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Parkinson’s disease (PD) is a neurodegenerative movement disorder that affects over one 

million individuals in the US with approximately 60,000 new diagnoses every year. While 

characterized as a movement disorder, the effect of PD and aging on learning new motor 

skills has yielded equivocal results. Thus, the broad objective of this dissertation is to 

investigate the influence of PD on motor sequence learning. We begin by examining 

different sequence structures and how they are affected by age before investigating the 

effects of PD. To address the inadequacies of previous studies using fixed order sequences, 

we used probabilistic sequences, in which stimuli are linked by statistical associations. The 

first study directly compared the learning of probabilistic sequences to fixed sequences and 

randomly ordered stimuli in typical young adults (18-23 years) using a modified serial 

reaction time (SRT) paradigm. The results suggest that both fixed and probabilistic 

sequence groups exhibited learning, but the underlying learning processes were different 

in employing online and offline learning strategies. In the second and third studies, 



 
 

electroencephalography (EEG) was recorded from typical young adults (18-23 years), 

typically aging adults (55-75 years), and patients with PD (55-75 years) while they 

performed the same modified SRT task. We characterized the developmental landscape of 

55-75 year old adults and found that cluster analysis separated typically aging adults into 

groups that provided a clearer understanding of their impairments. By unraveling 

movement and cognitive deficits and matching participants based on functional 

characteristics, we found that some typically aging adults and those with PD learned the 

fixed sequence, but not the probabilistic sequence, indicating age-related impairments in 

probabilistic motor sequence learning. We found cortical activations indicative of learning, 

even in the absence of behavioral indications suggesting that some adults may require more 

practice to learn the sequence, and possible compensatory mechanisms in patients with PD. 

Novel applications of these techniques prove effective for a deeper understanding of the 

dynamic motor learning process and provide evidence that impairments observed in 

patients with PD may be related more to the aging process than to Parkinson’s disease. 
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Chapter 1 : Introduction 
 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that affects 

over one million individuals in the US with approximately 60,000 new diagnoses every 

year. However, a large number of cases may be undetected and it is estimated that there 

are up to 10 million people with PD worldwide. In addition, PD has an estimated 4% 

diagnosis rate before the age of 50 years and is a common disorder in adults over the age 

of 80 years (National Institute of Neurological Disorders and Stroke, 2015; Parkinson's 

Disease Foundation, 2015). Thus, the incidence of PD will likely increase as a larger 

proportion of the population ages and life expectancies increase. Further, by the time 

symptoms surface and PD is diagnosed, there is 60-80% dopamine depletion (Fahn & 

Jankovic, 2007), leaving a small window for treatment of the disease. PD has been 

characterized as a movement disorder, owing primarily to the movement impairments that 

are associated with the disease.  However, the effect of PD on learning new motor skills 

has demonstrated equivocal results. It is therefore the purpose of this dissertation to 

characterize the potential impairments in motor sequence learning in patients with PD. 

Motor sequence learning is fundamental to performing complex motor behaviors 

that emerge from simpler movements produced in a particular order. From brushing our 

teeth, getting out of a car, typing on the computer keyboard, and speaking, our actions 

follow a sequence of movements performed at specific times in a specific order. Sequences 

can be learned explicitly, in which there is a conscious effort to learn the sequence (e.g., 

learning how to type or play the piano), or they can be learned implicitly, in which there is 

no conscious knowledge that a sequence is being learned (e.g., learning to ride a bicycle). 
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Both types of learning play an important role in daily functioning throughout the life span. 

Thus, it is not only important to study motor sequence learning in young adults, but also to 

characterize the influence of aging and diseases on this important motor capacity.  

While previous studies have shown functional abnormalities associated with the 

execution of movement sequences, little is known about the neural correlates of motor 

sequence learning in PD. Specifically, there are inconsistent findings on whether patients 

with PD are impaired in implicit sequence learning (e.g., Shin & Ivry, 2003; Siegert et al., 

2006; Wilkinson & Jahanshahi, 2007; Wilkinson et al., 2009). The pathology exhibited in 

PD (such as bradykinesia, rigidity, and postural instability) is due to the degeneration of 

dopaminergic neurons in the substantia nigra pars compacta, a nucleus that is a part of the 

basal ganglia (Fahn & Jankovic, 2007). Dopamine plays an important role in the regulation 

of movement and its depletion causes increased inhibitory outflow in the basal ganglia and 

thus causes slow movement (bradykinesia) and difficulties in the initiation of movement 

(Fahn & Jankovic, 2007). The effects of dopamine depletion are widespread in the brain 

due to the various cortico-striatal loops and the depletion in these loops plays a role in 

higher cognitive functions (Middleton & Strick, 2000a, 2000b). Thus, the regions that are 

affected in PD are not just the basal ganglia, but also cortical motor regions that play an 

important role in motor skill learning and areas related to cognition (Middleton & Strick, 

2000b).  

Neuroimaging studies using positron emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) have focused on determining the anatomic neural 

correlates of motor sequence learning. Many have suggested that the basal ganglia and 

associated cortical areas play an important role in implicit motor sequence learning 
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(Doyon, 2008; Doyon et al., 2009a; Doyon & Benali, 2005; Doyon & Ungerleider, 2002; 

Jueptner, Frith, Brooks, Frackowiak, & Passingham, 1997; Mentis et al., 2003; Penhune & 

Doyon, 2002; Ungerleider, Doyon, & Karni, 2002). The subcortical nuclei in the basal 

ganglia form loops with cortical regions through the thalamus and facilitate the flow and 

processing of motor information. These loops include specific motor regions in the cortex, 

such as the primary motor cortex (M1), supplementary motor area (SMA), and premotor 

cortex (PM) as well as other areas related to cognitive function, such as the prefrontal 

cortex (PFC) (Middleton & Strick, 2000a, 2000b). Further evidence supporting the role of 

the basal ganglia in motor skill learning also comes from impairments found in patients 

with basal ganglia dysfunction, such as patients with PD.  

The presence of PD surely is a major contributor to the patients’ impairment; 

however, these individuals are also aging. Thus, it is important to disentangle the effects 

of aging from those of PD. Aging is known to have a detrimental effect on learning and 

memory. However, research findings on learning motor sequences in typically aging adults 

have been equivocal (D'Esposito, Zarahn, Aguirre, & Rypma, 1999; Daselaar, Rombouts, 

Veltman, Raaijmakers, & Jonker, 2003; Wu & Hallett, 2005). Particularly, it is unclear 

whether implicit learning is affected by aging. Since motor skill learning is an important 

skill throughout the lifespan, there is a need for a clearer understanding of the effect of 

aging on motor sequence learning. The investigation of the influence of aging on motor 

sequence learning is also important for the characterization of the developmental landscape 

of the behavioral and neural correlates of implicit motor sequence learning upon which the 

profile of those with PD can be compared. 
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Thus, this dissertation research begins by investigating the effect of sequence 

structure on learning and performance in typical young adults. On this foundation, the 

effect of sequence structure in typically aging adults and patients with PD will be 

investigated to answer critical questions about the influence of aging and PD on implicit 

motor sequence learning. The importance of the proposed set of studies lies not only in 

examining the impairment of motor sequence learning in typically aging adults and patients 

with PD behaviorally using novel methods, but also in investigating the neural correlates 

of motor sequence learning; specifically the role of the basal ganglia and cortex. Results 

from these studies will help obtain a better understanding of motor sequence learning 

through the lifespan and in disease, while also furthering research in the brain dynamics of 

those with PD. 

 

Research strategy 

The most commonly used paradigm to assess implicit motor sequence learning in 

the laboratory is the serial reaction time (SRT) task (Nissen & Bullemer, 1987). In this 

task, participants respond to stimuli on a computer screen by pressing the corresponding 

key as quickly and accurately as possible. However, the participants are unaware that the 

stimuli are presented in a repeating sequence. Learning is observed as a progressive 

reduction in the reaction time (RT) during the learning blocks and by a reduction in the 

number of errors.  

While many studies have used the SRT task, there are important knowledge gaps 

that are yet to be addressed. Traditionally, a fixed structure has been used to create the 

sequences in which the stimuli occur. The sequence most commonly consists of 10 or 12 
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items that repeat 10 times in a block, making it very likely that participants will eventually 

recognize the presence of a sequence. Other types of sequences may be better suited to 

study implicit motor sequence learning, but little is known about other types of sequence 

structures. Probabilistic sequences are an example of an alternate type of sequence that do 

not have a fixed structure and are created based on probabilistic associations between the 

items, hence making the sequence less likely to be detected and therefore explicit to the 

learner.  

Previous neuroimaging studies involving motor sequence learning focus on 

changes in activation of select cortical areas rather than connectivity between these areas. 

Electroencephalography provides a useful technique for investigating cortico-cortical 

activations with excellent temporal resolution within the SRT paradigm (Doyon, et al., 

2009a; Jin, Lin, Auh, & Hallett, 2011; Jin, Lin, & Hallett, 2011). 

In summary, the following specific aims describe the goals and hypotheses that 

form the basis of this dissertation in which the differences between typical young adults, 

typically aging adults, and patients with Parkinson’s disease are investigated while 

performing a motor sequence learning task with sequences of different structures. 

 

Specific aims (SA) 

Before investigating the primary goal of understanding the differences in typical 

young adults, typically aging adults, and patients with Parkinson’s disease while 

performing a motor sequence learning task, preliminary studies were needed to better 

understand how typical young adults learning sequences with fixed and probabilistic 

structures. 
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SA 1 (Study 1). To determine the effect of sequence structure on the learning and 

performance of motor sequences in typical young adults. 

The performance patterns of fixed sequences (e.g., 10 repetitions of 3412432142) 

have been well characterized in the SRT task with an expected decrease in response times 

during the learning blocks and an increase in response time when stimuli are displayed in 

a random order. To our knowledge, the performance pattern of probabilistic sequences 

generated by a first-order transitional probabilistic structure has not yet been characterized.  

In this study, typical young adults were randomly assigned a fixed, probabilistic, or 

random sequence. Response times were analyzed to determine whether stimuli occurring 

in fixed and probabilistic are significantly different from those occurring in a random order 

as well as learning within and between blocks. 

Hypothesis 1: Young adults will be able to learn the probabilistic sequence and will 

exhibit a similar performance pattern as fixed sequences. The performance patterns of both 

fixed and probabilistic sequences will be different from that of the random sequence, which 

will only exhibit a decrease in response time in the first few blocks.  

 

SA 2 (Studies 2 & 3). To determine whether the sequence structure has a differential 

effect on reaction time, movement time, and response time.  

 Previously, SRT studies have used reaction and response times interchangeably. 

For example, if the task requires a choice between four buttons, the participants place one 

finger on each of the buttons and press the button that corresponds to the location of the 

stimulus. However, in this design, the reaction time and movement time cannot be 
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distinguished because the amount of movement is very small. This difference may be an 

important distinction and may provide insight into differences between sequence 

structures. The modified SRT task used in the current set of studies allows for the 

decomposition of the response time into the reaction time and movement time by increasing 

the amount of movement required in the task, making it possible to separate out the 

movement time from the reaction time.  

Hypothesis 2.1: In both typical young and aging adults, RT will decrease with the 

learning of the sequence and will increase when random stimuli are presented. However, 

MT will remain constant. Typically aging adults will exhibit slower RTs and MTs than the 

typical young adults. 

Hypothesis 2.2: Patients with PD with exhibit slower RTs and MTs than the 

typically aging adults. Due to the movement deficits in PD, MT will play a more critical 

role in the overall response time in the patients with PD. 

 

SA 3 (Study 2). To determine whether sequence structure has a differential effect in 

typically aging adults compared to typical young adults.  

Previous studies have shown inconsistent findings on the effect of aging on motor 

sequence learning. However, given the cognitive decline and impaired memory in typically 

aging adults, there are likely to be deficits in performance. In addition, it is not known 

whether typically aging adults will exhibit the same differences in performance patterns 

between fixed and probabilistic sequences as seen in young adults in Study 1.  

 Hypothesis 3: Typically aging adults will display a decrease in reaction time during 

the learning blocks and an increase in reaction time when stimuli occur randomly for both 



8 
 

fixed and probabilistic sequences (i.e. typically aging adults will exhibit similar differences 

in performance patterns between fixed and probabilistic sequences as seen in young adults). 

However, typically aging adults will exhibit significantly slower reaction times compared 

to typical young adults.  

 

SA 4 (Study 2). To characterize the developmental landscape of 55-75 year old adults 

with respect to the learning of fixed and probabilistic sequences using cluster analysis. 

Previous studies investigating the effects of aging on motor sequence learning have 

often combined older adults into one group, despite large age ranges, to compare with 

young adults. It is important to characterize the developmental landscape of aging since 

different age groups may perform differently (e.g., 55-year-old adults may perform 

differently from 75-year-old adults). 

Reaction time measurements have been demonstrated to have high variability both 

between and within individuals. Thus, statistical methods that not only emphasize the 

performance of the individual, but also explore population level effects. Cluster analysis is 

one such method that may provide insights into how aging influences motor sequence 

learning by grouping participants based on all their reaction time trials through all the 

blocks, rather than age.  

Hypothesis 4: Typically aging adults will display differential rates of change in 

reaction time. Those in the lower age range (55-63 years) will display a faster change in 

reaction time with practice and will be clustered separately than those in the higher age 

range (67-75 years). 
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SA 5 (Study 2). To characterize the brain dynamics of typical young and aging adults 

while performing a motor sequence learning task measured through EEG. 

Most neuroimaging studies investigating implicit motor sequence learning have 

been conducting using fMRI as it provides excellent spatial resolution. Given that reaction 

time (measured in milliseconds) is the variable used to infer learning, we propose that 

electroencephalography (EEG) is better suited to identify cortical activations and cortico-

cortical connectivity associated with learning and impairments, as EEG provides excellent 

temporal resolution.  

 Hypothesis 5: While performing a motor sequence learning task, typically aging 

adults will exhibit lower levels of cortical activation and connectivity in the alpha and beta 

bands compared to typical young adults. 

 

SA 6 (Study 3). To determine whether individuals with Parkinson’s disease can learn 

sequences with fixed and probabilistic structures.  

Previous studies have shown inconsistent findings on the effect of Parkinson’s 

disease on motor sequence learning. Implicit learning is thought to be mediated by the 

cortico-striatal circuit and given that the basal ganglia have vast connections throughout 

the cortex, it seems likely that basal ganglia deficits will influence the learning of both 

fixed and probabilistic sequences. In addition, the basal ganglia have been implicated in 

probabilistic learning and patients with PD have been shown to be impaired in certain 

probabilistic tasks. Studying motor sequence learning in those with PD provides a unique 

window to understand not only the neural correlates of implicit learning, particularly the 

relationships of the cortex and basal ganglia, but also insight into the disorder.  
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Hypothesis 6: Patients with Parkinson’s disease will exhibit an impaired 

performance while learning the fixed sequence and will exhibit no learning of the 

probabilistic sequence. They will have significantly slower reaction and movement times 

compared to typically aging adults. 

 

SA 7 (Study 3). To characterize the brain dynamics of individuals with Parkinson’s 

disease and typically aging adults while performing a motor sequence learning task 

measured through EEG. 

As described above, the temporal resolution provided by EEG is better suited to 

identify cortical activations and cortico-cortical connectivity associated with learning and 

impairments in the SRT task where learning is inferred through reaction times measured in 

milliseconds.  

Hypothesis 7: While performing a motor sequence learning task, patients with 

Parkinson’s disease will exhibit lower levels of cortical activation and connectivity in the 

alpha and beta bands compared to typically aging adults. 

 

Overall significance 

 The set of research studies that comprise this dissertation will have a significant 

impact on the understanding of motor sequence learning in typical young adults, typically 

aging adults, and patients with Parkinson’s disease. These studies will be the first to 

determine whether probabilistic sequences are an effective means to better assess implicit 

learning. Since probabilistic sequences more accurately reflect learning acquired in daily 

life, the use of probabilistic sequences will provide more ecological validity to the SRT 
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framework. In addition, the influence of age and Parkinson’s disease will be examined on 

the learning of these different sequence types. By decomposing response time into reaction 

and movement times and using cluster analysis, these studies will delve deeper into the 

effects of sequence learning on reaction and movement times while clustering typically 

aging participants based on participants’ reaction times rather than their chronological age 

to attain a clearer understanding of performance differences that may or may not be age-

related. Thus, these studies will address methodological and analytical problems in current 

SRT studies and address knowledge gaps regarding the effects of aging and PD on motor 

sequence learning in both behavioral performance and cortical dynamics.  

 Learning complex behaviors is a requirement throughout the lifespan, making it 

imperative to study the influence of aging and PD on motor sequence learning. As a larger 

proportion of the population ages and the incidence of Parkinson’s disease increases, our 

understanding of the influence of aging and PD is crucial to add to our knowledge of the 

motor system and development of interventions for movement and cognitive deficits.  

 

Organization of the dissertation 

This dissertation is divided into six chapters. Chapter 1 summarizes the overall 

purpose, specific aims, and significance of the research strategy for this dissertation. 

Chapter 2 reviews the relevant literature including the theoretical framework for motor 

sequence learning, neural correlates, and neuroimaging of motor sequence learning in 

typical young adults, typically aging adults, and patients with Parkinson’s disease. Chapter 

3 details study 1 (SA1) that investigated whether there are differences in the learning and 

performance patterns of fixed, probabilistic, and random sequences in typical young adults. 
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Chapter 4 reports on study 2 that examined the influence of aging on learning fixed and 

probabilistic sequences at the behavioral and cortical dynamics level. Chapter 5 describes 

study 3 that explored the influence of Parkinson’s disease on the learning of the two 

sequence types. Chapters 3-5 are written as separate manuscripts that will be submitted for 

publication. Chapter 6 discusses the major findings of the three studies, their implications, 

and paths for future research. 
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Chapter 2 : Review of Literature 
 

This chapter will provide a basis for the research in this dissertation. It will start by 

elucidating the difference between explicit and implicit motor sequence learning and will 

describe a theoretical framework for motor sequence learning. The next section lays the 

foundation for the serial reaction time task, which is the paradigm that is most commonly 

used for measuring motor sequence learning in the laboratory and a modified version of 

which was used in this research. Next, it will delve into the neural correlates underlying 

motor sequence learning in young adults. The next sections describe impairments in motor 

sequence learning in typically aging adults and patients with Parkinson’s disease, 

respectively, as well as how electroencephalography (EEG) can be used for studying 

cortical dynamics. Finally, the last section summarizes the knowledge gaps and how this 

dissertation attempts to address them. 

 

Motor sequence learning 

Implicit and explicit motor sequence learning 

Motor sequences can be acquired through explicit or implicit learning. Explicit 

learning occurs when there is a conscious awareness of the sequence, while implicit 

learning occurs when the sequence is learned unconsciously (A. S. Reber, 1967b, 1989b). 

Both types of learning are essential to learning complex motor skills throughout the 

lifespan. Previous studies have suggested that explicit and implicit learning have distinct 

neural substrates with the cortico-limbic circuit involved in explicit learning and cortico-

striatal circuit involved in implicit learning (Knowlton, Mangels, & Squire, 1996; P. J. 

Reber & Squire, 1994; Squire & Zola, 1996). This dissertation will focus on implicit motor 
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sequence learning as participants will not be informed that there is an underlying sequence 

in the task.  

Theoretical framework for motor sequence learning 

Doyon & Benali (2005) propose that motor sequence learning is acquired in five 

stages: 1) an early learning stage in which performance improves significantly at a fast rate; 

2) a later learning stage in which performance further improves, but at a slower rate and 

over multiple learning sessions; 3) a consolidation stage that takes place over a break of 4-

6 hours after which performance increases; 4) an automatic stage that occurs after further 

practice and requires few cognitive resources to execute the skill; 5) a retention stage that 

does not require any more practice to perform the skill even after extended breaks (Doyon 

& Benali, 2005). This dissertation will focus on the first stage of motor sequence learning. 

We expect participants to exhibit significant improvements in performance in one session 

and will investigate the dynamic functional connectivity changes during this early learning 

stage. 

 

Figure 2.1: Stages of motor sequence learning (adapted from Doyon & Benali, 2005) 
 

The serial reaction time task 

Implicit motor sequence learning has traditionally been examined by using a serial 

reaction time (SRT) task (Nissen & Bullemer, 1987). In this task, participants are presented 

with four squares on a computer screen. Each square corresponds to a button on a response 
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box. On a given trial, a stimulus appears in one of the squares and the participant must 

press the corresponding button as quickly and accurately as possible. Participants are 

unaware that the stimuli are presenting in a repeating sequence. The paradigm generally 

consists of six blocks: four learning blocks (B1-B4) in which the sequence is repeated 10 

times each, one block (B5) in which the stimuli appear in a random order, and a final block 

(B6) consisting of the repeating sequence again. Learning is inferred through the 

progressive reduction in the reaction time (RT) during B1-4, an increase in RT in B5, since 

the stimuli are occurring in random order, and another decrease in RT in B6 (Robertson, 

2007). The RT indicates the amount of time spent processing the information and is used 

as a measure of cognitive learning (Laming, 1968). Learning is also assessed by a reduction 

in the number of errors.  

Sequence structure 

The SRT task has traditionally used fixed sequences consisting of 10 or 12 items 

with four locations where the stimulus can appear. These sequences follow a rigid structure 

and the order remains the same in every repetition of the sequence. However, fixed 

sequences are not a practical model to assess the adaptive learning that occurs in real life.  

After four learning blocks with a total of 40 repetitions of the sequence, it is very 

likely that participants become consciously aware of the presence of a sequence, thus 

changing the nature of learning from implicit to explicit (D. V. Howard et al., 2004; J. H. 

Howard & Howard, 1997; Nissen & Bullemer, 1987; Reed & Johnson, 1994; Song, 

Howard, & Howard, 2007b). This change can occur at different points during the learning 

process for different participants, further contaminating implicit motor sequence learning 

performance. Studies have tried to circumvent this issue by using modified versions of the 
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SRT task, such as incorporating a random-ordered stimuli in alternating trials (D. V. 

Howard, et al., 2004), employing dual task methodology (Reed & Johnson, 1994; 

Schvaneveldt & Gomez, 1998; Seidler et al., 2005), intermixing fixed sequences and 

random sequences within a block (Curran, 1997) or embedding probabilities within fixed 

sequences (J. H. Howard, Howard, Dennis, & Kelly, 2008; Wilkinson & Jahanshahi, 2007). 

The approach used in these studies to avoid explicit learning during the task has been three 

fold: 1) to increase the number of stimuli to eight, instead of four; 2) to increase the size of 

the sequence to 16; and 3) to use more complex sequences.  

Second order conditional sequences 

Second order conditional (SOC) sequences are a type of fixed sequence in which 

the response on a trial can only be determined by the past two trials (Reed & Johnson, 

1994). These sequences are better suited to assess implicit learning in SRT tasks as no 

stimulus has more responses than another and no transition between stimuli occurs more 

often than others. This ensures that participants are improving their RT performance by 

learning the sequence rather than learning patterns within the sequence (DeCoster & 

O'Mally, 2011b).  

Probabilistic sequences 

In order for learning to remain implicit, the underlying stimulus structure must be 

complex enough to escape conscious awareness (A. S. Reber, 1989b). This does not seem 

to hold true for fixed sequences as they have a simplistic structure that can be uncovered 

at the conscious level. Previous studies have used complex stimuli such as finite state 

grammars in artificial grammar learning (A. S. Reber, 1967b, 1989b; P. J. Reber & Squire, 

1999a) to assess implicit learning. Reber has shown that when participants memorize 
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seemingly random strings of letters generated by a finite state grammar, they unconsciously 

learned the underlying rules and were able to differentiate between novel strings that 

violate a rule and those that follow the rules (A. S. Reber, 1967b). However, these 

paradigms do not provide insight into the learning process. The SRT task can facilitate the 

understanding of the progression of learning by examining the RT in the individual blocks.  

In the current set of studies, the probabilistic sequences were generated by a first-

order transitional probabilistic structure in which the present state influences what the next 

state will be based on probabilities between the states. These transitional probabilities are 

defined in a transition matrix containing the probabilities associated with each pair of 

states. Probabilistic sequences do not follow a rigid structure, but rather follow a 

probabilistic rule and are more complex. The rule is not deterministic and in any given 

repetition of the sequence, the order of the stimuli may be different. Over numerous trials, 

the participant is expected to unconsciously detect the probabilistic rule underlying the 

sequence (e.g., 2 is most likely to be followed by 6) and exhibit a decreased RT.  

Thus, while fixed sequences have been used extensive in the implicit motor 

sequence learning literature, they are not conducive to understanding how learning occurs 

in real life, where we continuously make statistical associations between events 

unconsciously (Cleeremans & McClelland, 1991; Cleeremans, Servan-Schreiber, & 

McClelland, 1989; A. S. Reber, 1989b) and learn probabilistic orders that can change in a 

dynamic environment.  
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Motor sequence learning in young adults 

Neural correlates of motor sequence learning 

Human neuroimaging studies suggest that various cortical and subcortical areas, 

including primary motor cortex (M1), premotor cortex (PM), prefrontal cortex (PFC), 

supplementary motor area (SMA), basal ganglia, and cerebellum are activated during the 

early learning stage (Doyon, et al., 2009a; Doyon & Benali, 2005; Doyon & Ungerleider, 

2002; Hikosaka, Nakamura, Sakai, & Nakahara, 2002; Jueptner, et al., 1997; Mentis, et al., 

2003; Penhune & Doyon, 2002; Sakai et al., 1998; Ungerleider, et al., 2002). The 

interaction between two circuits, the cortico-striatal and the cortico-cerebellar circuits, 

underlies the activations of these cortical and subcortical areas in relation to motor 

sequence learning (Doyon, 2008; Doyon & Benali, 2005; Doyon & Ungerleider, 2002; 

Middleton & Strick, 2000a, 2000b; Ungerleider, et al., 2002). Doyon et al. further suggest 

that the interactions between these two circuits are critical in order to create the motor 

routines to learn the new sequence. Impairments in patients with striatal (Parkinson’s or 

Huntington’s disease), cerebellar, or frontal cortical dysfunction further suggest a role of 

these areas in motor skill learning (Doyon, 2008; Doyon et al., 1997; Mentis, et al., 2003), 

including a possible role for compensation for striatal dysfunction via the cortico-cerebellar 

loop (see below for further discussion of compensatory mechanisms in patients with 

Parkinson’s disease). Additional evidence has been provided by animal studies (White, 

1997) in rodents (McDonald & White, 1993), cats (Milak, Shimansky, Bracha, & Bloedel, 

1997), and non-human primates (Lu, Hikosaka, & Miyachi, 1998).  

While widespread activations in the cortical and subcortical areas are particularly 

found in the early earning stage of the motor sequence learning, studies suggest that 
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dissociation between these two loops occurs in the later stages of motor learning. The 

cortico-cerebellar loop appears to be involved in the early learning stage (Doyon & Benali, 

2005; Doyon, Penhune, & Ungerleider, 2003; Jenkins, Brooks, Nixon, Frackowiak, & 

Passingham, 1994; Ungerleider, et al., 2002), but the activation decreases with practice and 

as the skill becomes automatic. However, the cortico-striatal loop activation does not 

decrease and remains the same during the consolidation and retention of learned sequences 

(Doyon, et al., 2009a; Doyon, et al., 2003; Jueptner, et al., 1997; King, Fogel, Albouy, & 

Doyon, 2013; Penhune & Doyon, 2002; Ungerleider, et al., 2002; Willingham, 1998), 

suggesting that the cerebellum is not necessary for long term retention of sequences, but 

the basal ganglia are. The basal ganglia have also been shown to be activated during 

incremental learning of associations and stimulus incidence over time that leads to 

automatization of the skill (Knowlton, et al., 1996; Rieckmann & Backman, 2009) (see 

Figure 2.2).  

Penhume & Doyon (2002) used positron emission tomography (PET) to determine 

differences in the neural correlates of learning a sequence and recall of the sequence. The 

study took place over multiple weeks in which participants were scanned on three days. 

On day 1 (early learning), participants were explicitly taught the sequence and then scanned 

while they performed the sequence during one block. On day 5, after five days of practicing 

the sequence, the participants were again scanned for one block. Lastly, participants were 

scanned after four weeks, with no further practice. The neuroimaging data demonstrated 

that the cerebellum was activated during the early learning stage. However, by day 5, the 

cerebellar activity decreased, while the basal ganglia activity increased. During recall, 

increased activation was seen in the M1, PM, and parietal lobe, but not in the cerebellum 
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or basal ganglia, suggesting that recall involves a primarily cortical network. Further 

evidence for the role of the cerebellum in the early learning stage comes from patients with 

cerebellar lesions who do not demonstrate any sequence learning in the SRT task (Pascual-

Leone et al., 1993; Shin & Ivry, 2003). 

 

 
Figure 2.2: Doyon et al. (2002, 2003, 2005, 2008) have suggested a model in which dynamical interactions 
occur between cortico-striatal and cortico-cerebellar circuits during the early learning stage of motor 
sequence learning. As consolidation and automatization take place, the striatum plays a greater role in the 
process, while activation in the cerebellum decreases. This dissertation will focus on the early learning stage 
of the model (Motor sequence learning and movement disorders by J. Doyon, 2008, Current Opinion in 
Neurology, 21, p. 479). 
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Role of the basal ganglia in motor learning and cognition 

The basal ganglia are a group of subcortical structures consisting of the striatum, 

caudate, putamen, globus pallidus (GP), subthalamic nucleus (STN), and substantia nigra 

(SN). The classical view of the basal ganglia consisted of circuits that only involved the 

motor cortex. It was thought that the only areas of the cerebral cortex that were targets of 

basal ganglia output were those that are involved in the generation and control of 

movement: the basal ganglia receives information from other cortical areas, such as the 

prefrontal cortex (PFC), parietal, and temporal lobes, and integrated these inputs in the 

subcortical nuclei, which were then sent to the primary motor cortex (M1) (Dum & Strick, 

2009). However, this view was challenged by Alexander et al. (1986), who described five 

basal ganglia loops, of which only two were motor loops and the others were involved with 

higher-order cognitive processes. These five loops are: skeletomotor, oculomotor, 

dorsolateral prefrontal, lateral orbitofrontal, and anterior cingulate circuits (Alexander, 

Delong, & Strick, 1986).  

Strick and colleagues have conducted various studies using neurotropic viruses as 

transneuronal traces in the CNS of primates to disentangle the paths of the circuits. When 

the virus was injected into portions of the M1, it was found that the M1 is richly innervated 

by the output of the basal ganglia nuclei, with the densest projections from the internal 

globus pallidus (GPi) and less dense projections from parts of the substantia nigra pars 

reticulata (SNr). However, these projections originated from only 15% of the GPi, which 

suggests that the majority of the output is directed to other cortical areas (Dum & Strick, 

2009; Kelly & Strick, 2000; Strick & Card, 1992). The GPi also projects to multiple areas 

of the premotor cortex (PM) and supplementary motor area (SMA). When injected into the 
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PFC, the labeled neurons in the GPi were different from those labeled from injections to 

the motor areas. This suggests that there are separate motor and nonmotor domains in the 

GPi. Evidence of the separation of motor and cognitive output areas in the GPi also comes 

from pallidotomies of patients with PD in which lesions to anteromedial GPi (origin of 

output to PFC) leads to cognitive impairments, while lesions to intermediate GPi (origin 

of output to motor areas) has little effect on cognition (Dum & Strick, 2009). Subfields 

within PFC areas that are related to working memory and thought to guide behavior based 

on transiently stored information had projections from the GPi and SNr as well. In addition, 

GPi and SNr projections were also found in the posterior parietal cortex, which may be the 

basis of visuospatial deficits observed in patients with basal ganglia lesions. Area TE of 

the inferotemporal cortex plays an important role in the visual recognition & discrimination 

of objects. This area also receives projections from the SNr. These areas of the SNr have 

also been found to be responsive to the presentation of visual stimuli. Taken together, the 

basal ganglia are extensively connected to vast regions of the cerebral cortex, such as 

motor, premotor, prefrontal, posterior parietal, and inferotemporal areas (Dum & Strick, 

2009; Packard & Knowlton, 2002), and are thus involved in higher-order cognitive 

processing.  

Computational model of learning in the cerebral cortex, basal ganglia, and cerebellum 

The interactions between the cortico-striatal and cortico-cerebellar loops have been 

computationally modelled by Doya (2000). According to this model, the basal ganglia, 

cerebellum, and cerebral cortex are involved in different types of learning (Doya, 2000). 

The basal ganglia is hypothesized to be involved in reward-based reinforcement learning 

via modulation of the dopaminergic pathways, while the cerebellum performs error-based 
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supervised learning via the convergence of climbing fibers on the Purkinje cells. Through 

unsupervised learning, the cerebral cortex organizes inputs from the basal ganglia and 

cerebellum via the cortico-striatal and cortico-cerebellar circuits. Learning occurs as a 

result of this interaction of the basal ganglia, cerebellum, and cerebral cortex (Doya, 1999, 

2000; Hikosaka, et al., 2002; Houk & Wise, 1995) and has been supported by animal 

models in which dopamine modulated reward processing has also been found in cortical 

neurons. For example, single cell electrophysiology studies in monkeys, have shown 

differential reward processing in the orbitofrontal cortex and striatum (Schultz, Tremblay, 

& Hollerman, 2000).  

 

Motor sequence learning in typically aging adults 

Studies investigating the influence of aging on motor sequence learning have found 

that typically aging adults exhibit similar levels of performance on the SRT task as young 

adults if the sequence is not a complex higher order sequence (Bennett, Howard, & 

Howard, 2007; Daselaar, et al., 2003; Dennis, Howard, & Howard, 2006; Feeney, Howard, 

& Howard, 2002; Fraser, Li, & Penhune, 2009; Nemeth & Janacsek, 2010; Seidler, 2007; 

Weiermann & Meier, 2012). Differences may arise, however, when learning more complex 

sequences with typically aging adults exhibiting an impairment in learning higher order 

sequences (Bo & Seidler, 2010; Dennis, et al., 2006). These overall conclusions, however, 

do not always hold (Bennett, et al., 2007; J. H. Howard & Howard, 2013). For example, 

Curran (1997) investigated typically aging adults while learning sequences with different 

underlying structures. Both were fixed sequences, but one was a first-order conditional 

(FOC) sequence while the other was a more complex second-order conditional (SOC) 
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sequence. Curran found that typically aging adults only exhibited learning in the SOC 

sequence, but not the FOC sequence (Curran, 1997). This is surprising as FOC sequences 

are less complex and thus should be more likely to be learned than the more complex SOC 

sequences. It should be noted that the design used by Curran was not the typical block 

design used in SRT tasks in which four learning blocks of the repeating sequence are 

followed by a block containing stimuli in a random order. Instead, he used an intermixed 

block design in which sequenced and randomly ordered stimuli occurred within a block.  

In contrast, while Dennis et al. (2006) also investigated the learning of FOC and 

SOC sequences in typically aging adults in an auditory SRT task, they found conflicting 

results in that typically aging adults were able to learn both FOC and SOC sequences. In 

addition, they also assessed learning of sequences described as higher-order probabilistic 

sequences, however there are no probabilities associated with each stimulus. Instead, an 

alternating serial reaction time (ASRT) task was used in which sequence trials alternated 

with random trails (e.g., 3r2r4r1 where the sequence is 3241 and r is a random trial that 

could be any of the four stimuli). Thus, a fixed sequence exists, but there is an interference 

by random trials, rather than a probabilistic sequence with underlying probabilities between 

the different stimuli. The authors found that typically aging adults were unable to learn the 

sequence in the ASRT task, concluding that aging impairs the learning of higher order 

sequences. However, it still remains unclear whether typically aging adults can learn 

probabilistic sequences. The differences they found may also be attributed to the task being 

described as an auditory task and thus more perceptual, however there was still a motor 

component as subjects responded to the stimuli with the middle and index finger of each 

hand. To further complicate any conclusions, another study found that typically aging 
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adults were in fact able to learn an even more complex sequence in an ASRT task in which 

a sequence trial was followed by two random trials (e.g., 3rr2rr4rr1) (Bennett, et al., 2007). 

These differences in the results may also in part be due to the statistical analyses 

conducted. Most SRT studies assess learning by comparing the mean or median of each 

block across the age groups using ANOVA. However, means only provide a cursory 

assessment of the performance, rather than providing insight into how the learning occurs, 

which may provide an understanding of differences between age groups. Furthermore, 

reaction time measurements are highly variable between and within individuals and general 

linear models, such as ANOVA, do not adequately capture this variability. It is important 

to use statistical methods that not only emphasize the performance of the individual, but 

also explore population level effects. One such statistical method is random coefficient 

modeling that lends itself to analysis of data like that of the SRT task (Cudeck & Harring, 

2007, 2010) and has been used to detect differences between typically developing children 

and those with developmental coordination disorder that the general linear model failed to 

detect (King, Harring, Oliveira, & Clark, 2011). 

Neuroimaging studies have suggested that while the behavioral impairments may 

be small, there are larger underlying neurological changes and the impairments may be 

explained through cognitive deficits in typically aging adults. For example, it has been 

suggested that declines in working memory may result in impaired motor sequence 

learning, particularly in the early stage (Bo, Jennett, & Seidler, 2011, 2012; Ghilardi, 

Eidelberg, Silvestri, & Ghez, 2003; Hedden & Gabrieli, 2004; Seidler, Bo, & Anguera, 

2012). Seidler and colleagues have further suggested differential effects of different types 

of working memory, in which verbal working memory may compensate for declines in 
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visuospatial working memory (Bo, et al., 2012). Neurochemical changes and a loss in 

striatal volume leading to degrading cortico-striatal networks may be additional factors 

related to impairments in learning more complex sequences (King, et al., 2013; Rieckmann 

& Backman, 2009; Seidler et al., 2010). Further cognitive declines may be caused by 

decreased function in the prefrontal cortex (Aizenstein et al., 2006; Daselaar, et al., 2003) 

that may be modulated by the dopamine projections from the striatum to the prefrontal 

cortex (Braver & Barch, 2002; Braver et al., 2001), however some studies have found no 

differences in brain activations between young and typically aging adults (Daselaar, et al., 

2003). In addition to an increased cognitive load when learning higher order sequences, 

studies have also found that providing instructions to explicitly search for a sequence 

hinders implicit learning in typically aging adults (D. V. Howard & Howard, 2001), but 

not young adults (Willingham & Goedert-Eschmann, 1999). This may suggest that in 

typically aging adults, explicit knowledge pushes the processing capacity to its limit, thus 

manifesting in impairments in implicit learning (Rieckmann & Backman, 2009; Salthouse, 

1996). 

Thus, behavioral and neuroimaging studies on the influence of aging on motor 

sequence learning collectively lead to ambiguous conclusions. It is important to elucidate 

these findings to characterize the relationship between typical aging and motor learning. 

 

Motor sequence learning in individuals with Parkinson’s disease  

Motor and cognitive deficits in Parkinson’s disease 

Parkinson’s disease (PD) is a progressive neurodegenerative disease exhibiting 

both motor and cognitive symptoms. The pathology present in PD, such as bradykinesia, 
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rigidity, and postural instability, is due to the degeneration of dopaminergic neurons in the 

substantia nigra pars compacta, a nucleus that is a part of the basal ganglia. Dopamine plays 

an important role in the regulation of movement and its depletion causes increased 

inhibitory outflow in the basal ganglia and thus causes slow movement (bradykinesia) and 

difficulties in the initiation of movement (Fahn & Jankovic, 2007). The effects of dopamine 

depletion are widespread in the brain due to the various cortico-striatal loops (Alexander, 

et al., 1986; Middleton & Strick, 2000a, 2000b). Thus, the regions that are affected in PD 

are not just the basal ganglia, but also cortical regions that play an important role in motor 

skill learning and areas related to cognition. For example, studies assessing cognitive 

control suggest that patients with PD are impaired at response inhibition (Aron & Poldrack, 

2006; Aron, Poldrack, & Wise, 2009; Mendes et al., 2012), category learning (Ashby & 

Ell, 2001b; Ashby & Maddox, 2005, 2011; Ashby & O'Brien, 2005; Filoteo & Maddoz, 

2007; Keri, 2003; Knowlton, et al., 1996) , and spatial working memory (Owen, Doyon, 

Dagher, Sadikot, & Evans, 1998).  

However, the relationship between dopamine and cognition is a complex one that 

is further complicated by dopaminergic medications. Studies have shown that a complex 

modulatory relationship exists between dopamine and performance in higher cognitive 

tasks, specifically through modulation of the prefrontal cortex (Braver & Barch, 2002; 

Seger, 2006b). It has been suggested that the relationship between dopamine and cognitive 

performance is an inverted-U, in which an optimum level of dopamine is required for 

optimum performance and excessive or insufficient levels impair performance (Cools, 

2011; Cools & D'Esposito, 2006; Fallon et al., 2015). Thus, cognitive impairments in 

patients with PD can be explained by the intake of dopamine medications. The depletion 
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of dopamine in PD is not prevalent throughout the basal ganglia (Fahn & Jankovic, 2007; 

Seger, 2006b), causing greater levels of dopamine with the intake of levodopa medications 

in certain areas than is typical. Thus, if the area that the task is associated with has a 

depleted or increased level of dopamine, performance in the task is expected to be impaired 

(Argyelan et al., 2008; Feigin et al., 2003; Fuhrer et al., 2014; Kwak, Mueller, Bohnen, 

Dayalu, & Seidler, 2010, 2012; Seo, Beigi, Jahanshahi, & Averbeck, 2010; Shohamy, 

Myers, Geghman, Sage, & Gluck, 2006). Surgical interventions through deep brain 

stimulation further confound the differential effects of dopamine on higher cognitive 

functions (Carbon & Eidelberg, 2006; Mure et al., 2012). 

Impairments in motor sequence learning in Parkinson’s disease 

Studies investigating impairments in motor sequence learning in patients with PD 

have found equivocal results possibly due to differences in methodologies, sequence types, 

disease severity, and effect of medications. However, the general conclusion is that implicit 

motor sequence learning is impaired in patients with PD (Fukuda, Edwards, & Eidelberg, 

2001; Gamble et al., 2014; Jackson, Jackson, Harrison, Henderson, & Kennard, 1995; 

Ruitenberg, Duthoo, Santens, Notebaert, & Abrahamse, 2015; Siegert, Taylor, Weatherall, 

& Abernethy, 2006; Wilkinson & Jahanshahi, 2007; Wilkinson, Khan, & Jahanshahi, 

2009), including SRT tasks without the motor component (Westwater, McDowall, Siegert, 

Mossman, & Abernethy, 1998), and under certain conditions, such as more complex 

sequences (Shin & Ivry, 2003; Smith & McDowall, 2006), perhaps in part due to a reduced 

working memory (Gabrieli, Singh, Stebbins, & Goetz, 1996). It has also been found that 

there is a trend towards degradation in performance and neural activity in PD as the disease 

progresses (Carbon, Reetz, Ghilardi, Dhawan, & Eidelberg, 2010) and thus impairment 
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may be a function of disease severity where those in the early stages of PD are relatively 

spared from impairment (Muslimovic, Post, Speelman, & Schmand, 2007; Stephan, Meier, 

Zaugg, & Kaelin-Lang, 2011). Results are further confounded by differential effects of 

dopamine on learning and activation of cortical regions (Argyelan, et al., 2008; Cools, 

2011; Cools & D'Esposito, 2006; Feigin, et al., 2003; Kwak, et al., 2010, 2012; Seo, et al., 

2010; Tremblay et al., 2010) and surgical interventions through deep brain stimulation 

(Carbon & Eidelberg, 2006; Mure, et al., 2012). 

However, other studies have reported no impairments in the SRT task and artificial 

grammar (Hayes et al., in press; Helmuth, Mayr, & Daum, 2000; Nagy et al., 2007; P. J. 

Reber & Squire, 1999a; Smith, Siegert, & McDowall, 2001; Wilkinson & Jahanshahi, 

2007) as long as patients with PD are provided more time to learn, which may be a result 

of compensation. To investigate possible compensatory mechanisms, Mentis et al. (2003) 

conducted a PET study in which early stage patients with PD and typically aging adults 

performed a center out task consisting of a sequence that participants determined through 

trial and error. In order to prevent potential confounds from differing levels of performance, 

the patients with PD and control participants were matched based on performance level. 

Over time, the patients with PD were able to perform at a level similar to that of typically 

aging adults, but the PET results indicated that patients with PD exhibited four times 

greater activation of the cerebellum to reach the same level of performance as typically 

aging adults (Mentis, et al., 2003). This suggests that in certain conditions (e.g., short fixed 

sequences) and given enough time, early stage patients with PD can achieve greater 

performance levels through a compensation mechanism via the cortico-cerebellar system. 

PD have also exhibited increasingly greater activation in premotor cortex, parietal cortex, 
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and SMA while performing more complex sequential finger movements suggesting that 

patients with PD compensate for degradations in cortico-striatal circuits by engaging more 

cortical regions (Catalan, Ishii, Honda, Samii, & Hallett, 1999; Fukuda, et al., 2001; 

Nakamura et al., 2001). Further evidence to support compensations via the cerebellum is 

from studies that show direct connections between the basal ganglia and cerebellum 

(Bostan, Dum, & Strick, 2010; Bostan & Strick, 2010). Additional compensatory 

mechanisms have been suggested via the hippocampus (Carbon, et al., 2010).  

Thus, studying PD provides a unique opportunity to gain an understanding of the 

influence of an impaired cortico-striatal circuit on motor sequence learning. Determining 

whether certain mechanisms are used to compensate for striatal dysfunction can help 

uncover strategies that can be facilitated through new treatments. In addition, by 

developing a global network perspective on functional interactions, the connectivity 

between brain regions can be explored to further the understanding of neural underpinnings 

of motor sequence learning and the nature of impairment in aging and Parkinson’s disease 

to develop novel strategies for interventions. 

 

Understanding brain dynamics using EEG 

 Electroencephalography (EEG) is a non-invasive and relatively inexpensive 

neuroimaging technique that records electrical brain activity at the cortical level. It allows 

for the recording of cortical activity in various environmental and task constraints, while 

not being excessively taxing on participants, a particularly important consideration for 

clinical populations. Excellent temporal resolution makes EEG a valuable technique for 
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characterizing brain dynamics during motor sequence learning, by tracking changes 

occurring during early and late learning.  

EEG in aging and Parkinson’s disease 

 The alpha band is thought to reflect cognitive and memory performance and is 

synchronized in the resting state, but is attenuated when engaging in a cognitive task. The 

synchronization is a result of a large number of neurons oscillating in the same phase and 

frequency that is disrupted during a cognitive task in which different networks oscillate at 

different frequencies, resulting in suppression of the alpha band. Alpha power can be 

influenced by a number of factors, such as skull thickness, cerebrospinal fluid volume, 

methodology and data acquisition, arousal, and age. In adults over the age of 50 years, 

there is a slowing of alpha, a general increase in frequencies of less than 7Hz and decrease 

in frequencies greater than 7 Hz, and the suppression of alpha tends to decrease with age 

(Bonstrup, Hagemann, Gerloff, Sauseng, & Hummel, 2015; Klimesch, 1999; Polich, 1997; 

Rossini, Rossi, Babiloni, & Polich, 2007).  Similar results have been found in patients with 

neurological disorders. 

Patients with PD exhibit an abnormal pattern of synchronization that appears to 

underlie symptoms such as tremor and bradykinesia (P. Brown, 2003; Schnitzler & Gross, 

2005). Studies have found abnormally high oscillations in the globus pallidus externus 

(GPe), the subthalamic nucleus (STN), and the globus pallidus internus (GPi) that were 

found in patients exhibiting tremor, but not in those without tremor (Levy, Hutchison, 

Lozano, & Dostrovsky, 2000). These results are consistent with the alleviation in 

symptoms seen in participants after deep brain stimulation (DBS) surgery in which 

electrodes provide high frequency stimulation of the GPi or STN. This stimulation may 
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eliminate or at least reduce the high oscillatory activity in the basal ganglia. Local field 

potential (LFP) recordings from patients with PD suggest that dopamine depletion causes 

abnormal oscillations of certain frequencies with suppression of those that facilitate 

movement and enhancement of those that suppress movement. Frequencies that are less 

than 10 Hz project to the cortex with movement suppression area pathologically enhanced, 

frequencies between 11-30 Hz, that fall in the beta band, are projected from the cortex to 

the STN and suppress movement are also enhanced, and frequencies greater than 70 Hz 

(gamma band) facilitate movement, but are suppressed (Hutchison et al., 2004; Wichmann, 

Bergman, & DeLong, 1994). These findings are supported by studies that have found that 

with dopamine medication, patients with PD had greater power in the STN and greater 

coherence between the STN and GPi with movement facilitating frequencies of 70-85 Hz 

(Cassidy et al., 2002; Williams et al., 2002). Interestingly, this relationship was seen in the 

coherence between the STN and cortical EEG as well, suggesting a functional network 

between STN, GPi, and cortex that facilitates movements. An increase in beta activity is 

thought to interfere with the execution of movement, leading to suppression of voluntary 

movements in PD (Schnitzler & Gross, 2005). The symptom of tremor also appears to be 

related to abnormally synchronized oscillations that includes the cortico-striatal, cortico-

cerebellar, and primary motor cortex (Ahn, Zauber, Worth, Witt, & Rubchinsky, 2015; 

Bergman & Deuschl, 2002; Hellwig et al., 2000; Timmermann et al., 2003).  

 

Summary of knowledge gaps 

Presently, most motor sequence learning studies using the SRT task use fixed 

sequences; however, fixed sequences do not reflect the motor sequence learning involved 
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in performing complex motor behaviors in our everyday lives. These motor behaviors are 

subject to changing individual, task, and environmental constraints that one must adapt to. 

Probabilistic sequences are a better approximation of the type of motor sequence learning 

we are required to do outside of the laboratory. Thus, our first step is to determine the 

learning and performance of probabilistic sequences in typical young adults within the SRT 

paradigm. Our next step is to determine whether typically aging adults are impaired at 

learning probabilistic sequences and whether they differ from learning fixed sequences. 

Lastly, we determine whether basal ganglia dysfunction has an effect on learning 

probabilistic and fixed sequences by assessing patients with Parkinson’s disease and 

investigate cortico-cortical relationships via electroencephalography recordings. 

Generally, motor sequence learning studies assess learning by calculating the mean 

or median for each block and compare these values across the age groups using analyses 

of variance. This ignores the dynamic changes that occur within each block, which could 

provide insight into how learning occurs and whether the learning process is different 

between the groups. Simply considering the mean reaction times only provides a cursory 

view of the learning and performance. To address this issue, we took a closer look at the 

changes in response time that occur within and between blocks and how they differed 

between sequence type and between age groups. In addition, a deeper look at the statistical 

analyses are also important. Most studies conduct ANOVAs on the means across blocks 

and groups without delving deeper into the contrasts of interest. This only produces a global 

score that may not reflect differences between blocks and groups. Furthermore, additional 

statistical methods may prove useful in capturing both within and between individual 

differences and in characterizing age-related differences.  
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Finally, this dissertation also addresses knowledge gaps in the changes in brain 

dynamics while learning a sequence in young adults, typically aging adults, and patients 

with Parkinson’s disease. While the neural correlates have been extensively studied, few 

studies have looked at the time course of motor sequence learning. Thus, there is a need 

for further research into changes in cortico-cortical connectivity while performing a motor 

sequence learning task using a technique that provides the temporal resolution necessary 

to provide greater insight into both behavioral differences and neural underpinnings of 

motor sequence learning. 
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Chapter 3 (Study 1): Probabilistic sequences offer a unique window on 
motor sequence learning1 

 

Introduction 

Motor sequences are typically acquired implicitly, such that there is no conscious 

knowledge that a sequence is being learned (A. S. Reber, 1967a, 1989a; Seger, 1994; 

Stadler & Frensch, 1998). The implicit motor sequence learning literature has prominently 

used fixed sequences with deterministic structures; however, these are not conducive to 

understanding how learning occurs in real life where we continuously make statistical 

associations between events unconsciously that change in a dynamic environment 

(Cleeremans & McClelland, 1991; Cleeremans, et al., 1989; A. S. Reber, 1989a). Thus, 

fixed sequences are inadequate to assess the adaptability required to learn motor skills.  

The most commonly used paradigm to assess implicit motor sequence learning in 

the laboratory is the serial reaction time (SRT) task (Nissen & Bullemer, 1987). In this 

task, participants respond to the location of a stimulus on a computer screen by pressing 

the corresponding key as quickly and accurately as possible. Participants are unaware that 

the stimuli are presented in a pre-determined repeating sequence. Learning is inferred from 

a progressive reduction in the reaction time during the learning blocks (Nissen & Bullemer, 

1987; Robertson, 2007). Traditionally, a fixed order has been used to create the sequences 

of 10 or 12 items that repeat 10 times in a block (e.g., 10 repetitions of 3412432142). This 

repetition contributes to the likelihood that participants become consciously aware of the 

presence of a sequence, thus changing the nature of learning from implicit to explicit (D. 

V. Howard, et al., 2004; J. H. Howard & Howard, 1997; Nissen & Bullemer, 1987; Reed 

                                                             
1 This study will be submitted for publication with the following authors: Prashad, S., Du, Y, & Clark, J. E. 
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& Johnson, 1994; Song, et al., 2007b). In order for learning to remain implicit, the 

underlying stimulus structure must be complex enough to escape conscious awareness (A. 

S. Reber, 1989a), a condition that does not appear to hold for fixed sequences.  

Previous studies have suggested that sequence structure plays a critical role in 

learning (Bennett, et al., 2007; Cleeremans, et al., 1989; Curran, 1997; DeCoster & 

O'Mally, 2011a; Dennis, et al., 2006; D. V. Howard, et al., 2004; Jimenez, Mendez, & 

Cleeremans, 1996; A. S. Reber, 1967a, 1989a; P. J. Reber & Squire, 1999b; Reed & 

Johnson, 1994), but few have used complex probabilistic sequences (Cleeremans & 

McClelland, 1991; Peigneux et al., 2000; Schvaneveldt & Gomez, 1998; Song, et al., 

2007b; Stadler, 1992). Cleeremans and colleagues (1991) used a finite state grammar to 

create the probabilistic sequence for their SRT task and found that participants had a 

significantly faster reaction time for predictable trials compared to unpredictable trials, 

suggesting learning of the finite state grammar rules (Cleeremans & McClelland, 1991; 

Jimenez & Mendez, 1999; Jimenez, et al., 1996; Peigneux, et al., 2000). Schvaneveldt and 

colleagues (1998) used a different approach in which two four-item sequences appeared 

with a probability of either 80% or 20% and found that reaction times were faster for the 

probable transitions compared to the improbable transitions. Howard and colleagues have 

modified the SRT task into a more complex alternate serial reaction time (ASRT) task in 

which each item of a fixed sequence occurs in alternation with a random item (e.g., a 

sequence 1-2-3-4 would appear as 1-r-2-r-3-r-4, where r is randomly picked from one of 

the four items) and found that higher frequency triplets have a faster reaction time 

compared to lower frequency triplets (Feeney, et al., 2002; D. V. Howard & Howard, 2001; 

J. H. Howard & Howard, 1997; Song, Howard, & Howard, 2007a; Song, et al., 2007b). 



37 
 

Although different types of probabilistic sequences were used in these studies, the results 

indicate that participants are sensitive to probabilities between stimuli as inferred from 

faster reaction times to stimuli occurring with greater probability, but it is unclear how 

probabilistic sequences compare directly with fixed and randomly ordered stimuli in the 

SRT paradigm. In addition, to our knowledge, no studies in the SRT paradigm have 

characterized the learning processes of sequences or investigated whether participants are 

able to transfer their learning, an essential component of assessing motor learning that 

provides an evaluation of the effectiveness of learning and whether performance can be 

maintained in a different context or variation of the skill (Newell, 1991; Newell & Shapiro, 

1976). 

Thus, the aims of this study are to: 1) directly compare fixed and probabilistic 

sequences in a modified SRT task; 2) characterize the underlying learning processes of the 

two sequence types; and, 3) investigate the transfer of learning from the learned sequence 

to a novel sequence. For this task, we generated sequences using a first-order transitional 

probabilistic structure, in which the present state influences the next state based on 

transitional probabilities between the states that are defined in a transitional matrix 

containing the probabilities associated between each pair of states. Over numerous trials, 

the participant is expected to unconsciously learn the probabilistic rules underlying the 

sequence (e.g., 2 is most likely to be followed by 6) and exhibit a decreased reaction time. 

A completely randomized sequence condition was included to characterize performance 

changes that would result from the motor component of the task independent of learning 

the sequence structure. Thus, the experimental design compared learning performance 

between a fixed, a probabilistic, and a completely random sequence across four blocks of 



38 
 

learning trials followed by a block in which stimuli occurred in a random order and a 

transfer block to assess transfer of learning to a novel sequence. 

 

Materials and methods 

Participants 

Thirty female right-handed adults were randomly assigned to one of three groups: 

fixed sequence (FX; mean age: 20.0 ± 1.18), probabilistic sequence (PB; mean age: 20.5 ± 

1.25), and randomly ordered stimuli (RD; mean age: 20.2 ± 1.37). All participants 

completed the Global Physical Activity Questionnaire (Armstrong & Bull, 2006), a spatial 

version of the n-back test to assess working memory (Jaeggi, Buschkuehl, Jonides, & 

Perrig, 2008), and a computer skills questionnaire to assess their familiarity with the 

number pad on the computer keyboard (see Table 1). Participants were also screened for 

neurological and motor impairments through a health questionnaire. No significant 

differences were found between the groups in age (F(2,29) = 0.40, p = 0.7), physical 

activity (F(2,29) = 0.91, p = 0.4), or n-back score (F(2,29) = 0.86, p = 0.4). 

Serial reaction time task 

Participants were seated in front of a computer monitor (21”) and keyboard (keys 

size 13x15mm, keys are 6mm apart vertically and horizontally and 8mm apart diagonally). 

A modified SRT task was used that consisted of nine white squares in a 3×3 matrix on the 

computer screen (37x37mm each). Participants placed the index finger of their right hand 

on the center button on the number pad of the keyboard. The relationship between the 

squares on the screen and the buttons on the number pad was spatially compatible, i.e., the 

top right square corresponded to the top right button. At the beginning of each trial, one of 



39 
 

the eight squares turned blue and the participant pressed the key that corresponded to the 

location of the stimulus and then returned to the home position. After the participant 

pressed a key, a response-to-stimulus interval between 300-1000ms was selected randomly 

for each trial to prevent participants from anticipating the appearance of the subsequent 

stimulus as well as to prevent any confounding effects from the length of the response-to-

stimulus interval (Willingham, Greenberg, & Thomas, 1997). No visual feedback was 

given to participants as a wooden board blocked vision of their finger position (see Figure 

3.2).  

Participants were randomly assigned to either a fixed (FX) 16-item second order 

conditional sequence (Reed & Johnson, 1994),  probabilistic sequence (PB), or were 

presented with stimuli in a random order (RD). The probabilistic sequence was created 

based on a first-order transitional probabilistic structure with underlying probabilities 

associated with each stimulus. The transitional matrix was created such that the generated 

sequence resembled a deterministic, but not repeated, sequence (e.g., if stimulus 2 occurs, 

there will be a 60% probability that the next stimulus will be 6, a 30% probability that the 

next stimulus will be 8, and a 2% probability that the next stimulus will be 1, 3, 4, 7, or 9). 

Participants were not informed that a sequence existed regardless of which group they 

assigned to. The probabilistic and randomly ordered stimuli were constrained such that the 

same stimuli were not repeated one after the other and that each stimulus appeared an equal 

number of times in each block (20 times per block). 
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Figure 3.1: The modified serial reaction time (SRT) task. Participants placed their right index finger on the 
home position (H). On a given trial, one of the 8 locations turned blue and the participant pressed the 
corresponding button on the number keypad and then returned to the home position. 

 

 

 

Figure 3.2: Experimental Setup. Participants were seated in front of a computer monitor with their hand 
placed on the number keypad. Participants did not receive any visual feedback and could not see their hands. 
Participants’ right hand was wrapped with athletic pre-wrap to prevent the use of the other fingers. 

 

There were a total of eight blocks for all groups, each consisting of 160 trials (see 

Figure 3.3). The first block was a baseline block (B0), consisting of 160 trials in which the 

stimuli appeared in a random order. The next four blocks (B1-4) were the learning blocks 

consisting of the fixed or probabilistic sequence in which the sequence was repeated 10 

times each. Block 5 (B5) consisted of 160 trials of stimuli occurring in a random order and 

Block 6 (B6) consisted of 10 repetitions of the assigned sequence. An increase in response 

time in B5 and decrease in B6 would indicate learning (Robertson, 2007). Lastly, Block 7 

(B7) consisted of 10 repetitions of a different sequence that was constructed from the same 

underlying structure as the learned sequence to assess transfer of learning. If the response 
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times decrease from B5 to B7, it would suggest that participants were able to transfer their 

learning. A unique sequence was assigned to each participant to ensure that the results are 

not intrinsic to the sequence used, but can be generalized to all sequences (DeCoster & 

O'Mally, 2011a). In the RD group, stimuli occurred in a random order in all eight blocks. 

Participants were given a two-minute mandatory break between each block.  The 

experiment was performed using Presentation® software (Version 18.1, 

www.neurobs.com). 

 

 

Figure 3.3: The experimental paradigm used for the three groups. All groups started with a baseline (B0), 
then the fixed and probabilistic groups performed the learning blocks (B1-4) and ended with a random block 
(B5) followed by another sequence block (B6) and a transfer block (B7). Each block consisted of 160 trials. 
Participants were given a two-minute break between each block. Participants in the fixed and probabilistic 
groups were given a unique fixed or probabilistic sequence, respectively. Participants in the random group 
were presented with stimuli in a random order for all blocks. 

 

The participants’ response time (amount of time taken to press the corresponding 

button after the stimulus was presented) and accuracy were recorded for each trial. It is 

important to emphasize that response times, and not reactions times, were recorded. Thus, 

the movement time (amount of time taken to move the index finger from the home position 

to the corresponding button after initial reaction) was embedded in the recorded response 

time.  
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Posttest 

All participants completed a posttest after the completion of the eight blocks to 

determine if learning was implicit. First, participants were asked the following question: 

“The stimulus movement is best described as:” with the following options: “a) Random; b) 

Some positions occurred more often than others; c) The movement was often predictable; 

d) The same sequence of movements would often appear; and e) The same sequence of 

movements occurred throughout the entire experiment” (Curran, 1997). 

Second, participants completed a recognition test to assess explicit recall of the 

sequence (Destrebecqz & Cleeremans, 2001) consisting of two parts: in the first part, 

participants were presented with six-item chunks from their assigned sequence as well as 

random chunks and were asked to rate how confident they were that they had seen that 

chunk before from a scale of 1-5 (where 1 was “Confident that I have not seen it before” 

and 5 was “Confident that I have seen it before”). In the second part, participants were 

presented with the entire 16-item sequence as well as other random sequences and they 

were asked to rate them on the same scale. 

Data analysis 

The response times were trimmed according to the individual participant’s mean 

and standard deviation to eliminate any outliers. Any response times greater or less than 

2.5 standard deviations were excluded from the analysis (Ratcliff, 1993; Whelan, 2008). 

Mean response times were calculated for each block and were averaged across participants 

in each group. Learning was measured through a decrease in response time from B1 to B4, 

an increase from B4 to B5 (stimuli in random order) and a decrease from B5 to B6 (stimuli 
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in assigned sequence). Transfer of learning was inferred if there was a significant decrease 

between B5 and B7 (stimuli in different sequence of same structure as assigned sequence).  

Variability was calculated within-subject around the individual participant’s mean. 

Overall variability was calculated by collapsing the standard deviations for all the blocks 

for each subject and then averaging for each group.  

Mean response times for each sequence repetition within a block were also 

calculated and averaged across participants to uncover dynamic changes in response time 

within and between blocks. The amount of learning within a block was determined by 

performing a linear regression on the mean sequence repetitions. A negative slope 

(reducing response times) within blocks indicated online learning and between blocks 

indicated offline learning. Mean response times for each stimulus location also were 

calculated for each block and averaged across participants in each group to determine if 

stimulus location had an effect on the response time.   

A mixed factorial analysis of variance (ANOVA) was used to compare differences 

in response time and variability between the blocks and groups. One-way ANOVAs were 

used to compare differences between online and offline learning. Bonferroni post-hoc tests 

were used to decompose any significant effects. Separate pairwise comparisons were 

conducted on the contrasts of interest (B1 vs. B4, B4 vs. B5, B5 vs. B6, and B5 vs. B7) to 

assess learning and transfer. Statistical significance was defined at p < 0.05. The data were 

processed using custom scripts written in MATLAB version 8.4 (Mathworks, Natick, MA) 

and SPSS Statistics 22 (IBM, Armonk, NY). 
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Results 

Accuracy 

All groups exhibited high levels of accuracy with 2% or fewer errors. Thus, 

accuracy cannot be used as a measure of learning in this task and was not analyzed further. 

Low error rates are consistent with findings from previous studies (Robertson, 2007; 

Willingham, Nissen, & Bullemer, 1989). 

Mean response time 

A two-way mixed factorial (3 x 8) ANOVA on Sequence Type (Fixed, 

Probabilistic, Random) x Block (0-7) on the response times with Block as the within 

subject variable indicated only a main effect for Block, F(7,189) = 37.0, p < 0.001. There 

was no main effect of Sequence Type, F(2, 27) = 2.4, p = 0.1, and no significant interaction, 

F(14,189) = 0.73, p = 0.7. Pairwise comparisons between contrasts that were determined a 

priori revealed significant differences between B1 and B4 in FX (p = 0.001), PB (p < 

0.001), and RD (p = 0.03) suggesting a significant improvement in the motor component 

of the task. There were also significant differences between B4 and B5 in FX (p = 0.002), 

but not in PB (p = 0.8) or RD (p = 0.2). This indicates that in FX, the occurrence of random 

stimuli resulted in increased response times, while the response times in the PB and RD 

groups stayed the same. However, significant differences appeared between B5 and B6 in 

FX (p = 0.004) and approaching significance in PB (p = 0.06), but not RD (p = 0.2) 

suggesting that in both FX and PB, the response times decreased when the stimuli occurred 

in the learned sequence, indicating that sequence learning did occur in PB (see Figure 3.4). 

These results suggest that both FX and PB groups were able to learn their assigned 
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sequence, but there was a significant motor component in this task as exhibited by the RD 

group. 

 

 

Figure 3.4: Mean response time of each block for all three groups. Error bars indicate standard error. The FX 
and PB groups exhibit learning of the sequences and the RD group exhibits a significant improvement in the 
motor component of the task. 
* Indicates significance level of p < 0.05; + indicates significance level of p < 0.08.  

 

Transfer of learning  

 Transfer of learning was assessed by comparing B5 (stimuli in a random order) and 

B7 (stimuli in a novel sequence created using the same underlying structure as the learned 

sequence). Response times in B5 were significantly slower than in B7 in FX (p = 0.03), 

approaching significance in PB (p = 0.06), and not significant in RD (p = 0.1). This 

indicates that the FX and PB groups were able to transfer their learning to a new sequence 

as the response times decreased when the transfer sequence was presented. 
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Variability in response time  

Overall variability was calculated by collapsing all the blocks for each group. There 

was no significant difference between the groups in overall variability as determined by a 

one-way ANOVA (F(2,27) = 1.09, p = 0.4). However, the measure of overall variability 

does not provide insight on how performance variability changes with learning. A 

reduction in variability is an important characteristic of motor learning (R. G. Cohen & 

Sternad, 2009; Wulf & Schmidt, 1997), but to our knowledge, no studies have examined 

changes in variability in the SRT task.  

A two-way mixed factorial (3 x 8) ANOVA on Sequence Type (Fixed, 

Probabilistic, Random) x Block (0-7) on the standard deviations of the response times with 

Block as the within subject variable indicated a main effect of Block, F(7,189) = 13.4, p < 

0.001, but no main effect of Sequence Type, F(2,27) = 1.09, p = 0.4 or interaction, 

F(14,189) = 0.41, p = 1.0. Pairwise comparisons between contrasts that were determined a 

priori revealed significant differences between B1 and B4 in FX (p = 0.03) and PB (p = 

0.05), but not in RD (p = 0.6). This reduction in variability for the fixed and probabilistic 

sequence groups, but not the random group is consistent with previous literature that 

variability in motor performance decreases with learning. Since there was no sequence to 

be learned in the random group, the variability did not change. In addition, significant 

differences were found between B5 and B6 in FX (p = 0.03), but not for PB (p = 0.1) or 

RD (p = 0.8). No other significant differences were found for any of the groups for pairwise 

comparisons between B4 and B5.  
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Figure 3.5:  Within subject variability across blocks for the fixed (FX), probabilistic (PB), and random (RD) 
groups. Error bars indicate standard error. The FX and PB groups exhibited a significant decrease in 
variability in the learning blocks, but the RD group did not.  
* Indicates significance level of p < 0.05.  

 

Dynamic changes in response time within and between blocks 

The mean response time of each sequence repetition within each block was 

calculated to investigate the dynamic changes in the response times within and between 

blocks. Since the sequence is repeated 10 times in each block, this analysis yielded 10 

points per block (see Figure 3.6). Both FX and PB groups exhibited within and between 

block trends. Firstly, within each block in the FX group, the performance stayed constant 

overall (response times were about the same at the beginning and end of block) for B1-7 

(all p > 0.1). B0 exhibited a decrease in response times (p = 0.03) that may be related to 

practice effects. However, the PB group exhibited deteriorating performance within some 

blocks as they started at a lower response time at the beginning of the block, but ended at 
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a higher response time at the end of the block (B2-3, both p < 0.05, B4, p = 0.09, and B7, 

p = 0.08), suggesting that participants in the PB group were unable to maintain their 

performance within some blocks. Secondly, for both FX and PB, blocks start with better 

performance (lower response time) than that of the end of the previous block. This trend is 

greater for the PB group (all p < 0.05) than FX (B1-2, p = 0.089, B2-3, p = 0.01, B5-6, p = 

0.08). This suggests that the learning continued during the breaks and resulted in better 

performance at the beginning of the next block, particularly in the PB group. No overall 

trends were found in the RD group. 

 

 

Figure 3.6: Mean response time of each sequence repetition for the three groups. Shading represents 
standard error. The FX group stays at a similar performance level within each block; however, the PB 
group deteriorates in performance. In addition, for both FX and PB, each block begins at a better 
performance level than the level that the previous block ended at. The RD group does not exhibit any 
overall trends.  

 

Online and offline learning 

To further investigate and quantify online (within block) learning, a linear 

regression was performed on the mean response times for each sequence repetition for each 

block (see red linear fit lines in Figure 3.6). In addition, a linear fit was performed on the 

last five sequence repetitions and the first five sequence repetitions of the subsequent block 
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to investigate offline (between block) learning. The averages of the online and offline 

learning slopes were calculated for each group (see Figure 3.7). A negative slope (reduction 

in response times) indicates learning.  

There was a significant difference in online learning between the groups as 

determined by a one-way ANOVA on the slopes, F(2,27) = 5.19, p = 0.012. A Bonferroni 

post-hoc test revealed that the PB groups exhibited less online learning than the FX group 

(approaching significance at p = 0.063) and the RD group (p = 0.016), suggesting that 

different processes underlie the learning of the fixed and probabilistic sequences. This 

difference may be due to the deteriorating performance observed within blocks exhibited 

in the PB group. There were no differences between online learning in the FX and RD 

groups (p = 1.00).  

There were no significant differences in offline learning between the groups as 

determined by a one-way ANOVA (F(2,27) = 1.79, p = 0.2). However, the mean slopes of 

the FX group and the PB group were significantly different from a slope of zero (both p < 

0.01), while those of the RD group were not (p = 0.4). These findings suggest that both the 

FX and PB groups exhibited offline learning, but the RD group did not.  
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Figure 3.7: The learning slopes for online and offline learning. Error bars indicate the SE.  Negative values 
indicate greater learning (greater reduction in response time). There were significant differences in online 
learning between the PB and RD groups (p = 0.02) and approached significance between the PB and FX 
groups (p = 0.06). There were no significant differences between the groups in offline learning.  

 

Effect of stimulus location on mean response times 

In order to determine whether the stimulus had an effect on performance, the 

response times were parsed based on the location of the stimulus. Indeed, the stimuli 

occurring diagonally from the home position (the four corners) had greater response times 

than those that were straight up and down or side-to-side (non-diagonal locations). To 

investigate this further, the mean across the diagonal locations and the mean across the 

non-diagonal locations were calculated for each group (see Figure 3.8). A two-way 

repeated measures ANOVA on Stimulus Location (Diagonal, Non-diagonal) x Block (0-

7) on the response times was conducted on each group separately.  

In the FX group, there was a main effect of Block, F(7,63) = 28.6, p < 0.001, a main 

effect of Stimulus Location, F(1,9) = 28.7, p < 0.001, and a significant interaction, F(7,63), 

p = 0.05. A post hoc analysis using the Bonferroni correction revealed significant 

differences between B1 and B4 (p = 0.001), B4 and B5 (p = 0.007), B5 and B6 (p = 0.001), 
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and B5 and B7 (p < 0.001) for the diagonal locations. However, for the non-diagonal 

locations, there was a significant difference between B1 and B4 (p = 0.001), B5 and B6 (p 

< 0.001), and B5 and B7 (p < 0.001), but not between B4 and B5 (p = 0.1), suggesting that 

stimulus location has a differential effect on the response times and the diagonal locations 

highlighted the differences between the blocks, particularly B4 and B5. 

In the PB group, there was a main effect of Block, F(7,63) = 13.4, p < 0.001 and a 

main effect of Stimulus Location, F(1,9) = 87.6, p < 0.001, but no significant interaction, 

F(7,63) = 1.02, p = 0.4, suggesting that while response times in the diagonal locations were 

significantly higher than those in the non-diagonal locations, there was no differential 

effect of location on the blocks. As expected, a post hoc analysis using the Bonferroni 

correction revealed a significant difference between B1 and B4 (p = 0.002), B5 and B6 (p 

= 0.008), and approaching significant difference between B5 and B7 (p = 0.07), but not 

between B4 and B5 (p = 0.7).  

The RD group also exhibited a main effect of Block, F(7,63) = 15.1, p < 0.001 and 

a main effect of Stimulus Location, F(1,9) = 35.0, p < 0.001, but no significant interaction, 

F(7,63) = 0.755, p = 0.6. A post hoc analysis using the Bonferroni correction revealed a 

significant difference only between B1 and B4 (p = 0.04). There were no significant 

differences between B4 and B5 (p = 0.274), B5 and B6 (p = 0.2), or B5 and B7 (p = 0.3). 
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Figure 3.8: Mean response times for diagonal stimulus locations and non-diagonal locations. In the FX 
group, there was no significant main effect of location, but there was a significant main effect of location 
for both the PB and RD groups. 

 

Posttest 

After the completion of the task, participants were asked how they would describe 

the stimulus movement in the task (see Methods for question).  No significant differences 

were found in the responses between the groups, F(2,29) = 0.231, p = 0.8. 

The posttest also required participants to rate their confidence on a scale of 1-5 

whether they had seen the presented chunk in any of the blocks. Some of the chunks 

presented to participants were from the assigned sequence and some were random chunks. 

In the FX group, there was no significant difference between the rating for the chunks from 

the sequence (mean rating = 2.95) and random chunks (mean rating = 2.95; F(1,19) = 0.00, 

p = 1.00). Similar results were found for the PB group (sequenced chunk mean rating = 

3.20; random chunk mean rating = 3.25; F(1,19) = 0.087, p = 0.8). A statistical analysis 

between chunks from the assigned sequence and random chunks was not run for the RD 

group because there was no assigned sequence for this group (all stimuli occurred in a 

random order). 
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Participants were also shown entire sequences, one of which was their assigned 

sequence. Here, differences emerged between the rating for the entire sequence and random 

sequences. In the FX group, the difference between the rating scale for the assigned (mean 

rating = 3.50) and the random sequences (mean rating = 2.67) approached significance, 

F(1,19) = 4.00, p = 0.06. For the PB group, there was no significant difference between the 

assigned (mean rating = 3.4) and the random sequence rating (mean rating = 3.17), F(1,19) 

= 0.34, p = 0.6. This suggests that participants who were assigned probabilistic sequences 

were not able to determine differences between their assigned sequence and other random 

sequences, but participants assigned to fixed sequences were able to differentiate between 

their sequence and other random sequences. Thus, the probabilistic structure is more likely 

to ensure implicit sequence learning and prevent contamination of the implicit motor 

sequence-learning paradigm by explicit learning.  

 

Discussion 

 By directly comparing probabilistic and fixed sequence structures, we 

demonstrated that both groups exhibited learning indicated by significant decreases in 

response time and variability. Both online and offline learning played a role in the learning 

of the fixed sequences; however, only offline learning contributed to the learning of the 

probabilistic sequence. Additionally, the stimulus location only influenced the response 

times for the probabilistic sequence. These results suggest that the probabilistic structure 

can be learned in the SRT paradigm, but is learned differently from fixed sequences.  
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Probabilistic sequences are representative of adaptive motor learning  

The probabilistic sequences used in this study were generated by a first-order 

transitional probabilistic structure. To our knowledge, these types of probabilistic 

sequences have not been used in the SRT task and it was unclear whether they would 

provide a useful alternative to the traditionally used fixed sequences and whether their use 

would reveal unique insights into sequence learning. As expected, the fixed sequence group 

exhibited a significant decrease in response time during the learning blocks (B1 and B4), 

an increase from B4 to B5, and a decrease from B5 to B6. This is consistent with results 

from previous SRT studies and indicates that sequence learning occurred. In addition, there 

was no significant difference between B6 and B7, indicating that the learning was 

transferred to a new sequence with the same underlying structure. The probabilistic 

sequence group also exhibited a decrease in response time through the learning blocks (B1 

to B4), a significant decrease from B5 to B6, and approaching significant difference 

between B5 and B7 indicating both learning of the sequence and transfer to a new sequence. 

However, the probabilistic sequence group did not exhibit a significant increase in response 

time from B4 to B5, suggesting that participants were not perturbed by the appearance of 

randomly ordered stimuli in B5. Previous studies have suggested that interference in 

performance may be due to incompatibility between task requirements (Bock, Schneider, 

& Bloomberg, 2001) and varied training experiences result in a greater rate of learning 

(Seidler, 2007, 2010). Similarly, the learning of probabilistic sequences provides a more 

varied experience than fixed sequences and thus may represent learning that is more 

resilient to interference.  
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Interestingly, the random sequence group also displayed a continuous decrease in 

response times in B1 to B4, but did not exhibit significant differences between B4 and B5 

or B5 and B6 indicating no sequence learning. Since there was no sequence to learn, this 

is not altogether surprising, but what was interesting was the appearance of learning as 

performance improved over the “learning” blocks (B1 to B4). Clearly, the modified SRT 

task we used here included a significant motor component that improved with practice 

contributing to the reduction in response time. This is an important insight into how we 

assess “learning” in an SRT task.  To assess learning, it is imperative to disentangle it from 

performance (Newell, 1991; Newell & Shapiro, 1976; Wulf & Schmidt, 1997). Learning 

is best assessed using retention or transfer tasks (Sanchez, Yarnik, & Reber, 2014) as well 

as decomposing response times into reaction and movement time.  

Different processes underlie the learning of fixed and probabilistic sequences 

While mean block times provide overall trends of the response time, they do not 

reflect dynamic changes within a block. These dynamic changes are important to examine 

the underlying learning processes. As our data demonstrate, online learning emerged as an 

important learning process in the fixed sequence group, but not in the probabilistic 

sequence group. Online learning is comprised of a stimulus-by-stimulus update of the 

sequence and is more computationally expensive than offline learning. In the probabilistic 

sequence group, online learning would require a continuous update of the estimation of the 

transitional probabilities between the items while performing the task (Laming, 1969). 

Since the sequence was complex, online learning and maintenance of performance during 

the block could be too computationally expensive and may explain the performance 

deterioration within the blocks. It is important to note that this deterioration does not appear 
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to be due to fatigue since performance in the fixed and random conditions would decline 

as well if fatigue were the cause. This decrement in performance also suggests that no 

online learning occurred in the probabilistic sequence group.  

The presence of offline learning in both the fixed and probabilistic groups suggests 

that the learning process continues to occur during the breaks and manifests as better 

performance in the subsequent block. Offline learning has previously been found to occur 

between sessions that are four hours apart (R. M. Brown & Robertson, 2007; Robertson, 

Pascual-Leone, & Miall, 2004). However, few studies have explored offline learning 

during breaks lasting minutes (Hotermans, Peigneux, Maertens de Noordhout, Moonen, & 

Maquet, 2006; Schmitz et al., 2009), but our results indicate that offline learning may occur 

even when the intervals between blocks are only two minutes long. Thus, the learning 

process underlying changes in the probabilistic sequences was offline learning, while the 

fixed sequences were learned via both online and offline processes.  

Spatial location of stimulus is important in probabilistic sequence learning 

It has previously been suggested that motor sequence learning may be better 

characterized by the learning of a sequence of response locations, rather than a sequence 

of stimuli (Willingham, 1999; Willingham, Wells, Farrell, & Stemwedel, 2000). This is 

particularly important for our modified SRT task as it had a greater spatial aspect than the 

traditional SRT task, and in turn, a greater motor component. The stimulus location had a 

differential effect on response time in the blocks for the fixed sequence group, but there 

was no significant interaction between stimulus location and blocks in the probabilistic or 

random groups. However, all groups exhibited a main effect of stimulus location, 

suggesting that additional parameters can be used to characterize learning. This result is 
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consistent with previous literature on SRT learning that participants must not only learn 

the sequence of stimuli perceptually, but also the sequence of motor responses, and the 

stimulus-response pairing of the sequence (Song, Howard, & Howard, 2008; Willingham, 

1999; Willingham, et al., 2000). Locations that are harder to reach (i.e., the diagonal 

locations) may be more important in uncovering differences between groups, particularly 

when studying aging or clinical populations. 

The differences in response time based on location highlight another factor 

prevalent in SRT studies. Most studies use multiple fingers for the response, with one 

finger on each response location; however, each finger may have different response times. 

We attempted to avoid this articulator effect in the modified version of the SRT task by 

requiring participants to use only their right index finger throughout the task. Due to the 

use of one finger, there was a strong motor component in the task. Since movement time 

appears to play an important role (Moisello et al., 2009), it is critical to decompose the 

response time into the reaction and movement times in future studies.  

Variability is an important measure to assess learning 

 While previous studies have focused on comparing response time means to assess 

learning, to our knowledge, no studies have analyzed the change in within-subject 

variability of response times. A reduction in motor performance variability has been a 

hallmark of motor learning (R. G. Cohen & Sternad, 2009; Wulf & Schmidt, 1997). Our 

results are consistent with previous findings as both fixed and probabilistic sequence 

groups exhibited a significant reduction in variability over the learning blocks, and the 

random group’s within-subject variability did not change as would be predicted if reduced 

variability were due to sequence learning.  
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Implications for future SRT studies 

 Probabilistic sequences are not only more representative of the adaptive motor 

learning process that occurs in daily life, but they also allow for the investigation of implicit 

learning processes that are less likely to be contaminated by explicit awareness of the 

sequence. Both of these characteristics offer a compelling reason to use probabilistic 

sequences for the study of motor skill learning while addressing methodological problems 

with wide implications for future SRT studies.  

The posttest questionnaire indicated that participants who were assigned 

probabilistic sequences were less likely to differentiate the assigned sequence from other 

sequences. This suggests that the knowledge of the sequence did not become explicit and 

that learning remained implicit throughout the task. This is particularly significant as 

participants can become aware of the sequence at different times in the learning process, 

thereby contaminating implicit learning in an unquantifiable manner. This contamination 

is particularly problematic when applying neuroimaging methods to the SRT framework 

to study the neural correlates of implicit learning since it is difficult to separate explicit and 

implicit learning using fixed sequences. Thus, probabilistic sequences also provide a 

method to better assess the neural underpinnings of implicit motor sequence learning. 

Conclusion 

These results suggest that probabilistic sequences may be more effective than fixed 

sequences to assess the adaptive learning required in learning motor skills in everyday life. 

This is an important finding that addresses a specific methodological problem that has wide 

implications for future SRT studies. While previous studies have used alternate methods to 

generate probabilistic sequences, such as a finite-state grammar, (Jimenez & Mendez, 
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1999; Jimenez, et al., 1996) and the alternate serial reaction time task (Feeney, et al., 2002; 

D. V. Howard & Howard, 2001; J. H. Howard & Howard, 1997; Song, et al., 2007a, 

2007b), no other studies have used first-order transitional probabilistic structures that result 

in more complex and entirely probabilistic sequences. The ability to manipulate 

probabilities and determine the effects of different types of sequences on motor sequence 

learning may be useful in more deeply understanding the learning processes. In addition, 

probabilistic sequences more accurately reflect the learning acquired in daily life, since 

ultimately our aim is to better understand motor skill learning that is adaptive to changes 

in the environment. 

To our knowledge, this is the first time that probabilistic sequences and fixed 

sequences have been directly compared, their learning processes have been analyzed, and 

transfer to a novel sequence has been assessed. Studying these underlying learning 

processes may be critical in understanding what types of sequences are learned best and 

how learning changes developmentally, with age, and in clinical populations. This paper 

represents an essential starting point towards a deeper understanding of this dynamic motor 

learning process. 

  



60 
 

Chapter 4  (Study 2): Typically aging adults are impaired at 
probabilistic motor sequence learning2 

 

Introduction 

Motor sequence learning is a ubiquitous process that pervades our activities of daily 

living in which our actions follow a sequence of movements performed with specific timing 

and order. As life expectancies increase, it is essential to investigate the relationship 

between motor learning and aging in order to enhance our understanding of the motor 

system, its age-related impairments, and the basis for interventions that address cognitive 

and motor deficits.  

The serial reaction time (SRT) task (Nissen & Bullemer, 1987) is the paradigm used 

most frequently in studying motor sequence learning and is particularly well suited to the 

study of those with potential motor impairments. In this task, participants respond to the 

location of a stimulus on a computer screen by pressing the corresponding button as quickly 

and accurately as possible. Participants are unaware that the stimuli are presented in a pre-

determined repeating sequence. Learning is inferred from a progressive reduction in the 

reaction time during the learning blocks (Nissen & Bullemer, 1987; Robertson, 2007) and 

an increase in reaction time to stimuli that occur in a random order. A repeating fixed 

sequence is most commonly used in the SRT paradigm, but is an inadequate reflection of 

learning in daily life, where fixed sequences are rarely part of our daily motor repertoire.  

Rather our motor behavior is adaptive and is dependent on statistical associations between 

                                                             
2 This study will be submitted upon revision for publication with the following authors: Prashad, S., Du, Y, 
& Clark, J. E. 
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events that are often made unconsciously and vary across task and environmental 

constraints (Cleeremans, et al., 1989; A. S. Reber, 1989b).  

We have shown previously, in Study 2 of this dissertation, that typical young adults 

are able to learn probabilistic sequences created using a first-order transitional probabilistic 

structure, in which the present state influences the subsequent state based on defined 

transitional probabilities between each pair of states. Over numerous trials, the participants 

unconsciously learned the probabilistic rules underlying the sequence (e.g., 2 is most likely 

to be followed by 6) and exhibit a decreased reaction time. These types of sequences have 

not been used in other studies and it is unclear whether typically aging adults would be able 

to learn these realistic, but complex sequences. 

Numerous studies have attempted to understand the effects of aging on learning 

motor sequences, but the results have been largely equivocal. Many studies have found that 

that typically aging adults exhibit similar levels of performance on the SRT task as young 

adults if the sequence is a simple sequence and not a complex higher order sequence 

(Bennett, et al., 2007; Bo & Seidler, 2010; Daselaar, et al., 2003; Dennis, et al., 2006; 

Feeney, et al., 2002; Fraser, et al., 2009; J. H. Howard & Howard, 2013; Nemeth & 

Janacsek, 2010; Seidler, 2007; Weiermann & Meier, 2012). However, this overall 

conclusion does not always hold (Bennett, et al., 2007). Curran (1997) investigated 

typically aging adults while learning sequences with different underlying structures. Both 

were fixed sequences, but one was a first-order conditional (FOC) sequence while the other 

was a more complex second-order conditional (SOC) sequence. Curran found that typically 

aging adults only exhibited learning in the SOC sequence, but not the FOC sequence 
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(Curran, 1997). This is a surprising finding as FOC sequences are less complex and thus 

should be more likely to be learned than the more complex SOC sequences.  

In contrast, while Dennis et al. (2006) also investigated the learning of FOC and 

SOC sequences in typically aging adults in an auditory SRT task, they found conflicting 

results in that typically aging adults were able to learn both FOC and SOC sequences. In 

addition, they also assessed learning of higher-order sequences with a somewhat 

probabilistic association, called the alternating serial reaction time (ASRT) task. In the 

ASRT, sequence trials alternated with random trails (e.g., 3r2r4r1 where the sequence is 

3241 and r is a random trial that could be any of the four stimuli). The authors found that 

typically aging adults were unable to learn the sequence in the ASRT task, suggesting that 

age-related impairments in the learning of higher order sequences. To further confound any 

conclusions, another study found that typically aging adults were in fact able to learn an 

even more complex sequence in an ASRT task in which a sequence trial was followed by 

two random trials (e.g., 3rr2rr4rr1) (Bennett, et al., 2007). 

These differences in the results may, in part, be due to the statistical analyses 

conducted. Most SRT studies assess learning by comparing the mean or median of each 

block across the age groups using ANOVA; however, means only provide a cursory 

assessment of the performance. In addition, there appears to be a very lenient definition of 

aging adults, with studies using large age ranges representing this age group. This presents 

two problems: 1) If a large age range, such as 60-80 years old is used within a study and 

the reaction times for these individuals is averaged to determine a group mean, the 

assumption is that a 60-year-old adult and an 80-year-old adult would perform at the same 

level and this assumption is likely to be incorrect, and 2) Studies may use different age 
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ranges, making it difficult to compare and assimilate results between studies. These factors 

may contribute to the large variability in results that exists in the implicit motor sequence 

learning and aging literature. In order to overcome these issues, we used cluster analysis to 

group the typically aging adults based on their reaction times, thus dividing participants on 

their behavior, rather than their age – a representation merely of their years since birth. 

A clearer understanding may also be attained from neuroimaging techniques that 

glimpse into the neural correlates of motor sequence learning. Neuroimaging studies have 

suggested that while the behavioral impairments may be small, there are larger underlying 

neurological changes that may explain the impairments through cognitive deficits in 

typically aging adults. For example, it has been suggested that declines in working memory 

with age may result in impaired motor sequence learning, particularly in the early stage 

(Bo, et al., 2011, 2012; Ghilardi, et al., 2003; Seidler, et al., 2012). Seidler and colleagues 

have further suggested differential effects for different types of working memory, in which 

verbal working memory may compensate for declines in visuospatial working memory 

(Bo, et al., 2012). Neurochemical changes and a loss in striatal volume leading to degrading 

cortico-striatal networks may be additional factors related to impairments in learning more 

complex sequences in older individuals (J. H. Howard & Howard, 2013; King, et al., 2013; 

Rieckmann & Backman, 2009; Seidler, et al., 2010). Further cognitive declines may be 

caused by decreased function in the prefrontal cortex (Aizenstein, et al., 2006; Daselaar, et 

al., 2003) that may be modulated by the dopamine projections from the striatum to the 

prefrontal cortex (Braver & Barch, 2002; Braver, et al., 2001). In addition to an increased 

cognitive load when learning higher order sequences, studies have also found that 

providing instructions to explicitly search for a sequence hinders implicit learning in 
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typically aging adults (D. V. Howard & Howard, 2001), but not young adults (Willingham 

& Goedert-Eschmann, 1999). This may suggest that in typically aging adults, explicit 

knowledge pushes the processing capacity to its limit, thus manifesting impairments in 

implicit learning (Rieckmann & Backman, 2009; Salthouse, 1996). Most of the 

neuroimaging studies investigating implicit motor sequence learning have been conducted 

using functional MRI which provides excellent spatial resolution, but poor temporal 

resolution. Given that reaction time (measured in milliseconds) is the variable used to infer 

learning, we propose that electroencephalography (EEG) is better suited to identify cortical 

activations and cortico-cortical connectivity associated with learning and impairments, as 

EEG provides excellent temporal resolution.  

Thus, the aims of this study are to: 1) determine whether typically aging adults can 

learn fixed and probabilistic sequences in our modified SRT task; 2) apply cluster analysis 

to reaction time series data to separate typically aging adults into groups based on their 

performance; and, 3) investigate the cortical dynamics of motor sequence learning using 

EEG to assess learning and any impairments.  

 

Methods 

Participants  

Twenty typical young adults (TY; mean age: 20.9 ± 1.18) and 42 typically aging 

adults (TA; mean age: 64.7 ± 7.36) were randomly assigned to either a fixed (FX) or a 

probabilistic (PB) sequence. All participants completed the Global Physical Activity 

Questionnaire (Armstrong & Bull, 2006), a spatial version of the n-back test to assess 

working memory (Jaeggi, et al., 2008), the Wisconsin Card Sorting Test to assess set-
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shifting (Grant & Berg, 1948; Mueller, 2010), and a computer skills questionnaire to assess 

familiarity with the number pad on the computer keyboard. Participants were also screened 

for neurological and motor impairments through a health questionnaire. The typically aging 

adults completed the Mini Mental State Exam (Folstein, Folstein, & McHugh, 1975) to 

screen for cognitive impairments. All participants were right handed. 

Serial reaction time task 

Participants were seated in front of a computer monitor (21”) and keyboard (keys 

size 13x15mm, keys are 6mm apart vertically and horizontally and 8mm apart diagonally). 

A modified SRT task was used that consisted of nine white squares in a 3x3 matrix on the 

computer screen (37x37mm each). Participants placed the index finger of their right hand 

on the center button on the number pad of the keyboard. The relationship between the 

squares on the screen and the buttons on the number pad was spatially compatible, i.e., the 

top right square corresponded to the top right button. At the beginning of each trial, one of 

the eight squares turned blue and the participant pressed the key that corresponded to the 

location of the stimulus and then returned to the home position. After the participant 

pressed a key, a response-to-stimulus interval between 300-1000ms was selected randomly 

for each trial to prevent participants from anticipating the appearance of the subsequent 

stimulus as well as to prevent any confounding effects from the length of the response-to-

stimulus interval (Willingham, et al., 1997). No visual feedback was given to participants 

as a wooden board blocked vision of their finger position (see Figure 4.2).
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Table 4.1: Participant information for all groups. 
Sequence 

Type 
Group Age 

(Mean 
± S.D.) 

Sex Physical 
Activity 
Level # 

2-back  
(% correct) 

Wisconsin Card Sorting Test MMSE 
Correct (%) Perservative 

Response 
(%) 

Perservative 
Errors (%) 

Non-
perservative 
Errors (%) 

FX TY 20.7  
± 1.12 

5 female;  
5 male 

6 high;  
4 moderate 

65.1  
± 19.4 

85.7  
± 2.29 

33.7  
± 3.10 

9.81  
± 1.38 

4.49  
± 2.27 

- 

TA 64.8 
± 7.27 

14 
female; 
8 male 

8 high; 
8 moderate; 
5 low 

35.2 
± 19.7 

69.1  
± 14.8 

31.3  
± 15.6 

14.6  
± 10.0 

16.4  
± 15.0 

29.4 
± 1.07 

PB TY 21.0  
± 1.24 

5 female;  
5 male 

8 high; 
2 moderate 

58.3 
± 17.8 

81.3  
± 9.13 

32.6  
± 6.35 

10.6  
± 1.68 

8.19  
± 9.60 

- 

TA 64.5 
± 7.45 

13 
female; 
7 male 

7 high; 
7 moderate; 
6 low 

44.6 
± 23.1 

72.2  
± 13.0 

34.1  
± 4.33 

13.8  
± 3.22 

12.1  
± 9.33 

29.7 
± 0.571 

# Physical activity levels were determined based on the GPAQ calculated from the number of days and amount of time spent engaged in physical activity.  
FX – fixed sequence group; PB – probabilistic sequence group; TY – typical young adults; TA – typically aging adults. 
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Figure 4.1: The modified serial reaction time (SRT) task. Participants placed their right index finger on the 
home position (H). On a given trial, one of the 8 locations turned blue and the participant pressed the 
corresponding button on the number keypad and then returned to the home position. 

 

 

Figure 4.2: Experimental Setup. Participants were seated in front of a computer monitor with their hand 
placed on the number keypad. Participants did not receive any visual feedback and could not see their hands. 
Participants’ right hand was wrapped with athletic pre-wrap to prevent the use of the other fingers. 

 

There were a total of eight blocks for all groups, each consisting of 160 trials (see 

Figure 4.3). The first block was a baseline block (B0), consisting of 160 trials in which the 

stimuli appeared in a random order. The next four blocks (B1-4) were the learning blocks 

consisting of the fixed or probabilistic sequence in which the sequence was repeated 10 

times each. Block 5 (B5) consisted of 160 trials of stimuli occurring in a random order and 

Block 6 (B6) consisted of 10 repetitions of the assigned sequence. An increase in response 

time in B5 and decrease in B6 would indicate learning (Robertson, 2007). Lastly, Block 7 

(B7) consisted of 10 repetitions of a different sequence that was constructed from the same 

underlying structure as the learned sequence to assess transfer of learning. If the response 

times decrease from B5 to B7, it would suggest that participants were able to transfer their 
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learning. A unique sequence was assigned to each participant to ensure that the results are 

not intrinsic to the sequence used, but can be generalized to all sequences (DeCoster & 

O'Mally, 2011a). In the RD group, stimuli occurred in a random order in all eight blocks. 

Participants were given a two-minute mandatory break between each block.  The 

experiment was performed using Presentation® software (Version 18.1, 

www.neurobs.com). 

 

Figure 4.3: The experimental paradigm used for the three groups. All groups started with a baseline (B0), 
then the fixed and probabilistic groups performed the learning blocks (B1-4) and ended with a random block 
(B5) followed by another sequence block (B6) and a transfer block (B7). Each block consisted of 160 trials. 
Participants were given a two-minute break between each block. Participants in the fixed and probabilistic 
groups were given a unique fixed or probabilistic sequence, respectively. Participants in the random group 
were presented with stimuli in a random order for all blocks. 

 

The participants’ reaction time (RT), movement time (MT), and accuracy were 

recorded. At the beginning of each trial, participants pressed the home button. The 

participants’ RT (time taken to release the home button after the stimulus was presented), 

MT (time between release of home button and pressing of the corresponding button), and 

accuracy were recorded for each trial (see Figure 4.4). Both RT and MT were recorded to 

address limitations in previous studies in which only the response times were recorded. 
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Figure 4.4: Diagram depicting reaction time (RT) and movement time (MT) recordings in the modified SRT 
task. At the start of a trial, the participant presses the home button (‘5’ on the number keypad). After a random 
interval (300-1000ms), a stimulus will appear on the screen (one of the eight locations will turn blue). The 
RT is the amount of time taken to release the home button and the MT is the time from the release of the 
home button to the pressing of the button that corresponds to the stimulus. The RT and MT are added to 
calculate the response times. 

 

Posttest 

All participants completed a posttest after the completion of the eight blocks to 

determine if learning was implicit. First, participants were asked the following question: 

“The stimulus movement is best described as:” with the following options: “a) Random; b) 

Some positions occurred more often than others; c) The movement was often predictable; 

d) The same sequence of movements would often appear; and e) The same sequence of 

movements occurred throughout the entire experiment” (Curran, 1997). 

Second, participants completed a recognition test to assess explicit recall of the 

sequence (Destrebecqz & Cleeremans, 2001) consisting of two parts: in the first part, 

participants were presented with six-item chunks from their assigned sequence as well as 

random chunks and were asked to rate how confident they were that they had seen that 

chunk before from a scale of 1-5 (where 1 was “Confident that I have not seen it before” 

and 5 was “Confident that I have seen it before”). In the second part, participants were 
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presented with the entire 16-item sequence as well as other random sequences and they 

were asked to rate them on the same scale. 

EEG recording and pre-processing 

EEG data were recorded from 64 electrodes mounted on an actiCAP and 

BrainVision actiCHamp Amplifier (Brain Products, LLC) using the international 10-20 

system. The sampling frequency was 1000Hz. The reference electrodes were placed on the 

left and right mastoids and AFz was the ground electrode. Channel impedances were kept 

below 10kΩ.  

Prior to the SRT task, four resting states were recorded from each participant. 

Participants were asked to sit as motionless as possible with their eyes open and then with 

their eyes closed for one minute each. Participants were also asked to view the task as the 

stimuli appeared but did not respond. Lastly, participants pressed each of the response 

buttons their right index finger in the clockwise direction at their preferred speed without 

any visual stimulus.   

Behavioral data analysis 

The RT and MT were trimmed according to the individual participant’s mean and 

standard deviation. Any values greater or less than 2.5 standard deviations were excluded 

from the analysis (Ratcliff, 1993; Whelan, 2008). Mean RT and MT were calculated for 

each block and were averaged across participants in each group. Learning was measured 

through a decrease in RT from B1 to B4, an increase from B4 to B5 (stimuli in random 

order) and a decrease from B5 to B6 (stimuli in assigned sequence). Transfer of learning 

was inferred if there was a significant decrease in RT between B5 and B7 (stimuli in 

different sequence of same structure as assigned sequence).  
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Cluster analysis 

 Cluster analysis is a technique used to structure large complex data sets into 

relatively homogenous groups without any predetermined criteria (Lloyd, 1982; 

MacQueen, 1967). Specifically, k-means clustering creates groups in which objects are as 

close to other objects in the same group as possible, while being as far away as possible 

from objects in other groups. In order to create a developmental landscape of the typically 

aging adults that was not based on age, the entire RT time series for the 42 typically aging 

adults were included in the k-means cluster analysis (each participant had 160 trials in 8 

blocks for a total of 1280 trials). The algorithm starts with initial estimates of the means of 

the k clusters, then categorizes each subject into the cluster with the closest mean and 

calculates new mean for each cluster. This is repeated until each subject is in a cluster with 

a minimum distance from the other subjects in the same cluster and the maximum distance 

from subjects in other clusters. Cluster analysis is a popular technique used in image 

analysis, including neuroimaging (Balslev et al., 2002) and bioinformatics, but to our 

knowledge, has not been used for behavioral data such as reaction time. 

EEG data analysis 

 The EEG data were preprocessed using EEGLAB (Delorme & Makeig, 2004). The 

data were re-referenced to the average of the mastoid electrodes (M. X. Cohen, 2014). Data 

were filtered using a FIR low-pass filter (cut off frequency: 55Hz, roll off 24dB/octave) to 

eliminate electrical noise. Independent component analysis (ICA) was used to remove eye 

artifacts, such as eye blinks, eye movements, and muscle artifacts.  

 Spectral power. Following preprocessing, the data were exported into MATLAB 

version 8.4 (Mathworks, Natick, MA). Data were segmented in one-second intervals with 
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respect to the RT (250ms before and 750ms after the RT) and Fast Fourier transforms (FFT) 

were applied in the alpha (8-12Hz) and beta (13-30Hz) bands for each of the experimental 

blocks. Relative alpha and beta power were standardized to the baseline block (B0) in 

which the stimuli occurred in a random order. Data from the a subset of electrodes were 

extracted for the following regions: frontal left (F7, F5, F3, and F1), frontal right (F8, F6, 

F4, and F2), central left (C5,C3, and C1), central right (C6, C4, and C2), parietal left (P7, 

P5, P3, and P1), parietal right (P8, P6, P4, and P2), parieto-occipital left (PO7, PO3, and 

O1), and parieto-occipital right (PO8, PO4, O2). 

 Coherence. Coherence is a measure of the amount of cortical communication 

between two electrical sites (ranging from 0 to 1) (Fries, 2005; Nunez, 2000; Srinivasan, 

Nunez, & Silberstein, 1998). The electrode pairings used here between the Fz electrode 

and frontal, motor, temporal, parietal, and occipital regions. The specific electrode pairings 

used for the left hemisphere were: Fz-F3, Fz-C3, Fz-T3, Fz-P3, and Fz-O1 and those for 

the right hemisphere were: Fz-F4, Fz-C4, Fz-T4, Fz-P4, and Fz-O2. 

Statistical analysis 

Behavioral data. A mixed factorial analysis of variance (ANOVA) was used to 

compare the differences in average response time, RT, and MT between the Group (TY, 

TA) x Sequence Type (FX, PB) x Block (0-7) with Block as the within subject variable. 

Bonferroni post-hoc tests were used to decompose any significant effects. Separate 

pairwise comparisons were conducted on the contrasts of interest (B1 vs. B4, B4 vs. B5, 

B5 vs. B6, and B5 vs. B7) to determine whether learning occurred and whether learning 

was transferred to a novel sequence created using the same underlying structure.  
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EEG analysis. Separate mixed factorial analyses of variance (ANOVA) were used 

to compare differences in average spectral power and coherence in the alpha and beta bands 

between Group (TY, TA) x Region (Frontal, Central, Parietal, Occipital) x Hemisphere 

(Left, Right) x Block (B1, B4, B5, B7) with Block as the within subject variable. 

Bonferroni post-hoc tests were used to decompose any significant effects. Separate 

pairwise comparisons were conducted on the contrasts of interest (B1 vs. B4, B4 vs. B5, 

and B5 vs. B7) to determine differences in early, late, and transfer of learning. 

 Statistical significance was defined at p < 0.05. The data were processed using 

custom scripts written in MATLAB version 8.4 (Mathworks, Natick, MA) and SPSS 

Statistics 22 (IBM, Armonk, NY). 

 

Results  

Accuracy 

All groups exhibited high levels of accuracy with 7% or fewer errors. Thus, 

accuracy cannot be used as a measure of learning in this task and was not analyzed further. 

Error rates have also been demonstrated to be low in previous studies (R. M. Brown & 

Robertson, 2007; Willingham, et al., 1989). 

Mean response time confounds performance related to learning and movement 

A three-way mixed factorial (2 x 2 x 8) ANOVA on Group (TY, TA) x Sequence 

Type (FX, PB) x Block (0-7) on the response times with Block as the within subject 

variable indicated a main effect of Block, F(7,406) = 26.7, p < 0.001 and Group, F(1,58) = 

25.0, p < 0.001. In addition, there was a significant two-way interaction between Block x 

Group, F(7, 406) = 2.54, p = 0.01, suggesting that the response time was influenced 
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differently depending on the block and group. Bonferroni’s post-hoc analysis revealed that 

for all blocks, the TY was significantly faster than the TA group (all p < 0.001). However, 

differences emerged between blocks for each group. For the TY group, there were no 

significant differences between the blocks, but for the TA group, the response time 

significantly decreased from B1 to B4, from B5 to B6, from B5 to B7, and from B6 to B7 

(all p < 0.002). This suggests that when collapsing across sequence type, the differences 

between blocks are masked in the TY group, but not in the TA group. 

Fixed sequence. Pairwise comparisons between contrasts that were determined a 

priori (see Figure 4.5) revealed significant differences between B1 and B4 for both groups 

(both p < 0.001). Differences between B4 and B5 were approaching significance in the TY 

group learning the FX sequence (p = 0.10) and were significant in TA group learning the 

FX sequence (p = 0.004) as well as differences between B5 and B6 (TY, p = 0.10; TA, p = 

0.070), suggesting that both TY and TA adults were able to learn the FX sequence. In 

addition, a significant decrease was found from B5 to B7 in the TY (p < 0.001) and TA (p 

= 0.05), indicating that both groups were able to transfer their learning to a novel sequence. 

Probabilistic sequence. The response time decreased significantly from B1 to B4 

for both groups (both p < 0.004). As found in our previous study (Prashad, Du, & Clark), 

no significant differences were found between B4 and B5 (both, p = 0.7). The decrease 

between B5 and B6 approached significance for both groups (TY, p = 0.07; TA, p = 0.08), 

suggesting possible learning of the probabilistic sequence by both groups. A significant 

decrease was exhibited between B5 and B7 in both groups (both p < 0.002), suggesting 

that the young and typically aging adults were able to transfer their learning to a novel 

sequence.  
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Figure 4.5: Mean response time. (A) Both groups exhibited a decrease in response time from B1 to B4, an 
increase from B4 to B5, and a decrease from B5 to B7 in the fixed sequence groups. (B) TY exhibited a 
decrease from B1 to B4, B5 to B6, and B5 to B7 in the probabilistic sequence groups. The TA groups 
exhibited a decrease from B1 to B4 and B5 to B7.  
*Indicates significance level of p < 0.05; +indicates significance level of p < 0.10. Error bars indicate standard 
error. 

 

Mean reaction time (RT) is a better assessment of learning 

A three-way mixed factorial (2 x 2 x 8) ANOVA on Group (TY, TA) x Sequence 

Type (FX, PB) x Block (0-7) on the RT with Block as the within subject variable indicated 

a main effect of Block, F(7,406) = 50.5, p < 0.001 and Group, F(1,58) = 28.1, p < 0.001 

and no significant interactions. Bonferroni’s post hoc analysis on Group revealed that the 

TY group had significantly faster RTs than the TA group. 

Fixed sequence. Pairwise comparisons between contrasts that were determined a 

priori revealed significant differences decrease from B1 to B4 for both groups (both p < 

0.001), increase from B4 to B5 (both p < 0.05), and decrease from B5 to B6 (both p < 

0.004), further bolstering evidence from the response time that both typical young and 

aging adults were able to learn the fixed sequence. Furthermore, there was a significant 
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decrease from B5 to B7 in both groups (both p = 0.001), suggesting that both typical young 

and aging adults were able to transfer their learning to a novel fixed sequence (see Figure 

4.6). 

Probabilistic sequence. There was a significant decrease from B1 to B4 in both 

groups (both p < 0.008), no significant increase from B4 to B5 (both p > 0.05), and a 

significant decrease from B5 to B5 only in the TY group (p = 0.04). The lack of change in 

RT from B4 to B5 was expected based on results from our previous study (Prashad, et al.); 

however, no difference from B5 to B6 in the TA group suggests these participants were 

unable to learn the sequence. Both groups did show a significant decrease from B5 to B7 

(both p < 0.05), suggesting transfer of learning to a novel sequence. Thus, it appears that 

the typical young adults learned the probabilistic sequence, but it is unclear whether the 

typically aging adults learned the probabilistic sequence. 

 

Figure 4.6: Mean reaction time. (A) Both groups exhibited a decrease in response time from B1 to B4, an 
increase from B4 to B5, and a decrease from B5 to B6 and B7 in the fixed sequence groups. (B) TY exhibited 
a decrease from B1 to B4, B5 to B6, and B5 to B7 in the probabilistic sequence groups. The TA groups 
exhibited a marginal decrease from B1 to B4 and B5 to B7. 
* Indicates significance level of p < 0.05; + indicates significance level of p < 0.10. Error bars indicate 
standard error. 
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Mean movement time (MT) may be significant for complex sequences 

 A three-way mixed factorial (2 x 2 x 8) ANOVA on Group (TY, TA) x Sequence 

Type (FX, PB) x Block (0-7) on the RT with Block as the within subject variable indicated 

a main effect of Block, F(7,406) = 4.50, p < 0.001 and Group, F(1,58) = 10.7, p = 0.002. 

There were no significant interactions. A Bonferroni post-hoc analysis on Group revealed 

that the TY group was significantly faster than the TA group.  

 Fixed sequence. As expected, pairwise comparisons between contrasts that were 

determined a priori only revealed no significant differences for either group.  

Probabilistic sequence. No differences were found for the TY group, but 

differences were found for the TA group between B1 and B4 (p = 0.02), B5 and B6 (p = 

0.04), and B5 and B7 (p = 0.03). These results were surprising as MT is not expected to 

change between blocks.  

 

Figure 4.7: Mean movement time. (A) No significant differences were observed in MT in the fixed 
sequence groups. (B) TA exhibited a significant decrease in MT from B1 to B4 and B5 to B6 and B7.  
Error bars indicate standard error. 
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 Thus, the results suggest that typical young adults learned both fixed and 

probabilistic sequences and the typically aging adults learned the fixed sequences, but the 

results were not conclusive whether they were able to learn the probabilistic sequences. In 

order to better understand the effect of aging on motor sequence learning, we divided the 

typically aging adults into three groups using cluster analysis on their RT. 

Cluster analysis reveals functional groups separated by mean RT and working memory 

  A k-means cluster analysis with three clusters was conducted on the 42 typically 

aging adults. The entire RT time series for each participant was included in the cluster 

analysis (160 trials in 8 blocks for a total of 1280 trials). The algorithm separated the 

participants into three clusters (TA1, TA2, and TA3; see Table 4.2 for demographic 

information on the three clusters). Separate one-way ANOVAs revealed no significant 

differences between the groups in age, F(2,41) = 1.77, p = 0.2 (see Figure 4.8A), the 

Wisconsin Card Sort Task, F(2,41) = 0.514, p = 0.6, or physical activity level, F(2,41) = 

0.311, p = 0.7. However, significant differences were found in the overall percent correct 

in the n-back task, F(2,41) = 3.81, p = 0.03 as well as the overall mean RT collapsed across 

blocks, F(2,41) = 107.0, p < 0.001 (see Figure 4.8B and 4.8C). Post hoc analysis using the 

Bonferroni correction revealed that TA1 had a significantly higher n-back score than TA3 

(p = 0.03) and a significantly faster overall mean RT (p < 0.001). There were no other 

significant differences between TA1 and TA2 in the n-back score, but the overall mean RT 

for the TA2 cluster was significantly faster than the TA3 cluster (p < 0.001). Thus, it 

appears that working memory is inversely correlated with mean RT and may explain 

impairments in motor sequence acquisition (see Figure 4.9). This result is consistent with 

previous studies that suggest that working memory capacity is correlated to sequence 
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learning performance (Bo, Borza, & Seidler, 2009; Bo, et al., 2011, 2012) and may provide 

a mechanism for impaired motor sequence learning in aging and clinical populations. 

 

 

 

Figure 4.8: Characteristics of the three typically aging clusters. A) Age was not significantly different between 
the three TA clusters. B) Working memory, as assessed by percent correct in the n-back test, was significantly 
higher in the TA1 cluster than the TA3 cluster. C) The overall mean RT of the TA1 cluster was significantly 
faster than the TA2 and TA3 clusters. 
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Table 4.2: Demographic information of the different clusters from the typically aging group. 
Cluster Age 

(Mean 
± S.D.) 

Sex Physical 
Activity 
Level # 

2-back  
(% correct) 

Wisconsin Card Sorting Test MMSE 
Correct (%) Perservative 

Response 
(%) 

Perservative 
Errors (%) 

Non-
perservative 
Errors (%) 

TA1 63.9 
± 1.45 

15 
female; 
8 male 

10 high; 
6 moderate; 
7 low 

43.7 
± 3.64 

68.9  
± 14.4 

29.7  
± 15.6 

13.6  
± 9.27 

17.5  
± 15.4 

29.5 
± 1.03 

TA2 63.5 
± 1.15 

9 female; 
4 male 

4 high; 
5 moderate; 
4 low 

33.7 
± 5.84 

73.9  
± 12.0 

36.0  
± 9.24 

16.0  
± 8.34 

10.2  
± 6.44 

29.7 
± 0.49 

TA3 69.7 
± 3.19 

3 female; 
3 male 

1 high; 
4 moderate; 
1 low 

19.4 
± 7.46 

69.8  
± 14.4 

38.6  
± 11.0 

18.9  
± 11.0 

11.2  
± 8.42 

29.5 
± 0.84 

# Physical activity levels were determined based on the GPAQ calculated from the number of days and amount of time spent engaged in physical activity.  
FX – fixed sequence group; PB – probabilistic sequence group; TA1 – typically aging adults in cluster 1, TA2 – typically aging adults in cluster 2, TA3 – typically 
aging adults in cluster 3.
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Figure 4.9: Visualization of the three typically aging adult clusters. A) k-means cluster analysis revealed three 
clusters for the typically aging group separated by overall mean reaction time and working memory. 

 

Mean reaction times of the typically aging clusters 

 A three-way mixed factorial (4 x 2 x 8) ANOVA on Group (TY, TA1, TA2, TA3) 

x Sequence Type (FX, PB) x Block (B0-7) on the RT with Block as the within subject 

variable indicated a main effect of Block, F(7,378) = 71.0, p < 0.001, Group, F(3,54) = 

105.5, p < 0.001 and significant interactions between Block x Group, F(21,378) = 2.74, p 

< 0.001, Block x Sequence, F(7,378) = 3.18, p = 0.003, and Block x Sequence x Group, 

F(21,378) = 2.46, p < 0.001. Simple effects analysis revealed that there were no significant 

differences between the RT of the two sequences types. In addition, within the fixed 

sequence, for each block, TY had the fastest RT (p < 0.002 for all blocks), TA1 had the 

second fastest RT (p < 0.001 for all blocks), TA2 had the third fastest RT (p < 0.001 for all 
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blocks), and TA3 had the slowest RT (p < 0.001 for all blocks). However, the RTs were 

not as clearly different for the groups’ learning the probabilistic sequence. In B1, the RT 

of TY and TA1 was not significantly different (p = 0.1), but both were significantly faster 

than TA2 (both p < 0.001) and TA2 was significantly faster than TA3 (p < 0.001). 

However, by B4 TY was significantly faster than TA1 (p = 0.03) and remained 

significantly faster than TA2 and TA3 (both p < 0.001). For B5-7, all groups were 

significantly different from each other (all p < 0.05).  

 Fixed sequence. Pairwise comparisons between contrasts that were determined a 

priori revealed significant differences between B1 and B4 (p = 0.001), B4 and B5 (p = 

0.010), B5 and B5 (p < 0.001), and B5 and B7 (p = 0.002) in TA1, suggesting learning of 

the sequence. However, only a significant decrease was found between B1 and B4 for TA2 

(p = 0.03) and no significant differences were found for TA3, suggesting that these two 

clusters were unable to learn the fixed sequence.  

 Probabilistic sequence. Significant differences were found for a decrease from B5 

to B7 in TA1 and TA2 (both p < 0.04) and from B1 to B4 in TA3 (p = 0.04), suggesting 

impairment in the learning of the probabilistic sequence in the typically aging group. 
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Figure 4.10: Mean RT for the typical young and aging adults. A) In the fixed sequence groups, TY and TA1 
exhibited a decrease in RT from B1 to B4, an increase from B4 to B5, and a decrease from B5 to B6 and B7. 
TA2 exhibited a decrease from B1 to B4 and TA3 exhibited no changes. B) In the probabilistic sequence 
groups, TY exhibited a decrease from B1 to B4 and B5 to B6 and B7. TA1 and TA2 exhibited a decrease 
from B5 to B7. TA3 exhibited a decrease from B1 to B4. 
* Indicates significance level of p < 0.05. Error bars indicate standard error. 

 

In summary, the typically aging group consisted of three distinct clusters separated 

by mean RT and working memory capacity, but not age. Cluster analysis provided an 

objective method for separating typically aging adults based on functional characteristics 

and afforded an approach for more deeply understand age-related changes in implicit motor 

sequence learning. The mean RT of all the typically aging adults did not provide clear 

results on whether typically aging adults learned the probabilistic sequence, but separating 

the participants through cluster analysis indicated that they were unable to learn the 

probabilistic sequence, and only the TA1 cluster learned the fixed sequence.  
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Relative spectral power  

 Separate ANOVAs were conducted on the alpha and beta bands for each sequence 

type. The typical young adults were compared to the typically aging clusters.  

Fixed sequences 

Alpha. A four-way mixed factorial (4 x 4 x 2 x 4) ANOVA on Group (TY, TA1, 

TA2, TA3) x Region (Frontal, Central, Parietal, Occipital) x Hemisphere (Left, Right) x 

Block (B1, B4, B5, B7) on the alpha band with Block as the within subject variable 

indicated a main effect of Hemisphere, F(1,27) = 4.16, p = 0.05 and significant interactions 

between Region x Block, F(9,243) = 2.10, p = 0.03, Region x Hemisphere x Block, 

F(9,243) = 4.72, p < 0.001, and Region x Hemisphere x Block x Group, F(27,243) = 1.53, 

p = 0.05.  

Simple effects analysis revealed that in B4, there was significantly lower alpha 

power in TY than TA2 in the right frontal and central regions and bilaterally in the occipital 

region (all p < 0.05). TA1 also exhibited significantly lower alpha power than TA2 in the 

right central, parietal, and occipital regions (all p < 0.05). Interestingly, TA3 exhibited 

significantly lower alpha power than TA2 in the right parietal area and bilaterally in the 

occipital region (all p < 0.05). In B7, TY and TA1 had significantly lower alpha power 

than TA2 in the right parietal and bilateral occipital regions (all p < 0.05) and TA3 

exhibited significantly lower alpha power than TA2 in the right central region (p = 0.05) 

and bilateral occipital region (both p < 0.05).  

Although TA2 did not exhibit learning of the fixed sequence behaviorally, this 

group exhibited differences in cortical activations between regions, but the other groups 

did not. In B1, there was greater alpha power in the left central region than left occipital 
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and frontal regions (both p < 0.03), as well as greater alpha power in the right parietal 

region than the right occipital region (p = 0.007). In B4, there was marginally greater alpha 

power in the left central region than the left frontal (p= 0.07) and occipital regions (p = 

0.05). In B7, there was greater alpha power in the left frontal area than the parietal area (p 

= 0.05) and greater alpha power in the left central area than the parietal and occipital 

regions (both p < 0.05).  

Pairwise comparisons between contrasts that were determined a priori revealed 

significant differences in the TY group. In the left and right frontal cortical areas, alpha 

power decreased as participants learned the fixed sequenced, as exhibited by greater alpha 

power in B1 than B4 (left, p = 0.04 and right, p = 0.02) and increased power during the 

random block, B5 (left, p = 0.005 and right, p = 0.03). A similar activation pattern was 

exhibited in the parietal region, with a marginally significant decreasing alpha power from 

B1 to B4 (left, p = 0.05 and right, p = 0.09) and an increase in B5, but only in the left 

hemisphere (p = 0.06). The central and occipital regions only exhibited a decrease in power 

with learning (left central, p = 0.084; right central, p = 0.01; left occipital, p = 0.04; and 

right occipital, p = 0.05), but no changes in B5. The TA1 cluster did not exhibit these 

cortical activations, but did exhibit greater alpha power in B7 than B5 that approached 

significance in the left frontal region (p = 0.08) and left central region (p = 0.06). The TA2 

and TA3 clusters did not exhibit any differences in blocks in the alpha band.  

 



86 
 

 
Figure 4.11: Relative alpha power for B1 (early learning), B4 (late learning), B5 (random – no sequence), 
and B7 (transfer of learning) for the fixed sequence groups. 

 

Beta. In the beta band, only the interaction between Region x Hemisphere x Block 

was significant (F(9,243) = 1.93, p = 0.05. Across the groups, there was greater beta power 

in the left central region compared to the left frontal (p = 0.03) and occipital areas (p = 

0.005) in both B1 and B4 (both p < 0.05). In the right hemisphere, the frontal area had 

greater beta power than the central, parietal, and occipital regions (all p < 0.05) in B1, but 

by B4, the occipital area had significantly lower beta power than the frontal and central 

regions (both p = 0.04). There were no differences in beta power between regions in B5. 

In B7, there was greater beta power in the left frontal and central areas than the left parietal 
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and occipital areas (all p < 0.05) and greater beta power in the right frontal area than the 

right central and occipital areas (both p < 0.04).  

At the hemisphere level, there were few significant differences in the central and 

occipital regions. There was greater beta power in the left hemisphere in the central region 

(both p < 0.01) in both B1 and B7, but greater beta power in the right hemisphere in the 

occipital region (p = 0.04) in B7.  

At the block level, there was marginally greater beta power in B4 than B1 in the 

right central region (p = 0.07) and significantly greater beta power in B7 than B5 in the left 

and right frontal region (both p < 0.04) and left central region (p = 0.01). 

Pairwise comparisons revealed similar activation patterns as the alpha band in the 

TY group. There was a decrease in beta power as learning occurred and B4 had 

significantly lower beta power than B1 in the left and right parietal regions (both p < 0.03), 

left and right occipital regions (both p < 0.03), and right central region (p = 0.03). In 

addition, there was a significant decrease in beta power in B5 compared to B4 in the left 

parietal region (p = 0.009) and approaching significance in the left and right occipital 

regions (both p = 0.07). In TA1, there was significantly greater beta power in B7 than B5 

in the left and right frontal regions (both p < 0.005) and left central region (p = 0.02). As 

in the alpha band, no significant differences were found in the TA2 and TA3 clusters.   
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Figure 4.12: Relative beta power for B1, B4, B5, and B7 for the fixed sequence groups. 

 

Probabilistic sequences 

Alpha. A four-way mixed factorial (4 x 4 x 2 x 4) ANOVA on Group (TY, TA1, 

TA2, TA3) x Region (Frontal, Central, Parietal, Occipital) x Hemisphere (Left, Right) x 

Block (B1, B4, B5, B7) on the alpha band with Block as the within subject variable 

indicated a main effect of Region, F(3,75) = 7.26, p < 0.001) and a significant interaction 

between Region x Hemisphere x Block x Group, F(27,225) = 1.54, p = 0.05. TA3 exhibited 

greater alpha power compared to TY, TA1, and TA2 in B1 in the left frontal (all p < 0.05) 

and central regions (all p < 0.01) and greater alpha power in the right frontal region 
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compared to TY (p = 0.04). TA3 also exhibited greater alpha power than TA1 in the left 

frontal region in B4 (p = 0.05) and B5 (p = 0.03).  

In addition, TA3 exhibited greater power in the left frontal and central regions 

compared to the left parietal and occipital areas (all p < 0.05) in B1. In B4, TY exhibited 

greater alpha power in the occipital region than the frontal and parietal areas (both p < 0.05) 

in the left hemisphere, but greater alpha power in the frontal region than the parietal and 

occipital regions in the right hemisphere (both p < 0.05). Similarly, in B7, TY exhibited 

greater alpha power in right frontal region compared to the parietal and occipital areas (both 

p < 0.05), suggesting that similar cortical activations are exhibited in late learning and 

transfer.  

Pairwise comparisons between contrasts that were determined a priori revealed an 

increase in alpha power in B5 compared to B4 in the left and right (both p < 0.04) parietal 

regions and approaching significance in the left and right (both p = 0.06) occipital regions 

in the TY group. The TA1 and TA2 clusters did not exhibit any differences. However, the 

TA3 cluster exhibited a greater alpha power in B4 than B1 in the left occipital region that 

approached significance (p = 0.07). Additionally, there was significantly greater alpha 

power in B5 than B4 in the left central region (p = 0.05) and approaching significance in 

the right frontal region and right parietal region (both p = 0.07).  
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Figure 4.13: Relative alpha power for B1, B4, B5, and B7 for the probabilistic sequence groups. 

 

Beta. In the beta band, there was a main effect of Region, F(3,75) = 5.87, p = 0.001 

and significant interactions between Region x Group, F(9,75) = 2.39, p = 0.02, Region x 

Block, F(9,225) = 3.78, p < 0.001, Region x Block x Group, F(27,225) = 2.10, p = 0.002, 

Hemisphere x Block x Group, F(9,75) = 2.19, p = 0.03, Region x Hemisphere x Block, 

F(9,225) = 2.00, p = 0.04, and Region x Hemisphere x Block x Group, F(27,225) = 1.59, p 

= 0.04. 

Simple main effects analysis of the four-way interaction revealed that, similar to 

the alpha band, TA3 exhibited greater beta power than TY, TA1, and TA2 in the frontal 

region bilaterally in B1, B4, and B5 (all p < 0.05). Additionally, TA3 exhibited greater beta 
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power bilaterally in the frontal and central regions compared to parietal and occipital 

regions in B1 (all p < 0.05), B4 (all p < 0.05), and B5 (all p < 0.02). 

Pairwise comparisons revealed that beta power increased with learning in TY in the 

left frontal region (p = 0.009) and approached significance with an increase in B5 compared 

to B4 (p = 0.07). The TA clusters did not exhibit any differences between blocks.  

 
Figure 4.14: Relative beta power for B1, B4, B5, and B7 for the probabilistic sequence groups. 

 

Coherence analysis 

Fixed sequences 

Alpha. A four-way mixed factorial (4 x 5 x 2 x 4) ANOVA on Group (TY, TA1, 

TA2, TA3) x Region (Fz pairing with each of the following: Frontal, Central, Temporal, 

Parietal, Occipital) x Hemisphere (Left, Right) x Block (B1, B4, B5, B7) on the alpha band 
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with Block as the within subject variable indicated a main effect of Region, F(4,108) = 

134.9, p < 0.001. Post-hoc analysis with Bonferroni correction on Region revealed 

significantly greater cortical connectivity in the frontal region than the other regions (all p 

< 0.001). In addition, there was greater connectivity in the central region than the temporal, 

parietal, and occipital regions (all p < 0.001); greater connectivity in the temporal and 

parietal regions than occipital region (p < 0.001), but no difference between the temporal 

and parietal regions (p = 0.8).  

Pairwise comparisons between contrasts that were determined a priori revealed 

significantly greater fronto-temporal connectivity in the left hemisphere in B4 than B1 (p 

= 0.001) and greater frontal connectivity in the right hemisphere in B5 than B7 (p = 0.03) 

in TY. In TA2, there was greater fronto-temporal connectivity in the right hemisphere in 

B4 than B1 (p = 0.05). No differences were found in TA1 or TA3. 

 
Figure 4.15: Coherence in the alpha band for B1, B4, B5, and B7 for the fixed sequence groups. 
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Beta. In the beta band, there was also a main effect of Region, F(4,108) = 119.5, p 

< 0.001 that followed the same patterns as found in the alpha band.  

Pairwise comparisons found significantly greater left fronto-temporal connectivity 

in B4 compared to B1 (p = 0.04) in TY and greater right fronto-central connectivity in B5 

than B7 approaching significance (p = 0.06) in TA1. In TA2, there was greater right fronto-

temporal connectivity in B4 than B1 (p = 0.03) and B5 than B4 (p = 0.005), greater fronto-

parietal connectivity in B5 than B7 in both the left (p = 0.04) and right (p = 0.05) 

hemispheres and greater fronto-occipital connectivity in B5 than B7 approaching 

significance in both the left (p = 0.06) and right (p = 0.07) hemispheres. In TA3, right 

fronto-central connectivity was greater in B5 than B7 (p = 0.01).  

 
Figure 4.16: Coherence in the beta band for B1, B4, B5, and B7 for the fixed sequence groups. 

 



94 
 

Probabilistic sequences 

Alpha.  There was a main effect of Region, F(4,104) = 98.6, p < 0.001 and 

Hemisphere, F(1,26) = 6.52, p = 0.02, as well as a significant interaction between Region 

x Hemisphere, F(4,104) = 2.55, p = 0.04. Simple effects analysis at the hemisphere level 

revealed greater connectivity in the right hemisphere in the temporal (p = 0.01), parietal (p 

= 0.05), and occipital (p = 0.002) regions.  

Pairwise comparisons between contrasts of interest that were determined a priori 

revealed marginally greater connectivity in B1 than B4 in left parietal (p = 0.07) and left 

occipital (p = 0.08) areas in the TY group. In addition, there was marginally greater 

connectivity in B4 than B5 in the right temporal area (p = 0.08). In TA1, only B1 revealed 

significantly greater connectivity than B4 in the left occipital area (p = 0.004). There was 

significantly greater connectivity in B4 than B5 in the left frontal area in TA2 (p = 0.02). 

In TA3, there was marginally greater connectivity in B1 than B4 in the left occipital area 

(p = 0.06), as well as significantly greater connectivity in B7 than B5 in the right parietal 

area (p = 0.03) and marginally in the right central area (p = 0.07).  
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Figure 4.17: Coherence in the alpha band for B1, B4, B5, and B7 for the probabilistic sequence groups. 

 

Beta. In the beta band, there was a main effect of Region, F(4,104) = 99.0, p < 0.001 

and Hemisphere, F(1,26) = 6.63, p = 0.02 that followed the same patterns as those in the 

alpha band, as well as significant interactions between Region x Block, F(12,312) = 2.15, 

p = 0.01, and Region x Hemisphere x Block, F(12,12) = 2.40, p = 0.006. Simple main 

effects analysis revealed greater connectivity in the right hemisphere than the left 

hemisphere in B4, B5, and B7 in the central (all p < 0.05), parietal (all p < 0.01), and 

occipital (all p < 0.04) regions. Additionally, there was significantly greater connectivity 

in B5 than B4 (p = 0.05) and B7 than B5 (p = 0.005) in the left frontal area. 

Pairwise comparisons found no significant differences for TY. There was 

significantly greater right frontal connectivity in B5 than B7 in TA1 (p = 0.01), greater 
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connectivity left frontal in B5 than B4 in TA2 (p = 0.004), and marginally greater left 

fronto-occipital connectivity in B4 than B5 in TA3 (p = 0.08). 

 
Figure 4.18: Coherence in the beta band for B1, B4, B5, and B7 for the probabilistic sequence groups. 

 

Posttest 

The posttest required participants to rate their confidence on a scale of 1-5 whether 

they had seen the presented chunk in any of the blocks. Some of the chunks presented to 

participants were from the assigned sequence and some were random chunks. Participants 

were also shown entire sequences, one of which was their assigned sequence. 

Fixed sequence. In TY, there was a significant difference between the rating for the 

chunks from the sequence and random chunks (p = 0.007), however when they were shown 

entire sequences, there was no difference between their rating of their assigned sequence 
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and other sequences (p = 0.1). In TA1, there was a marginally significant difference 

between the chunks (p = 0.06) and no difference between entire sequences (p = 0.3). 

Surprisingly, there was a significant difference in TA2 for chunks (p = 0.05), even though 

they did not exhibit learning of the sequence, but not for the entire sequence (p = 0.4). 

There was no difference for chunk or sequence in TA3 (p > 0.1).  

Probabilistic sequence. There was no difference between the chunks or sequences 

in any of the groups (all p > 0.05), indicating that participants in the probabilistic group 

were unable to recognize the chunks or their assigned sequence. 

 

Discussion 

In this study, we have demonstrated that typically aging adults are unable to learn 

a probabilistic motor sequence. We used cluster analysis to separate the typically aging 

adults into functional groups and found an inverse relationship between mean reaction time 

and working memory. These clusters elucidated that while some typically aging adults 

learned the fixed sequence, none learned the probabilistic sequence. This is consistent with 

previous studies that despite reduced working memory compared to young adults, 

performance can be maintained to a certain level (Bo, et al., 2012).  

Decomposing response time  

 As expected, both response and reaction times indicated that young adults were 

faster than typically aging adults. Young adults and some aging adults learned the fixed 

sequence, but only the young adults learned the probabilistic sequence. This finding is 

consistent with our previous study in that young adults were able to learn probabilistic 

sequences within the SRT framework (Study 2 of this dissertation). The results are also 
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consistent with previous studies that indicate that typically aging adults are able to learn 

simple sequences (Bennett, et al., 2007; Bhakuni & Mutha, 2015; Bo, et al., 2011, 2012; 

Daselaar, et al., 2003; Dennis, et al., 2006; Feeney, et al., 2002; Fraser, et al., 2009; 

Gaillard, Destrebecqz, Michiels, & Cleeremans, 2009; D. V. Howard, et al., 2004; J. H. 

Howard & Howard, 2013; King, et al., 2013; Lin, Wu, Udompholkul, & Knowlton, 2010; 

Seidler, 2007; Wu & Hallett, 2005), but not complex probabilistic sequences (Dennis, et 

al., 2006; D. V. Howard, et al., 2004; J. H. Howard & Howard, 1997, 2013). Importantly, 

the results highlight a potential factor contributing to the inconsistencies in the literature. 

Most paradigms do not distinguish between response time and reaction time since 

participants’ fingers are placed on the buttons themselves and are pressed after the 

presentation of a stimulus. The modified SRT task used in this study required participants 

to place their right index finger on the home button and move to a different button that 

corresponded to the location of the stimulus. In this way, we were able to record reaction 

time and movement time separately. The movement time remained constant for all groups 

except the typically aging adults learning the probabilistic sequence, suggesting that for 

more complex sequences being presented to aging or clinical populations, movement time 

may be an important variable to record and analyze (Moisello, et al., 2009), but is often 

overlooked in SRT studies. Thus, the decomposition of response time into reaction and 

movement time is critical and provides more nuanced insights into the differential effect 

of sequence structure on reaction and movement time as well as age- and disease-related 

impairments.  
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Characterizing the developmental landscape of 55-75 year old adults  

Previous studies investigating the effects of aging on motor sequence learning have 

combined older adults into one group, despite large age ranges, to compare with young 

adults or age-matched with clinical populations. It is important to characterize the 

developmental landscape of aging because adults in different age groups most likely 

perform at different levels, i.e., a 55-year-old may not perform at the same level as a 75- 

year-old. 

Here, we found that one cluster of typically aging adults learned the fixed sequence, 

but were unable to learn the probabilistic sequence. Previous studies have found 

inconsistent results where some have found that typically aging adults are impaired at 

learning higher-order sequences (Dennis, et al., 2006; Feeney, et al., 2002; J. H. Howard 

& Howard, 1997, 2013), while others have found that they are not (Bhakuni & Mutha, 

2015; D. V. Howard & Howard, 2001; Simon, Howard, & Howard, 2010). The k-means 

cluster analysis separated the typically aging adults into three clusters (TA1, TA2, and 

TA3). These clusters were not significantly different in age, but had significantly different 

overall mean reaction times and n-back scores. Specifically, TA1 had the highest n-back 

score and the fastest reaction time, while TA3 had the lowest n-back score and the slowest 

reaction time. Interestingly, we found that the TA1 cluster was able to learn the fixed 

sequence, but not the probabilistic sequence. The TA2 and TA3 clusters were impaired at 

learning both fixed and probabilistic sequences. These results further suggest that working 

memory plays an important role in motor sequence acquisition. This is consistent with 

previous studies that have found that visuospatial working memory capacity is related to 

both explicit (Bo, et al., 2009) and implicit (Bo, et al., 2011, 2012; Seidler, et al., 2012) 
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motor sequence learning. In addition studies have found that while a typically aging adults 

exhibit reduced working memory (Li et al., 2008), their performance levels are similar to 

those of young adults (Bo, et al., 2012). Since the TA2 and TA3 clusters were unable to 

learn the fixed sequence and none of the of the TA clusters were able to learn the 

probabilistic sequence, there may be a threshold at which performance may be maintained 

even with reduced working memory that the probabilistic sequences have surpassed 

because of their complexity.  

These results suggest that typically aging group samples should be more tightly 

controlled based on functional characteristics to assess differences and impairments within 

this large age range and variability found in typically aging adults. These characteristics 

may be different based on the task requirements. Additionally, rather than age-matching 

clinical populations with control groups, it is important to characterize the clinical 

population and match controls according to these functional characteristics in order to 

attain a clearer understanding of impairments related to aging and/or disease. Statistical 

methods, such as cluster analysis, have the potential to offer a clearer understanding of age-

related differences where task and individual variability can greatly confound conclusions. 

Distinct cortical activations may indicate learning 

The young adults and the TA1 cluster in the fixed sequence groups exhibited less 

alpha power than the TA2 cluster in B4. Since both these groups learned the sequence, they 

were expected to exhibit attenuated alpha power, suggesting that learning can be inferred 

not only from behavior, but also from cortical activations. Across the groups, B4 exhibited 

greater beta power than B1 in the right central region and B7 exhibited greater beta power 
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than B5 in the left central and bilateral frontal regions, suggesting that these activations 

reflect both learning and transfer of learning. 

 The young adults learning the fixed sequences exhibited greater relative alpha in 

the first learning block (B1) and which was reduced significantly in B4 (last learning block) 

bilaterally in the frontal, central, parietal, and occipital areas, consistent with learning the 

sequence. Similar bilateral activity has been seen in previous studies in young adults 

learning a fixed sequence (Poldrack et al., 2005). B4 also exhibited greater cortico-cortical 

connectivity than B1 in the left temporal area. Surprisingly, beta power also decreased from 

B1 to B4, in the right central and bilateral parietal and occipital areas, but exhibited greater 

cortico-cortical connectivity in B4 in the left temporal area. Alpha power increased when 

presented with stimuli in a random order (B5) bilaterally in the frontal region and left 

parietal region and beta power also increased in left parietal and bilateral occipital areas. 

No differences were exhibited in the transfer block (B7) in alpha or beta power, but B5 

exhibited greater connectivity in the right frontal area than B7 in the alpha band, suggesting 

greater task-related frontal activation for B7 related to learning of a novel sequence. For 

young adults learning the probabilistic sequence, differences were only seen in B5 in the 

right central region and bilaterally in the parietal and occipital areas for alpha and in the 

left frontal and parietal regions in the beta band, indicating fewer distinct cortical 

activations while learning a probabilistic sequence.  

 The typically aging adults in cluster TA1 learning a fixed sequence exhibited 

greater power in B5 than B7 in the alpha band in the left frontal and central areas that may 

reflect working memory access from the prefrontal cortex. The beta band exhibited the 

opposite, with greater power in B7 than B5 bilaterally in the frontal region and in the left 
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central region, but exhibited greater connectivity in B5 than B7 in the right central area, 

which together reflect the use of the right hand to perform the task. Since TA1 was able to 

successfully transfer their learning of the fixed sequence, it was expected that alpha power 

decreased and beta power increased when a novel sequence was learned, particularly in the 

frontal and central areas. No differences were exhibited in alpha power when learning a 

probabilistic sequence, but B4 exhibited greater cortico-cortical connectivity than B1 in 

the left occipital region. In addition, greater beta power was exhibited in B4 compared to 

B1 and B7 compared to B5 in the right central region. Thus, distinct cortical activations, 

such as attenuated alpha and increased beta in the frontal and central regions may reflect 

both learning and transfer of learning. 

Cortical activations may indicate learning before it is reflected behaviorally  

Interestingly, in the fixed sequence groups, TA3 exhibited similarly attenuated 

alpha power as the young adults and TA1 cluster and significantly less than TA2. This 

suggests that TA3 may be attempting to learn the sequence, or at least forming the visuo-

spatial relationships between the locations on the screen and the physical buttons, but may 

require more learning blocks in order to learn the sequence. It may also be that since the 

difference between the two clusters was found in the parietal and occipital areas, they were 

attempting to integrate the visuo-spatial aspects of the task, which is consistent with 

previous studies indicating that greater parietal, temporal, and occipital activation is 

associated with visuo-spatial perception of a sequence (Poldrack, et al., 2005; Seidler, et 

al., 2005), particularly one that has a high spatial mapping between stimulus and response 

such as the modified SRT task used here. 
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 Although the TA1 cluster did not exhibit learning of the probabilistic sequence 

behaviorally, the increase in beta power through the learning blocks and in the transfer 

blocks suggests that perhaps with more learning blocks, the typically aging adults may be 

able to learn the sequence. No differences were found in the other two typically aging 

clusters, consistent with their behavioral data. However, cluster TA2 did exhibit greater 

cortico-cortical connectivity in the alpha band in B4 compared to B1 and in B4 than B5 in 

the right temporal region, as well as greater connectivity in B4 than B1 in the beta band in 

the right central and temporal areas and greater connectivity in B5 than B7 bilaterally in 

the parietal and occipital areas. This suggests that participants in this group were attempting 

to integrate the spatial and visual aspects of the task, but were unable to learn the sequence. 

These reduced cortical activations have been shown in previous studies (Aizenstein, et al., 

2006; D'Esposito, et al., 1999; King, et al., 2013) and is often accompanied by an increased 

activation in the striatum (Rieckmann, Fischer, & Backman, 2010). However, some studies 

have shown no differences between young and typically aging adults (Daselaar, et al., 

2003), although in other studies, typically aging adults required more practice to achieve 

similar performance levels as young adults (Wu & Hallett, 2005). 

Impaired learning may be reflected by greater alpha power  

The TA2 cluster in the fixed sequence groups exhibited greater alpha power than 

the young adults, TA1 cluster, and TA3 cluster in B4 as well as greater alpha power in the 

frontal area than the parietal and occipital areas, indicating an impairment in learning the 

fixed sequence. Similarly, in the probabilistic sequence groups, TA3 exhibited greater 

alpha power than TY, TA1, and TA2 in the left frontal and central regions and greater alpha 

power than TY in the right frontal region. Since both the TA2 in the fixed sequence groups 
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and TA3 in the probabilistic sequence groups exhibited greater alpha power than the other 

groups and exhibited impaired learning of their respective sequences and previous studies 

have suggested that increased alpha is an indication of impaired cognitive performance 

(Bonstrup, et al., 2015; Klimesch, 1999). 

Conclusion and limitations 

We have demonstrated that the learning of fixed sequences is spared in some 

typically aging adults, but not in others. We suspect this difference is due, in part, to 

working memory capacity. We also demonstrated that typically aging adults are unable to 

learn probabilistic sequences. We created a developmental landscape to better understand 

the role of aging in motor sequence learning and propose that these methods can provide a 

clearer understanding of disease-related impairments in older adults. We also found distinct 

cortical activations reflecting both learning and transfer of learning even in the absence of 

behavioral indications of learning, suggesting that some adults may require more learning 

blocks to exhibit a decrease in reaction time.  

The differences exhibited in some groups are consistent with previous 

neuroimaging studies suggesting that greater parietal, temporal, and occipital activation is 

associated with visuo-spatial perception of a sequence (Poldrack, et al., 2005; Seidler, et 

al., 2005) and involvement of the prefrontal cortex in working memory (Braver & Barch, 

2002; Braver, et al., 2001) and particularly the importance of working memory while 

learning a sequence (Bo, et al., 2009; Bo, et al., 2011, 2012). Activation in the motor and 

temporal areas is related to detection and encoding of the pattern (Seidler, et al., 2005). 

Activity in the parietal and occipital regions is also unsurprising, given the importance of 

visuo-spatial integration in the task and the importance of encoding spatial locations. In 
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addition, the motor cortex has been implicated in early learning as well as consolidation 

(Muellbacher et al., 2002). However, studies have also found no changes between pre- and 

post-training blocks or during sequenced and random blocks (Poldrack, et al., 2005). It is 

important to remember that EEG provides excellent temporal resolution and the effects 

seen here are immediate, whereas the effects seen in studies using fMRI are more 

downstream.  

An important consideration is that due to changes in alpha frequency in aging and 

neurological disorders, the use of fixed frequency bands may not be ideal. An alternative 

is to define each participant’s alpha band by determining the dominant frequency that 

attenuates during a task and using this personalized narrow band to calculate alpha power 

(Klimesch, 1999). In typically aging participants, who have lower peak alpha, calculating 

alpha using fixed ranges may omit a portion of their real alpha power. Conversely, alpha 

power may be contaminated by theta, which increases during engagement in a cognitive 

task, thus canceling out any changes in alpha. Separating the alpha band to low and high 

alpha may also provide greater insight into differences in the learning process as well as 

between groups. 

The participants that were unable to behaviorally exhibit learning, but displayed 

cortical activations that indicating learning, such as the TA1 cluster in the probabilistic 

sequence group, may be able to learn less complex probabilistic sequences. Probabilistic 

sequences created using a first-order transitional probabilities can be manipulated to 

change the level of complexity. Future studies can gradually change the complexity of the 

sequence to determine whether these adults can learn simpler probabilistic sequences and 

if so, whether they can learn more complex sequences if the complexity level is increased 
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gradually. This may be a potential intervention for impairments in motor sequence 

learning.  

Consistent with our previous study (Study 1 of this dissertation), the posttest 

suggests that participants who were assigned probabilistic sequences were not able to 

differentiate between their assigned sequences, or chunks from their assigned sequence, 

and other random sequences/chunks, but participants assigned to fixed sequences were able 

to differentiate between their sequence/chunks and other random sequences/chunks. Thus, 

the probabilistic structure is more likely to ensure implicit sequence learning and prevent 

contamination of the implicit motor sequence-learning paradigm by explicit learning. A 

surprising finding was that the TA2 cluster in the fixed sequence groups were able to 

differentiate between chunks from their assigned sequence and those that were not, further 

bolstering evidence from the alpha power that even though this cluster did not exhibit 

learning via reaction time, perhaps with more learning blocks, they would have been able 

to do so.  

The separation of individuals using cluster analysis has the potential to have 

profound effects on the way aging studies are conducted as well as how controls are 

matched with clinical populations. Statistical analyses are critical in order to gain a clearer 

understanding of the complicated processes underlying aging- and disease-related effects 

on cognition and motor learning. 
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Chapter 5 (Study 3): Patients with Parkinson’s disease and typically 
aging adults with similar age-related impairments are comparable in 

motor sequence learning3  
 

Introduction 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that affects 

over one million individuals in the US with approximately 60,000 new diagnoses every 

year. PD has an estimated 4% diagnosis rate before the age of 50 years and is a common 

disorder in adults over the age of 80 years (National Institute of Neurological Disorders 

and Stroke, 2015; Parkinson's Disease Foundation, 2015). The incidence of PD will likely 

increase as a larger proportion of the population ages and life expectancies continue to 

increase. PD has been characterized as a movement disorder, owing primarily to the 

movement impairments that are associated with the disease.  However, the effect of PD on 

learning new motor skills has demonstrated equivocal results.  

One of the most commonly studied motor learning tasks is the learning of a motor 

sequence. Motor sequence learning is fundamental to performing complex motor behaviors 

that emerge from simpler movements produced in a particular order. From brushing our 

teeth, getting out of a car, typing on the computer keyboard, and speaking, our actions 

follow a sequence of movements performed in a specific order. Given the importance of 

this motor capacity on motor learning and quality of life, it is important to characterize the 

influence of Parkinson’s disease on motor sequence learning to better understand the 

cognitive and motor deficits and develop interventions.  

                                                             
3 This study will be submitted upon revision for publication with the following authors: Prashad, S., Du, Y, 
& Clark, J. E. 
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The most commonly used paradigm to assess motor sequence learning is the serial 

reaction time (SRT) task (Nissen & Bullemer, 1987). In this task, participants respond to 

the location of a stimulus on a computer screen by pressing the corresponding button as 

quickly and accurately as possible. Participants are unaware that the stimuli are presented 

in a pre-determined repeating sequence. Learning is inferred from a progressive reduction 

in the reaction time during the learning blocks (Nissen & Bullemer, 1987; Robertson, 2007) 

and an increase in reaction time to stimuli that occur in a random order. A repeating fixed 

sequence is most commonly used in the SRT paradigm, but obviously is not an accurate 

reflection of learning in daily life, in which our motor behavior is dependent on statistical 

associations between events that are often made unconsciously and vary in dynamic task 

and environmental constraints (Cleeremans, et al., 1989; A. S. Reber, 1989b).  

We have shown previously, in Study 1 of this dissertation that typical young adults 

are able to learn probabilistic sequences created using first-order transitional probabilities 

within the SRT framework. These transitional probabilities define statistical associations 

between each pair of states and subsequent states change based on these associations. After 

many trials, the participants unconsciously learned the probabilistic rules underlying the 

sequence (e.g., 4 is most likely to be followed by 2) and exhibited a decreased reaction 

time. In Study 2 of this dissertation, we found that typically aging adults were unable to 

learn these probabilistic sequences and did not exhibit a decrease in reaction time. 

Sequences with this unique structure have not been used in other studies and it is unclear 

whether patients with PD would be able to learn these complex sequences. In addition, it 

remains unclear whether patients with PD are impaired at learning fixed sequences.  
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Studies investigating impairments in motor sequence learning in patients with PD 

have found equivocal results possibly due to differences in methodologies, sequence types, 

disease severity, and effect of dopaminergic medications. Despite these differences, the 

general conclusion is that implicit motor sequence learning is impaired in patients with PD 

(Fukuda, et al., 2001; Gamble, et al., 2014; Jackson, et al., 1995; Siegert, et al., 2006; 

Wilkinson & Jahanshahi, 2007; Wilkinson, et al., 2009) including SRT tasks without the 

motor component (Westwater, et al., 1998), and when attempting to learn more complex 

sequences (Shin & Ivry, 2003; Smith & McDowall, 2006). It is thought that as in typically 

aging adults, these impairments are, at least partly, due to a reduced working memory 

(Braver & Barch, 2002; Braver, et al., 2001; Cools, 2011; Cools & D'Esposito, 2006; 

Gabrieli, et al., 1996; Owen, et al., 1998). It has also been found that there is a trend towards 

degradation in performance and neural activity in PD as the disease progresses (Carbon, et 

al., 2010) and thus impairment may be a function of disease severity where those in the 

early stages of PD are relatively spared from impairment (Muslimovic, et al., 2007; 

Stephan, et al., 2011). Results are further confounded by differential effects of dopamine 

on learning and activation of cortical regions (Argyelan, et al., 2008; Cools, 2011; Cools 

& D'Esposito, 2006; Feigin, et al., 2003; Kwak, et al., 2010, 2012; Seo, et al., 2010; 

Tremblay, et al., 2010) and surgical interventions through deep brain stimulation (Carbon 

& Eidelberg, 2006; Mure, et al., 2012). 

Other studies, however, have reported no impairments in the SRT task and artificial 

grammar (Helmuth, et al., 2000; Nagy, et al., 2007; P. J. Reber & Squire, 1999a; Smith, et 

al., 2001; Wilkinson & Jahanshahi, 2007) as long as patients with PD are provided more 

time to learn, which may be a result of compensation. To investigate possible compensatory 
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mechanisms, Mentis et al. (2003) conducted a PET study in which early stage patients with 

PD and typically aging adults performed a center out task consisting of a sequence that 

participants determined through trial and error. To prevent potential confounds from 

differing levels of performance, the patients with PD and control participants were matched 

based on performance level. Over time, the patients with PD were able to perform at a level 

similar to that of typically aging adults, but the PET results indicated that patients with PD 

exhibited four times greater activation of the cerebellum to reach the same level of 

performance as typically aging adults (Mentis, et al., 2003). This suggests that in certain 

conditions (e.g., short fixed sequences) and given enough time, early stage patients with 

PD can achieve greater performance levels through a compensation mechanism via the 

cortico-cerebellar system. PD have also exhibited increasingly greater activation in 

premotor cortex, parietal cortex, and SMA while performing more complex sequential 

finger movements suggesting that patients with PD compensate for degradations in cortico-

striatal circuits by engaging more cortical regions (Catalan, et al., 1999; Fukuda, et al., 

2001; Nakamura, et al., 2001).  

Most of the neuroimaging studies investigating implicit motor sequence learning 

have been conducted using functional MRI as it affords excellent spatial resolution; 

however, it provides poor temporal resolution. Given that reaction time, measured in 

milliseconds, is the variable used to infer learning, we propose that electroencephalography 

(EEG), which provides excellent temporal resolution, is better suited to identify cortical 

activations and cortico-cortical connectivity associated with learning and impairments. 

An additional source of variability is from matching control participants with 

patients based on age. In our previous study (Study 2 of this dissertation), we demonstrated 
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that grouping participants based on functional characteristics, instead of age, results in a 

clearer understanding of deficits in typically aging adults and differences among the 

groups. We propose that it may prove beneficial to compare patients with PD to those 

functional groups in order to understand the deficits in PD. In this study, we compare the 

patients with PD with the typically aging adults in two ways: 1) by selecting a subset of 

typically aging adults that are age-matched with the patients, and 2) by comparing the 

patients with the functional groups created in Study 2. Furthermore, we decomposed 

response time to reaction and movement times to unravel movement and cognitive deficits 

in patients with PD.  

Thus, the purpose of this study is to directly compare the learning of fixed and 

probabilistic sequences in a modified SRT task by patients with PD by comparing them to 

the developmental landscape and functional groups of typically aging adults characterized 

in Study 2 of this dissertation. Studying PD provides a unique opportunity to gain an 

understanding of the influence of an impaired cortico-striatal circuit on motor sequence 

learning and allows for the expansion of our understanding of neural underpinnings of 

motor sequence learning and the nature of impairment in Parkinson’s disease to develop 

novel strategies for interventions. 

 

Methods 

Participants  

Forty-two typically aging adults (TA; mean age: 64.7 ± 7.36), and 10 patients with 

Parkinson’s disease (PD; mean age: 64.5 ± 5.15) were randomly assigned to either a fixed 

(FX) or a probabilistic (PB) sequence. All participants completed the Global Physical 
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Activity Questionnaire (Armstrong & Bull, 2006), a spatial version of the n-back test to 

assess working memory (Jaeggi, et al., 2008), the Wisconsin Card Sorting Test to assess 

set-shifting (Grant & Berg, 1948; Mueller, 2010), and a computer skills questionnaire to 

assess familiarity with the number pad on the computer keyboard. Participants were also 

screened for neurological and motor impairments through a health questionnaire and the 

Mini Mental State Exam (Folstein, et al., 1975) to screen for cognitive impairments. 

Additionally, motor impairments in patients with PD were assessed via the motor section 

of the updated Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating 

Scale (MDS-UPDRS) (Goetz et al., 2007; Goetz et al., 2008) and the Hoehn & Yahr scale 

(Hoehn & Yahr, 1967). A subset of the typically aging adults (TA-age) was randomly 

selected based on age in order to provide an age-matched control group for the patients 

with PD (see Table 5.1). All participants were right-handed.  

Serial reaction time task 

Participants were seated in front of a computer monitor (21”) and keyboard (keys 

size 13x15mm, keys are 6mm apart vertically and horizontally and 8mm apart diagonally). 

A modified SRT task was used that consisted of nine white squares in a 3x3 matrix on the 

computer screen (37x37mm each). Participants placed the index finger of their right hand 

on the center button on the number pad of the keyboard. The relationship between the 

squares on the screen and the buttons on the number pad was spatially compatible, i.e., the 

top right square corresponded to the top right button. At the beginning of each trial, one of 

the eight squares turned blue and the participant pressed the key that corresponded to the 

location of the stimulus and then returned to the home position. After the participant 

pressed a key, a response-to-stimulus interval between 300-1000ms was selected randomly 
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for each trial to prevent participants from anticipating the appearance of the subsequent 

stimulus as well as to prevent any confounding effects from the length of the response-to-

stimulus interval (Willingham, et al., 1997). No visual feedback was given to participants 

as a wooden board blocked vision of their finger position (see Figure 5.2). 

Participants were randomly assigned to either a fixed (FX) 16-item second order 

conditional sequence (Reed & Johnson, 1994) or a probabilistic sequence (PB). The 

probabilistic sequence was created based on a first-order transitional probabilistic structure 

with underlying probabilities associated with each stimulus, e.g., if stimulus 2 occurs, there 

will be a 60% probability that the next stimulus will be 6, a 30% probability that the next 

stimulus will be 8, and a 2% probability that the next stimulus will be 1, 3, 4, 7, or 9. 

Participants were not informed that a sequence existed regardless of which group they were 

assigned to. The sequences were constrained such that the same stimulus was not repeated 

one after the other and that each stimulus appeared an equal number of times in each block 

(20 times per block). 
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Table 5.1 Participant information for the age-matched subset from the typically aging adults and those with PD 

Sequence 
Type 

Group Age 
(Mean 

and 
SD) 

Sex Physical 
Activity 
Level # 

2-back 
(% 

correct) 

Wisconsin Card Sorting Test MMSE MDS-
UPDRS 

(III) 

Hoehn 
& Yahr 

Years 
Since 

Diagnosis 
Correct 
(%) 

Perser-
vative 
Response 
(%) 

Perser-
vative 
Errors 
(%) 

Non-
perser-
vative 
Errors 
(%) 

FX TA-age 66.3 
± 5.39 

8 female; 
5 male 

5 high; 
5 moderate; 
3 low 

38.6 
± 21.1 

70.9  
± 9.35 

30.93  
± 15.2 

13.7  
± 15.2 

15.4  
± 10.3 

29.5 
± 0.820 

- - - 

PD 65.0 
± 3.89 

3 female; 
2 male 

3 high; 
1 moderate 
1 low 

50.5 
± 26.5 

75.6  
± 4.62 

30.5  
± 4.90 

11.72  
± 2.30 

12.7  
± 4.34 

29.2 
± 1.10 

30.4 
± 12.4 

1.30 
± 0.273 

6.18 
± 5.09 

PB TA-age 64.7 
± 5.97 

8 female; 
5 male 

5 high; 
3 moderate; 
5 low 

38.8 
± 23.2 

74.8  
± 10.8 

37.3  
± 6.47 

16.3  
± 6.54 

8.88  
± 5.95 

29.9 
± 0.277 

- - - 

PD 63.6 
± 6.86 

3 female; 
2 male 

3 high; 
1 moderate 
1 low 

40.1 
± 13.8 

63.4  
± 11.8 

37.2  
± 6.53 

22.2  
± 5.78 

14.4  
± 6.41 

28.6 
± 1.14 

26.8 
± 10.6 

1.20 
± 0.447 

6.00 
± 4.90 

# Physical activity levels were determined based on the GPAQ calculated from the number of days and amount of time spent engaged in physical activity.  
FX – fixed sequence group; PB – probabilistic sequence group; TA-age – age-matched subset from the typically aging adults; PD – patients with PD. 



115 
 

 
Figure 5.1: The modified serial reaction time (SRT) task. Participants placed their right index finger on the 
home position (H). On a given trial, one of the 8 locations turned blue and the participant pressed the 
corresponding button on the number keypad and then returned to the home position. 

 

 

Figure 5.2: Experimental Setup. Participants were seated in front of a computer monitor with their hand 
placed on the number keypad. Participants did not receive any visual feedback and could not see their hands. 
Participants’ right hand was wrapped with athletic pre-wrap to prevent the use of the other fingers. 

 

There were a total of eight blocks, each consisting of 160 trials (see Figure 5.3). 

The first block was a baseline block (B0), consisting of 160 trials in which the stimuli 

appeared in a random order. The next four blocks (B1-4) were the learning blocks 

consisting of the fixed or probabilistic sequence in which the sequence was repeated 10 

times each. Block 5 (B5) consisted of 160 trials of stimuli occurring in a random order and 

Block 6 (B6) consisted of 10 repetitions of the assigned sequence. An increase in response 

time in B5 and decrease in B6 would indicate learning (Robertson, 2007). Lastly, Block 7 

(B7) consisted of 10 repetitions of a different sequence that was constructed from the same 

underlying structure as the learned sequence to assess transfer of learning. If the response 

times decrease from B5 to B7, it would suggest that participants were able to transfer their 
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learning. A unique sequence was assigned to each participant to ensure that the results are 

not intrinsic to the sequence used, but can be generalized to all sequences (DeCoster & 

O'Mally, 2011a). Participants were given a two-minute mandatory break between each 

block.  The experiment was performed using Presentation® software (Version 18.1, 

www.neurobs.com). 

 

 

Figure 5.3: The experimental paradigm used for the three groups. All groups started with a baseline (B0), 
then the fixed and probabilistic groups performed the learning blocks (B1-4) and ended with a random block 
(B5) followed by another sequence block (B6) and a transfer block (B7). Each block consisted of 160 trials. 
Participants were given a two-minute break between each block.  

 

The participants’ reaction time (RT), movement time (MT), and accuracy were 

recorded. At the beginning of each trial, participants pressed the home button. The 

participants’ RT (time taken to release the home button after the stimulus was presented), 

MT (time between release of home button and pressing of the corresponding button), and 

accuracy were recorded for each trial (see Figure 5.4).  

 

 



117 
 

 
Figure 5.4: Diagram depicting reaction time (RT) and movement time (MT) recordings in the modified SRT 
task. At the start of a trial, the participant pressed the home button (‘5’ on the number keypad). After a random 
interval (300-1000ms), a stimulus appeared on the screen (one of the eight locations turned blue). The RT is 
the amount of time taken to release the home button and the MT is the time from the release of the home 
button to the pressing of the button that corresponded to the stimulus. The RT and MT were added to calculate 
the response times. 

 

Posttest 

All participants completed a posttest after the completion of the eight blocks to 

determine if learning was implicit. First, participants were asked the following question: 

“The stimulus movement is best described as:” with the following options: “a) Random; b) 

Some positions occurred more often than others; c) The movement was often predictable; 

d) The same sequence of movements would often appear; and e) The same sequence of 

movements occurred throughout the entire experiment” (Curran, 1997). 

Second, participants completed a recognition test to assess explicit recall of the 

sequence (Destrebecqz & Cleeremans, 2001) consisting of two parts: in the first part, 

participants were presented with six-item chunks from their assigned sequence as well as 

random chunks and were asked to rate how confident they were that they had seen that 

chunk before from a scale of 1-5 (where 1 was “Confident that I have not seen it before” 

and 5 was “Confident that I have seen it before”). In the second part, participants were 
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presented with the entire 16-item sequence as well as other random sequences and they 

were asked to rate them on the same scale. 

EEG recording and pre-processing 

EEG data were recorded from 64 electrodes mounted on an actiCAP and 

BrainVision actiCHamp Amplifier (Brain Products, LLC) using the international 10-20 

system. The sampling frequency was 1000Hz. The reference electrodes were placed on the 

left and right mastoids and AFz was the ground electrode. Channel impedances were kept 

below 10kΩ.  

Prior to the SRT task, four resting states were recorded from each participant. 

Participants were asked to sit as motionless as possible with their eyes open and then with 

their eyes closed for one minute each. Participants were also asked to view the task as the 

stimuli appeared but did not respond. Lastly, participants pressed each of the response 

buttons their right index finger in the clockwise direction at their preferred speed without 

any visual stimulus.   

Behavioral data analysis 

The RT and MT were trimmed according to the individual participant’s mean and 

standard deviation. Any values greater or less than 2.5 standard deviations were excluded 

from the analysis (Ratcliff, 1993; Whelan, 2008). Mean RT and MT were calculated for 

each block and were averaged across participants in each group. Learning was measured 

as a decrease in RT from B1 to B4, an increase from B4 to B5 (stimuli in random order) 

and a decrease from B5 to B6 (stimuli in assigned sequence). Transfer of learning was 

inferred if there was a significant decrease in RT between B5 and B7 (stimuli in different 

sequence of same structure as assigned sequence).  
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EEG data analysis 

 The EEG data were preprocessed using EEGLAB (Delorme & Makeig, 2004). The 

data were re-referenced to the average of the mastoid electrodes (M. X. Cohen, 2014). Data 

were filtered using a FIR low-pass filter (cut off frequency: 55Hz, roll off 24dB/octave) to 

eliminate electrical noise. Independent component analysis (ICA) was used to remove eye 

artifacts, such as eye blinks, eye movements, and muscle artifacts.  

 Spectral power. The data were exported into MATLAB version 8.4 (Mathworks, 

Natick, MA) after preprocessing. Data were segmented into one-second intervals with 

respect to the RT (250ms before and 750ms after the RT) and Fast Fourier transforms (FFT) 

were applied in the alpha (8-12Hz) and beta (13-30Hz) bands for each block. Relative alpha 

and beta power were standardized to the baseline block (B0) in which the stimuli occurred 

in a random order. Data from the a subset of electrodes were extracted for the following 

regions: frontal left (F7, F5, F3, and F1), frontal right (F8, F6, F4, and F2), central left 

(C5,C3, and C1), central right (C6, C4, and C2), parietal left (P7, P5, P3, and P1), parietal 

right (P8, P6, P4, and P2), parieto-occipital left (PO7, PO3, and O1), and parieto-occipital 

right (PO8, PO4, O2). 

 Coherence. Coherence is a measure of the amount of cortical communication 

between two electrical sites (ranging from 0 to 1) (Fries, 2005; Nunez, 2000; Srinivasan, 

et al., 1998). The electrode pairings used here between the Fz electrode, which overlies the 

premotor region, and frontal, motor, temporal, parietal, and occipital regions. The specific 

electrode pairings used for the left hemisphere were: Fz-F3, Fz-C3, Fz-T3, Fz-P3, and Fz-

O1 and those for the right hemisphere were: Fz-F4, Fz-C4, Fz-T4, Fz-P4, and Fz-O2. 
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Statistical analysis 

Behavioral data. A mixed factorial analysis of variance (ANOVA) was used to 

compare the differences in average response time, RT, and MT between the Group (TA-

age, PD) x Sequence Type (FX, PB) x Block (0-7) with Block as the within subject 

variable. Bonferroni post hoc tests were used to decompose any significant effects. 

Separate pairwise comparisons were conducted on the contrasts of interest (B1 vs. B4, B4 

vs. B5, B5 vs. B6, and B5 vs. B7) to determine whether learning occurred and whether 

learning was transferred to a novel sequence created using the same underlying structure.  

EEG analysis. Separate mixed factorial analyses of variance (ANOVA) were used 

to compare differences in average spectral power and coherence in the alpha and beta bands 

between Group (TA1, TA2, TA3, PD) x Region (Frontal, Central, Parietal, Occipital) x 

Hemisphere (Left, Right) x Block (B1, B4, B5, B7) with Block as the within subject 

variable. Bonferroni post hoc tests were used to decompose any significant effects. 

Separate pairwise comparisons were conducted on the contrasts of interest (B1 vs. B4, B4 

vs. B5, and B5 vs. B7) to determine differences in early, late, and transfer of learning. 

 Statistical significance was defined at p < 0.05. The data were processed using 

custom scripts written in MATLAB version 8.4 (Mathworks, Natick, MA) and SPSS 

Statistics 22 (IBM, Armonk, NY). 

 

Results  

Accuracy 

All groups exhibited high levels of accuracy with 7% or fewer errors. Thus, 

accuracy cannot be used as a measure of learning in this task and was not analyzed further. 
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Error rates have also been demonstrated to be low in previous studies (R. M. Brown & 

Robertson, 2007; Willingham, et al., 1989). 

Mean response time 

A three-way mixed factorial (2 x 2 x 8) ANOVA on Group (TA-age, PD) x 

Sequence Type (FX, PB) x Block (0-7) on the response times with Block as the within 

subject variable indicated a main effect of Block, F(7,224) = 16.9, p < 0.001 and Group, 

F(1,32) = 5.27, p = 0.03. Bonferroni’s post hoc analysis on Group revealed that TA-age 

was significantly faster than PD and on Block revealed that the response time was 

significantly faster in B4 compared to B1 (p = 0.001) and B5 (p = 0.01).  

Fixed sequence. Pairwise comparisons between contrasts that were determined a 

priori revealed that in TA-age, response time was significantly faster in B4 than B1 (p = 

0.002) and B5 (p = 0.001) and significantly slower response time in B5 compared to B6 (p 

< 0.001) and B7 (p = 0.006). No differences between blocks were found in PD. 

Probabilistic sequence. TA-age exhibited significantly faster response time in B4 

than B1 (p = 0.008) and significantly slower response time in B5 compared to B7 (p = 

0.006). Similarly, a significant decrease in B4 compared to B1 (p = 0.04) was found in PD.  
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Figure 5.5: Mean response time. (A) TA-age exhibited a decrease in response time from B1 to B4, an increase 
from B4 to B5, and a decrease from B5 to B6 and B5 to B7. PD exhibited no changes in response time. (B). 
TA-age exhibited a decrease in response time from B1 to B4 and a decrease from B5 to B7, while PD 
exhibited a decrease from B1 to B4.   
* Indicates significance level of p < 0.05; + indicates significance level of p < 0.10. Error bars indicate 
standard error. TA-age – age-matched subset from the typically aging adults; PD – patients with PD  

 

Mean reaction time (RT) 

A three-way mixed factorial (2 x 2 x 8) ANOVA on Group (TA-age, PD) x 

Sequence Type (FX, PB) x Block (0-7) on the RT with Block as the within subject variable 

indicated only a main effect of Block, F(7,224) = 35.6, p < 0.001 and no significant 

interactions. Post hoc analysis using a Bonferroni correction on Block indicated that RT 

was significantly faster in B4 than B1 (p < 0.001) and B5 (p = 0.05) and significantly 

slower in B5 than B6 and B7 (both p = 0.05). The lack of a main effect of Group indicated 

that the RT of TA-age was not significantly different from that of PD (p = 0.4). This is an 

important finding because the response time for TA-age was significantly faster than PD, 

but the RT was not. Thus, response time and RT are not necessarily interchangeable, 

particularly when testing clinical populations and RT is a more accurate indicator of 

sequence learning. The equivocal results in the literature may be due to this lack of 

distinction. 
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Fixed sequence. In TA-age, B4 exhibited a faster RT than B1 (p = 0.003) and B5 

exhibited a slower RT than B4 (p = 0.001), B6 (p < 0.001), and B7 (p = 0.02), indicating 

both learning and transfer. In PD, B4 exhibited a faster RT than B1 (p = 0.001) and 

marginally faster RT than B5 (p = 0.08), but no difference between B5 and B7 (p = 0.5). 

Probabilistic sequence. There was a marginally significant decrease in RT from B1 

to B4 in TA-age (p = 0.08) and a significant decrease from B5 to B7 (p = 0.02). Similarly, 

in PD, there was a significant decrease from B1 to B4 (p = 0.05). 

 

 
Figure 5.6: Mean reaction time. The reaction time exhibits a more nuanced inference of motor sequence 
learning. (A) In the fixed sequence groups, both TA-age and PD exhibited a decrease in RT from B1 to B4 
and B4 to B5. TA-age exhibited a decrease in RT from B5 to B6 and B5 to B7. (B) In the probabilistic 
sequence groups, TA-age exhibited a marginal decrease from B1 to B4 and a decrease from B5 to B7, while 
PD exhibited a decrease from B1 to B4.   
* Indicates significance level of p < 0.05; + indicates significance level of p < 0.10. Error bars indicate 
standard error.  

 

Mean movement time (MT) 

 A three-way mixed factorial (2 x 2 x 8) ANOVA on Group (TA-age, PD) x 

Sequence Type (FX, PB) x Block (0-7) on the RT with Block as the within subject variable 

indicated a main effect of Block, F(7,224) = 4.31, p < 0.001 and Group, F(1,32) = 10.6, p 
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= 0.003. A Bonferroni post hoc analysis on Group revealed that TA-age exhibited a faster 

MT than PD, suggesting that MT was driving the differences in response time, since the 

RT of TA-age and PD were not significantly different. 

 For both fixed and probabilistic sequence groups, no differences were found in the 

MT in TA-age or PD.  

 

 
Figure 5.7: Mean movement time. There were no differences between the blocks for any of the groups. 
Error bars indicate standard error. 
 

 The decomposition of response time into RT and MT revealed significant findings; 

specifically, that the RT of typically aging adults and those with PD are not significantly 

different, but the MT is significantly different. The inconsistent results found in studies 

investigating age-related or PD-related impairment in learning may be due to the frequent 

interchangeable use of response and reaction times. While the results found in this study 

suggest that patients with PD do decrease their RT during the learning blocks for both FX 

and PB sequences, they only exhibit learning of the fixed sequence. 
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Cluster analysis reveals functional groups that can be matched with clinical populations 

  Cluster analysis is a technique used to structure large complex data sets into 

relatively homogenous groups without any predetermined criteria (Lloyd, 1982; 

MacQueen, 1967). In our previous study (Study 2 of this dissertation), we found that 

applying k-means cluster analysis to the RT time series of the typically aging adults 

separated the adults into three clusters (TA1, TA2, and TA3). We performed cluster 

analysis again on the typically aging adults, but included the patients with PD and 

interestingly, the patients with PD were interspersed with the typically aging adults, rather 

than being classified into their own cluster. Separate one-way ANOVAs revealed no 

significant differences between the groups for age, F(3,51) = 1.29, p = 0.3 (see Figure 

5.8A), the Wisconsin Card Sort Task, F(3,51) = 0.41, p = 0.7, or physical activity level, 

F(3,51) = 0.22, p = 0.9.  
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Table 5.2: Demographic information of the different clusters from the typically aging group. 
Cluster Age 

(Mean 
± S.D.)  

Sex Physical 
Activity 
Level # 

2-back 
(% 

correct) 

Wisconsin Card Sorting Test MMSE 
Correct 
(%) 

Perserv
ative 
Respons
e (%) 

Perserv
ative 
Errors 
(%) 

Non-
perserva
tive 
Errors 
(%) 

TA1 63.9 
± 1.45 

15 
female; 
8 male 

10 high; 
6 moderate; 
7 low 

43.7 
± 3.64 

68.9  
± 14.4 

29.7  
± 15.6 

13.6  
± 9.27 

17.5  
± 15.4 

29.5 
± 1.03 

TA2 63.5 
± 1.15 

9 female; 
4 male 

4 high; 
5 moderate; 
4 low 

33.7 
± 5.84 

73.9  
± 12.0 

36.0  
± 9.24 

16.0  
± 8.34 

10.2  
± 6.44 

29.7 
± 0.49 

TA3 69.7 
± 3.19 

3 female; 
3 male 

1 high; 
4 moderate; 
1 low 

19.4 
± 7.46 

69.8  
± 14.4 

38.6  
± 11.0 

18.9  
± 11.0 

11.2  
± 8.42 

29.5 
± 0.84 

# Physical activity levels were determined based on the GPAQ calculated from the number of days and amount of time spent engaged in physical activity.  
FX – fixed sequence group; PB – probabilistic sequence group; TA – typically aging adults.
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Figure 5.8: Characteristics of the three TA clusters and patients with PD. A) Age was not significantly 
different between the groups. B) Working memory, as assessed by percent correct in the n-back test, was 
significantly higher in the TA1 cluster and the PD group than the TA3 cluster. C) The overall mean RT of the 
TA1 cluster and PD group were significantly faster than the TA2 and TA3 clusters. 
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Figure 5.9: Visualization of the three typically aging adult clusters. A) k-means cluster analysis revealed three 
clusters for the typically aging group separated by overall mean reaction time and working memory (from 
Study 2 of this dissertation). B) The patients with PD were interspersed within the typically aging group, 
rather than being a cluster of their own. 

 

Mean reaction times of the patients with PD compared to the typically aging clusters 

 A three-way mixed factorial (4 x 2 x 8) ANOVA on Group (TA1, TA2, TA3, PD) 

x Sequence Type (FX, PB) x Block (B0-7) on the RT with Block as the within subject 

variable indicated a main effect of Block, F(7,308) = 57.0, p < 0.001 and Group, F(3,44) = 

61.9, p < 0.001 and a significant interaction between Block x Sequence x Group, F(21,208) 

= 1.89, p = 0.01.  

 Simple effects analysis indicated that in the fixed sequence group, there was no 

significant difference in RT between TA1 and PD for all blocks (all p > 0.5). Both TA1 

and PD were significantly faster than TA2 (both p < 0.05) and TA3 (both p < 0.001) and 

TA2 was significantly faster than TA3 (p < 0.001) for all blocks. However, in the 

probabilistic sequence group, there was a different trend. In B1, TA1 was significantly 

faster than TA2 (p < 0.001), TA3 (p < 0.001), and PD (p = 0.04), but no significant 

difference was found between TA2 and PD (p = 0.2). Both TA2 and PD were faster than 

TA3 (both p < 0.001). However, in B4, B5 and B7, the same trend as the fixed sequence 
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groups was exhibited: no difference was found between TA1 and PD (p = 0.3), both TA1 

and PD were significantly faster than TA2 (both p < 0.009) and TA3 (both p < 0.001), and 

TA2 was significantly faster than TA3 (p < 0.001).  

 Fixed sequence. As reported in study 2 of this dissertation, TA1 exhibited a 

significant decrease from B1 to B4 (p = 0.001), an increase from B4 to B5 (p = 0.01), and 

a decrease from B5 to B6 (p < 0.001) and B7 (p = 0.002). TA2 exhibited a significant 

decrease from B1 to B4 (p = 0.034) and TA3 exhibited no significant changes. PD exhibited 

a significant decrease from B1 to B4 (p = 0.001) and a marginally significant increase from 

B4 to B5 (p = 0.08).  

 Probabilistic sequence. TA1 and TA2 exhibited a significant decrease from B5 to 

B7 (both p < 0.04). TA3 and PD exhibited a significant decrease from B1 to B4 (both p > 

0.05). 

 
Figure 5.10: Mean RT for the clusters of typically aging adults and those with PD. A) In the fixed sequence 
groups, TA1 and PD exhibited a decrease in RT from B1 to B4 and B4 to B5, TA2 exhibited a decrease from 
B1 to B4, and TA3 exhibited no changes. (B) In the probabilistic sequence groups, TA3 and PD exhibited a 
decrease from B1 to B4 and TA1 and TA2 exhibited a decrease from B5 to B7. 
* Indicates significance level of p < 0.05; + indicates significance level of p < 0.10. Error bars indicate 
standard error. 
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Positive correlation between baseline RT and years since diagnosis of PD 

 A Pearson correlation coefficient was computed to assess the relationship between 

the preliminary tests (age, n-back score, Wisconsin card sorting task score, physical 

activity, MMSE, MDS-UPDRS, Hoehn & Yahr score, and years since diagnosis of PD) 

and RT performance. A positive correlation was found between the mean baseline (B0) RT 

and years since diagnosis of PD, r = 0.78, p = 0.008 (Figure 5.12). Thus, the longer a patient 

has been diagnosed with PD, the slower their baseline RT. No significant correlations were 

found for TA, further suggesting that this reduction in baseline RT is not age-related. 

 

Figure 5.11: Positive correlation between baseline RT and years since diagnosis of PD.  
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Relative spectral power 

 Separate ANOVAs were conducted on the alpha and beta bands for each sequence 

type. The typically aging adults were compared based on their clusters with the patients 

with PD. 

 Fixed sequences 

Alpha. A four-way mixed factorial (4 x 4 x 2 x 4) ANOVA on Group (TA1, TA2, 

TA3, PD) x Region (Frontal, Central, Parietal, Occipital) x Hemisphere (Left, Right) x 

Block (B1, B4, B5, B7) on the alpha band with Block as the within subject variable 

indicated a main effect of Block, F(3,93) = 3.17, p = 0.03 and a significant interaction 

between Region x Hemisphere x Block, F(9,198) = 4.69, p < 0.001. Simple effects analysis 

indicated that in the left hemisphere, the central region exhibited significantly greater alpha 

power than the frontal region (p = 0.01) and the occipital region (p = 0.03) in B1. In the 

right hemisphere, the central region exhibited significantly lower alpha power than the 

frontal region in B1 (p = 0.007) and marginally lower in B7 (p = 0.08), lower alpha than 

the parietal region in B1 (p = 0.02) and B7 (p = 0.05), and attenuated alpha than the 

occipital region in B1 (p = 0.02) and B7 (p = 0.03). There was also greater alpha power 

overall in the left hemisphere in the frontal region in B7 (p = 0.03) and in the central region 

in B1 (p = 0.001) and B7 (p = 0.05).  

Pairwise comparisons between contrasts that were determined a priori revealed 

greater alpha power in B7 than B5 that approached significance in the left frontal region (p 

= 0.08) and left central region (p = 0.06) in TA1. The TA2 and TA3 clusters did not exhibit 

any differences in blocks in the alpha band. The PD group also exhibited a decrease in 

alpha power with learning, but only in the left central region (p = 0.02), and greater alpha 
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in B5 than B4 in the right frontal (p = 0.03) and right central (p = 0.03) regions and 

approaching significance in the left frontal and parietal (both p = 0.07) regions. In addition, 

the PD group also exhibited greater alpha power in B7 than B4 in the right central region 

(p = 0.02), right parietal region (p = 0.03), right occipital region (p = 0.02) and approaching 

significance in the left central region (p = 0.06) and right frontal region (p = 0.08).  

 
Figure 5.12: Relative alpha power for B1 (early learning), B4 (late learning), B5 (random – no sequence), 
and B7 (transfer of learning) for the fixed sequence groups. 

 

Beta. In the beta band, there were no significant main effects or interactions. 

Pairwise comparisons revealed significantly greater beta power in B7 than B5 in the left (p 

= 0.003) and right (p = 0.005) frontal regions and left central region (p = 0.02). As in the 
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alpha band, no significant differences were found in the TA2 and TA3 clusters. In addition, 

no changes were exhibited the PD group.   

 
Figure 5.13: Relative beta power for B1, B4, B5, and B7 for the fixed sequence groups. 

 

Probabilistic sequences 

Alpha. A four-way mixed factorial (4 x 4 x 2 x 4) ANOVA on Group (TA1, TA2, 

TA3, PD) x Region (Frontal, Central, Parietal, Occipital) x Hemisphere (Left, Right) x 

Block (B1, B4, B5, B7) on the alpha band with Block as the within subject variable 

indicated a main effect of Region, F(3,60) = 2.99, p = 0.04. Post hoc analysis with 

Bonferroni correction on Region revealed significantly greater alpha power in the frontal 
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region than the occipital region (p = 0.03) and marginally lower alpha power in parietal 

region than the frontal and central regions (both p = 0.07).  

Pairwise comparisons between contrasts that were determined a priori revealed no 

differences in TA1, TA2, or PD. TA3 exhibited marginally greater alpha power in B4 than 

B1 in the left occipital region (p = 0.07) and significantly greater power in B5 than B4 in 

the left central region (p = 0.05) and approaching significance in the right frontal region 

and parietal regions (both p = 0.07).  

 
Figure 5.14: Relative alpha power for B1, B4, B5, and B7 for the probabilistic sequence groups. 

 

Beta. In the beta band, there were significant interactions between Region x Block, 

F(9,180) = 2.29, p = 0.02, Region x Block x Group, F(27,180) = 1.77, p = 0.02, Region x 

Hemisphere x Block, F(9,180) = 2.02, p = 0.04, and Region x Hemisphere x Block x Group, 
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F(27,180) = 1.63, p = 0.03. Simple effects analysis revealed that in B1, B4, and B5, TA3 

exhibited significantly greater beta power in the left and right frontal regions compared to 

TA2 (all p < 0.05) and marginally greater than TA1 (B1 and B4, p = 0.07; B5, p = 0.02). 

In addition, PD exhibited significantly greater beta power than TA2 in the right occipital 

region in B1 and B4 (both p = 0.05) and marginally greater power in the right parietal 

region (p = 0.06). In B4, PD also exhibited marginally greater beta power than TA1 (p = 

0.06) in the right occipital area. Greater differences between the TA clusters and PD 

appeared in B5 with PD exhibiting marginally greater beta power than TA1 in the left 

occipital region (p = 0.06) and significantly greater power in the right occipital region 

compared to TA1 (p = 0.02) and TA2 (p = 0.05).  Pairwise comparisons did not exhibit any 

differences between blocks in TA or PD.  

 
Figure 5.15: Relative beta power for B1, B4, B5, and B7 for the probabilistic sequence groups. 
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Coherence analysis 

Fixed sequences 

Alpha. A four-way mixed factorial (4 x 5 x 2 x 4) ANOVA on Group (TA1, TA2, 

TA3, PD) x Region (Fz pairing with each of the following: Frontal, Central, Temporal, 

Parietal, Occipital) x Hemisphere (Left, Right) x Block (B1, B4, B5, B7) on the alpha band 

with Block as the within subject variable indicated a main effect of Region, F(4,88) = 

163.3, p < 0.001. Post hoc analysis with Bonferroni correction on Region revealed 

significant greater cortico-cortical connectivity in the frontal region than the other regions 

(all p < 0.001). In addition, there was greater connectivity in the central region than the 

temporal, parietal, and occipital regions (all p < 0.001); greater connectivity in the temporal 

and parietal regions than occipital region (both p < 0.001), but no difference between the 

temporal and parietal regions (p = 0.9).  

Pairwise comparisons between contrasts that were determined a priori revealed 

greater cortico-cortical connectivity in the right temporal region in B4 compared to B1 (p 

= 0.05) in TA2. No differences were found in TA1, TA3, or PD. 
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Figure 5.16: Coherence in the alpha band for B1, B4, B5, and B7 for the fixed sequence groups. 

 

Beta. In the beta band, there was also a main effect of Region, F(4,88) = 138.9, p < 

0.001 and significant interactions between Region x Hemisphere, F(4,88) = 3.08, p = 0.02 

and Region x Hemisphere x Block x Group, F(36,264) = 1.52, p = 0.04. Simple effects 

analysis revealed that in B1, TA3 exhibited significantly greater cortical connectivity than 

TA2 in the left central region (p = 0.05) and TA1 (p = 0.005) and TA2 (p = 0.008) in the 

left temporal region. In B4, TA3 exhibited greater cortical connectivity than TA1 and TA2 

in the left central region (both p = 0.05) left temporal region (both p < 0.008). In B5, TA3 

exhibited greater cortical connectivity than TA1, TA2, and PD in the left central (all p < 

0.04) and left temporal (TA1 and TA2, p < 0.01; PD, p = 0.07) regions. In B7, TA3 

exhibited significantly greater connectivity in in the left central region than TA1, TA2 
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(both p = 0.02), and PD (p = 0.05), in the left temporal region than TA1 (p = 0.05) and TA2 

(p = 0.03), and marginally greater in the right occipital region than TA1 (p = 0.06).  

At the region level, TA1, TA2, and PD exhibited similar trends for all blocks: 

significantly greater connectivity in the frontal region compared to the other regions (all p 

< 0.001), greater connectivity in the central region than the temporal, parietal, and occipital 

regions (all p < 0.001), greater connectivity in the parietal and temporal regions than the 

occipital region (both p < 0.02), and no differences between the temporal and parietal 

regions (p > 0.1). TA3 exhibited some differences in that connectivity in the frontal region 

was significantly greater than the temporal, parietal, and occipital regions (all p < 0.05), 

but not different from the central region (p = 0.2). Additionally, the central region was not 

significantly different from the temporal region (p = 0.4), but the temporal region exhibited 

significantly greater connectivity than the parietal and occipital regions (both p < 0.02). 

This pattern of connectivity is different in TA3 compared to PD and the other TA clusters 

suggests that at least in TA3, impairments may be related to cortico-cortical connectivity 

in the beta band. 

Pairwise comparisons found marginally greater connectivity in the right central 

region in B5 than B7 (p = 0.06) in TA1. In TA2, there was greater right temporal 

connectivity in B4 than B1 (p = 0.03) and B5 than B4 (p = 0.005), greater parietal 

connectivity in B5 than B7 in both the left (p = 0.04) and right (p = 0.05) hemispheres and 

marginally greater occipital connectivity in B5 than B7 in both the left (p = 0.06) and right 

(p = 0.07) hemispheres. In TA3, right central connectivity was greater in B5 than B7 (p = 

0.01) and in PD, right frontal connectivity was greater in B5 than B4 (p = 0.03).  



139 
 

 
Figure 5.17: Coherence in the beta band for B1, B4, B5, and B7 for the fixed sequence groups. 

 

Probabilistic sequences 

Alpha.  There was a main effect of Region, F(4,84) = 120.2, p < 0.001 and 

Hemisphere, F(1,21) = 10.0, p = 0.005, but no significant interactions. Post hoc analysis 

with Bonferroni corrections on Region revealed significant greater coherence in the frontal 

region than the other regions (all p < 0.001). In addition, there was greater cortical 

connectivity in the central region than the temporal, parietal, and occipital regions (all p < 

0.001); greater connectivity in the temporal and parietal regions than occipital region (both 

p < 0.002), but no difference between the temporal and parietal regions (p = 1.0). 

Additionally, the right hemisphere exhibited greater connectivity than the left hemisphere.  
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Pairwise comparisons between contrasts of interest that were determined a priori 

revealed significantly greater connectivity in B4 than B1 in the left occipital area (p = 

0.004) in TA1. There was significantly greater connectivity in B4 than B5 in the left frontal 

area in TA2 (p = 0.02). In TA3, there was significantly greater connectivity in B5 than B7 

in the right parietal area (p = 0.03) and approached significance in the right central area (p 

= 0.07) and in the left occipital area for B1 (p = 0.06). In PD, B1 had significantly greater 

connectivity than B4 in the left frontal area (p = 0.05). 

 
Figure 5.18: Coherence in the alpha band for B1, B4, B5, and B7 for the probabilistic sequence groups. 

 

Beta. In the beta band, there was also a main effect of Region, F(4,84) = 120.2, p < 

0.001 and Hemisphere, F(1,21) = 9.0, p = 0.007 and a significant interaction between 

Region x Hemisphere x Block, F(12,252) = 3.2, p < 0.001. Simple effects analysis revealed 
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the same trend in region for all blocks and both hemispheres as seen in the alpha band. 

Additionally, greater connectivity was exhibited in the right hemisphere for all blocks and 

regions (all p < 0.05).  

Pairwise comparisons found significantly greater connectivity in the right frontal 

area in B5 than B7 in TA1 (p = 0.01), the left frontal in B5 than B4 in TA2 (p = 0.004), 

marginally greater connectivity in the left occipital area in B4 than B5 in TA3 (p = 0.08), 

and greater connectivity in B1 than B4 in the right central area (p = 0.04) and right temporal 

area (p = 0.05). In PD, significantly greater connectivity was exhibited in B1 compared to 

B4 in the right central (p = 0.04) and temporal (p = 0.05) regions and marginally greater 

connectivity in B5 than B7 in the right frontal area (p = 0.06). 

 
Figure 5.19: Coherence in the beta band for B1, B4, B5, and B7 for the probabilistic sequence groups. 
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Posttest 

The posttest required participants to rate their confidence on a scale of 1-5 whether 

they had seen the presented chunk in any of the blocks. Some of the chunks presented to 

participants were from the assigned sequence and some were random chunks. Participants 

were also shown entire sequences, one of which was their assigned sequence. 

Fixed sequence. In TA1, there was a marginally significant difference between the 

chunks (p = 0.06) and no difference between entire sequences (p = 0.3). Surprisingly, there 

was a significant difference in TA2 for chunks (p = 0.05), even though they did not exhibit 

learning of the sequence, but not for the entire sequence (p = 0.4). There was no difference 

for chunk or sequence in TA3 (both p > 0.1) or PD (both p > 0.2).  

Probabilistic sequence. There was no difference between the chunks or sequences 

in any of the groups (all p > 0.05), indicating that participants in the probabilistic group 

were unable to recognize the chunks or their assigned sequence. 

 

Discussion 

By directly comparing fixed and probabilistic sequences in typically aging adults 

and those with PD, we demonstrated that motor sequence learning impairments in patients 

with PD are likely related to the aging process. Some typically aging adults (those with 

higher working memory capacity) and those with PD (also with higher working memory 

capacity) learned the fixed sequence, but neither were able to learn the probabilistic 

sequence, suggesting that reduced working memory in aging contributes to the impairment.   
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Disentangling cognitive and movement deficits  

We found that reaction time provided a more accurate understanding of learning in 

PD than response time. Analysis of response time suggested that only the typically aging 

adults were able to learn the fixed sequence; however, decomposing response time into 

reaction and movement times revealed that the large response times exhibited by the 

patients with PD were due to their large movement times. Patients with PD exhibited a 

significant decrease in reaction time during the learning blocks and an increase when 

presented with random stimuli, thus demonstrating that were able to learn the fixed 

sequence. In the probabilistic sequence group, while patients with PD did exhibit a decrease 

in reaction time during the learning blocks, they did not exhibit any changes in subsequent 

blocks, suggesting that as we saw in Study 1 of this dissertation, that they improved in the 

motor component of the task, but did not exhibit learning of the sequence. These results 

suggest that motor sequence learning impairments in these patients are related to their aging 

and not PD. Importantly, the results highlight a potential factor contributing to the 

inconsistencies in the literature: namely, the interchangeable use of response and reaction 

time. These measurements are distinct and the difference is particularly important when 

assessing patients with a movement disorder. Separating these measurements may provide 

clarity to current literature where some studies find that patients with PD are impaired at 

learning motor sequences (Carbon, et al., 2010; Doyon, et al., 1997; Gamble, et al., 2014; 

Gobel et al., 2013; Jackson, et al., 1995; Muslimovic, et al., 2007; Seo, et al., 2010; Shin 

& Ivry, 2003; Westwater, et al., 1998; Wilkinson, et al., 2009), while others suggest no 

impairment (Agostino, Sanes, & Hallett, 1996; Mentis, et al., 2003; Pascual-Leone, et al., 
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1993; Pendt, Reuter, & Muller, 2011; P. J. Reber & Squire, 1999a; Siegert, et al., 2006; 

Smith, et al., 2001; Wilkinson & Jahanshahi, 2007).  

Most SRT paradigms used in current literature are unable to distinguish between 

response time (movement time and reaction time combined) and reaction time (only); 

however, the modified SRT task used in this study provided a method for recording 

reaction time and movement time separately. While reaction time was not significantly 

different between the typically aging adults and those with PD, movement time was 

significantly slower in patients with PD. This was expected as patients with PD present 

with motor symptoms such as bradykinesia that resulted in slower movement times. This 

is a critical distinction as reaction time is the measure used to infer learning in the SRT task 

and it is possible that studies that find impairments in learning in PD are actually reflecting 

movement deficits with their use of response times, rather than learning deficits.  

 Previous studies have suggested that impairments in PD may be a function of 

disease severity (Carbon & Eidelberg, 2006; Muslimovic, et al., 2007; Stephan, et al., 

2011) and it is important to note that the patients in this study were all in the early stages 

of the disease (Hoehn & Yahr stage of I-II). Impairment in learning the probabilistic 

sequence is also consistent with previous studies that used different probabilistic sequence 

structures (Seo, et al., 2010; Wilkinson, et al., 2009), as well as other tasks that require the 

learning of probabilities, such as category learning (Ashby & Ell, 2001a; Ashby & 

Maddox, 2005, 2011; Keri, 2003; P. J. Reber, 2013; Seger, 2006a). Together, the 

impairments found in these studies and those found in the current study suggest an 

important role of the basal ganglia in learning probabilities (Knowlton, et al., 1996).  
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Comparing patients with PD to the developmental landscape of typically aging adults  

In Study 2 of this dissertation, we demonstrated that combining all typically aging 

adults into one group fails to provide a clear understanding of age-related changes in 

performance. By using cluster analysis, we created a developmental landscape of our 

sample of typically aging adults that separated the adults into three clusters that were found 

to be distinct by mean reaction time and working memory capacity, but not age. When the 

patients with PD were included in this developmental landscape, they did not create a 

separate cluster of their own, but were interspersed within the typically aging adults, 

suggesting that for mean reaction time and working memory, these patients were similar 

to typically aging adults. Specifically, the patients with PD were not significantly different 

in mean reaction time or working memory capacity than TA1 (the fastest cluster with the 

highest n-back score). Thus, cluster analysis provided a unique method of matching 

patients with a control group that did not rely on age, but rather functional characteristics 

that are important for the task, elucidating deficits exhibited by patients with PD. Using 

such methods may prove crucial in future studies for attaining a clearer understanding of 

changes related to disease and age. 

Patients with PD exhibit an impairment in transfer of learning 

Transfer is an essential component of motor learning that provides an assessment 

of learning and whether performance can be maintained in a different context or variation 

of the skill. The TA1 cluster exhibited both learning and transfer of the fixed sequence; 

however, the patients with PD were unable to transfer their learning to a novel fixed 

sequence, suggesting a role for the basal ganglia in transfer of learning to a new context. 

However, some studies suggest that depending on the cognitive demands of the task, 
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patients with PD are able to transfer learning to a related motor task, although patients 

exhibited deficits in tasks related to working memory (Mendes, et al., 2012), and that 

levodopa medication impairs learning, but not generalization (Shohamy, et al., 2006). 

Transfer is not assessed in most SRT studies, thus more research is needed to determine 

whether patients with PD are impaired at transferring their learning within the motor 

sequence learning framework. 

Working memory plays an important role in motor sequence learning  

Given that the patients with PD had a similar n-back score and mean reaction time 

as TA1, it was not surprising that no differences were found between the reaction times of 

the patients with PD and the TA1 cluster in the fixed sequence group and that both were 

faster than the TA2 and TA3 clusters. These results further suggest that working memory 

plays an important role in motor sequence acquisition. This is consistent with previous 

studies that have found that visuospatial working memory capacity is related to both 

explicit (Bo, et al., 2009) and implicit (Bo, et al., 2011, 2012; Seidler, et al., 2012) motor 

sequence learning. In addition, studies have found that while typically aging adults exhibit 

reduced working memory (Li, et al., 2008), they are able to maintain their performance 

levels (Bo, et al., 2012). We observed a maintenance of performance in the TA1 cluster 

and patients with PD in the fixed sequence group, but not in the TA2 and TA3 clusters or 

any of the participants in the PB group, suggesting that there may be a threshold up to 

which performance may be maintained even with reduced working memory. Since the 

fixed sequence is less complex, the working memory capacity available may be adequate 

for sequence learning in the patients with PD and the TA1 cluster, but is not adequate for 
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the more complex probabilistic sequence. The reduced working memory in the TA2 and 

TA3 clusters may be inadequate for learning the fixed sequence. 

Potential behavioral markers of Parkinson’s disease 

 We found a significant positive correlation between the mean baseline reaction time 

and years since diagnosis of PD. This is not surprising as bradykinesia expresses in the 

symptomatology of PD and deteriorates with progression of the disease (Fahn & Jankovic, 

2007). This further suggests that impairments exhibited by patients with PD in previous 

studies may be due to an inability to produce movement, resulting in a slower reaction 

time, rather than an inability to learn the sequence. This correlation suggests that there may 

be other behavioral variables, in addition to baseline RT, that may be potential markers to 

track the progression of PD or that may aid in the early detection of the disease.  

Few differences between typically aging adults and those with PD in cortical activations 

and connectivity  

In our previous study (Study 2 of this dissertation), we found distinct cortical 

activations between the young and typically aging adults that suggested that learning can 

be inferred from the cortical activations in addition to the behavioral measures. These 

cortical activations (or lack of them when no learning occurred) were observed across 

groups in the current study as well. For both fixed and probabilistic sequence groups, no 

significant interactions involving group were found in the alpha band for cortical 

activations or connectivity, suggesting few differences between the typically aging adults 

and those with PD and further providing evidence that the deficits exhibited by the patients 

with PD are related to the aging process.  
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In the fixed sequence group, we found greater alpha power in B5 than B4 in the left 

occipital and right parietal regions across groups, supporting our previous findings of 

cortical activations indicating learning. The patients with PD exhibited greater alpha power 

in B1 than B4 in the left central region, suggesting an attenuation in alpha with learning, 

also consistent with our previous findings. Additionally, patients also exhibited an increase 

in B5 compared to B4 in bilaterally in the frontal region, right central, and left parietal 

regions. However, patients exhibited significantly greater beta power in B5 than B7 in the 

right frontal area, suggesting less cortical activation in B7. Together with the behavioral 

data, these cortical activations further provide evidence that the patients with PD learned 

the fixed sequence, but were unable to transfer their learning to a novel sequence. 

In the probabilistic sequence group, no differences were found between blocks in 

alpha power in the TA1 cluster, the TA2 cluster, or the patients with PD, but the TA3 

cluster exhibited increased activation in late learning compared to the random block, 

suggesting that with more learning blocks, they may be able to learn the sequence. 

Coherence analysis demonstrated greater alpha connectivity in B4 compared to B1 in the 

left frontal region in patients with PD and greater beta connectivity in B1 compared to B4 

in the right central and temporal regions and in B5 compared to B7 in the right frontal 

region was also exhibited by patients with PD, both bands indicating no learning. Thus, 

consistent with results from our previous study (Study 2 of this dissertation), learning (or 

the lack of it) can be inferred from cortical activations.  

In the patients with PD, coherence analysis exhibited greater connectivity in B4 

than B1 in the alpha band in the left frontal area and greater connectivity in the beta band 

in B1 than B4 in the right central and temporal regions. These are consistent with the 
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behavioral results that patients with PD were unable to learn the probabilistic sequence and 

the increase alpha power and decreased beta power during the learning blocks are 

indicative of the impairment. The lack of parietal, temporal, and occipital activation is 

consistent with previous studies (Carbon, et al., 2010) and greater frontal activation may 

reflect a potential compensatory mechanism (Catalan, et al., 1999; Nakamura, et al., 2001). 

In addition, the patients with PD in this study were on dopaminergic medication, which 

studies have found to have a negative effect on learning, as well as suppress activation of 

cortical regions (Argyelan, et al., 2008; Carbon & Eidelberg, 2006; Huang et al., 2007; 

Kwak, et al., 2010, 2012). This may reflect the impairment in learning the probabilistic 

sequence, but it is more likely to be age-related as the typically aging adults were also 

impaired at learning the probabilistic sequence. 

The beta band may be more sensitive to differences and may reflect PD-related 

compensation 

Unlike the alpha band, coherence analysis of the beta band in the fixed sequence 

group exhibited differences between groups. The TA3 cluster exhibited greater beta 

connectivity than the TA1 and TA2 clusters in the left central and temporal regions in for 

all the blocks. In addition, the TA1 and TA2 clusters and patients with PD exhibited the 

greatest connectivity in the frontal region, then the central region, then temporal and 

parietal regions, and the least connectivity in the occipital regions. However, the TA3 

cluster exhibited a different pattern of connectivity, with similar connectivity in the frontal 

and central regions, the central and temporal regions, and the parietal and occipital regions. 

Significantly greater connectivity was found in the frontal region than the temporal, 

parietal, and occipital regions and in the temporal region compared to the parietal and 
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occipital region. These different connectivity patterns may be indicative of the impairments 

in learning the fixed sequence in the TA3 cluster; however, it should be noted that the TA2 

cluster was also impaired at learning the sequence, but did not exhibit these different 

connectivity patterns.  

  In the probabilistic sequence groups, during B1, the TA3 cluster exhibited greater 

beta power than the TA1 and TA2 clusters bilaterally in the frontal region and patients with 

PD exhibited greater beta power than the TA2 cluster in right occipital region. However, 

by B4, patients with PD exhibited significantly greater beta power than the TA1 cluster in 

the right occipital region. This trend continued in B5, where patients with PD exhibited 

significantly greater beta power than the TA1 cluster in the right central region and 

bilaterally in the occipital region as well as in B7 in the right parietal region. This pattern 

is the opposite of what we observed in the behavioral data, where the patients with PD were 

significantly slower than the TA1 cluster in B1, but by B4 were not significantly different 

from the TA1 cluster and both were significantly faster than the TA2 cluster. This 

difference suggests that there may be compensatory mechanisms that are PD-related in the 

cortical activations that are not captured by behavioral measures. These differences in beta 

power are supported by previous studies in clinical populations that have found a 

reorganization of beta band connectivity in patients with focal hand dystonia (Jin, Lin, Auh, 

et al., 2011; Jin, Lin, & Hallett, 2011) and patients with PD (Ahn, et al., 2015).  

Furthermore, coherence analysis of the beta band in the fixed sequence group 

indicated a similar pattern. The TA3 cluster was not significantly different from the patients 

with PD in B1 or B4, but in B5 and B7, the TA3 cluster exhibited significantly greater beta 

connectivity than the TA1 and TA2 clusters as well as the patients with PD in the left 
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central and temporal regions. This suggests that in the learning blocks, patients with PD 

exhibit similar cortical connectivity as the TA3 cluster, but in B5 and B7, patients with PD 

exhibit similar cortical connectivity to the TA1 and TA2 clusters. However, despite 

showing similar cortical connectivity as the TA3 cluster (who did not learn the fixed 

sequence), patients with PD exhibited learning of the sequence, suggesting that they may 

be employing compensatory mechanisms.   

Conclusion  

To our knowledge, this is the first time that probabilistic and fixed sequences have 

been directly compared in patients with PD. We demonstrated that deficits related to 

learning in patients with PD are likely to be related to the aging process, as opposed to 

disease-related. From the response time data, it appeared that patients with PD were unable 

to learn either sequence type; however, by unraveling movement deficits from cognitive 

deficits, we found that movement time had a greater contribution to response time, 

concealing the learning present in reaction time. This decomposition of response time 

revealed that patients with PD were able to learn the fixed sequence, but like the typically 

aging adults, were unable to learn the probabilistic sequence. This distinction between 

response and reaction time is crucial and may be partly responsible for the diverse results 

in current literature on PD-related impairments in motor sequence learning. Another factor 

that may contribute to the equivocal results in literature may be the way patients are 

matched with control participants based simply on age. We demonstrated that statistical 

methods, such as cluster analysis, could be used to create groups of controls that match 

better with clinical populations based on functional characteristics important for 

performing the task, rather than chronological age.  
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 Few differences were found in cortical activation patterns and connectivity between 

the typically aging adults and those with PD, further suggesting that the observed deficits 

were age-related.  However, differences were found in the beta band that may reflect PD-

related deficits. Both spectral power and coherence analysis exhibited similar patterns 

during the learning blocks in which patients with PD exhibited similar cortical activations 

or connectivity as the TA2 or TA3 cluster, but by trial blocks B4 and B5, patients with PD 

exhibited similar activations or connectivity as TA1. This is an interesting finding that 

suggests that patients with PD may be compensating to learn the fixed sequence, but the 

probabilistic sequence may be too complex to benefit from the compensatory mechanisms.   

 Our results suggest that by more deeply understanding how motor sequence 

learning is affected by functional characteristics using statistical methods, tightly 

controlling variables for an accurate assessment of learning and movement deficits and 

sequence types, and studying cortical dynamics using time-sensitive methods, we can attain 

a clearer understanding of impairments in patients with Parkinson’s disease. Together, 

these techniques prove effective for a deeper understanding of the dynamic motor learning 

process and provide evidence that patients with PD are indeed impaired at probabilistic 

motor sequence learning, but the impairment may be related to aging, rather than 

Parkinson’s disease. 
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Chapter 6: Discussion 

Summary and Implications 

 Motor sequence learning is a critical ability underlying all activities of daily living 

and it is important to study it in an adaptive learning framework, as it occurs in real life. 

The studies in this dissertation are the first to examine motor sequence learning from a 

novel perspective and advocate moving towards a more ecologically valid assessment of 

sequence learning in the laboratory.  

Probabilistic sequences are representative of adaptive motor learning 

The results from these studies suggest that probabilistic sequences are more 

effective than fixed sequences to assess the adaptive learning required in learning motor 

skills in everyday life. This is an important finding that addresses a specific methodological 

problem that has wide implications for future SRT studies. While previous studies have 

used alternate methods to generate probabilistic sequences, such as a finite-state grammar, 

(Jimenez & Mendez, 1999; Jimenez, et al., 1996) and the alternate serial reaction time task 

(Feeney, et al., 2002; D. V. Howard & Howard, 2001; J. H. Howard & Howard, 1997; 

Song, et al., 2007a, 2007b), no other studies have used probabilistic sequences generated 

by a first-order transitional probabilistic structure that results in more complex and entirely 

probabilistic sequences. The ability to manipulate probabilities and determine the effects 

of different types of sequences on motor sequence learning may be useful in more deeply 

understanding the learning processes. In addition, we found a differential effect of aging 

on the sequence type. While some typically aging adults and those with PD learned the 

fixed sequence, neither learned the probabilistic sequence. This finding is critical as 

probabilistic sequences more accurately reflect the learning acquired in daily life, since 



154 
 

ultimately our aim is to better understand motor skill learning that is adaptive to changes 

in the environment and suggests impairments in typically aging adults and those with PD.  

Additional parameters may help better assess learning 

 We found that additional variables, such as variability, transfer, and quantifying 

online and offline learning provide greater insight into the learning process. A reduction in 

motor performance variability has been an important characteristic of motor learning (R. 

G. Cohen & Sternad, 2009; Wulf & Schmidt, 1997) and incorporating this variable into the 

SRT task may provide greater insight into the learning of different types of sequences and 

different populations. In addition, transfer is an essential component of assessing motor 

learning and whether performance can be maintained in a different context, but it has also 

not been used in the SRT paradigm. Here, we found that the learning of both fixed and 

probabilistic sequence structures can be transferred to novel sequences created using the 

same underlying structure, but that patients with PD may be impaired at transferring their 

learning to a novel sequence. Furthermore, we found that fixed sequences employ both 

online and offline learning, but probabilistic sequences employ only offline learning and 

contributed to the literature that offline learning can occur in the time interval of a few 

minutes (Hotermans, et al., 2006; Schmitz, et al., 2009).  

Differentiating between cognitive and movement deficits 

 SRT studies have generally used reaction and response time measurements 

interchangeably. In the traditional SRT task, there is a choice between four buttons and the 

participants place a finger on each of the buttons and press the button that corresponds to 

the location of the stimulus. However, in this design, the reaction and movement times 

cannot be distinguished. We have demonstrated that this difference is critical and provides 
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insight into the learning of motor sequences, particularly in patients with movement 

disorders, by differentiating cognitive and movement deficits. Since PD is a movement 

disorder with symptoms such as bradykinesia and difficulties in initiating movement, the 

decomposition of response time into reaction and movement time allowed us to determine 

that movement time had a greater contribution to the overall response time. Thus, even 

though the patients with PD appeared to be unable to learn the fixed sequence according to 

the response time, the reaction time demonstrated that they were able to learn the sequence, 

but their slow and highly variable movement times were masking the learning. This is a 

critical finding that can provide clarity into whether patients with PD are impaired at motor 

sequence learning. Consistent with previous studies suggesting that patients with PD can 

learn simple sequences, our results suggest that patients with PD can learn fixed sequences, 

but not the more complex probabilistic sequences.  

Statistical methods can be used to characterize diverse populations and age-related 

differences 

 Aging studies typically compare young adults that are a tightly controlled group by 

age (usually within a range of 18-25 years), to typically aging adults that can range from 

50 to over 80 years. This is a large age range, the grouping of which implies that 50-year-

old adults and 80-year-old adults are expected to perform at a similar level. However, 

intuition and the few studies that have compared typically aging adults suggest age-related 

differences in motor sequence learning between “middle-aged” and older adults (Feeney, 

et al., 2002). In order to characterize our diverse population of typically aging adults, we 

used cluster analysis to separate the participants based on their entire reaction time series. 

We found that the clusters were not significantly different by age, but were significantly 
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different by their mean reaction time and n-back score, which assesses working memory 

capacity. In addition, patients with PD were not clustered into a separate group and 

performed at a similar level as typically aging adults with a similar mean reaction time and 

n-back score. 

Moving towards functionally-matched control groups 

The cluster analysis also suggests that rather than age-matching clinical populations 

with control groups, it is important to characterize the clinical population and match 

controls according to functional characteristics. These characteristics can include factors 

that are important for the task in order to attain a clearer understanding of impairments 

related to aging or disease. The age-matched typically aging group selected initially was 

unable to provide a clear insight into the effects of aging on motor sequence learning. 

Cluster analysis and other statistical methods are critical to deeply understanding the 

relationships between functionally-related and age-related differences of task and 

individual variability and their confounding of experimental conclusions. 

Insights from cortical dynamics 

 Power and coherence analysis of the EEG data provided a more in-depth 

assessment of learning, particularly for participants that did not exhibit learning in their 

behavioral data. Consistent with previous fMRI studies, young adults exhibited cortical 

activations in the frontal, central, parietal, and occipital areas during the learning blocks 

(Bo, et al., 2011, 2012; Braver & Barch, 2002; Braver, et al., 2001; Poldrack, et al., 2005; 

Seidler, et al., 2005). Interestingly, although the TA1 cluster did not exhibit learning of the 

probabilistic sequence, greater beta power activity suggests that participants were 

attempting to learn the sequence, but were unable to do so. This indicates that these 
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participants may need more practice blocks for the learning to be revealed in the behavioral 

data (Wu & Hallett, 2005). Similarly, the TA2 and TA3 clusters did not exhibit learning of 

either sequence type, but exhibited cortical connectivity in the temporal region, indicating 

visuo-spatial perception that did not translate to learning, since there were no changes 

during the learning blocks. There was also greater activation in the frontal regions in the 

patients with PD and less activation in the parietal, temporal, and occipital areas consistent 

with previous fMRI studies, suggesting a compensatory mechanism via the frontal regions 

(Carbon, et al., 2010; Catalan, et al., 1999; Nakamura, et al., 2001). The cortical activations 

and connectivity reflect both learning and transfer, even in the absence of behavioral 

markers of learning. In the beta band, patients exhibited compensatory mechanisms that 

are likely to be in response to deficits due to PD. Thus, cortical dynamics may contain 

indications of learning and compensation that are not attained through behavioral 

measures.  

Impairments in probabilistic motor sequence learning may be related to the aging process, 

rather than related to Parkinson’s disease 

 Taken together, the behavioral and EEG data suggest a critical finding: that the 

impairments in the learning of probabilistic sequences in the patients with PD are more 

likely to be age-related, rather than related to Parkinson’s disease. This is indicated by 

various pieces of evidence conducted in these studies through the different analyses. 

First, the patients with PD were not grouped in a separate cluster from the typically 

aging adults by the k-means cluster analysis, suggesting no inherent differences in the 

reaction time series data of patients with PD. Most patients were grouped with the TA1 

cluster and both groups had no significant differences in mean RT or n-back score. When 
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the mean reaction times of each block were plotted, those of the patients with PD and the 

TA1 cluster were almost identical, except for one important difference: patients with PD 

were unable to transfer their learning to a novel fixed sequence. 

 Second, the TA2 and TA3 clusters were unable to learn the fixed sequence and both 

clusters also had significantly lower n-back scores indicating a critical role of working 

memory in motor sequence learning consistent with previous literature (Bo, et al., 2009; 

Bo, et al., 2011, 2012; Bo & Seidler, 2010). 

 Third, none of the typically aging clusters or the patients with PD were able to learn 

the probabilistic sequence. Probabilistic sequences are more challenging to learn, as seen 

in the results of the young adults, and have greater basal ganglia involvement (Aron & 

Poldrack, 2006; Ashby & Ell, 2001b; Ashby & Maddox, 2005, 2011; Ashby & O'Brien, 

2005; Keri, 2003; Knowlton, et al., 1996; P. J. Reber, 2013; Seger, 2006a). However, 

probabilistic sequences reflect the adaptive learning required in real life more accurately. 

This is an important finding that addresses the functional quality of life with age and the 

ability to learn and perform activities of daily living.  

 Fourth, the cortical activations and connectivity did not exhibit differences between 

the typically aging adults and those with PD in the probabilistic sequence groups, 

suggesting that at least in the early stages of PD, impairments in motor sequence learning 

are more likely to be age-related. It is important to remember that the patients in this study 

were in the early stages of Parkinson’s disease and those in more advanced stages may 

have greater impairments that are related to PD. 
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Future directions 

 The results from these studies open greater avenues of research for future studies. 

The transitional probabilities used to create the probabilistic sequences used in these 

studies can be manipulated to create sequences with different complexities and assess 

whether typically aging adults and those with PD are also impaired at learning less complex 

probabilistic sequences. Perhaps gradually manipulating the probabilities from simple to 

more complex would aid in the learning of these sequences. In addition, the learning 

processes can be analyzed to uncover dynamics changes within and between blocks 

determine age- or PD-related differences in online and offline learning of motor sequences. 

These novel methods of analysis can provide greater insight into not only the nature of the 

impairments, but may also provide methods for interventions and improving learning. 

 Alternative statistical models can be used to model the landscape for the typically 

aging adults to assess differential effects of aging on motor sequence learning and to 

explore variability between and within individuals. This is particularly important for 

variables such as reaction time that have been demonstrated to be highly variable both 

within and between individuals. An example of an alternative approach is random 

coefficient modeling that provides a technique where individual performance as well as 

population level effects can be explored. In addition, covariates can be included in the 

model to account for differences between individuals and groups based on alternative 

variables such as preliminary assessments. The performance of the individual can be lost 

in general linear models and both perspectives are important in order to characterize 

typically aging as well as clinical populations as they can add additional variability due to 

diverse symptoms.  
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 In order to achieve a more refined assessment of the spectral power and coherence 

analysis, frequency bands should be determined individually for each participant, rather 

than using fixed frequency bands. This would prevent contamination of power calculations 

by neighboring frequency bands, which is an important consideration as some bands 

change in the opposite direction during cognitive tasks, thus canceling any effects. For 

example, theta increases during engagement in a cognitive task, but alpha decreases, so a 

contamination of theta in the alpha power calculations may cancel out any changes in alpha. 

 To further examine cortico-cortical connectivity, functional connectivity analysis 

can be used to characterize large scale brain networks. Functional connectivity is the 

statistical association or dependency between brain regions that accounts for both linear 

and nonlinear associations and can be measured via synchronization likelihood calculations 

(Pijnenburg et al., 2008; Stam, Jones, Nolte, Breakspear, & Scheltens, 2007; Stam & van 

Dijk, 2002) and information theory methods such as mutual information and graph theory 

(Jin, Lin, Auh, et al., 2011; Jin, Lin, & Hallett, 2011). While previous research allows for 

the investigation of the interactions occurring between different cortical areas, they provide 

limited interpretations of the dynamics at the global network level (Doyon et al., 2009b; 

Jin, Lin, Auh, et al., 2011; Jin, Lin, & Hallett, 2011). Further research into changes in 

functional connectivity while performing a motor sequence learning task to provide greater 

insight into both behavioral differences and neural underpinnings of motor sequence 

learning. 
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Conclusion 

To our knowledge, this is the first time that probabilistic and fixed sequences have 

been directly compared in typical young adults, typically aging adults, and patients with 

PD. We introduced a novel type of probabilistic sequence that more accurately reflects 

motor sequence learning, analyzed the underlying learning processes, and assessed transfer 

to a novel sequence. By unraveling movement and cognitive deficits and matching 

participants based on functional characteristics, we found that some typically aging adults 

and those with PD learned the fixed sequence, but not the probabilistic sequence, indicating 

age-related impairments in probabilistic motor sequence learning. We used a neuroimaging 

method that matches the temporal resolution of the task to assess differences in cortical 

dynamics between groups and across the task. By using these techniques, we provide a 

deeper understanding of this dynamic motor learning process and how it changes with age 

and Parkinson’s disease. 
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