
ABSTRACT

Title of dissertation: SPINTRONICS-BASED ARCHITECTURES
FOR NON-VON NEUMANN COMPUTING

Ankit Mondal
Doctor of Philosophy, 2020

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and
Computer Engineering

The scaling of transistor technology in the last few decades has significantly

impacted our lives. It has given birth to different kinds of computational workloads

which are becoming increasingly relevant. Some of the most prominent examples are

Machine Learning based tasks such as image classification and pattern recognition

which use Deep Neural Networks that are highly computation and memory-intensive.

The traditional and general-purpose architectures that we use today typically exhibit

high energy and latency on such computations. This, and the apparent end of

Moore’s law of scaling, has got researchers into looking for devices beyond CMOS

and for computational paradigms that are non-conventional. In this dissertation,

we focus on a spintronic device, the Magnetic Tunnel Junction (MTJ), which has

demonstrated potential as cache and embedded memory. We look into how the MTJ

can be used beyond memory and deployed in various non-conventional and non-

von Neumann architectures for accelerating computations or making them energy-

efficient.

First, we investigate into Stochastic Computing (SC) and show how MTJs can

be used to build energy-efficient Neural Network (NN) hardware in this domain. SC

is primarily bit-serial computing which requires simple logic gates for arithmetic

operations. We explore the use of MTJs as Stochastic Number Generators (SNG)

by exploiting their probabilistic switching characteristics and propose an energy-

efficient MTJ-SNG. It is deployed as part of an NN hardware implemented in the

SC domain. Its characteristics allow for achieving further energy efficiency through

NN weight approximation, towards which we develop an optimization problem.

Next, we turn our attention to analog computing and propose a method for

training of analog Neural Network hardware. We consider a resistive MTJ crossbar

architecture for representing an NN layer since it is capable of in-memory computing

and performs matrix-vector multiplications with O(1) time complexity. We propose

the on-chip training of the NN crossbar since, first, it can leverage the parallelism

in the crossbar to perform weight update, second, it allows to take into account the

device variations, and third, it enables avoiding large sneak currents in transistor-less

crossbars which can cause undesired weight changes.

Lastly, we propose an MTJ-based non-von Neumann hardware platform for

solving combinatorial optimization problems since they are NP-hard. We adopt the

Ising model for encoding such problems and solving them with simulated annealing.

We let MTJs represent Ising units, design a scalable circuit capable of performing

Ising computations and develop a reconfigurable architecture to which any NP-hard

problem can be mapped. We also suggest methods to take into account the non-

idealities present in the proposed hardware.

SPINTRONICS-BASED ARCHITECTURES
FOR NON-VON NEUMANN COMPUTING

by

Ankit Mondal

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Bruce Jacob
Professor Manoj Franklin
Professor Donald Yeung
Professor Mohammad Hajiaghayi

c© Copyright by
Ankit Mondal

2020

Dedication

To my parents, for their love and constant support.

ii

Acknowledgments

I would like to thank several people who have been a part of my life, either

in my professional environment or otherwise, in the last few years and with me in

this incredible journey. First of all, I would thank my PhD advisor Prof. Ankur

Srivastava for having always patiently guided me in my work. I owe him my grat-

itude for teaching me the basics of doing research. His invaluable advice in several

circumstances has helped me to navigate through difficult situations. His knack for

looking for the right research problems and the best ways to approach them always

kept me motivated and hopeful.

I would like to thank my committee members Profs. Donald Yeung, Moham-

mad Hajiaghayi, Bruce Jacob and Manoj Franklin for their willingness to sit through

and evaluate my work, and Profs. Franklin and Jacob for their useful feedback after

my candidacy exam.

I would also express my gratitude towards my colleagues and friends in the

lab, both in the past and in the present. During the start of my PhD, I could

always look to my seniors Chongxi Bao, Zhiyuan Yang, Yang Xie and Yuntao Liu

for guidance as they helped bridge any gap in communication and understanding

with my advisor. Thanks are also due to Abhishek Chakraborty and Mike Zuzak

whose experience I could count on in situations that were new to me. Them, and

the new members of our lab Daniel Xing and Nina Jacobsen, and my other friends

in College Park made sure that graduate student life wasn’t monotonous.

Lastly, I would like to acknowledge the moral support and love that my parents

have provided me during my time away from home and their faith in me.

iii

Table of Contents

Dedication ii

Acknowledgement iii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Focus and outline of thesis . 5

2 Preliminaries 7
2.1 Artificial Neural Network Architecture 7

2.1.1 Training of Neural Networks 9
2.2 Spintronics and the Magnetic Tunnel Junction 11

2.2.1 Magnetic Tunnel Junction . 12
2.2.2 Other spintronic devices . 14
2.2.3 Memristive devices . 14

2.3 Non-conventional and Non-von Neumann Computing 15
2.3.1 The Resistive Crossbar Architecture 18

2.4 Non-conventional computing paradigms 20
2.4.1 Approximate Computing . 21
2.4.2 Probabilistic Computing . 21
2.4.3 Stochastic Computing . 21

3 Stochastic Computing with MTJ for Neural Networks 23
3.1 Introduction . 23
3.2 Preliminaries . 25

3.2.1 Stochastic Computing . 25
3.2.2 Computational units in SC . 26

3.3 MTJ-based Stochastic Computing . 27
3.3.1 Characteristics of Magnetic Tunnel Junctions 28
3.3.2 MTJ as a Stochastic Number Generator 29
3.3.3 Proposed Biased MTJ-SNG 30
3.3.4 Comparison with CMOS-based SNG 31

iv

3.4 Energy Efficient MTJ-based NN Implementation 32
3.4.1 NN implementation in the SC/ISC domain 33
3.4.2 Problem Formulation . 34
3.4.3 Optimizing a 1-layer NN . 35
3.4.4 Optimizing 2-layer NNs . 37

3.5 Regularization and Constraints for Classification problems 38
3.5.1 Regularization . 38
3.5.2 Classification Specific Customization 41

3.6 Simulation Methodology and Results 43
3.6.1 Evaluation setup . 43
3.6.2 Results . 44

3.7 Conclusion . 50

4 In-situ Training of MTJ Neural Network Crossbar 51
4.1 Introduction . 51
4.2 Background . 54

4.2.1 Crossbar Architecture for Neural Networks 54
4.2.2 Related Work . 55

4.3 MTJ Crossbar based Neural Networks 56
4.3.1 Training Binary Networks . 56
4.3.2 The Motivation for In-situ Training 57
4.3.3 Network Binarization and MTJ as a synapse 58

4.4 In-situ Training of the NN Crossbar 59
4.4.1 Overview of Operations . 60
4.4.2 Stochastic Learning of an MTJ Synapse 61
4.4.3 The 1T1R Architecture . 64

4.4.3.1 Updating the crossbar 65
4.4.3.2 Control circuits . 67

4.4.4 The 1R Architecture . 68
4.4.4.1 Two-phase update 69
4.4.4.2 Four-phase Update 70

4.4.5 Multi-Layer NNs . 72
4.5 Training of Restricted Boltzmann Machines 74

4.5.1 Basics of RBM . 74
4.5.2 Deep Belief Networks . 77
4.5.3 Adaptation of the Contrastive Divergence algorithm 78
4.5.4 Training of RBM MTJ crossbar 80
4.5.5 MTJs for hidden units . 83

4.6 Simulation Setup and Results . 86
4.6.1 Neural Networks . 87

4.6.1.1 Methodology . 87
4.6.1.2 Results . 88

4.6.2 Deep Belief Networks . 92
4.7 Discussion . 95
4.8 Conclusion . 98

v

5 MTJ-based Ising Model Architecture 100
5.1 Introduction and Related Work . 100

5.1.1 Related Work . 101
5.1.2 Our contribution . 102

5.2 The Ising Model . 103
5.3 Ising-FPGA Framework . 105

5.3.1 Finding local optimum in the Ising model 105
5.3.2 MTJ as an Ising spin unit . 106
5.3.3 MTJ-based Ising-FPGA cell 110
5.3.4 Splitting inputs to multiple cells 112

5.4 Architecture of the Ising-FPGA . 114
5.4.1 Architecture of an FPGA . 115
5.4.2 Reconfigurable Ising model hardware 116
5.4.3 Signal Degradation and Recovery 118

5.5 Ising graphs of NP-hard problems . 121
5.5.1 Maximum Cut . 121
5.5.2 Travelling Salesman Problem 121

5.6 Simulation Setup and Results . 123
5.6.1 Methodology . 123
5.6.2 Results . 124

5.7 Discussion . 127
5.8 Conclusion . 128

6 Conclusion and Future Work 129
6.1 Ising Graph simplification . 129
6.2 Neuromorphic Computing with Spintronics 130

Bibliography 132

vi

List of Tables

3.1 Comparison of Normal and Biased MTJ-SNG 31
3.2 Notations for problem formulation of 1-layer NN 36
3.3 Variation of 1-layer network energy and classification error rate on

the MNIST test dataset . 45
3.4 Results for the MNIST 2-layer network for select values of error

threshold of the outer layer . 46

4.1 The write phase. Signs of x, δ, and ∆W , required change in weight
W and conductance G, and the desired direction of switching of MTJ
Synapse . 60

4.2 Boundary values of the parameters in the weight update eqn. (2.3)
and their counterpart in probabilistic switching of MTJ. 63

4.3 The coefficients that fit the model for both AP → P and P → AP
switching . 63

4.4 4-phase weight update for the 1R configuration in fig 4.6(c) 71
4.5 The stages of CD training when different currents (fig. 4.10(b)) op-

erate on the hidden units and the switches that are active 84
4.6 Notations for MTJ curve fitting . 84
4.7 Classification error rates for the 3 datasets with various NN and cross-

bar architectures under different training scenarios. 89
4.8 Misclassification rates of NNs with stochastic training of 1T1R and

1R architectures under different levels of device variations 89
4.9 Misclassification rates with hidden layers trained as RBM for the

MNIST and WBCD datasets, for different levels of device variations. 93

5.1 Configuration of Ising cells as per their level. 114
5.2 Descriptions of graphs for Maxcut simulations. 125
5.3 Ising-FPGA hardware usage for Max Cut. 125
5.4 Ising-FPGA hardware usage for TSP. 126
5.5 Results of Ising simulations for TSP. 127

vii

List of Figures

1.1 Major computing frameworks driving the tech sector 2

2.1 Schematic of a neuron and the tanh activation function 8
2.2 Single-layer and 2-layer NNs . 9
2.3 The MTJ and Spin-Torque Transfer switching from P→AP and AP→P 12
2.4 MTJ AP → P switching probability as a function of t and I 13
2.5 Structure of an M ×N resistive crossbar 19
2.6 Opportunities to overcome the hurdles presented by the slowing down

of Moore’s law as 3 paths, not necessarily meant to be used mutually
exclusively. 20

3.1 Components used in SC and direction of flow of data 26
3.2 Scaled addition in SC, Integral SC (ISC) representation, and Multi-

plication in ISC . 26
3.3 The BMS and variation of energy with value of SN p with and without

BMS . 30
3.4 Neuron implementation in ISC and Schematic of 1-layer NN 34
3.5 Regularization function types 1,2 and 3 respectively and their deriva-

tives . 40
3.6 Flow chart showing the process and network optimization and char-

acterization . 44
3.7 Energy vs classification error rate curve for the MNIST dataset 1-

layer NN . 46
3.8 Plot of classification error rate against energy for 2-layer NN of MNIST

dataset with AV constraint. 47
3.9 Trade-off between network Energy and classification error rate for the

Wine Quality test dataset . 48
3.10 Energy v/s inaccuracy in classification for the SONAR dataset 49

4.1 A 2× 2 crossbar with selection transistors 58
4.2 Synaptic weights and activation function in each column of the cross-

bar. Comparison of the output characteristics of the inverter and the
actual tanh function. 60

4.3 Comparison of the linear model and desired switching probabilities . 63
4.4 The 1T1R crossbar. (a) Schematic (b) Read & write phases signals . 65
4.5 Circuit of the crossbar’s (a) Input, and (b) Output CLs, and (c) Write

phase signals timing diagram . 68

viii

4.6 Alternate current paths in the 1R structure with 2-phase write strategy 69
4.7 Circuits for gradient descent and backpropagation 72
4.8 Schematics of RBM and DBN . 76
4.9 (a) Crossbar implementation structure of the RBM with MTJs as

synapses and hidden units. (b) Signals during the 5 stages of the CD
update cycle. 80

4.10 (a) DBN crossbar structure - 4×4 and 4×3 crossbars for the 1st and
2nd hidden layers. (b) Circuit of MTJ as RBM hidden unit connected
to the respective Control Logic. 84

4.11 Switching probabilities of the MTJ meant to store RBM hidden unit’s
states . 86

4.12 NN training error with different extents of device variations on the
1R crossbar for 2 datasets. 90

4.13 Comparison of error during training of the 1R crossbar with 2-phase
and 4-phase update schemes for 2 datasets. No variations assumed. . 90

4.14 Progress of training with RBMs as hidden layers 94
4.15 Comparison of standard CD and 2-stage CD, and histogram showing

distribution of inputs to the sigmoid activation function of the 1st

hidden layer . 95

5.1 Ising graph and Ising energy landscape 104
5.2 Switching probabilities of the MTJ with 2ns pulse width 107
5.3 Different stages of an iteration in the process of finding the ground

state of an Ising model . 109
5.4 The proposed Ising spin cell . 111
5.5 The Modified Ising cell and multi-level Ising cells 113
5.6 The FPGA architecture . 115
5.7 The BLIF File Generator and an excerpt from a BLIF file 117
5.8 Routing of nets in the Ising-FPGA 119
5.9 Signal degradation model for paths from a last level cell (source) to

level A cells (destinations). 120
5.10 Arrangement of Ising spin units for a 5-city TSP 122
5.11 Steps performed in the simulations. We start with the Graph Gener-

ator and end with the Stochastic LLG simulations. 123
5.12 Max cut values (normalized) from the Ising simulations for the 4

graphs, with 2 different values of Ising cell fan-in (I) used for G2. . . 126
5.13 Average (over 20 runs) no. of valid tours found in a run. 127

ix

List of Abbreviations

ANN Artificial Neural Network
SC Stochastic Computing
DNN Deep Neural Network
ML Machine Learning
AI Artificial Intelligence
MTJ Magnetic Tunnel Junction
STT-MRAM Spin-Transfer Torque Magnetic RAM
ASL All Spin Logic
MAC Multiply and Accumulate
ADC Analog to Digital Converter
RRAM Resistive RAM
SNG Stochastic Number Generator
SN Stochastic Number
DBN Deep Belief Network
RBM Restricted Boltzmann Machine
MLP Multi-layer Perceptron
ISC Integral Stochastic Computing
FSM Finite State Machine
P/AP Parallel/Anti-Parallel
BMS Biased MTJ-SNG
LFSR Linear Feedback Shift Register
MSE Mean Square Error
AV Absolute Value
CS Classification Specific
SNN Spiking Neural Network
STDP Spike-Timing Dependent Plasticity
CD Contrastive Divergence
RRAM Resistive RAM
1T1R 1-Transistor 1-Resistor
CL Control Logic
LLG Landau-Lifschitz-Gilbert
DA Differential Amplifier
SFT Supervised Fine Tuning
FPGA Field Programmable Gate Array
VTR Verilog to Routing
VPR Versatile Place and Route
CLB Configurable Logic Block
BLE Basic Logic Element
LUT Look-up Table
SB Switch Box
BLIF Berkeley Logic Interchange Format
BFG BLIF File Generator
TSP Travelling Salesman Problem
CWF Channel Width Factor

x

Chapter 1: Introduction

The last few decades have witnessed significant growth in computing capabilities

and electronics which has significantly impacted our life - how we live and how we

work. This has been possible primarily because of the scaling of technological devices

(transistors), which brought about improvements in speed, power consumption and

cost. The ability to sustain the operation of billions of transistors in a small area

has resulted in the proliferation of consumer electronic goods. That in turn has led

to the birth of several computational frameworks which form a major fraction of

today’s digital workload. Fig. 1.1 mentions some of the frameworks and workloads

of today, which are sometimes interconnected or interdependent.

One of the most prominent concepts which is driving the growth of several

sectors in the industry is that of Machine Learning (ML) and Artificial Intelligence

(AI). The capability of the human brain to learn and solve complex problems have

inspired advancements in areas of neuroscience, AI and ML. Decades of research in

Artificial Neural Networks (ANNs), despite our limited understanding of biological

Neural Networks (NNs), have shown promising results in applications such as pat-

tern recognition, image classification and Natural Language Processing [109]. Deep

Neural Networks (DNNs), which are NNs having several layers cascaded, have thus

become a popular choice for such ML-based applications. The unprecedented suc-

1

Modern
Computational

Workloads

Big Data
Machine
Learning

Deep Neural
Networks

Artificial
Intelligence

Internet-of-Things

Figure 1.1: Major computing frameworks driving the tech sector

cess in these tasks has however been at the cost of massive computations on von

Neumann architectures exhibiting high energy or area requirements, or both. An

example would be the IBM Blue Gene supercomputers which have tens of thousands

of processors and consume power in the order of a Megawatt [46]. Such resource-

hungry characteristics of DNNs makes their implementation prohibitive on platforms

with limited capacity such as mobile devices and embedded systems. And this has

motivated researchers to think beyond what is traditional in terms of hardware

platforms for NNs. The emergence of novel devices and special-purpose architec-

tures encourages a shift from conventional digital hardware for implementing neural

algorithms [121].

The saturation of technological scaling and its diminishing returns (in terms

of voltage and clock frequency scaling and integration density) is signalling an end

to the Moore’s law. The search for device technologies alternative to CMOS has

been going for quite a long time. And while there is no clear successor yet which

can replace it throughout, several candidates have emerged with their own strengths

and weaknesses, demonstrating superiority in some domain/application. The more

promising among these are spintronic devices and memristors, which offer character-

istics such as non-volatility, near-zero leakage and high integration density. Memory

2

chips based on these technologies are either already commercially available or close

to market [107].

The rise of other device technologies is however not sufficient to keep the mo-

mentum in the growth of computing. Dedicated processing units are increasingly

being deployed to speed up execution. For example, most modern consumer elec-

tronic devices, such as smartphones, have special processors (ASICs) that take some

load off the CPU(s) for applications such as video-processing. The same goes for

server processors which leverage GPUs to perform computations in parallel. A sig-

nificant and ever-increasing bottleneck in modern computing is actually the gap

between memory and logic. The execution speed of the processor cannot exceed

the rate at which instructions and data are fetched from memory. Although the

aforementioned accelerators improve computational throughput, the fundamental

problem of the memory bottleneck still remains.

On the horizon are circuits and higher-level architectures that are more energy

efficient than von-Neumann computers by departing from the traditional concept of

sequential flow of program execution. These beyond von-Neumann architectures are

adapted to specific computing requirements and designed to accelerate increasingly

prominent workloads. One common technique called near-memory computing brings

memory closer to logic, but the processing units are still distinct from memory arrays

[55]. Another form of computing which is truly non-von Neumann is in-memory

computing where the processing on data is done at the same place where it is stored,

thereby completely eliminating data movement. Emerging resistive memory devices

are a good candidate for this framework because their variable conductance can be

leveraged to perform multiplications and additions using Ohm’s and Kirchhoff’s law.

3

This kind of computing is inherently analog in nature and has led to the development

of massively parallel accelerators for a wide range of applications.

An additional effect of the shrinking technology is the increased difficulty in

ensuring error-free computing. As per the 2007 report of the International Tech-

nology Roadmap for Semiconductors (ITRS), relaxing the stringent requirements of

correctness can result in significant savings in manufacturing costs. This, and the

ability of deep learning and big-data applications to tolerate minor errors in com-

putations, has increased the relevance of imprecise computing methods. It refers

to allowing some deviations in calculations from the specifications by harnessing

noise and error to achieve energy-efficiency. The most popular category of such

methods is Approximate Computing which aims to save energy spent in computing

by reducing the accuracy or probability of correctness of answers. Neuromorphic

computing, wherein operations are performed in a manner similar to how the brain

and its neurons function, is another non-von Neumann framework which leverages

imprecise computing paradigms.

Another class of problems that has always been computationally intractable

is combinatorial optimization, which is encountered in several applications in daily

life. It involves choosing an optimal configuration of the state variables from a large

number of possible ones in a problem with a discrete solution space. It is well known

that our traditional von Neumann computers are not well suited to solve such NP-

hard problems [27] because a large no. of calculations need to be done for solving

such problems. A better way is to map the problem to a model which can be used to

find a local optimum via natural computing techniques. Instead of solving step-by

step, the system representing the model is left to itself and its state approaches the

4

optimum solution with time [140]. Simulated annealing based methods have been

found useful for accelerating NP-hard problems when implemented on massively

parallel Boltzmann machines [19].

1.1 Focus and outline of thesis

In this thesis, we demonstrate the potential that emerging device technologies,

specifically the spintronic device called the Magnetic Tunnel Junction (the central

component of Magnetic RAM memory technology), possess for overcoming some of

hurdles faced by modern computing systems. We show what role it can play in re-

alizing hardware and accelerating computations performed in Artificial Neural Net-

works (NN) and combinatorial optimization through non-conventional paradigms

and non-von Neumann architectures. The rest of the thesis is organized as follows.

• Chapter 2 provides background on the main concepts required to understand

the contributions made in this thesis. These include the basic structure and

workings of ANNs, spintronic and memristive devices, the rise of non-von

Neumann computing platforms and imprecise computing models.

• Chapter 3 proposes an energy-efficient way of using MTJs for realizing NNs in

a non-conventional domain called Stochastic Computing. We suggests ways of

achieving energy-efficiency through NN parameter approximation and develop

optimization algorithms for the same [88, 90].

• In chapter 4, we consider an MTJ crossbar based architecture for implement-

ing NNs in a non-von Neumann manner. We discuss the drawbacks of directly

programming the crossbar and propose methods for on-chip training of cross-

5

bars with different kinds of selectivity [89, 91].

• NP-hard problems are tackled in chapter 5 where we focus on a model that

encodes such problems and uses simulated annealing to obtain good local

optima. We propose a reconfigurable and parallel MTJ-based architecture

which realizes the hardware representing the model and finds close-to-optimum

solutions of the encoded problem. [92].

6

Chapter 2: Preliminaries

This chapter provides the background on several concepts which are the focus of

this thesis. We start with describing the functioning and training of neural net-

works, move on to emerging non-CMOS devices with emphasis on spintronics, dis-

cuss the significance of non-von Neumann computing and the basic architecture for

in-memory computing, and finally mention various forms of imprecise computing.

Some specific topics that have been referred to only in a single chapter are explained

there itself.

2.1 Artificial Neural Network Architecture

The fundamental units of a Neural Network (NN) are neurons, which represent

non-linear, bounded functions, and synapses, which are interconnections between

neurons. Each neuron performs a weighted sum of its inputs, which in turn is fed

to a non-linear activation function to squash the output to a finite range [109]. The

output of a neuron, called the activation level, can be expressed as

y = f

(
N∑
i=1

wixi + b

)
(2.1)

where N is the no. of inputs to the neuron, wi is the synaptic weight of the connec-

tion from the ith input xi, b is a bias, and f() is an activation function (such as tanh

7

or ReLU). Fig. 2.1(a) depicts the operations performed by a neuron and 2.1(b),

the behavior of the tanh function. A layer of neurons in an NN typically refers to

a set of neurons which are not connected to one another, meaning that there are

no synapses between these neurons (more biologically-inspired NN models can be

exceptions). And a layer of weights is the set of incoming synaptic weights to that

layer of neurons.

Activation
Function

wN

w1

b

w2 ∑ f()

x1

x2

xN

y

(a) A neuron perform a
weighted sum of inputs and
passes it through an activation
function

(b) The transfer function of
the tanh.

Figure 2.1: (a) Schematic of a neuron. (b) The tanh function.

Feedforward networks are the most elementary Neural Networks, in which

information flows only in one direction from the input to the output, represented by

an acyclic graph. The simplest of such networks is the fully connected one, which

has connections from every input to every output neuron. Fig 2.2(a) shows a 3-input

2-output fully connected NN layer. For such a layer which is fully connected, its

weights can be represented as a matrix W , and its output to any input vector x is

given as y = Wx. This is known as forward propagation or inference. Multiple such

layers can be connected in series (cascaded) to form the entire network, in which all

intermediate layers are called hidden layers. Fig. 2.2(b) depicts a 2-layer NN with

3 hidden neurons.

8

(a) A fully connected layer of NN

Output Layer
4 output neurons

Hidden Layer
3 hidden neurons Input Layer

5 inputs

Input 1

Input 2

Input 3

Input 5

Input 4

Output 1

Output 2

Output 3

Output 4

(b) Schematic of a 2-layer NN with one hidden layer.

Figure 2.2: Single-layer and 2-layer NNs

One very popular type of NN layer, in terms of connectivity are convolutional

layers. Here, for each output neuron, weights exist only from a small set of the

inputs which are located within its proximity. See [24] for more details on Convolu-

tional Neural Networks. When several layers, convolutional or fully connected, are

connected back to back, it forms what is popularly known as a Deep Neural Net-

work (DNN). A DNN used for typical ML-based applications can have thousands of

neurons and weights, and this is what makes their hardware implementation both

computation and memory-intensive [83].

2.1.1 Training of Neural Networks

The ability of an NN to learn is what makes it useful. Prior to using in applica-

tions such as function approximation and classification, an NN has to be trained

using several examples from a dataset, which are pairs of training inputs and their

corresponding outputs or labels. The weights are initialized to random values and

then adjusted as the network is trained to perform a certain task. The inputs in the

training dataset are scanned one by one (often in batches). One single pass/iteration

through the entire training dataset is called an epoch.

9

Training of the NN involves gradually adjusting the weight matrix W (or

matrices) such that its output y moves closer to the target output t (for input x)

at every step of the training. Towards this, a cost function is used to measure

the deviation between the desired and the obtained output. One common cost

function is the Mean Square Error (MSE) given as E = ||y− t||22. The most popular

technique of training an NN is the error backpropagation method, which relates the

error or cost function with the weights of all the layers. This kind of a “backward

calculation” is used to compute the gradient of the error function that is then used

to update the weights in the direction in which error goes down the steepest [109].

This is known as gradient descent or the delta rule which is mathematically stated

next.

Let the input to a single layer NN be x ∈ RM , and W ∈ RN×M represent the

synaptic weight matrix, then the output y ∈ RN is

y = f(Wx) (2.2)

where f() is an activation function. The weight update of the synapse connecting

the ith input to the jth output is given as

∆Wji = −η ∂E

∂Wji

= −ηxiδj (2.3)

where E is the cost function of the presented input sample x, η is the learning

rate and δj is the error calculated at the jth output using y and the desired output

t. For the single layer NN (or the last layer of a multi-layered NN), δ is directly

10

proportional to (y − t). For hidden layers, error δ is obtained by backpropagating

the error of the next layer. Thus, errors are computed starting from the last layer

and ending at the first. The weight update of the entire matrix is the following

outer product

∆W = −ηδxT (2.4)

The new weight matrix is given as W = W + ∆W . This weight update can be

done after each training input is scanned or after accumulating the outer products

from multiple inputs. See [70] for a thorough discussion on backpropagation and the

various tricks that can be used to improve convergence of weights during training.

2.2 Spintronics and the Magnetic Tunnel Junction

The CMOS technology is approaching the physical limits of scaling, which is giving

rise to issues such as large leakage currents and high power dissipation density. This

has fueled the search for alternatives to the CMOS technology for memory and logic

[114]. Among all post-CMOS devices that are candidates for replacement, spintronic

devices are one of the most promising ones [61]. Spintronics encompasses the field

of magnetic electronics [15, 81] and refers to the use of electron spin for computa-

tion or storage. Unique features of such devices include non-volatility, zero leakage

power, CMOS compatibility, etc. These characteristics have also enabled the im-

plementation of new classes of architectures and inspired the development of novel

algorithms suited to them [130]. The most popular and commercialized spintronics-

based product is perhaps the Magnetic RAM (MRAM) which is starting to replace

CMOS-based main memory and caches [131, 107]. The goal of semiconductor com-

11

panies is to establish a universal memory that can replace the mainstream ones by

surpassing them in several criteria.

2.2.1 Magnetic Tunnel Junction

The central component of the MRAM is the Magnetic Tunnel Junction (MTJ).

It is a 2-terminal spintronic device consisting primarily of 2 ferromagnetic layers

separated by a thin tunnel barrier (typically MgO) [132]. The magnetic orientation

of one of the magnetic layers is fixed, whereas that of the other is free, as shown in

fig. 2.3(a). MTJs possess 2 stable states where the relative magnetic orientations of

the free and fixed layers are Parallel (P) and Anti-Parallel (AP) respectively, with

the P state exhibiting a lower resistance than the AP state (RP < RAP). It is this

difference in resistance that allows a single-bit value to be encoded in the MTJ and

which is characterized by the Tunnel Magneto-Resistance, TMR = (RAP−RP)/RP .

The magnetization dynamics of the MTJ is governed by the stochastic Landau-

Lifshitz-Gilbert (LLG) equation [77, 117]. It is possible to switch the state of the

MTJ by passing spin-polarized current of appropriate polarity which flips the mag-

netization of the free layer through the mechanism of Spin-Transfer Torque (STT)

Fixed
Layer

Tunnel
Barrier

Free
Layer

Parallel Anti-Parallel

(a) Two stable states of an
MTJ

e-

IP-> AP

e-

IAP-> P

(b) STT-assisted switching in MTJ

Figure 2.3: (a) The MTJ (b) Spin-Torque Transfer switching from P→AP (left) and
AP→P (right). Dashed lines show the path of oppositely spin-polarized electrons.

12

[77] (depicted in fig. 2.3(b)). The time required to switch is heavily dependent on

the magnitude of the switching current. Not only that, this switching process is a

stochastic one, in the sense that a pulse of given amplitude and duration has only

a certain probability to successfully change the state. This stochasticity is due to

thermal fluctuations in the initial magnetization angle and is an intrinsic property

of the STT switching [77].

Depending on the magnitude I of the current and the critical current Ic0 [142],

the switching probability in the high-speed precessional regime (I > Ic0) is expressed

as

P (a, t) = exp(−4f(a)∆exp(−2t/T)), with f(a) =

(
2a

a− 1

)(−2
a+1)

(2.5)

where a = I/Ic0, t is the pulse width, ∆ is the thermal stability and T is the mean

switching time (which is dependent on a)[127]. It must be mentioned that quantities

such as ∆ & Ic0 and MTJ switching properties depend on device dimensions and

material.

The spin transfer efficiency (θ) of an MTJ is a measure of how effectively

charge currents are converted to spin-polarized currents. This θ is different for

the 2 switching directions, with θP→AP having a smaller value than θAP→P [143].

0 2 4 6
0

0.25

0.5

0.75

1

65 uA
80 uA
95 uA
110 uA

I = 110 uA

I = 65 uA

(a) P v/s t, for different values of I

40 60 80 100 120
0

0.25

0.5

0.75

1

2.25 ns
2.50 ns
2.75 ns
3.00 ns

t = 3.00 ns

t = 2.25 ns

(b) P v/s I, for different values of t

Figure 2.4: MTJ AP → P switching probability as a function of t and I

13

This makes IP→APc0 > IAP→Pc0 , which means that the same magnitude and duration

of current will correspond to different switching probabilities for the 2 switching

directions. Fig. 2.4 shows the dependence of the switching probability on pulse

width and switching current for the AP → P transition. Observe the similarity in

the nature of variation with I and t. The P → AP transition too depicts this kind

of a behavior, albeit with different values of I and t.

2.2.2 Other spintronic devices

Other than the STT-MRAM, which has been used as memory, there exists spintronic

devices for performing logic operations [61] such as

1. Hybrid MTJ/CMOS logic [124] - A pair of MTJs and a few transistors can

implement most of the logic gates. This is one way of realizing logic-in-memory

(see sec. 2.3).

2. All Spin Logic (ASL) devices - These consist of input and output magnets with

a conducting channel in between, and utilize spin injection, spin diffusion and

STT switching.

3. Domain Wall Logic - The domain wall is the interface between 2 magnetic

domains; its motion can be used for logic operations.

4. Nanomagnet Logic - Utilizes magnetic direction as a state variable

2.2.3 Memristive devices

Another class of beyond-CMOS device which has caught the attention of researchers

is the memristor, which has long been considered as the fourth basic circuit element

14

[25]. It is a resistive device which possesses a memory-like effect and a variety

of dynamic characteristics. The fundamental physics of these devices differs from

spintronic ones in the sense that their resistance depends on the ionic configuration

of the material and the presence/absence of a conductive filament [144].

A common examples of a memristive device is the Resistive RAM (RRAM).

It offers high integration density, non-volatility, and low-cost fabrication, and its

resistance can be (re)configured through electrical inputs. Not only does it have a

high and low resistance state, but some works have reported the existence of multiple

intermediate resistance states [63]. RRAMs too have the potential for being used

as memory [34, 54] and also for non-conventional computing as described next.

See [23] for a detailed comparison between different emerging non-volatile memory

technologies.

Although memristors tend to have intermediate resistances, it is often difficult

to control their final state due to their highly non-linear behavior [96, 63]. Pro-

cess variations and the resulting non-ideal device behavior make this worse. Thus

it is difficult to obtain the intermediate states reliably. Further, there exists an

asymmetry in the On-to-Off and Off-to-On switching [144].

2.3 Non-conventional and Non-von Neumann Computing

Another impact of the apparent end of Moore’s law has been the birth of several

new computing models that depart from the traditional and general-purpose ones

[114]. Increasing the density of integration on chips will require lesser energy costs

of data movement which depends on the intrinsic resistance of interconnect. As a

result, computing efficiency is becoming increasingly limited by memory bandwidth,

15

which lags far behind processor computing speeds. In other words, memory has not

scaled as much as logic, and therefore movement of data now constitutes a significant

portion of energy consumption. For example, in data-intensive applications, off-chip

memory access can account up to 90% of the execution time and energy [125]. Non

von-Neumann computing seeks to bridge the gap between the processor and the

memory by bringing them as close as possible or using the same physical entity for

them.

The fundamental concept of tailoring the computing architecture to the needs

of the application and nature of computation has been in use for a while in the

form of ASICs, FPGAs, GPUs and GPGPUs, etc [125]. A relatively recent effort to

solve the memory bottleneck includes bringing memory closer to processors through

concepts such as logic-in-memory or memory-in-logic. Other similar methods in-

clude in-package memory, enhanced DRAMs and the 3D Crosspoint technology [53]

which involve 3D integration and stacking. Although end users have seen improve-

ments in energy-efficiency and performance as memory and processors are integrated

closely, these gains wouldn’t continue for long with the current memory devices and

architectures.

A radical departure from von Neumann architectures involves in-memory com-

puting, which essentially refers to doing computations right at the location of the

memory. This solves the memory bottleneck by not requiring to fetch data from

memory to the processor and writing data back to memory. The thrust in research

in this direction has multiple sources:

1. The ever-increasing use of deep learning algorithms, which are often memory-

intensive, for commercial workloads. Modern networks typically have tens of

16

thousands of parameters which require large amounts of storage, and hence

large traffic from off-chip storage to on-chip processor.

2. The gap between the computational capabilities of CPUs and the human brain

(with same amount of resources or power for fair comparison) has inspired re-

searchers to better understand the working of the brain. Such brain-inspired

computation requires special architectures which can offer very high levels of

parallelism. Few examples of large-scale neuromorphic processors include the

Stanford Neurogrid, Manchester SpiNNaker, Hiedelberg BrainScaleS machine

and IBM TrueNorth which strike a balance between various performance ob-

jectives, and which differ in modes of operation (analog v/s digital) and neuron

& synapse models [35].

3. The emergence of non-CMOS devices with unique characteristics, such as non-

volatility and the ability to represent and process non-binary data. These

devices can form crucial elements of non-von Neumann frameworks which can

enable better realization of deep learning algorithms or other memory-intensive

applications.

4. One important property of neural algorithms and their applications is their

resilience to small errors in the input or the computations. Certain non-

ideal characteristics of non-CMOS devices such as stochasticity not only have

an insignificant effect on the result but also are desirable sometimes during

training and operation [116, 94]. After all, biological NNs too function and

learn with some uncertainty [121].

The most common form of non-von Neumann computing enabled by emerging

17

devices is analog computing, which involves computing with non-binary values by

utilizing physical principles [114, 55]. An input signal in the form of a voltage,

when provided to a resistive device, produces an output current that depends on its

resistance and the voltage by Ohm’s law. And several such resistors, when connected

in parallel with a common output, would have their respective currents added up

by Kirchhoff’s law. This forms the basis of the in-memory compute capability of

resistive devices and has the potential to realize the most fundamental computation

of neural workloads and beyond. Next we discuss the most basic form of in-memory

analog computing and its architecture.

2.3.1 The Resistive Crossbar Architecture

The mesh-like crossbar has been a popular architecture for memory. It’s structure

is suitable for performing matrix vector multiplications in the analog domain for

neural or other applications. Often, inputs are provided to one side (say the rows)

of the crossbars and outputs are obtained from the other side (the columns). Fig

2.5 shows a simplified crossbar (without access transistors) with M rows and N

columns. For realizing an M ×N NN weight layer, each row can correspond to an

input and each column to an output neuron. Each resistive device at the junction

of a row and column represents a synapse, whose weight would be related to the

conductance.

The crossbar performs a mat-vec multiplication as a read operation in the

following way. Let Vi be the voltage applied at the ith input terminal and Gji be

the conductance of the synapse connecting it to the jth output. By Ohm’s Law, the

current through that synapse is GjiVi and by Kirchhoff’s law the total current at

18

G1,1

I2 Ij IN

V1

V2

Vi

VM

Input
Voltages

G2,1 Gj,1 GN,1

G1,2 G2,2 Gj,2 GN,2

G1,i G2,i Gj,i GN,i

G1,M G2,M Gj,M GN,M

I1

Figure 2.5: Structure of an M ×N resistive crossbar

the output is

Ij =
∑
i

GjiVi (2.6)

which bears similarity to the dot product operation. This can then be either con-

verted to a digital value with an ADC or fed directly to suitable analog circuits for

implementing the activation function of the neural network [59, 47].

Since all M inputs can be applied simultaneously and the N outputs are

obtained almost instantaneously, the matrix-vector multiplication is performed in

parallel with constant time complexity. Whereas using conventional Multiply-and-

Accumulate (MAC) units, the same could take up to O(M ×N) time.

Memristive devices have also been proposed for performing logic operations

in a variety of ways. Several logic design styles exist where the input(s) or the

output can be represented with voltages or resistances [33]. The work in [123]

realizes Boolean functions (AND, NOR, etc.) using stateful logic within memristive

crossbars and demonstrates the operation of full adders. Use of spintronic devices

for logic gates and circuits have also been proposed [56, 32].

Fig. 2.6 presents new devices, computing architectures and paradigms along

different dimensions which can tackle the challenges faced by classical computing

19

Spintronic
devices -
MRAM,

ASL, DW

Memristive
devices -
RRAM,
PCM,

CBRAM

non-von
Neumann

Architecture

Analog
Computing

Probabilistic
Computing

Neuromorphic
Algorithms

Approximate
Computing

Quantum
Computing

Stochastic
Computing

Tunnel
FETs

Carbon
Nanotubes

In-memory
Computing

Figure 2.6: Opportunities to overcome the hurdles presented by the slowing down of
Moore’s law as 3 paths, not necessarily meant to be used mutually exclusively.

with CMOS technology.

2.4 Non-conventional computing paradigms

The ever-increasing amount of data that is processed by modern computers has led

to a sharp rise in power consumption in spite of technological advancements. On the

other hand, the shrinking of transistors has increased the chances of device failure

and transient errors. This has given birth to the concept of imprecise computing

which advocates tolerating some errors in the computation for achieving lower power

or design area. A growing number of applications handled are resilient to small errors

or noise in the data, algorithms, and circuits. The notion of imprecise computing

has found use particularly in Machine Learning and Big Data applications, where

one or more of the following hold [45]

• There doesn’t exist a single correct/golden answer

• Obtaining the correct answer takes up a lot of time and energy

• Any approximate answer is as good as the correct answer due to limitations in

20

human perception and/or error tolerance of the application.

We shall now discuss few categories of imprecise computing, which, it must be

mentioned, are not always mutually exclusive.

2.4.1 Approximate Computing

This is most common form of imprecise computing which trades-off accuracy of

results for lower energy and area [137]. The simplest example is using simplified

logic for obtaining the less significant bits of a computation so that the errors in

the result are within an acceptable level. Of course, approximate computing is to

be only employed in non-safety critical domains.

2.4.2 Probabilistic Computing

It refers to computing results with less than 100% probability of correctness by,

for example, using computing elements that have higher than usual levels of noise.

With CMOS gates, an external source of noise may be used, whereas non-CMOS

logic may have inherent randomness [104, 61]. While probabilistic computing also

produces answers which are approximately correct (or at least desired to be so),

there is non-determinism involved in it. Whereas the term approximate computing

usually refers to deterministic approximations in computing logic and data.

2.4.3 Stochastic Computing

Stochastic Computing (SC) specifically refers to the use of bitstreams for represent-

ing data and using simple logic gates for arithmetic functions [12]. Herein, the data

21

is approximate and processed serially but the computations are generally exact. SC

drastically reduces area and power consumption, while occasionally increasing the

latency of computations. Another challenge that SC faces is bitstream correlation

that tends to reduce the accuracy of results. More technical details of SC will be

discussed in the next chapter.

The above forms of imprecise computing may or may not be used in the context

of non-von Neumann computing. Computing systems in the future are likely to

be heterogeneous in the sense that they would use a blend of different computing

paradigms, each suited to a particular set/type of applications, realized with hybrid

CMOS/non-CMOS technologies.

22

Chapter 3: Stochastic Computing with MTJ for Neural Networks

In this chapter, we consider the union of Stochastic Computing and spintronics for

realizing a Neural Network (NN) architecture and optimizing it for energy-efficiency.

3.1 Introduction

In the previous chapter, we discussed the fundamentals of the workings of an NN

and noticed that it primarily comprises a large number of multiplications and addi-

tions (MAC) which can be done in parallel for any layer of the NN. Although NN

applications have been run on GPUs, FPGAs and high-performance servers to take

advantage of parallelism, such designs with binary MAC units would have a high

cost in terms of area and power consumption. This characteristic prohibits their

deployment in embedded and IoT devices, where both of those metrics are desired

to be low. It has prompted the development of optimization techniques at different

levels of these complex networks to achieve energy efficiency [128, 93], and has also

motivated the use of computational paradigms different from the traditional ones.

Stochastic Computing (SC) is a great candidate for replacing the conventional

multipliers and adders of an NN. Its use of bitstreams to represent data enables

the use of simple logic gates for arithmetic operations. Further, the inherent error-

resilience of Recognition, Mining and Synthesis applications easily allows for the

23

errors produced in data due to SC. However, data in SC, called Stochastic Numbers

(SNs), are generated by circuits called Stochastic Number Generators (SNGs). Tra-

ditionally, SNGs are composed of pseudo-random number generators (such as Linear

Feedback Shift Registers - LFSR) and comparators [12], which can account for a

significant fraction of the design cost of the complete system in terms of energy and

area. For eg. the SNG’s energy consumption can be up to 80% when implemented

using LFSRs [11, 129]. Thus, designing low-cost SNGs is of prime importance to

the overall energy-efficiency of SC-based circuits.

In this chapter, we integrate SC based on MTJs into ANNs and explore the

different ways of achieving energy efficiency at both the device level and the network

level, in the latter through approximations. Our contributions are summarized as

follows:

• We outline the characteristics of an MTJ with regard to switching time and

energy, develop a low-energy MTJ-SNG by exploiting the properties of SC, and

compare it with the baseline.

• We propose the use of our MTJ-SNG as an architectural construct for ANNs in

the SC domain, and develop an optimization algorithm that approximates the

synaptic weights in a single-layer NN for achieving energy-efficiency by sacrificing

little accuracy.

• This algorithm is then extended to a multi-layer NN by heuristically breaking

down the entire problem into separate problems for each layer and solving each

of them optimally.

• Lastly, we show how regularization techniques can be incorporated in the NN

training process to obtain better results, and prove the effectiveness of our algo-

24

rithm through simulations.

3.2 Preliminaries

3.2.1 Stochastic Computing

The concept of Stochastic Computing (SC) and other closely related computational

paradigms dates back to the 1960s and 70s [36, 100, 101], and essentially refers

to the representation of analog quantities by probabilities of discrete events which

occur sequentially and are statistically independent. In contrast to conventional

arithmetic computing, SC uses bit streams to represent numbers, typically denoted

by the probability of ‘1’s in the stream. A Stochastic Number (SN) with value

p ∈ [0, 1] is represented as a Bernoulli sequence of bits, such that if there are n

bits in the sequence, out of which k are ‘1’, then p = k
n

[11]. This is known as

the unipolar format. In the bipolar format, p ∈ [−1, 1], and the same bit sequence

would now have the value p = 2k−n
n

. For example, the bit stream 0100101000 would

be interpreted as 0.3 in the unipolar format and −0.4 in the bipolar format.

Fig. 3.1 shows the hardware components required for SC. Traditionally, the

SNG comprises the LFSR whose output is compared with the binary representation

of the SN desired to be generated. The SNG’s output is used by circuits described

next, and the final result can be converted back to the binary format with a counter.

In this thesis chapter, the main focus in terms of techniques proposed would be on

the SNG.

25

LFSR Comparator

Stochastic Number
Generator

SC Circuits -
XNOR, AND, MUX

Stochastic to
Binary Converter

(Counter)

Figure 3.1: Components used in SC and direction of flow of data. The LFSR and the
Comparator make up the SNG.

3.2.2 Computational units in SC

In SC, multiplication is performed by an AND gate in the unipolar format [11].

Thus, given 2 stochastic streams X and Y, their product is AND(X,Y). In the

bipolar format, it is given as XNOR(X,Y). However, it is not possible to perform a

precise addition in the SC domain as the sum of 2 SNs might very well lie beyond

the range. Only a scaled addition is possible which is achieved through a 2:1 Mux

whose Select input is the scaling factor and is also an SN. The scaled addition of

A and B, with scaling factor S, would give Z = A.S + B.(1-S) as in fig. 3.2(a).

With S = 0.5, one can get A+B
2

, albeit with a loss of precision. However, most

implementations of NNs involve the sum of a large number of numbers and a loss

of precision would only result in severe errors at its outputs.

To overcome this issue, Ardakani et al. [14] introduce the concept of Inte-

gral Stochastic Computing (ISC) which allows us to represent numbers beyond the

range of conventional SC. In the unipolar format, a real number s ∈ [0,m] can be

expressed as the sum of m numbers s1, s2, ...sm ∈ [0, 1]. Each si can be represented

B

A

S

Z=A.S + B.(1-S)

M
U

X

(a)

 12012112 = 10/8
11011011 = 6/8

01001101 = 4/8

(b) 0.75 + 0.5 = 1.25

 22004124 = 15/8 12012112 = 10/8

21202122 = 12/8

(c) 1.25× 1.5 = 1.875

Figure 3.2: (a) Scaled addition in SC, (b) Integral SC (ISC) representation (m = 2),
and (c) Multiplication in ISC (m1 = m2 = 2)

26

as stochastic streams and s can be obtained as the bit-wise summation of these m

streams as illustrated by an example in fig. 3.2(b). For eg., 1.25 can be expressed as

0.75 + 0.5 which have 8-bit stochastic representations (say) 11011011 and 01001101

respectively. Now, the integral stochastic stream of 1.25 can be obtained by a bit-

wise summation of these, which is 12012112, also represented using 2 streams.

In general, a number s ∈ [0,m], when represented as the sum of m SNs, would

require dlog2me + 1 streams (similar to a binary representation). This concept

extends similarly to the bipolar format as well [14]. Multiplication and addition in

ISC are performed using binary radix multipliers and adders respectively. Given

2 real numbers s1 ∈ [0,m1] and s2 ∈ [0,m2], their product and sum would have

dlog2(m1m2)e + 1 and dlog2(m1 + m2)e + 1 bits respectively in the ISC domain.

Fig. 3.2(c) gives an example. It must be noted that though computations in ISC

require binary radix adders and multipliers, these are much less expensive than those

in conventional methods of computing. For example, addition of two integral SNs

with m1 = m2 = 2 and precision 1/n, will need a 2-bit adder irrespective of their

precision; whereas the same in arithmetic computing will need a (1 + log2 n)-bit

adder. The difference is same for the case of multiplication.

3.3 MTJ-based Stochastic Computing

In this section we shall describe the characteristics of an MTJ with regard to its

probabilistic switching and exploit the properties of Stochastic Numbers to design a

low-energy optimized MTJ-based SNG and compare it to its non-optimized version.

This MTJ-SNG would be the underlying source of approximations in our energy-

efficient NN implementation.

27

3.3.1 Characteristics of Magnetic Tunnel Junctions

Recall from chapter 2 that the MTJ has 2 stable states with Parallel (P) and Anti-

Parallel (AP) magnetizations. And that the state can be switched by passing a

current through it, although such a switching is probabilistic in nature (see fig.

2.4). Thus, a higher switching current magnitude or pulse duration is required for

a higher switching probability.

Let us now analyze theoretically the switching time and energy consumption

of the MTJ. Let IAP and IP denote the currents for the AP → P and P → AP

switching respectively. Given a pulse of width Tp, the expected time at which

switching takes place (given it does) is expressed as

tsw =

∫ Tp

0

τ
dP

dt
dτ (3.1)

where the derivative of P is the switching probability density function with respect

to time t (fig. 2.4a) for currents IAP or IP . The expected energy consumed in such

a scenario, for AP→P switching, is

EAP→P
sw = V (IAP tsw + IP (Tp − tsw)) (3.2)

where V is the applied voltage bias. Whereas the energy spent in the case where

switching does not take place is

EAP→P
nsw = V IAPTp (3.3)

28

The expected energy consumed is therefore given as

〈E〉AP→P = P (Tp)E
AP→P
sw + (1− P (Tp))E

AP→P
nsw (3.4)

Expressions are similar for the P→AP switching.

3.3.2 MTJ as a Stochastic Number Generator

Prior works [31, 135] have suggested the use of MTJs as an SNG by exploiting the

probabilistic nature of its switching. We propose an energy-efficient version of an

MTJ-SNG that is based on the same principles, but takes advantage of a trivial

property of SC to achieve significant energy gains.

Given a voltage pulse, the probability of switching can be decided by control-

ling the pulse width. For each bit generated by the MTJ representing a stochastic

number p ∈ [0, 1], one would typically do the following iteratively:

i. Reset to ‘0’ with 100% probability (not required if state didn’t change in the

previous iteration)

ii. Write ‘1’ with probability p, and

iii. Read the value stored in the MTJ (which would be ‘1’ with probability p and ‘0’

with probability 1− p).

Repeating this procedure n times would give us a sequence of n bits, out of which

p.n are expected to be 1, thereby representing the SN p.

We thus choose the P state to be the reset state (logic 0), and switch to the

AP state (logic 1) with some probability for generating the SN. This means that

switching P→AP with probability p will produce bit streams where the probability

29

of finding ‘1’s is p. The red dotted line in fig. 3.3(a) plots the relation between the

expected energy consumption and switching probability at this bias voltage, which

has been obtained with the help of an HSPICE model [60] of MTJ .

0 0.2 0.4 0.6 0.8 1

Stochastic Number p

0

0.2

0.4

0.6

0.8

1

E
ne

rg
y

pe
r

bi
t (

pJ
) Normal

BMS

(a) Energy v/s probability for
P→AP, Vbias = 1.0V

XOR gate

implements BMS

MTJ
A

S

p

SNG

(b) Circuit of the BMS

Figure 3.3: (a) Variation of energy with value of SN p with and without BMS (green
undotted and red dotted lines respectively). (b) The BMS.

3.3.3 Proposed Biased MTJ-SNG

We make a slight modification to the overall procedure of generating the bits of the

SN. As seen earlier, if p is closer to 1 than to 0, more time, and hence more energy,

has to be spent in writing ‘1’ to the MTJ, as compared to the case where we had to

generate an SN with value 1− p.

To reduce the average energy of the MTJ-SNG, we choose to generate 1 − p

whenever p > 0.5 (but generate p if p ≤ 0.5). In other words, whenever p > 0.5,

instead of switching P→AP with probability p, we switch with probability 1 − p

(which is ≤ 0.5) and invert the bits output from this Biased MTJ-SNG (BMS, the

name being derived from the biased nature of the data produced by the MTJ-SNG)

so that we get back the SN p. Therefore, we generate either p or 1− p, whichever is

smaller, and use an XOR gate to choose between the generated SN and its inverse

30

as shown in fig. 3.3(b). The ‘S’ input can be derived from the most significant bit

of the binary number that is being converted to a stochastic number [11]. As an

example, if p = 0.3, the MTJ-SNG will generate p itself and S will be 0 to output

A = 0.3. On the other hand, if p = 0.7, the MTJ will generate (1 − p)(= 0.3) and

S will be 1 to output Ā = 0.7.

The energy required to generate one bit from the BMS is plotted (green un-

dotted line) in fig. 3.3(a) as a function of p. The symmetry of the plot comes from

generating the smaller of p and 1 − p. Table 3.1 compares the 2 MTJ-SNGs in

terms of the total time, average energy, and average power required per bit output.

The XOR in the BMS has a small contribution of 0.1µW . Since the BMS requires

us to generate SNs only lesser than or equal to 0.5, the maximum write duration

reduces from 5.46ns to 2.34ns (the latter corresponds to the pulse width giving 50%

switching probability), thereby decreasing the total time. The average energy and

power have been calculated considering a uniform distribution of p over the range

[0, 1]; BMS brings about a reduction by 27.5% in energy (without introducing any

approximation or error in the SN being generated). The power doesn’t scale with

the energy as the write latency also reduces.

Table 3.1: Comparison of Normal and Biased MTJ-SNG

MTJ-SNG Time(ns) Avg. Energy (pJ) Avg. Power (µW)
Normal 11.33 0.726 64.08
BMS 8.21 0.526 64.07

3.3.4 Comparison with CMOS-based SNG

The authors in [129] report that a spintronic-based SNG built with the MTJ can be

7 times more power efficient than a CMOS-SNG. Knag et. al. [64] synthesize a 100

31

MHz SNG with a 32-bit LFSR and a comparator in 65nm technology, which has a

power consumption of 80.2µW . This translates to an energy consumption of 0.8pJ

per bit of the SN having a throughput of 1 bit every 10s. These figures are slightly

worse than our BMS which produces a bit every 8.21ns with an energy of 0.53pJ .

It is worth noting the following in terms of scalability and power of SNGs.

The power of a CMOS-based SNG (LFSR + comparator) scales linearly with the

size of the LFSR and the comparator, which strictly governs the precision of the SN

generated. But an MTJ-based SNG would have a power consumption independent

of the desired precision of SNs.

3.4 Energy Efficient MTJ-based NN Implementation

Stochastic circuits have gained popularity in low-cost implementation of NNs [14]

[62]. We propose using MTJs as a hardware component for realizing NNs in the

SC domain by exploiting their probabilistic switching nature to generate SNs repre-

senting inputs and synaptic weights. The error-resilient nature of NN applications

motivate us to approximate the network outputs, and hence the weights, effectively

designing approximate multipliers, and thereby gaining energy efficiency. In this

section, we develop an algorithm that, given a trained network, the training dataset

and an error tolerance, adjusts the weights in the best possible way in the solution

space, while remaining within the error constraint at all times.

32

3.4.1 NN implementation in the SC/ISC domain

Here we describe how the operations of a neuron would be performed in the ISC

domain (described in section 3.2.1). We know that the activation level of a neuron

is given as

y = f(a) = f

(
M∑
i=1

w̃ix̃i

)
(3.5)

where f is the activation function operating on a, the weighted sum of inputs.

Several types activation functions can be used in an NN; we go with the tanh

function.

In eqn. (3.5), the x̃i (inputs) are assumed to be in the range [−1, 1] (if not, they

can be normalized). Let the w̃i (weights) be in [−β, β]. The latter can be represented

in the ISC domain with dlog2 βe+1 stochastic streams. However, if β > 1, this would

need those many SNGs, leading to higher area and energy consumption. On the

other hand, if β < 1, producing SNs equal to the value of the weights would mean

an under-utilization of the available range/precision. Therefore, we have to scale

them down to the range [0, 1] or [−1, 1] to be able to use only 1 stream, and that too

effectively. Since the ISC implementation of the tanh function using FSM [21, 14]

is in bipolar format, we go for the interval [−1, 1]. So the weighted sum would now

be written as

a = β

M∑
i=1

wixi (3.6)

where xi, wi ∈ [−1, 1] ∀ i and would be represented as stochastic numbers. Fig.

3.4(a) illustrates the operations of a neuron in the ISC domain, implementing

eqns. (3.5) and (3.6). The addition, multiplication and neural activation would

33

be achieved as explained in sec. 3.2.1. Several such neurons in parallel would form

a layer as in fig. 2.2(a), and multiple layers connected in series would make up the

entire network. Note that the output of the tanh is a single stochastic stream in the

bipolar format.

3.4.2 Problem Formulation

As can be seen from fig. 3.3(a), the generation of SNs (from the proposed BMS)

that are closer to 0 or 1 require less energy as compared to those that are closer

to 0.5. In the bipolar format of SC, this would imply low energy requirement for

numbers closer to 1 or −1 than to 0. This property of the BMS forms the basis of

achieving energy-efficiency through approximations that tend to shift the weights

“farther from” 0 towards 1 or −1, whichever is closer. We therefore aim to bring the

weights of the network as close to 1 or −1 as possible while ensuring that output

errors are within a specified tolerance level for all the training inputs. We investigate

both single-layer and multiple-layer NNs.

MTJ
x1

1

w1

Binary

Tree

Adder

Multiply
by β tanh

Neuron

Output

xM

MTJ

MTJ

MTJ
wM

(a)

Wij

yN

yj

y1

aN

aj

a1

WMN

WiN

Wi1

W11
x1

xi

xM

∑

∑

∑

(b)

Figure 3.4: (a) Neuron implementation in ISC. The outputs of the binary tree adder
and multiplier consist of multiple bit-streams. (b) Schematic of 1-layer NN

34

3.4.3 Optimizing a 1-layer NN

For a single layer network, we illustrate how to formulate the network approximation

as a convex optimization problem. Convexity of the feasible region of such a problem

implies that any local minimum in that region is also the global minimum, ensuring

that the optimum value of the objective function is always achieved. Further, non-

convex optimization problems are more complicated to solve.

The objective of our formulation is to minimize the separation of the weights

from 1 or −1 (whichever is closer). Since the weights are independent of each other,

the objective function can be expressed as the sum of the “distance” of the weights

from 1 or −1. One way of specifying an error tolerance at the output layer is to

measure the deviation of the output neurons from their actual values (the values

obtained from the trained network) and restrict all of them to within some threshold.

Such a constraint should be applicable to all input vectors used in the optimization.

However, the tanh function (which provides the neuron output) is not only

non-linear but also non-convex. Thus, neither neuron activation levels nor the errors

in them can be directly incorporated in the convex formulation. But the input to this

activation function is affine (hence convex) because it is a weighted sum of inputs.

We therefore need to translate the output errors to errors in inputs of tanh. Given a

limit to the deviation in neuron output, we pre-compute the upper and lower limits

of the weighted sum input using the tanh−1 function and force it to remain within

these limits. Since tanh is a monotonically increasing (hence invertible) function,

these limits can be computed exactly. Thus, the non-convexity of the tanh function

neither impedes the optimization process nor introduces any inexactness.

35

Table 3.2: Notations for problem formulation of 1-layer NN

Name Meaning Type Dimension

W The output layer weights Matrix M ×N
x̂r The rth training input sample Vector M

β The scaling factor for W Scalar 1

ar The rth weighted sums (output layer) Vector N

yr The rth activation levels (output layer) Vector N

Fig. 3.4(b) illustrates a 1-layer network having M inputs and N outputs and

table 3.2 lists the notations. In addition, the presence of ˆ (hat) symbol indicates

that the quantity is the original value obtained from the trained network, and hence

is a constant in the problem; whereas its absence denotes a variable.

The Optimization Procedure: The procedure for approximating weights

in a 1-layer NN is shown below1. It takes a trained network and an error threshold

φ as inputs, and minimizes the “sum of distances” using D samples of the training

dataset. The Absolute Value (AV) of the deviation of the neuron output shouldn’t

exceed φ.

Line 2 computes the maximum and minimum values that the weighted sum

inputs of the tanh function can take. Here yrj denotes the output of the jth neuron

for the rth training input, and urj & vrj are the corresponding limits. The objective

function (line 3) to be minimized is the sum of distances of the weights from 1 or

−1. W ′ in line 5 stores how far they are from 1 or −1, whichever is closer. It

effectively implements W ′
ij = min(1 +Wij, 1−Wij); however this expression cannot

be directly used as the minimum of affine functions is not convex [20]. This is

also the reason why we impose a constraint on the range of the weights in line 4

1For solving the optimization problems we use CVX, a package for specifying and solving
convex programs [42]. The way in which certain specifications (constraints and expressions) in the
procedure are written is guided by the disciplined convex programming rules of CVX

36

Weight Approximation for a single-layer NN

1: procedure OptimWeights(M ,N ,Ŵ , x̂, ŷ, β,φ)
(In the following, i, j and r run from 1 to M,N and D respectively)

2: The constraint on the neuron outputs are
∣∣yrj − ŷrj ∣∣ ≤ φ.

Compute the upper and lower limits of all weighted sums as
urj = tanh−1

(
ŷrj + φ

)
and vrj = tanh−1

(
ŷrj − φ

)
respectively

3: Solve the optimization problem: minimize
W

Wsod =
M∑
i=1

N∑
j=1

W ′
ij

subject to the following constraints (lines 4 to 7):

4: Restrict the weights to their original range: if
(
Ŵij ≥ 0

)
then 0 ≤ Wij ≤ 1

else −1 ≤ Wij ≤ 0

5: Find the distance of the weights from 1 or −1, whichever is closer

W ′
ij =

{
1 +Wij if Ŵij ≤ 0, (3.7)

1−Wij otherwise (3.8)

6: Compute the weighted sum to all neurons for all inputs: ar = β(W T x̂r)

7: Constrain these weighted sums within their upper and lower limits: vrj ≤
arj ≤ urj

8: return yr = tanh(ar)
9: end procedure

(minimum of distance from 1 and −1 isn’t convex). Line 6 computes the weighted

sum inputs of the tanh function, line 7 constrains them within the limits obtained

in line 2, and line 8 finally returns the approximate neuron outputs which can now

be used to check the accuracy of the NN. The optimization problem stated above

is convex because the objective function and the inequality constraints are convex

and the equality constraints are affine [20].

3.4.4 Optimizing 2-layer NNs

A similar formulation could have been made for NNs containing more than 1 layer,

having the objective of minimizing the “sum of distances” of each of the weight

matrices, with constraints computing the hidden layer(s) outputs and finally re-

37

stricting the error in the output layer’s weighted sums. However, the presence of

the non-convex activation function in the hidden layer(s) would make the problem

(as a whole) non-convex.

To mitigate this issue, we propose breaking down the problem into separate but

identical convex problems, each of which optimizes the weights in successive layers

of the NN under some error constraints. Thus, in a 2-layer NN having M inputs, L

hidden neurons and N output neurons, we shall solve 2 problems successively - first

for the hidden layer and then for the output layer, with error thresholds φZ and φW

respectively. Given some value of φW , there exists an upper limit to the amount of

error that can be tolerated at the outputs of the hidden layer which can be obtained

using principles of linear algebra [88].

3.5 Regularization and Constraints for Classification problems

We now introduce 2 methods to improve the trade-off between energy and error

rate of the MTJ-based NN implementation proposed in the previous section. These

are - Regularization, to influence the distribution of the weights of the network in a

way that leads to lower energy; and a modified way of specifying error constraints

applicable to classification problems.

3.5.1 Regularization

This is a technique used primarily to prevent the over-fitting of networks on the

training datasets. It is achieved by adding an extra term, known as the penalty

function, to the cost function to be minimized during training. It has the effect of

38

changing the distribution of the weights of the network. With regularization, the

overall loss function is expressed as

E = EI + EP (W) (3.9)

where EI is the error function (such as Mean Square Error or cross-entropy loss)

computed from the inputs and the weights, and EP is the regularization penalty

function dependent solely on the weights. The weight update using gradient descent

is now written as

∆wi = −η
(
∂EI
∂wi

+
∂EP
∂wi

)
(3.10)

Commonly used regularization functions are the L1 and L2 norms of the

weights that impose a penalty on weights with a large magnitude and prevent them

from growing by a large extent. However, the concept can be used in general to min-

imize any penalty function suited for the purpose. For eg. in [134], a wedge-shaped

function is used to assist the network in learning discrete weights. Recall that the

BMS consumes a lower energy when it has to produce SNs close to 1 and −1, which

correspond to weight values β and −β respectively. This preference for extreme val-

ues of the weights can be incorporated in the training of the network. We propose

3 kinds of regularization functions that push weight values to their extremes.

Type 1: A function that is maximum at 0 and keeps decreasing with increas-

ing magnitude of the weights.

f(w) = λ

(
1− |w|

w0

)
(3.11)

39

The derivative of this function is given as

f ′(w) = − λ

w0

sign(w) (3.12)

With this penalty function, the weights will always have a tendency to move

away from 0. Note that it is only the ratio of λ and w0 that affects the magnitude

of the slope. Both equations have been graphically depicted below in fig. 3.5(a) and

(d). So when w > 0, f ′(w) = −λ/w0 and ∆w > 0, pushing the weight away from 0.

However, one disadvantage of using this is that because it impacts all weight values

equally irrespective of their magnitude, there is a high chance that the value of β

would also go up.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: (a)-(c) Regularization function types 1,2 and 3 respectively and (d)-(f) their
derivatives

Type 2: To counter the increase in β, we can impose a penalty on only those

weights that are close to 0. Such a function can be defined as

f(w) =


λ

(
1− |w|

w0

)
for −w0 ≤ w ≤ w0

0 elsewhere (3.13)

40

Thus, weights that are beyond the range [−w0, w0] are not affected by the

regularization as depicted in fig. 3.5(b) and (e).

Type 3: While everything is fine with type 2 regularization, it might be

beneficial to attempt to reduce the value of β itself, while also keeping the weights

away from 0. Such an objective can be achieved with

f(w) =

∣∣∣∣λ(|w|w0

− 1

)∣∣∣∣ (3.14)

This will try to bring the weights closer to a suitably chosen w0 as plotted in fig.

3.5(c) and (f). In our experiments, w0 was selected as the mean of absolute value of

the weights obtained without regularization and the same was used for all 3 types

of regularization. The reason behind this is that the mean value minimizes the L2-

norm of its difference from the weights. The effect of the penalty function on the

weight change ∆w depends only on the derivative f ′(w), and can be adjusted by

tuning the value of λ.

3.5.2 Classification Specific Customization

In section 3.4.3, we put a constraint on the Absolute Value (AV) of the error at

each of the output neurons, which was then translated to upper and lower limits of

the input of the tanh activation function. Classification problems typically have as

many output neurons as the number of classes, and the one corresponding to the

neuron having the highest value is taken as the output. That is

Class = k = arg max
j
yj (3.15)

41

with y being the output from the last layer. As long as the kth output remains

the highest, the input will be classified to be of class k. This leads to a different

formulation of the error constraint for such NNs where the kth output is only allowed

to increase and the rest can only decrease. Mathematically, this means

yk ≥ ŷk and yj ≤ ŷj ∀ j 6= k (3.16)

This is equivalent to having only a lower limit for the input of the kth neuron and

an upper limit for the others,

ak ≥ âk and aj ≤ âj ∀ j 6= k (3.17)

With some relaxation φ in the error of the neuron outputs, we may write

ak ≥ vk and aj ≤ uj ∀ j 6= k (3.18)

in line 7 of the optimization procedure, where vk and uj would be computed as in

line 2. We shall, henceforth, refer to this modified error constraint by the name

Classification Specific (CS). It is to be noted that the above constraints would be

applicable only to the last layer of the NN; all hidden layer neurons would still have

a restriction on the absolute value of the error as such strict ordering of output does

not exist for them.

42

3.6 Simulation Methodology and Results

3.6.1 Evaluation setup

Several benchmarks based on classification problems were used to measure the per-

formance of the NNs and estimate the energy savings obtained by approximating

the multiplications. Training and optimization of the neural networks was done in

MATLAB on a 64-bit computer with Intel Xeon E3 processor and 32 GB RAM.

First, we train an NN in MATLAB with the mean square error cost function using

the gradient descent method and check its accuracy on the test dataset. We then

estimate its energy consumption in classifying one sample with the Biased MTJ-

SNG (BMS), considering bitstreams of length 64. This energy includes those of the

SNGs used for generating both the network inputs and the weights. The energy

consumption of each BMS in the networks consists of 3 terms:

• The write energy, which varies with the SN being generated, and which is ob-

tained from the data corresponding to the green plot in fig. 3.3(a)

• The read energy, and

• The expected energy required to reset, which again depends on the generated

SN. Larger the SN, higher its chances of requiring a reset (although, recall that

using BMS means we reset at most half of the times).

For the input BMS, we considered the average energy over all samples of the test

dataset since different samples would have different energy requirements.

Next, we approximate the network using the optimization technique described

in section 3.4 for different levels of error tolerance using CVX, a MATLAB-based

43

Train the NN
Get Accuracy & Power

of original network

Choose type of

constraint: AV or CS

Optimize NN
Get Accuracy & Power

of optimized NN

Select type of

Regularization

Figure 3.6: Flow chart showing the process and network optimization and characteri-
zation. We start with training an NN without regularization.

software tool for solving convex programs [42]. Finally, each of the newly obtained

NNs with approximate multipliers were analyzed for their accuracy and their energy,

again for bitstream length of 64. The input samples and weights of the networks were

thus rounded off to account for the reduced precision. The entire process is repeated

with the 3 types of regularization, and each of the 4 networks were optimized using

both types of error constraints - Absolute Value (AV) and Classification Specific

(CS). This is illustrated in fig. 3.6.

3.6.2 Results

The results from the different datasets are summarized below:

1. MNIST digit recognition: The MNIST is a standard benchmark for

classification problems that categorizes handwritten digits, each of size 28× 28 [69].

A simple 1-layer NN with 784 inputs and 10 outputs was trained - first without and

then with the 3 types of regularization.

Table 3.3 summarizes the benefits of approximating the weights of the NN

for all types of penalty functions and select values of error threshold φ. The first

column shows the initial energy levels before optimization (but with BMS in place).

The ones with regularization are lesser than those without as the moving away of

44

weights from 0 decreases the average energy of the BMS. This is evident from the

nature of the plot in fig. 3.3(a). It must be mentioned that the classification error

rate does not change with just the incorporation of BMS, as weight values remain

exactly the same. Significant energy savings were obtained even for φ = 0 owing

to certain degree of redundancy in some inputs. The entire data has been plotted

in fig. 3.7. All accuracy and energy consumption values (here, and henceforth) are

for 64-bit long SNs; the latter goes up linearly with the length. The BMS which

represented the 784 inputs had a constant share of 30.5 nJ (averaged over all test

samples) for all types of regularization and all values of φ, and the rest of the energy

was from those of the 748× 10 weights.

AV CS
Reg. φ − 0 0.05 0.10 0 0.02

None
Energy 355.8 282.5 226.1 200.9 204.2 191.2
Error 11.98 12.11 15.15 18.66 19.10 20.15

Type 1
Energy 349.4 276.8 225.6 202.9 197.4 187.4
Error 12.83 13.07 16.98 21.44 21.99 22.59

Type 2
Energy 342.9 272.8 216.0 192.0 192.0 181.7
Error 12.75 12.92 16.42 22.01 20.38 20.95

Type 3
Energy 349.8 276.4 215.0 187.8 193.6 180.7
Error 12.35 12.64 16.52 20.87 19.29 19.92

Table 3.3: Variation of 1-layer network energy (in nJ) and classification error rate (in
%) on the MNIST test dataset with different values of error threshold φ with both AV and
CS types of constraint. The 1st column of data corresponds to BMS without any weight
approximation.

As can be seen, when AV constraint is employed, the trade-off with type 3

regularization is comparable (or slightly better) to that without for somewhat large

values of φ. However, with CS, type 3 is markedly better than others, and also

beats the AV. It must however be noted that the CS constraint brings about a

sharp reduction in energy accompanied by a significant increase in classification

inaccuracy with the smallest value of error threshold (φ = 0). On the other hand,

45

12 14 16 18 20 22

Misclassification rate (in %)

180

200

220

240

260

280

300

E
ne

rg
y

(in
 n

J)

None (AV)
Type 1 (AV)
Type 2 (AV)
Type 3 (AV)
None (CS)
Type 1 (CS)
Type 2 (CS)
Type 3 (CS)

Figure 3.7: Energy vs classification error rate curve for the MNIST dataset 1-layer NN.
The dots are for the AV constraint, whereas the asterisks are for CS. Optimization was
done with 1000 training samples.

AV provides a more gradual trade-off with more control on the misclassification rate.

This is due to the former bounding network outputs from only 1 side, leading to a

larger solution space.

The latency of inference is 8.21ns per bit of the SN (as in sec. 3.3.3); thus

a bitstream length of 64 would imply that the classification of 1 sample requires

0.525µs.

For the 2-layer NN, input images were scaled down to size 14 × 14 to reduce

the time required to solve the problem, and 25 neurons were used in the hidden

layer. Characteristics of the network before and after weight optimization, are sum-

marized in Table 3.4. In all energy values, input BMS consumed 8.25 nJ ; remaining

AV CS
Reg. φW - 0 0.05 0.10 0.00 0.01

None
Energy 221.2 191.3 159.6 147.7 188.1 172.5
Error 6.97 6.79 7.08 7.32 8.18 8.13

Type 1
Energy 216.1 187.1 156.0 146.6 184.4 168.3
Error 7.43 7.45 7.83 7.85 8.75 8.86

Type 2
Energy 210.2 181.8 148.4 138.8 179.7 162.3
Error 7.09 7.08 7.21 7.41 8.02 8.17

Type 3
Energy 212.7 188.4 156.4 146.2 185.5 171.0
Error 7.13 7.13 7.35 7.45 7.99 8.05

Table 3.4: Results for the MNIST 2-layer network for select values of error threshold of
the outer layer (φW). Classification error and energy (in nJ) are for 64-bit long SNs.

46

6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2

Misclassification rate (in %)

120

140

160

180

200

220

240

E
ne

rg
y

(in
 n

J)

None
Type 1
Type 2
Type 3

Figure 3.8: Plot of classification error rate against energy for 2-layer NN of MNIST
dataset with AV constraint.

was distributed between hidden and output layer BMS roughly in the ratio 18 : 1.

The misclassification error rates with floating point double precision and without

any weight approximation are 6.69% without regularization, and 7.33%, 6.98%, and

6.93% for types 1,2 and 3 respectively. These are reasonably close to the corre-

sponding values with 64-bit long SNs (1st column of table 3.4).

The energy-error trade-off with the Absolute Value constraint is depicted in

fig. 3.8. For each kind of regularization (including none), only the points which

are pareto-optimal have been jotted (that is to say, energy-error pairs having higher

values of both than at least 1 other pair have been skipped). Type 1 and type 3 of

regularization do not exhibit lesser values of both energy and error than the case

with None. However, type 2 possesses similar or more optimal values for somewhat

high values of φW . A reduction of 40.5% in energy is observed with φW = 0.15 for

a degradation of about 1% in accuracy. With the CS constraint, although energy

values show a significant dip from those prior to optimization, the error that creeps

in is much higher than that with AV. The distribution of weights in both layers of

this NN (as well as in the NNs of the next datasets) was similar to those of the

1-layer counterpart.

2. Wine Quality: This dataset (as well as the next one) was obtained form

47

the UCI Machine Learning Repository [78]. The goal here is to train a network to

estimate the quality of samples of red wine on the basis of results of physiochemical

tests [29]. Only a 2-layer NN with 12 input parameters and 20 hidden neurons was

trained with 1249 samples and tested on 250 samples. The no. of misclassified

samples before weight approximation and using floating-point precision was 31, 34,

32, and 32 without and with the 3 types of regularization respectively. Fig. 3.9

plots the energy-error curve for both constraints. As is evident, the type 3 penalty

function provides more optimal pairs of energy and error values than the others in

both cases; with the CS constraint surpassing the AV.

30 35 40 45
No. of samples misclassified

0

2

4

6

8

10

12

14

E
ne

rg
y

(in
 n

J)

None
Type 1
Type 2
Type 3

(a) Absolute Value constraint

30 35 40 45
No. of samples misclassified

0

2

4

6

8

10

12

14
E

ne
rg

y
(in

 n
J)

None
Type 1
Type 2
Type 3

(b) Class. Specific constraint

Figure 3.9: Trade-off between network Energy and classification error rate for the
Wine Quality test dataset. For each curve in (a), the topmost point (one with the highest
energy) corresponds to the values before optimization. 0.46 nJ of energy was for the
inputs; hidden and output layer weights’ consumption ratio was roughly 2:1.

3. SONAR, Rocks vs Mines: This is about distinguishing between metal

surfaces and rocks using sonar signals bounced off from them [41]. Both the training

and test datasets contain 104 samples, each having 60 inputs. Both a 1-layer NN

and a 2-layer NN (with 15 hidden units) were trained. The results are plotted in fig.

3.10. Before weight approximation, the no. of misclassified samples, with floating

point double precision, were 20, 21, 24, & 18 for the 1-layer NN and 15,14,14, & 13

for the 2-layer NN for None, type 1,2 and 3 respectively.

48

18 20 22 24 26 28
No. of samples misclassified

0

1

2

3

4

5

6

7

E
ne

rg
y

(in
 n

J)

None
Type 1
Type 2
Type 3

(a) Single-layer NN - AV Con-
straint

18 20 22 24 26
No. of samples misclassified

0

1

2

3

4

5

6

7

E
ne

rg
y

(in
 n

J)

None
Type 1
Type 2
Type 3

(b) Single-layer NN - CS con-
straint

14 16 18 20 22 24

No. of samples misclassified

25

30

35

40

45

E
ne

rg
y

(in
 n

J)

None
Type 1
Type 2
Type 3

(c) Two-layer NN - AV Con-
straint

14 16 18 20 22 24 26

No. of samples misclassified

25

30

35

40

45

E
ne

rg
y

(in
 n

J)

None
Type 1
Type 2
Type 3

(d) Two-layer NN - CS con-
straint

Figure 3.10: Energy v/s inaccuracy in classification for the SONAR dataset. (a)-(b)
1-layer NN, and (c)-(d) 2-layer NN. Input BMS required 2.29 nJ . Hidden and output
weights in 2-layer NN used energy in ratio about 35 : 1.

For the 1-layer NN, with both the AV and CS constraint (figs. 3.10(a) and

(b)), type 3 works the best whereas types 1 and 2 are either similar or worse than

None. The CS constraint is better than the AV for all types except type 3, where

they are comparable.

In the 2-layer NN, types 1 and 3 outperform None when AV constraint is

used (fig. 3.10(c)), whereas type 2 is a bit worse. With the CS constraint (fig.

3.10(d)), only type 1 appears to be better than None. Among the constraints, the

latter provides better trade-off with no regularization and type 1; but the two are

comparable when types 2 and 3 are used.

49

3.7 Conclusion

This chapter proposes the use of Magnetic Tunnel Junctions as Stochastic Number

Generators in an SC based hardware implementation of Neural Networks. We design

an energy-efficient version of an MTJ-SNG (named BMS) that significantly reduces

the average energy per bit of a stochastic stream and propose its use in an SC-based

NN. We go on to develop an algorithm based on convex optimization that aims

to adjust the weights in such an NN in a way that brings about a reduction in

the energy consumption. This approximation leverages the error resilient nature of

applications of NNs. The algorithm would be applicable to not only feed-forward

networks, but also other more complicated architectures (such as Convolutional and

Recurrent NNs) since the basis of achieving energy efficiency remains the same.

Further, we propose 3 types of penalty functions to be used for weight regular-

ization during training of the NNs, keeping in mind the kind of weight distribution

that leads to lower energy. Lastly, we suggest a small modification to constraints

in the optimization procedure that caters to classification-based problems by tak-

ing advantage of a certain redundancy in their outputs. To give a perspective of

the benefits brought about by our approach, the proposed algorithm brings about

a 40% reduction in energy consumption with less than 1% accuracy loss on the 2-

layer MNIST network. Future work could propose other optimization methods that

can better workaround the non-convexity of NNs and approach the problem in a

wholesome way. Also, more efficient ways of using the MTJ as an SNG could be

developed.

50

Chapter 4: In-situ Training of MTJ Neural Network Crossbar

In the previous chapter, we proposed the energy-efficient use of MTJs as Stochas-

tic Number Generators in an NN architecture which operates in the Stochastic

Computing (SC) domain. While SC does involve smaller designs with low power

consumption, the requirement of long bitstreams for good accuracy is a hindrance

to fast execution times [12]. In this chapter, we consider the resistive crossbar ar-

chitecture described in sec. 2.3.1 for the physical realization of NN weight matrices

due to its inherent parallelism. We investigate into MTJ crossbars and state the

drawbacks of training them as one would normally do (that is, doing the training

in software and then programming the crossbar). We then propose techniques for

on-chip training of the crossbar that takes care of those issues.

4.1 Introduction

The emergence of novel devices and special-purpose architectures has called for a

shift from conventional digital hardware for implementing neural algorithms [121].

Attempts have been made towards dedicated hardware designs and realization of

the synaptic weights (and neurons) of a Neural Network (NN) by using CMOS

transistors in an analog fashion [87, 97]; but these have met with challenges of

scalability and volatility. Parallel research work has focused on using post-CMOS

51

devices such as memristors, which are non-volatile devices with a variable resistance,

as synaptic weights [102]. In an analog computing framework, the conductance of

resistive devices encodes the NN weight value. However, the fabrication of multilevel

memristors with stable states is still a challenge [142, 96]. Another choice is the

Magnetic Tunnel Junction (MTJ) [132]. Its non-volatility and scalability make it

a particularly lucrative choice for in-memory processing type of architectures for

neural networks.

Neural network architectures can be realized with resistive devices using the

crossbar configuration which allows greater scalability and higher performance due

to its inherent parallelism [102, 141, 130, 113, 86]. The crossbar not only stores

the weight values but also does the matrix-vector computation of the output in-

memory. This obviates the need for fetching the weight values from the memory

into the processing unit.

The existence of only 2 stable states in MTJs makes them a good candidate

for the realization of binary weight networks. Obtaining optimal weights for a

binary network in software can be impractical because its discrete nature requires

integer programming. One way of training such NNs is to perform weight updates

stochastically, which is justifiable from evidences that learning in human brains also

has some stochasticity associated [121]. That such a method can lead to convergence

with high probability in a finite time has been shown in [112], although using the

perceptron learning rule. Also, when physically realizing an NN on hardware, the

underlying device variations can have a substantial impact on the model accuracy,

and need to be accounted for in the training process. Merely characterizing the

variations in the hardware platform is not sufficient for overcoming this issue.

52

Efficient architectures for the realization of different types of network models,

such as convolution and recurrent neural networks [139], Liquid State Machines

[57] and Echo State Networks [48], are also being investigated. Neftci et. al. [94]

construct a Restricted Boltzmann Machine (RBM) with Integrate & Fire Neurons

and present an event-driven variation of the Contrastive Divergence (CD) learning

algorithm. Herein the recurrent structure of the network is exploited to mimic

the construction and reconstruction phases of CD weight update in a spike-driven

fashion, and STDP is used to carry out the weight updates. In [116], an approach

to implement CD in one layer of an RBM with memristors as synapses is presented.

However, the RBM has stochastic binary units and weight updates are ternary.

Suri et. al. [120] fabricate an HfOx device and test it for synapse implementation,

internal neuron-state storage and stochastic neuron activation function of a hybrid

RRAM-CMOS RBM architecture.

In this chapter, we explore the use of MTJ crossbars for the hardware im-

plementation of the synaptic weight matrices of feed-forward neural networks and

RBMs. Our contributions are as follows:

• We propose the on-chip or in-situ training of these MTJ crossbars, which

allows us to exploit their inherent parallelism for significantly faster training

and also accounts for device variations.

• We advocate a probabilistic way of updating the MTJ synaptic weights of an

NN through the gradient descent algorithm by exploiting the stochasticity in

their switching.

• We experiment with two crossbar structures: with and without access transis-

53

tors. The latter poses the additional challenge of sneak-path currents during

programming which makes training in-situ the only choice to achieve satisfac-

tory performance.

• Then we go on to propose a modification of the Contrastive Divergence algo-

rithm that is to be adopted when the MTJ crossbar is used to implement an

RBM, and a means of using MTJs for storing RBM hidden units’ states.

• Finally, we support our proposed techniques with data by modeling device and

circuit properties and running simulations.

4.2 Background

4.2.1 Crossbar Architecture for Neural Networks

The basic structure of a feed-forward neural network and operations for inference

and training were discussed in sec. 2.1. Recall that both forward and backward

propagation require a matrix-vector multiplication for each layer in the NN (eqns.

2.2 and 2.4).

The computational complexity is therefore O(M.N), for a layer with M inputs

and N outputs, for an implementation on general-purpose hardware. The crossbar

architecture discussed in sec. 2.3.1 is well-suited to perform mat-vec multiplications

in the analog domain since it offers a high level of parallelism. It has repeatedly been

proposed as an accelerator for NN implementations since the inference operation in

a layer can be done in O(1) time.

It is worth noting though from eqn. 2.3 that the weight update of a synapse

54

is local in nature, in the sense that it depends only on the information available

at that synapse - the input to it and the error at its output. This motivates the

development of techniques for performing even the weight updates (and not just

inference) in parallel.

4.2.2 Related Work

Several studies have investigated how a crossbar array with memristors [103, 108,

17, 133], MTJs [142, 130] and domain-wall ferromagnets [110, 108] can implement

Spiking Neural Networks (SNN) trained using Spike-Timing Dependent Plasticity

(STDP). Srinivasan et. al. [119] propose the use of a pair of MTJs for a synapse

in an SNN - one for long-term and the other for short-term synaptic memory. The

literature also contains several works [38, 58, 138] considering supervised learning

of SNNs for various reasons.

Many works have dealt with methods and algorithms for training networks

by modifying their weights at the site of their occurrence [22], instead of doing it

offline. Hasan et al. [47] and Soudry et al. [118] have implemented multi-layer

NNs on memristive crossbars trained on-chip using the backpropagation algorithm

and demonstrated on supervised learning tasks. Gokmen et. al. [40] use stochas-

tic computing techniques for parallel weight update on crossbar arrays - numbers

that are encoded from neurons are translated to stochastic bit streams, with de-

vice conductance changing when the streams coincide. In [72], hybrid semiconduc-

tor/nanodevice technology neural nets with binary synapses were trained “in-situ”

using the error backpropagation rule, and the results obtained were almost at par

with networks with continuous weights trained in software.

55

Continuous weight networks can be simplified into discrete weight networks

without significant degradation in classification accuracy while achieving substantial

power benefits [105]. The use of discrete weight networks, such as BinaryConnect

[30] and in [76], also stems from the challenge to address the high storage and

computational demands of a large number of full-precision weights. Ni et. al. [96]

design a distributed in-memory computing architecture based on binary RRAM-

crossbars for memory and logic units.

4.3 MTJ Crossbar based Neural Networks

The stochastic switching nature of MTJs has necessitated the usage of high write

currents or write duration in memory applications to ensure low write errors. Al-

ternatively, one can also use them to implement the synaptic weights in a crossbar

where each cross-point would be an MTJ in one of its 2 states. They are capable of

being programmed with high speeds and exhibit endurance of the order of 1015 write

cycles. However, the inherently binary nature of MTJs implies that such synapses

can represent only 2 weight values and hence can implement only binary networks.

Although it is possible to have some continuous behavior with the inclusion of a

domain wall in the free layer [110], the maturity of such technology is not at par

with that of the binary version [108].

4.3.1 Training Binary Networks

Obtaining optimal binary weights for an NN is an NP-hard problem with an ex-

ponential time complexity [112], and hence a solution must involve training of the

56

binary network of some form. This prompts the use of a probabilistic learning tech-

nique since the required weight update is continuous whereas any possible change in

the conductance of the MTJ could only be discrete, in fact binary. As stated in [121],

stochastic update of binary weights is computationally equivalent to deterministic

update of multi-level weights at the system level.

In [130], Vincent et al. exploit the stochastic switching behavior of MTJs

to propose its use as a ‘stochastic memristive synapse’ in an SNN taught using a

simplified STDP rule. However, there is no theoretical guarantee of the convergence

of STDP for general inputs [74], and Lim et. al. [79] believe that the learning

performance using STDP in still in its early stages. We propose using a probabilistic

learning approach by training using the gradient descent method (which requires

weight updates of the form in eqn. (2.3)) as demonstrated in section 4.4.2.

4.3.2 The Motivation for In-situ Training

There are 2 ways (primarily) in which MTJs in the crossbar can be connected to

their respective input and output terminals -

1. With selector devices (1T1R) - Here each MTJ synapse is connected in series

with an MOS transistor (as in fig. 4.1), resulting in O(M ×N) transistors in the

crossbars.

2. Without selector devices (1R) - Synapses are directly connected to the crossbar

terminals; there are no transistors within the crossbar, such as the one in fig.

2.5. While a 1R structure provides greater scalability, it does so at the cost of

reduced control of and access to individual synapses.

Stochastic learning can be done (simulated) offline and the final weights ob-

57

G1,1 G2,1

I2I1

G1,1 G2,1
V1

V2

Figure 4.1: A 2× 2 crossbar with selection transistors

tained can be programmed on to the crossbar deterministically. But, since MTJs

have an inherently stochastic switching behaviour, deterministically programming

them on a crossbar would require currents having high magnitude and duration to

guarantee successful write operations. The possibility of selecting synapses to be

written in the 1T1R architecture ensures no side-effects of this method stemming

from alternate current paths (because there would be none). But, despite circum-

venting this issue, this architecture can suffer from performance degradation due to

the intrinsic device variations which only aggravate with scaling. On the other hand,

in a 1R architecture, such high programming currents, when they sneak through al-

ternate paths, are bound to cause unwanted changes in neighboring synapses owing

to which the weights may never converge. This necessitates in-situ training of the

crossbar in a probabilistic way for both 1T1R and 1R configurations, as only training

on the hardware can account for both alternate paths and device variability.

4.3.3 Network Binarization and MTJ as a synapse

Simply using ±1 as the binary weight values, represented by the P and AP states

of an MTJ, is naive and estimating a good scaling factor b is essential for overall

network performance. An appropriate way to determine a suitable b is to minimize

the L2 loss between the real-valued weights W and quantized ones, as was done in

58

[105]. This provides a solution b = ‖W‖1/n, which is the mean of absolute values

of W (n being the no. of elements in W). Thus an MTJ in the P (AP) state would

signify a weight of +b (−b).

The weights of an NN are almost always bipolar whereas the conductance of

an MTJ or memristor is always positive. One method to realize negative weights

is to effectively offset the conductance with a fixed bias; in the case of MTJs, we

choose Gbias = (GP + GAP)/2 as it brings symmetry to the effective conductance:

G = GP−Gbias would correspond to the positive weight, say +b, andG = GAP−Gbias

would correspond to the negative weight, say −b. These bias resistors are fed with

the negative of the input voltages, and the output current in any column of the

crossbar can be obtained by adding the bias currents to the current received from

the MTJ synapses. That is, the total output current can be written as

I =
∑
i

(Gi −Gbias)Vi =
∑
i

(GiVi + (−GbiasVi)) =
∑
i

(Ii + Ibias,i) (4.1)

Fig. 4.2(a) depicts the implementation of eqn. (4.1), with the inverter producing

the response of the tanh activation function (which we have used in all our NNs) as

shown in fig. 4.2(b). The average and maximum errors between the ideal value and

the inverter output are 0.0327 and 0.0606 respectively.

4.4 In-situ Training of the NN Crossbar

We first provide a high-level understanding of how an MTJ synaptic crossbar imple-

menting a feed-forward NN should work. For the sake of simplicity, all operations

are described for a single-layer NN and can be easily scaled to multiple layers (more

59

V1 V2 VM

-V1 -V2 -VM

G1 G2 GM

Gb Gb Gb

Rf

𝑦

(a) An M -input neuron with MTJ synapses
and bias resistors, with an inverter for the ac-
tivation function

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1
Ideal tanh
Inverter o/p

(b) Transfer characteristics of the inverter

Figure 4.2: (a) Synaptic weights and activation function in each column of the crossbar.
Gb is the constant resistor which creates the bias. (b) Comparison of the output charac-
teristics of the inverter and the actual tanh function. Producing this behavior requires
the relation MRfVrd(GP −GAP) = 7.2 to be satisfied with inverter output load of 10kΩ.
VDD and VSS of inverter are 1.8V and −1.8V respectively.

details subsequently). We then illustrate how the gradient descent method can

be used for the stochastic weight update of MTJs, and finally describe the in-situ

training procedure for the 2 crossbar architectures.

4.4.1 Overview of Operations

The training process is carried out as follows.

Read Phase: Upon receiving a training input x ∈ RM , the input terminals are

applied with voltages V r
i ∈ [−Vrd, Vrd] ∀ i proportional to xi, whereas the output

terminals are maintained at ground potential. Current Iji = GjiV
r
i flows through the

(j, i) synapse and the total current I at the output terminals are suitably converted

to output y.

Write Phase: Using y and the desired output, calculate the error δ. Table

Input Error ∆W W and G Switch
x > 0 δ > 0 ∆W < 0 Decreases P → AP
x > 0 δ < 0 ∆W > 0 Increases AP → P
x < 0 δ > 0 ∆W > 0 Increases AP → P
x < 0 δ < 0 ∆W < 0 Decreases P → AP

Table 4.1: The write phase. Signs of x, δ, and ∆W , required change in weight W and
conductance G, and the desired direction of switching of MTJ Synapse

60

4.1 lists the 4 possible cases of weight update depending on x and δ. The gradient

descent algorithm requires a weight update of the form of eqn. (2.3). An appropriate

way to realize this, as suggested in [73], is to set switching probabilities proportional

to (the magnitude of) ∆w calculated in eqn. (2.3). Our way of achieving this is

explained next.

The process of read and write are carried out for each input sample and re-

peated for several iterations until convergence is achieved.

4.4.2 Stochastic Learning of an MTJ Synapse

We will now describe how the stochasticity of MTJ switching can be used to perform

weight updates with gradient descent method. Just as the weight update in eqn (2.3)

is a function of 2 variables (the input and the error), the probabilistic switching of

MTJs can be controlled by 2 physical quantities- the magnitude and the duration

of the programming current. We choose the magnitude of the write current to be

dependent on the input xi and the duration on the error δj. However, as can be

evidenced from eqn (2.5) and fig 2.4, the switching probability P is a highly non-

linear function of the parameters a and t (recall a = I/Ic0), whereas the desired

probability, being proportional to ∆Wji, is a linear function of xi and δj. Further,

the switching probability does not immediately rise with the pulse width and the

write current as they increase from 0, indicating some kind of soft threshold. Note

that the direction of switching can be decided by the polarity of the write current.

We therefore model switching probabilities by a linear mapping of x and δ

to write current Iwr and duration twr respectively as follows. Usually |x| ≤ 1, and

henceforth assume for simplicity that |δ| ≤ 1 (can be ensured by normalizing and

61

adjusting with η). The pulse width twr is set at a minimum of t0 and increases

linearly with |δ| (since twr needs to increase irrespective of the sign of δ) as

twr = t0 + t1|δ| (4.2)

Similarly, the write current (Iwr) would be a minimum of I0 and increase linearly

with |x| as

Iwr = I0 + I1|x| (4.3)

We now wish to find coefficients t0, t1, I0 and I1 that yield MTJ switching

probabilities (P) close to the desired probabilities of weight update. A certain

probability of switching can be obtained for different combinations of I and t, as is

evident from fig. 2.4. We first fix the range of pulse widths by choosing suitable t0

and t1 (refer to table 4.3). We want a nearly 0 switching probability for twr = t0

irrespective of the value of Iwr because ∆W = 0 for δ = 0 regardless of x. We thus

choose the maximum Iwr (which is I0 + I1) to be that value of I for which the plot

of P against twr starts rising at t0. That is

P (I0 + I1, twr) is


< P0 for twr < t0,

≥ P0 for twr ≥ t0 (4.4)

where P0 is a small value. So now even if |x| is (as high as) 1, P = P0. In our

experiments, we chose P0 to be about 0.05.

A symmetric argument holds when x = 0. For twr = t0 + t1, we want P ≈ 0

if Iwr = I0, (because ∆W = 0 for x = 0). But P should start increasing as soon as

62

(|δ|=0) (|δ|=1)

Pulse width twr (ns)

Sw
it

ch
in

g
P

ro
b

ab
ili

ty
 P

𝑃0 𝑥 =0

Figure 4.3: P vs twr of the linear model and desired probabilities (obtained with η = 0.7)
for AP → P transition. The region between the dashed vertical lines is of interest. The
dark green, cyan and red straight lines plot desired probabilities for |x| = 0, 0.5, and
1 respectively. The brown, yellow and blue plots correspond to the actual switching
probabilities (obtained from the linear model) for the mapped currents I = 60µA, 75µA,
and 90µA

Weight Update MTJ Switching
|δ| = 0 twr = t0
|δ| = 1 twr = t0 + t1
|x| = 0 Iwr = I0
|x| = 1 Iwr = I0 + I1

Table 4.2: Boundary values of the
parameters in the weight update eqn.
(2.3) and their counterpart in probabilis-
tic switching of MTJ.

Direction AP → P P → AP
t0 1.5ns 1.5ns
t1 1ns 1ns
I0 60µA 140µA
I1 30µA 60µA

Table 4.3: The coefficients that fit the
model for both AP → P and P → AP
switching

Iwr increases, that is

P (Iwr, t0 + t1) is


< P0 for Iwr < I0

≥ P0 for Iwr ≥ I0 (4.5)

Fig 4.3 shows how well the linear model approximates the required AP → P

switching probabilities (similar curve fitting for P → AP as well). Table 4.2 shows

the write currents and duration for boundary values of |x| and |δ| and table 4.3

lists the values of the coefficients in eqns. (4.2) and (4.3). One could use non-linear

models for mapping |δ| and |x| to twr and Iwr, respectively, in order to better fit the

desired switching probabilities; however, that would complicate the analog circuit

responsible for the conversion. Owing to this, and the closeness with which the

63

linear model can replicate the stochastic switching characteristics, we stick to the

linear version.

While training neural nets, it is necessary to have a small learning rate to

avoid getting stuck in local minima. In our training strategy, this means having

small probability values of MTJ switching. On the other hand, it is necessary to

ensure that the probabilities are not so low that they barely cause any changes

in the weight values. As can be seen from fig. 4.3, in the average case of having

|x| = |δ| = 0.5, the AP → P switching current and pulse width are I = 75µA and

twr = 2.0ns respectively and the switching probability stands at around 10%. The

model parameters t0, t1, I0 and I1 have been adjusted so that probability values are

within a reasonable range, that is, neither too small nor too large, and help the

training process to converge.

Next, we describe the 1T1R and 1R crossbar architectures implementing the

NN. We show how these can be trained in-situ using the stochastic learning technique

described above.

4.4.3 The 1T1R Architecture

This is the conventional architecture for memory applications where each cell has a

selection transistor. One major advantage of being able to selectively turn off cer-

tain cells is that it disallows the presence of undesired sneak currents which lead to

unnecessary power consumption at a minimum. Fig 4.4(a) shows a 1T1R crossbar

where each MTJ synapse is connected in series with an NMOS transistor. Input and

output terminals are interfaced with necessary Control Logic (CL). All the transis-

tors in a single column will have a common gate voltage since the corresponding

64

S
1,1

Output
CL

x
1

 Input
CL

c
1

x
M

 Input
CL

S
1,M

S
N,1

Output
CL

c
N

S
N,M

(a) An M ×N crossbar

𝑉𝑖
𝑟

𝑉𝐷𝐷

T
rd

 T
rd

+T
wr

 T
rd

+2T
wr

t

0

Input
Terminal

Voltage (𝑉𝑖
𝐼)

Transistor
Gate

Voltage (c
j
)

𝑡𝑤𝑟,𝑗

Read
Phase

Write Phase 1

𝑉𝐴𝑃(𝑥𝑖) 𝑖𝑓 𝑥𝑖 < 0

𝑉𝑃(𝑥𝑖) 𝑖𝑓 𝑥𝑖 > 0 𝑉𝑃(𝑥𝑖) 𝑖𝑓 𝑥𝑖 < 0

𝑉𝐴𝑃(𝑥𝑖) 𝑖𝑓 𝑥𝑖 > 0

𝑉𝐷𝐷 𝑖𝑓 𝛿𝑗 > 0 𝑉𝐷𝐷 𝑖𝑓 𝛿𝑗 < 0

𝑡𝑤𝑟,𝑗

0 𝑖𝑓 𝛿𝑗 < 0 0 𝑖𝑓 𝛿𝑗 > 0

Write Phase 2

(b) Write voltages and control signals.

Figure 4.4: The 1T1R crossbar. (a) Schematic (b) Read & write phases signals

synapses are connected to the same neuron output, and hence will always have the

same error ‘δ’ and write pulse width twr.

Fig 4.4(b) plots the signals during both the read and write phases. During the

read phase (0 ≤ t ≤ Trd), all transistors are turned on: cj = VDD ∀ j = 1...N so

that all columns (neuron outputs) are read simultaneously. Inputs xi are provided to

their respective input CLs which convert them to read voltages V r
i . Output currents

Ij are processed by the output CLs.

4.4.3.1 Updating the crossbar

Decide the write currents that should be provided to each input row and the pulse

widths for each output column as described in sec. 4.4.2. Recall that the former

depend on x and the latter on δ. The direction of the currents would depend on

the sign of the desired weight update. Apply suitable write voltages at the input

terminals while grounding the output terminals to 0.

For the (j, i) synapse, the write pulse width depends on only |δj|, and the write

current magnitude depends on |xi|. But the direction of switching depends on the

signs of δj and xi (see Table 4.1) and has to be decided by the polarity of current.

65

For eg. two MTJ synapses belonging to the same row but different columns may

have opposite signs of δ. Thus, despite having the same input xi, they are required

to switch in opposite directions and hence need write voltages of opposite sign. This

requires us to split the write phase into two parts as explained next.

Since the transistor gate control signals are connected to the output CLs, we

can select or deselect a certain column based on information at its respective CL,

which is the error δ. We therefore program the crossbar sequentially in 2 stages,

with the columns updated in a given stage depending on the signs of δ. Each phase

has a duration of Twr (which need not be more than t0 + t1, see eqn. (4.2)). The

voltage signals in each phase are plotted in fig. 4.4(b) and detailed below -

1. Phase 1: Trd ≤ t ≤ Trd + Twr. Update the weights of the columns which had

δ > 0. Then, the transistor control signals would be

cj =


VDD, for δj > 0 and 0 ≤ t− Trd ≤ twr,j

0, for δj < 0 or twr,j ≤ t− Trd ≤ Twr (4.6)

And the write voltages applied at the input terminals would be

Vwr,i = VP (xi)u(xi) + VAP (xi)u(−xi) (4.7)

where u is the unit step function.

2. Phase 2: Trd +Twr ≤ t ≤ Trd + 2Twr. Update the weights of those columns which

had δ < 0. Here, the signals are opposite to those in phase 1 as shown in fig.

4.4(b).

Here VP (VAP) is the voltage applied to switch from P→AP (AP→P) and can be

66

obtained using eqn. (4.3) and RP (RAP). VP and VAP still depend on |xi|, but for

brevity explicit mention will be omitted henceforth. Let MTJs in the crossbar be

arranged in a way that positive (negative) current from the ith input terminal to jth

output terminal can switch Sj,i from P → AP (AP → P); hence VP > 0, (VAP < 0).

Parameters in table 4.3 give VP ∈ [0.68, 0.98] volts and VAP ∈ [−0.81,−0.62] volts.

Thus we can see that the read and update operations are completed in Trd +

2Twr time which is O(1). The weight update is sequential with respect to the sign

of δ, but it is done in parallel for all those columns that have the same sign of δ.

4.4.3.2 Control circuits

Fig. 4.5 shows the internals of the Input and Output CLs. In fig. 4.5(a), in the Read

Phase, the read voltage V r is directly passed on. The write voltages VP and VAP

are obtained by suitably scaling V r or −V r, and shifting that by an offset to reach

the desired range of values. Due to opposite polarities, VAP is always obtained from

a positive V r, and VP from a negative V r, with the switches in the dashed green

box thrown as per the sign of x. Switches controlled by P1 and P2 are ‘on’ in Write

Phases 1 and 2 respectively, and ‘off’ otherwise. In our design, V r ∈ [−Vrd, Vrd] with

Vrd = 0.2V,R2/R1 = 0.95, R4/R3 = 1.5, V off
1 = −0.318V, V off

2 = 0.272V .

Fig. 4.5(b) depicts the control logic in the output terminals to decide the

duration of Read and Write phases by controlling the crossbar transistors’ gate

voltage cj. We have Vδ ∝ δ (through circuits described in sec. 4.4.5). If δ > 0, VC

is high for some part of write phase 1 (as per eqn. (4.6)) which pulls cj up to VDD

for the same duration. Similarly, for δ < 0, V C and cj are high for a part of write

phase 2. Fig. 4.5(c) illustrates the timing diagram of VC and its complement for the

67

2 possibilities of δ, and also of the sawtooth waveform for generating VC . In Phase

1, Vsaw stays 0 until time t0 = 1.5ns and then rises linearly to the maximum value

of Vδ. In Phase 2, the behavior is same but with an opposite polarity.

x<0

x>0
Vr

-Vr

R1

R2

V1off

x<0

x>0
-Vr

Vr

R3

R4

V2off

P1

P2

P2

P1

x<0

x>0
VP

VAP

VI

Read
Vr

(a) Control Logic in the crossbar input
terminals.

Vsaw
VDD

Vc Vc

Vc

P1

P2

Read

Vδj

cj

VSS

(b) Output CL

Trd Trd +Twr Trd +2Twr

𝑉𝑐(𝛿 < 0)

𝑉𝑐(𝛿 > 0)

𝑉𝑐(𝛿 < 0)

𝑉𝑐(𝛿 > 0)

Write Phase 1 Write Phase 2

t
𝑉𝑠𝑎𝑤

(c) Write control signals

Figure 4.5: Circuit of the crossbar’s (a) Input, and (b) Output CLs, and (c) Write
phase signals timing diagram

Due to limitations on the scalability of 1T1R architecture, it is worth ex-

ploring the feasibility of transistor-less crossbars to achieve even higher density of

integration.

4.4.4 The 1R Architecture

Eliminating the need to have an access transistor for every synapse in the crossbar

will allow for compact designs having an integration density of about 4F 2/device.

But the inability to select the synapses to be updated during programming results

in leakage currents through alternate paths that not only waste energy but also can

lead to undesirable changes in synaptic conductance. We first see the effect of such

currents with the previously proposed write-strategy and then suggest a modified

strategy (and circuit) for the 1R architecture.

68

4.4.4.1 Two-phase update

Let’s analyze the impact of sneak paths on the 1R crossbar with the 2-phase update

strategy used previously. We first demonstrate the presence of sneak paths with

a small example. Fig 4.6(a) shows a 2 × 2 crossbar with transistors only at the

output terminals (to choose columns to be written in any particular phase). Assume

without loss of generality that a certain input x with x1 > 0, x2 < 0 produced errors

δ1 > 0, δ2 < 0 at the outputs. The equivalent circuit during write phase 1 is drawn

in fig. 4.6(b). It depicts the currents through the synapses, with the ones through

S21 and S22 being undesired. These may falsely switch S21 from P → AP and S22

from AP → P if they are in P and AP states respectively.

x1>0

x2<0

c1 c2

V1
O V2

O

(a)

VP

VAP

S11 S21

S12 S22

0

(b)

x1 Input
CL

xM Input
CL

Output CL

c1

Output CL

c2

S1,1

S1,M

SN,1

SN,M

V1
I

e1

eM

VM
I

V1
O VN

O

(c) An M×N crossbar with 1R
structure

0

𝑅22

𝑅21

𝑅12

VP

(d)

Figure 4.6: (a) and (b) Alternate current paths in the 1R structure with 2-phase
write strategy - (a) A 2 × 2 crossbar. (b) Its equivalent circuit in write phase 1 with
c1 = VDD, c2 = 0, V O

1 = 0, V I
1 = VP , V

I
2 = VAP . (MTJ synapses shown as resistors). (c)

Schematic of the proposed 1R Architecture for MTJ crossbar, (d) The equivalent circuit
in phase 1 with 4-phase writing.

We now state a worst-case scenario for a crossbar with M inputs. If M is large,

analysis using Kirchhoff’s Current Law shows that the potential difference across an

MTJ synapse could go as high as (VP −VAP). The current through such an MTJ, if

in the P state, is I = (VP − VAP)/RP and is high enough (recall VAP < 0) to switch

it from P → AP . In the other extreme case, a potential difference of (VAP − VP)

69

leading to current I = (VAP −VP)/RAP through an MTJ in the AP state will switch

it from AP → P .

It is also necessary to mention an average (expected) case. Here these currents

reduce to I = (VP−VAP)/2RP and I = (VAP−VP)/2RAP , respectively, which are half

of those found previously, but still have some probability of switching MTJs (because

these currents are roughly the same as VP/RP and VAP/RAP). Thus, chances of

unwanted flips of MTJs are quite significant, which calls for some modification in

the circuit and/or in the programming method.

4.4.4.2 Four-phase Update

The large sneak currents in the 2-phase writing strategy, potentially resulting in false

switching, is due to the high potential difference VP − VAP between input terminals

having different signs of inputs. One simple way to mitigate this issue is to further

split the 2 phases of weight update so that, in a given phase, only rows having the

same sign of input are updated at a time. This is equivalent to first clustering the

columns according to the sign of δ, and then further clustering the rows according

to the sign of x. This proposed 4-phase writing scheme would require additional

transistors to choose the rows to be updated in a given phase as shown in fig. 4.6(c).

It is summarized in Table 4.4 where each phase will have the same duration Twr;

thus the total time for updating the crossbar is doubled to 4Twr. Note that this

is still O(1) time. The required write voltages and transistor gate voltages can be

obtained with very similar circuits as in fig. 4.5(a) and 4.5(b). The Vsaw here would

be same in phases 1 and 2, and the opposite in phases 3 and 4. In this scheme, the

programming currents for each row remains as they were in the 2-phase update, just

70

Input Error ei V I
i cj Switch

Phase 1 x > 0 δ > 0 u(xi)VDD u(xi)VP u(δj)VDD P → AP
Phase 2 x < 0 δ > 0 u(−xi)VDD u(−xi)VAP u(δj)VDD AP → P
Phase 3 x > 0 δ < 0 u(xi)VDD u(xi)VAP u(−δj)VDD AP → P
Phase 4 x < 0 δ < 0 u(−xi)VDD u(−xi)VP u(−δj)VDD P → AP

Table 4.4: 4-phase weight update for the 1R configuration in fig 4.6(c): Condition on
input and error for a synapse to be updated, along with the control signals (e, c) and write
voltages (V I), for each phase

their time of appearance now differs. They still depend on the respective input and

error.

Let us now see how bad the issue of sneak-path leakage is with this strategy.

Fig 4.6(d) shows the equivalent circuit for the 2 × 2 crossbar with the same set

of assumptions (only synapses providing alternate current paths are shown). For

an M × N crossbar, in the worst-case scenario, sneak currents could be VP/RP

and VAP/RAP , and can still result in false switching. This follows intuition as the

potential difference between an input terminal and an output terminal is at most VP

or VAP . However, in the average case, the sneak current values are found to be only

VP/3RP and VAP/3RAP . These currents are small, and do not have the potential to

cause undesired switching as is evident from the parameters listed in table 4.3 and

the range of values of VP and VAP . For eg. the soft switching threshold is about

45µA for AP → P switching with the maximum write pulse duration of 2.5ns (fig.

2.4 (b)), whereas the average case sneak current is 30µA. Similarly, for P → AP ,

the threshold is about 105µA, while the average sneak current is 67µA.

Hence, the 4-phase writing scheme significantly reduces the incidences of un-

desired switching at a small cost of increase in the duration of the write phase.

As we shall see, this trade-off is not only worth but also necessary for satisfactory

performance of the training process.

71

4.4.5 Multi-Layer NNs

Multi-layer feed-forward NNs can be implemented on cascaded crossbars (each rep-

resenting one layer) with the output of one fed as the input to the next. It is pretty

straightforward to implement the backpropagation algorithm on such a structure,

as demonstrated in fig. 4.7(a). Consider a 2-layer NN with weight matrices W1

(hidden layer) and W2 (output layer) represented by crossbars 1 and 2 respectively.

For an input x, the final output y2 is given as

y2 = f(a2) = f(W2y1) where y1 = f(a1) = f(W1x) (4.8)

The op-amp and inverter following crossbar 1 (just as in fig. 4.2(a)) compute

y1 which is provided as an input to crossbar 2. With a Mean Square Error cost

function, the error of the 2nd layer is given as δ2 = 2(y2 − t)f ′(a2), where t is the

desired (target) value and f ′ denotes the derivative of activation function f . This

is obtained as follows: y2 and t, represented by Vy2 and Vt respectively, are fed to

the inputs of a differential amplifier (DA1) as shown in fig. 4.7(b) to obtain the

Crossbar 1 Op-Amp

MultiplierMultiplier

Crossbar 2

δ2

W2Tδ2

a1 y1

tanh'(a1)
δ1

x

DA2

Op-Amp
a2 y2

(a) Error backpropagation requires 2 multipliers and a
DA. The process involves the components within the
dashed boundary.

1V

Multiplier

R5

R7

R8

R6

Multiplier
δ2

Vy2
Vt

R9

R11

R12

R10

DA1

DA2

Ve

tanh'(a2)

(b) Computation of δ in the
2nd layer

Figure 4.7: (a) Circuit for backpropagating errors to previous layers. (b). Circuit for
finding the error at the last layer of the NN using the obtained value Vy2 and corresponding
target Vt. In DA1, we need R5/R6 = R8/R7 = 2. For DA2, we use R9 = R10 = R11 = R12

to get tanh′(a2) = 1− tanh2(a2).

72

difference Ve = 2(Vy2−Vt). We used tanh as the activation function f ; its derivative

is given as tanh′(x) = 1 − tanh2(x), which is obtained using a multiplier, such as

the Hilbert multiplier [65], followed by the differential amplifier DA2. Lastly, the

outputs from DA1 and DA2 are multiplied to get δ2.

The error of the first (hidden) layer is given as δ1 = (W2
T δ2)×f ′(a1), where ×

represents a component-wise product. As depicted in fig. 4.7(a), the matrix-vector

product can be done on crossbar 2 itself by reversing the roles of its input and output

terminals: δ2 is now fed as the input and out comes W2
T δ2, which, when multiplied

by f ′(a1), gives δ1 as the error to be used for updating the weights of the hidden

layer.

Note that DA1 is required only in the last layer of the NN to get the difference

between the actual and target outputs. Whereas the components for backpropaga-

tion, comprising the 2 multipliers and DA2, are present in all layers and are a part

of the Output CL. Also recall that the 2nd layer error δ2 has a dual role - deciding

the MTJ write duration in crossbar 2 (with the circuit in fig. 4.5(b)), apart from

being backpropagated to compute δ1.

For the MTJ crossbar NN we described, during forward propagation, the total

duration of the read phase would be at most nTrd for an n-layer NN. Backpropaga-

tion of errors to hidden layers would require an extra Trd-long read phase for each

such layer, during which the error at (the output of) a layer is fed as an input to

its crossbar to obtain the error at its preceding layer. Lastly, all the layers can be

updated simultaneously (in 2Twr or 4Twr time, as per the architecture).

Further, it must be mentioned that a large layer in an NN could be split into

multiple crossbars, some of which which share inputs or outputs. All these crossbars

73

can still be read and written in parallel, thanks to the locality of the weight update

operations.

4.5 Training of Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are a class of undirected graphical models

used as generative models of data for the purpose of feature extraction, dimension-

ality reduction and classification [50]. They form the fundamental building block

of Deep Belief Networks (DBNs) which have produced state-of-the-art results in

learning tasks. In this section we provide a simplified mathematical background of

RBMs and DBNs, and describe the in-situ training of RBM MTJ crossbars.

4.5.1 Basics of RBM

RBMs consist of a set of visible and hidden units to represent the data and their

features respectively, and symmetric weighted connections between them as shown in

fig. 4.8(a). The energy function of an RBM with visible and hidden units activations

v and h and weights W is given as

E(v,h) = −hTWv− aTv− bTh (4.9)

where a and b are vectors of biases for the visible and hidden units. The conditional

probability of the hidden units, given a certain state of the visible units, is

p(hj = 1|v) = σ(bj +
∑
i

Wijvi) (4.10)

74

where σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid function. Similarly,

p(vi = 1|h) = σ(ai +
∑
j

Wijhj) (4.11)

The marginal probability of observing a certain visible vector v is computed as

p(v) =
1

Z

∑
h

e−E(v,h) (4.12)

Training of an RBM involves maximizing the log likelihood of the probability of

the training data and gives rise to a gradient ascent rule in the weight space. The

weight update is calculated as

∆Wij = ε
∂ log p(v)

∂Wij

= ε(〈vihj〉data − 〈vihj〉model) (4.13)

where 〈.〉 denotes an expectation under the specified distribution and ε is the learning

rate. Getting an unbiased sample of 〈vihj〉data is simple because the absence of

connections amongst the visible and hidden units lets us compute the probability

with which the hidden units turn on using eqn. (4.10). However, getting an unbiased

sample for the model is difficult because it requires starting from a random training

vector and performing alternate Gibbs sampling for a long time, where each iteration

of the sampling process updates the hidden states in parallel using eqn. (4.10) and

then the visible states (again, in parallel) using eqn. (4.11). The mathematical

model of RBM considered only binary states, but this has long been extended to

include continuous values and model different kinds of data distributions [67].

In [49], a much faster learning method was proposed wherein the first (positive)

75

h1 h2 hN

v1 v2 vM

Hidden layer

Visible layer

(a) An RBM with M visible and
N hidden units.

RBM

v

h1

h2

(b) A DBN with 2 hidden
layers

classifier

layer

v

h1

h2

(c) A DBN with a clas-
sifier layer at the end

Figure 4.8: Schematics of (a) An RBM. The absence of connections within the visible
and hidden layers makes the units in any layer conditionally independent of each other.
All weights are symmetric. (b) A DBN. The top layer is an RBM being trained. In the
lower layer, the dashed and solid arrows represent the top-down generative connections and
bottom-up recognition connections respectively [50]. (Note: all weights are still symmetric;
some connections removed for clarity.) (c) The DBN in (b) with a layer at the end for
classification.

part of eqn. (4.13) is computed using the hidden units’ activations obtained from

eqn. (4.10). The second (negative) part is calculated by first reconstructing the

visible units from the hidden states using eqn. (4.11) and then the hidden units

from these reconstructed visible units (eqn. (4.10)). The weight update rule thus

stands as

∆Wij = ε(〈vihj〉data − 〈vihj〉recon) (4.14)

This works well even though it only roughly approximates the gradient of the log

probability of the training data, and is closer to the gradient of another objective

function, the Contrastive Divergence (CD) [49]. Observe that this learning rule

is also local, just like the one in eqn. (2.3). Further, since this CD weight update

depends only on the training data and network parameters (the weights), and not on

any labels, it comes under the category of unsupervised learning. The bias vectors

a and b are also trained in a similar way.

One way to track the progress of learning is to measure the reconstruction

76

error, which is the squared difference between the training data and its reconstructed

version [51].

4.5.2 Deep Belief Networks

RBMs can be stacked to form deep generative models called Deep Belief Net-

works(DBNs) [52] . The lower layers (which are close to the visible layer) capture

low-level features, whereas the higher layers represent abstract concepts. Fig. 4.8

(b) illustrates a DBN with 2 hidden layers. In a DBN with l hidden layers, the joint

distribution of the data v and the hidden layer variables h1,h2, . . .hl is expressed

in terms of the conditional distributions [16].

P (v,h1,h2, . . .hl) = P (v|h1)P (h1|h2) . . . P (hl−1,hl) (4.15)

Hinton et al. [52] have proposed a greedy layer-wise training procedure for the

DBN, starting with the lowest hidden layer h1. Once it has been trained using the

Contrastive Divergence formulation mentioned above, its weights are kept fixed and

used to obtain the training data for the next layer h2. This is done by propagating

the training samples v using the learned P (h1|v) (computed using eqn. (4.10)), and

using either these probability values or samples from their distribution as training

data for the second layer. This is repeated for all subsequent hidden layers up to hl.

Often, DBNs are not used on their own; rather the features extracted by them

are used for the purpose of classification by adding a classifier layer at the last

hidden layer (fig. 4.8(c)) and using a supervised gradient descent algorithm to train

the weights of this classifier. Another common practice is to use the weights of the

77

trained DBN for initializing the hidden layers of a deep feed-forward neural network.

These weights are then fine-tuned with the supervised training criterion, along with

the weights of the classifier layer(s) appended at the end. This unsupervised pre-

training of the hidden layers, before the data labels are used, is justified on the

grounds that random initialization of the weights of hidden layers often leads to the

network getting stuck at local minima when using only supervised gradient descent

methods. This is specially problematic for the lower layers as their activations tend

to get saturated, leading to vanishing gradients which slow down the learning process

[39].

4.5.3 Adaptation of the Contrastive Divergence algorithm

The standard CD algorithm comprises the following steps:

1. Clamp the visible nodes v to a training vector, say v1.

2. Find the probabilities with which the hidden units turn on using eqn. (4.10).

That is, compute hp1 = σ(Wv1) (ignoring the bias for simplicity).

3. Obtain the binary states hb1 of the hidden units by sampling from the proba-

bility distribution hp1. It is necessary to store the hidden states as binary val-

ues, rather than using the real-valued probabilities themselves, so that they can

communicate a single-bit value during reconstruction, thereby acting as a strong

regularizer [51]. This marks the end of a construction phase.

4. Reconstruct the states of the visible units using those of the hidden units just

as in eqn. (4.11): vp2 = σ(W Thb1). It is common to simply use these probability

values as it reduces the sampling noise and hastens the learning process.

78

5. Now reconstruct the hidden units as hp2 = σ(Wvp2). As per the recommendation

in [51], it is not required to sample binary states from hp2 so that unnecessary

sampling noise can be avoided.

6. Perform the CD weight update as

∆W = ε(hp1v
T
1 − h

p
2v
pT
2) (4.16)

For the data-driven positive part of the weight update, it is better to use hp1 as

it eliminates the sampling noise present in hb1. Note that eqn. (4.16) changes

the weights with the statistics of only one training example, and thus doesn’t

require the expectation operator. The aforementioned steps should be repeated

for all training samples over several iterations.

Now we go on to explain how the CD algorithm would be adapted for imple-

mentation on the MTJ crossbar. The standard CD algorithm has a weight update

in eqn. (4.16) with 2 terms, each of which has activations of both the visible and

hidden units. This makes it impossible to perform such a weight update on the

crossbar without explicitly calculating and storing in memory at least the positive

term. To avoid this, we choose to implement the updates from the construction and

reconstruction phases separately. Further, since the v1 and hp1 are available at the

end of step (2), the positive update can be done before the reconstruction. This

further removes the necessity of storing v1 and hp1 while vp2 and hp2 are calculated.

It has been observed that this 2-step weight update doesn’t quite affect the RBM’s

learning [116]. We too shall verify this at a later stage.

In the construction phase, the binary states hb1 of the hidden units are chosen by

79

sampling from the probabilities hp1 (step (3)). Since the probabilities are generated

from the output of a sigmoid activation function, and the MTJ switching behavior

(fig. 2.4 (b)) bears close similarity to a sigmoidal response, we use an MTJ itself to

produce and store the binary state of a hidden unit. The alternative to this would

have been the use of some analog/digital random number generator to compare its

output with hp1 and generate a binary state; this is likely to have a higher overhead.

We shall further discuss the implementation of this technique in the next subsection.

MTJ MTJ MTJ

Visible
unit CL

Visible
unit CL

Visible
unit CL

Hidden
unit CL

Hidden
unit CL

Hidden
unit CL

MTJ
Synapses

RBM
hidden
units

v1

v2

vM

(a) RBM MTJ Crossbar and Hidden
Layer

0
Transistor

gate voltage

0

Vr(𝑣2
𝑝) Vr(𝑣1) Vr(ℎ1

𝑏)

VP(𝑣2
𝑝

)

VAP(𝑣1)

VDD

twr(ℎ1
𝑝) twr(ℎ2

𝑝)

Read
stage 1

t

Read
stage 2

Read
stage 3

Write
stage 1

Write
stage 2

Crossbar

terminal

(b) Read and Write voltages

Figure 4.9: (a) Crossbar implementation structure of the RBM with MTJs as synapses
and hidden units. (b) Signals during the 5 stages of the CD update cycle. The quantities
on which they depend are in parentheses. The crossbar terminal voltages are at the
visible unit CL for all except Read Stage 2, where the hidden units provide an input
for reconstruction of visible units. All reads and writes are of duration Trd and Twr
respectively.

4.5.4 Training of RBM MTJ crossbar

Fig. 4.9(a) depicts the RBM crossbar with Control Logic (CL) for each visible

and hidden unit, and an MTJ for storing the binary state of the latter. The MTJ

synapses could be with or without selection transistors. Because the reconstructed

values of the visible units are outputs of the sigmoid and restricted to the range

(0, 1), we would require inputs to the RBM to be normalized to the same range for

80

better reconstruction. Each cycle of the CD algorithm implemented on the crossbar

goes through 5 stages as listed below. The signals interfacing the crossbar are shown

in fig. 4.9(b).

• Read Stage 1: The training starts with the crossbar visible terminals having a

voltage V r ∈ [0, Vrd] proportional to the training input v1. The current received

at the hidden terminals would be used to flip the MTJ units storing the hidden

states and simultaneously be converted to activations hp1.

• Write Stage 1: For the positive weight update stage, since both v1 and hp1 are

positive, we would only require to switch the MTJ synapses from AP → P with

a suitable probability. Just as in section 4.4.2, we linearly map v1 and hp1 to MTJ

synaptic write current Iwr and pulse width twr respectively as

twr = t0 + t1h
p
1 (4.17)

Iwr = I0 + I1v1 (4.18)

We use the same values of t0, t1, I0 and I1 as listed in table 4.3, which give write

voltages VAP ∈ [−0.81,−0.62] as previously.

• Read Stage 2: The MTJs storing the binary states hb1 of the hidden units are read

and the hidden terminals are applied a voltage V r depending on the value read.

Since hb1 is binary (0 or 1), V r is either 0 or Vrd. The reconstruction of visible

units vp2 is obtained using the current flowing into the other end.

• Read Stage 3: A reconstruction of the hidden units (hp2) is obtained by feeding vp2

to the crossbar. Unlike read stage 1, there is no need to sample binary states from

81

hp2.

• Write Stage 2: Lastly, the negative weight update, which would require MTJs to

switch only from P → AP , is carried out by passing currents with magnitude

and duration proportional to vp2 and hp2 respectively, just as in eqn. 4.17 and

4.18. Only the polarity and current magnitudes are for P → AP switching; and

VP ∈ [0.68, 0.98] volts.

The entire cycle thus takes 3Trd + 2Twr time. Since the logistic sigmoid σ is

only a scaled and shifted version of tanh, the same circuit (that is, the inverter) can

be used to realize it, although with different parameters such as Rf and VSS. The

hardware required to implement the proposed training algorithm is also pretty much

the same as that in sec. 4.4.3.2, except that h replaces δ as the quantity that decides

write time of MTJs, the inverter in the Output CL (fig. 4.5(b)) isn’t required, and

Vsaw is the same in both Write stages.

In the training of the 1T1R NN crossbar in sec 4.4.3, the write stage had to be

split into 2 because of the 4 possible combinations of the signs of the input and error.

The RBM crossbar, however, doesn’t require such splitting because the visible and

hidden units’ values driving the CD weight update are always positive, and weight

updates of all synapses have the same sign in a given write stage.

The 1R crossbar in sec 4.4.4 had a 4-way split of the write stage because a

2-way split resulted in large sneak currents. On the other hand, an RBM crossbar

with a 1R architecture would also have a single phase, for reasons same as those of

the 1T1R crossbar. In any given write stage, all synapses are updated, which means

all rows and columns are simultaneously active. Thus, transistors for selecting rows

82

(the ones labeled ei in fig. 4.6(c)) are not required, and only columns would have

selection transistors (labeled ci) to control their respective write pulse widths twr.

Since there are no sneak paths during writing, the scalability of 1R crossbar makes

it the choice of architecture for an RBM.

At this stage one may ask why training inputs to the general NN crossbar

should be bipolar, as was considered in sec. 2.3.1 and 4.4.1. The explanation lies in

the faster convergence of the training when inputs are bipolar, or specifically have

an average close to 0 [70]. If inputs x are normalized in [0, 1], then the update of

the weights connected to the jth neuron (xδj) would all have the same sign as that

of error δj. Thus these weights would always move together, making the training

process inefficient and slow [70].

Fig. 4.10(a) depicts 2 crossbars concatenated with each other forming a DBN

with hidden layers h1 and h2. They would be trained sequentially using the proce-

dure described above.

4.5.5 MTJs for hidden units

In Read Stage 1, the MTJ hidden units are provided with a switching current Isw

to switch them AP → P (say P state is ‘on’) with probability hp1. Their states are

read in Read Stage 2 using a certain current Iread, and they are reset P → AP in

either Read Stage 3 or Write Stage 3 in preparation for the next cycle. Fig. 4.10 (b)

shows the circuit of the MTJ hidden units and table 4.5 summarizes its operation.

The currents Isw and Ireset flow in opposite directions to flip the MTJ from AP → P

and P → AP respectively. The read current Iread could be in any direction.

We shall now provide a detailed description of how the stochastic switching

83

v

h1

h2

(a)

S4

S3

S2

S1

Iread

Isw

Ireset

MTJ Hidden

unit CL

(b)

Figure 4.10: (a) DBN crossbar structure - 4 × 4 and 4 × 3 crossbars for the 1st and
2nd hidden layers. (b) Circuit of MTJ as RBM hidden unit connected to the respective
Control Logic.

behavior of MTJs is used for sampling the binary states of the hidden units. Table

4.6 summarizes the notations adopted. We need to fit the transfer function of the

sigmoid with the MTJ switching probability curve. A hardware-friendly method

is a simple linear mapping of the incoming neuron current In to MTJ’s switching

current, which requires us to match the characteristics at exactly at two points - say

for values of the weighted sum a = 0 and acf (‘cf ’denotes curve fitting).

For the value of a = 0, we would have the neuron current In = 0. This should

correspond to an MTJ switching current of I0 and a probability of σ(0) = 50%,

that is, equal chances of the binary state to be 0 and 1. Recall from sec. 4.3.3 that

MTJ conductances GP and GAP correspond to synaptic weights b and −b, and read

Current Switch Stage
Isw S4, S2 Read 1
Iread S4, S1 Read 2
Ireset S1, S3 Read 3 or Write 2

Table 4.5: The stages of CD training
when different currents (fig. 4.10(b)) op-
erate on the hidden units and the switches
that are active

In Neuron current at the hidden unit CL
Isw MTJ hidden unit switching current
a Weighted sum input to sigmoid

I0
Value of Isw for σ(0) = 0.5 switching
probability

Icf
Value of Isw for σ(acf) switching prob-
ability

Table 4.6: Notations for MTJ curve fitting

84

voltage Vrd to input of 1. Thus, for a = acf , we would have

In = acf
Vrd(GP −GAP)/2

b
(4.19)

and the MTJ switching current should be Isw = Icf . This gives the relation

Isw = I0 +
2bIn(Icf − I0)

acfVrd(GP −GAP)
(4.20)

which can be implemented using a differential amplifier. For our experiments we

perform the curve fitting at acf = −3. The reason behind choosing a large value is

to cover a significantly wide range of values of activations. Fig. 4.11(a) shows how

close the MTJ switching probabilities are to the desired probabilities of activation

as current Isw and a are varied. The pulse width of Isw has been chosen to be 2ns,

which is the duration of the read stages. In contrast, fig. 4.11(b) shows the same

for acf = 3 wherein the probabilities match perfectly for positive values of a, but for

a < 0 the MTJ switching probabilities obtained are significantly less than those of

the desired values (that is, the transfer curve of the sigmoid). It is crucial to capture

the small probabilities otherwise values of a < −2 would produce currents Isw which

are too small to ever flip the MTJs and turn the hidden units ‘on’. This will cause

them to convey hb1 = 0 in the reconstruction phase (step (4)) much more frequently

than they should. Also, one may consider not matching the curves at 0, and instead

match at acf = 3 and −3; however, this results in poor fitting in intermediate values,

with difference in probabilities being higher than 0.15 for a wide range of values of

a.

85

(a) With acf = −3 (b) With acf = 3

Figure 4.11: Switching probabilities of the MTJ (solid red line) meant to store RBM
hidden unit’s states as a function of Isw, and desired hidden unit’s activations as output
of sigmoid (dashed blue line) for (a) acf = −3, and (b) acf = 3. Vertical dashed lines
in the plots depict the matching at respective values of acf . In (a), the parameters are
I0 = 93.28µA, Icf = 70.38µA. Maximum read voltage Vrd = 0.2 V has been used
throughout.

4.6 Simulation Setup and Results

To see how successfully the MTJ crossbar NNs and RBMs1 can be trained in-situ,

we performed system level simulations by modeling the functionality of the crossbar

architecture in MATLAB and training it on some datasets. To capture the MTJ

device parameters, we used an HSPICE model [60] and included thermal fields in its

LLG equations for obtaining the stochastic switching characteristics [111]. Certain

device parameters used in and obtained from this model2 were then incorporated

into the simulations of the crossbar. We discuss the results obtained on feed-forward

NNs and DBNs in that order.

1A tutorial on DBNs, along with code in Theano, can be found in [5] and [10]
2MTJ cell dimensions - 35nm × 35nm × 1.4nm, RP = 4.86kΩ, RAP = 15.12kΩ, temperature

T = 300K, saturation magnetization Ms = 1029emu/cm3, damping constant α = 0.014 yielded
∆ = 40, IP→AP

c0 = 64.5µA, IAP→P
c0 = 21.2µA

86

4.6.1 Neural Networks

4.6.1.1 Methodology

The performance of the NN was evaluated in the following scenarios (code-named for

further reference). All training processes used the Mean Square Error cost function

and neurons had the tanh activation function.

1. RV: First, we train and evaluate an NN with real-valued weights in MATLAB.

Binary quantization step (b) is obtained from this trained network as shown in

sec. 4.3.3.

2. DP: Suitable binary weights are obtained by doing probabilistic learning in

software on a binary network. Then a 1T1R crossbar and a 1R crossbar are

deterministically programmed to these weights. We see the effect of device varia-

tions on the former, and of alternate current paths and resulting false switchings

on the latter.

3. ST: An MTJ synaptic crossbar is modeled and stochastically trained in-situ using

the linear model of stochastic weight update described in sec. 4.4.2 for the

(a) 1T1R architecture, with the 2-phase write strategy (sec. 4.4.3).

(b) 1R architecture, with both the 2-phase (to see the effects of sneak currents)

and the 4-phase update strategies (sec. 4.4.4). For the former, node voltages

of output terminals not connected to the output CLs (that is, columns

not being updated) could be easily calculated using Kirchhoff’s Current

and Voltage laws. Whereas for the latter, a mesh analysis of the crossbar

was required and node voltages at both (unconnected) input and output

87

terminals were obtained by solving a system of linear equations of KCL and

KVL in MATLAB.

4. DV: Device variations of different extent are introduced in the stochastic training

of both the 1T1R and 1R crossbars. It reflects in the variations in the resistance

of the P and AP states, the standard deviations of which usually do not exceed

10% of their mean values as per experiments [136].

We use the following datasets for evaluation.

SONAR, Rocks vs Mines[78]: Three different NN architectures are consid-

ered - one with 1 layer (1L), and two with 2 layers having 15 and 25 hidden neurons

respectively, and named 2L15 and 2L25. They were trained, and then tested on 104

samples of the test dataset.

MNIST Digit Recognition[68]: Three 2-layer networks of 50, 100 and 150

hidden units respectively and a 3-layer network of 50+25 hidden units were trained

on the first 10000 samples of the training set and then evaluated on the 10000 images

of the test dataset.

Wisconsin Breast Cancer (Diagnostic)(WBCD)[78]: A single-layer net-

work (1L) and 2 two-layer networks (2L10 and 2L20) were considered, and the test

dataset had 200 samples.

4.6.1.2 Results

Table 4.7 summarizes the accuracy obtained with these networks under the differ-

ent training scenarios mentioned above. The effect of device variations of different

extents on the in-situ stochastic training is highlighted for some of the networks in

table 4.8, with fig. 4.12 plotting the mean square error as the training progresses for

88

Dataset SONAR MNIST WBCD

Network 1L 2L15 2L25 2L50 2L100 2L150 3L 1L 2L10 2L20

RV 16.4 12.8 11.9 9.87 7.34 6.44 7.25 8.35 7.40 7.10

DP
1T1R 19.2 15.2 14.3 13.50 10.89 9.55 10.45 9.85 8.30 8.55

1R 46.8 41.4 42.7 39.42 36.10 37.92 40.48 24.95 27.60 23.65

ST
1T1R 18.4 14.2 13.6 12.69 10.18 8.96 9.71 9.20 7.70 8.05

1R 18.3 14.5 14.0 12.72 10.20 9.03 9.66 9.40 7.85 7.95

Table 4.7: Classification error rates for the 3 datasets (on the test samples) with various
NN and crossbar architectures under different training scenarios. Here, ST-1R crossbar
used 4-phase update. Ideal devices assumed for all except DP-1T1R, where 10% variation
was considered. SONAR and WBCD figures are average of 10 runs. MNIST and WBCD
figures are in %

Dataset SONAR MNIST WBCD

Network 1L 2L15 2L100 3L 2L20

Variation 1T1R 1R 1T1R 1R 1T1R 1R 1T1R 1R 1T1R 1R

2% 18.5 18.4 14.4 14.7 10.27 10.22 9.67 9.73 8.10 8.05

5% 18.7 18.7 14.7 14.8 10.28 10.29 9.78 9.80 8.25 8.30

10% 19.0 19.1 15.1 15.1 10.33 10.43 9.86 9.91 8.30 8.40

20% 19.3 19.5 16.0 15.9 10.42 10.72 10.15 10.28 8.60 8.75

Table 4.8: Misclassification rates of NNs with stochastic training (ST) of 1T1R and
1R architectures under different levels of device variations (DV) expressed in terms of
standard deviations of RP and RAP about their mean values. MNIST figures are worst of
3 runs, SONAR & WBCD are average of 10 worst runs.

the 1R crossbar. Additionally, fig. 4.13 compares the error for the two write strate-

gies. It doesn’t converge with the 2-phase writing scheme due to higher instances of

undesired weight changes, but does so with 4 phases.

It is evident from these results that

• When an MTJ synaptic crossbar without access transistors is stochastically trained

in-situ (ST-1R), it shows classification accuracy only slightly lower (about 3% at

worst) than when the same network is trained in software with real-valued weights

(RV, which can be considered to be the best achievable). However, it brings

about significant improvement (up to 30%) in accuracy over a deterministically pro-

grammed crossbar (DP-1R) since the latter suffers from undesired weight changes

arising from alternate current paths.

• In-situ training also benefits the crossbar with transistors (ST-1T1R against DP-

89

0 10 20 30 40 50
Iterations

0.2

0.4

0.6

E
rr

or

None
2 %
5 %
10 %
20%

(a) On SONAR for 2L15 net-
work

0 20 40 60 80 100
Iterations

0.1

0.2

0.3

0.4

E
rr

or

None
2%
5%
10%
20%

(b) On MNIST for the 3L network

Figure 4.12: NN training error with different extents of device variations on the 1R
crossbar for 2 datasets.

0 20 40 60 80
Iterations

0.2

0.4

0.6

E
rr

or

2-phase

4-phase

(a) On SONAR for 2L15 network

0 20 40 60 80 100
Iterations

0

0.1

0.2

0.3

0.4

E
rr

or

4-phase

2-phase

(b) On MNIST for 2L100 net-
work

Figure 4.13: Comparison of error during training of the 1R crossbar with 2-phase and
4-phase update schemes for 2 datasets. No variations assumed.

1T1R) in the presence of device variations by slightly improving accuracy (by about

0.5%− 1%).

• It is possible to compensate for the loss in accuracy due to use of a binary network

by increasing the size of the network (adding more hidden layers and/or neurons).

• Further, the trained crossbar has robustness even in the face of device variations,

owing primarily to the fault-tolerant nature of NN and its learning algorithms. As

can be seen in table 4.8, increase in misclassification rates remain within 2% even

with 20% variation.

The accuracy degradation of 2% − 3% that we achieve (on going from RV to

ST) is comparable to the 3.73% reported by [142] and the 0.8% − 3.5% in [130].

90

However, it must be mentioned and emphasized that any comparison is fair only

if they are on the same dataset and network architecture. The benefit of using

in-situ training can also be seen when we compare our work with that of [141]

(which performs offline learning). On the MNIST 2L100 network, we obtained an

error rate of 10.20%, whereas [141] had a much higher value of 30% on the same

network, although it must be mentioned that the latter were at a disadvantage due

to linear activation units. Further, the presence of a 20% device variability reduces

our accuracy by less than 1.5%, which is competitive with that of [142],[141] and

[130].

There are a few similarities and differences between our work and the MTJ

synapse-based STDP learning proposed in [119] that we would like to first mention.

In our work, all MTJ synapses from an input share the circuit that decides program-

ming currents, and all synapses to an output neuron have the same programming

duration. Similarly, in [119], the STDP learning circuit for synaptic potentiation

(and depression) are shared by the synapses that connect an input neuron (pre-

neuron) to all excitatory neurons. However, they get programmed with different

currents depending on their respective post-neuron spiking time, but their write

durations are always the same and independent of any spike times; it is only the

write current which varies from synapse to synapse. The STDP learning circuit

consists only of 2 sets of 2 transistors and a capacitor. On the other hand, our

implementation of stochastic learning would require more complex hardware (pri-

marily 2 op-amps in the Input CLs and 1 op-amp in the Output CLs). Also, we need

multiplier circuits [65] to back-propagate errors to hidden layers of the network.

However, Srinivasan et. al. [119] have not described the hardware implemen-

91

tation of the neurons of the SNN and their functionality, although one possible con-

figuration appears in [110]. This neuron in [110], while not being very complicated,

is seemingly more expensive than an op-amp [65] in terms of area requirements.

But overall complexity is perhaps higher for our design. On the other hand, [119]

achieves only about 75% classification accuracy on the MNIST dataset on an SNN

with as many as 400 excitatory and 400 inhibitory neurons trained with 460 images.

We could get higher accuracies on our MNIST networks, although we trained with

many more (10000) images.

4.6.2 Deep Belief Networks

For the training of the RBM crossbar, we consider only a 1R architecture since the

absence of sneak currents (as discussed in sec. 4.5.4) does not leave any difference

in the training procedure of the 1T1R and 1R crossbars. The performance of the

DBNs was evaluated in scenarios similar to sec. 4.6.1 - first with real-valued weights

(RV), then deterministically programming (DP) the MTJ crossbar to suitable binary

weights, and finally performing Stochastic Training (ST) of crossbar without and

with various extents of device variations (DV). Two datasets were used for obtaining

data:

• MNIST: Two 2-layered networks with 150 and 200 hidden units, and two 3-

layered networks with 150 and 200 units in each hidden layer were trained on the

first 10000 samples of the training set and then evaluated on all test samples.

• WBCD: One 2-layered network of 40 hidden units was considered.

The last (output) layer of all networks was used for classification purposes,

either using only the features extracted (abbreviated FE) at the last hidden layer as

92

Dataset MNIST WBCD

Network Size 150 150 + 150 200 200 + 200 40

Purpose FE SFT FE SFT FE SFT FE SFT FE SFT

RV 8.85 6.63 8.07 5.12 8.73 5.30 7.98 4.27 7.90 1.30

DP 38.29 34.40 37.83 41.54 39.17 36.53 37.92 40.07 24.00 29.40

ST 12.72 8.82 11.74 8.23 12.69 8.09 11.40 7.08 11.60 4.10

DV - 2% 12.93 8.97 11.77 8.33 12.75 8.21 11.58 7.19 11.80 4.20

DV - 5% 13.05 8.96 11.89 8.55 12.84 8.34 11.76 7.27 12.20 4.50

DV - 10% 13.22 9.18 12.15 8.70 13.02 8.71 12.00 7.34 12.50 4.50

DV - 20% 13.56 9.29 12.44 9.12 13.35 8.87 12.39 7.72 12.60 4.70

Table 4.9: Misclassification rates with hidden layers trained as RBM for the MNIST
and WBCD datasets, for different levels of device variations. For the figures reported with
2% − 20% variations, the ones for MNIST are worst of 3 runs and those for WBCD are
average of 5 worst runs out of 10.

classifier inputs, or fine-tuning (SFT) the hidden layer weights, along with training

of the output layer, with the supervised training method used in neural networks

(refer sec. 4.5.2). Table 4.9 lists the classification error rates obtained with all

networks and training scenarios. As is clearly evident, it remains within 4−5% and

3− 3.5% for FE and SFT respectively even with high levels of variations. Fig. 4.14

depicts how the different kinds of errors converge both with and without variations.

For MNIST, plots of only the DBN with 200 + 200 hidden units are shown.

Additionally, fig. 4.15(a) and (b) compare the training with the standard CD

algorithm and the 2-step CD that we use to train the MTJ crossbars, as described

in sec. 4.5.3 and 4.5.4 respectively. Real continuous weights were used for the

sake of this comparison on the MNIST 200 + 200 network. Both the reconstruction

errors and the classification MSE of the 2 different implementations of CD are barely

distinguishable. Lastly, fig. 4.15(c) depicts the bias of the weighted sum inputs of

the hidden layer towards negative values, which justifies the tight curve fitting for

a < 0 done in fig. 4.11(a). Apparently, the reason for this bias was the average

input value (across all input units and data samples) being less than 0.5 for both

93

0 5 10 15 20 25

Iterations

0.18

0.2

0.22

0.24

0.26

E
rr

or

None
2 %
5 %
10 %
20 %

(a) Reconstruction Error
Layer 1

0 5 10 15 20 25

Iterations

0.12

0.13

0.14

0.15

0.16

E
rr

or

None
2 %
5 %
10 %
20 %

(b) Reconstruction Error
Layer 2

0 10 20 30 40

Iterations

0

0.1

0.2

0.3

0.4

E
rr

or

None

2 %

5 %

10 %

20 %

(c) MSE Feature Extrac-
tion

0 10 20 30 40

Iterations

0.05

0.1

0.15

0.2

0.25

E
rr

or

None

2 %

5 %

10 %

20 %

(d) MSE Supervised Fine
Tuning

0 5 10 15 20 25

Iterations

0.06

0.08

0.1

E
rr

or

None
2 %
5 %
10 %
20 %

(e) Reconstruction Error

0 10 20 30 40

Iterations

0.25

0.3

0.35

E
rr

or

None
2 %
5 %
10 %
20 %

(f) MSE Supervised Fine
Tuning

Figure 4.14: Progress of training with RBMs as hidden layers for (a)-(d) MNIST
dataset, with 2 hidden layers each of 200 units, and (e)-(f) WBCD dataset, 1 hidden
layer with 40 units. (a) and (b) show the reconstruction error on the 1st and 2nd layers
respectively. (c) and (d) are the classification Mean Square Error with FE and SFT.

MNIST and WBCD. This required a reconstruction value (of visible units) of < 0.5

for low errors, which tend to shift the weights to negative values during the learning

process so as to obtain negative weighted sums on an average. Other datasets with

different characteristics may be suited to a different fitting (such as the one in fig.

4.11(b)) which can be easily done using techniques described in sec. 4.5.5.

In [94], a spiking neuromorphic system trained with event-driven CD was

used for learning MNIST digits. The architecture had additional neurons in the

visible layer for class labels (since the RBM was discriminative [67]), and the weights

connecting the 500 hidden neurons to these class neurons were also trained using

CD. Their model had a recognition error of 8.1%. The hybrid RRAM-CMOS RBM

architecture of [120] obtains an average error rate of about 11% with 100 neurons in

the hidden layers and a separate classification layer (which is similar to our approach,

94

0 10 20 30 40

Iterations

0.1

0.15

0.2

0.25

0.3

E
rr

or

Layer 1 standard CD
Layer 1 2-step CD
Layer 2 standard CD
Layer 2 2-step CD

(a) Reconstruction Error
Layer 1 & 2

0 10 20 30 40

Iterations

0

0.1

0.2

0.3

0.4

E
rr

or

FE standard CD
FE 2-step CD
SFT standard CD
SFT 2-step CD

(b) MSE - FE and SFT

Input at hidden layer after training

-5 -4 -3 -2 -1 0 1 2 3 4 5
Input to sigmoid

0

2000

4000

6000

N
um

be
r

(c) Distribution of weighted
sums

Figure 4.15: (a) and (b) Comparison of standard CD and 2-stage CD in terms of
how the reconstruction errors (a) and classification MSE (b) converge with iterations of
training. The small gap between the green and black dotted lines (representing standard
and 2-step CD resp.) is only due to the different initializations of the weights of the
2nd hidden layer. Importantly, this gap remains same throughout, indicating same rate
of convergence. (c) Histogram showing distribution of inputs to the sigmoid activation
function of the 1st hidden layer. All plots on MNIST 200 + 200 network.

and unlike that of [94]). Lastly, the memristor-based RBM in [116], with 500 hidden

neurons and 40 additional visible nodes, classifies 87.55% MNIST digits correctly

but achieves convergence within only 5 epochs of 10000 training samples.

4.7 Discussion

We now analyze several other aspects of the in-situ training method proposed by

us.

• Training Time: Training of an n-layer neural network on 1 1T1R crossbar

using gradient descent will take (2n − 1)Trd + 2Twr time per training sample

per iteration, as per sec. 4.4.5. On the other hand, consider a DBN with (n− 1)

hidden layers and a final classification layer. We saw that the 2-step CD algorithm

takes 3Trd + 2Twr per sample for an RBM. A DBN would be trained layer-wise

where the training data for the rth layer would be first obtained by propagating

the original training sample through the preceding r− 1 hidden layers, assuming

that there is no storage of data in on-chip or off-chip memory. Thereby, the total

95

time for the rth layer is (r + 2)Trd + 2Twr; summing over r from 1 to (n − 1)

gives a quadratic dependence on n for duration of training of the hidden layers.

After this unsupervised learning, training of the classifier layer through gradient

descent would take nTrd + 2Twr if only the features extracted by the last hidden

layer are used, whereas if we go for supervised fine-tuning of the entire network,

it’s (2n− 1)Trd + 2Twr.

The higher time requirement for DBN training may be justified by the relatively

smaller number of training iterations (typically 10− 20) within which the recon-

struction error and MSE converge as compared to the larger number of iterations

required if the network is trained entirely in a supervised way (compare fig. 4.14

with fig. 4.12). If in the DBN, the training data for subsequent hidden lay-

ers is stored instead of calculated, then memory can be traded-off for a linear

dependence of training time.

• Power consumption in the crossbar: Let us estimate the expected power

dissipated in the 1T1R MTJ crossbar NN by assuming an average case for all

parameters. All inputs x and δ are half of maximum, that is ±0.5. Thus, read

voltages are half of maximum, that is, Vrd/2 and write voltage are those for

x = 0.5, that is, VP (0.5) or VAP (0.5), denoted VP or VAP . At all times, half of

the MTJs are considered to be in the P state, and the rest half in AP state. This

gives an average power in the read phase per MTJ synapse to be

Prd =
1

2
(Vrd/2)2

(
1

RP

+
1

RAP

)
(4.21)

96

and that in each of the 2 write phases to be

Pwr =
1

8
(VP

2
+ VAP

2
)(

1

RP

+
1

RAP

) (4.22)

This yield the average power per device in a cycle of training to be Prd + 2Pwr.

Substituting values stated previously, this calculates to 82 µW . Taking Trd = 2ns

and an average twr = 2ns, the energy consumed per device per cycle is 0.164 pJ .

The 1R crossbar NN without transistors would have higher energy dissipation

due to sneak currents. It must be noted that these values are heavily dependent

on device parameters. Future MTJ technologies with scaled down devices would

consume lesser energy.

For the RBM crossbar, Prd remains the same. Write stages 1 and 2 have average

write voltages VAP and VP respectively, and current flows through all synapses

in both stages. Thus average power per synapse per cycle is 3Prd + 1
2
(VP

2
+

VAP
2
)(1
RP

+ 1
RAP

), which turns out to be 169µW , and the average energy is then

0.338 pJ .

• One very popular work with binary weights is BinaryConnect [30] wherein the

weights used during the forward and backward propagation are binary and ob-

tained stochastically from real-valued weights. However, the weight update step

is not binarized to maintain a good precision of the weights, as in the updates

are real-valued. The performance of BinaryConnect is reported to be as good as,

or even better than, their counterparts with continuous weights. However, the

MTJ crossbar (or any binary device weight array) would not allow for storing of

real-valued weights, which perhaps explains a noticeable, though not significant,

97

drop in classification accuracy when compared with floating-point weights.

• A drawback of in-situ training is that every chip has to be trained separately, each

requiring roughly the same amount of time. Also, only the training algorithm for

which the chip is designed (for eg. CD) can be used, unless extra hardware is

added for the implementation of different techniques [139].

• Dependence on temperature: Higher operating temperatures reduces the

thermal stability of the MTJs (∆ ∝ 1/T) and increases the switching proba-

bility for the same current magnitude and duration. The curves in fig. 2.4 shift

to the left.

• Binary nature of MTJs severely limits the precision of each synaptic weight,

thereby requiring larger crossbars with more hidden units to reach the accuracy

exhibited by real continuous weights. On the other hand, while memristive devices

do have several intermediate states, it’s often difficult to program them reliably;

so they too may end up being used in binary mode [96]. Further advances in

materials of both magnetic and memristive devices will improve their prospects

for use in memory and logic units.

4.8 Conclusion

In this work, we show how MTJ crossbars representing weights of ANNs can be

trained in-situ by exploiting the stochastic switching properties of MTJs and per-

forming weight updates in a way akin to gradient descent. We demonstrate how

the machine learning algorithm can be implemented on crossbars with and without

transistors. Results show these stochastically trained binary networks can achieve

classification accuracy almost as good as that of those trained in software and im-

98

plemented on processors. This paves the way for the attainment of highly scalable

neural systems in the future capable of performing complex applications.

99

Chapter 5: MTJ-based Ising Model Architecture

While the last 2 chapters have focused on the implementation of Neural Networks

using MTJs in non-conventional and non-von Neumann computing paradigms, this

chapter turns attention towards another computationally intensive type of work-

loads - combinatorial optimization problems. The parallelism offered by non-von

Neumann architectures opens up a new path for finding good local optimum of such

intractable problems.

5.1 Introduction and Related Work

Several real world problems come under the category of combinatorial optimization

and are NP-hard, for eg. the travelling salesman problem, graph coloring, etc.

This means that the problems are not computationally scalable with traditional von

Neumann computing methods [95]. The capabilities provided by non-von Neumann

architectures have motivated research [122, 28, 44] on accelerating the process of

finding local optimum of such problems.

The Ising model [26], a mathematical framework to describe interactions be-

tween magnetic spins, can be leveraged to express and formulate many NP-hard

problems due to the combinatorial nature of the model. It consists of a system of

spins which can take one of 2 possible values {1,−1}. These spins interact with one

100

another in such a way that the system gradually evolves to a minimum energy state,

representing a solution to the NP-hard problem that it encodes.

5.1.1 Related Work

The computational complexity of the Ising model has long been explored and inves-

tigated, and so has been the search for efficient hardware systems [13, 140, 85, 66,

18, 19] for mapping combinatorial problems. For example, the process of quantum

annealing [66, 8] naturally holds the capability to tackle problems encoded as the

Ising model, which requires the system to move out of local minima so as to con-

tinue converging to the ground state. However, the quantum technology is far from

reaching maturity in terms of a large-scale commercial use due to its requirement

of operating superconducting devices at very low temperatures. CMOS-based im-

plementations [140] of Ising solvers have also been looked at, including the use of

GPUs [27] for exploiting the inherent parallelism of Ising computations. However,

some of these have made use of extra hardware [43, 85] or memory [27] for gener-

ating random numbers to simulate annealing properties in the model. Further, the

Ising model often requires a large number of connections among Ising spins, which

has led to the use of techniques such as cell cloning in fixed 2-D spin arrays [43],

or to retaining only the nearest neighbor connections [140] leading to sub-optimal

outcomes.

Recent work [117, 115, 122] has investigated the use of spintronic (nanomag-

netic) devices for emulating the behavior of Ising spins by exploiting their natural

physics. The work in [122] demonstrates through simulations such capability in

stochastic nanomagnets operating at very high speeds; but these had very low en-

101

ergy barriers, implying that in reality they can suffer from fabrication complexity,

read disturbs, and inability to write to several other Ising spins. Shim et al. [117]

have used Magnetic Tunnel Junctions (MTJs) with higher energy barriers as Ising

spin devices. However, they limit Ising spin connectivity to only the (four) nearest

neighbors, and restrict their interactions to binary. Although this strategy yields a

simple design, it severely limits the nature and size of NP-hard problems that can

be encoded onto the hardware. The work in [115] does not detail how the influences

from different units, in the form of voltages, would be added up.

5.1.2 Our contribution

In our work, we propose to evaluate an Ising model computing platform based on

stable MTJs. We aim to tackle simultaneously several of the aforementioned issues

not addressed in previous spintronic-based works. Our contributions are as follows:

• We design the hardware of an Ising cell, where an MTJ represents an Ising unit,

and show how it can perform Ising computations.

• We demonstrate how a cell with a fixed no. of inputs can be slightly modified to

make it scalable to large problems.

• We then propose Ising-FPGA, a parallel and reconfigurable architecture composed

of several of these Ising cells, and having an interconnect topology similar to an

FPGA.

• We analyze the degradation in signals in the hardware platform to get a more

realistic picture of such implementations, and attempt to take them into account

while mapping an NP-hard problem.

102

5.2 The Ising Model

The Ising model was originally developed to study the behavior of ferromagnets and

consists of a number of spin units (ferromagnetic elements) with pairwise interactions

[26]. The energy of the system is described by the Ising Hamiltonian

H(x) = −
N∑
i,j

Jijxixj −
N∑
i

hixi (5.1)

where N is the no. of units, xi is the spin of the ith unit and can assume one of

2 values, say ‘+1’ (up spin) and ‘−1’ (down spin), Jij is the coefficient of pairwise

interaction between the ith and the jth units, and hi is a bias term accounting for

external fields. Fig. 5.1(a) shows a complete Ising graph with 5 units. Note that

the model considers a symmetric J , implying a reciprocal nature of the interactions.

Also, there are no self-interactions, thus Jii = 0.

Solving the system involves finding a configuration x of the spin units that

minimizes the energy H. Obtaining this ground state is an NP-hard problem due

to the discrete nature of xi, and this property of the Ising model has enabled the

mapping of several combinatorial optimization problems to it [82]. The ground state

of the spins represents the solution of the NP-hard problem it encodes.

Theoretically, the probability of finding the system in a particular state x is

given as [26]

P (x) =
e−H(x)/(kBT)∑
y e
−H(y)/(kBT)

(5.2)

where kB is the Boltzmann constant and T is the temperature of the system. At

high temperatures, the system explores the solution space and is almost equally

103

xi

xj

Jij

(a) A general Ising graph

1

2

3

4

x

H(x)

5

(b) Ising Hamiltonian

Figure 5.1: (a) An Ising graph with 5 spin units. (b) The system transitions from state
1 to 2, a local minima. Random perturbations can take it to state 3 so that it transitions
to 4 and can eventually reach global optimum 5.

likely to be found in any state [26]. Whereas at low temperatures, states with lower

energy would dominate. Ideally, the system should start from a high temperature

and be slowly cooled down - a process known as annealing - so that it eventually

reaches the ground state.

The underlying parallelism in the model can be exploited while searching for

the ground state. The energy due to a single unit xi and its connections, called the

local Hamiltonian, is expressed as [27]

H(xi) = −
N∑
j

Jijxjxi − hixi (5.3)

which considers the interactions with its neighbors and its bias. Each step in the

process of finding the ground state of the system involves lowering the local Hamil-

tonian of each unit in parallel which can be done by simply changing the state of

xi if that helps lower H(xi). However, the system would soon get stuck in a local

minima rather than converging to the global optimum. The way out of this is to

randomly perturb the system and allow it to go to a higher energy state for the time

being - a popular concept known as (simulated) annealing. Fig. 5.1(b) depicts the

energy landscape with the local and global minima, and demonstrates the effect of

104

annealing.

5.3 Ising-FPGA Framework

An NP-hard problem with N variables requires N Ising units, implying an O(N2)

connectivity among the units. Also, the specific nature/type of the connections

depends on the problem itself. We therefore envision a reconfigurable MTJ-based

architecture which allows a large class of Ising models to be implemented. To this

end, we leverage the advancements made in the FPGA technology to propose a

similar architecture for our Ising-model hardware platform, and call it the Ising-

FPGA. In this chapter, we present the design of such an MTJ-based Ising-FPGA

possessing a routing network similar to regular FPGAs. We estimate the effects of

the hardware platform on the Ising model computations and solution quality, and

develop techniques which account for or mitigate them.

It must be noted that the Ising-FPGA is only an architecture, consisting of an

array of MTJs, which exhibits reconfigurability and has a routing topology similar to

FPGAs. It serves the purpose of mapping problems which can be formulated using

the Ising model. The Ising-FPGA is not a standard FPGA, with some components

are made of MTJs, and which is to be used for mapping digital logic functions.

5.3.1 Finding local optimum in the Ising model

The local Hamiltonian in eqn. 5.3 tells us how the spin of an Ising unit should be

modified towards lower energy. Taking the negative of derivative of both sides, we

105

get

−∂H(xi)

∂xi
=

N∑
j

Jijxj + hi = βi (say) (5.4)

where βi represents the cumulative influence on the ith unit by the other units (all

xj). The sign of βi at a certain time step decides the direction in which xi should

be updated to lower the local energy. For eg. if xi = −1, and βi > 0, xi should

be switched to +1 (otherwise it should remain at −1). This is similar to a gradient

descent approach, although it must be noted that xi can only be binary.

Algorithm 1 summarizes the general process involving the Ising model. After

all spin units are initialized randomly (line 1), each iteration involves calculating

influence βi (line 4), modifying the spin value accordingly (line 7), and then flipping

it randomly with a small probability (line 8) to enable escaping from local minima

(fig. 5.1(b)). Observe that both the inner for loops can be executed in parallel for

the N units.

Algorithm 1 Annealing process for the Ising model

1: Initialize all xi randomly from {−1, 1}
2: for n = 1 to iters do
3: for i = 1 to N do
4: Calculate βi from eqn. 5.4
5: end for
6: for i = 1 to N do
7: x′i = sign(βi)
8: x′i = −x′i with probability p << 1
9: end for

10: Assign x = x′ and reduce p.
11: end for

5.3.2 MTJ as an Ising spin unit

The stochastic switching characteristics of the MTJ has been an impediment to

the realization of energy-efficient STT-MRAM based memory chips [126]. However,

106

many applications where computations can be non-von Neumann in nature, particu-

larly neuromorphic computing, have leveraged this same characteristic of spintronics

to obtain better performance than traditional CMOS-based methods [80]. The ab-

sence of stochasticity in CMOS memory/logic necessitates the use of pseudo-random

number generators to mimic probabilistic behavior.

In our work, we propose using an MTJ to realize an Ising spin unit since it has

2 stable states, just as is required of an Ising unit. Other non-volatile devices such as

RRAMs and PCMs tend to have several intermediate states [144], and therefore, the

MTJ is a better choice. It forms the central component of a basic cell of our MTJ-

based Ising-FPGA. We exploit its probabilistic switching characteristics to guide

the entire system of spins through the states which reduce the energy of the system

(H(x) in eqn. 5.1), with the goal of reaching the ground state. Additionally, when

the system gets stuck in a local energy minima, the same characteristic would also

be used to get it out of the minima. The system of Ising spin units realized with the

MTJs would involve interactions among units through voltages and currents which

would depend on the parameters of the encoded NP-hard problem and the present

state of the system. Details of the implementation shall be discussed shortly.

10 20 30 40 50

Current magnitude (in uA)

0

0.2

0.4

0.6

0.8

1

Sw
itc

hi
ng

 P
ro

ba
bi

lit
y

P to AP
AP to P

Figure 5.2: Switching probabilities of the MTJ with 2ns pulse width. Note that current
polarities would be opposite for P → AP and AP → P . Data obtained from MTJ
Stochastic LLG simulations [37, 6] in HSPICE, at steps of 0.1µA with 10000 points per
step.

107

The probabilistic switching of the MTJ is characterized in fig. 5.2. The mag-

nitude of βi in eqn. 5.4 provides the extent to which xi can lower the energy of the

system, and is thus indicative of the probability with which xi should change its

state (if necessary). For the MTJ-based Ising unit, we can encode the direction and

probability with which it should switch in the polarity and magnitude respectively

of the switching current provided to it. Although the switching characteristics vary

non-linearly with the current as per fig. 5.2, we can perform a linear mapping for

simplicity as follows. Considering the gradient in eqn. 5.4, the write current passed

through the ith unit may be written as

Ii = Imin +
βi
k

(Imax − Imin) (5.5)

where Imin is the minimum current provided to overcome the soft threshold below

which the switching probability is negligible, k is a normalizing factor to ensure that

Ii is bounded by a maximum current Imax. Naturally,

k = max
i

(max |βi|) = max
i

(
N∑
j

|Jij|+ |hi|

)
(5.6)

which is largest possible influence on any unit. We choose values of Imin and Imax

that correspond to probabilities of roughly 0.1% and 98% respectively for a 2ns

pulse duration. For P → AP , Imin = −22µA, Imax = −44µA, and for AP → P ,

Imin = 13µA, Imax = 26µA. Note that directly feeding the current obtained from

the analog dot product to the MTJ eliminates the use of ADCs.

Once the Ising unit’s MTJ is updated probabilistically using the write current

108

nth iteration
(n+1)th
iteration

(n­1)th
iteration

ReadWriteRandom
Flip Relax Relax

time
(ns)

t+2t t+4 t+6 t+8 t+10

Read Random
Flip

Figure 5.3: Different stages of an iteration in the process of finding the ground state
of an Ising model. Each stage is of duration 2ns, and hence an iteration takes 10ns. The
dashed arrows show where the spin value read is utilized.

in eqn. 5.5, we can allow the magnetization a while to settle, and then read the value

stored in the MTJ by passing a small current (say < 5µA) through it and sensing

the potential drop across it [71]. This value read would then be used to update the

states of the other spins in the next iteration. The effect of random noise in the

system can be realized by passing a small current IRF which flips the MTJ with a

small probability and, once again, letting it relax.

Fig. 5.3 depicts the timeline of these stages where the Random Flip of a spin

unit is done according to its own value read in the previous iteration, but before

the write stage to avoid another readout. Thus in each cycle/iteration, some of the

spin units get updated depending on their interactions with the rest. Ideally, the

probability with which this random flip occurs should go down with time in order to

maintain an equivalence with the theoretical notion of annealing, which is “cooling

the system”. Hence the current IRF resulting in random flips must also reduce in

magnitude after each cycle. The entire system evolves through several iterations and

the Ising energy reduces over time when observed on a large scale, since occasional

increases must be expected due to the random flipping.

109

5.3.3 MTJ-based Ising-FPGA cell

Let us now describe the structure of an Ising spin cell, which is the basic unit of

our hardware platform, and show how eqn. 5.5 would be realized. Each Ising cell

corresponds to one spin variable and houses the MTJ whose state represents the

value of the spin. It is responsible for (a) receiving the states of the other spin units

and writing to its MTJ with a certain current, (b) reading the state of its MTJ, and

also (c) flipping it randomly.

The coefficients of interactions (Jij) between spin units can be represented by

variable resistors, and the summation in eqn. 5.4 can be obtained through an op-

amp with N − 1 inputs. Fig. 5.4 shows the Ising cell in a system with 5 variables.

In this figure, we specifically illustrate the Ising cell of variable x1. It receives binary

voltage signals V2 . . . V5 ∈ {−Vm, Vm} from the cells of the other variables x2 . . . x5,

where the voltage polarity represents their spin values (Vm for +1 and −Vm for

−1). These input voltages are modulated by the resistors R12 . . . R15 and fed to the

positive terminal of an op-amp OA1, along with an internal bias voltage Vh1 through

Rh1. The output Vo of the op-amp OA1, with feedback resistor Rf , is provided to the

MTJ write control circuit shown within the dashed box. It regulates the direction of

current I1 through the MTJ with the help of a pair of switches. These are controlled

by the output of comparator OA2 (in open loop configuration) which turns on one

and only one of the two switches. The switch controlled by WR is turned on in the

Write stage. Voltages V+ and V− of opposite polarity are added to Vo to offset it and

obtain the minimum current Imin for AP → P and P → AP respectively. Assume

without loss of generality that the MTJ can be switched (probabilistically) from

110

• AP → P (that is −1→ 1) if Vo > 0 (⇒ I1 > 0), and

• P → AP (that is 1→ −1) if Vo < 0 (⇒ I1 < 0)

Σ

Σ

V2
R12

V3
R13

V4
R14

V5
R15

Rh1

Vh1

Rf

Read
Unit

Random
Flip Unit

To other
Ising cells

From other
Ising cells OA1 OA2

Vo Vc

Vc

I1 > 0
(-1 to 1)

I1 < 0
(1 to -1)

RD

WRRF

V+V-

MTJ

Figure 5.4: The proposed Ising spin cell. Switches WR, RD and RF are turned on in
the Write, Read and Random Flip stages respectively.

The output Vo of op-amp OA1 can be expressed as

Vo = −Rf

(
5∑
j=2

Vj
R1j

+
Vh1
Rh1

)
= −Rf

(
5∑
j=2

VjG1j + Vh1Gh1

)
(5.7)

where G denotes the respective conductances. The above relation resembles eqn. 5.4

suggesting that a weighted sum of the outputs from other Ising cells can be easily

obtained through an op-amp and resistors. The conductances Gij ∈ [Gmin, Gmax]

would be directly proportional to the magnitude of the interaction coefficient, |Jij|.

If all Jij are normalized such that |Jij| ≤ 1, then Gij = |Jij|Gmax. To implement

bipolar Jij, we can simply add an inverter to each of the (N − 1) inputs of xi’s cell

to make both Vj and −Vj available, and choose from between the two.

The value of the feedback resistance Rf is dependent on the no. of inputs to

the Ising cell and the desired maximum current Imax. For an N -variable Ising model,

with each Ising cell having (N − 1) inputs, we can use the maximum influence in

111

eqn. 5.6 to calculate the largest possible magnitude of Vo as

V max
o = −Rf (k × (−Vm)Gmax) = RfVmkGmax (5.8)

Thus, Rf would depend on V max
o , which is in turn decided by Imax. In fig. 5.4,

parameters V+ = 0.227V , V− = −0.172, V max
o = 0.184V , obtained with HSPICE

simulations using Vm = 0.4V,RP = 5.2kΩ, RAP = 13.7kΩ, and values of Imax and

Imin mentioned previously.

The state of the MTJ is sensed by and stored in the Read unit which then

provides voltage signals to the other cells (in the next cycle) accordingly. The

Random Flip unit sends current IRF to the MTJ to flip it with a small probability,

wherein the direction of the current is dependent on the state stored in the Read

Unit.

5.3.4 Splitting inputs to multiple cells

Any non-von Neumann hardware platform designed for mapping an Ising-like prob-

lem would have a fixed number of inputs per Ising cell, however might it be imple-

mented - spintronics-based [117, 115, 122] or otherwise [140, 85]. Even our Ising-

FPGA has a fixed number of inputs per cell. As the problem grows in size, this is

going to pose a limitation to the no. of connections made from/to the Ising cells,

even if routing may not be an issue.

Our approach to dealing with limited fan-in Ising cells is a cascading of several

of these cells to accommodate as many inputs as required. The analog nature of

the computation in eqn. 5.7 allows for this divide-and-conquer approach with only

112

a small addition to the basic Ising cell. This is in the form of another op-amp OA3.

Fig. 5.5(a) shows the modified Ising cell with I = 4 inputs Va . . . Vd. It can output

either from its OA3 or from its Read Unit as required.

Now, considering a fan-in of I = 4 per cell, let us show how we can split

inputs to a spin variable into multiple Ising cells for an Ising system consisting of

9 variables. The idea is to have several layers/levels (named A,B,. . .) of the basic

Ising cell connected in a tree-like sequence, with outputs from the cells of one level

fed into inputs of a cell in the next level until the number of inputs remaining is less

than or equal to the fan-in of each cell. The programmable quantities in these cells

would be set as required (depending on their level). Fig. 5.5(b) shows how we can

split the inputs V2 . . . V9 into 2 Ising cells (at level A) which then feeds into the last

level cell of variable x1.

Vb

Ra

Vc
Rb

Rs

OA3OA1
Rs

To OA2 &
Write UnitVh

From
Read Unit

Vd

Rc

Va

Rd

Rh Vout

(a) OA3 added to the Ising cell

V2
R12

V5
R15

V6 R16
V9 R19

Rs

Rs

Rs
Rs

OA1
Rh1

Vh1

Vo

Vo1

Vo2

Level A Cell

Level A Cell

Last level
Cell

(b) Splitting 8 inputs into 2 cells

Figure 5.5: (a) The Modified Ising cell. (b) Multi-level Ising cells. Observe that
R12 . . . R19 are in level A, but Rh1 is in the last level cell.

Each of the Ising cells would have identical structure and still retain the Write,

Read and Random Flip (WR&RF) units, (not shown for simplicity). But there are

113

certain differences in how the programmable quantities in the cells are set, and how

each cell is operated, depending on its level as detailed in table 5.1.

The outputs of the cells shown in fig. 5.5(b) would be

Vo1 = Rs (V2G12 + . . . V5G15) & Vo2 = Rs (V6G16 + . . . V9G19) (5.9)

Vo = −Rf
(
Vo1
Rs

+
Vo2
Rs

+
Vh1
Rh1

)
= −Rf

 9∑
j=2

VjG1j + Vh1Gh1

 (5.10)

where Vo is the output of last level cell’s OA1, and is as desired.

Component/ Quantity Level A,B. . . cells Last level cell

WR&RF units & MTJ Disabled (inactive) Active (MTJ stores x1)

Bias voltage (Vh) 0V Vh1 (desired value for x1)

Output from OA3 Read Unit

Output sent to Next level cell Level A cells of x2 . . . x9
Feedback of OA1 Any value (say Rs) Rf from eqn. 5.8

Input Resistors For Level A: Rij , Others: Rs Rs
Bias Resistor (Rh) Any value (don’t care) Rh1 (desired bias for x1)

Table 5.1: Configuration of Ising cells as per their level. Entries of last column specifi-
cally for variable x1.

Ising-FPGA size: Thus, with the proposed approach of splitting the fan-in

to several cells, the total no. of levels for every spin variable is dlogI(N − 1)e, and

the no. of cells dedicated to a single variable is ≈ (N − 1)/(I − 1). Hence, the total

no. of cells required (with N variables) is quadratic in N .

5.4 Architecture of the Ising-FPGA

Field Programmable Gate Arrays (FPGAs) are integrated circuits that offer easy

re-programmability, allowing the implementation of any desired logic function [98].

VTR/VPR [84, 7] is an open-source platform for modeling and analyzing FPGA

architecture and CAD. The reconfigurable routing topology of the FPGA is a good

match for the kind of network connectivity exhibited by an Ising model-based plat-

form such as the one proposed above. The flexibility of connections required by an

114

Ising solver such as the Ising-FPGA can be fulfilled by the reconfigurability provided

by an FPGA-like architecture.

5.4.1 Architecture of an FPGA

Let us first go over the basics of the FPGA architecture before describing how the

proposed Ising-FPGA relates to it and how problems can be mapped to the latter.

Fig. 5.6 shows the architecture and the traditional interconnect topology of an

FPGA. It consists of Configurable Logic Blocks (CLBs) each of which contains a

cluster of Basic Logic Elements (BLEs). A BLE is made up of a k-input LUT and

provides the LUT’s output either directly or through a flip-flop. The interconnects

in the FPGA are arranged in several horizontal and vertical channels all around the

CLBs, each channel consisting of multiple tracks. The I/O pins of the CLBs are

connected to the tracks of the adjacent channels through Connection Boxes (CBs).

At the intersection of a vertical and a horizontal channel lies a Switch Box (SB)

which is responsible for connecting the tracks of the channels incident on it, thereby

facilitating communication between CLBs.

CLB

BLE 1

BLE 2

BLE M

CB

CB

CB

SB

CB

CB

CLB

CB

CLB

Horizontal
Routing
Channel Vertical

Routing
Channel

Switch
Box

Configurable
Logic Block

Connection
Box

Tracks

Figure 5.6: The FPGA architecture. CLBs are connected through CBs and SBs.

VTR/VPR [84, 7] is an open-source platform for modeling and analyzing

FPGA architecture and CAD. It takes in an architecture file (.xml) describing the

FPGA, and the circuit’s behavioral description in Verilog HDL, and produces an

115

optimized netlist in the Berkeley Logic Interchange Format (BLIF) [1]. In the .blif

file, a logic gate is declared with a .names keyword followed by its inputs and its

output. The flip-flops in the BLEs are declared by a .latch statement. VPR uses

this netlist to pack, place and route the design. It outputs a .route file (among

others) listing the size of the FPGA, the no. of CLBs in use, and the connections

(that is, the nets) from each Source to its Sinks, including the channels that the net

passes through.

5.4.2 Reconfigurable Ising model hardware

Let us discuss the analogous of the FPGA’s hardware for our Ising-model solver

(that is, the Ising-FPGA) and then explain how part of VPR’s software flow can be

used for configuring the design.

Ising-FPGA: Herein each BLE of an FPGA corresponds to an Ising cell with

multiple inputs and one output which can be either the output of OA3 or from the

Read Unit, and each CLB contains only one BLE. The size of the LUTs, which in

our case would be same as the no. of inputs to the CLB, is set to the no. of inputs

to the Ising cell. Thus, for eg. fig. 5.5(b) shows 3 BLEs (or CLBs), each with

I = 4 inputs. The architecture file (.xml) of the FPGA was used to describe certain

parameters of the Ising-FPGA.

Recall that each Ising cell in the last level outputs from its Read Unit, whereas

cells in other levels output from their OA3. Thus, there is a continuous flow of signal

(current) from the last level cell of a spin variable to that of another variable. The

equivalent of this for an FPGA is that the BLEs representing last level cells were

chosen to output from their flip-flops, while the rest could output straight from

116

BLIF File
Generator.c .blif file

No. of
variables (N)
Cell fan-in (I)

Ising Graph
(.txt)

(a)

.names FF~2 FF~3 FF~4 FF~5 n1_A0

.names FF~6 FF~7 FF~8 FF~9 n1_A1

.names n1_A0 n1_A1 n1

.latch n1 FF~1 re clk 0

(b)

Figure 5.7: (a) The BFG creates the .blif file. (b) an excerpt from the .blif file
responsible for variable x1 specifying connections in fig. 5.5(b).

their LUTs. The connections between cells is captured by the reprogrammable

connectivity of the Ising-FPGA. For our analog design, we can use muxes based on

transmission gates (TGs) as switches in the Switch Box (SB), in a way very similar

to directional SBs [75]. Thus, a connection between 2 cells has one TG for each SB

that it passes through (similar to regular FPGAs).

Using VPR for Ising-FPGA: VPR produces a .blif file that describes the

netlist of the synthesized network, and uses it to perform place and route of the

design. We build a BLIF File Generator (BFG) (fig. 5.7(a)) which takes in the no.

of spin variables (N) and the fan-in of each Ising cell (I) as inputs, and creates a .blif

file by connecting Ising cells in a hierarchical way as demonstrated earlier. Since the

.blif file should specify only those connections that exist, the BFG also takes in the

Ising graph, which lists the pairs of variables (i, j) which have a non-zero interaction

(Jij 6= 0). VPR uses this .blif netlist to pack, place and route the design. It outputs

a .route file (among many others) that contains the design’s routing information.

Fig. 5.7(b) shows a fragment of the .blif file generated for the connections1

pertaining to fig. 5.5(b). Therein, FF ∼ j refers to the output from the last level

cell of the jth spin variable, n1 A0 and n1 A1 are outputs of the level A cells of x1,

and n1 is that of the last level cell of x1. Hence, the first line describes the I/O

1The latch does not indicate a connection from one cell to another and only serves the purpose
of marking the end of the combinational circuit.

117

nets of the level A purple cell of fig. 5.5(b) taking inputs from the last level cells

of x2,x3,x4 and x5, and so on. Since the BFG only connects variable pairs specified

in the Ising graph, if Jij = 0, then FF ∼ i is not an input to any level A cell of xj

(and vice versa) in the .blif file.

5.4.3 Signal Degradation and Recovery

The use of TGs for switches in our analog design implies that their finite resistance

will result in a potential drop across it, and also bring down the current that was

supposed to flow into an Ising cell. We estimate this degradation in every path (from

each source cell to its destinations) of the circuit and show how we can recover the

original signal.

Fig. 5.8(a) shows the description of one net in the .route file provided by

VPR. It specifies the location of the source, n106 A1 at (14, 33) in this example, the

sections of X- and Y- channels that the net passes through, and the sink/destination

(n106 at (13, 34)). The net is depicted in fig. 5.8(b). It crosses 2 SBs and hence

has 2 TGs in its path, and we say it has a path length of 2. We use the information

provided in the .route file to find the length of the path for each (src, dest) pair in

the design.

We consider a linear model for the signal degradation, in the sense that the

total resistance offered by a path is directly proportional to its length and is inde-

pendent of the length of other paths (if any) from the same source cell. We use

the information provided in the .route file to find the length of the path for each

(src, dest) pair in the design.

Let us look at the degradation in current before the Level A of Ising cells.

118

Net 962 (n106_A1)

Node: 14167 SOURCE (14,33) Class: 1
Node: 14185 OPIN (14,33) Pin: 16
Node: 54013 CHANX (11,33) to (14,33) Track: 7
Node: 63148 CHANY (12,34) to (12,37) Track: 18
Node: 13307 IPIN (13,34) Pin: 11
Node: 13293 SINK (13,34) Class: 0

Routing analysis.c
Path
length

(a) (b)

Figure 5.8: Routing of nets. (a) The source, sink and path of a net in textual form
in the .route file. (b) View of the routing. The source is in dark blue and the sink is in
green. The net has been highlighted by us in sky blue.

Fig. 5.9 shows a net from the last level cell of xj to many level A cells, all with

different path lengths. Consider for now the path to level A cell of xi having length

lij. The current flowing through the input resistance Rij should ideally be Vj/Rij.

The presence of TGs, each with resistance RG, in the path means that this current

is now going to be Vj/(lijRG + Rij). To get back the original current level, we can

simply reduce the input resistance Rij by lijRG subject to a minimum. The new

resistance Rij is given as

Rij =


(Rij − lijRG) if (Rij − lijRG) ≥ Rmin/Jmax

Rmin/Jmax otherwise (5.11)

where Rmin = 1/Gmax and Jmax ≥ 1 is the largest interaction coefficient for the

equivalent of the smallest possible Rij. Because Rij may not still be low enough, we

can increase the magnitude of Vj for recovering the desired current. Since different

destinations would have different path lengths from the source, they would require

to boost Vj by different amounts. Let δji be the increment in Vj required by the ith

119

OA1Vj

OA1
lijRG Rij

l1jRG R1j

Level A
cells

Last
Level
cell

Figure 5.9: Signal degradation model for paths from a last level cell (source) to level A
cells (destinations).

destination. Equating the desired and obtained currents,

Vj(1 + δji)

Rij + lijRG

=
Vj
Rij

⇒ δji =
Rij + lijRG

Rij

− 1 (5.12)

For any source j, the amount of boosting is decided by the destination having

the highest value of δ (δjmax = maxi δ
j
i). This boosting can be performed by ampli-

fying the output voltage of the source cell’s Read unit through suitable circuits. No

extra routing is required for this modification.

Now that Vj has been boosted by δjmax, the new connection resistances can be

obtained yet again by substituting δjmax in eqn. 5.12. This gives us the final value

of the resistors as

Rij = Rij(1 + δjmax)− lijRG (5.13)

For the next level of signal propagation, that is from the output of level A

cell to the input of next level’s cell, the source connects to only a single destination.

Thus, any modifications at the source will depend only on the path for this (src, dest)

pair, and can be done by increasing the feedback resistance Rs of the OA1 in the

level A cell of the src.

120

5.5 Ising graphs of NP-hard problems

In this section we describe the combinatorial optimization problems that were mapped

to the Ising model and demonstrated using our proposed architecture.

5.5.1 Maximum Cut

Given an undirected graph G(V,E), the Max-cut problem requires partitioning the

vertices of G into 2 subsets S and S such that the total weight of the edges having

one end in S and the other in S is maximized. Mathematically, this can be stated

as [82]

maximize
1

2

∑
i,j∈V

Wij(1− xixj) (5.14)

where Wij is the weight of the edge between the ith and jth vertices, and xi, xj ∈

{−1, 1} indicate which partition they belong to. Clearly, this objective can be

mapped to the Ising Hamiltonian in eqn. 5.1 by choosing Jij = −Wij/maxij |Wij|

(recall that H is minimized, whereas the cut is maximized). This normalizes all

the interactions to the range [−1, 1]. The bias terms h would be 0 since there is no

preferred state (+1 and −1 are equivalent).

5.5.2 Travelling Salesman Problem

The TSP is another well-known NP-hard problem which, given N cities and their

locations, seeks to find a tour of minimum distance such that each city must be

visited exactly once. The Ising formulation of the TSP has a system of N2 spin

variables as shown in fig. 5.10. Each row corresponds to a particular city and each

121

C
ity N

um
ber (v)

Visit Order (j)

x4,1

1

2

3

4

5

1 2 3 4 5

Figure 5.10: Arrangement of Ising spin units for a 5-city TSP. Arrows show interactions
of x3,3 - solid red ones enforce constraints, whereas dashed blue ones promote progress of
tour.

column to a particular visit order. Thus xv,j = 1 means that city v is visited in the

jth order, whereas xv,j = 0 (not −1, note the difference) implies it wasn’t visited in

the jth order. The Ising Hamiltonian is given as [82]

H =
N∑
v=1

1−
N∑
j=1

xv,j

2

+
N∑
j=1

(
1−

N∑
v=1

xv,j

)2

+ λ
∑
uvj

Wuvxu,jxv,j+1 (5.15)

Here the first 2 terms ensure that the constraints on the solution to a problem

(each city visited exactly once) are satisfied, for which J(v,j)(u,i) = −1 whenever

u = v or i = j. The last term corresponds to the distance travelled in the tour,

with Wuv being the distance between cities u and v, and λ is a proportionality

constant to make sure that the constraints are never violated in favor of a shorter

tour, for which the condition λ < 1/maxW (u, v) should be satisfied. We have

J(v,j)(u,i) = dmin/Wuv, whenever i = j − 1 or j + 1, where dmin is the minimum

distance between any pair of cities.

122

5.6 Simulation Setup and Results

5.6.1 Methodology

Fig. 5.11 depicts the entire flow for simulation and evaluation. First, the nature

and parameters of the NP-hard problem are input to the Graph Generator which

outputs the interaction matrix J and also the Ising graph. The Ising graph is input

to the BLIF File Generator (BFG) which creates the .blif file according to the no.

of variables (N) and the no. of inputs per Ising cell (I) (sec. 5.4.2). Then, VPR

uses the .blif and .xml files to Place and Route the design. The resultant .route

file is analysed to obtain the lengths of the path between each pair of connected

Ising cells, which is accordingly used to find the degradation in the signals and the

modifications necessary in the design (sec. 5.4.3 - Signal Degradation and Recovery

- SD&R). This information is passed on to the Stochastic LLG solver along with

various other parameters such as the number of iterations to perform, various current

values, etc. The LLG simulations of the MTJ were performed using an HSPICE

model2 [37, 6] which was imported into MATLAB for scalability.

Rij, δ jmax

Graph
Generator

Problem
type and

parameters

Ising
graph

BFG

N .blif file

VTR/VPR
.xml
file

XML
gen

.route
file

Routing
Analysis

I

J

Path
lengths

SD&R

J

Stochastic
LLG Solver

num_iters

IRF , Imax ,
Imin , k

N

(lij etc.)

Figure 5.11: Steps performed in the simulations. We start with the Graph Generator
and end with the Stochastic LLG simulations.

The current IRF for Random Flipping (sec. 5.3.2) was chosen in a way that it

2Device parameters: MTJ cell dimension - 22nm×22nm×1.5nm, damping constant α = 0.01,
simulation time step δt = 0.01ns, saturation magnetization Ms = 800emu/cm3

123

corresponds to roughly 1% switching probability at the beginning of the simulations

(at the 1st iteration), and was then reduced linearly to a value that corresponded

roughly to 0.1% probability at the end. This is equivalent to the theoretical notion

of annealing, which requires “cooling the system”.

With regard to accounting for the effects of the hardware, simulations were

performed for 3 situations:

• Ideal - Not considering the effects of the underlying hardware, i.e. ignoring signal

degradation.

• With Signal Degradation (SD) - Considering the effect of the finite resistances

of the paths in the Ising-FPGA, taking RG = 3.45kΩ, Rmin = 50kΩ, but not

recovering from the issue.

• Recovery (Rec) - The modifications made in the design to recover the original

signals (using Rij, δ
j
max) with Jmax = 10.

5.6.2 Results

Let us now present the results of the simulations performed for the 2 NP-hard

problems. For each of these, we mention the usage of the significant hardware

components in the Ising-FPGA. These include

1. the total no. of Ising cells in the Ising-FPGA,

2. the minimum Channel Width Factor (CWF), (the minimum no. of tracks per

channel for successful routing),

3. the average length of the paths from the last level cells to the Level A cells

(average of all lij - fig. 5.9) at this CWF.

Max Cut: Table 5.2 specifies the graphs that were used for benchmarking along

124

with their no. of vertices, the best cut value (obtained using an SDP solver [2]) and

the type & range or distribution of edge weights. Table 5.3 lists the aforementioned

Ising-FPGA parameters at the specified Ising cell fan-in (I).

Also included is an estimate of the power consumption (in mW) of the system

obtained through HSPICE. Fig. 5.12 shows the obtained cut values for the 4 graphs,

each normalized by their respective best cut values in table 5.2. Each of the graphs

was run 10 times, with 1000 iterations of the Ising simulations per run; all maxcut

values are thus average of 10 runs. It is evident that the Ideal maxcut values obtained

by simulating the Ising model are very close to the best cut values obtained by

heuristics (especially for graphs G1 and G2), thereby revealing the potential of an

Ising solver.

Name Source Verts Best Cut Weight Type & Range
G1 G1 from G-set [3] 800 11429 Binary ({0, 1})
G2 Custom 140 2598.65 Fraction: U ∼ [0, 1]
G3 w01 100.0 from Biq mac [4] 100 645 Integer in [−10, 10]
G4 ising2.5-300 5555 from [4] 300 8.569× 106 Int in [−2, 2]× 105

Table 5.2: Descriptions of graphs for Maxcut simulations.

Name G1 G2 G3 G4
I 32 16 32 8 8

No. of cells 2398 1400 840 216 1044
Min. CWF 138 48 48 26 20

Avg. Path Lengths 23.2 8.3 8.3 10.6 5.8
Power 52.37 13.39 14.81 1.02 5.065

Table 5.3: Ising-FPGA hardware usage for Max Cut. Power in mW .

From the data pertaining to fig. 5.12, Signal Degradation (SD) leads to an

average relative drop of 1.43% in the MaxCut values. If we define the extent of

recovery in the maxcut values as (Rec − SD)/(Ideal − SD), the average recovery

across graphs was 78.48%. From table 5.3, we see that a larger fan-in (I) reduces

125

G1 G2(I=16) G2(I=32) G3 G4
0.85

0.9

0.95

1

1.05

M
ax

 C
ut

 (
no

rm
al

iz
ed

)

Ideal SD Rec

Figure 5.12: Max cut values (normalized) from the Ising simulations for the 4 graphs,
with 2 different values of Ising cell fan-in (I) used for G2.

the no. of Ising cells of graph G2 as expected. The minimum CWF and the Average

Path Lengths vary in different ways depending on the nature of the graph.

TSP: Three example problems were considered from a dataset [9, 106] - P01,

GR17 and FRI26, sets of 15, 17 and 26 cities with optimal tour lengths of 291, 2085

and 937 respectively. Table 5.4 lists the hardware usage on the Ising-FPGA with

I = 16. Ising simulations were run 20 times (each having 2000 iterations) for each

city set. Table 5.5 mentions the results in terms of the no. of runs (out of 20) in

which at least 1 “valid” tour was discovered and the average of their Minimum Tour

Length (MTL). SD results in an increase in the MTL by an average of 5.86% as

compared to Ideal, but, more importantly, it reduces the chances of finding a valid

tour. With our recovery strategy, the no. of valid tours is almost as many as those

in the Ideal case and the MTL is only 3.49% higher than Ideal on an average.

Name No.of cells Min. CWF Avg.Path lengths Power
P01 1125 48 8.72 8.17

GR17 1445 48 8.59 12.58
FRI26 5408 60 14.3 45.13

Table 5.4: Ising-FPGA hardware usage for TSP. Power is in mW .

Additionally, fig. 5.13 compares the average no. of valid tours found in each

run for the cases Ideal, SD and Rec. Due to SD, this value dropped by an average

of 76.83% compared to the Ideal, again indicating reduced chances of finding a valid

126

tour. We could recover an average of 83.78% of this drop.

FRI26 GR17 P01
0

10

20

30

40

50

60

70

A
ve

ra
ge

 n
o.

 o
f v

al
id

 to
ur

s Ideal SD Rec

Figure 5.13: Average (over 20 runs)
no. of valid tours found in a run.

City set P01 GR17 FRI26

Valid
Ideal 20 19 16
SD 9 12 6
Rec 20 19 19

MTL
Ideal 443 3448 2262
SD 450 3765 2416
Rec 453 3689 2290

Table 5.5: Results of Ising simulations for
TSP.

5.7 Discussion

Let us now briefly analyze some aspects of our proposed approach and make com-

parisons with related work.

• Propagation delay: Each stage of opamp induces a delay of about 20ps (from

Cadence Virtuoso simulations). With 3 stages (OA1 & OA3 of level A, and OA1

of last level), the expected propagation delay of Ising spin signals ±Vm in the write

stage is about 0.06ns. However, this delay could be subsumed within the relax

stage just before the write. Further, any minor variations in delay from Ising cell

to cell is unlikely to affect the entire system or the final solution, since randomness

is an essential part of the Ising computations.

• Resistive RAMs (RRAMs) are a suitable candidate for realizing the variable resis-

tors that capture the interactions between Ising units. These are memristive de-

vices [144, 19] that offer multiple levels of resistance and easy re-programmability.

• Pervaiz et. al. [99] propose the implementation of probabilistic circuits, based

on unstable stochastic units called probabilistic bits, on FPGAs. These can be

used for Ising and quantum computations. Their entire implementation is on a real

127

FPGA (and is therefore completely based on digital CMOS logic and memory). On

the contrary, our work proposes an FPGA-like architecture based on spintronic and

memristive devices so that their inherent randomness and in-memory computing

capabilities can be harnessed for realizing an Ising model platform. It is expected

to have a much smaller area footprint than a fully digital implementation such as

[99]. Since the authors of that work do not report any figures on the area or power

consumption of their design, we are unable to make any detailed analysis.

Research on hardware implementations of Ising model typically focuses on the

possibility of mapping such models and on obtaining good answers to the associ-

ated optimization problem. There is not much emphasis on the characterization

of system area/power/performance (yet).

• Process variations in MTJs and RRAMs isn’t expected to affect the Ising system

to any significant extent, again because such variations add to the randomness in

the system which it anyway requires.

5.8 Conclusion

In this chapter, we proposed an Ising model architecture based on MTJs, which

can be used to map NP-hard problems and find useful local optimum. We discuss

realistic hardware implementations in terms of Ising spin cells and their read/write

capabilities, network topology, and re-programmability of interactions among spin

units to allow different kinds of NP-hard problems to be encoded. We present Ising-

FPGA, a parallel and reconfigurable architecture which can be configured using a

standard FPGA Place and Route tool, and discuss ways to incorporate the non-

idealities in the hardware into the Ising model.

128

Chapter 6: Conclusion and Future Work

This thesis demonstrates the potential of MTJs, a spintronic device, in

• accelerating computations through non-von Neumann architectures (such as

those based on in-memory processing), which can feasibly be designed/adapted

to execute necessary algorithms

• providing a platform for realizing imprecise computing paradigms such as ap-

proximate and stochastic computing, and opening doors to optimization for

energy-efficiency.

Now we specify, as future work, a possible extension of one of our works and describe

one important direction that research with MTJ-based Neural Network hardware

can take.

6.1 Ising Graph simplification

Chapter 5 proposed leveraging the Ising model to map and solve NP-hard problems

by using MTJs for the hardware realization of Ising spin units. While the architec-

ture proposed by us is non-von Neumann and provides advantages such as parallel

computations and reconfigurability of Ising connections, one drawback still remains

to be addressed. And that is the explosion in the no. of connections required in

a general Ising graph which is quadratic in the no. of Ising units. Although a

129

quadratic increment is the worst case scenario (since, for eg. an N -city TSP with

N2 Ising units has ≈ 4N3 connections), a large-sized problem may find itself unable

to be mapped on any Ising-FPGA with reasonable routing capacity. Further, the

required no. of Ising cells also grows as O(N2).

To combat the quadratic growth in hardware resources in the Ising-FPGA, it

may be feasible to remove some connections between the Ising units which amounts

to doing away with some edges of the Ising graph. That would result in reduced no.

of routes between Ising cells and possibly some reduction in the total no. of Ising

cells. Recall that the cumulative influence β on any Ising spin unit depends on the

interaction strengths Jij between its connections. And it is this β which governs

the state update of Ising spins. We plan on investigating into the best ways to

simplify the Ising graph that doesn’t much impact the β values (and the evolution

of the state of the system), while also reducing the hardware usage significantly.

The trade-off between resource consumption and solution quality can be analyzed.

6.2 Neuromorphic Computing with Spintronics

This thesis has dealt with the use of MTJs as Stochastic Number Generators in an

SC-NN architecture by exploiting its probabilistic switching characteristics, and as

analog synapses in crossbar NN architectures. Both of these were in the context of

Artificial Neural Networks, where the method of representing and communicating

information differs significantly from how the brain does it (hence the term “ar-

tificial”). An interesting direction to pursue is looking into the role that MTJs

and other spintronic devices can play in the efficient realization of Spiking Neural

Networks (SNNs), where data is represented in terms of spike trains. SNNs are a

130

more accurate model of the brain’s working and fit better into what is called Neu-

romorphic Computing. They can very well be implemented with analog crossbar

architectures having spintronic devices as synapses. Also, the switching dynamics

of the MTJ and domain wall devices can be leveraged to realize a host of neural

activation function. Although there are works (such as [110]) that have investigated

into this, there are a plethora of opportunities that emerging non-CMOS devices

provide directly and indirectly.

131

Bibliography

[1] Blif format, 1992.

[2] Computational optimization laboratory, 2002.

[3] The g-set benchmark, 2003.

[4] The biq mac library, 2007.

[5] Training a deep autoencoder or a classifier on mnist digits, 2012.

[6] The llg module, 2016.

[7] Vtr documentation, 2016.

[8] D-wave systems, 2018.

[9] Data for the traveling salesperson problem, 2018.

[10] Deep belief network tutorial, 2018.

[11] Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM
Transactions on Embedded computing systems (TECS), 12(2s):92, 2013.

[12] Armin Alaghi, Weikang Qian, and John P Hayes. The promise and challenge
of stochastic computing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(8):1515–1531, 2017.

[13] Md Z Alom et al. Quadratic unconstrained binary optimization (qubo) on
neuromorphic computing system. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 3922–3929. IEEE, 2017.

[14] Arash Ardakani, François Leduc-Primeau, Naoya Onizawa, Takahiro Hanyu,
and Warren J Gross. Vlsi implementation of deep neural network using integral
stochastic computing. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 25(10):2688–2699, 2017.

[15] SD Bader and SSP Parkin. Spintronics. Annu. Rev. Condens. Matter Phys.,
1(1):71–88, 2010.

132

[16] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In Advances in neural information pro-
cessing systems, pages 153–160, 2007.

[17] Christopher H Bennett, Djaafar Chabi, Theo Cabaret, Bruno Jousselme, Vin-
cent Derycke, Damien Querlioz, and Jacques-Olivier Klein. Supervised learn-
ing with organic memristor devices and prospects for neural crossbar arrays.
In Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International
Symposium on, pages 181–186. IEEE, 2015.

[18] S Bhanja et al. Non-boolean computing with nanomagnets for computer vision
applications. Nature nanotechnology, 11(2):177, 2016.

[19] M N Bojnordi et al. Memristive boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning. In 2016 IEEE Int. Sym. on
High Performance Computer Architecture (HPCA), pages 1–13, 2016.

[20] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[21] Bradley D Brown and Howard C Card. Stochastic neural computation. i.
computational elements. IEEE Transactions on computers, 50(9):891–905,
2001.

[22] Djaafar Chabi, Weisheng Zhao, Damien Querlioz, and Jacques-Olivier Klein.
On-chip universal supervised learning methods for neuro-inspired block of
memristive nanodevices. ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), 11(4):34, 2015.

[23] An Chen. A review of emerging non-volatile memory (nvm) technologies and
applications. Solid-State Electronics, 125:25–38, 2016.

[24] Brian Cheung. Convolutional neural networks applied to human face clas-
sification. In 2012 11th International Conference on Machine Learning and
Applications, volume 2, pages 580–583. IEEE, 2012.

[25] Leon O Chua and Sung Mo Kang. Memristive devices and systems. Proceed-
ings of the IEEE, 64(2):209–223, 1976.

[26] B A Cipra. An introduction to the ising model. The American Mathematical
Monthly, 94(10):937–959, 1987.

[27] C Cook et al. Gpu based parallel ising computing for combinatorial optimiza-
tion problems in vlsi physical design. arXiv preprint:1807.10750, 2018.

[28] K Corder et al. Solving vertex cover via ising model on a neuromorphic
processor. In 2018 IEEE Int. Sym. on Circuits and Systems, pages 1–5, 2018.

[29] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José
Reis. Modeling wine preferences by data mining from physicochemical prop-
erties. Decision Support Systems, 47(4):547 – 553, 2009.

133

[30] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in NIPS, pages 3123–3131, 2015.

[31] Lirida Alves de Barros Naviner, Hao Cai, You Wang, Weisheng Zhao, and
Arwa Ben Dhia. Stochastic computation with spin torque transfer magnetic
tunnel junction. In New Circuits and Systems Conference (NEWCAS), IEEE
13th International, pages 1–4. IEEE, 2015.

[32] Erya Deng, Yue Zhang, Jacques-Olivier Klein, Dafiné Ravelsona, Claude
Chappert, and Weisheng Zhao. Low power magnetic full-adder based on
spin transfer torque mram. IEEE transactions on magnetics, 49(9):4982–4987,
2013.

[33] Hoang Anh Du Nguyen, Jintao Yu, Lei Xie, Mottaqiallah Taouil, Said Ham-
dioui, and Dietmar Fey. Memristive devices for computing: Beyond cmos and
beyond von neumann. In 2017 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), pages 1–10. IEEE, 2017.

[34] Richard Fackenthal, Makoto Kitagawa, Wataru Otsuka, Kirk Prall, Du-
ane Mills, Keiichi Tsutsui, Jahanshir Javanifard, Kerry Tedrow, Tomohito
Tsushima, Yoshiyuki Shibahara, et al. 19.7 a 16gb reram with 200mb/s
write and 1gb/s read in 27nm technology. In 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), pages 338–339.
IEEE, 2014.

[35] Steve Furber. Large-scale neuromorphic computing systems. Journal of neural
engineering, 13(5):051001, 2016.

[36] Brian R Gaines. Stochastic computing systems. In Advances in information
systems science, pages 37–172. Springer, 1969.

[37] S Ganguly et al. Evaluating spintronic devices using the modular approach.
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits,
2:51–60, 2016.

[38] Brian Gardner and André Grüning. Supervised learning in spiking neural
networks for precise temporal encoding. PloS one, 11(8):e0161335, 2016.

[39] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics, pages 249–256, 2010.

[40] Tayfun Gokmen and Yurii Vlasov. Acceleration of deep neural network train-
ing with resistive cross-point devices: design considerations. Frontiers in neu-
roscience, 10:333, 2016.

[41] R Paul Gorman and Terrence J Sejnowski. Analysis of hidden units in a
layered network trained to classify sonar targets. Neural Networks, 1:75, 1988.

[42] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined con-
vex programming, version 2.1. http://cvxr.com/cvx, March 2014.

134

[43] H Gyoten et al. Area efficient annealing processor for ising model without
random number generator. IEICE Trans. on Information and Systems, 101(2),
2018.

[44] H Gyoten et al. Enhancing the solution quality of hardware ising-model solver
via parallel tempering. In 2018 IEEE/ACM ICCAD, pages 1–8, 2018.

[45] Jie Han and Michael Orshansky. Approximate computing: An emerging
paradigm for energy-efficient design. In 18th IEEE ETS, pages 1–6. IEEE,
2013.

[46] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Sat-
terfield, Krishnan Sugavanam, Paul Coteus, Philip Heidelberger, Matthias
Blumrich, Robert Wisniewski, et al. The ibm blue gene/q compute chip. Ieee
Micro, 32(2):48–60, 2011.

[47] Raqibul Hasan and Tarek M Taha. Enabling back propagation training of
memristor crossbar neuromorphic processors. In Neural Networks (IJCNN),
2014 International Joint Conference on, pages 21–28. IEEE, 2014.

[48] Amr M Hassan, Hai Helen Li, and Yiran Chen. Hardware implementation
of echo state networks using memristor double crossbar arrays. In Neural
Networks (IJCNN), 2017 International Joint Conference on, pages 2171–2177.
IEEE, 2017.

[49] Geoffrey E Hinton. Training products of experts by minimizing contrastive
divergence. Neural computation, 14(8):1771–1800, 2002.

[50] Geoffrey E Hinton. To recognize shapes, first learn to generate images.
Progress in brain research, 165:535–547, 2007.

[51] Geoffrey E Hinton. A practical guide to training restricted boltzmann ma-
chines. In Neural networks: Tricks of the trade, pages 599–619. Springer,
2012.

[52] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[53] William M Holt. 1.1 moore’s law: A path going forward. In 2016 IEEE Inter-
national Solid-State Circuits Conference (ISSCC), pages 8–13. IEEE, 2016.

[54] Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang
Li, Mehdi Asnaashari, Sylvain Dubois, Donald Yeung, and Bruce Jacob. De-
sign for reram-based main-memory architectures. In Proceedings of the Inter-
national Symposium on Memory Systems, MEMSYS ’19, page 342–350, New
York, NY, USA, 2019. Association for Computing Machinery.

[55] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. Com-
puting in memory with spin-transfer torque magnetic ram. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 26(3):470–483, 2017.

135

[56] Vahid Jamshidi and Mahdi Fazeli. Pure magnetic logic circuits: A reliability
analysis. IEEE Transactions on Magnetics, 54(10):1–10, 2018.

[57] Yingyezhe Jin, Yu Liu, and Peng Li. Sso-lsm: A sparse and self-organizing
architecture for liquid state machine based neural processors. In Nanoscale
Architectures (NANOARCH), 2016 IEEE/ACM International Symposium on,
pages 55–60. IEEE, 2016.

[58] Andrzej Kasiński and Filip Ponulak. Comparison of supervised learning meth-
ods for spike time coding in spiking neural networks. International Journal of
Applied Mathematics and Computer Science, 16:101–113, 2006.

[59] Golnar Khodabandehloo, Mitra Mirhassani, and Majid Ahmadi. Analog im-
plementation of a novel resistive-type sigmoidal neuron. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 20(4):750–754, 2012.

[60] Jongyeon Kim, An Chen, Behtash Behin-Aein, Saurabh Kumar, Jian-Ping
Wang, and Chris H Kim. A technology-agnostic mtj spice model with user-
defined dimensions for stt-mram scalability studies. In Custom Integrated
Circuits Conference (CICC), 2015 IEEE, pages 1–4. IEEE, 2015.

[61] Jongyeon Kim, Ayan Paul, Paul A Crowell, Steven J Koester, Sachin S Sap-
atnekar, Jian-Ping Wang, and Chris H Kim. Spin-based computing: Device
concepts, current status, and a case study on a high-performance micropro-
cessor. Proceedings of the IEEE, 103(1):106–130, 2015.

[62] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee, and
Kiyoung Choi. Dynamic energy-accuracy trade-off using stochastic computing
in deep neural networks. In DAC’16, page 124. ACM, 2016.

[63] Sungho Kim, Chao Du, Patrick Sheridan, Wen Ma, ShinHyun Choi, and Wei D
Lu. Experimental demonstration of a second-order memristor and its ability to
biorealistically implement synaptic plasticity. Nano letters, 15(3):2203–2211,
2015.

[64] Phil Knag, Wei Lu, and Zhengya Zhang. A native stochastic computing ar-
chitecture enabled by memristors. IEEE Transactions on Nanotechnology,
13(2):283–293, 2014.

[65] Olga Krestinskaya, Khaled Nabil Salama, and Alex Pappachen James. Analog
backpropagation learning circuits for memristive crossbar neural networks. In
Circuits and Systems (ISCAS), 2018 IEEE International Symposium on, pages
1–5. IEEE, 2018.

[66] V Kumar et al. Quantum annealing for combinatorial clustering. Quantum
Information Processing, 17(2):39, 2018.

[67] Hugo Larochelle and Yoshua Bengio. Classification using discriminative re-
stricted boltzmann machines. In Proceedings of the 25th international confer-
ence on Machine learning, pages 536–543. ACM, 2008.

136

[68] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[69] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database
of handwritten digits, 1998.

[70] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Ef-
ficient backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer,
Berlin, Heidelberg, 2012.

[71] Hochul Lee, Juan G Alzate, Richard Dorrance, Xue Qing Cai, Dejan Marković,
Pedram Khalili Amiri, et al. Design of a fast and low-power sense amplifier
and writing circuit for high-speed mram. IEEE Transactions on Magnetics,
51(5):1–7, 2015.

[72] Jung Hoon Lee and Konstantin K Likharev. In situ training of cmol cross-
nets. In Neural Networks, 2006. IJCNN’06. International Joint Conference
on, pages 2749–2756. IEEE, 2006.

[73] Jung Hoon Lee and Konstantin K Likharev. Defect-tolerant nanoelectronic
pattern classifiers. International Journal of Circuit Theory and Applications,
35(3):239–264, 2007.

[74] Robert Legenstein, Christian Naeger, and Wolfgang Maass. What can a
neuron learn with spike-timing-dependent plasticity? Neural computation,
17(11):2337–2382, 2005.

[75] G Lemieux et al. Directional and single-driver wires in fpga interconnect. In
2004 IEEE Int. Conf. on Field-Programmable Technology, 2004.

[76] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint
arXiv:1605.04711, 2016.

[77] Z Li and Shufeng Zhang. Magnetization dynamics with a spin-transfer torque.
Physical Review B, 2003.

[78] M. Lichman. UCI machine learning repository, 2013.

[79] Suhwan Lim, Jong-Ho Bae, Jai-Ho Eum, Sungtae Lee, Chul-Heung Kim,
Dongseok Kwon, Byung-Gook Park, and Jong-Ho Lee. Adaptive learning
rule for hardware-based deep neural networks using electronic synapse devices.
Neural Computing and Applications, pages 1–16, 2017.

[80] N Locatelli et al. Spintronic devices as key elements for energy-efficient neu-
roinspired architectures. In 2015 DATE Conference & Exhibition. EDA Con-
sortium, 2015.

[81] JW Lu, E Chen, M Kabir, MR Stan, and SA Wolf. Spintronics technol-
ogy: past, present and future. International Materials Reviews, 61(7):456–472,
2016.

137

[82] A Lucas. Ising formulations of many np problems. Frontiers in Physics, 2:5,
2014.

[83] Tao Luo, Shaoli Liu, Ling Li, Yuqing Wang, Shijin Zhang, Tianshi Chen,
Zhiwei Xu, Olivier Temam, and Yunji Chen. Dadiannao: A neural network
supercomputer. IEEE Transactions on Computers, 66(1):73–88, 2017.

[84] J Luu et al. Vtr 7.0: Next generation architecture and cad system for fpgas.
ACM Trans. Reconfigurable Tech. and Systems (TRETS), 2014.

[85] S Matsumoto et al. Rram/cmos-hybrid architecture of annealing processor
for fully connected ising model. In 2018 IEEE Int’l Memory Workshop, pages
1–4. IEEE, 2018.

[86] Paul Merolla, John Arthur, Filipp Akopyan, Nabil Imam, Rajit Manohar,
and Dharmendra S Modha. A digital neurosynaptic core using embedded
crossbar memory with 45pj per spike in 45nm. In Custom Integrated Circuits
Conference (CICC), 2011 IEEE, pages 1–4. IEEE, 2011.

[87] Janardan Misra and Indranil Saha. Artificial neural networks in hardware: A
survey of two decades of progress. 74(1):239–255, 2010.

[88] Ankit Mondal and Ankur Srivastava. Power optimizations in mtj-based neural
networks through stochastic computing. In Low Power Electronics and Design
(ISLPED), 2017 IEEE/ACM International Symposium on, pages 1–6. IEEE,
2017.

[89] Ankit Mondal and Ankur Srivastava. In-situ stochastic training of mtj crossbar
based neural networks. In Proceedings of the International Symposium on Low
Power Electronics and Design, page 51. ACM, 2018.

[90] Ankit Mondal and Ankur Srivastava. Energy-efficient design of mtj-based
neural networks with stochastic computing. ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), 16(1):1–27, 2019.

[91] Ankit Mondal and Ankur Srivastava. In situ stochastic training of mtj cross-
bars with machine learning algorithms. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 15(2):1–29, 2019.

[92] Ankit Mondal and Ankur Srivastava. Spintronics-based reconfigurable ising
model architecture. 2020.

[93] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and
Kaushik Roy. Design of power-efficient approximate multipliers for approxi-
mate artificial neural networks. In ICCAD (prijato), page 7, 2016.

[94] Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, and Gert
Cauwenberghs. Event-driven contrastive divergence for spiking neuromorphic
systems. Frontiers in neuroscience, 7:272, 2014.

138

[95] F Neumann et al. Combinatorial optimization and computational complex-
ity. In Bioinspired Computation in Combinatorial Optimization, pages 9–19.
Springer, 2010.

[96] Leibin Ni, Hantao Huang, Zichuan Liu, Rajiv V Joshi, and Hao Yu. Dis-
tributed in-memory computing on binary rram crossbar. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 13(3):36, 2017.

[97] Dong Pan and Bogdan M Wilamowski. A vlsi implementation of mixed-signal
mode bipolar neuron circuitry. In Neural Networks, 2003. Proceedings of the
International Joint Conference on, volume 2, pages 971–976. IEEE, 2003.

[98] H Parvez et al. Application-specific mesh-based heterogeneous FPGA architec-
tures. Springer Science & Business Media, 2010.

[99] A Z Pervaiz et al. Weighted p-bits for fpga implementation of probabilistic
circuits. IEEE trans. Neural Networks & Learning Sys., 2018.

[100] WJ Poppelbaum. Statistical processors. Advances in Computers, 14:187–230,
1976.

[101] WJ Poppelbaum, Apostolos Dollas, JB Glickman, and C O’Toole. Unary
processing. In Advances in computers, volume 26, pages 47–92. Elsevier, 1987.

[102] Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, GC Adam, Kon-
stantin K Likharev, and Dmitri B Strukov. Training and operation of an
integrated neuromorphic network based on metal-oxide memristors. Nature,
521(7550):61–64, 2015.

[103] Damien Querlioz, Olivier Bichler, Philippe Dollfus, and Christian Gamrat.
Immunity to device variations in a spiking neural network with memristive
nanodevices. IEEE Transactions on Nanotechnology, 12(3), 2013.

[104] Nikhil Rangarajan, Arun Parthasarathy, Nickvash Kani, and Shaloo Rakheja.
Energy-efficient computing with probabilistic magnetic bits—performance
modeling and comparison against probabilistic cmos logic. IEEE Transac-
tions on Magnetics, 53(11):1–10, 2017.

[105] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 2016.

[106] G Reinelt. Tsplib: A traveling salesman problem library. ORSA journal on
computing, 3(4):376–384, 1991.

[107] ND Rizzo, D Houssameddine, J Janesky, R Whig, FB Mancoff, ML Schneider,
M DeHerrera, JJ Sun, K Nagel, S Deshpande, et al. A fully functional 64
mb ddr3 st-mram built on 90 nm cmos technology. IEEE Transactions on
Magnetics, 49(7):4441–4446, 2013.

139

[108] Sylvain Säıghi, Christian G Mayr, Teresa Serrano-Gotarredona, Heidemarie
Schmidt, Gwendal Lecerf, Jean Tomas, Julie Grollier, Sören Boyn, Adrien F
Vincent, Damien Querlioz, et al. Plasticity in memristive devices for spiking
neural networks. 9, 2015.

[109] Sandhya Samarasinghe. Neural networks for applied sciences and engineering:
from fundamentals to complex pattern recognition. CRC Press, 2016.

[110] Abhronil Sengupta, Aparajita Banerjee, and Kaushik Roy. Hybrid spintronic-
cmos spiking neural network with on-chip learning: Devices, circuits, and
systems. Physical Review Applied, 6, 2016.

[111] Abhronil Sengupta, Maryam Parsa, Bing Han, and Kaushik Roy. Probabilis-
tic deep spiking neural systems enabled by magnetic tunnel junction. IEEE
Transactions on Electron Devices, 63:2963–70, 2016.

[112] Walter Senn and Stefano Fusi. Convergence of stochastic learning in percep-
trons with binary synapses. Physical Review E, 71(6):061907, 2005.

[113] Jae-sun Seo, Bernard Brezzo, Yong Liu, Benjamin D Parker, Steven K Esser,
Robert K Montoye, Bipin Rajendran, José A Tierno, Leland Chang, Dhar-
mendra S Modha, et al. A 45nm cmos neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons. In Custom Integrated
Circuits Conference (CICC), 2011 IEEE, pages 1–4. IEEE, 2011.

[114] John M Shalf and Robert Leland. Computing beyond moore’s law. Computer,
48(12):14–23, 2015.

[115] S Sharmin et al. Magnetoelectric oxide based stochastic spin device towards
solving combinatorial optimization problems. Scientific Reports, 7(1):11276,
2017.

[116] Ahmad Muqeem Sheri, Aasim Rafique, Witold Pedrycz, and Moongu Jeon.
Contrastive divergence for memristor-based restricted boltzmann machine.
Engineering Applications of Artificial Intelligence, 37:336–342, 2015.

[117] Y Shim et al. Ising computation based combinatorial optimization using spin-
hall effect (she) induced stochastic magnetization reversal. Journal of Applied
Physics, 121(19):193902, 2017.

[118] Daniel Soudry, Dotan Di Castro, Asaf Gal, Avinoam Kolodny, and Shahar
Kvatinsky. Memristor-based multilayer neural networks with online gradient
descent training. IEEE transactions on neural networks and learning systems,
26(10):2408–2421, 2015.

[119] Gopalakrishnan Srinivasan, Abhronil Sengupta, and Kaushik Roy. Magnetic
tunnel junction based long-term short-term stochastic synapse for a spiking
neural network with on-chip stdp learning. Scientific reports, 6:29545, 2016.

[120] Manan Suri, Vivek Parmar, Ashwani Kumar, Damien Querlioz, and Fabien
Alibart. Neuromorphic hybrid rram-cmos rbm architecture. In Non-Volatile
Memory Technology Symposium (NVMTS), 2015 15th, pages 1–6. IEEE, 2015.

140

[121] Manan Suri, Damien Querlioz, Olivier Bichler, Giorgio Palma, Elisa Vianello,
Dominique Vuillaume, Christian Gamrat, and Barbara DeSalvo. Bio-inspired
stochastic computing using binary cbram synapses. IEEE Transactions on
Electron Devices, 60(7):2402–2409, 2013.

[122] B Sutton et al. Intrinsic optimization using stochastic nanomagnets. Scientific
Reports, 7:44370, 2017.

[123] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. Logic
design within memristive memories using memristor-aided logic (magic). IEEE
Transactions on Nanotechnology, 15(4):635–650, 2016.

[124] Himanshu Thapliyal, Fazel Sharifi, and S Dinesh Kumar. Energy-efficient de-
sign of hybrid mtj/cmos and mtj/nanoelectronics circuits. IEEE Transactions
on Magnetics, 54(7):1–8, 2018.

[125] Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new
beginning for information technology. Computing in Science & Engineering,
19(2):41–50, 2017.

[126] L Thomas et al. Basic principles, challenges and opportunities of stt-mram
for embedded memory applications. MSST 2017, 2017.

[127] Hiroyuki Tomita, Takayuki Nozaki, Takeshi Seki, Toshihiko Nagase,
K Nishiyama, E Kitagawa, M Yoshikawa, T Daibou, M Nagamine, T Kishi,
et al. High-speed spin-transfer switching in gmr nano-pillars with perpendic-
ular anisotropy. IEEE Transactions on Magnetics, 47(6):1599–1602, 2011.

[128] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghu-
nathan. Axnn: Energy-efficient neuromorphic systems using approximate
computing. In ISLPED’14, pages 27–32. ACM, 2014.

[129] Rangharajan Venkatesan, Swagath Venkataramani, Xuanyao Fong, Kaushik
Roy, and Anand Raghunathan. Spintastic: spin-based stochastic logic for
energy-efficient computing. In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2015, pages 1575–1578. IEEE, 2015.

[130] Adrien F Vincent, Jérôme Larroque, Nicolas Locatelli, Nesrine Ben Romd-
hane, Olivier Bichler, Christian Gamrat, Wei Sheng Zhao, Jacques-Olivier
Klein, Sylvie Galdin-Retailleau, and Damien Querlioz. Spin-transfer torque
magnetic memory as a stochastic memristive synapse for neuromorphic sys-
tems. IEEE transactions on biomedical circuits and systems, 9(2):166–174,
2015.

[131] KL Wang, JG Alzate, and P Khalili Amiri. Low-power non-volatile spin-
tronic memory: Stt-ram and beyond. Journal of Physics D: Applied Physics,
46(7):074003, 2013.

[132] Mengxing Wang, Wenlong Cai, Kaihua Cao, Jiaqi Zhou, Jerzy Wrona,
Shouzhong Peng, Huaiwen Yang, Jiaqi Wei, Wang Kang, Youguang Zhang,

141

et al. Current-induced magnetization switching in atom-thick tungsten engi-
neered perpendicular magnetic tunnel junctions with large tunnel magnetore-
sistance. Nature communications, 9(1):671, 2018.

[133] Qian Wang, Yongtae Kim, and Peng Li. Neuromorphic processors with mem-
ristive synapses: Synaptic interface and architectural exploration. ACM Jour-
nal on Emerging Technologies in Computing Systems (JETC), 12(4):35, 2016.

[134] Yandan Wang, Wei Wen, Linghao Song, and Hai Helen Li. Classification
accuracy improvement for neuromorphic computing systems with one-level
precision synapses. In Design Automation Conference (ASP-DAC), 2017 22nd
Asia and South Pacific, pages 776–781. IEEE, 2017.

[135] You Wang, Hao Cai, Lirida AB Naviner, Jacques-Olivier Klein, Jianlei Yang,
and Weisheng Zhao. A novel circuit design of true random number generator
using magnetic tunnel junction. In Nanoscale Architectures (NANOARCH),
2016 IEEE/ACM International Symposium on, pages 123–128. IEEE, 2016.

[136] DC Worledge, G Hu, PL Trouilloud, DW Abraham, S Brown, MC Gaidis,
J Nowak, EJ O’Sullivan, RP Robertazzi, JZ Sun, et al. Switching distributions
and write reliability of perpendicular spin torque mram. In Electron Devices
Meeting (IEDM), 2010 IEEE International, 2010.

[137] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. Approximate computing:
A survey. IEEE Design & Test, 33(1):8–22, 2015.

[138] Yan Xu, Xiaoqin Zeng, Lixin Han, and Jing Yang. A supervised multi-spike
learning algorithm based on gradient descent for spiking neural networks. Neu-
ral Networks, 43:99–113, 2013.

[139] Chris Yakopcic, Md Zahangir Alom, and Tarek M Taha. Memristor crossbar
deep network implementation based on a convolutional neural network. In
Neural Networks (IJCNN), 2016 International Joint Conference on, pages
963–970. IEEE, 2016.

[140] M Yamaoka et al. A 20k-spin ising chip to solve combinatorial optimization
problems with cmos annealing. IEEE Journal of Solid-State Circuits, 51(1),
2016.

[141] Deming Zhang, Lang Zeng, Kaihua Cao, Mengxing Wang, Shouzhong Peng,
Yue Zhang, Youguang Zhang, Jacques-Olivier Klein, Yu Wang, and Weisheng
Zhao. All spin artificial neural networks based on compound spintronic synapse
and neuron. IEEE transactions on biomedical circuits and systems, 10(4):828–
836, 2016.

[142] Deming Zhang, Lang Zeng, Youguang Zhang, Weisheng Zhao, and
Jacques Olivier Klein. Stochastic spintronic device based synapses and
spiking neurons for neuromorphic computation. In Nanoscale Architectures
(NANOARCH), 2016 IEEE/ACM International Symposium on, pages 173–
178. IEEE, 2016.

142

[143] Yaojun Zhang, Xiaobin Wang, Yong Li, Alex K Jones, and Yiran Chen. Asym-
metry of mtj switching and its implication to stt-ram designs. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 1313–1318.
EDA Consortium, 2012.

[144] Mohammed A Zidan et al. The future of electronics based on memristive
systems. Nature Electronics, 1(1):22, 2018.

143

