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Abstract

We introduce a new optimal prefix computation algorithm on linked lists which builds upon the
sparse ruling set approach of Reid-Miller and Blelloch. Besides being somewhat simpler and requiring
nearly half the number of memory accesses, we can bound our complexity with high probability instead
of merely on average. Moreover, whereas Reid-Miller and Blelloch targeted their algorithm for imple-
mentation on a vector multiprocessor architecture, we develop our algorithm for implementation on the
symmetric multiprocessor architecture (SMP). These symmetric multiprocessors dominate the high-
end server market and are currently the primary candidate for constructing large scale multiprocessor
systems. Qur prefix computation algorithm was implemented in C using POSIX threads and run on
three symmetric multiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, and
the HP-Convex Exemplar. We ran our code using a variety of benchmarks which we identified to ex-
amine the dependence of our algorithm on memory access patterns. For some problems, our algorithm
actually matched or exceeded the optimal sequential solution using only a single thread. Moreover,
in spite of the fact that the processors must compete for access to main memory, our algorithm still
resulted in scalable performance up to 16 processors, which was the largest platform available to us.
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1 Introduction

Prefix computations on linked structures are basic operations used for the manipulation of lists, trees,
and graph data structures. However, beyond their obvious utility, the computational tasks involved
are well-known to defy practical parallel implementation on coarse grain architectures, especially for
a relatively small number of processors. The source of the difficulty lies in the fact that there is no
obvious way to estimate the relative proximity of two nodes except by essentially solving the overall
problem. Thus, there is no way to divide the nodes amongst the various processors that will avoid
substantial and irregular communication. To make matters worse, there is very little computation
with which to mask these communication costs. Finally, any parallel solution must compete against
the obvious sequential solution, which is extremely simple with very small constants.

In this paper, we introduce a new prefix computation algorithm which builds upon the sparse
ruling set approach of Reid-Miller and Blelloch [12, 13]. Unlike the original algorithm, we choose the
ruling set in such a way as to avoid the need for conflict resolution. Besides making the algorithm
simpler, this change allows us to achieve a stronger bound on the complexity. Whereas Reid-Miller
and Blelloch claim an expected complexity of O (%) for n >> p, we claim a complexity with high
probability of O (%) for n > p?lnn. At the same time, our algorithm incurs approximately half the
memory costs of their algorithm, which we believe to be the smallest of any parallel algorithm we are
aware of. Finally, whereas Reid-Miller and Blelloch targeted their algorithm for implementation on
a vector multiprocessor architecture, we develop our algorithm for implementation on the symmetric
multiprocessor architecture (SMP). The advantage of vector multiprocessors is the high global com-
munication bandwidth and the pipelined memory access. Indeed, as long as there are no memory
bank conflicts, the network can service one memory request per clock cycle for each memory pipe.
However, despite this advantage, recent trends in multiprocessor architecture have placed in question
the future of these vector machines. By contrast, symmetric multiprocessors dominate the high-end
server market and are currently the primary candidate for constructing large scale multiprocessor
systems.

Our prefix computation algorithm was implemented in C using POSIX threads and run on three
symmetric multiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, and the HP-
Convex Exemplar. We ran our code using a variety of benchmarks which we identified to examine the
dependence of our algorithm on memory access patterns. For some problems, our algorithm actually
matched or exceeded the performance of the sequential solution using only a single thread. Moreover,
in spite of the fact that the processors must compete for access to main memory, our algorithm still
yielded scalable performance up to 16 processors, which was the largest platform available to us.

The organization of our paper is as follows. Section 2 presents our computational model for

analyzing algorithms for this class of problems on symmetric multiprocessors. Section 3 describes in



detail our prefix computation algorithm for this platform. Finally, Section 4 describes the experi-

mental performance of our prefix computation algorithm.

2 Computational Model

For our purposes, the cost of an algorithm needs to include a measure that reflects the number and type
of memory accesses. Given that we are dealing with a multi-level memory hierarchy, it is instructive to
start with a brief overview of a number of models that have been proposed to capture the performance
of multilevel hierarchical memories.

Many of the models in the literature are specifically limited to two-level memories. Aggarwal and
Vitter [3] first proposed a simple model for main memory and disks which recognized the importance
of spatial locality. In their uniprocessor model, a constant number of possibly non-contiguous blocks,
each consisting of B contiguous records, can be transferred between primary and secondary memory
in a single I/O. Vitter and Shriver [15] then proposed the more realistic D-disk model, in which
secondary storage is managed by D physically distinct disk drives. In this model, D blocks can be
transfered in a single I/O, but only if no two blocks are from the same disk. For both of these models,
the cost of accessing data on disk was substantially higher than internal computation, and, hence, the
sole measure of performance used is the number of parallel 1/Os.

Alternatively, there are a number of models which allow for any arbitrary number of memory
levels. Focusing on the fact that access to different levels of memory are achieved at differing costs,
Aggarwal et al. [1] introduced the Hierarchical Memory Model (HMM), in which access to location
x requires time f(z), where f(z) is any monotonic nondecreasing function. Taking note of the fact
that the latency of memory access makes it economical to fetch a block of data, Aggarwal, Chandra,
and Snir [2] extended this model to the Hierarchical Memory with Block Transfer Model (BT). In this
model, accessing t consecutive locations beginning with location z requires time f(x)+ ¢.

These models both assume that while the buses which connect the various levels of memory might
be simultaneously active, this only occurs in order to cooperate on a single transfer. Partly in response
to this limitation, Alpern et al. [4] proposed the Uniform Memory Hierarchy Model (UMH). In this
model, the [*" memory level consists of ap’ blocks, each of size p!, and a block of data can be transfered
between level [ 4+ 1 and level [ in time p!/b(l), where b(l) is the bandwidth. The authors of the UMH
model stress that their model is an attempt to suggest what should be possible in order to obtain
maximum performance. Certainly, the ability to specify the simultaneous, independent behavior of
each bus would maximize computer performance, but as the authors acknowledge this is beyond the
capability of current high-level programming languages. Hence, the UMH model seems unnecessarily
complicated to describe the behavior of existing symmetric multiprocessors.

All the models mentioned so far focus on the relative cost of accessing different levels of memory.



On the other hand, a number of shared memory models have focused instead on the contention caused
by multiple processors competing to access main memory. Blelloch et al. [6] proposed the (d,x)-BSP
model, an extension to the Bulk Synchronous Parallel model, in which main memory is partitioned
amongst px banks. In this model, the time required for execution is modeled by five variables, which
together describe the amount of time required for computation, the maximum number of memory
requests made by a processor, and the maximum number of requests handled by a bank. The difficulty
with this model is that the contention it describes depends on specific implementation details such
as the memory map, which may be entirely beyond the control of the algorithm designer. A more
general version of this model was suggested by Gibbons et al. [8]. Known as the Queuing Shared
Memory (QSM) model, it describes the execution time in terms of the maximum time required by any
processor for computation, the maximum number of memory accesses made by any processor, and the
maximum number of requests made to any particular memory location. By focusing only on those
requests which go to the same location, the QSM model avoids implementation details such as the
memory map, which makes it more appropriate as a high-level model. On the other hand, references
which go to the same bank of memory but not to the same location can be just as disruptive to
performance, and so ignoring details of the memory architecture can seriously limit the usefulness of
the model. Finally, neither model considers the effects of memory hierarchy.

In our SMP model, we acknowledge the dominant expense of memory access. Indeed, it has been
widely observed that the rapid progress in microprocessor speed has left main memory access as the
primary limitation to SMP performance. The problem can be minimized by insisting where possible
on a pattern of contiguous data access. This exploits the contents of each cache line and takes full
advantage of the pre-fetching of subsequent cache lines. However, since it does not always seem possible
to direct the pattern of memory access, our complexity model needs to include an explicit accounting
of the number of non-contiguous main memory accesses required by an algorithm. Additionally, we
recognize that efficient algorithm design requires the efficient decomposition of the problem amongst
the available processors, and, hence, we also include the cost of computation in our complexity. For
the class of problems considered in this paper, we measure the overall complexity of an algorithm
by the pair of values (T, T¢), where Ty is the maximum number of non-contiguous main memory
accesses required by any processor and T¢ is an upper bound on the local computational complexity of
any of the processors. Note that in our model each non-contiguous main memory access may involve
an arbitrary sized contiguous block of data, and, hence, accessing a block of z contigunous words will
contribute only a unit cost to T;. Further, since our model is concerned only with the cost of main
memory access, once the values are stored in cache they may be accessed in any pattern at no cost.
An algorithm is considered optimal in our model if it requires the minimum number of non-contiguous

memory accesses consistent with an optimal computational complexity.



3 Prefix Computation Algorithm

Consider the problem of performing a prefix computation on a linked list of n elements stored in
arbitrary order in an array X. For each element X[i], we are given X[i].suce, the array index of its
successor, and X [i].data, its input value for the prefix computation. Then, for any binary associative
operator ®, the prefix computation is defined as:

Xlil-prefiz = { ?%ZZZ ® X [pre].prefiz gtflig’lxllilzefhe pead of the Bt ’ (1)
where pre is the index of the predecessor of X;. The last element in the list is distinguished by
a negative array index in its successor field, and nothing is known about the location of the first
element.

Any of the known parallel prefix algorithms in the literature can be considered for implementation
on an SMP. However, to be competitive, a parallel algorithm must contend with the extreme simplicity
of the obvious sequential solution. A prefix computation can be performed by a single processor with
two passes through the list, the first to identify the head of the list and the second to compute the

prefix values. The pseudocode for this obvious sequential algorithm is as follows:

e (1): Visit each list element X; in order of ascending array index. If X; is not the terminal

element, then label its successor with index X;.succ as having a predecessor.

e (2): Find the one element not labeled as having a predecessor by visiting each list element X;

in order of ascending array index - this unlabeled element is the head of the list.

e (3): Beginning at the head, traverse the elements in the list by following the successor point-
ers. For each element traversed with index i and predecessor pre, set List[i].prefiz_data =

List[i].prefiz_data @ List[pre].prefiz_data.

To compute the complexity, note that Step (1) requires at most n non-contiguous memory accesses
to label the successors. Step (2) involves a single non-contiguous memory access to a block of n
contiguous elements. Step (3) requires at most n non-contiguous memory accesses to update the
successor of each element. Hence, this algorithm requires at most (2n 4 1) non-contiguous memory
accesses and runs in in O(n) computation time.

According to our model, however, the obvious algorithm is not necessarily the best sequential
algorithm. The non-contiguous memory accesses of Step (1) can be replaced by a single contiguous
memory access by observing that the index of the successor of each element is a unique value between
0 and n — 1 (with the exception of the tail, which by convention has been set to a negative value).
Since only the head of the list does not have a predecessor, it follows that together the successor

indices comprise the set {0,1,...h—1,h+ 1,h+2,..,n— 1}, where h is the index of the head. Since



the sum of the complete set {0,1,..,n — 1} is given by %n(n — 1), it easy to see that the identity of
the head can be found by simply subtracting the sum of the successor indices from %n(n —1). The
importance of this lies in the fact that the sum of the successor indices can be found by visiting the
list elements in order of ascending array index, which according to our model requires only a single

non-contiguous memory access. The pseudocode for this improved sequential algorithm is as follows:

e (1): Compute the sum Z of the successor indices by visiting each list element X; in order of

ascending array index. The index of head of the list is 2 = (%n(n -1)- Z).

e (2): Beginning at the head, traverse the elements in the list by following the successor point-

ers. For each element traversed with index i and predecessor pre, set List[i].prefiz_data =

List[i].prefiz_data @ List[pre].prefiz_data.

Since this modified algorithm requires no more than (n+ 1) non-contiguous memory accesses while
running in O(n) computation time, it is optimal up to an additive constant of 1 in our model. Indeed,
as we will show latter, our experimental results confirm the superiority of this algorithm over the
obvious sequential algorithm. Since only a relatively small number of processors are available on a
symmetric multiprocessor, any parallel algorithm must be competitive even on a single processor in
order to be practically significant.

The first fast parallel algorithm for prefix computations was probably the list ranking algorithm of
Wryllie [16] (note that his algorithm was originally developed for the suffix computation problem, and
our presentation here makes appropriate modifications for our prefix computation problem). After
initially traversing the list to establish the predecessor links, the algorithm consists of iteratively
shrinking the list by replacing the predecessor of each element with the predecessor of its predecessor.
Before each iteration, the prefix computation of each element is replaced with the result of applying
the prefix operation between the current prefix value and that of its predecessor. Since this whole
process must be repeated for O(logn) iterations and we can not assume that the predecessor of a node
is in a contiguous memory location, it will require a total of at least nlogn non-contiguous accesses,
which is far from optimal. Note that throughout this discussion, when we refer to the total number
of non-contiguous accesses, we are referring to the sum of the non-contiguous accesses made by all p
processors.

Another class of of known algorithms repeatedly contract the list of n elements by identifying
and removing an independent set of nodes until % elements remain [7, 11, 5]. As each element is
removed, the prefix computation of its successor is replaced with the result of applying the prefix
operation between the prefix value of the element being removed and the value of its successor. When

% elements remain, the prefix computation of the reduced list is done using a sequential algorithm,

after which the list is restored by reinserting the independent sets in the opposite order in which



they were removed. As each element is reinserted, the value of its prefix computation is obtained by
applying the prefix operation between its current prefix value and that of its predecessor.

The efficiency of this approach obviously depends on the cost of identifying and removing the
independent set. An independent set can be found in a deterministic fashion using the 3-coloring al-
gorithm of Cole and Vishkin [7]. Since this involves substantial constants, we consider the randomized
approach of Miller and Reif [11], in which each node in the list is randomly labeled as either active
or inactive. If an inactive node is succeeded by an active node, than that inactive node is a member
of the independent set. This method for removing the independent set results in an algorithm which
requires only O (%) computation time. However, the algorithm requires on average at least a total of
5n non-contiguous memory accesses - n accesses to establish a doubly linked list from a singly linked
list, 3n accesses to determine whether the successors of inactive nodes are active and, if so, to properly
remove them, and n accesses to restore the list. To see why the list contraction step requires at least 3n
non-contiguous memory accesses, note that on average for any iteration half of the nodes are labeled
inactive and half of their successors are active (this analysis is actually more generous than that of
its authors in [11]). If iteration ¢ begins with n; elements, then for each of the approximately %m
inactive elements a check must be made of its successor to see if it is active. Approximately ini of the
nodes will be removed, in which case the successor pointers of their predecessors will have to updated
as well. Hence, each iteration requires %ni non-contiguous memory accesses, and the overall result
follows. In contrast to the hn total non-contiguous memory accesses required by this algorithm, our
optimal sequential algorithm only requires at most (n + 1) non-contiguous memory accesses. More-
over, this parallel algorithm seems to require a significant number (at least 4 logn) of synchronization
barriers to run correctly, each of which is a fairly expensive operation.

Anderson and Miller [5] modified the randomized algorithm so that the list does not have to be
compacted after each independent set is removed. In this variation, the list is decomposed into log n
queues, where membership in a particular queue implies nothing about the relative proximity of those
members in the list. With the exception of the first element in each queue, which is randomly labeled
as either active or inactive, every other element is labeled to be active. Then, if the element at the
top of a queue is inactive and its predecessor in active, the element at the top of the queue is deleted
from the list and the process is repeated with the next element in that queue. Anderson and Miller
showed that with high probability all log n queues would be depleted in O(log n) iterations, resulting in
an algorithm which requires only O (%) computation time. However, this algorithm still requires at
least a total of 4n non-contiguous memory accesses - n accesses to establish a doubly linked list from a
singly linked list, 2n accesses to contract the list (one access to check the successor of an inactive node
and one to update its predecessor), and n accesses to restore the list. Additionally, this algorithm

seems to require at least 3logn expensive synchronization barriers to run correctly.



Clearly, one way to improve on the contract and expand approach typified by these algorithms
is to accomplish the contraction (and expansion) in a single step. This could be done by choosing
relatively few elements to be active and then deleting (and inserting) the entire sublist of inactive
elements which precede each active element in a single step. The challenge would be to demonstrate
that, in spite of the relatively few active elements, the work of these sublist deletions could be evenly
distributed amongst the available processors.

Indeed, Reid-Miller and Blelloch [13, 12] proposed this very modification in a novel, efficient,
parallel algorithm which achieved significantly reduced costs. While they originally developed this
algorithm for a vector multiprocessor machine, Sibeyn et. al [14] have subsequently applied the idea
to distributed memory architectures as well. In this algorithm, the input is randomly divided into
(m + 1) sublists, where (n >> m >> p). Each of these sublists is traversed to compute the sublist
prefix value of the last element in the sublist, and the result is used to form a new linked list of size
(m + 1) that links these values in the order that their sublists appear in the original list. After that,
the prefix sum of the new list is computed using either the sequential algorithm or Wyllie’s pointer
jumping algorithm. Note that the prefix value of a particular node in the reduced list corresponds to
the prefix value of the node at the tail of the corresponding sublist. Finally, each sublist is traversed
again using the prefix value computed for the tail of the preceding sublist, and the prefix value of
each element is computed in a straightforward manner. Clearly, this algorithm only requires a total
of about 2n non-contiguous memory accesses (the authors assume the head of the list is already
known) - n accesses for the initial traversal and n accesses for the final traversal. Further, on a shared
memory machine, the algorithm would require only a constant number of synchronization barriers to
run correctly. Finally, Reid-Miller and Blelloch established that on average no single processor will
require more than about 2% memory accesses and O (%) computation time for (n > p?logm).

Reid-Miller and Blelloch acknowledge in their paper that a difficulty exists with their algorithm in

the way in which the heads of the sublists are chosen. Specifically, each processor chooses % positions
at random, leaving open the possibility that two processors could randomly choose the same position.
Depending on how the algorithm is implemented, this can simply result in some wasteful duplication
of effort or it can actually cause problems with correctness. Reid-Miller and Blelloch suggest removing
duplicate random numbers by having a competition amongst the processors, in which each processor
writes its index to the locations it has randomly chosen. When the process is completed, each processor
checks its locations to see if its index has been overwritten. If it has, then it can drop that sublist
from those it must traverse.

In this paper, we introduce a new optimal prefix computation algorithm which builds upon the
sparse ruling set approach of Reid-Miller and Blelloch. In addition to avoiding the problem of choosing

the same location as a sublist head twice, our algorithm requires only about half the total number



of non-contiguous memory accesses while achieving a stronger computational complexity bound. Our
algorithm only requires a total of about n non-contiguous memory accesses because we are able to
entirely eliminate the second set of sublist traversals. Yet, whereas Reid-Miller and Blelloch claim an
expected computational complexity of O (%) for n > p?logm, we claim a computational complexity
with high probability of O (%) for n > p?Inn. Nevertheless, like their algorithm, we require only
a constant number (five) of barrier synchronizations. Note that our requirement of about n total
non-contiguous memory accesses beats even the requirements of the obvious sequential algorithm and
compares closely with the requirements of the optimal sequential algorithm.

A high-level description of our algorithm proceeds as follows. We first identify the head of the list
using the same procedure as in our optimal sequential algorithm. We then partition the input list into
s sublists by randomly choosing exactly one splitter from each memory block of ﬁ elements where
sis Q(plogn) (the list head is also designated as a splitter). Corresponding to each of these sublists is
a record in an array called Sublists. We then traverse each of these sublists, making a note at each list
element of the index of its sublist and the prefix value of that element within the sublist. The results
of these sublist traversals are also used to create a linked list of the records in Sublists, where the input
value of each node is simply the sublist prefix value of the last element in the previous sublist. We
then determine the prefix values of the records in the Sublists array by sequentially traversing this list
from its head. Finally, for each element in the input list, we apply the prefix operation between its
current prefix input value (which is its sublist prefix value) and the prefix value of the corresponding
Sublists record to obtain the desired result.

The pseudo-code of our algorithm is as follows, in which the input consists of an array of n records
called List. Fach record consists of two fields, successor and prefiz_data, where successor gives the
integer index of the successor of that element and prefiz_data initially holds the input value for the
prefix operation. The output of the algorithm is simply the List array with the properly computed
prefix value in the prefiz_data field. Note that as mentioned above we also make use of an intermediate

array of records called Sublists. Fach Sublistsrecord consists of the four fields head, scratch, prefiz_data,

and successor, whose purpose is detailed in the pseudo-code.

e (1): Processor P; (0 < ¢ < p—1) visits the list elements with array indices % through (ﬁ%ﬁ — 1)
in order of increasing index and computes the sum of the successor indices. Note that in doing
this a negative valued successor index is ignored since by convention it denotes the terminal
list element - this negative successor index is however replaced by the value (—s) for future
convenience. Additionally, as each element of List is read, the value in the successor field is
preserved by copying it to an identically indexed location in the array Swce. The resulting sum

of the successor indices is stored in location 7 of the array Z.

e (2): Processor Py computes the sum 7" of the p values in the array Z. The index of the head of



the list is then h = (%n(n -1)- T).

e (3): Forj = %5 up to ((H%)S — 1), processor P; randomly chooses a location z from the block
of list elements with indices ((] — 1)(5f—1)) through (]ﬁ — 1) as a splitter which defines the
head of a sublist in List (processor Py chooses the head of the list as its first splitter). This is
recorded by setting Sublists[j].head to x. Additionally, the value of List[x].successoris copied to
Sublists[j].scratch, after which List[z].successor is replaced with the value (—j) to denote both

the beginning of a new sublist and the index of the record in Sublists which corresponds to its

sublist.

e (4): For j = %5 up to (ﬁ%ﬁ — 1), processor F; traverses the elements in the sublist which
begins with Sublists[j].head and ends at the next element which has been chosen as a splitter (as
evidenced by a negative value in the successorfield). For each element traversed with index  and
predecessor pre (excluding the first element in the sublist), we set List[x]. successor = -j to record
the index of the record in Sublists which corresponds to that sublist. Additionally, we record the
prefix value of that element within its sublist by setting List[x].prefiz_data = List[z].prefiz_data &
List[pre].prefiz_data. Finally, if z is also the last element in the sublist (but not the last element
in the list) and & is the index of the record in Sublists which corresponds to the successor of z,
then we also set Sublists[j].successor = k and Sublists[k].prefiz_data = List[z].prefiz_data. Finally,
the prefiz_data field of Sublists[0], which corresponds to the sublist at the head of the list is set

to the prefix operator identity.

e (5): Beginning at the head, processor Py traverses the records in the array Sublists by follow-
ing the successor pointers from the head at Sublists[0]. For each record traversed with index
j and predecessor pre, we compute the prefix value by setting Sublists[j].prefiz_data = Sub-
lists[j].prefiz_data @ Sublists[pre].prefiz_data.

(i+1)n 1

- ) in order

e (6): Processor P; visits the list elements with array indices % through (
of increasing index and completes the prefix computation for each list element z by setting
List[x].prefiv_data = List[x].prefiz_data @ Sublists[-(List[r].successor)].prefiz_data. Additionally,
as each element of Liust is read, the value in the successor field is replaced with the identically
indexed element in the array Suce. Note that is reasonable to assume that the entire array of s

records which comprise Sublists can fit into cache.

We can establish the complexity of this algorithm with high probability - that is with probability
> (1 —n~°) for some positive constant e. But before doing this, we need to establish the following

Lemma.

Lemma 1: The number of list elements traversed by any processor in Step (4) is at most a% with high

probability, for any a(s) > 2.62 (read a(s) as “the function a of s7), s > (plnn+1), and n > p*In n.

10



Proof: The number of elements T traversed by a processor can only exceed a% if less than Z% of

the first a% list elements traversed have been selected as splitters. Recall that, in Step (3) of our
algorithm, splitters are chosen by first partitioning the input list into a set {Sp, 51, ...,5(5_2)} of s
blocks, each of size ﬁ, after which a splitter is chosen at random from each block. Clearly, if we
define T; as the subset of elements in the traversal 7" which also belong to the block 5; (i.e T; = T'N.S;),
then the probability that a splitter selected from the block 5; appears in the traversal T is simply
B = s,

Consider a set of independent but not identically distributed Bernoulli trials { X, X7, ...,X(S_Q)},
where W; is one with probability |TZ|(S;—1) and zero otherwise. Clearly, W, describes the probability
that a splitter selected from the block S; appears in the traversal T', and Sumyx = Zfi_:lo) X; describes

the total number of splitters encountered in the traversal T'. Next, consider another set of independent

but not identically distributed Bernoulli trials {Yp, Y7, ...,Y<aﬂ_1)}, where:
r
X; for (0 <7< (s—2)).
0 with probability one for ((5 -1)<i< (ag — 1))

Obviously, the sum Sumy = Zfi_:lo) Y; will be equal to Sumy and will therefore describe as well the
total number of splitters encountered in the traversal T.
We can now bound the probability that less than zé? of the first a% elements encountered in traversal
T were splitters by taking advantage of the well known fact that the variance of a sum of indepen-
dent Bernoulli trials is maximized when they are independent and identically distributed [10]. More
formally, let A be the number of successes in m independent Bernoulli trials, and let p; be the prob-
ability of success in the it trial. If we define ¢ as being equal to % = ZEZE;) B then Hoeffding
[10] showed that:
PNASC)SEQ(Z?)fO—QW““ (3)

for any integer ¢ such that (0 < ¢ < (E[A] —1)). Applying this result to our problem, we first note

that: (o) (o)
5—2 5—2
E[Sumy] = E[Sumx] = Y B[X;] = 2:|1H&%%Qc:az(s;1)zajs—1) (4)
(i=0) (i=0) P P

Note that if we assume that o < 27, then it follows that:

1
S [ (5)

ESumy]—1=a
P P

We can then use Hoeffding’s theorem to establish that
S S ; r k r—k
Pr{Sumy <[(-—=1) )] =Pr{Sumy < (--1]) < ¢ (1—¢q) ", (6)
p p o\ k

11



where r = a%, q= E[Su,{nX] = (5_1), and a > ﬁ Using the following “Chernoff” type bound [9]

o — n
r

for estimating the head of a binomial distribution

€rg

> ( . ) ¢ (1—q) ™" < e 2, (7)

k=0

and noting that (Zi? — 1) < (5;1) for p > 1, it follows that the probability that a particular processor

will traverse at least a% elements can be bounded by

2 als—
(35 ()

Hence, the probability that any processor will traverse at least a% elements without encountering at
least Z% splitters can be bounded by

p—l 2 a(s—1

Ze_(l_%) 2p (9)

=0
If we then assume that ﬁ%l > Inn and n > p?lnn, it is easy to show that the above sum can be
bounded by n=* for some A > 0 and a(s) > 2.62. It is trivial to verify that for these values of n, s,

and a(s), it will always be true that a(s) > =q) and Lemma 1 follows. O

1

With the results of Lemma 1, we can now establish the following theorem:

Theorem 1: For our prefix computation algorithm, which uses a total of about n non-contiguous
memory accesses, no processor will require more than (a(s)% + 25+ 2}% + 7) non-contiguous memory
accesses and O (%) computation time with high probability for a(s) > 2.62, s > (plnn + 1), and
n > p*lnn. Moreover, on average no single processor will require more than (% + 25+ 2}% + 7)

non-contiguous memory accesses and O (%) computation time.

Proof: The analysis of our algorithm on a symmetric multiprocessor is as follows. In Step (1), each
processor moves through a contiguous portion of the list array to compute the sum of the indices in
the successor field and to preserve these indices by copying them to the array Succ. When this task
is completed, the sum is written to the array Z. Since this is done in order of increasing array index,
it requires only three non-contiguous memory accesses and O (%) computation time. In Step (2),
processor Py computes the sum of the p entries in the array Z. Since this is done in order of increasing
array index, this step requires only a single non-contiguous memory access and O(p) computation
time. In Step (8), each processor randomly chooses (%) splitters to be the heads of sublists. For
each of these sublists, it copies the index of the corresponding record in the Sublists array into the
successor field of the splitter. While the Sublists array is traversed in order of increasing array index,

the corresponding splitters may lie in mutually non-contiguous locations and so the whole process may

require (% + 1) non-contiguous memory accesses and O (In n) computation time. In Step (4), each
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processor traverses the sublist associated with each of its (%) splitters, which together contain at most
a(s)% elements with high probability. As each sublist is completed, the prefix value of the last element
in the subarray is written to the record in the Sublists array which corresponds to the succeeding
sublist. Since the record in Sublists which corresponds to the current sublist and the record in Sublists
which corresponds to the succeeding sublist can always lie in non-contiguous memory locations, this
step requires at most (a(s)% + % + 1) non-contiguous memory accesses and O (%) computation time
with high probability . However, it is important to note that an 2-biased binomial process requires on
average *: events before encountering the first success and so on average each processor traverses about
% list elements (which is what we observe experimentally in the next section). In Step (5), processor
Py traverses the the linked list of s records in the Sublists array established in Step (4) to compute
their prefix values, which requires (s) non-contiguous memory accesses and O (s) computation time.
Finally, in Step (6), each processor completes the prefix values for a contiguous chunk of the input list
by first looking up the prefix value of the record in Sublists which maps to the head of its sublist. Since
we make the reasonable assumption that the entire array of (s) records which comprise Sublists will fit
into the cache, which is the case for all three platforms considered in this paper and the choices for n,
accessing the prefix values in the Sublists array will only require (s) non-contiguous memory accesses
(non-contiguous because we are assuming they are accessed in the order of request). Accessing the
list array will of course require only a single non-contiguous memory access. Hence, overall, this step
will require only (s + 1) non-contiguous memory accesses and O (%) computation time. Thus, with

high probability, the overall complexity of our prefix computation algorithm is given by

T(n,p) = (Taln,p);To(n,p)) (10)
<<a(s);—|—25—|—2;—|—7) ;0 (;)> (11)

for a(s) > 2.62, s > (plnn + 1), and n > p?Inn. Moreover, on average, the overall complexity of our

algorithm is given by

T(n,p) (Tar(n,p); Te(n, p)) (12)

= <<z+25+25+7);0<z)>, (13)
P P P
and Theorem 1 follows. O

Note that our experimental discussion will verify that in practice the burden of these accesses is

very evenly distributed across the available processors.

4 Performance Evaluation

Both the sequential algorithm and our parallel algorithm were implemented in C using POSIX threads
and run on a DEC AlphaServer 21000A system, an SGI Power Challenge, and an HP-Convex Ex-
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emplar. The DEC AlphaSever consists of four Alpha 21064A processors, each running at 275 MHz.
Each Alpha 21064 A processor has a 16KB primary data cache and a 4MB secondary data cache. The
SGI Power Challenge consists of sixteen MIPS R10000 processors, each running at 195MHz. FEach
MIPS R10000 processor has a 32KB primary data cache and a 2MB secondary unified (data and
instructions) cache. The HP-Convex Exemplar is an S-Class machine consisting of sixteen PA-8000
processors each running at 180 MHZ. Each PA-8000 processor has a single level IMB data cache.
The evaluation of our algorithm’s performance is organized as follows. Subsection 4.1 describes
the benchmarks used and their justification, while Subsection 4.2 examines the performance of our
algorithm as a function of input distribution. Subsection 4.3 compares the performance of our
algorithm with the optimal sequential algorithm, and Subsection 4.4 examines the scalability of our
algorithm in both the number of threads and the problem size. Finally, Subsection 4.5 examines

the performance of our algorithm as a function of the number of splitters.

4.1 Benchmarks

For our experimental evaluation, we examine the prefix operation of floating point addition on three
different benchmarks. The input for prefix sums is an array of n records. Each record corresponds to
a node in the list and consists of two fields. The first field is a four byte integer which specifies the
array index of its successor and the other is an eight byte double precision which is the input for the
prefix operation. The output of the prefix computation is simply the input array with the properly
computed prefix sums in the place of the prefix input values.

The successor fields for our three benchmarks are created as follows:

1. Random [R] - in which each successor is randomly chosen , is initialize by placing the elements
in the first two positions of the list in a doubly linked circular list (note that predecessor links
are removed when the list is complete). Subsequent elements are added as follows. Assume the
doubly linked circular list contains the first k elements in the list array, and we wish to add the
(k+1)" element. We call the C library random number generator random( ), which was originally
seeded the value 1001. Then, if the current predecessor of the ¢ = ((random() mod (k + 1))
element in the array has the index s, the new successor of the s element will be the (k + 1)th
element and the successor of the (k + 1)th element will be the ¢ element. When this circular
list is complete, it is broken by setting the successor field of the ((random() mod n)"* element

to -1.

2. Stride [S] - in which each successor is (wherever possible) some stride S away, is generated as
follows. Assume the head of the list is at index 5 in the array, and a default stride of 5 = 1001.
Then, the successor of this element is the location ((% 4+ 1001) mod n). The exercise is repeated

(n — 2) more times until the list is complete. In the event that a location has already been
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selected for a previous element, a vacant position in the array is found by linear probing.

3. Ordered [O] - in which each element is placed in the array according to its rank, is created by
placing the first element in the list at the first position in the array, the second element in the

list at the second portion in the array, and so forth.

For each benchmark, the prefix input value for an element is determined by first calling the function
random(), which returns a value between 0 and (2°! — 1), and then subtracting 2°° from the value
returned to yield a random value in the interval (—230 230 — 1).

These benchmarks were chosen to compare the impact of various memory access patterns. Access-
ing the successor of a list element in the Random [R] benchmark will usually produce a cache miss
for a list of size larger than the cache. By contrast, even though the successor of a list element in the
Stride [S] benchmark will usually also be in a non-contiguous memory location, the constant stride
makes pre-fetching a possibility and hence a cache miss may or may not result. At the other extreme
is the Ordered [O] benchmark, in which the successor of a list element is almost always going to be

in cache, either as part of the same cache line or because of elementary pre-fetching.

4.2 Performance as a Function of Input Distribution

The graphs in Figure 1 compare the performance of our prefix computation algorithm on each of
our three platforms as a function of the input distribution. Results are shown for an input size of 4M
elements for the full range of processors available on each of the SMPs. Almost without exception,
the [O] benchmark always outperformed the [S] benchmark, which in turn always outperformed the
[R] benchmark. To see why, consider Table I, which shows the step by step breakdown of the
execution time in Figure 1 for the HP-Convex FExemplar. Note first that for any particular number
of threads, Steps (1)-(3), Step (5), and Step (6) require approximately the same amount of time,
irrespective of which benchmark we consider. This agrees well with our theoretical expectations,
since these steps essentially involve only contiguous memory accesses, regardless of the benchmark.
Instead, the dependence of the overall execution time on the input distribution reflects the relative
differences in the time required to complete Step (4). Recall that in this step, each of the sublists
is traversed by following the successor pointers, and so the nature of the memory access pattern is
entirely determined by the input. In the Random Benchmark [R], the memory location of the successor
is randomly chosen, so almost every step in the traversal involves accessing a non-contiguous location
in memory. By contrast, in the [O] Benchmark, the memory location of the successor is always the
successive location in memory, which in all likelihood is already present in cache. Hence, as we would
expect, the [O] benchmark always outperforms the [R] benchmark. Perhaps more surprising is the fact
that [S] benchmark always outperforms the [R] benchmark, even though the benchmark is designed

so that where possible the successor is always a constant stride away. Since we chose the stride to
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be 1001, we would expect that every step in the traversal would involve accessing a non-contiguous
location in memory. However, what distinguishes the [S] benchmark from the [R] benchmark is the

the constant stride, which can take advantage of cache pre-fetching.

Number of Threads & Benchmark

Step: [1] [2] [4] (8] [16]

RI[[ST[[O] [[RI[[S][[O] [RI[[SI[[O][[RI|[s][[O] | ®]]IS]]IO]

(1)-(3): || 0.59 | 0.87 | 0.66 || 0.34 | 0.40 | 0.34 || 0.18 | 0.21 | 0.18 || 0.10 | 0.12 | 0.10 || 0.08 | 0.08 | 0.08
(4): 6.69 | 1.86 | 2.33 || 3.40 | 1.08 | 1.17 || 1.75 | 0.57 | 0.59 || 0.96 | 0.31 | 0.30 || 0.74 | 0.22 | 0.18
(5): 0.01 | 0.12 | 0.01 || 0.01 | 0.04 | 0.01 || 0.01 | 0.05 | 0.01 || 0.01 | 0.06 | 0.01 || 0.01 | 0.02 | 0.01
(6): 0.69 | 0.75 ] 0.69 || 0.37 | 0.38 | 0.35 || 0.21 | 0.20 | 0.19 || 0.11 | 0.12 | 0.11 || 0.09 | 0.12 | 0.08
Total: 7.97 1 3.60 | 3.68 || 4.12 | 1.91 | 1.87 || 2.14 | 1.03 | 0.97 || 1.19 | 0.60 | 0.52 || 0.92 | 0.41 | 0.35

Table I: Comparison of the time (in seconds) required as a function of the benchmark for each step of
computing the prefix sums of 4M list elements on an HP-Convex FExemplar, for a variety of threads.
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Figure 1: Performance (in seconds) of our algorithm on each of the three platforms as a function of the
input distribution, using an input of 4M elements.
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4.3 Comparison with the Optimal Sequential Algorithm

To start with, we verify the efficiency of our optimal sequential algorithm by comparing its performance
with that of the obvious sequential algorithm. The graphs in Figure 2 compare the execution time
of the two sequential algorithms, showing results for each of our three platforms using different size
inputs generated with the [R] benchmark. In every instance, the performance of the optimal sequential
algorithm surpassed the performance of the obvious sequential algorithm. This is the expectation of
our model, as the optimal algorithm calls for only half the non-contiguous memory accesses as the
obvious one. A similar relationship was observed for the other benchmarks.

The graphs in Figures 3 through 5 compare the performance of our optimal parallel prefix com-
putation algorithm with that of our optimal sequential algorithm. Results are shown for each of our
three platforms on inputs of 4M elements generated using both the [R] and [S] benchmarks. For 4M
elements, our parallel algorithm always outperforms the optimal sequential algorithm with only one
or two threads. This is also true for [O] benchmark (not shown), with the single exception of the
DEC AlphaServer. At the other extreme, for an input of 128K elements (not shown), the sequential
algorithm outperforms our parallel algorithm on all but the HP-Convex Exemplar, irrespective of the
number of threads. However, it is important to qualify this last result by pointing out that a list of
128K twelve byte records can fit reasonably well in the 2MB secondary cache of the Power Challenge
and the 4MB secondary cache of the AlphaServer. Hence, once the list is brought in from main mem-
ory in a contiguous fashion for initialization, most subsequent memory requests would not be expected
to miss to main memory. Thus, our algorithm, which accept a measure of additional overhead when
compared to the sequential algorithm to reduce costly main memory accesses, is not competitive. By
contrast, 128K twelve byte records do not entirely fit into the 1MB single-level cache of the HP-Convex
Exemplar. Hence, cache misses are still an issue, and our algorithm remains competitive. Clearly, the
success of our algorithm on problems which exceed the capacity of the cache strongly supports the

attention our model attaches to the number of non-contiguous memory accesses.
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Figure 2: Comparison between the performance of the obvious sequential algorithm and our optimal
sequential algorithm.
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Figure 3: Comparison between the performance of our parallel algorithm and our optimal sequential
algorithm on the DEC AlphaServer.

Prefix Sums of 4M Elements Prefix Sums of 4M Elements
[R] Benchmark, SGI Power Challenge [S] Benchmark, SGI Power Challenge

10 10
- B - Seoaoniid Tims ~ T Sequential Time -
......... B-
9 L '\\
) o
£ \\ £ 1 o
= \_ =
1 0.1
1 2 4 8 16 1 2 4 8 16
Number of Threads Number of Threads

Figure 4: Comparison between the performance of our parallel algorithm and our optimal sequential
algorithm on the SGI Power Challenge.
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Figure 5: Comparison between the performance of our parallel algorithm and our optimal sequential
algorithm on the HP-Convex Exemplar.

4.4 Scalability in Number of Threads and Problem Size

The graphs in Figure 6 examine the scalability of our prefix computation algorithm as a function of
the number of threads. Results are shown for a variety of problem sizes on each of our three platforms
using the [R] benchmark. Bearing in mind that these graphs are log-log plots, they show that for
large enough inputs, the execution time decreases as we increase the number of threads p, which is
the expectation of our model. The step-by-step breakdown in Table II verifies that this decrease
occurs constantly at every step. For smaller inputs, this inverse relationship between the execution
time and the number of threads deteriorates. In this case, such performance is quite reasonable if we
consider the fact that for small problem sizes the size of the cache approaches that of the problem.

This introduces a number of issues which are beyond the intended scope of our algorithm.
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Figure 6: Scalability of our algorithm with respect to the number of threads, for differing benchmarks and
problem sizes.
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Platform & Number of Threads

Step: DEC SGI HP-Convex

1 | 2 | 4] 1] 2] 4] 8 16 1] 2] 4] 8116

(1)-(3): || 1.20 | 0.78 | 0.66 || 0.76 | 0.65 | 0.81 | 0.39 | 0.48 || 0.59 | 0.34 | 0.18 | 0.10 | 0.08
(4): 2941 1.72 | 1.25 | 6.62 | 5.33 | 3.94 | 2.67 | 1.50 || 6.69 | 3.40 | 1.75 | 0.96 | 0.74
(5): 0.01 ] 0.01 | 0.01 || 0.01 | 0.01 | 0.01 | 0.05 | 0.01 || 0.01 | 0.01 | 0.01 | 0.01 | 0.01
(6): 1.27 1 0.80 | 0.61 || 0.67 | 0.49 | 0.27 | 0.15 | 0.18 || 0.69 | 0.37 | 0.21 | 0.11 | 0.09

Total: || 5.41 | 3.29 | 2.52 || 8.05 | 6.48 | 5.02 | 3.26 | 2.16 || 7.97 | 4.12 | 2.14 | 1.19 | 0.92

Table II: Time (in seconds) required for each step of computing the prefix sums of 4M list elements
generated with the [R] benchmark using a variety of threads.

4.5 Performance as a Function of the Number of Splitters

The first graph in Figure 7 examines the performance of our prefix computation algorithm on the
[R] benchmark as a function of the number of splitters s. Results are shown for a list of 4M elements
on the SGI Power Challenge using differing numbers of threads - results obtained on other platforms
were similar. The graph clearly indicates that, for each number of threads, there is a range of values
of s that result in the best performance. To see why, consider the step-by-step breakdown of the
execution time for four threads in Table III. Notice that, for small values of s, increasing the value
of s decreases the execution time primarily by decreasing the time required for Step 4. This is due
to to an improvement in the load distribution amongst the threads, which agrees with out theoretical
expectation that as the value of s increases, the value of a(s) drops. More interesting is the fact that,
for s > 32K, the performance begins to deteriorate sharply. Table III shows that this corresponds to
an increase in the time required for all but Step 4. The gradual increase in the time required for Steps
(1) through (3) is reasonable and reflects the increased cost of selecting more splitters in Step (3).
More surprising is the time required in the time required for Step 5, which suddenly began to increase
after remaining relatively constant for s < 32768. However, this behavior makes sense if we recall
that this step involves traversing the linked list in the Sublists array, in which each element consists
of a 20 byte record in our implementation. As long as the size of this list remains comfortably less
than the capacity of the 2MB combined (data/instruction) cache of the RS1000 processor, then the
non-contiguous memory accesses of the Sublists list traversal will not result in a cache miss. However,
as s increases beyond 32768, this becomes less and less likely, and the hence the cost of Step (5) begins
to rapidly escalate. Similarly, Step 6 involves looking up prefix computation values in the Sublists
array % times, and so might be expected to be independent of the value s. However, as noted in our
complexity discussion, each successive lookup might be to a non-contiguous memory location. As long
as the Sublists array fits easily into the 2MB cache, than each successive lookup will not result in a

cache miss. However, as s increases beyond 32768, this becomes less and less likely, and therefore the
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cost of this step begins to increase.

More surprising was the relationship that existed between the execution time and the number of
splitters for the [S] benchmark. The second graph in Figure 7 examines the performance of our
algorithm on the the SGI Power Challenge using a list of 4M elements generated using a stride of
1001. It shows that as the number of splitters is increased from 2048 to 262144, the execution time
is reduced by more than a half, irrespective of the number of threads. The third graph in Figure 7
shows similar results on the same platform using the [S] benchmark generated using a stride of 256,
suggesting that this phenomenon is not an artifact of a single choice of benchmark stride. The fourth
graph in Figure 7 examines the performance of our algorithm on the HP-Convex Exemplar using the
the [S] benchmark generated using a stride of 1001. The results show that the efficiency of increasing
the number of splitters, though less pronounced on the Exemplar, is not limited to a single platform.
Tables IV and V display a step-by-step breakdown of the execution times using a single thread on
the Power Challenge and the Exemplar, respectively. The data in these tables show the reduction
in the execution time is entirely due to a reduction in the time required for the sublist traversals of
Step (4). Increasing the number of splitters on the Power Challenge reduced the cost of this step by
81%, whereas increasing the number of splitters on the Exemplar reduced the cost of this step by a
more modest 47%. Finally, although not shown, increasing the number of splitters on the AlphaServer

reduced the cost of this step by 30%.

Number of Splitters
Step: | 512 | 1K | 2K | 4K | 8K [ 16K | 32K | 64K | 128K | 256K | 512K

(1)-(3): [0.78 [0.81 [0.78 [ 0.81 [ 0.81 | 0.81 | 0.81 | 0.93 | 0.99 | 1.17 | 1.44
(4): |[[4.127]3.99 [4.03[4.01 |3.94 | 3.95 | 3.97 | 3.8% | 3.87 | 3.88 | 3.88
(5): || 0.01 [0.01 [ 0.01 | 0.01|0.01]| 0.01 | 0.01 | 0.02 | 0.04 | 0.23 | 0.59
(6): [ 0.26 | 0.26 | 0.27 [ 0.27 | 0.27 | 0.27 | 0.28 | 0.30 | 0.52 | 0.87 | 1.05
Total: | 5.16 | 5.06 | 5.07 | 5.09 | 5.02 | 5.03 | 5.07 | 5.12 | 5.42 | 6.15 | 6.96

Table I1I: Time (in seconds) required for each step of computing the prefix sums of 4M list elements on an
SGI Power Challenge as a function of the number splitters. Results are shown for four threads using an
input generated with the [R] benchmark.

Finally, Table VI shows the experimentally derived expected value (E) of the coefficient a(s) used
to describe the complexity of our algorithm in Section 3 as a function of the number of splitter s. The
values shown were obtained by analyzing data collected while computing the prefix sums of a 1M list
generated using the [R] benchmark. The data was obtained from a total of 200 trials, where, for every
trial, a different seed was used for the random number generator, both to generate the benchmark and
to choose the splitters as part of Step (1). In each trial, the value recorded was the largest occurrence
of a on any of the four processors. Note that the experimentally derived expected values for « are

far less our theoretically derived value of 2.62 for s > (plnn + 1) = 56, supporting our contention
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Number of Splitters
Step: | 512 | 1K | 2K | 4K | 8K [ 16K | 32K | 64K | 128K | 256K | 512K

(1)-(3): [0.72[0.72]0.71[0.72 ] 0.72] 0.73 | 0.76 | 0.79 | 0.88 | 1.04 | 1.32
(4): | 6.57 | 6.56 | 6.42 | 6.28 | 6.02 | 5.41 | 4.35 | 2.60 | 1.50 | 1.23 | 1.26
(5): | 0.01]0.01 |[0.010.01]0.01] 0.01 | 0.01 | 0.02| 0.04 | 0.23 | 0.59
(6): |[0.69 | 0.67 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.67 | 0.69 | 0.71
Total: || 7.98 | 7.94 | 7.79 | 7.65 | 7.40 | 6.81 | 5.78 | 4.16 | 3.09 | 3.19 | 3.89

Table IV: Time (in seconds) required for each step of computing the prefix sums of 4M list elements
generated on an SGI Power Challenge as a function of the number splitters. Results are shown for a single
thread using an input generated with the [S] benchmark and a stride of 1001.

Number of Splitters
Step: | 512 | 1K | 2K | 4K | 8K [ 16K | 32K | 64K | 128K | 256K | 512K

(1)-(3): || 0.70 | 0.67 | 0.67 | 0.67 | 0.67 | 0.68 | 0.70 | 0.72 | 0.78 0.87 1.04
(4): 3.37 1 3.36 | 3.32 | 3.25 | 3.11 | 296 | 2.79 | 251 | 2.12 1.86 1.81
(5): 0.01 | 0.01 {0.010.01]0.010.01 001|001 0.06 0.12 0.32
(6): 0.70 1 0.71 {0.71 [ 0.71 ] 0.72 | 0.2 | 0.3 | 0.74 | 0.75 0.75 0.81

Total: | 4.74 | 4.74 | 4.71 | 4.64 | 4.50 | 4.37 | 4.22 | 4.00 | 3.70 3.60 3.98

Table V: Time (in seconds) required for each step of computing the prefix sums of 4M list elements
generated on an HP-Convex Exemplar as a function of the number splitters. Results are shown for a single
thread using an input generated with the [S] benchmark and a stride of 1001.

that in practice no processor in Step (4) is required to do much more than % non-contiguous memory

accesses.

Total Number of Splitters
Value | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048

| E(a): [[144 [ 137 [ 124 [ 1.18 [ 1.12 [ 1.09 | 1.06 | 1.04 |

Table VI: Statistical evaluation of the experimentally observed value of the algorithm coefficient a.
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Figure 7: Performance as a function of the total number of splitters, for differing numbers of threads.
Results are shown for various platforms using inputs generated with the various benchmarks.
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5 Conclusion

We have introduced a new optimal prefix computation algorithm on linked lists which builds upon
the sparse ruling set approach of Reid-Miller and Blelloch. Besides being somewhat simpler and
requiring nearly half the number of memory accesses, we can bound our algorithm’s complexity with
high probability instead of merely on average. Finally, whereas the previous algorithm was intended
for implementation on vector multiprocessors, our algorithm is intended for efficient implementation
on symmetric multiprocessors.

Our algorithm was implemented and tested on several platforms using widely different benchmarks.
For problems which exceeded the size of the cache, our algorithm scaled as predicted both in number
of threads and in problem size. For some problems, our algorithm actually matched or exceeded
the optimal sequential solution using only a single thread, which again was the expectation of our
computational model based on the similar number of non-contiguous memory accesses. Together, these
experimental results clearly confirm the value of our algorithm for computing prefix computations on
symmetric multiprocessors. Equally important, the results verify the utility of our computational
model, and in particular its emphasis on the precise number of non-contiguous memory accesses, as a

guide for constructing eflicient algorithms for symmetric multiprocessors.

Please see http://www.umiacs.umd.edu/research/EXPAR for related work by the authors.
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