input and validation LULC datasets in

this study. An initial set of 26 land cover subclasses were reclassified into the ten

classes of land cover types (Table 3-1). A DEM dataset was created using The

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

Global Digital Elevation Model (GDEM) program, that was downloaded from NASA

Earthdata portal. Slope for this area was calculated by processing the DEM data. A

roads and railways vector dataset was acquired from OpenStreetMap

(OpenStreetMap, 2020). Distance for each cell to roads and railways was calculated

as one of the suitability factors for LULC change. Meteorological data including

yearly precipitation and temperature were provided by the Chinese Meteorological

Data Service Center (CMDC, 2020) from 2000 to 2016. These data were interpolated

and rasterized using AUSPLIN, a meteorological data processing framework

(Hutchinson & Xu, 2004).

64

Population and livestock survey data from 2000 to 2016 were provided by the

Department of Agriculture and Animal Husbandry, China. Population density and

livestock density were calculated based on county vector data. Compensation policy

data that was in effect for 2010 to 2015 was also provided by Department of

Agriculture and Animal Husbandry, China.

3. Method

3.1 Workflow

In our study, we used historical LULC data from 2000 and 2010 as well as

available data from 2016 to train a Markov Chain-CA model to simulate LULC data

that was missing, causing gaps in the record. Ecological, economic, demographic and

urban factors were also integrated as part of model training as constraint and restraint

conditions to improve the accuracy of simulation results. The workflow for gap filling

LULC involved five different components (Figure 3-3).

65

Figure 3-3. Workflow for cloud based LULC gap filling process

The first step in the workflow was LULC classification and mapping. A common

approach to generate LULC datasets is by preforming image processing and

classification on RS imagery datasets, e.g., Landsat 8 OLI. In other words, LULC

66

data can be generated by using a large-scale RS processing framework on a high-

performance computing cluster or cloud environment. A LULC dataset can also be

generated from a ground survey, which was available for the IMAR region and for

our study. Secondly, as the environment, climate, and human activities were variable

across the study area, the region was divided into sub-regions (SR). This is important

especially for a large scale study because it allowed the design of functions to be

tailored to integrate constraint and restraint factors for subregions with relatively

similar impact factors, which was better able to calibrate and train the model for each

region. Third, a Markov Chain model was trained, and a set of suitability grids were

built using multi-criteria evaluation (MCE) applied to the LULC data. In this step,

existing data for the region for 2016 was used as a mask to extract LULC data from

2000 and 2010. A cloud-based Markov Chain analysis was processed to generate

transition probability matrices for each sub-region by using the masked LULC dataset

from 2000, 2010 and 2016 as input. For each sub-region, difference functions and

control points for each constraint and restraint factor based on statistics and

conditions of eleven environmental and human impact data were designed and

applied to determine the suitability and location of transitions using MCE. This step

was integrated using Apache Spark. Then, the CA model was run to add a spatial

component, where a spatial neighborhood filter was applied via the CA model to

assign weights to suitability scores of each cell. The number of iterations will be

assigned at the initialization step of the CA model. Once the CA processing starts, it

updated cells status with transition rule to decide the highest possible simulated

transitions among each LULC class. This step was built using Apache Giraph. Lastly,

67

an accuracy assessment was run for the simulated results using the 2016 LULC data

as validation. A detailed discussion for each step of this workflow is presented in the

sections that follow.

3.2 LULC Classification

To deal with LULC studies starting with raw RS imagery datasets, researchers

are required to handle LULC classification and mapping, and also handle the

processing of some ground truth points. For this research, the analysis of the entire

IMAR region is considered as a large-scale study. Using, for example, Landsat 8 OLI,

a widely used, medium spatial resolution RS imagery dataset with a relatively short

revisit period (U.S. Department of the Interior & U.S. Geological Survey, 2018), to

cover all of IMAR, it would require ~190 scenes of images for a single month. To test

our cloud-based Markov CA simulator, two years of input data and one year of

validation data were used. This involved, ~600 scenes of Landsat 8 OLI images that

were processed including handling atmospheric correction, cloud removal and

mosaicking. The overall data input was over 1TB, which precluded processing on a

single workstation in a timely fashion. In this study therefore, exploiting a big data

processing framework was a must.

Processing RS datasets and classifying them into LULC is an active area of study

and many researchers have developed methods and frameworks to process large scale

RS images. For example, Huang and her colleagues used Message Passing Interface

(MPI) as a computing framework to support dust storm simulation and forecasting on

the Amazon EC2 commercial cloud service (Q. Huang et al., 2013). Wang et al.

developed pipsCloud, a cloud-based approach to process RS on-demand in real-time

68

(L. Wang et al., 2018). For this research, we developed a Spark-based RS image

processing tool that can be deployed on cloud platforms and potentially to be

extended to very large scale with enough computing resources (Lan et al., 2018).

However, it is worth pointing out that all LULC classification and mapping

needs to pass an accuracy assessment before use. The quality of input images,

auxiliary data and classification methods will all impact the final accuracy of results.

We directly applied already existing masked LULC maps from 2000, 2010 and 2016

as input for Markov Chain training analysis, and used the entire LULC data from

2016 for validation. The highly accurate, already-classified LULC maps can help us

better focus on the task of gap filling by using a cloud-based Markov CA. To derive

measures of overall accuracy for the gap filling task, confusion matrices were used

and Cohen’s Kappa statistics were also calculated to determine the overall accuracy

and consistency for this method.

3.3 Sub-regions Clustering

To implement LULC gap filling, it is necessary to use existing dataset to train a

model to simulate the missing LULC data in gap of the targeted time. However, it led

a problem that, for a large-scale study, the LULC, environmental factors and human

activities could not be easily distinguished along the whole study area. The model

training process will try to find the optimized parameters for fitting the whole area if

the datasets of this area were used as a single input. It should be noted that this may

result in models for certain specific regions of the area that might not have best-fit

parameters due to the fact that those parameters also have to be fitted for other areas

69

at the same time. Hence the overall accuracy may be lower and the optimized gap

filling results cannot be achieved.

To solve this issue, a pre-processing step was performed for the study area before

model training using machine learning techniques. Multivariate clustering was

applied using the LULC dataset, environmental conditions, and data on human

activities to divide the whole study area into several sub-regions. Then, we designed

and calibrated a tailored model for each sub-region to run the gap filling. In this

study, a county-based multivariate geographic k-medoids clustering analysis was

performed (Ippoliti et al., 2019). Several continuous clustering sub-region parts were

created as shown in following map. In this analysis, LULC classes, DEM, slope,

precipitation, temperature, population density and livestock density were included as

variables. Zonal statistics were used to assign values of each variable into each county

in IMAR. The cells were sorted by county, and the majority value was assigned to a

county as the LULC value. For all other variables, the mean value was calculated for

all cells in each county to generate the final LULC value.

Multivariate clustering was implemented by ArcGIS Pro 2.5.0. To assess the

optimized clustering strategies, different clusters were generated from 2 to 30

clusters. A Calinski-Harabasz pseudo F-statistic (Caliński & Harabasz, 1974) was

applied to rank the top three cluster candidates for further processing. This test

generated the minimum spanning tree by calculating the within-group similarity and

between-group difference. In other words, spatially contiguous areas were divided

into clusters by maximizing the within-group similarities and between-group

70

differences. Testing showed that clustering IMAR into six clusters was one of the best

clustering candidate strategies (Figure 3-4).

Figure 3-4. Six clusters generated by county-based multivariate geographic k-

medoids clustering analysis

In this result, cluster 2, shown in black, was a region in Baotou city with 18,357

people per square kilometers and 5,502 livestock per square kilometer. This resulted

in the extreme value here that was clustered into its own cluster. By checking the box-

plots chart, the density data for this small area should be treated as outlier. Hence, we

merged this area with surrounding areas that also belonged to Baotou City, and

treated them as a single county. As a result, the optimized clustering was 5 clusters

based on merging cluster 2 into cluster 5. Strategies based on 8 and 10 clusters were

also shown to have good performance under the pseudo F-statistic. Using a similar

approach, outliers were removed from both the 8-clusters and 10-clusters result,

transforming them into 7 and 8 clusters respectively.

71

Multivariate clustering methods could offer a strategy to cluster the whole study

area with several candidates. However, these could not provide the best result directly

to support further processing. In this study, to choose and verify which clustering

strategy gave the best fit for gap filling, a discriminant analysis (Friedman, 1989) was

performed on those three clustered results. In this study, 10,000 random sample

points from IMAR were generated. Each point was assigned with values from the

LULC classes, DEM, slope, precipitation and temperature. The population density

and livestock density were calculated at county scale before being assigned to the

sample points. Then, 75% of sample points were randomly sampled as the training

dataset, and the remaining 25% were used as the test dataset for discriminant analysis.

In this study, a quadratic discriminant analysis (QDA) was applied to avoid the

problem where the covariance matrix is not the same for all (McLachlan, 2004).

McLachlan also claimed the linear discriminant analysis (LDA) should be used

cautiously because it is unlikely that homoscedasticity will hold exactly in real world

modeling, even when the preliminary test does not reject the null hypothesis. After

running the QDA, confusion matrices for all three scenarios were generated and the

overall accuracy was calculated. The overall accuracy for 5 clusters, 7 clusters, and 8

clusters were 92.37%, 89.52% and 90.04% respectively. Hence, the 5-clusters

strategy was selected to divide IMAR into 5 sub-regions.

3.4 Implementing Cloud-based Markov Chain - CA Model

The Markov model and CA model are both discrete dynamic models with time

and states. When applying a Markov-CA integrated model in LULC change studies,

the Markov model relies on a transition probability matrix of LULC change between

72

pairs of time steps for specific time intervals that are derived from observations. The

probability matrix provides an estimate of the probability that each LULC class will

be transformed over time to a different class or will remain in its current class. The

CA model is used to add spatial features that complement the LULC information

handled by the Markov model. By assigning a neighborhood filter and weights to

each LULC cell, the integrated approach can be used to predict temporal and spatial

changes of LULC for a study area (Fan et al., 2008).

3.4.1 Cloud-based Markov

Using Markov chain processing, the status of each cell at the same coordinates

but from different input time steps was compared by overlaying two pair of input

LULC datasets: 1) masked 2000 LULC data to masked 2010 LULC data and 2)

masked 2010 LULC data to masked 2016 LULC data. The number of cells that

convert from one LULC class to a different class was calculated and the transition

probability matrix was generated using following equations(Fan et al., 2008):

𝑃(𝑋𝑚+1 = 𝑗 | 𝑋𝑚 = 𝑖, 𝑋𝑚−1 = 𝑖𝑚−1, … 𝑋0 = 𝑖0) = 𝑃(𝑋𝑚+1 = 𝑗 | 𝑋𝑚 = 𝑖)

𝑃𝑖𝑗 = 𝑃(𝑋𝑚+1 = 𝑗 | 𝑋𝑚 = 𝑖), 𝑚 = 0,1,2, …

Where 𝑋𝑚 represented the random process and m= 0,1,2 represented cell status

at two different time steps; 𝑃𝑖𝑗 was the transition probability calculated using the

equation (Halmy et al., 2015):

𝑃𝑖𝑗 =
𝑛𝑖𝑗

𝑛𝑖

73

Where 𝑛𝑖𝑗 represented the number of cells converted from class i to class j; 𝑛𝑖

represented the count of cells converted from class i to all other classes. Assuming

there were n classes in this transition period, the values 𝑝𝑖𝑗 in transition matrix were:

0 ≤ 𝑝𝑖𝑗 < 1 𝑎𝑛𝑑 ∑ 𝑝𝑖𝑗 = 1
𝑛

1

Where i and j were integers ranging from 1 to n. The cloud-based algorithm was

implemented by using Apache Spark on a cloud environment using a MapReduce

function. (Figure 3-5).

Figure 3-5. Algorithm of distributed calculating probability matrix using Apache

Spark

At Map stage, cells at the same coordinates from two different input LULC datasets

were compared. Cij represented the conversion from LULC class i to class j. Each pair

was counted as 1. After this step, a list of all conversions was generated. At the

Reduce stage, all 1s from all computing nodes were summarized by using Cij as a key

to calculate the SUMij, which represented the number of cells of each conversion pair.

In other words, SUMij also represented the conversion area of each pair because the

cell size was fixed. Then, the transition area matrix was generated and the transition

probability matrix 𝑃𝑖𝑗 was calculated using SUMij divided by SUMTotal, returning the

total number of input LULC cells.

74

3.4.2 Transition suitability

The transition matrix calculated by the Markov model provides a purely

mathematical direction to simulate LULC change. However, many factors in the real

world can affect the actual transition among LULC classes. One practical solution to

optimize the simulated results was to apply suitability grid sets. Suitability grid sets

contain the suitability values of each cell that may transition to a different LULC

class. Suitability grid sets were calculated by the MCE method by assessing each

involved constraint and restraint factor. The constraint suitability value was a Boolean

type that contains values 0 and 1. Constraint suitability refers to the fact that a

specific LULC class was not expected to change to another LULC class during the

simulation. Those cells of unchangeable LULC regions were marked as 0 and the

other locations in the study area were marked as 1, which represented the potential

suitability for land cover change. For example, in IMAR, any type of grassland was

highly unlikely to change into a water body over the course of a few decades. While

over time, developed land use in an area might see an expansion over time but would

be less likely to change back into say, a natural land cover. Hence, in this study, areas

of water and human land use were considered as constraint factors.

The restraint suitability value were values in a normalized range calculated by

effect of each restraint factor, that represented the potential suitability change level

for a specific LULC class from unsuitable (small value) to highly suitable (large

value). In this study, two constraint and nine restraint factors were involved (Table 3-

2).

Table 3-2. Suitability factors

75

Factors Definition Function Shape Control Point (s) / SB

DEM
Elevation of whole IMAR

(m)
MDJ

SR 1 690, 1143

SR 2 387, 973

SR 3 1024, 1672

SR 4 1414, 1969

SR 5 1316, 1852

SLOPE
Slope calculated by DEM

(degree)
MDJ

SR 1 6.1, 20.5

SR 2 3.9, 17.3

SR 3 4.1, 14.9

SR 4 11.1, 27.7

SR 5 4.5, 15.8

DisRoad Distance to roads Linear N/A

DisRail Distance to railways Linear N/A

PPT
Yearly average precipitation

(mm)
SS

SR 1 389.35

SR 2 419.88

SR 3 276.29

SR 4 361.9

SR 5 152.4

TEMP
Yearly average temperature

(centigrade)
SS

SR 1 -1.58

SR 2 5.97

SR 3 3.28

SR 4 6.5

SR 5 8.38

POP
Population density per each county

(people per km2)
MDJ

SR 1 5.1, 37

SR 2 37.8, 338.1

SR 3 8.1, 194.5

SR 4 52.0, 379.4

SR 5 1.8, 57.5

LS
Livestock density per each county

(livestock per km2)
MDJ

SR 1 11.1, 74.9

SR 2 115.9, 474.6

76

SR 3 36.9, 240.6

SR 4 116.4, 521.2

SR 5 14.2, 138.9

CP Compensation policy Linear 0,1,2

WA Water area Boolean N/A

LU Human land use Boolean N/A

Restraint factors affected LULC change with specific functions and control

points. For example, DisRoad and DisRail represented the distance to roads and

railways. The closer roads and railways were (short distances), the less chance there

was that the original LULC classes would be converted into grassland classes. In this

study, the effect of the distance to road and railways was defined as a linear function.

Relating to animal grazing practices in the study area, the compensation policy

included three practices: normal grazing (not participated in), balanced grazing, and

forbidden grazing. This was a county-based policy that allowed herdsman to get

compensation for balanced grazing or to halt grazing for specific time periods. Some

counties in IMAR did not participate in this program. In this study, a linear function

was defined for this factor by considering that with less grazing, there would be a

higher chance that grasslands may recover from other types of LULC classes. Water

areas (WA) and human land use areas (LU) were two constraint factors that were not

expected to be changed into grassland classes.

Different function shapes were also applied to optimize the suitability value

calculations. In this study, four types of functions were applied in MCE:

Monotonically decreasing J-shaped function (MDJ), linear, symmetric sigmoidal

(SS), and boolean. For example, in SR 1, a monotonically decreasing J-shaped

77

function was used to calculate suitability values for the DEM layer. Control points

defined the position and accurate shape of the function curve in the Cartesian

Coordinate System. Shape was used for cases such that, for example, the potential

suitability of grassland was similar for areas with less than 690m elevation.

Suitability gradually decreased however, as elevation increased from 690m to 1143m.

Land was deemed unsuitable for grassland at elevations higher than 1143m. Another

example was a symmetric sigmoidal function that was used to calculate the values for

the yearly average temperature layer. To simplify calculations, we set -1.58 ºC as the

uppermost value for average yearly temperature according to the average yearly

temperature from 2010 to 2016, which represented that the grassland suitability value

was highest at -1.58 ºC, and gradually decreased with lower or higher temperatures.

After processing all eleven suitability factors, a suitability grid set was generated with

assigned weights for each suitability grid. In this study, we applied equal weights to

all eleven factors to simplify the modeling and computing.

3.4.3 Cloud-based CA modeling

CA modeling was developed to represent complex scenarios with sets of

transition rules over a cell-based pattern. (Pinto and Antunes 2007, Han and Cao

2005). A traditional CA was formed by lattice space, cells, cell states, neighborhood

scheme, and transition rules. Von Neumann and Moore are two common

neighborhood schemes that are widely used in CA simulators. In this study, a CA

with classic 5 x 5 extended Von Neumann neighborhood scheme was applied to

undertake three tasks: 1) neighbourhood filtering that assigned different weights to

target cells within the designated neighbourhood scheme; 2) computing a final

78

decision for the transition value for each cell based on the transition probability

matrix, transition area matrix and suitability grid sets; and 3) iterations that defined

time intervals within given time periods based on the input LULC datasets used in the

simulation process.

However, to process a large-scale CA model (i.e., beyond computational

capacity of processing on single workstation) efficiently is a challenge. Some

researchers have already explored this using big data computing frameworks and

high-performance computing resources. For example, Radenski (Radenski, 2013)

tested such an algorithm on Amazon's Elastic MR Cloud with a maximum 1.6 x108

cells in a 2D situation where they employed 1 master node and 16 core nodes in this

simulation. Marques and colleagues (Marques et al., 2013) developed a new

computational framework based on MapReduce to implement a 1 trillion cell 2D/3D

CA simulation on the Microsoft Azure cloud platform. Those large CA approaches

show the applicability of CA to big data/big model computing, but also leave room

for other investigators to achieve improved solutions with simpler modeling, faster

computing and easier data access.

Our approach tackled this problem using a graph-based cellular automata

implementation. We considered the graph as a highly suitable framework for big

data/big model development as the CA model contains cells and their neighbors.

Cells can be modeled by the concept of a vertex, and neighbor relationships can be

reflected in an edge pattern. By evaluating the state of the vertices connected with the

target vertex, users can easily set up the transition rules to update the state of the

target vertex. More importantly, with graph-based CAs, we can make use of suitable

79

and powerful large-scale graph processing infrastructure such as Apache Giraph in

order to achieve massive cell volume and high performance with the CA simulation.

Those infrastructures can be usually deployed on cloud platforms such as Amazon

Web Services (AWS) (Amazon, 2015), Microsoft Azure (Wilder, 2012), as well as

Google’s Compute Engine (Sanderson, 2009), and all of them can offer potentially

huge computing resources to support the research processing.

The algorithm to implement cloud-based CA used Apache Giraph, a

computational framework based on the Bulk Synchronous Parallel (BSP) model that

provides a sound platform for large-scale graph computing (Figure 3-6).

Figure 3-6. Algorithm of distributed processing Markov CA model with Apache Giraph

This framework contains many supersteps (in terms of Apache Giraph, this

represents the timesteps in traditional CA terms) where, in the operation process of

each superstep, each computing unit is arranged into a certain number of vertices or

edges that ensures parallel computing; each computing unit communicates with others

80

through message interaction; and when the processing of this unit reaches a barrier, it

stops until other cores complete their message interaction. After executing compute-

functions in code for certain supersteps or certain halt conditions, users can save the

output back to DFS. The message-passing and barrier features are very useful in

implementing CA approaches that can support CA cell status changes based on

neighbors and updates at each time step. In this study, the neighborhoods of each

target cell were calculated at superstep 0 by sending messages with designated edge

patterns. Then, neighborhood weighted values were calculated and integrated with the

results from MCE. The overall evaluation value list of each cell in the study area (Eij)

was captured because each cell could possibly transition from one value/class to

another. Once superstep 1 began, Giraph CA started to find the highest transition

possibility for each cell by calculating the maximum value in the overall evaluation

value list. At the same time, the value was required to not exceed the corresponding

value in the area transition matrix to avoid over estimation. After all cell statuses

were updated, the job was halted and results of simulated cell values for study area

were output.

4. Results and Discussion

4.1 Experiment Environment

Using the same local computational environment as we used in Chapter 2, the

local cloud environment tests in this research involved 1008 computing vcores and

5.12 Tb memory available. A 2 Pb HDFS was configured and the block size was 128

M as default (Table 3-3).

81

Table 3-3. Computing environment

Hardware Software

Role Count CPU RAM Name Version

Master

Node
2

2 x Intel Xeon E5-

2680v4 2.4GHz
256 G

Apache Spark 2.2.0

Apache Giraph 1.2.0

Computing

Node
18

2 x Intel Xeon E5-

2690v4 2.6GHz
256 G

Centos 6.9

Java Server VM
1.8.0_152

64Bit

Network 10 Gbps Cloudera 5.12.0

The approach used in this research was based on YARN, which has been widely

used in many current cloud environments (X. Fan et al., 2017).

4.2 Simulation Results and Accuracy Assessment

For this analysis, we used masked LULC maps from 2000, 2010 and 2016 for IMAR

as input training datasets to simulate and fill gaps that were present in the 2016

dataset. With the computational capability of our cloud-based Markov-CA simulator,

we simulated the whole IMAR region with a single run. After completion, the

simulated data for gap areas was mosaiced with existing data on the 2016 LULC map

to generate a final estimated 2016 LULC map. Eleven impact factors from the

perspective of biophysical, ground features and human-related factors were analyzed

using MCE to build the suitability grids for the model.

Table 3-4. Transition matrix

 SR TMS TS TDS TSD TD LM MM MA WA NG

TMS

SR1 71.87 8.03 N/A N/A N/A 2.12 0.34 0.09 0 17.54

SR2 66.09 0 N/A N/A N/A 2.33 0.87 0.02 0.07 30.62

SR3 58.59 22.35 0 0 N/A 3.01 0.53 0 0.17 15.36

SR4 9.66 48.6 0 N/A N/A 0 0 0 0.5 41.24

SR5 16.91 76.58 0 0.35 0 0 0 0 0 6.16

TS

SR1 9.97 79.16 N/A N/A N/A 10.7 0 0.09 0.08 0

SR2 0 65.43 N/A N/A N/A 3.75 0 0 0.26 30.57

SR3 10.34 34.57 22.63 0 N/A 14.66 0.01 0 0.4 17.39

82

SR4 0.24 60.14 0.03 N/A N/A 0 0 0 2.11 37.48

SR5 0 73.37 11.71 0 0 0.27 0 0 0.98 13.66

TDS

SR1 N/A

SR2 N/A

SR3 0 22.76 67.73 7.03 N/A 2.48 0 0 0 0

SR4 0 10.65 86.34 N/A N/A 0 0 0 0.32 2.69

SR5 0 28.95 42.62 15.28 1.92 3.71 0.01 0 0.24 7.26

TSD

SR1 N/A

SR2 N/A

SR3 0.15 0 33.17 63.43 N/A 3 0 0 0 0.23

SR4 N/A

SR5 0 0 21.89 52.12 25.63 0 0.04 0 0.32 0

TD

SR1 N/A

SR2 N/A

SR3 N/A

SR4 N/A

SR5 0 0 0 22.05 31.87 11.45 0 0.58 0 34.05

LM

SR1 1.01 4.51 N/A N/A N/A 54.59 1.75 1.18 2.31 34.65

SR2 1.87 9.23 N/A N/A N/A 44.93 0 0.25 5.28 38.44

SR3 6.62 29.2 2.13 2.46 N/A 50.11 0 0.1 3.24 6.14

SR4 0 6.79 0 N/A N/A 17.99 0 0 11.03 64.19

SR5 0 7.42 16.44 4.41 11.44 30.38 0 0.21 5.99 23.71

MM

SR1 22.28 0 N/A N/A N/A 3.97 55.88 0 0 17.87

SR2 41.08 0 N/A N/A N/A 2.83 31.27 0 0 24.82

SR3 64.1 0 0.6 0.06 N/A 0.23 17.77 0.01 0 17.22

SR4 27.8 0.82 0 N/A N/A 0.03 69.52 0 0 1.84

SR5 0 0 0 0 0 0 74.55 0 0 25.45

MA

SR1 2.48 3.2 N/A N/A N/A 47.45 0 43.31 3.56 0

SR2 6.31 0.35 N/A N/A N/A 37.12 0 20.75 0 35.47

SR3 2.83 0 0 0 N/A 96.91 0 0 0.26 0

SR4 0 0 0 N/A N/A 56.7 0 0 41.88 1.42

SR5 0 0 0 0.8 0 0 0 35.23 59.18 4.79

WA

SR1 0 2.22 N/A N/A N/A 19.72 0 0.65 77.41 0

SR2 0 0 N/A N/A N/A 22.13 0 1.15 44.55 32.17

SR3 0 0.93 0 0 N/A 33.11 0 0.12 65.83 0

SR4 0 0 0 N/A N/A 37.8 0 0 47.51 14.68

SR5 0 1.51 4.13 0 45.03 24.73 0 0.87 23.74 0

NG

SR1 9.9 0 N/A N/A N/A 32.12 4.54 0 0.71 52.73

SR2 18.12 16.43 N/A N/A N/A 3.96 0.19 0 1.5 59.81

SR3 18.07 29.78 0 0 N/A 0.59 0.66 0.02 1.33 49.55

SR4 0.19 14.34 0.01 N/A N/A 1.38 0.01 0.13 1.79 82.14

SR5 0.11 13 12.32 0.34 31.96 6.56 0.05 0 2.41 33.25

The transition matrix for the ten IMAR LULC classes was calculated (Table 3-4).

In this table, the diagonal values for each SR represented the probability that certain

LULC classes did not change during the training period. Other values in this table

show the probability that certain LULC classes were changed to other types of LULC

83

classes. The N/A value in this table represented the case where there was no such

class in this SR. During the two paired training periods 2000 to 2010, and 2010 to

2016, the most stable LULC classes were water areas (WA) and non-grassland areas

(NG). They were considered as Boolean types of constraint factors, which were

expected to be fixed and not change during the simulation. Other types of LULC

classes can change into those two classes given a certain probability. However, in

reality, it was quite rare that grassland classes changed into water areas. On other

hand, rapid increases in human activities resulted in grassland classes being changed

into NG classes, especially to farmland and human land use (LU). For example, cities

and roads were expanding rapidly in IMAR. Overgrazing also happened in some areas

during the past few decades. These cases may lead to grassland degradation or even

the disappearance of grassland especially in some sensitive areas. By assessing this

transition matrix, we found that Temperate Meadow-steppe (TMS), temperate steppe

(TS), and Lowland Meadow (LM) were changed into NG with a relatively high

probability (typically over 30%) especially in SR 2 and SR 4, which were high

population density and high livestock density regions respectively. We also found that

some transitions happened between neighboring types of grassland classes. For

example, TMS class showed a probability of approximately 76.58% to change into

TS in SR 5, which is a very dry area. In other words, TMS class areas that require

relatively high moisture environments may be less likely to be stay as dry areas over

time.

The transition matrix represented the analysis results from a mathematical

perspective. During the simulation process, the results that were closer to an actual

84

change mechanism were generated by integrating multi-types of impact factors,

weighting each of them with different functions and assigning different neighborhood

weights.

The actual (observed) classified LULC result of 2016 and the simulated result of

2016 generated by cloud-based Markov-CA were mapped (Figure 3-7). We found the

simulated results of three major grassland types in IMAR Meadow, Steppe and Desert

grassland were very close to their distribution of the actual LULC map. Especially the

TMS at northeastern part of IMAR, and TDS and TD in western part of IMAR shows

high similarity based on visual assessment. The Greater Khingan forest, located in the

northeast corner of IMAR, was classified into NG class in our study, and the

simulated results were also visually similar to the actual LULC case. Three water

bodies, Hulun lake, Dalinur lake and Ulansu Lake were clearly represented. Major

cities, major roads and other types of human land use were also found to be visually

similar. However, some issues were found with the simulated results. In following

discussion, we discuss three areas with the most cloud coverage (and the most gaps to

fill) to explore further.

85

Figure 3-7. Overall results. (a) actual LULC mapping for 2016 and (b) LULC

mapping with simulated gap filling for 2016

The overall accuracy assessment results were calculated using two commonly

used accuracy assessment methods, a confusion matrix and Kappa statistic

(Congalton & Green, 2002). The accuracy assessment results for the model processed

without using sub-region strategy (Table 3-5) and using sub-region strategy (Table 3-

6) were listed for comparison. By calculating the confusion matrix and Kappa based

on 20,000 sample points generated randomly across IMAR, the overall accuracy was

found to be 84.11% and the Kappa statistic was 0.79 for the model processed without

using sub-region strategy. However, the model processed with sub-region strategy

offered 4.05% improvement in overall accuracy and 0.06 Kappa improvement. The

major accuracy improved LULC classes are TMS, TS, TDS and MM for the reason

that sub-region strategy allowed tailored control process on MCE hence calibrated

each sub-model with better fit impact mechanism for each LULC class in different

sub-region. These results suggested that the accuracy of the simulated results were

86

relatively high and the consistency was also high (Viera & Garrett, 2005). The results

presented in Table 3-6 show that the simulated accuracy of grassland classes was

higher than other types of LULC classes. For example, the producer’s accuracy and

user’s accuracy of TS class were both over 90%. However, the accuracy of Marsh

(MA) and WA classes were relatively low (around 30%). One possible reason for this

was that the simulated process was lacking supporting evidence, data and mechanism

for water body changes, which resulted in water branches near major water bodies not

being simulated as successfully. The issue happened most obviously in the Ulansu

Lake water area (Figure 3-8(E) and 3-8(F)).

Table 3-5. Overall accuracy assessment without using sub-region strategy

Table 3-6. Overall accuracy assessment by using sub-region strategy

The simulated accuracy for five sub-regions were calculated using confusion

matrix and Kappa statistic (Table 3-7). In those five sub-regions, the major grassland

classes including TMS in sub-region 1, 3 and 4, TS in sub-region 1,3 and 5 and

 TMS TS TDS TSD TD LM MM MA WA NG

Producer’

s

Accuracy

82.0

6
85.22

83.8

2

87.5

0

84.5

0

81.3

2

81.8

2

93.7

5

67.6

5

84.3

5

User’s

Accuracy

84.5

2

80.67

7

89.0

6

82.6

0

97.0

0

74.2

0

80.3

6

26.7

9

30.4

0

85.4

1

Overall

Accuracy
84.11

Kappa 0.79

 TMS TS TDS TSD TD LM MM MA WA NG

Producer’

s

Accuracy

87.20
91.8

8

89.7

1

89.2

3

89.5

1

84.1

4

86.6

7

94.1

2

59.7

6

85.9

3

User’s

Accuracy
89.04

89.1

3

93.2

0

84.8

9

98.0

5

77.7

9

85.5

3

28.0

7

23.6

7

86.8

9

Overall

Accuracy
88.16

Kappa 0.85

87

TSD/TD in sub-region 3 and 5 were simulated with a high level of accuracy.

Especially for TS in sub-region 1 and TDS in sub-region 3 and 5, the accuracy of

them were over 99%. In sub-region 2, the accuracy of grassland was not as high

(typically around 80%) as them in other sub-region due to the rapid growth of cities

and farmland. The Kappa was 0.71 for sub-region 2 and 0.6 for sub-region 4, which

represented a substantial level of consistency.

Table 3-7. Sub-regions accuracy assessment

 TMS TS TDS TSD TD LM MM MA WA NG

SR

1

Producer’s

Accuracy
85.61 98.81 N/A N/A N/A 85.71 82.76 100 55.00 96.47

User’s

Accuracy
93.70 99.10 N/A N/A N/A 87.64 96.00 100 100 93.57

Overall

Accuracy
93.82

Kappa 0.89

SR

2

Producer’s

Accuracy
81.30 74.88 N/A N/A N/A 70.87 100 100 31.25 88.41

User’s

Accuracy
81.63 80.26 N/A N/A N/A 76.84 80.0 90.0 41.67 85.74

Overall

Accuracy
83.50

Kappa 0.71

SR

3

Producer’s

Accuracy
93.71 93.55 98.66 95.74 N/A 78.88 100 100 54.55 68.59

User’s

Accuracy
90.24 94.44 99.66 100 N/A 92.56 100 90.0 54.55 65.52

Overall

Accuracy
89.78

Kappa 0.86

SR

4

Producer’s

Accuracy
90.91 71.54 100 N/A N/A 30.77 90.91 100 15.0 87.34

User’s

Accuracy
100 69.96 90.0 N/A N/A 80.0 100 100 30.0 84.78

Overall

Accuracy
80.84

Kappa 0.60

SR

5

Producer’s

Accuracy
100 72.12 95.42 95.43 98.39 79.17 100 90.91 40.0 78.90

User’s

Accuracy
20.0 84.40 88.56 99.40 95.10 75.0 70.0 100 54.55 83.88

Overall

Accuracy
89.74

Kappa 0.86

88

The RS images were commonly affected by cloud and haze especially for the

eastern and northern parts of IMAR, due to relatively high levels of moisture being

present. To further assess the gap filling results for IMAR, we focused and zoomed to

three heavy cloud coverage subareas with large numbers of gaps (over 85%) that

were needing to be filled in the Hinggan League region in eastern IMAR, the Xilingol

League region in the central part of the region, and the Bayan Nur region in the west,

where each subarea covers ~100,000 square kilometers (Figure 3-8). Another reason

for choosing those three areas was because they were covered by three major

grassland types: Meadow grassland in Hinggan League area, Steppe grassland in

Xilingol League area and Desert grassland in Bayan Nur area, which could better

represent the gap filling performance for major grasslands in IMAR.

The first grassland subarea represented the Hinggan region (Figure 3-8a) with

the actual LULC map of this area for 2016 (Figure 3-8b). In this area, TMS and TS

were two major grassland classes. The simulated results were similar to the actual

surveyed grassland distribution in this area. However, the TS class was represented as

over simulation to some extent, which may result from the weight assignment and

function control points setting of precipitation factors during the construction of the

suitability grids. The spatial resolution for precipitation data (1km) were lower than

the spatial resolution of LULC mapping (30m). Hence the control points for

precipitation were generated by a statistical method, which might not have been able

to capture the difference of precipitation in each specific area of this subarea. TS

grassland might be sensitive to this environmental factor, which may result in the

89

simulated TS grassland class expanding faster in this area than it actually did (i.e., it

is over simulated in the final result).

Figure 3-8. LULC maps of three grassland areas: (A) simulated Hinggan League area

(meadow grassland), (B) real Hinggan League area, (C) simulated Xilingol League

area (steppe grassland), (D) real Xilingol League area, (E) simulated Bayan Nur area

(desert grassland), and (F) real Bayan Nur area

90

There was a lack of detailed simulation for the water body class that was also

notable in this area. We found more WA class pixels existing as shown in Figure 3-

8a, but these pixels were changed into NG or other types as shown in Figure 3-8b.

After checking the training data, the water body classes that were shown in simulated

results were existing in the 2010 LULC map. However, they were not classified as

WA again in 2016 due to drying up or a lack of water because they were small lakes

or rivers that were vulnerable to environmental change. The same thing happened in

Bayan Nur region where the simulated results for Bayan Nur showed the WA class

was less represented (Figure 3-8e) than it was shown in the actual LULC map of the

same subarea (Figure 3-8f).

Human land use in IMAR was found to have a tendency to be under simulated.

This was found among the three subareas especially in the Xilingol League area

where the simulated Xilingol League region showed more NG (Figure 3-8c) while the

actual LULC map showed less NG (Figure 3-8d) in this area. For Xilingol, the major

grassland classes were accurately simulated except for parts that were occupied by

human land use such as expanded cities and newly developed farmland. For example,

the continuous NG area in the central part of Xilingo League was the Xilinhot City. It

was shown that the simulated result of Xilinhot City was smaller than actual

coverage. Also, some rectangles like NG area were shown in the southern part of this

area, which were new farmland developed in the past few years, and were not

successfully simulated in this study. This was mainly due to the fact that although

socio-economic impact factors such as human density, livestock density and

compensation policy were integrated into the simulation process, further research on

91

actual impact mechanisms that show how those factors affect a population’s land use

and the best weight for each factor will be required. For this reason, simulating

human land use especially farmland was not as accurately simulated in IMAR as

other land use types.

5. Conclusions

This study presented a one-stop solution that was able to implement a cloud-

based LULC data gap filling framework using a distributed Markov Chain CA model.

We designed and implemented a Spark-based in-memory distributed Markov Chain

and suitability processing algorithm on the cloud, and integrated it with a self-

designed Giraph-based distributed Cellular Automata to fill LULC gaps even for a

very large area. The advantages of this framework were: 1) it can be easily integrated

with existing cloud-based RS imagery processing tools. The output of those image

processing tools can output the LULC dataset directly to the distributed file system on

the cloud as input for our LULC gap filling tool without any additional data transfer;

2) It can access existing LULC and auxiliary data sets in a cloud data warehouse

without downloading data to local machines.; 3) it can exploit a large scale cloud-

based computing framework to accelerate the processing speed; and 4) like all other

cloud-based frameworks, it is able to gain unlimited computing resource in theory to

support very large processing tasks through commercial cloud computing platforms.

In this study, we successfully tested LULC gap filling processing for the entire

IMAR region with a cloud-based Markov Chain CA framework. Masked LULC maps

from 2000, 2010 and 2016 were applied as an input training dataset with 11 different

constraint and restraint factors involved in the MCE. After running this framework on

92

a local cloud environment, we successfully filled the gaps resulting from cloud

coverage in the 2016 LULC map using simulation, and generate a complete LULC

map for 2016. We also ran accuracy assessments that returned an overall 88.16%

accuracy.

Further research is needed to improve the accuracy and performance of this

framework. For example, in IMAR, water bodies and human land use were not

simulated as accurately due to a lack of supporting data and studies on the impact

mechanisms for these LULC classes. Also, weight assignments and function design

require further study and need to be elaborated for each LULC class to bring the final

results closer to the actual values. In the future, Analytic Hierarchy Process, a

commonly used approach to assess the weight for each impact factor will be

integrated into this framework. The neighborhood scheme could also be adjusted and

tested. In this study, the classic 5 x 5 extended Von Neumann neighborhood scheme

was applied, however, different neighborhoods could also be used along with an

accompanying re-design of the computing partitioning of the Giraph-based CA to

ensure the best computing performance.

93

Chapter 4 : Massive Voxel Cellular Automata Using Giraph: A

Use Case of Air Pollutant Particles Dispersal

1. Introduction

Cellular automata(CA) was originally conceived to support computing needed

for complex scenarios (Von Neumann, 1951). Cells, acting as an automaton (A), were

entrusted as representative media for housing states (S), and transition-rule machines

(f) were tasked with determining changes to those states over time (t → t+1), based

on input garnered from the cell itself and from neighboring cell-states (N). When

arranged in a lattice or matrix space (L) of dimension d, CAs can collectively be used

to represent a variety of phenomena, as well as structures and the processes that

determine their dynamics (Wolfram, 2018), principally by trading the unique local

value of state information within the systematic context of the larger lattice.

A = (L, d, S, N, f), f : St → St+1

In 1970, John Conway designed a computer game named “Game of Life” (GoL)

(Conway, 1970) that became the best-known CA and attracted the attention of

scientists. It has been used as a standard testbed for performance comparisons among

different CA approaches. Following on this work, Stephen Wolfram examined large

number of possible classifications of automata in the 1980s. He published the seminal

book, A New Kind of Science (Wolfram, 2002b) and introduced four classes (Stable,

Period, Chaotic and Complexity) by which cellular automata and several other simple

computational models could be categorized depending on their behaviors.

94

CAs are popularly used as computational media for modeling and simulation of

complex systems in varied scientific arenas. Much of the appeal of CAs lies in their

potential to support huge numbers of interacting components, which has made them

the medium for addressing unwieldy complex systems in simulation. While they are

theoretically scalable to fantastic sizes, the vast majority of CA models have been

built to support applied simulations. For example, CAs have been applied to solve

problems in biology (Ermentrout & Edelstein-Keshet, 1993), chemistry (Mendes et

al., 2001), medicine (S. H. White, Del Rey, & Sánchez, 2007), physics (Zhao,

Billings, & Coca, 2009), astronomy (Isliker, Anastasiadis, Vassiliadis, & Vlahos,

1998) and economics (Qiu et al., 2007) among other areas.

CAs have also been used for geographical domains. For example, the "sand pile

CA" was a simple 2-D CA that represented a pile of sand grains. This idea emanated

from physicist Per Bak and his colleagues in 1987 and used CAs to explore

complexity in physical phenomena (Bak, Tang, & Wiesenfeld, 1987). Following Bak

et al.’s study, researchers like Datillo and Spezzano (Dattilo & Spezzano, 2003) and

Iovine et al. (Iovine, D'Ambrosio, & Di Gregorio, 2005) pushed CA modeling

forward in their studies that used CAs to study for example, mass movement of

Curti–Sarno debris flow in Southern Italy. In recent years, Li and his colleagues

applied CAs to simulate the flood of Hunhe River, China using dynamic observations

(Y. Li et al., 2015). Dahal and Chow simulated urban growth in San Marcos, Texas

using an irregular CA model (Dahal & Chow, 2015).

Until now, most of the CA models in geographical sciences have been built in

two-dimensional (2D) space. However, many environmental processes operate in

95

three-dimensional (3D) space including time. To model these complex systems, 3D

spatial contexts need to be supported in order to offer enough details to analyze the

dynamics of these systems in all three dimensions. However, modeling geographical

applications with 3D CAs is a significant research challenge because it will require

the sophisticated re-design of each part in the CA to successfully support the

simulation process. In other words, the modeling and computational complexity will

be highly increased when extending 2D CA models into 3D CAs. In a few studies of

3D CA in geography, researchers have developed voxel CAs for geographical

processes, such as dune movement and formation (Narteau, Zhang, Rozier, &

Claudin, 2009), snow avalanche structures interaction (Avolio, Errera, Lupiano,

Mazzanti, & Di Gregorio, 2017; Dahal & Chow, 2015), and wind field estimation

(Salcido & Celada, 2010). However, these 3D models were all limited with respect to

the number of cells (less than 100,000 voxels) and either applied small scale study

areas or used coarse spatial resolution in their experiments. And even when a CA

model has the potential to support huge numbers of interacting components in a

simulation, most existing 2D and 3D CA models are run on a single desktop

computer. Limited by the computing capacity of a single machine, researchers are

constrained in the detail and intricacy with which they can model phenomena relative

to the richness and complexity that they observe in the real world, especially in 3D

space. Moreover, the range of questions that can be posed in simulation are often

constrained by excessive computing times for single-CPU CA, which means that the

native ability of CA to sweep through the parameter-space of complex what-if

problems is often under-utilized in these applied studies. With the arrival of the big

96

data era, those issues are becoming more prominent as CAs have the potential to

serve as a big model due to being highly scalable, and their ability to consume big

data as input and convert the data into meaningful results, helping to answer scientific

questions. However, big data and big models inevitably also lead to big

computational burdens in real life processing. Even by applying CAs to model

complex, 3D scenarios, the volume of the data that needs to be processed may not be

significantly reduced (in some cases, it could increase). Hence, the requirement of

improving the capability of CA, especially for 3D modeling, and to fit large scale

simulation is becoming increasingly important.

As computing hardware and big data silos have progressed, many in the CA

modeling community have been slow to adopt technologies that could significantly

broaden the reach of their CA models. Use of high-performance computing (HPC)

clusters and cloud computing platforms have been taking hold in applied CA

modeling. Compared to traditional supercomputer and HPC computing clusters, cloud

computing resources offer a low access threshold for many researchers, that could

help to greatly reduce the cost of large-scale scientific computing. Indeed, a number

of supportive software frameworks are already well developed and available for use.

For example, Apache Hadoop has been widely leveraged in a diverse range of

applications to reduce the developmental overhead in parallelizing computing

(Shvachko, Kuang, Radia, & Chansler, 2010). Related schemes based on Apache

Giraph and Spark are also garnering a popular following in scientific research (Han &

Daudjee, 2015).

97

In this study, we introduce a method that uses a graph-based algorithm to

implement a very large (up to 1 trillion cells in our experiments) voxel CA. To

accomplish this, we fully re-think and rebuild the voxel CA with respect to modeling,

computational implementation, and computing resource access. We rely on Apache

Giraph, a Bulk Synchronous Parallel (BSP) model-based framework designed for

iterative large-scale graphics processing, which affords users a platform to build and

implement large graphs to support massive-scale voxel CAs with efficiency. To

demonstrate the value of this approach, we discuss two test simulations: one as a 1

trillion-cell 3D GoL CA, and another as a 1 billion-cell CA-based simulation of air

pollutant particle dispersal. We will demonstrate how our graph processing approach

was successful for gaining significant processing efficiency, with particular

performance gains over different cloud platforms.

2. Big Voxel CA Implementation

Although the CA model is widely regarded as a powerful tool and can be used to

simulate any complex phenomena in real life by applying simple transition rules, it is

not easy to design and implement a suitable CA model to accurately reproduce

phenomena in the real world, especially using a 3D spatial perspective. At issue here,

first and foremost, are some complications involving how voxel CAs are mapped to

geographical systems in simulation. This has been discussed with respect to properly

designing neighborhood relationships and cell shape is a challenge to implement big

CA with big data (Fonstad, 2006). These two aspects of CA design are critical in

HPC in particular, because they determine the exchange of information across the

lattice, and govern what is computed and updated, where, and when. For example,

98

most 2D CA are formed on a square-grid lattice, while 3D cellular automata are based

on a cube grid. However, in most practical situations, the grid cell shape departs

significantly from the actionable shapes relevant to the applied problem that the CA is

tasked with modeling. This creates what is called a Modifiable Areal Unit Problem

(MAUP) in geography (Openshaw, 1984). Flexible schemes for handling cell shapes

may be required, particularly if different scales of interaction and mixed-mode CA

are desired in the same simulation. For example, Frisch and colleagues pointed out

that "lattice-gas" CA models usually need hexagonal cell-shapes (Frisch, Hasslacher,

& Pomeau, 1986).

Furthermore, transition rules can be designed in two different ways: a top-down

approach makes the CA transition rules change during processing based on specific

phenomena in different scenarios, while piecewise transition rules may lead to more

complex rule sets, but also result in difficulties in integrating these rules in the

simulation (Gobron, Çöltekin, Bonafos, & Thalmann, 2011). Additionally, the cell

states of a discrete CA such as the GoL contains only 2 states, dead or alive.

However, the cell states of continuous CAs could be represented using float values

from 0 to 1 that enable the transition rules to be much more flexible in appropriate

cases.

In addition to neighborhood scheme and transition-rule design, another critical

issue in implementing a voxel CA model that fits a big model, is the computational

design: CAs are, at their heart, computers. With the exception of some lattice-gas CA

models, most applied CA models are built on raster-grid based computer graphics

processing schemes using a single processor, with a serial strategy for updating states

99

according to transition rules. Yet, CAs are inherently suited to parallel processing on

multi-core, multi-processor, or multi-computing node platforms. For some large-size

CA simulations, such as those developed by Crave and Davy (Crave & Davy, 2001),

researchers divide the whole computing process into many time-steps or time-slices

instead of developing a real-time simulator. To conquer this problem, many

researchers are seeking different solutions to develop CA models that can handle big

models and also, simplify the coding and deploy complexity.

Researchers have demonstrated significant success in implementing CA models

with HPC algorithms and cloud computing for simple CAs. Conway’s GoL (Conway,

1970), in both 2D and 3D form, is a standard for performance testing in this regard,

because it is simply specified but yields significant dynamics, including Wolfram

Class 4 complexity (Wolfram, 2002a).

2.1 HPC Solutions

A lot of attention has been paid to general-purpose processing using a graphics

processor unit (GPGPU) on local high performance workstations (Gobron et al.,

2011). As one of commonly used HPC frameworks, GPGPU platform provides a

large number of cores (cost-effectively) for CA computing within the single desktop

model that is commonly used in applied modeling as compared to the normal CPU

environment. Specifically, GPUs can handle more split tasks in a certain time period

than many CPUs. Using this idea, We have built a GPGPU-based voxel GoL CA and

tested it on a single workstation (with two NVIDIA Quadro 5000 cards providing 352

cores) and we were able to reach 10 million-cell simulation in real-time for a voxel

implementation of the GoL. We abutted hard memory limitations at lattice sizes

100

beyond that, however, and this would appear to be a generic limitation for GPGPU

approaches.

Message Passing Interface (MPI) is another commonly used HPC approach. For

the GoL, for example, researchers have shown that MPI can speed-up transition

calculations significantly, e.g., for a 1000 x 1000 lattice, a processing time of 3.365

seconds per 100 time steps can be achieved (Weeden, 2013). MPI has some

limitations, however. First, MPI is focused on memory efficiency: this eats away at

the limits of GPGPUs that we mentioned, but it is at odds with data-intensive

modeling tasks. In GIScience applications, for example, CA models must often ingest

huge amounts of sensor data, at initialization as well as during run-time, and these

must often be reconciled, queried, and analyzed during computing. Researchers have

also had difficulty implementing MPI on CAs in some cases. For example, (Gropp &

Lusk, 2007) implemented a 2D CA model with MPI-2 but had to create a buffer for

boundary cells, divide the whole grid into submatrices, and run them in parallel. This

workaround is less extensible to the scenarios that we are requiring: the relationship

among boundary cells in voxel-space is much more complicated than in 2D, and this

can lead to many challenges in dealing with the boundary cell buffer and partitioning

of the lattice, particularly causing problems with resource balancing. However, there

is some implied potential in using dedicated big data management schemes, such as

Hadoop and Spark, to handle this data-wrangling outside or alongside MPI.

2.2 Cloud Solutions

Use of cloud-based clusters of computers is another possible solution to support

massive voxel CAs, offering particular advantages for running distributed programs

101

atop them. Key here is the potential for cloud resources to allocate and share CA

software and hardware resources on-demand. CAs could support distributed

partitioning because of the way that transition-through neighborhoods work on a

local-to-global scale within CA lattices. Cloud resources are well-suited to chunking

large computational tasks into many small parallel tasks and assigning them to

computing instances, offering both efficiency and load-balancing. After all nodes

have completed the assigned tasks, results are aggregated and returned to the users’

local database, and here the network can infuse additional efficiency in reconciling

updates between partitioned jobs. In this way, cloud distribution can reach millions

(or even billions) of instructions in a few seconds. Indeed, MapReduce and Hadoop

have emerged to provide this functionality with considerable efficiency (T. White,

2012). Radenski introduced a cloud-based GoL implementation using MapReduce

Streaming (MRS), tested for both distributed and continuous simulation (Radenski,

2013). He made use of single and multiple text files as the state information for cells:

each line in the text was used to represent a cell. Initial states for the GoL were stored

in a Distributed File System (DFS) before being run through MapReduce for

processing starts (Figure 4-1).

Figure 4-1. Radenski’s cloud-based 2D GoL algorithm

102

Radenski tested this algorithm on Amazon’s Elastic MR Cloud with a maximum

of 16 x 107 cells, using one master node and 16 slave nodes. The shortest processing

time without data initialization was 4 mins per single CA timestep. Radenski’s use of

MRS afforded some performance improvement for the GoL, but only to an extent:

each single MRS job can just process one timestep for the GoL. Extra tools are

required if multi-step simulation is required. iMapReduce (Y. Zhang, Gao, Gao, &

Wang, 2012), or Apache Oozie (a workflow scheduler) may be possible solutions to

this. Another cloud-based GoL was presented by Marques et al. (Marques et al.,

2013) (Figure 4-2). Rather than targeting processing speed, they instead focused on

leveraging MapReduce to optimize the matrix data size, which helps to overcome the

limitation of data size on input and intermediate results storage, and on messaging

communications among cloud computing nodes. This leads to an iterative algorithm,

in which intermediate results are stored in linked list cells and, after all transition

calculations are finished, the final results are aggregated, compressed, and stored as

final results. In their study, a 1-trillion cell 2D or 3D CA was presented by using

pointers in sparse matrices (e.g. 3 pointers for each cell in 3D scenario) to locate the

dependent neighborhood. Using up to 350 instances with 8 cores on each at Microsoft

Azure cloud platform, it was able to process a single step in approximately 748

minutes.

Figure 4-2. Marques’s 2D/3D GoL algorithm on MapReduce

103

The key point of comparison with Radenski’s and Marques’s approach is the

latter has ability to handle multi-step cellular automata simulation without using third

party software for iterative operations. The MRS approach does not group same key-

value pairs at intermediate processing (and this is partially limited by the rigidity of

the default Java API). Marques’s framework applies sparse matrix and circular linked

lists to significantly compress the data. It also splits the overall computing task into

smaller subtasks while compressing submatrix datasets. Moreover, Marques’s scheme

is relatively easy-to-use: users not accustomed to cloud computing can

straightforwardly build custom CAs by declaring a master function to dictate

transition rules and the neighborhood scheme. However, there are some limitations on

partitioning. Although users provide the neighborhood radius for state look-up in the

CA to control the segmentation of the sub-matrix and its expansion, this framework

may not be able to split the whole input data into a sub-matrix accurately when

dealing with irregular neighborhood schemes. In some cases, this could lead to

passing a large number of unnecessary messages among the whole system during

processing.

After reviewing parallelized voxel CA approaches implemented with GPGPU,

MPI and cloud computing techniques, the limitations in computing voxel CA across

large lattice-spaces can be better overcome with some re-thinking of the data

structures underpinning CA models in simulations. Overcoming these limitations,

which are computational rather than theoretical, would allow CAs to be deployed

more flexibly and authentically in particular for applied scenarios in geographical

sciences, where CAs could become much more useful as media for exploring

104

computation-intensive what-if scenarios, and for animating evolving silos of big data

from geographical science observation platforms.

3. Giraph-based Cellular Automata

3.1 Rethink CA in Giraph

MapReduce and MPI are not always ideal for large-size CA model processing.

Consider, for example, that at each iteration of a CA state-update, the model needs to

submit one MapReduce job, which includes reading data files from DFS, parsing the

input file, initializing cells’ status, computing each cell, finishing cell status

evolution, reducing the results of computing, and writing this single step result back

to DFS. MapReduce also relies on key-value pairs to achieve data processing: this is

problematic for CAs, which contain not only the cell-state, but also the cells’

neighbor relationship(s). For high-dimensional CA models (e.g., 3D voxel lattices),

the traditional key-value approach needs to be flawlessly designed to implement the

storage of the cells’ initial states, and this also makes computing functions more

difficult to implement and code, and more complex to understand and wield.

We mentioned that re-thinking the data structures that support CA models may

help overcome those issues. In graph theory (Bondy & Murty, 1976), a graph is an

ordered or unordered pair G = (V, E). It is a 2-element tuple that contains a set V of

vertices and a set E of edges. Graph theory has been applied in many scientific areas

to represent relations, schemas, and structures of physical, biological or information

systems. Graphs are naturally suited to CAs. Considering this, a CA lattice can be

represented by a graph: cells can be expressed as a vertex, and the neighbor

105

relationship can be reflected in an edge. By judging the state of the vertices connected

with the target vertex, users can easily set up the transition rules to update the state of

the target vertex.

Building cellular automata in graph form provides many advantages. For

example, for spatial systems, concepts such as centrality, clustering, connectivity and

accessibility, can be easily implemented using graph theory and related techniques.

The concept of centrality can be used to measure the most central nodes in a network.

The clustering concept in graph theories can be used to assess which nodes in

networks can be clustered together. A comprehensive review of those applications has

been done by Lin (Lin, 2012). Connectivity represents the robustness of a network (J.

Wang, Kwan, & Ma, 2014) and accessibility addresses interaction opportunities

among various nodes in a network (Hansen, 1959). The algorithmic implementation

of this approach is straightforward: graphs and computers have played nicely together

for many years. Nevertheless, it remains important to find a suitable and powerful

graph processing infrastructure to achieve the massive array sizes and interactivity

that are needed for building a very big CA in 3D.

Developed by Valiant (Valiant, 1990), the Bulk Synchronous Parallel (BSP)

model is a promising candidate for graph processing of big models. BSP

accommodates many super-steps. Within the operation process of a super-step, each

computing unit is arranged into a certain amount of vertices or edges, which ensures

parallel computing; each computing unit communicates with others through

interactive messaging; and when the computing of this unit reaches a barrier, it will

stop until other cores complete their message interaction (Figure 4-3). BSP may be

106

implemented in Apache Giraph, a vertex-centric model that is based on Googles

Pregel. Facebook, for example, have used Giraph to analyze 1 trillion graph edges,

using 200 machines, in four minutes (Ching, 2013). Giraph lies on top of Hadoop, so

it may be deployed and implemented relatively easily on any HDFS-based computing

platform. Allied to Giraph, ZooKeeper helps to coordinate computation: when a

Giraph job is submitted, one worker is elected as a master by ZooKeeper. At the same

time, the input graph will be loaded and vertices or edges will be partitioned and

assigned to workers. After executing compute functions in code for certain super-

steps or certain halt conditions, workers will save the output back to DFS.

Figure 4-3. workflow to accelerate voxel CA models

107

3.2 Implementing Massive GoL CA with Giraph

For this research a Giraph-based scheme was built to accommodate a large voxel

CA and the feasibility and performance of this framework was tested using the GoL.

Most GoL implementations rely on Von Neumann (4 neighbors and the cell) or

Moore (8 neighbors and the cell) neighborhood schemes. In a 3D situation, a first-

order Von Neumann scheme for a cell has six (extra-cellular) neighbors (Figure 4-4).

Figure 4-4. A 3D Von Neumann neighborhood scheme

GoL evolution is initially determined by seed states for the CA lattice (no other state

data is read-in from outside the model once run). States are binary: alive or dead.

Transition rules are straightforward and well-covered in Conway’s study (Conway,

1970). For this research, GoL was run with JSON input files, e.g., as

[1,0,[[2,1],[3,0],[4,0]]]. As a single line in a JSON input text files, this represents a

given cell with ID 1 surrounded by another three cells with IDs 2, 3, and 4. The state

of cells 1 to 4 in the GoL are dead, alive, dead, and dead respectively. By using JSON

input, Giraph can easily load all cell states and neighborhood schemes at the

initialization step. This makes coding much easier because in implementing the

computing function, we no longer need to consider the neighborhood, and only the

108

transition rules need to be written into the computing function. When the user defines

a certain timestep number in the pseudo-code (Figure 4-5), the MaxSuperstep is set to

control the whole running process. At super-step 0, all values include the cells initial

states and the neighborhood scheme, and the neighborhood cell-states are all loaded

and partitioned to workers.

Figure 4-5. Voxel GoL CA implementation on Giraph

3.3 Performance Tests and Discussion

A pressure test was performed on a 115-node Hadoop cluster was used as the

platform on AWS to monitor the computational capacity and performance of our

voxel Giraph CA (Table 4-1). Approximately 1 trillion vertex and 6 trillion edges

were involved, and 500 workers were employed.

Table 4-1. Computing environment for 1 trillion cells GoL experiment

Hardware Software

Type Count CPU RAM Storage Name Version

Memory

optimized

x1.32xlarge

instances

115

Intel Xeon

E7-8880 v3

128 virtual

cores

1952

G

2 * 1920

G SSD

Apache

Spark
2.0.2

Apache

Giraph
1.1.0

Centos 6

109

We illustrate the resulting performance results over an eleven super-step

experiment (Figure 4-6). As shown in this figure, each single super-step can be

finished on average in 71 minutes with default hash partitioning. Step 0 is for

initialization and step 11 is added by Giraph to the procedure voteToHalt(). As shown

in Figure 2, the consumed time varies on each step because the cells states change

over the processing. For instance, under the GoL transition rules, if a cell status is 1

(alive), there are two ”IF” rules to decide whether it will turn 0 (dead). But, if cell

status is 0, there is only one IF rule to make it alive. Different numbers of cell status

with 1 or 0 will affect the computing time at each super-step.

Figure 4-6. Comparison results of GoL: default hash vs. customized partitioning

Using Giraph can significantly improve the computational efficiency of a 3D

GoL CA model. Furthermore, by manipulating the data partitioning scheme, this

could help achieve better results in some cases. The default method of Giraph

partitioning is based on the hash algorithm. This is a general method that could be

110

applied in many practical simulations such as Shortest Path search and PageRank.

Giraph is also an open source graph algorithm computing framework, which affords

some flexibility in how users might modify the partitioning scheme. Based on the

characteristics of the CA model, each cell has a relatively fixed pattern of neighbors,

which ensures that cells do not interact with other cells that are not their neighbors.

Hence, if related cells can be partitioned for target cells on the same computing node

as much as possible, cross-node communications can be greatly reduced, and this

leads to a significant reduction of their drain on processing performance through

network communication latency. This solution could introduce significant efficiency,

particularly when a large number of computing nodes are used or when the network

latency is relatively high. For example, using customized partitioning on a cloud-

based platform usually shows better performance than on a local computing cluster.

Patterns for partitioning are clearly important to the scheme described above, and

specific neighborhood schemes in different circumstances should be considered. The

pseudo-code for customized partitioning for the GoL on Giraph is presented in Figure

4-7. The only difference between this and the default method is that a user needs to

apply the getPartition() and getWorker() functions before the super-step starts.

Function getPartition() could be used to return the place bundle that corresponds to a

specific part of a vertex, and getWorker() returns worker indications belonging to the

partitions. (For our voxel GoL implementation, each cell has von Neumann six

neighbors, except for cells located on the boundary.)

111

Figure 4-7. Giraph-based GoL with customized partitioning

For example, as shown in Figure 4-8(A), for an 81-cell lattice of 3 x 3 x 9 cells,

neighbors of cell 14 will be in indices/positions 5, 11, 13, 15, 17, and 23. Assuming

the CA is run with only three computing nodes of identical hardware specifications

(Figure 4-8(B)), and with hash partitioning, those cells that are related to cell 14 may

be partitioned to two or three computing nodes. Hence, when cell 14 is tasked to

update its state, it has to call two other computing nodes to ask for dependent

information and this generates an unnecessary network overhead. Here part of the

voxel GoL lattice was visualized to monitor the status of the tested voxel GoL

visually (Figure 4-8(C)).

112

Figure 4-8. Partitioning strategy of a voxel GoL CA

Alternatively, a customized partitioning method could be used such that the

initial data might be split into three 3 x 3 x 3 partitions, then assign each of these to

three computing nodes. In this alternative scheme, when transitions for cell 14 needs

113

to be calculated, all related information for that calculation could be acquired within

the node where it is located. We show comparison results for the custom partitioning

method and a default partitioning for a GoL CA with identical testing environment

and input data (Figure 4-6). Customized partitioning proves to be approximately eight

times more efficient than the default partitioning method. Here, the computing

capacity and performance of our Giraph-based voxel CA was proved. In comparison

to same scale voxel GoL in literature, our approach represented up to ~90 times faster

in performance. The key reason for this result could be our Giraph-based voxel GoL

was performed fully in memory but Marques’s scheme can only support disk-based

data exchange, which was highly limited by the throughput of disk bandwidth.

Another reason was the neighborhood scheme and initial cell status were written into

the input file of our Giraph-GoL, which was needed to be calculated in Marques’s

approach during each timestep. This will require extra processing time for each

timestep to seek neighbors of each cell. The last reason could be HDFS-based

framework replicated input data on distributed file systems (3 replicas in our case),

which could save data transfer time especially under network latency within cloud

computing clusters.

However, GoL is only a toy model that was used for performance tests in recent

research. The feasibility and performance of applying Giraph-based voxel CA on real

geographical models have not been verified. In following section, an actual

geographical model - air pollutant particle dispersal, will be implemented in our voxel

CA in massive scale.

114

4. Massive Scale Voxel Air Pollutant Particle Dispersal Simulation

In this section, a billion cells voxel air pollutant particle dispersal simulation will

be demonstrated to represent the capability and performance of our Giraph-based CA

model in handling massive scale actual 3D geo-simulation applications.

The dispersal of air pollutant particles is a major factor that affects the health of

all lives on earth and it has been a global concern that has drawn much attention in

recent years (Rao et al., 2013). The mechanism of air pollutant particles dispersal

mainly results from buoyancy-driven air flow (Hajra, 2014). Heavy air pollutant

particles with negative buoyancy move downward to the ground due to gravity, which

makes their movement less influenced by surrounding air flows and wind. However,

air pollutant particles with neutral or positive buoyancy will stay afloat and are easily

affected by the airflow system to further transport and dilute.

Wind speed and direction has played an important role in airflow systems It is a

major factor in the transportation patterns of air pollutant particle dispersal that mix

with surrounding airflow systems. With greater velocity of wind speed, the faster the

air pollutant particles move from one place to another. More specifically, the wind

and surrounding airflow affect the advection and diffusion of air pollutant particle

dispersal. Advection was defined as the transportation of air pollutant particles within

the airflow that they are located in, while diffusion refers to a continuous process

where air pollutant particles move automatically from high pollutant concentration

areas to low pollutant concentration areas without being affected by other forces until

the pollutant concentration reaches an equilibrium (Jjumba & Dragicevic, 2015).

Turbulence may also cause additional diffusion due to complex airflow conditions

115

among neighborhoods of specific group of air pollutant particles. However,

turbulence will not be considered in this study for the purpose of simplifying the

physical model being simulated.

Many current 3D air pollutant dispersal models have been developed using

differential equations to represent the air pollutant transportation pattern in urban

street canyons or rural areas (Fang et al., 2014; Tomlin, Ghorai, Hart, & Berzins,

1999; Zahran, Smith, & Bennett, 2013). Voxel-based particle applications have also

been developed by researchers based on stochastic Lagrangian particle models

(Molnar Jr, Szakaly, Meszaros, & Lagzi, 2010). In this study, a simplified voxel

particle-based physical model (Jjumba & Dragicevic, 2015) has been applied to

represent the mechanism of air pollutant particles transport in 3D space along time.

4.1 Physical Model

We adopted the model designed by Jjumba and colleagues, which included two

main components: advection and diffusion (Jjumba & Dragicevic, 2015). The reason

to apply this simplified physical model is to 1) focus on demonstrating our cloud-

based voxel graph CA computing framework that could be applied in a

spatiotemporal simulation of actual 3D phenomena; and 2) prove our framework

could help to significantly improve the computational capacity of this simulation

model thus potentially offer detailed and large-scale simulation for a large study area.

This would overcome a problem mentioned by Jjumba et al. (2015) in their study

where they had to use coarse spatial resolution over a small study area for their

simulation, and ran for short computational durations to improve computational

efficiency with the series-based MATLAB simulation program.

116

In this physical model, a synthetic study area was developed to assess air

pollutant particles advection and diffusion. The whole study area was treated as a set

of uniform cubes. Air pollutant particles, fresh air and non-air objects such as ground

and buildings were all contained in those uniform cubes. In other words, a group of

air pollutant particles in a same voxel was considered as a single object during

simulation. For each voxel, 26 voxels that were contiguous to it were considered as its

neighbors according to a 3D Moore neighborhood scheme. Using this design, the

effects of advection and diffusion from a specific voxel during a single time step will

not affect voxels other than those 26 voxels. Another design aspect of this physical

model was the further the distance between a voxel and its neighbor, the lesser effects

of air pollutant particles advection and diffusion. More specifically, a 3 x 3 x 3 voxels

group was used as an example, where air pollutant particles moved from a center

voxel to all downwind 3 x 3 voxels due to advection. However, not all the downwind

voxels received the same amount of pollutant based on the theory of distance decay

(Fotheringham, 1981). Hence, three classes of the neighbors were defined as face

position neighbors, diagonal position neighbors and double diagonal position

neighbors with distance 1, √2, and √3. The diffusion process was also affected by the

distance of the target voxel and its neighbors. During a single timestep, more air

pollutant particles moved to the nearer neighbors than moved to farther neighbors if

the pollutant concentration of the target voxel was higher than for other neighbors.

The overall transportation process was represented as the equation below:

𝐶𝑡+1 = 𝐶𝑡 + 𝐶𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 − 𝐶𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐶𝑡 − 𝑟
∆𝐶

∆𝑑
− 𝑣

𝐶

∆𝑑

117

Here, 𝐶𝑡 and 𝐶𝑡+1 represented the concentration of a specific voxel at time step t

and t+1. The chance of the concentration of a specific voxel during processing was

due to diffusion 𝐶𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 and advection 𝐶𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛. The concentration change due to

diffusion was calculated by using a dispersion coefficient 𝑟 multiplied by the

concentration difference between the target voxel and its neighbors (∆𝐶) and then

divided by the distance ∆𝑑. If the value of the concentration change was positive, the

pollutant concentration in the target voxel was reduced and vice versa. In other

words, the pollutant concentration of all voxels was potentially increased or decreased

during the diffusion process. Different from diffusion, air pollutant particles moved

from the center voxel to all 9 neighbors under wind-driven advection. The amount of

the pollutant concentration changes from a specific voxel to one of its neighbors was

calculated by using wind velocity 𝑣 and the distance between this voxel and its

neighbor ∆𝑑.

4.2 Graph-Based Voxel Air Pollutant CA

On the basis of the physical model, as described above, a computational model

was designed in extensible form as a CA, which was tasked with animating air

pollutant particles dispersal dynamics according to the processes outlined in the

physical model. Within the lattice, each voxel was represented dynamically, as an

individual and autonomous CA. For the simulations discussed in this research, the

study area was specified as a box lattice. In other words, the entire study area was

considered as being composed of same-size voxels, each represented at unit 1 in

volume, which is consistent with the explanatory concepts of the physical model.

While states are allowed to transition through each voxel in the lattice, the cells in the

118

CA were not allowed to move their locations or to be deleted (although they may

change state). Three types of CA were considered: air pollutant particles, fresh air and

non-air objects. At the initial state in simulation, the fresh air was specified as air

voxels. The status/concentration of air pollutant particles voxels that transit during

each time step. The status of non-air voxels was never changed. To fit the continuous

air pollutant concentration changing in the physical model, a continuous CA model

was applied by using cell state values to represent air pollutant concentration. All air

pollutant source voxels were initialized as 1. During advection and diffusion

processing, the concentration will reduce until a value of 0 if the pollutant source was

set as temporary pollutant source such as a vehicle exhaust in an application of

detailed urban simulation. It could be set as one at beginning of each time step to

represent a permanent or long-term pollutant source such as a factory. Synthetic start

conditions were designed in the examples that will be shown in this study, but seed

conditions could alternatively be specified with real data if available. The resolution

that our CA model offers in simulation matches the needs of synthetic data

simulation. If finer or courser resolutions be required, they could easily be

accommodated by simply altering the specification of CA dimensions in the CA

model.

Neighborhoods for state exchange are a critical component of CA. According to

the air pollutant particles dispersal physical model, target cells are only

communicated by those cells at first-order Moore Neighborhood positions in the

lattice (Figure 4-9(A)). Three types of neighbors were defined in CA model to fit the

119

physical model. However, with the graph-based CA, the absolute physical spatial

relationship among each voxel will not need to be considered.

Figure 4-9. Traditional voxel air CA vs. Graph-based voxel air CA

The neighborhood scheme and the distance among each voxel were the major

focus for designing the graph-based approach. A directed graph was applied to

represent the voxels by nodes and the neighborhood scheme by using edges (Figure

4-9(B)). Using neighbors of voxel #14 that labeled from 1 to 9 as an example, the

weight of each edge represented the distance between the linked two voxels. A JSON

file was loaded as input at the initial stage as below:

[𝑡𝑎𝑟𝑔𝑒𝑡𝑣𝑜𝑥𝑒𝑙 , (0, 𝑠𝑡𝑎𝑡𝑢𝑠), [[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟1, (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠)], … [𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑛, (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠)]]]

This JSON fit for default input format of Apache Giraph. The 0 represented the

distance from the target voxel to itself. The rest of the file represented all neighbors of

this target voxel and the corresponding distance between them as well as the status of

those neighbors. In this CA model, the overall transition rules were represented as:

𝐶𝑡+1 = 𝐶𝑡 − 𝑟
∆𝐶𝑘

∆𝑑𝑘
+ ∑

(𝑣𝑖𝐶𝑖 − 𝑣𝑗𝐶)

∆𝑑

Here, with given wind direction i for influx wind direction and j for outflux wind

direction , the change of air pollutant concentration for a specific voxel, will be equal

120

to the summary of influx air pollutant 𝑣𝑖𝐶𝑖 from any direction i and outflux 𝑣𝑗𝐶 to

any direction j with considering the neighbors distance ∆𝑑 and self-diffusion to all

surrounding lower concentration voxel k.

4.3 Experiment Results and Discussion

In this section, two experiments were designed to test the feasibility and

performance of the Giraph-based voxel CA framework for the air pollutant particles

dispersal simulation. The first experiment was developed to verify the framework

could handle the exact same simulation as the experiments developed by (Jjumba &

Dragicevic, 2015). In this experiment, we replicated the single source and multi-

source air pollutant particles diffusion with the same parameters setting as used in the

original study. In addition, to further explore the computational capability of our

framework, another experiment was designed using 1 billion voxels, which was much

larger than the 64000 voxels in the literature, to test the computational performance

with a massive simulation. In this experiment, we applied a continuous single source

air pollutant simulation with fixed direct wind for 1000 timesteps, which was much

longer than the 90 timestep in the previous study. We then did a comparison between

these tests and the previous research from the perspective of modeling,

implementation, and performance at different scales.

The implementation of the CA simulation in large-scale graph processing and

graph-based computing on Giraph with customized partitioning was shown in Figure

4-10 (Figure 4-10). The partitioning operation was performed before supersteps

begin. When the simulation task was submitted to the computing cluster, the

simulation user may define the number of supersteps to represent a desired time

121

period, as well as the corresponding relations between supersteps and real simulation

time. Initialization was performed before superstep 0. As we discussed, this step was

straightforward in easing specification and parameterization of the model. As per the

computational design of the CA model, if necessary, different situations (different

parameters, different transition rules, different neighborhoods) could be applied to

explain air pollutant particles in different time periods. From superstep 1, the

simulation automatically applied the transition rules, depending on the values of each

parameter set.

Figure 4-10. Air pollutant particles dispersal CA on Giraph

According to the physical model design, there was no air pollutant particles

transfer reach outside the range of a 3D Moore neighborhood during a single

timestep. Hence, the neighbors of each cell in the lattice were only located inside a 3

x 3 x 3 positions. In other words, the whole CA model could be considered as a

bundle of 3 x 3 x 3 voxel groups. Cells on each voxel groups can only evolve inside

their own voxel groups during single timestep, rather than influencing cells in other

voxel groups. This was an important point to make, as it suggested some

122

computational schemes that can be injected into the simulation to allow for

computing efficiency in ways that ally to known physics. Specifically, because each

voxel group was independent, simulation users could perform partitioning for specific

numbers of those voxel groups, depending on the computing capacities of each node

in any available computing cluster. For example, if there were a total of nine-voxel-

groups to be resolved in simulation, and three corresponding computing nodes, a user

could arrange each node with three voxel groups to achieve balanced computing

performance. The computational environment for air pollutant particles simulation

involved 1008 computing vcores and 5.12 Tb memory at local cloud environment. A

2 Pb HDFS was configured and the whole resource are managed under YARN (Table

4-2).

Table 4-2. Computing environment for air pollutant CA experiments

Hardware Software

Role Count CPU RAM Name Version

Master

Node
2

2 x Intel Xeon E5-

2680v4 2.4GHz
256 G

Apache Spark 2.2.0

Apache Giraph 1.2.0

Computing

Node
18

2 x Intel Xeon E5-

2690v4 2.6GHz
256 G

Centos 6.9

Java Server VM
1.8.0_152

64Bit

The first experiment was a natural air pollutant particles dispersal with

continuous pollutant source under no wind environment. We applied 0.009 for

diffusion coefficient (Jjumba & Dragicevic, 2015) and 0 for wind speed. Cell status

of the pollutant source was set as 1 before each timestep started. 50 timesteps in

totally was pre-configured at the initialization stage of simulator. Status of each cell

was recorded during whole processing. For example, after zoomed into the cells

123

around pollutant source after first timestep finished, we can clearly see the change of

each cell around the pollutant source due to diffusion process (Figure 4-11).

Figure 4-11. Visualization of first timestep of single source air pollutant diffusion

simulation

With different neighborhood distances, the air pollutant concentration in each

cell was different due to the transition rules. The cells status of the whole system was

visualized by each 10 timesteps to display the overall air pollutant concentration

distribution pattern (Figure 4-12).

124

Figure 4-12. Single source air pollutant natural diffusion simulation for 50 timesteps

Under the same parameter configurations, a multi-source air pollutant particles

dispersal simulation was deployed (Figure 4-13). In this experiment, three

continuous pollutant sources were applied at the initialization stage. This simulator

was run for 50 timesteps and the results were visualized at each of 10 timesteps. From

those visualization results, the pattern of how the air pollutant particles were

transported from the pollutant source to the whole study area could be seen. For

example, there was no significant pattern change from timestep 40 to timestep 50

under this visualization. In other words, air voxels that were far from the pollutant

source would be affected by air pollutants very slowly due to the long transportation

distance, neighborhood transportation chain and the fixed diffusion rate of the

pollutant sources.

125

Figure 4-13. Multi-sources air pollutant natural diffusion simulation

In addition, to replicate the original study’s simulations under our cloud-based

computing framework, the second experiment was designed with the same parameter

configuration as in the previous experiment, but with a much larger scale. In this

experiment, an air pollutant particles dispersal simulation was performed with single

changeable pollutant source (continuous for first 125 timesteps) under fixed wind

environment (Figure 4-14). 1 billion voxels were involved during this simulation and

1000 timesteps was set for entire processing. Wind speed in this experiment was

setup as 4 along the Y axis. By visualizing each 125 timesteps, it was clearly to find

that the air pollutant was dispersed to the entire study area at timestep 125. Then, all

the air pollutant particles were transported along the Y axis and the concentration of

them was gradually decreased due to advection and diffusion. At timestep 1000, the

126

concentration of air pollutant in all visible voxels was very low and some non-

pollutant air voxels could be even found among them.

Figure 4-14. One-billion-cells single source air pollutant dispersal simulation for

1000 timesteps

In this experiment, the simulation was run under our computing framework with

customized partitioning to further improve computing performance. However, it

should be pointed out that voxel visualization performance was a bottleneck with this

simulation. Hence, to focus on assessing the computing performance of our

framework, we recorded processing time for each timestep. At the same time, we

visualized the results with a resampling approach. Hence, 1 billion cells were

calculated but only 1 million cells were displayed due to the limitation of

visualization performance.

A comparison between our framework and that of the original study was

performed from the perspective of model design, model implementation, and

computing performance (Table 4-3). Both studies were adopting voxel CA as a media

127

to simulate the air pollutant particles dispersal with synthetic data. In our study, we

applied the simplified physical model with same parameters as in the earlier work as a

benchmark to test the computing performance of our framework. In their study, they

applied traditional voxel CA to model air advection and diffusion in 3D space. By

using series programming in MATLAB software on a single workstation, they

simulated air pollutant dispersal with 64000 voxels and up to 90 timesteps, which was

limited by the computational capacity to achieve a higher resolution simulation with

more timesteps. With the same experimental environment and implementation

approach, their simulation was re-tested by upscaling to 1 million cells, which

represented about 4.7 hours processing time per each timestep. For 1 billion cells

simulation, the model did not finish a single timestep after 24 hours. The same

simulation was then tested in our experiment under our cloud-based computing

framework, where this framework used 16.2 seconds processing time for 1 million

cells and 47.3 seconds per timestep for 1 bill-cell simulation, which successfully

overcame the computational capacity limitation shown in the original study. We also

successfully tested our simulator with 1000 timesteps.

Table 4-3. A comparison of Jjumba’s study and ours

 (Jjumba & Dragicevic, 2015) Our study

Topic
Voxel CA - Air particles

dispersal
Same

Physical model Advection and Diffusion Same

Modeling Traditional CA Graph-based CA

Implementation MATLAB (series) Apache Giraph (distributed)

Test env Single Workstation Cloud Env

Scale 64000 cells
Up to 1 trillion cells as tested.

Unlimited in theory

128

Performance @

1million cells
4.7 hours per timestep 16.2 seconds per timestep

Performance @

1billion cells
Over 24 hours per timestep 47.3 seconds per timestep

Time steps Up to 90
Up to 1000 as tested.

Unlimited in theory

In the above two experiments, an in-memory Giraph computing was applied,

which consumed approximately 13 times the input graph size memory. Giraph can

also be configured in out-of-core computing mode, which can help to solve this

memory limitation issue to some extent. In other words, it can help to support larger

graph computing that requires a certain memory size. For example, in the air pollutant

particles dispersal experiment, it was possible to run out-of-core computing to

simulate 1 trillion-cells for an even larger coverage study area or to increase the

resolution of air pollutant voxels. However, due to a limitation with the bandwidth of

disks, it would take a longer time to finish the task.

These two air pollutant dispersal experiments addressed the task of adapting a

Giraph voxel CA framework to a scientific problem beyond the well-understood GoL

test scenario. A massive scale voxel graph CA was built that depended on an air

pollutant particle dispersal physical model. These efforts shown how a graph-based

voxel CA was able to support GIScience research. This novel and powerful

simulation tool has the potential to be widely used in many areas with theoretically

unlimited computing power (only limited by the specific computing framework and

budget available for computing resources).

129

5. Conclusions

The research objective of this study has been to develop a novel method for

computing using a very large voxel CA with high dimensions with efficiency that

goes beyond existing desktop CPU, GPGPU, MPI, and cloud schemes, with the view

that bigger and better CA models with high dimensions can provide researchers in

applied geographical contexts with more detail and processing power to better

represent phenomena of interest to them. And begin to build such a model in a way

that can take advantage of ever-emerging big data resources that might be available.

In this research, we have demonstrated that we were able to obtain significantly

more efficiency by employing Giraph-based voxel CA models, and that this

efficiency can be achieved on both local clusters and cloud platforms. Using 1 trillion

voxel GoL as a testbed, our framework successfully processed on AWS from ~ 8

minutes per timestep, which was about 90 times faster than the same scale simulation

in literature. In addition to assess the feasibility and performance of our framework

with actual geographical applications, a 3D air pollutant particles dispersal model was

adopted. In comparison with the upscaled original simulations that implemented in

series programming via MATLAB, which cannot be done in at least 24 hours. Our

approach represented a billion cells air advection and diffusion in 47.3 seconds per

timestep, which overcame the computational limitation in original study.

Furthermore, CAs based on graph specifications could help to make model-design

more intuitive, especially in high dimensions. By simply modifying the input files,

the model can be transformed from 2D into 3D without modifying the whole structure

130

of the compute function and where changes to only a small number of parameters

would be required in some cases.

Further improvements in performance could be generated by optimizing the

input and output functions of the Giraph scheme, which would in turn help to

compress the size of data and reduce the overhead of large data partitioning, passing,

and storage. At the same time, many computing clusters are composed of multiple

computing nodes with different performance capabilities. Allocating different sub-

tasks to those nodes according to the actual performance of those nodes may become

another effective method to further improve the processing performance.

131

Chapter 5 : Conclusions and Future Work

1. Conclusions and Limitations

Big data offers new opportunities for geographical scientific research. With an

ever-increasing volume of velocity, veracity, and variety of data, it is possible to

provide significant computational tools to support ongoing scientific research and

generate more detailed, accurate and trust-worthy results for research. However, it is

a grand challenge to mine those data with models and transfer model results into

valuable information, further supporting geographical research. More specifically, to

process big datasets requires a correspondingly big computational capacity to allow

those processes to be successfully finished in a reasonable time (e.g. in hours, not

days). In geographical science, the rapid expansion of geospatial datasets, e.g., RS

imagery datasets, provide a solid foundation for geographical researchers to

undertake scientific research at large scales or in greater detail. However, limited by

computing resources as well as computational capacity, many geographical

researchers have not benefitted from this big data era, and have not been able to

successfully undertake big geographical research in a reasonable time. This

dissertation contributes a set of methods for geographical researchers, especially for

those who do not have access to traditional HPC cluster computing resources, to lift

the block relating to a lack of big computational capacity and thus be able to use big

geospatial data to contribute to geographical sciences. More importantly, this work

contributes to the operational use of RS data where a shorter turnaround time to get

analysis results is necessary and a benefit for many different applications. For

132

example, it could potentially utilize a big RS observation dataset to monitor, analysis,

and predict natural hazards such as flooding and forest fire spread and evacuations in

a near real-time or even real-time manner. This dissertation presents three studies that

utilize different perspectives to demonstrate how an open source computing

framework can be integrated with cutting edge cloud computing technologies to

implement large scale geospatial data processing and complex geographical model

simulation.

RS imagery dataset classification was selected in the first study in this

dissertation to represent how to design and implement a universal scalable computing

framework by coupled with existing RS imagery classification approaches to classify

multi-sourced RS imagery datasets on cloud in efficiency. In this study, we exploited

Apache Spark to build a multi-sourced RS imagery classification framework and

successfully deployed and tested it in both commercial cloud platform and local cloud

environment. This study further explored the feasibility and performance of this

framework under two different study areas, with different sources of RS imagery

datasets, by using supervised and unsupervised classification methods. Our

framework suggests several promising advantages: 1) It has the flexibility to process

RS datasets in multi-spatial, multispectral or multi-temporal cases with slight

parameters adjustment, thereby significantly saving the time cost of reprogramming

brand new toolkits for different purposes; 2) It is possible to exploit the benefits of

cloud platforms to gain unlimited computing resources theoretically and provide

highly efficient performance; 3) It is highly accessible to multisource data storage,

even in the cloud, to reduce the data transformation cost.

133

This study is the first step in this direction and significant improvements can still

be made to the framework that has been developed. Currently, only two classification

methods were tested using this framework. However, it is insufficient to rely on those

two classification approaches to process all RS imagery classification tasks in actual

research. This framework should be used with additional classifiers to make the

framework a practical tool to support a broad range of geographical studies. More

importantly, the classifiers used with this framework in this dissertation were both

pixel-wise RS imagery processing functions. Some RS imagery classifiers with

computer vision technologies (e.g., objected oriented, or deep learning based) could

fit better for other types of geographical studies. Integrating those classifiers into this

framework could enrich the functions to support RS imagery classification under

more scenarios. The current partitioning may not fit for computer vision-based

classifiers to keep them perfectly embedded into our framework with high

computational efficiency and so alternative methods may need further investigation.

Another issue remaining from the first study is how to handle missing data, as

this is a common issue when mining RS imagery datasets especially for large areas,

which hinders researcher from obtaining complete LULC information to further

support their research. The second study aims to contribute a solution to this issue by

designing and implementing a Spark-based in-memory distributed Markov Chain and

suitability processing algorithm on the cloud, and integrating this algorithm with a

self-designed Giraph-based distributed CA on the cloud to fill LULC gaps. A

comprehensive workflow is introduced starting with integrating existing RS imagery

classification framework to access the input data, and continue to apply a machine

134

learning approach to perform multivariable clustering for a big study area (with

diverse ground features and significant different environmental and social-economics

conditions) for calibrating the training models, include potential impact factors that

are available to drive the gap filling model, and finally fill the LULC gaps using a

simulation process. In this study, we successfully tested LULC gap filling processing

for the entire IMAR region using 11 different auxiliary datasets and the developed

framework with an overall accuracy of 88.16%.

The accuracy assessment results represent for some LULC types, e.g., water

body and human land use area, the accuracy is not satisfaction. The main reason is

detailed transition mechanism of those LULC types along time series is unclear

though related auxiliary datasets were added into the model training, especially for

human land use, which could be possibly affected by real-time policies. A possible

solution for this is to gather more local information such as social media data,

government reports, news and policies to support describe the mechanism of those

specific LULC types. Ground truth points, if available, could be considered to add in

to further calibrate the simulation results. Another limitation of this study is for now,

a classic 5 x 5 2D CA neighborhood schema was applied into this study to drive the

CA model to rank and select the highest possibility of each cell transit from one class

to another. With different neighborhood schema, the result could be possibly

different, especially for the edge smoothing for simulated results of each SR, the

coverage and schema of the neighborhood should be carefully considered.

In addition to accelerate the data processing and mending, the third study in this

dissertation support boosting a theorical universal geographical model - CA which

135

could potential consume big geographical data to serve as a media for big

geographical complex system simulation and prediction. By fully rethinking

traditional CA from perspective of modeling, computation and computing resource

accessing, a Giraph-based voxel CA computing framework was developed to support

massive scale geographical complex systems simulation and prediction in high

dimensional space. This framework was tested on two different cloud platforms by

reaching up to 1 trillion cells in memory computing capacity in voxel space. With

comparing with same model and scale approach in literature, our framework appears

about 90 times faster in computing efficiency. This study further explored this

framework with a real geographical model --- air pollutant particle dispersal and

successfully simulated the air pollutant particles diffusion and advection with

synthetic data.

One of the limitations in this study is real observation-based data was not be used

in the air pollutant particles simulation due to unavailability. Hence, we can only test

the computational performance in comparison with same model that implemented

with series programming in literature rather than further test the simulation accuracy.

From the computational perspective, another limitation is this study is purely in

memory, which does fit the concept in cloud computing that “trade space for time”.

However, in actual research, the budget probably cannot support the computing

resource for pure in memory processing. In this study, we introduced the “out of

core” mechanism to use part of disk space as an alternative to solve the memory

deficiency. But it will reduce the computational performance due to the low

throughput of disk (comparing with memory). Hence, compressing input and output

136

data by removing the redundancy information and makes them fit for the memory

size as much as possible could be a better solution though the computational

complexity may be increased in some cases.

2. Significant contributions

The goal of this dissertation is to advance our understanding of using cloud

computing to support geographical researchers to benefit from big geospatial data and

further contribute to geographical sciences. The major findings and significant

contribution of studies in this dissertation are summarized in the following

paragraphs.

Contribution 1: In the first study (Chapter 2), an in-memory Spark-based

distributed cloud computing framework for multi-sourced RS imagery classification

was developed. This framework has been tested and deployed on different cloud

platforms to process RS imagery dataset from different sources using alterable

classifiers with only minor parameter adjustments. An onsite visualization approach

to convert text-based output as human readable figures was implemented to produce

ready-to-use results in a distributed manner on the cloud. The results of this study

show this framework could be a robust solution to potentially support big RS imagery

data classification (with sufficient computing resources) in big geographical research

such as LULC classification tasks.

Contribution 2: One of the classification approaches applied in the first study

(Chapter 2) is SVM that is originally designed as a model for linear-based binary

classification purposes. To cater to RS imagery classification tasks that require

multiple classes and non-linear processes, we extended a distributed cloud based

137

SVM in Spark MLlib with a kernel trick and a one-against-all computing strategy to

make it fit very well for RS imagery classification on the cloud, which could be

seamlessly embedded into our framework. Using Landsat 8 imagery data for the

entire IMAR region as a test input, we were able to successfully classify ~ 600

images in a single run with 2284 seconds, which was much faster than processed it on

single workstation (over 24 hours).

Contribution 3: In the second study (Chapter 3), a comprehensive solution was

introduced that be able to integrate with existing cloud-based RS image processing

framework, for example, our first study, in order to deal with LULC data gap filling.

We used a commonly used prediction model, Markov Chain CA to do the gap filling

with existing observation data and 11 different auxiliary datasets in biophysical and

socio-economic. We finally successfully tested this framework with entire IMAR as

study area on cloud with overall 88.16% accuracy. We also found with machine

learning based clustering, the gap filling model could be better trained and the overall

accuracy increase about 4% as compared to treating the whole study area as a single

region.

Contribution 4: Markov Chain - CA model is a classic LULC simulation model,

but it has been never tested on LULC studies with large computing clusters in the

literature. In Chapter 3, we described the design of a Spark-based in-memory

distributed Markov Chain and Suitability processing algorithm integrated with a

Giraph-based distributed Cellular Automata algorithm on the cloud with a customized

partitioning strategy to implement big gap filling tasks that could not be done with a

single workstation. The gap filling tasks (~18 billion cells in total included LULC

138

data for 3 years and 11 auxiliary datasets with 1.28 billion cells per layer) were also

been successfully tested with our framework.

Contribution 5: Considering big models need to be accelerated in addition to

handling big data processing, we extended the computational model presented in

Chapter 3 to develop a cloud-based distributed voxel CA model to support massive

scale geographical complex systems simulation in 3D. In this study (Chapter 4), we

re-thought the traditional CA and reconstructed traditional CA with graph theory and

extended it in voxel space. We also implemented a voxel graph CA with Apache

Giraph, a cloud-based graph processing framework on cloud and tested it with a

standard testbed GoL on commercial cloud platform in order to demonstrate the

computational capacity and performance for very large CA lattices (up to 1 trillion

cells in this study). We found our approach could reach up to about 90 times faster

than same scale studies in literature with customized partitioning computing strategy.

Contribution 6: Using the framework presented in Chapter 4, we further assessed

this framework with an actual geographical model in 3D. By adopting an air pollutant

particles dispersal model, we successfully simulated the air pollutant particles

diffusion and advection at massive scale (up to 1 billion cells with 1000 timesteps). In

comparison to the original series MATLAB based implementation using the same

physical model, we proved our framework could run the same simulation with

significant better computational performance that we achieved 47.3 seconds of

processing time per timestep for 1 billion cells simulation, which took over 24 hours

with original approaches in literature.

139

3. Future work

With advancing RS observation platforms and computing engineering

technologies, massive volume of geographical datasets has been published in recent

years. Big geographical research that applied large scale and fine resolution datasets

is drawing attention from geographical researchers who was suffering from limited

computing capacity and unavailable big datasets. In this dissertation, three studies are

conducted with three selected major challenges of geographical research in this big

data era, to discuss serval possible solutions for geographical researchers nowadays to

undertake big geographical studies. However, limitations of our studies are mentioned

in previous discussion. To overcome those issues, some tasks are proposed to be

accomplished in the future studies.

For the first study, we are considering making it as a comprehensive RS imagery

datasets processing framework to support geographical studies in various scenarios.

In addition to add more RS imagery classification functions e.g. random forest (Liaw

& Wiener, 2002), ISODATA (Ball & Hall, 1965) and some customized classifiers by

encouraging community to contribute, into this framework, we can also add RS

imagery preprocessing functions such as cloud-removal, atmospheric correction, and

mosaicking to allow users to start with raw RS datasets to generate LULC

information. Furthermore, an automatic accuracy assessment function could be built

in to allow user to upload ground truth data as validate and report the classification

accuracy in real time. Besides, we could develop a user interface that allow users to

apply the basic functions of it with a couple of clicks, which may benefit for many

geographical researchers without coding experience.

140

In the second study, increasing the modeling accuracy for specific LULC in

study by digging into the transition mechanism of them could be tested. On the other

hand, we could integrate the classification framework in the first study and publish

them as web service, which could allow users to select their study areas on cloud,

choose the RS dataset they need, upload their auxiliary datasets and setup customized

MCE parameters. After a single run, it could provide users a complete LULC map for

their selected study area without further coding and deployment.

Air pollutant particle dispersal was successfully simulated with our framework in

the third study. However, we only applied synthetic data with the physical model to

test the voxel CA. Using some complex models in geographical sciences, e.g., lattice-

Bozeman (Wolf-Gladrow, 2000) based models that convert models built on partial

differential equations into particle models would be useful, as well as further

involving more variables into the model simulation process for specific case studies.

Using air pollutant particle dispersal simulation as an example, although observation

datasets with very high resolution (e.g., 1 meter in 3D) that could fit into this model

were unavailable for testing for this research study, we could expect datasets would

be available in the future to support such testing. In the meantime, the simulation in

this study was implemented in a synthetic study area. A further study involving

processing data in an actual scenario could be undertaken to achieve a more realistic

use case. For example, by using building height data from OpenStreetMap (OSM)

(Haklay & Weber, 2008), this model could be potentially applied to simulate and

predict air pollution distribution patterns in Manhattan, New York City, NY.

141

Bibliography

Absardi, Z. N., & Javidan, R. (2017). Classification of big satellite images using

hadoop clusters for land cover recognition. Paper presented at the 2017 IEEE

4th International Conference on Knowledge-Based Engineering and

Innovation (KBEI).

Amazon, E. (2015). Amazon web services. Available in: http://aws. amazon.

com/es/ec2/(November 2012).

Amazon Web Services Inc. (2018a). Landsat on AWS. Retrieved from

https://aws.amazon.com/public-datasets/landsat/

Amazon Web Services Inc. (2018b). MODIS on AWS. Retrieved from

https://docs.opendata.aws/modis-pds/readme.html

Apache Software Foundation. (2018a). Apache Spark. Retrieved from

https://spark.apache.org/

Apache Software Foundation. (2018b). Tuning Spark. Retrieved from

http://spark.apache.org/docs/latest/tuning.html#tuning-spark

Avolio, M. V., Errera, A., Lupiano, V., Mazzanti, P., & Di Gregorio, S. (2017).

VALANCA: A Cellular Automata Model for Simulating Snow Avalanches.

Journal of Cellular Automata, 12(5).

Bai, Y., Han, X., Wu, J., Chen, Z., & Li, L. (2004). Ecosystem stability and

compensatory effects in the Inner Mongolia grassland. Nature, 431(7005),

181-184.

Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation

of the 1/f noise. Physical review letters, 59(4), 381.

Baker, W. L. (1989). A review of models of landscape change. Landscape ecology,

2(2), 111-133.

Ball, G. H., & Hall, D. J. (1965). ISODATA, a novel method of data analysis and

pattern classification. Retrieved from

Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., & Verdera, J. (2000). Filling-in

by joint interpolation of vector fields and gray levels.

Bell, E. J., & Hinojosa, R. (1977). Markov analysis of land use change: continuous

time and stationary processes. Socio-Economic Planning Sciences, 11(1), 13-

17.

Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications (Vol. 290):

Citeseer.

Borthakur, D. (2007). The hadoop distributed file system: Architecture and design.

Hadoop Project Website, 11(2007), 21.

Calera, A., Campos, I., Osann, A., D’Urso, G., & Menenti, M. (2017). Remote

sensing for crop water management: from ET modelling to services for the

end users. Sensors, 17(5), 1104.

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis.

Communications in Statistics-theory and Methods, 3(1), 1-27.

Cavallaro, G., Riedel, M., Bodenstein, C., Glock, P., Richerzhagen, M., Goetz, M., &

Benediktsson, J. A. (2015). Scalable developments for big data analytics in

remote sensing. Paper presented at the Geoscience and Remote Sensing

Symposium (IGARSS), 2015 IEEE International.

http://aws/
https://aws.amazon.com/public-datasets/landsat/
https://docs.opendata.aws/modis-pds/readme.html
https://spark.apache.org/
http://spark.apache.org/docs/latest/tuning.html#tuning-spark

142

Cavallaro, G., Riedel, M., Richerzhagen, M., Benediktsson, J. A., & Plaza, A. (2015).

On understanding big data impacts in remotely sensed image classification

using support vector machine methods. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 8(10), 4634-4646.

Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., & Lin, C.-J. (2010).

Training and testing low-degree polynomial data mappings via linear SVM.

Journal of Machine Learning Research, 11(Apr), 1471-1490.

Chavez, P. S. (1996). Image-based atmospheric corrections-revisited and improved.

Photogrammetric engineering and remote sensing, 62(9), 1025-1035.

Chen, X., & Zhou, L. (2015). The remote sensing image segmentation mean shift

algorithm parallel processing based on MapReduce. Paper presented at the

International Conference on Intelligent Earth Observing and Applications

2015.

Ching, A. (2013). Scaling apache giraph to a trillion edges. Facebook Engineering

blog, 25.

Chuang, C.-C., Su, S.-F., Jeng, J.-T., & Hsiao, C.-C. (2002). Robust support vector

regression networks for function approximation with outliers. IEEE

Transactions on Neural Networks, 13(6), 1322-1330.

CMDC. (2020). Retrieved from http://data.cma.cn/data/

Congalton, R. G., & Green, K. (2002). Assessing the accuracy of remotely sensed

data: principles and practices: CRC press.

Conway, J. (1970). The game of life. Scientific American, 223(4), 4.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),

273-297.

Crave, A., & Davy, P. (2001). A stochastic “precipiton” model for simulating

erosion/sedimentation dynamics. Computers & Geosciences, 27(7), 815-827.

Dahal, K. R., & Chow, T. E. (2015). Characterization of neighborhood sensitivity of

an irregular cellular automata model of urban growth. International Journal of

Geographical Information Science, 29(3), 475-497.

Dattilo, G., & Spezzano, G. (2003). Simulation of a cellular landslide model with

CAMELOT on high performance computers. Parallel Computing, 29(10),

1403-1418.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.

Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater

Dhaka, Bangladesh: Using remote sensing to promote sustainable

urbanization. Applied geography, 29(3), 390-401.

Di Gregorio, S., Kongo, R., Siciliano, C., Sorriso-Valvo, M., & Spataro, W. (1999).

Mount Ontake landslide simulation by the cellular automata model

SCIDDICA-3. Physics and Chemistry of the Earth, Part A: Solid Earth and

Geodesy, 24(2), 131-137.

Douglas, E. M., Niyogi, D., Frolking, S., Yeluripati, J. B., Pielke Sr, R. A., Niyogi,

N., . . . Mohanty, U. (2006). Changes in moisture and energy fluxes due to

agricultural land use and irrigation in the Indian Monsoon Belt. Geophysical

Research Letters, 33(14).

http://data.cma.cn/data/

143

Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata approaches to

biological modeling. Journal of theoretical Biology, 160(1), 97-133.

Fan, Wang, Y., & Wang, Z. (2008). Temporal and spatial change detecting (1998–

2003) and predicting of land use and land cover in Core corridor of Pearl

River Delta (China) by using TM and ETM+ images. Environmental

monitoring and assessment, 137(1-3), 127.

Fan, X., Lang, B., Zhou, Y., & Zang, T. (2017). Adding network bandwidth resource

management to Hadoop YARN. Paper presented at the Information Science

and Technology (ICIST), 2017 Seventh International Conference on.

Fang, F., Zhang, T., Pavlidis, D., Pain, C., Buchan, A., & Navon, I. (2014). Reduced

order modelling of an unstructured mesh air pollution model and application

in 2D/3D urban street canyons. Atmospheric Environment, 96, 96-106.

Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G.

A., & Washington, W. M. (2005). The importance of land-cover change in

simulating future climates. science, 310(5754), 1674-1678.

Ferro-Famil, L., Pottier, E., & Lee, J. (2001). Unsupervised classification and

analysis of natural scenes from polarimetric interferometric SAR data. Paper

presented at the IGARSS 2001. Scanning the Present and Resolving the

Future. Proceedings. IEEE 2001 International Geoscience and Remote

Sensing Symposium (Cat. No. 01CH37217).

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., . . .

Gibbs, H. K. (2005). Global consequences of land use. science, 309(5734),

570-574.

Fonstad, M. A. (2006). Cellular automata as analysis and synthesis engines at the

geomorphology–ecology interface. Geomorphology, 77(3-4), 217-234.

Fotheringham, A. S. (1981). Spatial structure and distance-decay parameters. Annals

of the Association of American Geographers, 71(3), 425-436.

Frery, A. C., & Perciano, T. (2013). Image data formats and color representation. In

Introduction to Image Processing Using R (pp. 21-29): Springer.

Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X., Muchoney, D., Strahler, A.

H., . . . Cooper, A. (2002). Global land cover mapping from MODIS:

algorithms and early results. Remote Sensing of Environment, 83(1-2), 287-

302.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American

statistical association, 84(405), 165-175.

Frisch, U., Hasslacher, B., & Pomeau, Y. (1986). Lattice-gas automata for the Navier-

Stokes equation. Physical review letters, 56(14), 1505.

Gafurov, A., & Bárdossy, A. (2009). Cloud removal methodology from MODIS snow

cover product. Hydrology and Earth System Sciences, 13(7), 1361-1373.

Giachetta, R. (2015). A framework for processing large scale geospatial and remote

sensing data in MapReduce environment. Computers & Graphics, 49, 37-46.

Gladkova, I., Grossberg, M. D., Shahriar, F., Bonev, G., & Romanov, P. (2012).

Quantitative restoration for MODIS band 6 on Aqua. IEEE Transactions on

Geoscience and Remote Sensing, 50(6), 2409-2416.

144

Gobron, S., Çöltekin, A., Bonafos, H., & Thalmann, D. (2011). GPGPU computation

and visualization of three-dimensional cellular automata. The Visual

Computer, 27(1), 67-81.

Goodchild, M. F., Guo, H., Annoni, A., Bian, L., de Bie, K., Campbell, F., . . .

Jackson, D. (2012). Next-generation digital earth. Proceedings of the National

Academy of Sciences, 109(28), 11088-11094.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R.

(2017). Google Earth Engine: Planetary-scale geospatial analysis for

everyone. Remote Sensing of Environment, 202, 18-27.

Gropp, W. D., & Lusk, E. (2007). Using MPI-2: A problem-based approach. Paper

presented at the European Parallel Virtual Machine/Message Passing Interface

Users’ Group Meeting.

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling

urban land use change by the integration of cellular automaton and Markov

model. Ecological modelling, 222(20-22), 3761-3772.

Guller, M. (2015). Big data analytics with Spark: A practitioner's guide to using

Spark for large scale data analysis: Springer.

Haasdonk, B. (2005). Feature space interpretation of SVMs with indefinite kernels.

IEEE Transactions on pattern analysis and machine intelligence, 27(4), 482-

492.

Hajra, B. (2014). A review of some recent studies on buoyancy driven flows in an

urban environment. International Journal of Atmospheric Sciences, 2014.

Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE

Pervasive Computing, 7(4), 12-18.

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land

cover change detection and prediction in the north-western coastal desert of

Egypt using Markov-CA. Applied geography, 63, 101-112.

Han, M., & Daudjee, K. (2015). Giraph unchained: Barrierless asynchronous parallel

execution in pregel-like graph processing systems. Proceedings of the VLDB

Endowment, 8(9), 950-961.

Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American

Institute of planners, 25(2), 73-76.

He, C., Okada, N., Zhang, Q., Shi, P., & Li, J. (2008). Modelling dynamic urban

expansion processes incorporating a potential model with cellular automata.

Landscape and Urban Planning, 86(1), 79-91.

He, Y., Lee, E., & Warner, T. A. (2017). A time series of annual land use and land

cover maps of China from 1982 to 2013 generated using AVHRR GIMMS

NDVI3g data. Remote Sensing of Environment, 199, 201-217.

Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (2011). Agent-based

models of geographical systems: Springer Science & Business Media.

Huang, Q., Yang, C., Benedict, K., Chen, S., Rezgui, A., & Xie, J. (2013). Utilize

cloud computing to support dust storm forecasting. International Journal of

Digital Earth, 6(4), 338-355.

Huang, W., Meng, L., Zhang, D., & Zhang, W. (2017). In-memory parallel

processing of massive remotely sensed data using an apache spark on hadoop

145

yarn model. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 10(1), 3-19.

Hutchinson, M. F., & Xu, T. (2004). Anusplin version 4.2 user guide. Centre for

Resource and Environmental Studies, The Australian National University,

Canberra, 54.

Iovine, G., D'Ambrosio, D., & Di Gregorio, S. (2005). Applying genetic algorithms

for calibrating a hexagonal cellular automata model for the simulation of

debris flows characterised by strong inertial effects. Geomorphology, 66(1-4),

287-303.

Ippoliti, C., Candeloro, L., Gilbert, M., Goffredo, M., Mancini, G., Curci, G., . . .

Quaglia, M. (2019). Defining ecological regions in Italy based on a

multivariate clustering approach: A first step towards a targeted vector borne

disease surveillance. PloS one, 14(7).

Isliker, H., Anastasiadis, A., Vassiliadis, D., & Vlahos, L. (1998). Solar flare cellular

automata interpreted as discretized MHD equations. Astronomy and

Astrophysics, 335, 1085-1092.

Jjumba, A., & Dragicevic, S. (2015). Integrating GIS‐based geo‐atom theory and

voxel automata to simulate the dispersal of airborne pollutants. Transactions

in GIS, 19(4), 582-603.

Kaufmann, R. K., & Stern, D. I. (1997). Evidence for human influence on climate

from hemispheric temperature relations. Nature, 388(6637), 39.

Kononova, M. a. M. (1961). Soil organic matter, its nature, its role in soil formation

and in soil fertility. Soil organic matter, its nature, its role in soil formation

and in soil fertility.

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., .

. . Folke, C. (2001). The causes of land-use and land-cover change: moving

beyond the myths. Global environmental change, 11(4), 261-269.

Lan, H., & Xie, Y. (2013). A semi-ellipsoid-model based fuzzy classifier to map

grassland in Inner Mongolia, China. ISPRS journal of photogrammetry and

remote sensing, 85, 21-31.

Lan, H., Zheng, X., & Torrens, P. M. (2018). Spark Sensing: A Cloud Computing

Framework to Unfold Processing Efficiencies for Large and Multiscale

Remotely Sensed Data, with Examples on Landsat 8 and MODIS Data.

Journal of Sensors, 2018.

Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing

image classification techniques: The role of spatio-contextual information.

European Journal of Remote Sensing, 47(1), 389-411.

Li, X., Shen, H., Li, H., & Zhang, L. (2016). Patch matching-based multitemporal

group sparse representation for the missing information reconstruction of

remote-sensing images. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 9(8), 3629-3641.

Li, Y., Gong, J., Song, Y., Liu, Z., Ma, T., Liu, H., . . . Yu, Y. (2015). Design and key

techniques of a collaborative virtual flood experiment that integrates cellular

automata and dynamic observations. Environmental Earth Sciences, 74(10),

7059-7067.

146

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R

news, 2(3), 18-22.

Lin, J. (2012). Network analysis of China’s aviation system, statistical and spatial

structure. Journal of Transport Geography, 22, 109-117.

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., . . . Yan, C. (2014).

Spatiotemporal characteristics, patterns, and causes of land-use changes in

China since the late 1980s. Journal of Geographical Sciences, 24(2), 195-210.

Liu, Y., & Zheng, Y. F. (2005). One-against-all multi-class SVM classification using

reliability measures. Paper presented at the Proceedings. 2005 IEEE

International Joint Conference on Neural Networks, 2005.

Lunga, D., Gerrand, J., Yang, L., Layton, C., & Stewart, R. (2020). Apache Spark

Accelerated Deep Learning Inference for Large Scale Satellite Image

Analytics. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 13, 271-283.

Lynch, C. (2008). Big data: How do your data grow? Nature, 455(7209), 28.

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised

object-based land-cover image classification. ISPRS Journal of

Photogrammetry and Remote Sensing, 130, 277-293.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., & Jie, W. (2015).

Remote sensing big data computing: Challenges and opportunities. Future

Generation Computer Systems, 51, 47-60.

Marques, R., Feijo, B., Breitman, K., Gomes, T., Ferracioli, L., & Lopes, H. (2013).

A cloud computing based framework for general 2D and 3D cellular automata

simulation. Advances in Engineering Software, 65, 78-89.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI)

in the delineation of open water features. International journal of remote

sensing, 17(7), 1425-1432.

McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T., & Pitman, A. (1995).

Global climate sensitivity to tropical deforestation. Global and Planetary

change, 10(1-4), 97-128.

McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition

(Vol. 544): John Wiley & Sons.

Melgani, F. (2006). Contextual reconstruction of cloud-contaminated multitemporal

multispectral images. IEEE Transactions on Geoscience and Remote Sensing,

44(2), 442-455.

Mendes, R. L., Santos, A. A., Martins, M., & Vilela, M. (2001). Cluster size

distribution of cell aggregates in culture. Physica A: Statistical Mechanics and

its Applications, 298(3-4), 471-487.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., . . . Owen, S.

(2016). Mllib: Machine learning in apache spark. The Journal of Machine

Learning Research, 17(1), 1235-1241.

Mineter, M. J., Dowers, S., & Gittings, B. M. (2000). Towards a HPC framework for

integrated processing of geographical data: encapsulating the complexity of

parallel algorithms. Transactions in GIS, 4(3), 245-261.

147

Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land

cover change to integrate urban growth with open space conservation.

Landscape and Urban Planning, 99(2), 141-153.

Molnar Jr, F., Szakaly, T., Meszaros, R., & Lagzi, I. (2010). Air pollution modelling

using a Graphics Processing Unit with CUDA. Computer Physics

Communications, 181(1), 105-112.

Narteau, C., Zhang, D., Rozier, O., & Claudin, P. (2009). Setting the length and time

scales of a cellular automaton dune model from the analysis of superimposed

bed forms. Journal of Geophysical Research: Earth Surface, 114(F3).

Openshaw, S. (1984). The Modifiable Areal Unit problem. CATMOG 38. Norwich.

OpenStreetMap. (2020). Retrieved from https://www.openstreetmap.org/

Overmars, K. d., De Koning, G., & Veldkamp, A. (2003). Spatial autocorrelation in

multi-scale land use models. Ecological modelling, 164(2-3), 257-270.

Pielke Sr, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., . .

. Fall, S. (2011). Land use/land cover changes and climate: modeling analysis

and observational evidence. Wiley Interdisciplinary Reviews: Climate

Change, 2(6), 828-850.

Pontius Jr, R. G., & Chen, H. (2006). GEOMOD modeling. Clark University.

Qin, C. Z., Zhan, L. J., & Zhu, A. (2014). How to apply the geospatial data

abstraction library (GDAL) properly to parallel geospatial raster I/O?

Transactions in GIS, 18(6), 950-957.

Qiu, G., Kandhai, D., & Sloot, P. (2007). Understanding the complex dynamics of

stock markets through cellular automata. Physical Review E, 75(4), 046116.

Radenski, A. (2013). Using MapReduce streaming for distributed life simulation on

the cloud. Paper presented at the Artificial Life Conference Proceedings 13.

Rao, S., Pachauri, S., Dentener, F., Kinney, P., Klimont, Z., Riahi, K., & Schoepp, W.

(2013). Better air for better health: Forging synergies in policies for energy

access, climate change and air pollution. Global Environmental Change,

23(5), 1122-1130.

Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation

systems in the Great Plains with ERTS.

Salcido, A., & Celada, A. (2010). A lattice gas approach to the Mexico City wind

field estimation problem. Modelling, Simulation and Optimization, 385-416.

Salvaris, M., Dean, D., & Tok, W. H. (2018). Microsoft AI Platform. In Deep

Learning with Azure (pp. 79-98): Springer.

Sanderson, D. (2009). Programming google app engine: build and run scalable web

apps on google's infrastructure: " O'Reilly Media, Inc.".

Satellite Imaging Corporation. (2017a). QuickBird Satellite Sensor. Retrieved from

https://www.satimagingcorp.com/satellite-sensors/quickbird/

Satellite Imaging Corporation. (2017b). WorldView-4 Satellite Image Gallery.

Retrieved from https://www.satimagingcorp.com/gallery/worldview-4/

Shangguan, B., & Yue, P. (2018). SPARK Processing of Computing-Intensive

Classification of Remote Sensing Images: The Case on K-Means Clustering

Algorithm. Paper presented at the 2018 26th International Conference on

Geoinformatics.

https://www.openstreetmap.org/
https://www.satimagingcorp.com/satellite-sensors/quickbird/
https://www.satimagingcorp.com/gallery/worldview-4/

148

Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., & Zhang, L. (2015). Missing

information reconstruction of remote sensing data: A technical review. IEEE

Geoscience and Remote Sensing Magazine, 3(3), 61-85.

Shen, H., Zeng, C., & Zhang, L. (2011). Recovering reflectance of AQUA MODIS

band 6 based on within-class local fitting. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 4(1), 185-192.

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The hadoop distributed

file system. Paper presented at the 2010 IEEE 26th symposium on mass

storage systems and technologies (MSST).

Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting

spatial and decadal LULC changes through cellular automata Markov chain

models using earth observation datasets and geo-information. Environmental

Processes, 2(1), 61-78.

Suez Canal Authority. (2013). New Suez Canal. Retrieved from

https://www.suezcanal.gov.eg/English/About/SuezCanal/Pages/NewSuezCana

l.aspx

Sun, Z., Chen, F., Chi, M., & Zhu, Y. (2015). A spark-based big data platform for

massive remote sensing data processing. Paper presented at the International

Conference on Data Science.

Theobald, D. M., & Hobbs, N. T. (1998). Forecasting rural land-use change: a

comparison of regression-and spatial transition-based models. Geographical

and Environmental Modelling, 2, 65-82.

Tomlin, A. S., Ghorai, S., Hart, G., & Berzins, M. (1999). 3D adaptive unstructured

meshes for air pollution modelling. Environmental Management and Health.

Tong, C., Wu, J., Yong, S.-p., Yang, J., & Yong, W. (2004). A landscape-scale

assessment of steppe degradation in the Xilin River Basin, Inner Mongolia,

China. Journal of Arid Environments, 59(1), 133-149.

Townshend, J., Justice, C., Li, W., Gurney, C., & McManus, J. (1991). Global land

cover classification by remote sensing: present capabilities and future

possibilities. Remote Sensing of Environment, 35(2-3), 243-255.

Tseng, D.-C., Tseng, H.-T., & Chien, C.-L. (2008). Automatic cloud removal from

multi-temporal SPOT images. Applied Mathematics and Computation, 205(2),

584-600.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M.

(2003). Remote sensing for biodiversity science and conservation. Trends in

ecology & evolution, 18(6), 306-314.

U.S. Department of the Interior, & U.S. Geological Survey. (2018, 03/28/18). Landsat

8. Retrieved from https://landsat.usgs.gov/landsat-8

U.S. Geological Survey. (2011, December 13, 2011). Sensors - Hyperion. Retrieved

from https://eo1.usgs.gov/sensors/hyperion

Valiant, L. G. (1990). A bridging model for parallel computation. Communications of

the ACM, 33(8), 103-111.

Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the

kappa statistic. Fam med, 37(5), 360-363.

Von Neumann, J. (1951). The general and logical theory of automata. 1951, 1-41.

https://www.suezcanal.gov.eg/English/About/SuezCanal/Pages/NewSuezCanal.aspx
https://www.suezcanal.gov.eg/English/About/SuezCanal/Pages/NewSuezCanal.aspx
https://landsat.usgs.gov/landsat-8
https://eo1.usgs.gov/sensors/hyperion

149

Wang, J., Kwan, M.-P., & Ma, L. (2014). Delimiting service area using adaptive

crystal-growth Voronoi diagrams based on weighted planes: a case study in

Haizhu District of Guangzhou in China. Applied Geography, 50, 108-119.

Wang, L., Ma, Y., Yan, J., Chang, V., & Zomaya, A. Y. (2018). pipsCloud: High

performance cloud computing for remote sensing big data management and

processing. Future Generation Computer Systems, 78, 353-368.

Wang, N., Chen, F., Yu, B., & Qin, Y. (2020). Segmentation of large-scale remotely

sensed images on a Spark platform: A strategy for handling massive image

tiles with the MapReduce model. ISPRS journal of photogrammetry and

remote sensing, 162, 137-147.

Wang, Z., Zhong, J., Lan, H., Wang, Z., & Sha, Z. (2017). Association analysis

between spatiotemporal variation of net primary productivity and its driving

factors in inner mongolia, china during 1994–2013. Ecological Indicators.

Wang, Z., Zhong, J., Lan, H., Wang, Z., & Sha, Z. (2019). Association analysis

between spatiotemporal variation of net primary productivity and its driving

factors in inner mongolia, china during 1994–2013. Ecological indicators,

105, 355-364.

Weeden, A. (2013). Parallelization: Conway’s game of life. In: Online.

Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using

satellite remote sensing, GIS and stochastic modelling. Journal of

environmental management, 64(3), 273-284.

White, S. H., Del Rey, A. M., & Sánchez, G. R. (2007). Modeling epidemics using

cellular automata. Applied Mathematics and Computation, 186(1), 193-202.

White, T. (2012). Hadoop: The definitive guide: " O'Reilly Media, Inc.".

Wilder, B. (2012). Cloud architecture patterns: using microsoft azure: " O'Reilly

Media, Inc.".

Wolf-Gladrow, D. A. (2000). 5. Lattice Boltzmann Models. In Lattice Gas Cellular

Automata and Lattice Boltzmann Models (pp. 159-246): Springer.

Wolfram, S. (2002a). A new kind of science (Vol. 5): Wolfram media Champaign, IL.

Wolfram, S. (2002b). A new kind of science, vol. 5. Wolfram media Champaign, 80.

Wolfram, S. (2018). Cellular automata and complexity: collected papers: CRC Press.

Wulder, M. A., & Coops, N. C. (2014). Make Earth observations open access: freely

available satellite imagery will improve science and environmental-

monitoring products. Nature, 513(7516), 30-32.

Xie, Y., Zhang, Y., Lan, H., Mao, L., Zeng, S., & Chen, Y. (2018). Investigating

long-term trends of climate change and their spatial variations caused by

regional and local environments through data mining. Journal of

Geographical Sciences, 28(6), 802-818.

Yang, C., Yu, M., Hu, F., Jiang, Y., & Li, Y. (2017). Utilizing cloud computing to

address big geospatial data challenges. Computers, Environment and Urban

Systems, 61, 120-128.

Ye, B., & Bai, Z. (2007). Simulating land use/cover changes of Nenjiang County

based on CA-Markov model. Paper presented at the International Conference

on Computer and Computing Technologies in Agriculture.

150

Zahran, E.-S. M., Smith, M. J., & Bennett, L. D. (2013). 3D visualization of traffic-

induced air pollution impacts of urban transport schemes. Journal of

computing in civil engineering, 27(5), 452-465.

Zeng, C., Shen, H., & Zhang, L. (2013). Recovering missing pixels for Landsat

ETM+ SLC-off imagery using multi-temporal regression analysis and a

regularization method. Remote Sensing of Environment, 131, 182-194.

Zhang, C., Li, W., & Travis, D. (2007). Gaps‐fill of SLC‐off Landsat ETM+

satellite image using a geostatistical approach. International journal of remote

sensing, 28(22), 5103-5122.

Zhang, J., Clayton, M. K., & Townsend, P. A. (2011). Functional concurrent linear

regression model for spatial images. Journal of Agricultural, Biological, and

Environmental Statistics, 16(1), 105-130.

Zhang, Y., Gao, Q., Gao, L., & Wang, C. (2012). imapreduce: A distributed

computing framework for iterative computation. Journal of Grid Computing,

10(1), 47-68.

Zhao, Y., Billings, S. A., & Coca, D. (2009). Cellular automata modelling of

dendritic crystal growth based on Moore and von Neumann neighbourhoods.

International Journal of Modelling, Identification and Control, 6(2), 119-125.

Zhao, Y., Billings, S. A., Coca, D., Ristic, R., & DeMatos, L. (2009). Identification of

the transition rule in a modified cellular automata model: the case of dendritic

NH4Br crystal growth. International Journal of Bifurcation and Chaos,

19(07), 2295-2305.

Zhu, X. (2012). The impact of agricultural irrigation on land surface characteristics

and near surface climate in China.

