
Pre�x Computationson Symmetric Multiprocessors�(Preliminary Draft)David R. Helman Joseph J�aJ�aInstitute for Advanced Computer Studies &Department of Electrical Engineering,University of Maryland, College Park, MD 20742fhelman, josephg@umiacs.umd.eduJuly 28, 1998AbstractWe introduce a new optimal pre�x computation algorithm on linked lists which builds upon thesparse ruling set approach of Reid-Miller and Blelloch. Besides being somewhat simpler and requiringnearly half the number of memory accesses, we can bound our complexity with high probability insteadof merely on average. Moreover, whereas Reid-Miller and Blelloch targeted their algorithm for imple-mentation on a vector multiprocessor architecture, we develop our algorithm for implementation on thesymmetric multiprocessor architecture (SMP). These symmetric multiprocessors dominate the high-end server market and are currently the primary candidate for constructing large scale multiprocessorsystems. Our pre�x computation algorithm was implemented in C using POSIX threads and run onthree symmetric multiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, andthe HP-Convex Exemplar. We ran our code using a variety of benchmarks which we identi�ed to ex-amine the dependence of our algorithm on memory access patterns. For some problems, our algorithmactually matched or exceeded the optimal sequential solution using only a single thread. Moreover,in spite of the fact that the processors must compete for access to main memory, our algorithm stillresulted in scalable performance up to 16 processors, which was the largest platform available to us.Keywords: Parallel Algorithms, List Ranking, Pre�x Computations, Symmetric Multiprocessors,Parallel Performance.�Supported in part by NSF grant No. CCR-9627210 and NSF HPCC/GCAG grant No. BIR-9318183. It also utilized theNCSA HP-Convex Exemplar SPP-2000 and the NCSA SGI/CRAY POWER CHALLENGEarray with the support of theNational Computational Science Alliance under grant No. ASC970038N.1

1 IntroductionPre�x computations on linked structures are basic operations used for the manipulation of lists, trees,and graph data structures. However, beyond their obvious utility, the computational tasks involvedare well-known to defy practical parallel implementation on coarse grain architectures, especially fora relatively small number of processors. The source of the di�culty lies in the fact that there is noobvious way to estimate the relative proximity of two nodes except by essentially solving the overallproblem. Thus, there is no way to divide the nodes amongst the various processors that will avoidsubstantial and irregular communication. To make matters worse, there is very little computationwith which to mask these communication costs. Finally, any parallel solution must compete againstthe obvious sequential solution, which is extremely simple with very small constants.In this paper, we introduce a new pre�x computation algorithm which builds upon the sparseruling set approach of Reid-Miller and Blelloch [12, 13]. Unlike the original algorithm, we choose theruling set in such a way as to avoid the need for con
ict resolution. Besides making the algorithmsimpler, this change allows us to achieve a stronger bound on the complexity. Whereas Reid-Millerand Blelloch claim an expected complexity of O �np� for n >> p, we claim a complexity with highprobability of O �np� for n > p2 lnn. At the same time, our algorithm incurs approximately half thememory costs of their algorithm, which we believe to be the smallest of any parallel algorithm we areaware of. Finally, whereas Reid-Miller and Blelloch targeted their algorithm for implementation ona vector multiprocessor architecture, we develop our algorithm for implementation on the symmetricmultiprocessor architecture (SMP). The advantage of vector multiprocessors is the high global com-munication bandwidth and the pipelined memory access. Indeed, as long as there are no memorybank con
icts, the network can service one memory request per clock cycle for each memory pipe.However, despite this advantage, recent trends in multiprocessor architecture have placed in questionthe future of these vector machines. By contrast, symmetric multiprocessors dominate the high-endserver market and are currently the primary candidate for constructing large scale multiprocessorsystems.Our pre�x computation algorithm was implemented in C using POSIX threads and run on threesymmetric multiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, and the HP-Convex Exemplar. We ran our code using a variety of benchmarks which we identi�ed to examine thedependence of our algorithm on memory access patterns. For some problems, our algorithm actuallymatched or exceeded the performance of the sequential solution using only a single thread. Moreover,in spite of the fact that the processors must compete for access to main memory, our algorithm stillyielded scalable performance up to 16 processors, which was the largest platform available to us.The organization of our paper is as follows. Section 2 presents our computational model foranalyzing algorithms for this class of problems on symmetric multiprocessors. Section 3 describes in2

detail our pre�x computation algorithm for this platform. Finally, Section 4 describes the experi-mental performance of our pre�x computation algorithm.2 Computational ModelFor our purposes, the cost of an algorithm needs to include a measure that re
ects the number and typeof memory accesses. Given that we are dealing with a multi-level memory hierarchy, it is instructive tostart with a brief overview of a number of models that have been proposed to capture the performanceof multilevel hierarchical memories.Many of the models in the literature are speci�cally limited to two-level memories. Aggarwal andVitter [3] �rst proposed a simple model for main memory and disks which recognized the importanceof spatial locality. In their uniprocessor model, a constant number of possibly non-contiguous blocks,each consisting of B contiguous records, can be transferred between primary and secondary memoryin a single I/O. Vitter and Shriver [15] then proposed the more realistic D-disk model, in whichsecondary storage is managed by D physically distinct disk drives. In this model, D blocks can betransfered in a single I/O, but only if no two blocks are from the same disk. For both of these models,the cost of accessing data on disk was substantially higher than internal computation, and, hence, thesole measure of performance used is the number of parallel I/Os.Alternatively, there are a number of models which allow for any arbitrary number of memorylevels. Focusing on the fact that access to di�erent levels of memory are achieved at di�ering costs,Aggarwal et al. [1] introduced the Hierarchical Memory Model (HMM), in which access to locationx requires time f(x), where f(x) is any monotonic nondecreasing function. Taking note of the factthat the latency of memory access makes it economical to fetch a block of data, Aggarwal, Chandra,and Snir [2] extended this model to the Hierarchical Memory with Block Transfer Model (BT). In thismodel, accessing t consecutive locations beginning with location x requires time f(x) + t.These models both assume that while the buses which connect the various levels of memory mightbe simultaneously active, this only occurs in order to cooperate on a single transfer. Partly in responseto this limitation, Alpern et al. [4] proposed the Uniform Memory Hierarchy Model (UMH). In thismodel, the lth memory level consists of ��l blocks, each of size �l, and a block of data can be transferedbetween level l + 1 and level l in time �l=b(l), where b(l) is the bandwidth. The authors of the UMHmodel stress that their model is an attempt to suggest what should be possible in order to obtainmaximum performance. Certainly, the ability to specify the simultaneous, independent behavior ofeach bus would maximize computer performance, but as the authors acknowledge this is beyond thecapability of current high-level programming languages. Hence, the UMH model seems unnecessarilycomplicated to describe the behavior of existing symmetric multiprocessors.All the models mentioned so far focus on the relative cost of accessing di�erent levels of memory.3

On the other hand, a number of shared memory models have focused instead on the contention causedby multiple processors competing to access main memory. Blelloch et al. [6] proposed the (d,x)-BSPmodel, an extension to the Bulk Synchronous Parallel model, in which main memory is partitionedamongst px banks. In this model, the time required for execution is modeled by �ve variables, whichtogether describe the amount of time required for computation, the maximum number of memoryrequests made by a processor, and the maximum number of requests handled by a bank. The di�cultywith this model is that the contention it describes depends on speci�c implementation details suchas the memory map, which may be entirely beyond the control of the algorithm designer. A moregeneral version of this model was suggested by Gibbons et al. [8]. Known as the Queuing SharedMemory (QSM) model, it describes the execution time in terms of the maximum time required by anyprocessor for computation, the maximum number of memory accesses made by any processor, and themaximum number of requests made to any particular memory location. By focusing only on thoserequests which go to the same location, the QSM model avoids implementation details such as thememory map, which makes it more appropriate as a high-level model. On the other hand, referenceswhich go to the same bank of memory but not to the same location can be just as disruptive toperformance, and so ignoring details of the memory architecture can seriously limit the usefulness ofthe model. Finally, neither model considers the e�ects of memory hierarchy.In our SMP model, we acknowledge the dominant expense of memory access. Indeed, it has beenwidely observed that the rapid progress in microprocessor speed has left main memory access as theprimary limitation to SMP performance. The problem can be minimized by insisting where possibleon a pattern of contiguous data access. This exploits the contents of each cache line and takes fulladvantage of the pre-fetching of subsequent cache lines. However, since it does not always seem possibleto direct the pattern of memory access, our complexity model needs to include an explicit accountingof the number of non-contiguous main memory accesses required by an algorithm. Additionally, werecognize that e�cient algorithm design requires the e�cient decomposition of the problem amongstthe available processors, and, hence, we also include the cost of computation in our complexity. Forthe class of problems considered in this paper, we measure the overall complexity of an algorithmby the pair of values hTM ; TCi, where TM is the maximum number of non-contiguous main memoryaccesses required by any processor and TC is an upper bound on the local computational complexity ofany of the processors. Note that in our model each non-contiguous main memory access may involvean arbitrary sized contiguous block of data, and, hence, accessing a block of z contiguous words willcontribute only a unit cost to TM . Further, since our model is concerned only with the cost of mainmemory access, once the values are stored in cache they may be accessed in any pattern at no cost.An algorithm is considered optimal in our model if it requires the minimum number of non-contiguousmemory accesses consistent with an optimal computational complexity.4

3 Pre�x Computation AlgorithmConsider the problem of performing a pre�x computation on a linked list of n elements stored inarbitrary order in an array X . For each element X [i], we are given X [i]:succ, the array index of itssuccessor, and X [i]:data, its input value for the pre�x computation. Then, for any binary associativeoperator
, the pre�x computation is de�ned as:X [i]:pre�x= (X [i]:data if X [i] is the head of the list.X [i]:data
X [pre]:pre�x otherwise. ; (1)where pre is the index of the predecessor of Xi. The last element in the list is distinguished bya negative array index in its successor �eld, and nothing is known about the location of the �rstelement.Any of the known parallel pre�x algorithms in the literature can be considered for implementationon an SMP. However, to be competitive, a parallel algorithm must contend with the extreme simplicityof the obvious sequential solution. A pre�x computation can be performed by a single processor withtwo passes through the list, the �rst to identify the head of the list and the second to compute thepre�x values. The pseudocode for this obvious sequential algorithm is as follows:� (1): Visit each list element Xi in order of ascending array index. If Xi is not the terminalelement, then label its successor with index Xi:succ as having a predecessor.� (2): Find the one element not labeled as having a predecessor by visiting each list element Xiin order of ascending array index - this unlabeled element is the head of the list.� (3): Beginning at the head, traverse the elements in the list by following the successor point-ers. For each element traversed with index i and predecessor pre, set List[i].pre�x data =List[i].pre�x data
 List[pre].pre�x data.To compute the complexity, note that Step (1) requires at most n non-contiguous memory accessesto label the successors. Step (2) involves a single non-contiguous memory access to a block of ncontiguous elements. Step (3) requires at most n non-contiguous memory accesses to update thesuccessor of each element. Hence, this algorithm requires at most (2n + 1) non-contiguous memoryaccesses and runs in in O(n) computation time.According to our model, however, the obvious algorithm is not necessarily the best sequentialalgorithm. The non-contiguous memory accesses of Step (1) can be replaced by a single contiguousmemory access by observing that the index of the successor of each element is a unique value between0 and n � 1 (with the exception of the tail, which by convention has been set to a negative value).Since only the head of the list does not have a predecessor, it follows that together the successorindices comprise the set f0; 1; ::; h� 1; h+ 1; h+ 2; ::; n� 1g, where h is the index of the head. Since5

the sum of the complete set f0; 1; ::; n� 1g is given by 12n(n � 1), it easy to see that the identity ofthe head can be found by simply subtracting the sum of the successor indices from 12n(n � 1). Theimportance of this lies in the fact that the sum of the successor indices can be found by visiting thelist elements in order of ascending array index, which according to our model requires only a singlenon-contiguous memory access. The pseudocode for this improved sequential algorithm is as follows:� (1): Compute the sum Z of the successor indices by visiting each list element Xi in order ofascending array index. The index of head of the list is h = �12n(n� 1)� Z�.� (2): Beginning at the head, traverse the elements in the list by following the successor point-ers. For each element traversed with index i and predecessor pre, set List[i].pre�x data =List[i].pre�x data
 List[pre].pre�x data.Since this modi�ed algorithm requires no more than (n+1) non-contiguous memory accesses whilerunning in O(n) computation time, it is optimal up to an additive constant of 1 in our model. Indeed,as we will show latter, our experimental results con�rm the superiority of this algorithm over theobvious sequential algorithm. Since only a relatively small number of processors are available on asymmetric multiprocessor, any parallel algorithm must be competitive even on a single processor inorder to be practically signi�cant.The �rst fast parallel algorithm for pre�x computations was probably the list ranking algorithm ofWyllie [16] (note that his algorithm was originally developed for the su�x computation problem, andour presentation here makes appropriate modi�cations for our pre�x computation problem). Afterinitially traversing the list to establish the predecessor links, the algorithm consists of iterativelyshrinking the list by replacing the predecessor of each element with the predecessor of its predecessor.Before each iteration, the pre�x computation of each element is replaced with the result of applyingthe pre�x operation between the current pre�x value and that of its predecessor. Since this wholeprocess must be repeated for O(logn) iterations and we can not assume that the predecessor of a nodeis in a contiguous memory location, it will require a total of at least n logn non-contiguous accesses,which is far from optimal. Note that throughout this discussion, when we refer to the total numberof non-contiguous accesses, we are referring to the sum of the non-contiguous accesses made by all pprocessors.Another class of of known algorithms repeatedly contract the list of n elements by identifyingand removing an independent set of nodes until np elements remain [7, 11, 5]. As each element isremoved, the pre�x computation of its successor is replaced with the result of applying the pre�xoperation between the pre�x value of the element being removed and the value of its successor. Whennp elements remain, the pre�x computation of the reduced list is done using a sequential algorithm,after which the list is restored by reinserting the independent sets in the opposite order in which6

they were removed. As each element is reinserted, the value of its pre�x computation is obtained byapplying the pre�x operation between its current pre�x value and that of its predecessor.The e�ciency of this approach obviously depends on the cost of identifying and removing theindependent set. An independent set can be found in a deterministic fashion using the 3-coloring al-gorithm of Cole and Vishkin [7]. Since this involves substantial constants, we consider the randomizedapproach of Miller and Reif [11], in which each node in the list is randomly labeled as either activeor inactive. If an inactive node is succeeded by an active node, than that inactive node is a memberof the independent set. This method for removing the independent set results in an algorithm whichrequires only O �np� computation time. However, the algorithm requires on average at least a total of5n non-contiguous memory accesses - n accesses to establish a doubly linked list from a singly linkedlist, 3n accesses to determine whether the successors of inactive nodes are active and, if so, to properlyremove them, and n accesses to restore the list. To see why the list contraction step requires at least 3nnon-contiguous memory accesses, note that on average for any iteration half of the nodes are labeledinactive and half of their successors are active (this analysis is actually more generous than that ofits authors in [11]). If iteration i begins with ni elements, then for each of the approximately 12niinactive elements a check must be made of its successor to see if it is active. Approximately 14ni of thenodes will be removed, in which case the successor pointers of their predecessors will have to updatedas well. Hence, each iteration requires 34ni non-contiguous memory accesses, and the overall resultfollows. In contrast to the 5n total non-contiguous memory accesses required by this algorithm, ouroptimal sequential algorithm only requires at most (n + 1) non-contiguous memory accesses. More-over, this parallel algorithm seems to require a signi�cant number (at least 4 logn) of synchronizationbarriers to run correctly, each of which is a fairly expensive operation.Anderson and Miller [5] modi�ed the randomized algorithm so that the list does not have to becompacted after each independent set is removed. In this variation, the list is decomposed into log nqueues, where membership in a particular queue implies nothing about the relative proximity of thosemembers in the list. With the exception of the �rst element in each queue, which is randomly labeledas either active or inactive, every other element is labeled to be active. Then, if the element at thetop of a queue is inactive and its predecessor in active, the element at the top of the queue is deletedfrom the list and the process is repeated with the next element in that queue. Anderson and Millershowed that with high probability all log n queues would be depleted in O(logn) iterations, resulting inan algorithm which requires only O �np� computation time. However, this algorithm still requires atleast a total of 4n non-contiguous memory accesses - n accesses to establish a doubly linked list from asingly linked list, 2n accesses to contract the list (one access to check the successor of an inactive nodeand one to update its predecessor), and n accesses to restore the list. Additionally, this algorithmseems to require at least 3 logn expensive synchronization barriers to run correctly.7

Clearly, one way to improve on the contract and expand approach typi�ed by these algorithmsis to accomplish the contraction (and expansion) in a single step. This could be done by choosingrelatively few elements to be active and then deleting (and inserting) the entire sublist of inactiveelements which precede each active element in a single step. The challenge would be to demonstratethat, in spite of the relatively few active elements, the work of these sublist deletions could be evenlydistributed amongst the available processors.Indeed, Reid-Miller and Blelloch [13, 12] proposed this very modi�cation in a novel, e�cient,parallel algorithm which achieved signi�cantly reduced costs. While they originally developed thisalgorithm for a vector multiprocessor machine, Sibeyn et. al [14] have subsequently applied the ideato distributed memory architectures as well. In this algorithm, the input is randomly divided into(m + 1) sublists, where (n >> m >> p). Each of these sublists is traversed to compute the sublistpre�x value of the last element in the sublist, and the result is used to form a new linked list of size(m+ 1) that links these values in the order that their sublists appear in the original list. After that,the pre�x sum of the new list is computed using either the sequential algorithm or Wyllie's pointerjumping algorithm. Note that the pre�x value of a particular node in the reduced list corresponds tothe pre�x value of the node at the tail of the corresponding sublist. Finally, each sublist is traversedagain using the pre�x value computed for the tail of the preceding sublist, and the pre�x value ofeach element is computed in a straightforward manner. Clearly, this algorithm only requires a totalof about 2n non-contiguous memory accesses (the authors assume the head of the list is alreadyknown) - n accesses for the initial traversal and n accesses for the �nal traversal. Further, on a sharedmemory machine, the algorithm would require only a constant number of synchronization barriers torun correctly. Finally, Reid-Miller and Blelloch established that on average no single processor willrequire more than about 2np memory accesses and O �np� computation time for �n > p2 logm�.Reid-Miller and Blelloch acknowledge in their paper that a di�culty exists with their algorithm inthe way in which the heads of the sublists are chosen. Speci�cally, each processor chooses mp positionsat random, leaving open the possibility that two processors could randomly choose the same position.Depending on how the algorithm is implemented, this can simply result in some wasteful duplicationof e�ort or it can actually cause problems with correctness. Reid-Miller and Blelloch suggest removingduplicate random numbers by having a competition amongst the processors, in which each processorwrites its index to the locations it has randomly chosen. When the process is completed, each processorchecks its locations to see if its index has been overwritten. If it has, then it can drop that sublistfrom those it must traverse.In this paper, we introduce a new optimal pre�x computation algorithm which builds upon thesparse ruling set approach of Reid-Miller and Blelloch. In addition to avoiding the problem of choosingthe same location as a sublist head twice, our algorithm requires only about half the total number8

of non-contiguous memory accesses while achieving a stronger computational complexity bound. Ouralgorithm only requires a total of about n non-contiguous memory accesses because we are able toentirely eliminate the second set of sublist traversals. Yet, whereas Reid-Miller and Blelloch claim anexpected computational complexity of O �np� for n > p2 logm, we claim a computational complexitywith high probability of O �np� for n > p2 ln n. Nevertheless, like their algorithm, we require onlya constant number (�ve) of barrier synchronizations. Note that our requirement of about n totalnon-contiguous memory accesses beats even the requirements of the obvious sequential algorithm andcompares closely with the requirements of the optimal sequential algorithm.A high-level description of our algorithm proceeds as follows. We �rst identify the head of the listusing the same procedure as in our optimal sequential algorithm. We then partition the input list intos sublists by randomly choosing exactly one splitter from each memory block of n(s�1) elements wheres is
(p logn) (the list head is also designated as a splitter). Corresponding to each of these sublists isa record in an array called Sublists. We then traverse each of these sublists, making a note at each listelement of the index of its sublist and the pre�x value of that element within the sublist. The resultsof these sublist traversals are also used to create a linked list of the records in Sublists, where the inputvalue of each node is simply the sublist pre�x value of the last element in the previous sublist. Wethen determine the pre�x values of the records in the Sublists array by sequentially traversing this listfrom its head. Finally, for each element in the input list, we apply the pre�x operation between itscurrent pre�x input value (which is its sublist pre�x value) and the pre�x value of the correspondingSublists record to obtain the desired result.The pseudo-code of our algorithm is as follows, in which the input consists of an array of n recordscalled List. Each record consists of two �elds, successor and pre�x data, where successor gives theinteger index of the successor of that element and pre�x data initially holds the input value for thepre�x operation. The output of the algorithm is simply the List array with the properly computedpre�x value in the pre�x data �eld. Note that as mentioned above we also make use of an intermediatearray of records called Sublists. Each Sublists record consists of the four �elds head, scratch, pre�x data,and successor, whose purpose is detailed in the pseudo-code.� (1): Processor Pi (0 � i � p�1) visits the list elements with array indices inp through � (i+1)np � 1�in order of increasing index and computes the sum of the successor indices. Note that in doingthis a negative valued successor index is ignored since by convention it denotes the terminallist element - this negative successor index is however replaced by the value (�s) for futureconvenience. Additionally, as each element of List is read, the value in the successor �eld ispreserved by copying it to an identically indexed location in the array Succ. The resulting sumof the successor indices is stored in location i of the array Z.� (2): Processor P0 computes the sum T of the p values in the array Z. The index of the head of9

the list is then h = �12n(n� 1)� T�.� (3): For j = isp up to � (i+1)sp � 1�, processor Pi randomly chooses a location x from the blockof list elements with indices �(j � 1) n(s�1)� through �j n(s�1) � 1� as a splitter which de�nes thehead of a sublist in List (processor P0 chooses the head of the list as its �rst splitter). This isrecorded by setting Sublists[j].head to x. Additionally, the value of List[x].successor is copied toSublists[j].scratch, after which List[x].successor is replaced with the value (�j) to denote boththe beginning of a new sublist and the index of the record in Sublists which corresponds to itssublist.� (4): For j = isp up to � (i+1)sp � 1�, processor Pi traverses the elements in the sublist whichbegins with Sublists[j].head and ends at the next element which has been chosen as a splitter (asevidenced by a negative value in the successor �eld). For each element traversed with index x andpredecessor pre (excluding the �rst element in the sublist), we set List[x].successor = -j to recordthe index of the record in Sublists which corresponds to that sublist. Additionally, we record thepre�x value of that element within its sublist by setting List[x].pre�x data = List[x].pre�x data
List[pre].pre�x data. Finally, if x is also the last element in the sublist (but not the last elementin the list) and k is the index of the record in Sublists which corresponds to the successor of x,then we also set Sublists[j].successor = k and Sublists[k].pre�x data = List[x].pre�x data. Finally,the pre�x data �eld of Sublists[0], which corresponds to the sublist at the head of the list is setto the pre�x operator identity.� (5): Beginning at the head, processor P0 traverses the records in the array Sublists by follow-ing the successor pointers from the head at Sublists[0]. For each record traversed with indexj and predecessor pre, we compute the pre�x value by setting Sublists[j].pre�x data = Sub-lists[j].pre�x data
 Sublists[pre].pre�x data.� (6): Processor Pi visits the list elements with array indices inp through �(i+1)np � 1� in orderof increasing index and completes the pre�x computation for each list element x by settingList[x].pre�x data = List[x].pre�x data
 Sublists[-(List[x].successor)].pre�x data. Additionally,as each element of List is read, the value in the successor �eld is replaced with the identicallyindexed element in the array Succ. Note that is reasonable to assume that the entire array of srecords which comprise Sublists can �t into cache.We can establish the complexity of this algorithm with high probability - that is with probability� (1� n��) for some positive constant �. But before doing this, we need to establish the followingLemma.Lemma 1: The number of list elements traversed by any processor in Step (4) is at most �np with highprobability, for any �(s) � 2:62 (read �(s) as \the function � of s"), s � (p lnn+1), and n > p2 lnn.10

Proof: The number of elements T traversed by a processor can only exceed �np if less than sp ofthe �rst �np list elements traversed have been selected as splitters. Recall that, in Step (3) of ouralgorithm, splitters are chosen by �rst partitioning the input list into a set fS0; S1; :::; S(s�2)g of sblocks, each of size n(s�1) , after which a splitter is chosen at random from each block. Clearly, if wede�ne Ti as the subset of elements in the traversal T which also belong to the block Si (i.e Ti = T\Si),then the probability that a splitter selected from the block Si appears in the traversal T is simplyjTijjSij = jTij (s�1)n .Consider a set of independent but not identically distributed Bernoulli trials fX0; X1; :::; X(s�2)g,where Wi is one with probability jTij (s�1)n and zero otherwise. Clearly, Wi describes the probabilitythat a splitter selected from the block Si appears in the traversal T , and SumX =Ps�1(i=0)Xi describesthe total number of splitters encountered in the traversal T . Next, consider another set of independentbut not identically distributed Bernoulli trials fY0; Y1; :::; Y��np�1�g, where:Yi = (Xi for (0 � i � (s� 2)).0 with probability one for �(s� 1) � i � ��np � 1��. (2)Obviously, the sum SumY = Ps�1(i=0) Yi will be equal to SumX and will therefore describe as well thetotal number of splitters encountered in the traversal T .We can now bound the probability that less than sp of the �rst �np elements encountered in traversalT were splitters by taking advantage of the well known fact that the variance of a sum of indepen-dent Bernoulli trials is maximized when they are independent and identically distributed [10]. Moreformally, let A be the number of successes in m independent Bernoulli trials, and let pi be the prob-ability of success in the ith trial. If we de�ne q as being equal to E[A]m = P(m�1)(i=0) pim , then Hoe�ding[10] showed that: Pr(A � c) � cXk=0 mk ! qk(1� q)(m�k) (3)for any integer c such that (0 � c � (E[A]� 1)). Applying this result to our problem, we �rst notethat: E[SumY] = E[SumX] = (s�2)X(i=0)E[Xi] = (s�2)X(i=0) jTij(s� 1)n = �np (s� 1)n = �(s � 1)p : (4)Note that if we assume that � � ss�1 , then it follows that:E[SumY]� 1 = �s � 1p � 1 � sp � 1: (5)We can then use Hoe�ding's theorem to establish thatPr�SumY � �sp � 1�� = Pr�SumX � �sp � 1�� � sp�1Xk=0 rk ! qk (1� q)r�k ; (6)11

where r = �np , q = E[SumX]�np = (s�1)n , and � � s(s�1) . Using the following \Cherno�" type bound [9]for estimating the head of a binomial distribution�rqXk=0 rk ! qk (1� q)r�k � e�(1��)2 rq2 ; (7)and noting that � sp � 1� � (s�1)p for p � 1, it follows that the probability that a particular processorwill traverse at least �np elements can be bounded bye�(1� 1�)2 �(s�1)2p : (8)Hence, the probability that any processor will traverse at least �np elements without encountering atleast sp splitters can be bounded by p�1Xi=0 e�(1� 1�)2 �(s�1)2p : (9)If we then assume that (s�1)p � lnn and n > p2 ln n, it is easy to show that the above sum can bebounded by n�� for some � > 0 and �(s) � 2:62. It is trivial to verify that for these values of n, s,and �(s), it will always be true that �(s) � s(s�1) and Lemma 1 follows. 2With the results of Lemma 1, we can now establish the following theorem:Theorem 1: For our pre�x computation algorithm, which uses a total of about n non-contiguousmemory accesses, no processor will require more than ��(s)np + 2s+ 2 sp + 7� non-contiguous memoryaccesses and O �np� computation time with high probability for �(s) � 2:62, s � (p lnn + 1), andn > p2 ln n. Moreover, on average no single processor will require more than �np + 2s+ 2 sp + 7�non-contiguous memory accesses and O �np� computation time.Proof: The analysis of our algorithm on a symmetric multiprocessor is as follows. In Step (1), eachprocessor moves through a contiguous portion of the list array to compute the sum of the indices inthe successor �eld and to preserve these indices by copying them to the array Succ. When this taskis completed, the sum is written to the array Z. Since this is done in order of increasing array index,it requires only three non-contiguous memory accesses and O �np� computation time. In Step (2),processor P0 computes the sum of the p entries in the array Z. Since this is done in order of increasingarray index, this step requires only a single non-contiguous memory access and O(p) computationtime. In Step (3), each processor randomly chooses � sp� splitters to be the heads of sublists. Foreach of these sublists, it copies the index of the corresponding record in the Sublists array into thesuccessor �eld of the splitter. While the Sublists array is traversed in order of increasing array index,the corresponding splitters may lie in mutually non-contiguous locations and so the whole process mayrequire � sp + 1� non-contiguous memory accesses and O (ln n) computation time. In Step (4), each12

processor traverses the sublist associated with each of its � sp� splitters, which together contain at most�(s)np elements with high probability. As each sublist is completed, the pre�x value of the last elementin the subarray is written to the record in the Sublists array which corresponds to the succeedingsublist. Since the record in Sublists which corresponds to the current sublist and the record in Sublistswhich corresponds to the succeeding sublist can always lie in non-contiguous memory locations, thisstep requires at most ��(s)np + sp + 1� non-contiguous memory accesses and O �np� computation timewith high probability . However, it is important to note that an sn -biased binomial process requires onaverage ns events before encountering the �rst success and so on average each processor traverses aboutnp list elements (which is what we observe experimentally in the next section). In Step (5), processorP0 traverses the the linked list of s records in the Sublists array established in Step (4) to computetheir pre�x values, which requires (s) non-contiguous memory accesses and O (s) computation time.Finally, in Step (6), each processor completes the pre�x values for a contiguous chunk of the input listby �rst looking up the pre�x value of the record in Sublists which maps to the head of its sublist. Sincewe make the reasonable assumption that the entire array of (s) records which comprise Sublists will �tinto the cache, which is the case for all three platforms considered in this paper and the choices for n,accessing the pre�x values in the Sublists array will only require (s) non-contiguous memory accesses(non-contiguous because we are assuming they are accessed in the order of request). Accessing thelist array will of course require only a single non-contiguous memory access. Hence, overall, this stepwill require only (s + 1) non-contiguous memory accesses and O �np� computation time. Thus, withhigh probability, the overall complexity of our pre�x computation algorithm is given byT (n; p) = hTM(n; p);TC(n; p)i (10)= h��(s)np + 2s+ 2sp + 7� ;O�np�i (11)for �(s) � 2:62, s � (p lnn+ 1), and n > p2 lnn. Moreover, on average, the overall complexity of ouralgorithm is given by T (n; p) = hTM(n; p);TC(n; p)i (12)= h�np + 2s+ 2sp + 7� ;O�np�i; (13)and Theorem 1 follows. 2Note that our experimental discussion will verify that in practice the burden of these accesses isvery evenly distributed across the available processors.4 Performance EvaluationBoth the sequential algorithm and our parallel algorithm were implemented in C using POSIX threadsand run on a DEC AlphaServer 21000A system, an SGI Power Challenge, and an HP-Convex Ex-13

emplar. The DEC AlphaSever consists of four Alpha 21064A processors, each running at 275 MHz.Each Alpha 21064A processor has a 16KB primary data cache and a 4MB secondary data cache. TheSGI Power Challenge consists of sixteen MIPS R10000 processors, each running at 195MHz. EachMIPS R10000 processor has a 32KB primary data cache and a 2MB secondary uni�ed (data andinstructions) cache. The HP-Convex Exemplar is an S-Class machine consisting of sixteen PA-8000processors each running at 180 MHZ. Each PA-8000 processor has a single level 1MB data cache.The evaluation of our algorithm's performance is organized as follows. Subsection 4.1 describesthe benchmarks used and their justi�cation, while Subsection 4.2 examines the performance of ouralgorithm as a function of input distribution. Subsection 4.3 compares the performance of ouralgorithm with the optimal sequential algorithm, and Subsection 4.4 examines the scalability of ouralgorithm in both the number of threads and the problem size. Finally, Subsection 4.5 examinesthe performance of our algorithm as a function of the number of splitters.4.1 BenchmarksFor our experimental evaluation, we examine the pre�x operation of
oating point addition on threedi�erent benchmarks. The input for pre�x sums is an array of n records. Each record corresponds toa node in the list and consists of two �elds. The �rst �eld is a four byte integer which speci�es thearray index of its successor and the other is an eight byte double precision which is the input for thepre�x operation. The output of the pre�x computation is simply the input array with the properlycomputed pre�x sums in the place of the pre�x input values.The successor �elds for our three benchmarks are created as follows:1. Random [R] - in which each successor is randomly chosen , is initialize by placing the elementsin the �rst two positions of the list in a doubly linked circular list (note that predecessor linksare removed when the list is complete). Subsequent elements are added as follows. Assume thedoubly linked circular list contains the �rst k elements in the list array, and we wish to add the(k+1)th element. We call the C library random number generator random(), which was originallyseeded the value 1001. Then, if the current predecessor of the t = ((random() mod (k + 1))thelement in the array has the index s, the new successor of the sth element will be the (k + 1)thelement and the successor of the (k + 1)th element will be the tth element. When this circularlist is complete, it is broken by setting the successor �eld of the ((random() mod n)th elementto -1.2. Stride [S] - in which each successor is (wherever possible) some stride S away, is generated asfollows. Assume the head of the list is at index n2 in the array, and a default stride of S = 1001.Then, the successor of this element is the location ��n2 + 1001� mod n�. The exercise is repeated(n � 2) more times until the list is complete. In the event that a location has already been14

selected for a previous element, a vacant position in the array is found by linear probing.3. Ordered [O] - in which each element is placed in the array according to its rank, is created byplacing the �rst element in the list at the �rst position in the array, the second element in thelist at the second portion in the array, and so forth.For each benchmark, the pre�x input value for an element is determined by �rst calling the functionrandom(), which returns a value between 0 and (231 � 1), and then subtracting 230 from the valuereturned to yield a random value in the interval ��230; 230� 1�.These benchmarks were chosen to compare the impact of various memory access patterns. Access-ing the successor of a list element in the Random [R] benchmark will usually produce a cache missfor a list of size larger than the cache. By contrast, even though the successor of a list element in theStride [S] benchmark will usually also be in a non-contiguous memory location, the constant stridemakes pre-fetching a possibility and hence a cache miss may or may not result. At the other extremeis the Ordered [O] benchmark, in which the successor of a list element is almost always going to bein cache, either as part of the same cache line or because of elementary pre-fetching.4.2 Performance as a Function of Input DistributionThe graphs in Figure 1 compare the performance of our pre�x computation algorithm on each ofour three platforms as a function of the input distribution. Results are shown for an input size of 4Melements for the full range of processors available on each of the SMPs. Almost without exception,the [O] benchmark always outperformed the [S] benchmark, which in turn always outperformed the[R] benchmark. To see why, consider Table I, which shows the step by step breakdown of theexecution time in Figure 1 for the HP-Convex Exemplar. Note �rst that for any particular numberof threads, Steps (1)-(3), Step (5), and Step (6) require approximately the same amount of time,irrespective of which benchmark we consider. This agrees well with our theoretical expectations,since these steps essentially involve only contiguous memory accesses, regardless of the benchmark.Instead, the dependence of the overall execution time on the input distribution re
ects the relativedi�erences in the time required to complete Step (4). Recall that in this step, each of the sublistsis traversed by following the successor pointers, and so the nature of the memory access pattern isentirely determined by the input. In the Random Benchmark [R], the memory location of the successoris randomly chosen, so almost every step in the traversal involves accessing a non-contiguous locationin memory. By contrast, in the [O] Benchmark, the memory location of the successor is always thesuccessive location in memory, which in all likelihood is already present in cache. Hence, as we wouldexpect, the [O] benchmark always outperforms the [R] benchmark. Perhaps more surprising is the factthat [S] benchmark always outperforms the [R] benchmark, even though the benchmark is designedso that where possible the successor is always a constant stride away. Since we chose the stride to15

be 1001, we would expect that every step in the traversal would involve accessing a non-contiguouslocation in memory. However, what distinguishes the [S] benchmark from the [R] benchmark is thethe constant stride, which can take advantage of cache pre-fetching.Number of Threads & BenchmarkStep: [1] [2] [4] [8] [16][R] [S] [O] [R] [S] [O] [R] [S] [O] [R] [S] [O] [R] [S] [O](1)-(3): 0.59 0.87 0.66 0.34 0.40 0.34 0.18 0.21 0.18 0.10 0.12 0.10 0.08 0.08 0.08(4): 6.69 1.86 2.33 3.40 1.08 1.17 1.75 0.57 0.59 0.96 0.31 0.30 0.74 0.22 0.18(5): 0.01 0.12 0.01 0.01 0.04 0.01 0.01 0.05 0.01 0.01 0.06 0.01 0.01 0.02 0.01(6): 0.69 0.75 0.69 0.37 0.38 0.35 0.21 0.20 0.19 0.11 0.12 0.11 0.09 0.12 0.08Total: 7.97 3.60 3.68 4.12 1.91 1.87 2.14 1.03 0.97 1.19 0.60 0.52 0.92 0.41 0.35Table I: Comparison of the time (in seconds) required as a function of the benchmark for each step ofcomputing the pre�x sums of 4M list elements on an HP-Convex Exemplar, for a variety of threads.

16

Figure 1: Performance (in seconds) of our algorithm on each of the three platforms as a function of theinput distribution, using an input of 4M elements. 17

4.3 Comparison with the Optimal Sequential AlgorithmTo start with, we verify the e�ciency of our optimal sequential algorithm by comparing its performancewith that of the obvious sequential algorithm. The graphs in Figure 2 compare the execution timeof the two sequential algorithms, showing results for each of our three platforms using di�erent sizeinputs generated with the [R] benchmark. In every instance, the performance of the optimal sequentialalgorithm surpassed the performance of the obvious sequential algorithm. This is the expectation ofour model, as the optimal algorithm calls for only half the non-contiguous memory accesses as theobvious one. A similar relationship was observed for the other benchmarks.The graphs in Figures 3 through 5 compare the performance of our optimal parallel pre�x com-putation algorithm with that of our optimal sequential algorithm. Results are shown for each of ourthree platforms on inputs of 4M elements generated using both the [R] and [S] benchmarks. For 4Melements, our parallel algorithm always outperforms the optimal sequential algorithm with only oneor two threads. This is also true for [O] benchmark (not shown), with the single exception of theDEC AlphaServer. At the other extreme, for an input of 128K elements (not shown), the sequentialalgorithm outperforms our parallel algorithm on all but the HP-Convex Exemplar, irrespective of thenumber of threads. However, it is important to qualify this last result by pointing out that a list of128K twelve byte records can �t reasonably well in the 2MB secondary cache of the Power Challengeand the 4MB secondary cache of the AlphaServer. Hence, once the list is brought in from main mem-ory in a contiguous fashion for initialization, most subsequent memory requests would not be expectedto miss to main memory. Thus, our algorithm, which accept a measure of additional overhead whencompared to the sequential algorithm to reduce costly main memory accesses, is not competitive. Bycontrast, 128K twelve byte records do not entirely �t into the 1MB single-level cache of the HP-ConvexExemplar. Hence, cache misses are still an issue, and our algorithm remains competitive. Clearly, thesuccess of our algorithm on problems which exceed the capacity of the cache strongly supports theattention our model attaches to the number of non-contiguous memory accesses.
18

Figure 2: Comparison between the performance of the obvious sequential algorithm and our optimalsequential algorithm. 19

Figure 3: Comparison between the performance of our parallel algorithm and our optimal sequentialalgorithm on the DEC AlphaServer.

Figure 4: Comparison between the performance of our parallel algorithm and our optimal sequentialalgorithm on the SGI Power Challenge. 20

Figure 5: Comparison between the performance of our parallel algorithm and our optimal sequentialalgorithm on the HP-Convex Exemplar.4.4 Scalability in Number of Threads and Problem SizeThe graphs in Figure 6 examine the scalability of our pre�x computation algorithm as a function ofthe number of threads. Results are shown for a variety of problem sizes on each of our three platformsusing the [R] benchmark. Bearing in mind that these graphs are log-log plots, they show that forlarge enough inputs, the execution time decreases as we increase the number of threads p, which isthe expectation of our model. The step-by-step breakdown in Table II veri�es that this decreaseoccurs constantly at every step. For smaller inputs, this inverse relationship between the executiontime and the number of threads deteriorates. In this case, such performance is quite reasonable if weconsider the fact that for small problem sizes the size of the cache approaches that of the problem.This introduces a number of issues which are beyond the intended scope of our algorithm.
21

Figure 6: Scalability of our algorithm with respect to the number of threads, for di�ering benchmarks andproblem sizes. 22

Platform & Number of ThreadsStep: DEC SGI HP-Convex1 2 4 1 2 4 8 16 1 2 4 8 16(1)-(3): 1.20 0.78 0.66 0.76 0.65 0.81 0.39 0.48 0.59 0.34 0.18 0.10 0.08(4): 2.94 1.72 1.25 6.62 5.33 3.94 2.67 1.50 6.69 3.40 1.75 0.96 0.74(5): 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01(6): 1.27 0.80 0.61 0.67 0.49 0.27 0.15 0.18 0.69 0.37 0.21 0.11 0.09Total: 5.41 3.29 2.52 8.05 6.48 5.02 3.26 2.16 7.97 4.12 2.14 1.19 0.92Table II: Time (in seconds) required for each step of computing the pre�x sums of 4M list elementsgenerated with the [R] benchmark using a variety of threads.4.5 Performance as a Function of the Number of SplittersThe �rst graph in Figure 7 examines the performance of our pre�x computation algorithm on the[R] benchmark as a function of the number of splitters s. Results are shown for a list of 4M elementson the SGI Power Challenge using di�ering numbers of threads - results obtained on other platformswere similar. The graph clearly indicates that, for each number of threads, there is a range of valuesof s that result in the best performance. To see why, consider the step-by-step breakdown of theexecution time for four threads in Table III. Notice that, for small values of s, increasing the valueof s decreases the execution time primarily by decreasing the time required for Step 4. This is dueto to an improvement in the load distribution amongst the threads, which agrees with out theoreticalexpectation that as the value of s increases, the value of �(s) drops. More interesting is the fact that,for s > 32K, the performance begins to deteriorate sharply. Table III shows that this corresponds toan increase in the time required for all but Step 4. The gradual increase in the time required for Steps(1) through (3) is reasonable and re
ects the increased cost of selecting more splitters in Step (3).More surprising is the time required in the time required for Step 5, which suddenly began to increaseafter remaining relatively constant for s � 32768. However, this behavior makes sense if we recallthat this step involves traversing the linked list in the Sublists array, in which each element consistsof a 20 byte record in our implementation. As long as the size of this list remains comfortably lessthan the capacity of the 2MB combined (data/instruction) cache of the RS1000 processor, then thenon-contiguous memory accesses of the Sublists list traversal will not result in a cache miss. However,as s increases beyond 32768, this becomes less and less likely, and the hence the cost of Step (5) beginsto rapidly escalate. Similarly, Step 6 involves looking up pre�x computation values in the Sublistsarray np times, and so might be expected to be independent of the value s. However, as noted in ourcomplexity discussion, each successive lookup might be to a non-contiguous memory location. As longas the Sublists array �ts easily into the 2MB cache, than each successive lookup will not result in acache miss. However, as s increases beyond 32768, this becomes less and less likely, and therefore the23

cost of this step begins to increase.More surprising was the relationship that existed between the execution time and the number ofsplitters for the [S] benchmark. The second graph in Figure 7 examines the performance of ouralgorithm on the the SGI Power Challenge using a list of 4M elements generated using a stride of1001. It shows that as the number of splitters is increased from 2048 to 262144, the execution timeis reduced by more than a half, irrespective of the number of threads. The third graph in Figure 7shows similar results on the same platform using the [S] benchmark generated using a stride of 256,suggesting that this phenomenon is not an artifact of a single choice of benchmark stride. The fourthgraph in Figure 7 examines the performance of our algorithm on the HP-Convex Exemplar using thethe [S] benchmark generated using a stride of 1001. The results show that the e�ciency of increasingthe number of splitters, though less pronounced on the Exemplar, is not limited to a single platform.Tables IV and V display a step-by-step breakdown of the execution times using a single thread onthe Power Challenge and the Exemplar, respectively. The data in these tables show the reductionin the execution time is entirely due to a reduction in the time required for the sublist traversals ofStep (4). Increasing the number of splitters on the Power Challenge reduced the cost of this step by81%, whereas increasing the number of splitters on the Exemplar reduced the cost of this step by amore modest 47%. Finally, although not shown, increasing the number of splitters on the AlphaServerreduced the cost of this step by 30%. Number of SplittersStep: 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K(1)-(3): 0.78 0.81 0.78 0.81 0.81 0.81 0.81 0.93 0.99 1.17 1.44(4): 4.12 3.99 4.03 4.01 3.94 3.95 3.97 3.88 3.87 3.88 3.88(5): 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.23 0.59(6): 0.26 0.26 0.27 0.27 0.27 0.27 0.28 0.30 0.52 0.87 1.05Total: 5.16 5.06 5.07 5.09 5.02 5.03 5.07 5.12 5.42 6.15 6.96Table III: Time (in seconds) required for each step of computing the pre�x sums of 4M list elements on anSGI Power Challenge as a function of the number splitters. Results are shown for four threads using aninput generated with the [R] benchmark.Finally, Table VI shows the experimentally derived expected value (E) of the coe�cient �(s) usedto describe the complexity of our algorithm in Section 3 as a function of the number of splitter s. Thevalues shown were obtained by analyzing data collected while computing the pre�x sums of a 1M listgenerated using the [R] benchmark. The data was obtained from a total of 200 trials, where, for everytrial, a di�erent seed was used for the random number generator, both to generate the benchmark andto choose the splitters as part of Step (1). In each trial, the value recorded was the largest occurrenceof � on any of the four processors. Note that the experimentally derived expected values for � arefar less our theoretically derived value of 2:62 for s � (p lnn + 1) = 56, supporting our contention24

Number of SplittersStep: 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K(1)-(3): 0.72 0.72 0.71 0.72 0.72 0.73 0.76 0.79 0.88 1.04 1.32(4): 6.57 6.56 6.42 6.28 6.02 5.41 4.35 2.69 1.50 1.23 1.26(5): 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.23 0.59(6): 0.69 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.69 0.71Total: 7.98 7.94 7.79 7.65 7.40 6.81 5.78 4.16 3.09 3.19 3.89Table IV: Time (in seconds) required for each step of computing the pre�x sums of 4M list elementsgenerated on an SGI Power Challenge as a function of the number splitters. Results are shown for a singlethread using an input generated with the [S] benchmark and a stride of 1001.Number of SplittersStep: 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K(1)-(3): 0.70 0.67 0.67 0.67 0.67 0.68 0.70 0.72 0.78 0.87 1.04(4): 3.37 3.36 3.32 3.25 3.11 2.96 2.79 2.51 2.12 1.86 1.81(5): 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.12 0.32(6): 0.70 0.71 0.71 0.71 0.72 0.72 0.73 0.74 0.75 0.75 0.81Total: 4.74 4.74 4.71 4.64 4.50 4.37 4.22 4.00 3.70 3.60 3.98Table V: Time (in seconds) required for each step of computing the pre�x sums of 4M list elementsgenerated on an HP-Convex Exemplar as a function of the number splitters. Results are shown for a singlethread using an input generated with the [S] benchmark and a stride of 1001.that in practice no processor in Step (4) is required to do much more than np non-contiguous memoryaccesses. Total Number of SplittersValue 16 32 64 128 256 512 1024 2048E(�): 1.44 1.37 1.24 1.18 1.12 1.09 1.06 1.04Table VI: Statistical evaluation of the experimentally observed value of the algorithm coe�cient �.
25

Figure 7: Performance as a function of the total number of splitters, for di�ering numbers of threads.Results are shown for various platforms using inputs generated with the various benchmarks.26

5 ConclusionWe have introduced a new optimal pre�x computation algorithm on linked lists which builds uponthe sparse ruling set approach of Reid-Miller and Blelloch. Besides being somewhat simpler andrequiring nearly half the number of memory accesses, we can bound our algorithm's complexity withhigh probability instead of merely on average. Finally, whereas the previous algorithm was intendedfor implementation on vector multiprocessors, our algorithm is intended for e�cient implementationon symmetric multiprocessors.Our algorithm was implemented and tested on several platforms using widely di�erent benchmarks.For problems which exceeded the size of the cache, our algorithm scaled as predicted both in numberof threads and in problem size. For some problems, our algorithm actually matched or exceededthe optimal sequential solution using only a single thread, which again was the expectation of ourcomputational model based on the similar number of non-contiguous memory accesses. Together, theseexperimental results clearly con�rm the value of our algorithm for computing pre�x computations onsymmetric multiprocessors. Equally important, the results verify the utility of our computationalmodel, and in particular its emphasis on the precise number of non-contiguous memory accesses, as aguide for constructing e�cient algorithms for symmetric multiprocessors.Please see http://www.umiacs.umd.edu/research/EXPAR for related work by the authors.

27

References[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A Model for Heirarchical Memory. InProceedings of the 19th Annual ACM Symposium of Theory of Computing, pages 305{314, May1987.[2] A. Aggarwal, A. Chandra, and M. Snir. Heirarchical Memory with Block Transfer. In Proceed-ings of the 28th Annual IEEE Symposium on Foundations of Computer Science, pages 204{216,October 1987.[3] A. Aggarwal and J. Vitter. The Input/Output Complexity of Sorting and Related Problems.Communications of the ACM, 31:1116{1127, 1988.[4] B. Alpern, L. Carter, E. Feig, and T. Selker. The Uniform Memory Hierarchy Model of Compu-atation. Algorithmica, 12:72{109, 1994.[5] R. Anderson and G. Miller. Deterministic Parallel List Ranking. In Proceedings Third AegeanWorkshop on Computing, AWOC 88, pages 81{90, Corfu, Greece, June/July 1988. Springer-Verlag.[6] G.E. Blelloch, P.B. Gibbons, Y. Matias, and M. Zagha. Accounting for Memory Bank Contentionand Delay in High-Bandwidth Multiprocessors. IEEE Transactions on Parallel and DistributedSystems, 8(9):943{958, 1997.[7] R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications to Optimal Parallel ListRanking. Information and Control, 70:32{53, January 1986.[8] P.B. Gibbons, Y. Matias, and V. Ramachandran. Can a Shared-Memory Model Serve as aBridging-Model for Parallel Compatation? In Proceedings of the 9th ACM Symposium on ParallelAlgorithms and Architectures, pages 72{83, June 1997.[9] T. Hagerup and C. R�ub. A Guided Tour of Cherno� Bounds. Information Processing Letters,33:305{308, 1990.[10] W. He�ding. On the Distribution of the Number of Successes in Independent Trials. Annals ofMathematical Statistics, 27:713{721, 1956.[11] G. L. Miller and J. H. Reif. Parallel Tree Contraction and its Application. In Proceedings Twenty-Sixth Annual IEEE Symposium on Foundations of Computer Science, pages 478{489, Portland.OR, October 1985.[12] M. Reid-Miller. List Ranking and List Scan on the Cray C90. Journal of the Computer andSystem Sciences, 53:344{356, 1996. 28

[13] M. Reid-Miller and G. Blelloch. List Ranking and List Scan on the Cray C90. Technical Re-port CMU-CS-94-101, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,March 1994.[14] J.F. Sibeyn, F. Guillaume, and T. Seidel. Practical Parallel List Ranking. In Proceedings of the 4thSymposium on Solving Irregularly Structured Problems in Parallel, pages 25{36. Springer-Verlag,1997.[15] J. Vitter and E. Shriver. Algorithms for Parallel Memory I: Two-Level Memories. Algorithmica,12:110{147, 1994.[16] J.C. Wyllie. The Complexity of Parallel Computations. PhD thesis, Department of ComputerScience, Cornell University, Ithica, NY, 1979.

29

