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This dissertation study investigated the cognitive and contextual influences 

contributing to the developmental process that high school students undergo in preparing 

for and considering the selection of an academic major in a STEM field. Guided by the 

theoretical framework of SCCT (Lent et al., 1994) and Wang’s (2013) conceptual model, 

I developed a new conceptual model for understanding the STEM readiness and intention 

development process. The STEM Readiness and Intention Development (SRID) 

Conceptual Model addresses gaps in previous research, such as the absence of parental 

involvement. In addition, my research design overcame measurement and analytic 

shortcomings, while examining the moderating effect of self-efficacy on high school 

students’ intention to major in a STEM field. 

Through the use of structural equation modeling with data from the High School 

Longitudinal Study of 2009, I tested the SRID Conceptual Model and examined the 

indirect effects of self-efficacy on high school students’ intention to major in a STEM 

field. The results of these analyses suggest several cognitive and contextual influences 



 
 
 

 

 

contributing to building STEM readiness and students’ intention to major in STEM 

during high school. This study revealed that STEM readiness is impacted directly by 

several factors, including SES, math ability, parental involvement, math self-efficacy, 

science self-efficacy, math interest, and science interest. Intention to major in STEM is 

directly impacted by STEM readiness, as well as high school students’ interest in math 

and interest in science. In addition, I found that self-efficacy in math and science had a 

mediating effect through math and science interest on high school students’ intention to 

major in STEM, emphasizing the critical impact of self-efficacy throughout the career 

development process. 

Overall, this dissertation study expands our knowledge of the process that leads 

high school students to become prepared for and aspire to pursue majors in STEM. 

Through facilitating this process among all student populations, we may improve overall 

enrollment and persistence through the STEM pipeline and contribute to the national goal 

of increasing the number of graduates in STEM fields of study. 
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Chapter I: Introduction 

Background of the Problem  

National growth in the fields of science, technology, engineering, and 

mathematics (STEM) impacts the global competitiveness and economic development of 

the United States (National Science Board, 2015; 2016). Historically, increases in STEM 

workforce have enabled economic growth, job increases, and the development of new 

industries and technologies (Langdon, McKittrick, Beede, Khan, & Doms, 2012). With 

the rapid development of a technology-driven world, there is an increased importance of 

knowledge in STEM fields for the current generation and future generations. According 

to the President’s Council of Advisors on Science and Technology (PCAST) (2012) 

STEM knowledge is beneficial to the lives of all Americans, as achieving STEM-literacy 

in our nation advances innovation, economic growth, and global competitiveness. The 

U.S. Bureau of Labor Statistics (BLS) predicts that by 2022, occupations in STEM fields 

will be expected to grow to more than 9 million (Vilorio, 2014). 

Despite this national need for growth in STEM fields, the United States only 

grants approximately 400,000 bachelor degrees in STEM fields each year, which 

accounts for less than a quarter of all degrees awarded (National Center for Education 

Statistics, 2015). In comparison to other nations, the United States produces only 9% of 

all degrees in science and engineering, falling behind India (23%), China (23%), and the 

European Union (11.5%) (National Science Board, 2016). Among industrialized nations, 

the United States is ranked 29th in mathematics and 22nd in science. To address global 

competitiveness in STEM, the Obama Administration made a strong commitment to 

prioritize STEM education over the past decade, calling for a national goal of producing 
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one million additional college graduates with degrees in STEM fields and becoming a 

leader in math and science. The Presidential report from PCAST (2012), which focuses 

on strategies to meet these goals indicates that the United States must increase the 

recruitment and retention of STEM majors to achieve the goal of producing one million 

STEM graduates. 

Policymakers and legislators at both the federal and state level have also called 

for national efforts to improve upon student pathways in STEM, particularly from high 

school (National Science Board, 2016). In alignment with the Common Core State 

Standards, K-12 reform efforts have focused on increasing course-taking in math and 

science, while improving on student learning in math and science, among other career 

and college readiness standards (National Science Board, 2016). Continued efforts are 

likely to be implemented throughout the STEM pipeline, particularly at the high school 

level when students are learning fundamental knowledge in math and science, and facing 

the decision of whether to consider pursuing postsecondary education in a STEM field 

(Ginzberg, 1972; Ireh, 1999). In order to improve upon STEM enrollment and implement 

effective and targeted intervention strategies, it is critical to have a foundational 

understanding of the process that high school students undergo in becoming ready for and 

considering a major in a STEM field of study in postsecondary education. 

Given the importance of increasing the number of STEM graduates in our nation 

(National Science Board, 2015), decades of previous research focused on student 

persistence and degree completion in STEM fields of study (Cole & Espinoza, 2008; 

Crisp, Nora, & Taggart, 2009; Graham, Frederick, Byars-Winston, Hunter, & 

Handelsman, 2013; Palmer, Maramba, & Dancy, 2011; Watkins & Mazur, 2013). 
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However, much of this research has not addressed the experiences of high school students 

in the process of preparing for and intending to major in a STEM field, nor the various 

influences impacting this process through time. The research that has emerged in this area 

is limited in its data, measurements, and analytical approach, limiting the extent to which 

this research can provide us with a clear understanding of the STEM readiness and 

intention process unfolding through time (Chen & Weko, 2009; Crisp et al., 2009; 

Moakler & Kim, 2014; Sax, Kanny, Jacobs, Whang, Weintraub, & Hroch, 2016; Wang, 

2013a). To address the national priority of increasing the recruitment and retention of 

students into STEM majors, there is a need to focus research and practice into facilitating 

efforts much earlier in the STEM education pipeline to high school. High school is a 

particularly critical time period when students are faced with the initial decision of 

continuing their education to postsecondary education and declaring their major field of 

study. 

High School Context 

While career interests develop throughout the lifespan, high school is an 

important time period in which occupational aspirations and interests begin forming in 

alignment with goals, behaviors, and actions (Ginzberg, 1972; Holland, 1997; Paa & 

McWhirter, 2000; Pajares & Urdan, 2006). During high school, adolescents begin the 

process of self-exploration, and begin to become aware of how their interests and values 

contribute to their occupational expectations and possible career choices (e.g., Bandura, 

2006; Paa & McWhirter, 2000; Pajares, 2005).  

Furthermore, it is during these critical high school years that students take 

foundational educational courses in math and science, which prove critical when pursuing 
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STEM majors in postsecondary education (Berkner & Chavez, 1997; Chen, 2013). More 

specifically, high school is the time when students more actively begin applying their 

mathematical abilities in the classroom setting (Eccles & Midgley, 1990; Mattern, 

Radunzel, & Westrick, 2015). This application of and use of mathematical abilities 

during adolescence contributes to the development of self-efficacy (Bandura, 2006; 

Green, Miller, Crowson, Duke, & Akey, 2004; Pajares, 2005; Pajares & Urdan, 2006). 

Moreover, the cognitive experiences and courses taken during high school contribute to 

further development of career interests (Lent, Brown, & Hackett, 1994; Sadler, Sonnert, 

Hazari, & Tai, 2012; Seymour & Hewitt, 1997). In addition to the cognitive and social 

development during high school, there are key external and contextual factors that 

contribute to the development process in building readiness and intention toward STEM 

majors. These include influential factors such as socioeconomic status and parental 

involvement (Cabrera & LaNasa, 2000; Fan & Chen, 2001; Keller & Whiston, 2008; Paa 

& McWhirter, 2000). Ultimately, learning experiences and social/cognitive development 

in high school, in addition to the interaction of background and environmental factors, 

contribute to the developmental process that high school students undergo in preparing 

for and intending to major in a particular field. 

As suggested in previous research, intention to major in STEM is regarded as an 

important factor related to both entrance into and success in STEM fields of study 

(Mattern et al., 2015; National Science, Foundation, 2014; Wang, 2013a). According to 

Mattern and colleagues (2015), a student’s intention to major in a STEM field as a high 

school student as well as their measured interest in STEM contributed to the prediction of 

success in STEM major degree completion. Furthermore, intention to major in STEM has 
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been recognized as the strongest predictor of actual enrollment into STEM fields of study 

(Wang, 2013a). Building on this body of research, this dissertation study focuses on 

understanding the processes and factors contributing to the preparation for a STEM major 

and the intention to major in a STEM field of study among high school students. 

 

Statement of the Problem 

Despite the importance of understanding the process high school students undergo 

in preparing for and considering the selection of a STEM major, little is known about the 

factors influencing this process through time. In order to address the national agenda of 

producing one million additional STEM graduates, research must shift focus to recruiting 

and preparing students for STEM fields of study during high school. Before intervention 

and recruitment practices can be implemented, it is critical to first develop a better 

understanding of the factors impacting the process that high school students undergo in 

preparing for and deciding to major in a STEM field. The problem this study addresses is 

the limited understanding of and knowledge about the process for high school students in 

preparing for a major in STEM, and the factors influencing students’ consideration of a 

STEM major in postsecondary education. 

 

Purpose of the Study 

The purpose of this study was to investigate the various cognitive and contextual 

influences contributing to the developmental process that high school students undergo in 

preparing for and considering selection of an academic major in a STEM field. The study 

sought to address gaps in previous research, such as analytic and measurement 

shortcomings, to provide a better understanding of the STEM readiness and intention 
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development process throughout students’ high school experience. In addition, this study 

sought to measure the impact of self-efficacy on students’ intention to major in a STEM 

field. As such, this study was guided by the following research question and sub research 

question:  

- What are the cognitive and contextual factors impacting the developmental 

process high school students undergo in building readiness and intention toward a 

major in STEM fields of study? 

- What is the indirect effect of STEM self-efficacy on the intention to major 

in a STEM field? 

 

Overview of the Proposed Conceptual Model 

In order to address these research questions, I proposed a new conceptual model 

for understanding the developmental process high school students undergo in building 

readiness and intention toward a STEM field of study. My proposed model was guided 

by the theoretical framework of Social Cognitive Career Theory (SCCT) (Lent et al., 

1994). It also integrated college readiness components of Wang’s (2013) conceptual 

model of STEM choice, while addressing gaps - such as the absence of parental 

involvement - and overcoming measurement and analytic shortcomings in extant 

research. 

Summary of Theoretical Foundations 

My dissertation study was primarily guided by the model of SCCT (Lent et al., 

1994). SCCT is based on Bandura’s social cognitive theory (1986, 2001, 2002, 2005) and 

postulates that the career development process is influenced by social and cognitive 
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factors and contextual influences. The SCCT model, described in more detail in Chapter 

2, reflects the complex relationships and interactions among cognitive concepts (self-

efficacy, outcome expectations, interests, and goals) with contextual factors (including 

background contextual affordances, personal inputs, and contextual influences proximal 

to choice behavior). These concepts directly or indirectly affect each other and continue 

to do so throughout the developmental process.  

The model of SCCT has been a foundational framework guiding studies on career 

interest development and career choice, throughout the academic pipeline (Lent et al., 

2003; 2008). Most studies applying SCCT have applied the model to samples of college 

students already pursuing degrees in STEM fields of study (Moakler & Kim, 2014; Sax et 

al., 2015). However, prominent research conducted by Wang (2013a; 2013b) does focus 

on examining the STEM major choice process for high school students through 

postsecondary education. Also guided by SCCT, Wang’s research sought to understand 

the STEM major choice process and develop a conceptual model for understanding the 

selection of a STEM major among high school students. Furthermore, Wang’s model 

links self-efficacy, learning experiences, interests and goals, while also including a 

construct for college readiness. 

Wang’s (2013a) study was one of the first studies to use nationally-representative 

longitudinal data to examine the STEM choice process for high school students. 

Moreover, her work emphasizes the complexity of the process leading to students’ 

entrance into a STEM field of study. Wang recommends the use of longitudinal data in 

application of SCCT and the use of structural equation modeling as the statistical analytic 

approach in understanding the STEM choice process (Wang, 2013a; 2013b). Her work 
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calls attention to the continued need for investigation of the process for high school 

students in the STEM pipeline.  

Summary of the SRID Conceptual Model 

To address my research questions I proposed a new conceptual model for 

understanding the STEM readiness and intention developmental process. This model 

builds upon SCCT and components of Wang’s (2013) model of STEM choice, 

incorporating important constructs and measurements omitted by the extant literature 

(including parental involvement). My proposed model, called the STEM Readiness and 

Intention Development (SRID) Conceptual Model, is displayed in Figure 1. While 

conceptually framed by SCCT, it also integrates many components of Wang’s (2013a) 

conceptual model of STEM choice.  

The SRID Conceptual Model illustrates the various factors, both cognitive and 

contextual, influencing high school students’ development in relation to preparing for and 

intending to major in a STEM field. Aligned with SCCT and previous research, my 

model includes self-efficacy and interest in STEM-related content as key cognitive 

components in the developmental process (Bandura, 1994; Hackett & Betz, 1995; Lent et 

al., 2003; Rittmayer & Beier, 2008). Guided by Wang’s inclusion of college readiness in 

her conceptual model, my proposed model incorporated a STEM-specific construct of 

readiness, termed STEM readiness. STEM readiness is also an operationalization of 

SCCT’s construct of learning experiences, as it included high school students’ exposure 

to and performance in STEM-related coursework (Chen, 2013; Ferry et al., 2000; Mattern 

et al., 2015; Sadler et al., 2012). I regard the main outcome variable in the SRID 

Conceptual Model, intention to major in STEM, as a cognitive component aligned with 
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SCCT. Wang’s (2013) model also includes the intention to major in STEM as a key 

factor in the STEM choice process, with her findings suggesting that intention to major 

has the most significant influence on actual entrance into STEM fields. As such, my 

model includes intention to major as the main outcome variable. 

The SRID Conceptual Model represents background characteristics through 

socioeconomic status (SES) (background contextual affordance) and mathematics ability 

(personal input characteristics). Including these background characteristics in the SRID 

model reflected the role that SES (Cabrera & LaNasa, 2000; Eagle, 1989; Lee & Burkam, 

2002; Ma, 2009; Perna, 2006) and math ability (Cabrera & LaNasa, 2000; Conley, 2007; 

Hackett, 1985; Rohde & Thompson, 2007) play in the STEM readiness and intention 

development process. In addition, as an interpretation of SCCT’s contextual influence 

proximal to choice behavior, I added parental involvement as key factor influencing the 

preparation for and intention to major in a STEM field. Previous research supported the 

inclusion of parental involvement as a key factor in the STEM readiness and intention 

development process (Cabrera & LaNasa, 2001; Fan & Chen, 2001; Ferry et al., 2000; 

Hall et al., 2001; Hill & Tyson, 2009; Jeynes, 2007).  

With regard to the development of the SRID Conceptual Model, Chapter 2 

provides a more detailed explanation of each component of the model and the reasoning 

and support for its inclusion. Chapter 2 also provides a concise review of the relevant 

literature pertaining to each of the components of the model, and describes the ways in 

which these factors are related and interconnected within the developmental process. In 

Chapter 3, I discuss the selected measures for each construct in the model and describe 

the method I used to test the SRID model with national longitudinal data. In Chapter 4, I 
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describe the results from the study, and the ways in which the SRID Conceptual Model 

was revised in light of the results. 

 

 

Figure 1: The STEM Readiness and Intention Development Conceptual Model  

 

Study Significance 

Summary of Research Contributions 

 This dissertation study contributes to the body of research on STEM pathways by 

examining the process high school students undergo in becoming prepared for and 

intending to pursue a STEM major in college. Compared to the depth of research on 

STEM retention and degree completion in postsecondary education (Cole & Espinoza, 

2008; Crisp et al., 2009; Graham et al., 2013; Palmer et al., 2011; Watkins & Mazur, 

2013), research related to the STEM readiness and intention development process for 

high school students is a newer and less explored area of research. Scholars working on 
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relevant research are beginning to investigate student major choice selection, the 

contextual impacts on the career decision-making process, and our understanding of 

pathways into STEM majors (Chen, 2013; Committee on STEM, 2013; Crisp, Nora, & 

Taggart, 2009; Lent et al., 1994; 2000; 2001; 2003; Ma, 2009; Wang, 2013b). However, 

much of this research has not documented the process students undergo in preparing for 

and intending to major in STEM during high school. The relevant research that has been 

conducted in this topic area is limited in its analytic approach, data, and measurements1.  

This study addressed the analytic approach limitations through conducting 

structural equation model (SEM) on a nationally-representative sample of high school 

students from a longitudinal database. Furthermore, this study improved upon the 

measurement components of previous work, appraising key constructs with STEM-

specific measures in the academic domains of math and science. In addition, given the 

importance of parental involvement and support in students’ future decision-making and 

preparation during adolescence (Cabrera & LaNasa, 20000; Fan & Chen, 2001; Ferry, 

Fouad, & Smith, 2000; Jeynes, 2007; Keller & Whiston, 2000), the SRID Conceptual 

Model included parental involvement as a key factor influencing the STEM readiness and 

intention development process for high school students. 

Summary of Implications 

The development and testing of the SRID Conceptual Model contributes to 

improving on our knowledge of STEM readiness and intention development among 

students during high school. This study and model can provide policymakers and 

                                                
1 Critiques and limitations of prior research are addressed in detail in Chapter 2. Following this review, 

Chapter 3 highlights the methodological strategies I followed to address gaps in previous research, 

highlighting the improved analytic approach and improved data and measurements. 
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practitioners with a deeper and more nuanced understanding of the complexity of the 

STEM readiness and intention development process. The SRID Conceptual Model 

highlights the key influences impacting this process during high school, when students 

are making important decisions about and academically preparing for their future field of 

study. Understanding the importance of STEM readiness and intention development in 

the high school context may encourage further investment of resources, among 

policymakers and practitioners, dedicated to targeting interventions at the high school 

level. Such strategic interventions may improve recruitment into STEM fields and 

strengthen STEM pathways.  

 Policy. Current federal policies implemented at the K-12 and postsecondary 

education levels follow the national prioritization of STEM education. For example, the 

Every Student Succeeds Act, which replaced “No Child Left Behind,” has a potential 

funding stream specifically geared toward STEM activities and programming in school 

and afterschool programs (Afterschool Alliance, n.d.; U.S. Department of Education, 

n.d.). In addition, some practices at the K-12 level have been integrated within the 

Common Core State Standards, while other programs have adopted STEM focuses to 

improve the strengthening of math and science skills through K-12 education (Lee, 

Quinn, & Valdes, 2013; National Science Board, 2016). Moreover, given the national 

focus on producing STEM graduates, policymakers have invested significant resources at 

the postsecondary educational level, to improve STEM retention and facilitate the 

persistence of students in STEM fields of study (Chen, 2013; Committee on STEM, 

2013; PCAST, 2012).  

 However, despite the implementation of current policies and practices, our nation 
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must produce an additional one million graduates in STEM fields (PCAST, 2012). To 

achieve this goal, there must be targeted and strategic implementation of policies and 

intervention programs, guided by and based upon empirical evidence and research 

(PCAST, 2012). The implementation and interventions require a robust foundation of 

knowledge about the experiences of high school students navigating the STEM readiness 

and intention development process, as well as the various influences impacting this 

process. Such a foundational knowledge base can allow for the development of policies 

specifically targeting factors that directly or indirectly impact students throughout high 

school. For example, based on the findings of this study, policymakers could propose and 

support policies and programs that encourage and prepare parents (and other family 

members) to be involved with their students in discussions about college and plans for the 

future. In addition, programs that focus on developing self-efficacy and interest in math 

and science may contribute to a greater likelihood of students’ becoming prepared for and 

intending to major in a STEM field of study. 

 Practice. At the practical level, the SRID Conceptual Model may guide teachers, 

counselors, and administrators in implementing best practices for facilitating high school 

students’ navigation of the STEM readiness and intention development process. 

Understanding of the conceptual model can encourage practitioners to acknowledge the 

interconnected influences contributing to movement through the STEM pipeline and 

identify the ways in which these pathways can be strengthened for individual and groups 

of high school students. For example, the SRID model draws attention to the influences 

that parental involvement, STEM self-efficacy, and STEM interest play in STEM 

readiness and the intention to major in STEM. Given the significant role of parental 
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involvement in this process, practitioners could consider intervention in programs and 

practices at the high school level that strategically involve parents or family members. 

Acknowledging the impact of STEM self-efficacy and STEM interest on building STEM 

readiness and intention to major in STEM, practitioners could also focus on designing 

and implementing intervention programs that encourage the development of self-efficacy 

in math and science domains and cultivate interest and enjoyment in math and science. In 

the classroom or school context, teachers and counselors may focus on implementing 

strategies to develop self-efficacy and interest in math and science among students. This 

may include positive reinforcement, open-ended questioning and discussions, and 

increasing availability outside of the classroom (Haskell, 2016). Research strongly 

suggests that interactive and meaningful experiences outside of the classroom can 

develop self-efficacy in STEM (Bandura, 1994; Carpi, Ronan, Falconer, & Lents, 2007; 

Luzzo, Hasper, Albert, Bibby, & Martinelli, 1999; Rittmayer & Beier, 2008).  

 

Chapter Summary 

 This chapter provided an introduction to my dissertation study on the 

developmental process high school students undergo in building readiness and intention 

toward a STEM field of study. After providing a background and context of the problem, 

I stated the problem to be addressed and the purpose of this study. In addition to 

identifying the key influences on STEM readiness and intention development for high 

school students, this study sought to develop and test a conceptual model interpreting this 

process. In briefly introducing this conceptual model, I provided a summary of the 

theoretical framework that guided this study, as well as an overview of the SRID 
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Conceptual Model. The testing of the SRID Conceptual Model contributes to the 

understanding of the process high school students undergo in becoming prepared for and 

considering the selection of a STEM major. This model highlights the important factors 

impacting the developmental process and the ways in which these factors influence one 

another throughout the high school experience. This chapter concluded with an overview 

of the study’s significance, touching upon its contribution to the body of literature, as 

well as a brief summary of implications for policy and practice. 

In Chapter 2, I provide a more detailed explanation of the development and 

components of the SRID Conceptual Model, while reviewing relevant research 

supporting the inclusion of each component within the model. The following chapter, 

Chapter 3, I explain the methodological approach to testing this conceptual model using 

national longitudinal data. Chapter 3 will provide an explanation for the selected 

measures used for each construct in the measurement and model testing. Chapter 4 will 

provide a detailed description of the results from testing the SRID Conceptual Model, as 

well as how this model evolved based on preliminary analyses. Finally, Chapter 5 will 

conclude with a discussion of the results in the context of the literature, and will offer 

implications, limitations, and directions for future research. 
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Chapter II: Literature Review 

 Introduction 

The purpose of this study was to investigate the various cognitive and contextual 

influences contributing to the development process that high school students undergo in 

preparing for and considering selection of an academic major in a STEM field. The study 

addressed gaps in previous research to provide a better understanding of this 

developmental process throughout students’ high school experience. In addition, this 

study measured the impact that STEM self-efficacy has on students’ intention to major in 

a STEM field. As such, this study was guided by the following research question and sub 

research question:  

- What are the cognitive and contextual factors impacting the developmental 

process high school students undergo in building readiness and intention toward a 

major in STEM fields of study? 

- What is the indirect effect of STEM self-efficacy on the intention to major 

in a STEM field? 

This literature review summarizes foundational research in the areas of STEM-

field preparation related to these research questions. The selection of literature highlights 

what is known and unknown in this area of research, focusing on entrance into STEM 

fields and the decision to major in STEM. This chapter begins by introducing the 

theoretical framework guiding this dissertation study. This framework has been 

foundational for many relevant studies seeking to explain the selection of a college major. 

As such, the tenets of the theory are important to address and explain prior to the review 

of extant literature relevant in the career decision-making process. 



 
 
 

 

16 

After introducing and describing the theoretical framework, I will review relevant 

research on STEM readiness and intention development, including key literature from the 

fields of career development and college choice. In particular, I will focus on (1) research 

that has applied Social Cognitive Career Theory to study career decision-making, (2) 

research that has identified important factors in STEM choice, and will highlight (3) the 

seminal work by Wang’s (2013) study, which examined the STEM major choice process 

through high school and postsecondary education. Following this review, I will identify 

significant gaps and methodological limitations that currently exist in this topic of 

research. Upon doing so, I will discuss ways in which my dissertation study addresses 

these gaps and provides the opportunity for additional growth of new knowledge in this 

field. 

After identifying what is known and unknown in existing research on STEM 

readiness and intention development, I will introduce my proposed conceptual model. I 

developed this conceptual model as an improved model for understanding the 

developmental process high school students undergo in building readiness and intention 

toward a STEM field of study. Next, I provide a review of literature on each factor 

included in the model and provide evidence from previous research supporting the reason 

for including this factor in the model, and the ways in which these factors are related to 

one another and to the intention to major in a STEM field. These factors include 

socioeconomic status (SES), math ability, parental involvement, STEM self-efficacy, 

STEM interest, STEM readiness, and the main outcome factor of intention to major in 

STEM. This chapter will conclude with an overview summary of the chapter, 

highlighting key points addressed throughout this literature review. 
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Theoretical Framework: Social Cognitive Career Theory 

This dissertation study was framed and guided by the theoretical framework of 

Social Cognitive Career Theory (SCCT) (Lent et al., 1994). Lent, Brown, and Hackett 

(1994) developed the SCCT model (see Figure 2) to understand career development and 

the social and cognitive factors and contextual influences impacting this process. This 

theory has been a foundational framework guiding studies on career interest development 

and career choice, throughout the academic pipeline. SCCT was selected for this 

dissertation study as it specifically examines career development as a process students 

undergo in the development of interests, goals, and actions in relation to the selection of a 

career. In general, SCCT emphasizes the interaction of cognitive conceptions of self-

efficacy, outcome expectations, and goal selection, along with the impact of contextual 

influences of barriers and support (Lent et al., 1994; Sharf, 2013). These concepts 

directly or indirectly affect each other (as displayed by the arrows in the figure) and 

continue to do so throughout the lifespan. For example, SCCT posits that a person’s self-

efficacy (such as confidence in mathematics) impacts their career interests (such as a 

STEM-related career), which ultimately impacts the goals a person forms and the 

actions/behaviors associated with those goals and interests. Overall, the SCCT model 

reflects the relationships and interactions among cognitive concepts (self-efficacy, 

outcome expectations, and goals) with contextual factors. SCCT emphasizes the 

interaction within and among the cognitive concepts and the impact of the personal inputs 

and contextual influences (Sharf, 2013). 

Cognitive Components 

SCCT is based on Bandura’s social cognitive theory (1986, 2001, 2002, 2005), 
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focusing on the interactions between the environment, personal factors (including 

memories, beliefs, preferences, and self-perceptions), and actual behavior. One of the key 

components of social cognitive theory and SCCT is the concept of self-efficacy. Self-

efficacy is defined as one’s belief in his or her ability to succeed in specific situations or 

in accomplishing a task (Bandura, 1977). SCCT suggests that self-efficacy impacts how 

individuals view their own abilities and capabilities, which ultimately affect academic 

performance and career development/ decision-making. Lent and his associates (1994) 

suggest that self-efficacy can be a changing set of beliefs about oneself, dependent on the 

context and the situation, such as the nature of the tasks, one’s social and environmental 

surroundings, and one’s feelings of competence on similar tasks (Sharf, 2013). 

Other cognitive components of the SCCT theory include outcome expectations, 

interests, and goals. Outcome expectations can be defined as one’s estimate or 

expectations about the probability of an outcome resulting from one’s engagement in a 

particular behavior (Lent et al., 1994). In addition, self-efficacy and outcome 

expectations contribute to the development and realization of goals. In general, SCCT 

emphasizes that goals guide and organize individual’s behaviors and actions. Lent and 

colleagues (2003; 2008) also suggest that interests strongly mediate the impact of self-

efficacy on other cognitive components of the process, including goals and actions. 

Contextual Components 

SCCT argues that a person’s career interests, goals, and actions can be affected by 

both background contextual factors and contextual influences proximal to choice 

behavior (see Figure 2). Background contextual factors include one’s interaction with 

their own culture and gender role expectations, and the ways in which their self-concept 
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and learning experiences have been impacted through socialization (Lent et al., 1994). 

SCCT also recognizes personal inputs, such as predispositions, SES, gender, 

race/ethnicity, and disability/health status, as significant factors influencing this 

developmental process. For example, a student’s natural abilities in mathematics may 

predispose him or her to engage more positively in learning experiences relevant to the 

use of mathematics skills. 

According to Lent and associates, contextual influences proximal to choice 

behavior consist of environmental factors that are directly related to career choice 

concerns, such as career network contacts, role models, or external barriers (Lent et al., 

2003). These proximal environmental factors moderate the relation of interests to choice 

goals, as well as the relation of goals to actions. For example, Lent and colleagues (2003) 

suggest that influential role models or familial involvement and acculturation may 

directly influence individual’s own career choices, perhaps more strongly than personal 

career interests. Overall, various contextual factors (background or proximal) can either 

support students in their career development process or become a barrier. Supports and 

barriers can directly impact self-efficacy, which ultimately impact interests, goals, and 

actions. 
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Figure 2: Social Cognitive Career Theory Model 

 

Since the conception of the SCCT model, Lent and colleagues (1996; 2000; 2003; 

2008a; 2008b; 2013) have developed several iterations of the model to reflect the 

growing body of understanding and developing research on what is known about the 

career development process, as well as the adaptation of this framework in various fields. 

To examine the selection of a STEM-related field of study, previous research (Moakler & 

Kim 2014; Sax et al., 2015; Wang, 2013a; 2013b), as well as those led by Lent and 

colleagues (2003; 2008a; 2008b; 2013), have relied on SCCT to guide and develop the 

conceptual understanding of this complex process. The next section of this literature 

review will identify and review the relevant and key studies on the preparation for and 

selection of a STEM major, many of which were also guided by this foundational work. 

 

Literature on STEM Readiness and Intention 

The national priority to increase the recruitment and retention of students into 

STEM majors calls attention on the need to examine the STEM readiness and intention 



 
 
 

 

21 

development process much earlier in the STEM education pipeline, to critical points in 

high school when students are faced with the initial decision of continuing their education 

to postsecondary education and declaring their major field of study (National Science 

Board, 2015). In order to illustrate what is known and unknown about the process for 

high school students, this literature review identifies and reviews research that has 

addressed the selection of STEM majors and important factors in STEM choice. In 

general, this existing body of research contributes to our growing understanding of high 

school students’ entrance into STEM fields and supports the need for the development of 

my proposed conceptual model. 

Applying SCCT to STEM Major Choice 

SCCT has been a foundational framework in investigating the predictors of career 

choice behaviors, planning, and exploration. In 2003, Lent, Brown, Schmidt, Brenner, 

Lyons, and Treistman applied SCCT to examine choice behavior among students 

majoring in engineering. They relied on survey data completed by 328 students enrolled 

in an engineering design course in a large 4-year institution. The SCCT model was tested 

using correlations and path analysis, which confirmed several important relationships. In 

particular, this study revealed that the variables for the environmental factors of barriers 

and supports produced significant paths directly to self-efficacy and indirectly to goals. 

Aligned with SCCT, self-efficacy was predictive of both outcome expectations and 

interests. Self-efficacy also produced a significant indirect path to goals through interests, 

with interest serving as a mediator of self-efficacy and goals (Lent et al., 2003). 

Furthermore, background supports and barriers (such as social supports) related to choice 

goals and persistence indirectly through their relation to self-efficacy. While the study 
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highlighted the application of SCCT in the context of a STEM career, it also drew 

attention to the need for future research in this area. In particular, though this study used 

cross-sectional data Lent et al. (2003) suggest the use of longitudinal data to confirm the 

“causal ordering of SCCT’s central variables” (p. 463). They also acknowledge the need 

for a larger and more appropriate (and diverse) sample of students who are in earlier 

stages of the choice making process. In addition, the study calls for further research on 

the application of SCCT, to clarify the paths and relationships between and among 

various barriers and supports, self-efficacy, interests, and goals. 

Focusing on another student population in a different STEM field, Lent, Lopez, 

Lopez, & Sheu (2008) applied the model of SCCT on the choice goals in the computing 

disciplines. Using a more diverse sample of students by including students from 21 

predominantly White institutions (PWIs) and 21 historically Black colleges and 

universities (HBCUs), Lent et al. (2008) tested a structural model of SCCT to predict 

academic interests and choice goals. While more diverse in race and gender this sample 

consisted of college students in their first, second, third, and fourth year (and beyond) of 

postsecondary education. The analysis determined that the SCCT model accounted for 

40% of the variance in interests and 33% of persistence goals of students majoring in 

computing disciplines. The findings were also consistent with previous work (Lent et al., 

2003) in supporting the indirect relationship between contextual influences with interests 

and goals, mediated through self-efficacy. In summary of the study’s limitations, the 

authors acknowledge the need for further testing with longitudinal data. The authors note 

that longitudinal data would be better suited in testing the causal hypotheses of SCCT and 

could support the application of the theory into practice (Lent et al., 2008).  
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A similar study conducted by Lent, Sheu, Singley, Schmidt, Schmidt, and Gloster 

(2008b) tested a longitudinal model using data from survey administered at two points in 

time (with a 5-month lag). The sample consisted of 209 first-year and second-year 

students from an introductory engineering course at PWIs and HBCUs. The study 

focused on exploring four core cognitive variables in the SCCT model, including self-

efficacy, outcome expectations, interests, and goals. While the findings were consistent 

with SCCT in identifying the significant path of self-efficacy on other cognitive factors 

such as outcome expectations, interests, and goals, the findings interestingly did not find 

significance in the role of outcome expectations in the fostering of interests or goals (Lent 

et al., 2008b). In addition, this study’s findings supported a unidirectional flow from self-

efficacy to interest in comparison to a bidirectional relationship between these two 

variables. While this study employed a semi-longitudinal approach to examining and 

testing SCCT, the authors note the important need for longitudinal data in examining the 

process of SCCT. 

The model of SCCT has also been tested among a population of female high 

school students who attended a science, math, and engineering career conference. 

Conducted by Nauta and Epperson (2003), this study utilized 4-year longitudinal data to 

predict high school students’ decision to declare a major in science, math, or engineering. 

Regression analysis revealed relationships between students’ college outcome 

expectations in science, math, or engineering, as well as their plans to become leaders in 

their fields of interest (Nauta & Epperson, 2003). Structural equation modeling (SEM) 

was also implemented to test the applied model of SCCT for the sample of high school 

students. The results of this modeling technique suggest a positive and significant 
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relationship between math-science ability and self-efficacy, as well as a significant and 

positive relationship between self-efficacy and science interests, supporting these key 

components of the SCCT framework. In contrast to SCCT, however, this analysis did not 

reveal a path between self-efficacy and enrolling in high school math and science 

courses.  

Rogers and Creed (2011) also tested the model of SCCT, through the use of cross-

sectional and longitudinal data of Australian high school students from grades 10 through 

12. Using hierarchical regression analyses, the authors found strong support for self-

efficacy and goal measures in predicting career planning and exploration among high 

school students between grade 10 and grade 11. While this study did not specifically 

examine STEM readiness or intention development, it draws attention to the complexity 

of career development during high school and the various interactions influencing 

adolescents’ decisions through the career choice process.  

Identifying Important Factors in STEM Major Choice 

Aside from research applying SCCT to the selection of a STEM major, some 

research has sought to identify the key characteristics of high school students enrolling in 

STEM majors. This line of research has also emphasized the role of background and 

environmental factors in shaping the choice of major (Chen & Weko, 2009; Crisp, Nora, 

& Taggart, 2009; Moakler & Kim, 2014; Sax et al., 2016).  

Crisp, Nora, and Taggart (2009) conducted a study seeking to identify student 

characteristics and factors that could predict whether or not a student from a Hispanic 

Serving Institution (HSI) decided to major in STEM. The study sought to identify pre-

college, environmental, and student characteristic predictors of whether or not the college 
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student majored in a STEM field. Through the use of logistic regression analyses, the 

study results indicated that the decision to declare a major in STEM was influenced by 

gender, ethnicity, SAT math score, and high school grades (Crisp et al., 2009). Though 

the study is limited to students at Hispanic Serving Institutions, the findings from this 

study contribute to the understanding about the various factors that influence students’ 

decision to pursue a degree in a STEM field. This research importantly notes the 

significance of demographic factors and pre-college experiences, such as college 

preparation, academic experiences in math and science, and math achievement in the 

decision to enroll in a STEM major (Crisp et al., 2009). 

Moakler and Kim’s (2014) research also investigated influences relevant to 

STEM major choice, among first-time, full-time freshmen attending 617 4-year 

postsecondary institutions in 2003. Guided by SCCT (Lent et al., 1994) and using cross-

sectional data from the Cooperative Institutional Research Program (CIRP), Moakler and 

Kim’s main research question focused on how background factors, such as gender, race, 

SES, and academic preparation affect STEM major choice. As theorized by SCCT, 

Moakler and Kim also examined the impact of self-efficacy through including both 

academic and math-specific confidence as a predictor of the choice of major among the 

college freshmen. Logistic regression revealed several positive indicators of STEM major 

choice, including “having parents with a STEM occupation, having higher SAT scores, 

having higher high school GPA, having spent more hours studying or doing homework, 

being a minority (African American or Latina/o), having higher academic confidence, 

and having higher mathematics confidence” (Moakler & Kim, 2014, p. 138). Overall, 

Moakler and Kim’s research contributed to the body of research on STEM choice 
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through highlighting the significant role that self-efficacy can play in STEM major 

choice. 

In specifically focusing on students majoring in engineering, Linda Sax and 

colleagues (2016) conducted a study examining the determinants of first-year students’ 

plans to major in the field of engineering. Similar to the work of Moakler and Kim 

(2014), Sax and her colleagues were also guided by SCCT and also used cross-sectional 

CIRP data. This study selected the intention to major in engineering as the outcome 

measure for the study and opted for an input-output analytic approach, including personal 

inputs, background characteristics, learning experiences, self-efficacy, outcome 

expectations, interests, contextual influences, and choice goals, in a regression analysis 

(Sax et al., 2015). The results of the study revealed a significant gender gap among 

college students planning to major in engineering. Furthermore, the study identified 

predictors of both male and female likelihood of majoring in engineering, including high 

school GPA, father’s occupation, political conservativism, and lower creative and artistic 

abilities.  

One of the first studies to examine high school students’ entrance into STEM 

fields using longitudinal data was a study by Chen and Weko (2009) through the National 

Center for Education Statistics. This descriptive study used data from the 1995-1996 

Beginning Postsecondary Students Longitudinal Study (BPS) in addition to supplemental 

data from the National Postsecondary Study Aid Study (NPSAS:04) and the Education 

Longitudinal Study of 2002 (ELS:02). The longitudinal design of this study allowed for 

the examination of high school student entrance, persistence, and degree completion in 

STEM fields through postsecondary education (Chen & Weko, 2009). The study itself 
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was descriptive in nature and focused only on examining the demographic (and non-

causal) factors of students entering into STEM fields. It was not guided or informed by 

conceptual models or theoretical frameworks, and simply examined demographic factors. 

While the study used longitudinal data and provided insight into the demographics of 

students entering various STEM fields, Chen and Weko’s (2009) research did not 

examine the process of the entry into STEM fields or any additional external, 

environmental, or cognitive factors influencing that process.  

Examining the STEM Major Choice Process 

As discussed, most studies have focused on surveying college students already 

pursuing STEM degrees, and the demographic factors of these students. However, the 

most prominent research that has recently emerged examining the STEM major choice 

process for high school students was conducted by Wang (2013a; 2013b). Using 

nationally-representative longitudinal data from the Educational Longitudinal Study of 

2002 (ELS:02) and guided by SCCT, Wang’s research sought to understand how high 

school students make the choice to pursue a STEM degree. In doing so, Wang advanced a 

model (see Figure 3) in which STEM choice is the result of a process linking together 

self-efficacy, learning experiences, interest and goals, as well as college readiness. Her 

study focused on examining the direct and indirect influences of high school exposure to 

math and science coursework, mathematics achievement, and the intention to major in 

STEM on a student’s entrance into STEM fields of study (Wang, 2013a). As suggested 

by SCCT, the key factors influencing the choice actions include self-efficacy, outcome 

expectations, interests, and environmental barriers and supports. Wang also considered 

that the immediate context and a student’s background characteristics play a role in 
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shaping STEM choice decisions. Wang applied the notion of SCCT’s contextual 

influences proximal to choice behavior in the postsecondary educational context, 

including expectations, enrollment, remediation, financial aid, and external demands 

(such as children or work). 

 

 

Figure 3: Wang’s (2013a) Conceptual Model 

 

The data sample in Wang’s study included high school graduates from 2004 who 

had enrolled in a postsecondary educational institution by 2006. Using confirmatory 

factor analysis (CFA) and SEM as the selected statistical methods for analysis, Wang 

tested her proposed conceptual model to examine the relationship among these factors 

and their impact on entrance into STEM fields in college. When testing the sample as a 

whole, the fit indices of the SEM analyses suggest an excellent fit of the model to the 

data. Wang also tested the model by subgroups of race, gender, and SES. The subgroup 
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testing revealed a multiple-group model based on race and no structural non-invariance 

across gender and SES, suggesting a hypothesized fit of the model across different 

subgroups. 

The results of the final SEM model suggest that the selection of a STEM major is 

influenced by the intention to major in STEM, high school achievement, and initial 

postsecondary educational experiences, with the intention to major having the most 

significant and positive impact (Wang, 2013a). The results of the study confirmed a 

direct influence of math achievement, exposure to math and science courses, and self-

efficacy in mathematics, on the intention to major in a STEM field. Intention to major in 

a STEM field is a significant and positive predictor of actual entrance into a STEM field 

of study. The findings of Wang’s study reveal the importance of cognitive and 

motivational beliefs in the STEM choice process. In addition, the study suggests that 

postsecondary supports and barriers are critical in students’ continued STEM choice 

throughout postsecondary education.  

Wang’s (2013a) study was one of the first studies to use nationally-representative 

longitudinal data to examine the STEM choice process for high school and college 

students. Through the use of a rich dataset and SEM as the statistical analytic approach, 

Wang was able to appropriately apply the nature of the SCCT framework in examining 

the process students undergo in selecting a STEM major. In particular, it highlights the 

significant influence that high school learning in math and science plays throughout the 

process, implying strong relationships among high school math and science exposure and 

STEM interest and STEM intention. Wang’s work acknowledges the complexity of 

pathways into STEM majors and the need to better understand the individual, 
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psychological, contextual, and social influences impacting the STEM choice decision. 

Her work calls attention to the continued need for investigation of the process for 

students in the STEM pipeline, emphasizing the importance of high school and 

postsecondary factors in the decision to pursue a STEM field of study.  

 

Critique and Methodological Limitations of Prior Work 

This section critiques the work that has been done on this topic and the 

methodological limitations of prior work. My dissertation study addressed significant 

gaps in the prior methods of approaching an understanding and conceptualization of the 

STEM readiness and intention developmental process, through improving 

methodological components of the statistical analytic approach, the data, and the 

measures. 

Analytic Approach Critique 

Neglecting Examination of the Process. With the exception of Nauta and 

Epperson (2003) and Wang’s (2013) work, most studies on STEM choice examine 

student characteristics and demographic factors that predicted a student’s selection of a 

STEM major. The majority of studies do not examine the process involved in students’ 

preparation for and selection of a STEM major during their time in high school. In this 

approach, previous studies used logistic regression analysis as the statistical method for 

analysis in their studies (Crisp et al., 2009; Moakler & Kim, 2014; Rogers & Creed, 

2011; Sax et al., 2016). While logistic regression is a common technique used to describe 

data and explain relationships between a dichotomous dependent variable and other 

independent variables, there are critical limitations with this type of analysis for studies 

seeking to understand a developmental process. 



 
 
 

 

31 

For example, these previous studies are guided by SCCT, which is based upon the 

conceptualization of a process unfolding through time. While it makes sense for studies 

on STEM major choice development to be guided by SCCT, as this theory regards a 

process phenomenon, the selected analytic approach is not best aligned with this 

framework. When examining processes through time, more complex statistical analyses 

are necessary to account for the processes and relationships between and among 

independent variables through time. While previous studies contribute to an 

understanding of the relationship between the independent variables and the dependent 

variable, logistic regression and the use of an input-output approach is one less suited for 

examination of such a complex process. More appropriate statistical methods, such as 

SEM, were necessary address the research questions at hand and provide a more clear 

interpretation of developmental and decision-making processes.  

Sample Selection. In addition to limitations in the approach to examine the 

developmental process, the appropriate selection of the sample studied is critical. In 

seeking to understand the process students undergo during high school in the selection of 

a STEM major, one must include the sample of high school students. The majority of 

studies conducted on students’ entrance into STEM fields (Chen & Weko, 2009; Moakler 

& Kim, 2014; Sax et al., 2016; Wang, 2013), approach their studies with samples of 

students who are already admitted to and enrolled in 4-year postsecondary educational 

institutions. It is important to note that these are studies addressing students who have 

already successfully made it through the pipeline in selecting and enrolling in a STEM 

field of study, rather than those who are experiencing the process of major selection 

earlier in the STEM pipeline.  
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This sample selection has notable limitations in critical ways: Samples of students 

already admitted to postsecondary institutions exclude students in high school who are 

unable to access postsecondary education. According to college access research, barriers 

to college access could be due to a number of reasons, including financial or 

informational barriers (Cabrera & LaNasa, 2000; Engle & Tinto, 2008; Perna, 2006). 

Furthermore, the samples of college students used in these studies exclude many high 

school students who did not attend a 4-year college. Some students may attend a 2-year 

institution, a community college, or a technical certification school, while others may opt 

to delay entrance into postsecondary education immediately following high school 

graduation. When examining entrance into STEM fields and the developmental process 

that high school students undergo in deciding to major in a STEM field, it is critical for 

research to capture the entire high school student population and acknowledge the diverse 

experiences that take place during high school, as well as the diverse pathways into 

STEM fields. 

Data and Measurement Limitations 

Using Cross-Sectional Data. In addition to analytic approach limitations, many 

previous studies used cross-sectional data, such as first-year student data from the 

Cooperative Institutional Research Program (CIRP) (Moakler & Kim, 2014; Sax et al., 

2016). Cross-sectional data does not allow for the examination of students’ experiences 

through time, but examines different cohorts of students in one segment of time. In 

addition, cross-sectional assessments that include self-reported retrospective behavior 

may not be accurate representations of actual longitudinal behavior, and “the use of 

cross-sectional assessments may lead researchers to draw erroneous conclusions about 



 
 
 

 

33 

student learning and development” (Bowman, 2010, p. 489). Furthermore, the use of 

cross-sectional data is not aligned with the studies’ theoretical framework of SCCT, 

which follows students’ developmental process through time. Longitudinal data, which 

tracks students’ behaviors, actions, and experiences over an extended period of time, 

allows for the examination of a complex process unfolding through time. Because of this, 

the use of longitudinal data is more appropriate when examining developmental and 

decision-making processes as it can account for actual behaviors and actions over a 

period of time. Lent et al. suggests in numerous studies (2003; 2008a; 2008b) that 

longitudinal data is necessary for testing of the SCCT model, calling attention to the need 

for more studies to adopt this recommendation.  

Measuring STEM Self-Efficacy. While the work of Wang (2013a) does use 

longitudinal data from the Educational Longitudinal Study of 2002 (ELS:02) to model the 

selection of a STEM major, the measurements used from the data are limited in important 

ways. Wang’s study was somewhat limited in providing adequate measures of STEM-

related content. For example, because the survey design of ELS:02 only included survey 

items related to self-efficacy in mathematics, the construct of self-efficacy could only be 

conceptualized using measures of math self-efficacy. SCCT suggests that self-efficacy is 

a dynamic belief that varies across different fields or domains. Wang’s study is limited in 

capturing the extent to which a student feels self-efficacious in subjects beyond 

mathematics. Because science is a key subject in STEM fields of study, including science 

self-efficacy as a measure of self-efficacy is important in understanding the impact of this 

cognitive component on the career development process. Similarly, while Moakler and 

Kim (2014) appraised self-efficacy through two measures of self-confidence (one in 
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mathematics ability and one in academic ability), the measure of self-efficacy in their 

study did not include indicators of self-efficacy in science content. The authors address 

the absence of science self-efficacy in their limitation section as a notable constraint of 

the CIRP database and in their analysis. Including additional and more nuanced measures 

of self-efficacy in the academic areas of math and science (in relation to course content, 

textbooks, skills, etc.) may better capture the complexity of STEM self-efficacy. 

In addition to critiques in measurement, there are some limitations in the model of 

SCCT in regards to influences on self-efficacy. Lent et al.’s (1994) model of SCCT is 

limited in illustrating the relationship between self-efficacy and familial factors impacting 

the career development process. While Lent and his colleagues emphasize self-efficacy as 

a key component influencing this development process, the theorists have not included in 

their model the ways in which self-efficacy can be impacted by familial and/or parental 

factors. According to previous research, self-efficacy can be directly affected by external 

influences, such as parents, teachers, and peers (Bandura, 1993; Bandura, Barbaranelli, 

Caprara, & Pastorelli, 2001; Caprara, Barbaranelli, Steca, & Malone, 2006; Zimmerman, 

Bandura, & Martinez-Ponz, 1992). Though Lent and his colleagues include background 

contextual influences and personal inputs, they suggest that these are all mediated 

through learning experiences, which impacts self-efficacy. This theoretical framework 

does not account for the direct impact of parental influence or the impact of students’ 

ability on his or her self-efficacy. Previous research on self-efficacy provides evidence 

for the relationship between self-efficacy and parental involvement (Alliman-Brisset, 

Turner, & Skovholt, 2004; Ferry, Fouad, & Smith, 2000; Turner & Lapan, 2002) and 

self-efficacy and ability (Bandura, 1993; Bell & Kozlowski, 2002; Hackett, 1985; Pajares 
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& Kranzler, 1995). However, these relationships are not currently reflected in the model 

of SCCT. 

Measuring STEM Interest. The extant literature on the STEM choice process is 

also limited by neglecting inclusion of measures of students’ interest in STEM-related 

content. Career interests can be defined as a fluid development of interests in regards to 

skills, tasks, and activities related to a particular field or domain. Social cognitive career 

theorists suggest that practice, exposure to activities, refinement of skills, self-efficacy, 

and outcome expectations contribute to the development of career-related interests (Lent 

et al., 1994). According to SCCT, interest directly impacts goals related to career choice 

and planning.  

In regards to interest in STEM-related content, previous research has measured 

STEM interest as one’s career intention in a STEM field (Sadler et al., 2012), the 

perceptions of supportive environments in science careers, the interest in pursuing 

educational opportunities to lead to a career in science, and the perceived importance of a 

career in science (Tyler-Wood, Knezek, & Christensen, 2010). The National Center for 

Education Statistics has also considered math and science interest as the extent to which a 

student enjoys the math and/or science subject (Ingels et al., 2011). As emphasized by 

previous research, STEM interest is one of the most important factors directly impacting 

a high school students’ selection of a career in STEM (Hall et al., 2011; Lent et al., 1998; 

Seymour & Hewitt, 1997).  

Despite ways in which STEM interest has been previously assessed and the 

impact interest has on career selection, research related to studying the STEM readiness 

and intention process does not fully capture or include the construct of STEM interest 
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(Moakler & Kim, 2014; Wang, 2013a). This limits the extent to which previous work 

includes key components impacting the intention to major in a STEM field. In Wang’s 

(2013a) study, interest in math is included as a factor. However, the study does not 

include interest in science-related content. Her decision to do this is likely due to 

limitations in available measures or items in the dataset related to student interest in 

science. Not including a measure of science interest limits the extent to which this 

construct fully captures a student’s interest in STEM career-related content, as well as the 

extent to which conclusions can be drawn about the relationship between interest with 

other key factors in the STEM readiness and intention development process. Further 

research would be necessary to improve upon the measures of interest to extend beyond 

interest in solely mathematics. 

Measuring Parental Influences. Previous research suggests that parental 

involvement, encouragement, and support play a critical role in the college and career 

development and decision-making process (Cabrera & LaNasa, 20000; Fan & Chen, 

2001; Ferry, Fouad, & Smith, 2000; Jeynes, 2007; Keller & Whiston, 2000). Though 

SCCT also suggests that background contextual affordances, such as parental support and 

encouragement, impact the college and career development process, previous research 

does not include parental involvement as an influential factor (Moakler & Kim, 2014; 

Sax et al., 2016; Wang, 2013a). Wang’s STEM choice model does not include parental 

involvement. This important influence has also been documented to have a key influence 

on the development of self-efficacy (Alliman-Brisset, Turner, & Skovholt, 2004; Ferry, 

Fouad, & Smith, 2000; Turner & Lapan, 2002). To this end, previous research related to 

STEM readiness and intention development is notably limited in including measures of 
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parental influence and ascertaining the extent to which this factor plays a role in the 

process through impacting self-efficacy, STEM readiness, and the intention to major in a 

STEM field. 

 

Addressing Gaps 

This dissertation study sought to overcome the series of limitations discussed 

from the extant literature regarding the analytic approach, data, and measurement 

considerations in studying the STEM readiness and intention development process among 

high school students.  

Analytic Approach 

Statistical Technique. The majority of studies on the STEM major choice 

process have opted for the use of various forms of regression analysis to examine what 

we understand to be a complex developmental process. In contrast, I used SEM as the 

statistical analysis technique. This technique allowed me to gain a deeper understanding 

of the STEM intention development process and the relationships among factors 

influencing this process. SEM, which is explained in more detail in Chapter 3, is a 

statistical analysis approach allowing for the examination of a complex process unfolding 

over time (Byrne, 2013; Kline, 2015). Commonly used in social sciences, SEM allows 

for the testing of latent constructs (such as cognitive concepts of self-efficacy) and the 

relationships among various measured factors throughout a longitudinal process 

(Anderson & Gerbing, 1988). As such, in understanding the complex nature of influential 

factors on this process, I acknowledge SEM as the most appropriate method for testing a 

conceptual model of this process. 

 Sample Selection. Furthermore, while previous research (Chen & Weko, 2009; 
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Moakler & Kim, 2014; Sax et al., 2016; Wang, 2013) focused on sampling college 

students at 4-year institutions, my dissertation study focused on examining the 

experiences of all high school students, including those who may not have had access to 

postsecondary education. Through not limiting to students already in postsecondary 

education, I was able to include high school students who may not have entered college 

immediately following high school, those who attended a 2-year or technical 

postsecondary educational institution, and those who may have faced financial or other 

barriers prior to ultimately enrolling in college. To answer the research question seeking 

to understand the STEM readiness and intention development process for high school 

students, it is critical to fully capture the high school student body. Thus, I opted to use a 

data sample capturing a nationally-representative cohort of all high school students in our 

nation from the time they were in 9th grade through their 12th grade year in high school. 

Data and Measurement 

Longitudinal Data. In order to overcome the problems associated with the use of 

cross-sectional data, I opted to use the most recent nationally-representative longitudinal 

database: the High School Longitudinal Study of 2009 (HSLS:09). Longitudinal 

databases, such as HSLS:09, account for the limitation many previous studies face in 

their use of cross-sectional data (Crisp et al., 2009; Moakler & Kim, 2014; Lent et al., 

2003; 2008; Sax et al., 2016). When examining a process, such as the college or career 

decision-making process, the use of longitudinal data is regarded as the most appropriate 

approach for such studies (Singer & Willett, 2003). Through the use of longitudinal data 

my dissertation study was able to more appropriately examine the STEM readiness and 

intention development process unfolding through time.  
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Improved Measures. Furthermore, not only is HSLS:09 the most recent 

nationally-representative longitudinal database, it is unique in its survey design in 

comparison to previous national educational longitudinal surveys through inclusion of 

numerous survey items directly related to STEM content. This inclusion of STEM-

relevant items allowed for a more precise measure of student academic performance in 

and exposure to STEM-related content, as well as a more nuanced understanding of self-

efficacy and interest in STEM-related fields.  

In addressing the limitations of previous research in measuring STEM self-

efficacy, this dissertation study appraised self-efficacy in mathematics as well as self-

efficacy in science. Through including self-efficacy in science alongside self-efficacy in 

math, as Wang’s (2013a) study addressed, my dissertation study sought to better capture 

this cognitive component in relation to the STEM subject matter, as science is a 

significant academic subject for both preparation for and success in STEM fields (Sadler, 

Sonnert, Hazari, & Tai, 2012; Tyson, Lee, Borman, & Hanson, 2007). 

The majority of research studies conducted on entrance into STEM fields 

excludes measures of interest in STEM-related content. This dissertation study not only 

included STEM interest as a critical factor impacting the STEM development process, 

but also improved upon the measurement of interest in STEM fields, through the use of 

items measuring students’ interest in both math- and science-related content during high 

school.  

 This dissertation study filled an important gap in the work of Wang (2013a) and 

Moakler and Kim (2014) by including parental involvement as a key factor in the 

consideration of a STEM major. Given the importance of parental involvement in the 
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college and career development decision-making process, this study appropriately 

reflected a model of STEM readiness and intention development through inclusion of 

parental involvement as a key factor impacting the process. 

 

The Proposed Conceptual Model 

Overview 

 In my dissertation study, I proposed a new conceptual model for understanding 

the STEM readiness and intention development process, which I term the STEM 

Readiness and Intention Development (SRID) Conceptual Model (see Figure 1). While 

guided by SCCT, the SRID model also integrates many components of Wang’s (2013a) 

conceptual model of STEM choice. As previously discussed, SCCT emphasizes the 

interaction within and among the cognitive concepts (including self-efficacy, interests, 

and goals), as well as the impact of the personal inputs and contextual influences 

(including background contextual factors and contextual influences proximal to choice 

behaviors). 

Cognitive Components. SCCT acknowledges self-efficacy as one of the key 

components of social cognitive theory and a significant factor in career development and 

career decision-making. Accordingly, the SRID conceptual model includes STEM self-

efficacy as a key component in the STEM readiness and intention development process. 

Other cognitive components of the SCCT theory include outcome expectations, interests, 

and goals. SCCT emphasizes the formation and elaboration of career-relevant interests, 

and acknowledges interest as a direct factor on the career development and decision-

making process (Lent et al., 1994). Aligned with SCCT and Wang’s (2013) conceptual 

model, my SRID model includes STEM interest as another key component in the 
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developmental process.  

Wang’s (2013) conceptual model draws attention to the importance of college 

readiness in the selection of a STEM major. Guided by Wang’s inclusion of college 

readiness in her conceptual model, the SRID model incorporated a STEM-specific 

construct of readiness, termed STEM readiness. STEM readiness is also an 

operationalization of SCCT’s construct of learning experiences, as it includes high school 

students’ exposure to and performance in STEM-related coursework. Aligned with SCCT 

and Wang’s conceptual model, my proposed model suggests a direct effect of STEM 

readiness on the intention to major in a STEM field of study. 

The outcome variable in my proposed conceptual model, intention to major in 

STEM, can also be considered a cognitive component aligned with SCCT. Lent et al. 

(1994) regard goal-setting as key component in the cognitive career selection process, 

defined as cognitive components which guide actions and behaviors. In the model of 

SCCT (see Figure 2), goals directly follow interests and immediately proceed action. 

According to SCCT, intention to major in STEM may also be considered as a more 

action-oriented cognitive concept, indicating a planned behavior or follow-through action 

related to the goal of majoring in a STEM field. Wang’s (2013) model also includes the 

intention to major in STEM as a key factor in the STEM choice process, with her 

findings suggesting intention to major as having the most significant influence on actual 

entrance into STEM fields. As such, my model includes intention to major as the main 

outcome variable. 

Contextual Components. According to SCCT, background contextual factors 

include one’s interaction with their own culture and the ways in which their self-concept 
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and learning experiences have been impacted through socialization (Lent et al., 1994). As 

such, my proposed conceptual model represents background characteristics through 

socioeconomic status (SES) which includes parental education and family income. SCCT 

also recognizes personal inputs as significant factors influencing this developmental 

process. For example, a student’s natural abilities in mathematics may predispose him or 

her to engage more positively in learning experiences relevant to the use of mathematics 

skills. Aligned with SCCT, my proposed model includes mathematics ability as a 

personal input. 

According to Lent and associates, contextual influences proximal to choice 

behavior are directly related to career choice concerns, such as career network contacts, 

role models, or external barriers (Lent et al., 2003). These proximal environmental factors 

moderate the relation of interests to choice goals, as well as the relation of goals to 

actions. For example, Lent and colleagues (2003) suggest that influential role models or 

familial involvement and acculturation may directly influence individual’s own career 

choices, perhaps more strongly than personal career interests. In my SRID conceptual 

model, I interpret parental involvement as a key contextual influence proximal to choice 

behavior, and represent this factor in the model accordingly.  

 

 

 

[Figure 1 on next page] 
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Figure 1: The STEM Readiness and Intention Development (SRID) Conceptual Model2 

 

Factors in Proposed Conceptual Model 

Drawing upon relevant literature from both higher education and career 

development research, this section of the literature review highlights the most important 

factors impacting the STEM readiness and intention development process. Most 

importantly, this section emphasizes the empirical evidence supporting the selection of 

these factors, as well as the reasoning for their incorporation within the SRID conceptual 

model. These influential factors, including SES, mathematics ability, parental 

involvement, STEM self-efficacy, and STEM interest, have been documented to 

                                                
2As illustrated, the STEM Readiness and Intention Development Conceptual Model suggests that SES 

impacts both mathematics ability, parental involvement, and STEM readiness. Mathematics ability impacts 

STEM self-efficacy and parental involvement. In turn, parental involvement impacts STEM self-efficacy 

and STEM readiness. As supported by SCCT and previous research using the SCCT model, I predicted that 

STEM self-efficacy had an indirect effect on students’ intention to major in STEM as mediated through the 

direct impact of STEM interest on intention to major in STEM. My model also suggests that STEM interest 

impacts STEM readiness, which has a direct impact on intention to major in STEM. 
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influence the STEM readiness development process and students’ intention to major in a 

STEM field. 

Socioeconomic Status 

 Socioeconomic status (SES) is a measure of economic and sociological standing 

in society, commonly measured by a combination of income, occupation, and/or 

education (Cowan et al., 2012). SES has been continually emphasized in education 

research as a key component in academic preparation and overall educational 

achievement (Cabrera & LaNasa, 2000; Lee & Burkam, 2002; Perna, 2005; Rowan-

Kenyon, 2007; Sirin, 2005; White, 1982). In relation to college major choice, Ma’s 

(2009) study highlights the significant role that SES plays in students’ selection of a 

college major. This particular study, which examined nationally representative 

longitudinal data, found that children from lower SES families were more likely to select 

college majors in lucrative careers, emphasizing the role SES can play throughout the 

career development process (Ma, 2009). In recognizing the importance that school 

context may play in this process, the measure of SES may account for the role of class 

and community context in relation to the school’s social and economic resources (Portes 

& MacLeod, 1996). 

Additional research highlights the direct impact that SES has on math ability (Lee 

& Burkam, 2002; Reyes & Stanic, 1988; Sirin, 2005), parental involvement (Eagle, 

1989), as well as STEM readiness (i.e. the extent to which a student becomes prepared 

for a STEM field of study) (Cabrera & LaNasa, 2000; Hoffer, Rasinski, & Moore, 1995; 

Lee & Burkam, 2002; Perna, 2006). Previous research also suggests a significant 

connection between SES and parental involvement. In particular, previous work suggests 
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that SES impacts the extent to which parents are involved in their students’ schooling and 

educational experience (Eagle, 1989; Leppel, Williams, & Waldauer, 2001; Ma, 2009). 

The SRID conceptual model draws on the findings of previous research, with SES 

directly impacting math ability, reflecting the direct impact that SES has on math ability, 

parental involvement, and STEM readiness. 

Mathematics Ability 

 Mathematics ability has been recognized as an important factor in educational 

achievement and college readiness (Cabrera & LaNasa, 2000; Conley, 2007; Perna, 2005; 

Rohde & Thompson, 2007). In relation to familial impact, ability has been studied as a 

predictor of the extent to which a parent is involved in the educational experience of their 

child (Eccles & Harold, 1993; Patel & Stevens, 2010). Rohde and Thompson (2007) 

assert the relationship between abilities and student performance and achievement in 

academic settings, suggesting an important link between cognitive ability and academic 

achievement. Ability is also directly linked to students’ feelings of self-efficacy, 

particularly in the areas of math and science (Bandura, 1993; Bell & Kozlowski, 2002; 

Hackett, 1985; Pajares & Kranzler, 1995). For example, students with stronger abilities in 

mathematics have a greater sense of self-efficacy in mathematics.  

Furthermore, mathematics ability impacts the extent to which students meet 

benchmarks to become academically prepared for a STEM field of study (Hackett, 1985; 

Rohde & Thompson, 2007; Spinath, Spinath, Harlaar, & Plomin, 2006). Literature on 

college access and choice emphasize the importance of math ability in college readiness, 

specifically in the academic courses taken and the high school grade point average earned 

(Conley, 2007). Supported by this previous research, the SRID conceptual model 
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acknowledges the importance of math ability and emphasizes the impact of math ability 

on parental involvement, self-efficacy, and STEM readiness.  

Parental Involvement 

 Parental involvement can be defined as the extent to which a parent is involved in 

a child’s academic and schooling experience, which has been strongly related to students’ 

overall educational experience and academic achievement (Cabrera & La Nasa, 2001; 

Fan & Chen, 2001; Hill & Tyson, 2009; Jeynes, 2007; McNeal, 1999; Reynolds, 1992). 

In particular, Cabrera and LaNasa (2001) suggest that the behavioral dimension of 

parental involvement on students’ educational experiences is strongly associated with 

high school students’ academic achievement (Fan & Chen, 2001; Jeynes, 2007; Perna & 

Titus, 2005; Stewart, 2008). In a study guided by SCCT, Ferry, Fouad, and Smith’s 

(2000) work emphasizes the critical role that the familial context has on career choice 

behavior. Furthermore, Keller and Whiston (2008) suggest that for young adolescents in 

particular, parental influences play a critical role impacting their career development. The 

extensive meta-analysis conducted by Hill and Tyson (2009) reveal that the type of 

parental involvement is also critical. They identified three broad categories of parental 

involvement in schooling, including 1) academic socialization, 2) home-based 

involvement, and 3) school-based involvement. Their findings suggest that parental 

involvement that reflects academic socialization, which includes communication about 

parental expectations for education and discussing the future, has the strongest impact on 

students’ academic achievement (Hill & Tyson, 2009). 

In regards to STEM career choice, Hall et al. (2011) highlighted parental 

influence as one of the top four influences on STEM career choice among high school 
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students. In light of these findings, my conceptual model addressed gaps in previous 

work (Moakler & Kim, 2014; Sax et al., 2016; Wang, 2013) through incorporating 

parental involvement into this model as a key factor in STEM readiness and intention 

development.  

Accordingly, my model of SRID suggests that in development of STEM 

intention, parental involvement impacts STEM self-efficacy and STEM readiness. 

Previous research suggests that self-efficacy is directly impacted by the extent to which 

parents are supportive and involved in their student’s academic and schooling experience 

(Alliman-Brisset, Turner, & Skovholt, 2004; Ferry, Fouad, & Smith, 2000; Turner & 

Lapan, 2002). In addition, Ferry, Fouad, and Smith’s (2000) study found that parental 

involvement had a significant effect on the number of math and science courses taken and 

the grades earned in those math and science courses. As such, my conceptual model 

improves upon previous models on the STEM major choice process through highlighting 

the relationships between parental involvement and SES, math ability, STEM self-

efficacy, and STEM readiness.  

STEM Self-Efficacy 

 Self-efficacy can be defined as one’s belief in his or her ability to succeed in 

accomplishing a task (Bandura, 1977). It is often interpreted as one’s mastery of 

experiences and skills, and confidence in one’s ability to perform and succeed (Bandura, 

1994). In his social cognitive theory, psychologist Albert Bandura theorized that self-

efficacy could be developed through external and environmental experiences, which 

ultimately impact feelings and behaviors. Self-efficacy impacts the ways in which 

individuals view their abilities and capabilities, which affects performance, interests, and 
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behaviors. Social cognitive theorists suggest that self-efficacy can be a changing set of 

beliefs about oneself, dependent on the context and the situation, such as the nature of the 

tasks, one’s social and environmental surroundings, and one’s feelings of competence on 

similar tasks (Bandura, 1977; Lent et al., 1994; Sharf, 2013; Zimmerman, 2000). In the 

academic context, students with high self-efficacy may be more likely to become 

interested in course content, more likely to set higher academic goals, and thus more 

likely to achieve those goals (Lent, Brown, & Larkin, 1984; Multon, Brown, & Lent, 

1991; Zimmerman, Bandura, & Martinez-Pons, 1992). 

Self-efficacy theories have been applied in career development theory to interpret 

influences on career choice behavior3 (Bandura, 1994; Hackett & Betz, 1995; Lent et al., 

2003; Rittmayer & Beier, 2008). SCCT suggests that self-efficacy has a direct effect on 

achievement and strongly influences ultimate career selection4.  However, SCCT does 

not include the direct impact of familial contextual factors on self-efficacy. According to 

previous research, self-efficacy can be directly affected by external influences, such as 

parents, teachers, peers, etc. (Bandura, 1993; Bandura, Barbaranelli, Caprara, & 

Pastorelli, 2001; Caprara, Barbaranelli, Steca, & Malone, 2006; Zimmerman, Bandura, & 

Martinez-Ponz, 1992). Though the SCCT model includes background contextual 

influences and personal inputs, these are all mediated through learning experiences 

                                                
3 Betz and Hackett’s (1986) research applied self-efficacy theory specifically to interpret gender disparities 

in the labor work force. Their work emphasizes the usefulness of self-efficacy theory in career development 

theory in predicting the career decision-making process for men and women, through identifying gender 

differences in self-efficacy impacting occupational choice (Betz & Hackett, 1986). Since this foundational 

study, several studies have supported the findings of the significance of self-efficacy in the career decision-

making process. 
4 In 2003, Lent and colleagues applied Social Cognitive Career Theory (SCCT) and Bandura’s (1999) 

social cognitive theory in examining students majoring in engineering. Through testing social cognitive 

models on the sample of engineering students, the study provided support for a model that portrays 

contextual supports and barriers indirectly linked to goals and actions through self-efficacy (Lent et al., 

2003). 
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which impacts self-efficacy. In regards to self-efficacy, SCCT does not account for the 

impact of parental influence or students’ ability on his or her self-efficacy. Previous 

research provides evidence for a direct relationship between self-efficacy and parental 

involvement and self-efficacy and ability (Bandura, 1993; Turner & Lapan, 2002). In 

particular, self-efficacy is directly impacted by the extent to which parents are supportive 

and involved in their student’s academic and schooling experience (Alliman-Brissett, 

Turner, & Skovholt, 2004; Ferry, Fouad, & Smith, 2000; Turner & Lapan, 2002). 

Additionally, ability impacts the extent to which a student feels self-efficacious (Bandura, 

1993; Bell & Kozlowski, 2002; Greene, Miller, Crowson, Duke, & Akey, 2004; Hackett, 

1985; Nauta & Epperson, 2003; Pajares & Kranzler, 1995).  

Accordingly, my conceptual model incorporates self-efficacy as a key cognitive 

factor impacting the STEM readiness and intention development process. Building upon 

SCCT, my model acknowledges that self-efficacy is also related to other important 

contextual factors in the development process. In particular, my model accounts for the 

impact of parental involvement on self-efficacy. It also recognizes the fact that self-

efficacy can be affected by mathematics ability throughout the STEM readiness and 

intention development process.  

Furthermore, my model of SRID acknowledges the relationship between self-

efficacy and interest (Bandura & Schunk, 1981; Lenox & Subich, 1994; Rottinghaus, 

Larson, & Boren, 2003), particularly for adolescents in high school (Bandura, 2006; 

Pajares, 2006). SCCT theorists suggest that self-efficacy strongly mediates through 

interest, with interest being a strong predictor of career choice (Lent et al., 2001; 2003; 

Nauta, 2004; Nauta & Epperson, 2003; Scarf, 2013). This suggests that self-efficacy may 
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have an indirect impact on STEM readiness and the intention to major in STEM, as 

mediated through STEM interest.  

STEM-Specific. In addition to acknowledging the relationships that exist 

between self-efficacy and other key factors in the process, the SRID conceptual model 

contributes to refining the understanding of self-efficacy as it relates to STEM readiness 

and intention development. In particular, my model appraises the content of STEM self-

efficacy, extending this concept to specific domains of efficacy - especially in the field of 

mathematics. When studying self-efficacy in relation to STEM, researchers have 

examined the impact of self-efficacy in mathematics (Bandura, 1993; Betz & Hackett, 

1983; Lent, Lopez, & Bieschke, 1991; Pajares, 2005; Rittmayer & Beier, 2008). Previous 

research suggests that mathematics self-efficacy is critical in the selection of STEM 

majors, in fields such as mathematics, engineering, physics, and science (Betz & Hackett, 

1983; Hackett, 1985; Hazari, Sonnert, Sadler, & Shanahan, 2010; Lent et al., 1991; 

Wang, 2013a). Though the majority of these studies have linked mathematics self-

efficacy to the selection of STEM-related careers, few scholars (Britner & Parjares, 2006) 

have examined self-efficacy in science.  

Given the extensive research on self-efficacy theory, it is well understood that 

there are important relationships between self-efficacy and academic performance and 

between self-efficacy and goal-setting. SCCT suggests that self-efficacy is a dynamic 

belief that varies across different fields or domains. When examining students becoming 

prepared for a STEM career and considering selection of a STEM major, it is imperative 

to also consider the impact of self-efficacy in other domains of STEM fields, beyond 

solely mathematics. Though studies have separately examined self-efficacy in 
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mathematics and self-efficacy in science, there has been limited research examining both 

forms of self-efficacy simultaneously. My conceptual model considered measuring self-

efficacy in both math and science in an effort to better capture the concept of STEM self-

efficacy. 

STEM Interest 

 STEM interests can be defined as interest in skills, tasks, and activities related to 

the fields and domains of science, technology, engineering, and mathematics. In the area 

of career development research, interest in general is acknowledged as an important 

factor in career choice. Psychologists in the early to mid-1900s began to grapple with the 

cognitive conception of “interest” and its relation to one’s identity and one’s conception 

of self (Cole & Hanson, 1974). Cole and Hanson’s (1974) study related this concept of 

interest inventories on career selection, focusing specifically on the differences between 

men and women. Though the work of Cole and Hanson may be dated in terms of gender 

studies, it draws attention to the importance of considering individual interests on one’s 

process of selecting a career, acknowledging the simplicity and significance of 

individuals selecting careers with which they would be most personally satisfied.  

SCCT incorporates the impact of interest into the model of career choice. This 

emphasizes the formation and elaboration of career-relevant interests, and acknowledges 

interest as a direct factor on the career development and decision-making process (Lent et 

al., 1994). Seymour and Hewitt’s (1997) work reveals the important relationship between 

interest in math- and science-related content and a student’s decision to pursue a career in 

a STEM field. The research of Sadler, Sonnert, Hazari, and Tai (2012) addressed the 

possible stability and volatility of interest in STEM careers throughout high school. Their 
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findings suggest that early career interest in STEM-related content is the strongest 

predictor of career interest when leaving high school, emphasizing the critical nature of 

early experiences, socialization, and career interest development by the end of high 

school (Sadler et al., 2012). In addition, Hall et al.’s (2011) study found that when 

supported by parents or teachers, high school students’ interest in STEM and STEM 

occupations influenced career choice in STEM, and was one of the top four factors 

impacting this decision. 

 As suggested and supported by previous research (Hall et al., 2011; Lent et al., 

1994; Sadler et al., 2012; Seymour & Hewitt, 1997), my SRID model incorporated 

STEM interest as an influential factor directly impacting intention to major in STEM. 

Moreover, in improving upon previous work (Wang, 2013a), my study incorporated 

measures of interest in both mathematics and science-related content. My conceptual 

model is aligned with SCCT and Wang’s conceptual model in that it acknowledges the 

direct relationship between interest and intention to major in STEM. In addition, my 

model incorporates the relationship between STEM interest and the extent to which 

students become academically prepared for a STEM field of study. Previous research 

suggests that interest in academic content has an impact on academic achievement 

(Schiefele, Krapp, & Winteler, 1992; Singh, Granville, & Dika, 2002) and course-taking 

plans (Lent, Brown, & Hackett, 1994; Thorndike-Christ, 1991; Updegraff; Eccles; 

Barber, & O’Brien, 1996), particularly in the areas of math and science. These are both 

important components in what has been conceptualized as STEM readiness (Mattern et 

al., 2015), which will be explored in the next section. 
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STEM Readiness 

 For decades, higher education research has focused on defining and understanding 

what it means for students to be prepared for college. Being prepared for college has been 

termed by many researchers in the field of higher education as college readiness, which 

can be defined by the achievement of benchmarks signifying academic preparation for 

success in college (Berkner & Chavez, 1997; Cabrera, Burkum, & LaNasa, 2005; 

Calcagno, Crosta, Bailey, & Jenkins, 2007; Wiley, Wyatt, & Camara, 2011). Research in 

the area of college readiness has focused on the various pathways to postsecondary 

education and in outlining the predictors of success for enrollment in and persistence 

through college. College Board’s 2011 research report on college readiness address the 

characteristics associated with college readiness, including SAT scores, high school 

grades, and the rigor of academic coursework (Wiley et al., 2011). Metrics such as high 

school grade point average, college entrance exam scores, class rank, and academic 

coursework have been associated with predicting success in college and qualifying 

college readiness (Berkner & Chavez, 1997). 

With the increasing importance of strengthening the academic pipeline to STEM 

careers, researchers at ACT have developed benchmarks for students to be deemed 

“ready for STEM” (Mattern, Radunzel, & Westrick, 2015, p. 2). The recent ACT report, 

written by Mattern, Radunzel, and Westrick (2015), states that STEM readiness is 

considered to be more specific than college readiness. Therefore, specific benchmarks for 

STEM readiness have been proposed, revolving around achievement in mathematics and 

science. Because STEM majors and fields often demand skills, abilities, and a strong 

knowledge base in mathematics and science (Goldman, Schmidt, Hewitt, & Fisher, 1974; 
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Chen & Weko, 2009; Crisp, Nora, & Taggart, 2009; Westrick, 2015; Whalen & Shelley, 

2010), STEM readiness benchmarks revolve around high achievement in these subjects. 

For example, typical college readiness benchmarks, such as having completed Algebra II 

(Perna, 2015; Reid & Moore, 2008; Roderick, Nagaoka, & Coca, 2009), may not be 

considered an adequate indicator for readiness and success in a STEM major (Mattern et 

al., 2015). Research indicates that preparation for education and careers in STEM-related 

fields requires higher levels of mathematics and science knowledge and skills (Mattern et 

al., 2015; Westrick, 2015). Chen’s (2013) research for the National Center for Education 

Statistics also supports these findings, suggesting that students who earn more credits in 

STEM-related courses and perform well academically in these courses are more likely to 

succeed in STEM majors. The ACT report affirms that academic achievement and 

preparation in STEM are imperative for readiness to succeed and persist in STEM 

education and STEM fields (Mattern et al., 2015). In particular, the mathematics and 

science courses taken as well as the academic performance in STEM-related course 

content are key benchmarks in STEM readiness. According to Sadler, Sonnert, Hazari, 

and Tai (2012), achievements of these benchmarks is a significant predictor of a 

sustained interest in STEM by the end of high school, implicating likelihood for career 

choice and goal setting in a STEM field. Research has also revealed a link between math 

and science coursework taken in high school and future degree attainment in a STEM 

major (Tyson, Lee, Borman, & Hanson, 2007). 

My conceptual model of SRID accounts for the influence of STEM interest on 

STEM readiness. In addition, this conceptual model illustrates the relationship of STEM 

readiness with several influential factors in high school students’ intention to major in 
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STEM, including SES, math ability, and parental involvement. As emphasized in college 

access and choice literature, there is a significant relationship between SES and academic 

achievement (Cabrera & LaNasa, 2000; Lee & Burkam, 2002; Perna, 2006; Sirin, 2005; 

White, 1982). In addition, SES impacts the extent to which high school students select 

courses in mathematics and science (Hoffer, Rasinski, & Moore, 1995). Since these are 

acknowledged by the literature as benchmarks in STEM readiness, my conceptual model 

illustrates a direct impact of SES on STEM readiness. In alignment with the ACT report 

(Mattern et al., 2015), my model recognizes that valid indicators of STEM readiness 

should include measures such as high school grade point average and credits earned in 

STEM-related coursework. 

STEM readiness is also impacted by students’ math ability (Hackett, 1985; Rohde 

& Thompson, 2007; Spinath, Spinath, Harlaar, & Plomin, 2006). Rohde and Thompson 

(2007) make an important link between cognitive ability and academic achievement, 

asserting the relationship between abilities and student performance and achievement in 

academic settings. Literature on college access and choice emphasize the importance of 

math ability in college readiness, specifically in the academic courses taken and high 

school grade point average earned (Conley, 2007). Though the relationship between math 

ability and achievement of benchmarks in STEM readiness is more intuitive, this model 

acknowledges that students with stronger math abilities may be more likely to take 

quantitative-based courses in high school, including math and science classes, and would 

be more likely to earn a higher grade point average in these courses than students with a 

lower math ability.  

College access and choice research highlights the significant role that parents and 
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the familial context play in students’ academic achievement and college preparation 

(Cabrera & LaNasa, 2000; Fan & Chen, 2001; Jeynes, 2007; Tierney & Auerbach, 2005). 

In the context of career choice behavior, Ferry, Fouad, and Smith’s (2000) study found 

that parental encouragement had a significant effect on the number of math and science 

courses taken and the grades in those math and science courses5, which is aligned with 

the benchmarks for STEM Readiness (Mattern et al., 2015). As such, my proposed 

conceptual model illustrates a direct relationship between parental involvement and 

STEM readiness. 

In summary, the SRID conceptual model recognizes the centrality of STEM 

readiness in the process high school students undergo in intending to major in STEM. My 

model acknowledges that a student’s behaviors, such as course-taking and achievement, 

are impacted by the cognitive components of self-efficacy and interest throughout high 

school. Ultimately, STEM readiness mediates many influences on its direct impact on 

intention to major in a STEM field.  

Intention to Major in STEM 

 The intention to major in STEM can be defined as the consideration of a major in 

a STEM field of study in postsecondary education. Intention to major in STEM may also 

be regarded as a planned behavior, comparable to goal-setting in the SCCT model. Lent 

et al. (1994) regard goal-setting as key component in the cognitive career selection 

process, defined as cognitive components which guide actions and behaviors. In the 

model of SCCT, goals directly follow interests and immediately precede action. Guided 

by SCCT, intention to major in STEM may also be considered as a more action-oriented 

                                                
5 Ferry, Fouad, and Smith (2000) conceptualized these items as a construct of “learning experiences.” 
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cognitive concept, indicating a planned behavior or follow-through action related to the 

goal of majoring in a STEM field. 

In the SRID conceptual model, intention to major in STEM was selected as the 

main outcome measure due to its important relationship to high school students’ entrance 

into STEM fields in postsecondary education. According to Wang’s (2013a) model, 

choosing a major in STEM is directly influenced by the intention to major in STEM, with 

the intention to major exerting the largest impact on actual entrance into STEM fields. 

This finding is aligned with Ajzen’s (1991) theory of planned behavior, which suggests 

that intentions are regarded as predictors for actual behavior. This relationship is also 

supported by results from the American Freshman: National Norms survey6, which 

proves intentional major selection to be an accurate depiction of trends in degree fields 

several years later (National Science Foundation, 2014). Furthermore, the study 

conducted by Mattern et al. (2015) for the recent ACT report on developing STEM 

readiness benchmarks revealed that a student’s intention to major in a STEM field as a 

high school student as well as their measured interest in STEM contributed to the 

prediction of success in STEM major degree completion. 

As suggested by previous research, intention to major in STEM is regarded as an 

important factor related to both entrance into and success in STEM fields of study. My 

proposed conceptual model draws attention to the ways in which key factors throughout 

the high school experience influence students’ intention to major in a STEM field. In 

alignment with previous research, my conceptual model of SRID reflects the important 

                                                
6 The American Freshman: National Norms survey, which is administered by the Higher Education 

Research Institute at the University of California – Los Angeles, surveys large numbers of students about 

their intended majors in postsecondary education. 
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relationship between STEM interest and intention to major in STEM (Hall et al., 2011; 

Lent et al., 1994; Sadler et al., 2012; Seymour & Hewitt, 1997; Wang, 2013a), as well as 

between STEM readiness and intention to major in STEM (Mattern et al., 2015; Sadler et 

al., 2012; Tyson et al., 2007). 

Chapter Summary 

 This chapter highlighted and reviewed notable research on students’ decision to 

pursue a degree in a STEM field, the factors contributing to that decision, and what is 

known and unknown about the STEM readiness and intention development process. In 

particular, this chapter addressed research related to this process among high school 

students and the ways in which research on this topic has been approached. Through this 

review, I identified several methodological limitations in the current body of literature, 

including limitations in analytic approach, data, and measurements. The identification of 

gaps in previous research highlighted the need for continued investigation in this area, as 

well as ways to address existing limitations. After identifying the ways my dissertation 

study approached these gaps, I introduced my conceptual model of SRID. This 

conceptual model was guided by the theoretical framework of SCCT and based upon 

previous research conducted on entrance into STEM fields. In describing and explaining 

tenants of the model, I reviewed research on each factor within the model, including SES, 

mathematics ability, parental involvement, STEM self-efficacy, STEM interest, STEM 

readiness, and the intention to major in STEM. This review identified key research 

studies supporting the reasons for including these factors in the model, as well as for 

supporting the relationships among the factors with one another and to the STEM 

readiness and intention development process. 



 
 
 

 

59 

 

Chapter III: Methodology 

This chapter seeks to address gaps to explain the process high school students 

undergo in their intention to pursue a STEM major by advancing a conceptual model. 

After an overview of the purpose of this study, this chapter briefly describes the proposed 

model guiding the study: the STEM Readiness and Intention Development (SRID) 

Conceptual Model. Following the overview, this chapter provides a detailed discussion of 

the methodology chosen to examine the process underscoring the model, and articulates 

the rationale in selecting the database to test the model. This chapter also examines the 

selection of measures for the constructs depicted in the SRID Conceptual Model.  

Purpose of the Study 

The purpose of this study was to investigate the various cognitive and contextual 

influences which may contribute to the developmental process that high school students 

undergo in preparing for and considering the selection of an academic major in a STEM 

field. This study sought to address gaps in previous research and provide a better 

understanding of this developmental process throughout students’ high school 

experience, and to measure the impact self-efficacy has on students’ intention to major in 

a STEM field. As such, this study was guided by the following research question and 

sub-research question:  

- What are the cognitive and contextual factors impacting the developmental 

process high school students undergo in building readiness and intention toward a 

major in STEM fields of study? 

- What is the indirect effect of STEM self-efficacy on the intention to major 
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in a STEM field? 

Conceptual Model  

 To address the main research question, I proposed a new conceptual model for 

understanding the STEM readiness and intention development process. The SRID 

Conceptual Model, which was introduced in Chapter 1 and described in Chapter 2, is 

shown in Figure 1. This model was guided by the theoretical framework of SCCT, 

integrating adaptations of Wang’s (2013a) conceptual model of STEM choice. Building 

upon these foundations, the model incorporated the cognitive components of STEM self-

efficacy and STEM interest, acknowledging the important role these factors have on the 

outcomes of STEM readiness and the intention to major in STEM. The model also 

included socioeconomic status (SES) and math ability as key background characteristics 

influencing this process, and incorporates parental involvement as the contextual 

influence proximal to choice behavior, which is relevant in explaining preparation for and 

intention to major in a STEM field of study. In summary, the SRID Conceptual Model 

conceptualized my hypothesis of the STEM readiness and intention development process 

for high school students. This model acknowledges the complex and interrelated 

relationships among factors throughout the developmental process through time.7  

                                                
7 SES is a key factor explaining readiness for college, and impacts math ability (Lee & Burkam, 2002; 

Reyes & Stanic, 1988; Sirin, 2005), parental involvement (Cabrera & LaNasa, 2000; Eagle, 1989; Leppel, 

Williams, & Waldauer, 2001; Ma, 2009), and STEM readiness (Hoffer, Rasinki, & Moore, 1995; Lee & 

Burkam, 2002; Perna, 2006). In turn, mathematical ability is known to impact STEM readiness (Hackett, 

1985; Rohde & Thompson, 2007; Spinath, Spinath, Harlaar, & Plomin, 2006). Mathematical ability also 

impacts the extent to which a student feels self-efficacious in STEM-related content (Bandura, 1993; Bell 

& Kozlowski, 2002; Hackett, 1985; Pajares & Kranzler, 1995). Research also suggests that parental 

involvement impacts STEM self-efficacy (Alliman-Brisset, Turner, & Skovholt, 2004; Ferry, Fouad, & 

Smith, 2000; Turner & Lapan, 2002) and STEM readiness (Ferry, Fouad, & Smith, 2000; Mattern et al., 

2015). The SCCT model suggests that self-efficacy directly impacts interest (Bandura & Schunk, 1981; 

Lenox & Subich, 1994; Lent et al., 1994; Rottinghaus, Larson, & Boren, 2003), which has a direct 

influence on intention to major in STEM (Lent et al., 2001; 2003; Natua, 2004; Scarf, 2013). The 

framework also supports my hypothesis that STEM self-efficacy will have a significant indirect effect on 

the intention to major in STEM. Research also suggests that STEM readiness, which is influenced by 
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Figure 1: The STEM Readiness and Intention Development Conceptual Model 

 

Research Design 

Analytic Approach 

 This study was guided by the theoretical framework of the SCCT model (Lent et 

al., 1994). This model emphasizes the complexity of various cognitive factors and 

contextual influences on the STEM readiness and intention development process. Lent 

and associates (1994) acknowledge the interrelated and interconnected relationships as 

well as the complex relationships that exist among these factors throughout this process. 

While the majority of studies on the STEM readiness and intention development process 

                                                
STEM interest, SES, parental involvement, and math ability, directly impacts students’ intention to major 

in STEM (Mattern et al., 2015; Sadler, Sonnert, Hazari, & Tai, 2012; Tyson, Lee, Borman, & Hanson, 

2007). As such, each of the complex relationships among these various cognitive and contextual factors are 

illustrated in my proposed conceptual model shown below (see Figure 1). 
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have been limited in adopting an input-output variable approach through the use of 

various forms of regression analysis (Crisp, Nora, & Taggart, 2009; Moakler & Kim, 

2014; Rogers & Creed, 2011; Sax et al., 2016), I adopted an appropriate analytic 

approach that reflects the complex nature of development processes, as it occurs through 

time. As such, I selected structural equation modeling (SEM) as the analytic approach for 

testing the model.  

Unlike regression strategies, which commonly adopt an input-output variable 

approach, SEM can appropriately model the complex relationships of constructs in a 

process occurring through time. SEM also provides insights into measurement 

characteristics and measurement error of these constructs. This approach is recognized as 

a complex, multivariate statistical method that incorporates factor analysis, path analysis, 

regression, and model validity techniques (Byrne, 2013; Kline, 2015). This approach 

allows one to examine the complex processes taking place over time, by testing latent 

constructs (e.g., cognitive concepts of self-efficacy), while modeling the relationships 

among various measured factors.8 My conceptual model includes both latent and 

measured constructs, which I predicted would have an impact on high school students’ 

intention to major in STEM. 

 Prior to building and testing the model with SEM, I conducted preliminary data 

exploration to become familiarized with the descriptive statistics of the data and selected 

variables. This step was critical in ascertaining whether there were violations of 

multivariate normality in the data.9 This step also provided me with a more concrete 

                                                
8 This statistical method is commonly used in social sciences, as it allows for the imputation of 

unobservable “latent” constructs, defined as using two or more observed variables (Anderson & Gerbing, 

1988).  
9 This is a necessary condition in multivariate statistical analysis. 
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understanding of the data sample from the HSLS:09 survey.  

Following the preliminary data exploration, I conducted exploratory factor 

analysis (EFA) and confirmatory factor analysis (CFA) to test the measurement 

properties of the indicators I identified for each construct in the model (Brown, 2015). 

EFA allowed me to first explore the underlying structures of the selected variables and 

identify the potential relationships. Then, I conducted CFA to test the hypothesized 

relationships between variables and their underlying latent constructs (Suhr, 2006). CFA 

also allowed me to initially interpret the interconnectedness and relationships among the 

indicators in each construct and the extent to which the measurement model held (Brown, 

2015; Hoyle, 2000). Following the testing of the measurement model, I proceeded with 

SEM. Effect sizes of 0.50 or greater are considered strong, effect sizes of 0.30 are 

moderate, and those below 0.15 are small (Pascarella & Terenzini, 2005). 

Model Testing Approach 

 Mplus Statistical Software. I relied on Mplus statistical software (Muthén & 

Muthén, 2010) to conduct both the confirmatory factor analysis and the SEM components 

needed to test my model. In comparison to other software tools, such as LISREL or 

AMOS, Mplus is especially suited for taking into account complex sample designs, as 

followed in the High School Longitudinal Study of 2009 (HSLS:09). Furthermore, Mplus 

accounts for the use of both categorical and continuous variables in the analysis. As my 

sample incorporates both types of measures, it was necessary to use such software in my 

testing approach to account for the nature of categorical variables. 

 Sensitivity Analysis. In order to select the most appropriate analytic method 

within Mplus to handle missing data, it was necessary to conduct a sensitivity analysis. 
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The purpose of a sensitivity analysis is to explore the extent to which the results from 

more than one technique produce similar results (Pannell, 1997). This analysis was 

conducted to select the most appropriate method for handling the missing data in my 

dataset. I explored two estimators in the sensitivity analysis: robust maximum likelihood 

(MLR) and weighted least squares means and variance adjusted (WLSMV) estimator. 

 The MLR estimator is based on the maximum likelihood estimation for 

continuous variables. It is typically useful for data with non-normal distributions, as it 

adjusts the estimation of standard errors based on its non-normality (Kline, 2015). MLR 

has the advantage of being a robust estimator for missing data. However, it does not 

account for the use of both continuous and categorical variables, as it underestimates the 

relationship among variables of different types. Therefore, MLR is a method that is 

recommended only when the variables are continuous (Li, 2016).  

 The other method I tested was the WLSMV estimator. Finney and DiStefano 

(2006) and Mueller and Hancock (2008) recommended the use of this estimator, as it 

accounts for the incorporation of both categorical and continuous variable types (Finney 

& DiStefano, 2006; Mueller & Hancock, 2008; Muthén & Muthén, 2010). Brown (2015) 

describes WLSMV as a robust estimator, while also accounting for a potential lack of 

multivariate normality in distributions of data. The disadvantage, however, is that 

WLSMV uses listwise deletion to account for missing values, which excludes an entire 

record from analysis when a single value is missing. This technique has the potential to 

produce incorrect estimates, as it may reduce the sample size included in the statistical 

analysis and can affect the level of significance of the estimators (Olinsky, Chen, & 

Harlow, 2003). 
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The results of this sensitivity analysis are displayed below in Table 1. The 

sensitivity analysis revealed no statistically significant differences in the measurement or 

structural components of my proposed model when adapting either of the two estimators. 

Given that the sensitivity analysis revealed no differences in my statistical results, I opted 

to use the WLSMV estimator in my final SEM analyses.10 As discussed above, unlike 

MLR, WLSMV accounts for the inclusion of both categorical and continuous variable 

types (Muthén & Muthén, 2010). As my dissertation dataset includes both categorical and 

continuous variables, the WLSMV technique is the estimator most closely aligned with 

the nature of my data. However, the sensitivity analysis suggests that either estimator 

could be used. 

 

Table 1: Sensitivity Analysis 

 WLSMV MLR 

PARENT BY 

P2COURSE 0.693 0.629 

P2CLGEXM 0.882 0.783 

P2CLGAPP 0.836 0.794 

P2CAREER 0.781 0.668 

READY BY 

MATHCRED 0.555 0.685 

SCICRED 0.664 0.769 

GPASTEM 0.840 0.692 

MATHEFF BY 

                                                
10 My decision to select WLSMV, confirmed by the results of my sensitivity analysis, is consistent with the 

comparative performance analysis performed by Li (2016). When comparing the performance of MLR and 

WLSMV, Li (2016) found that in general, factor loadings from WLSMV were more precise and accurate in 

comparison to those obtained by MLR, especially when there was a moderate violation of latent normality. 
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MESKILL 0.896 0.818 

METEST 0.911 0.842 

METEXT 0.848 0.757 

MEEXCL 0.928 0.851 

SCIEFF BY 

SESKILL 0.893 0.802 

SETEST 0.874 0.803 

SETEXT 0.833 0.734 

SEEXCL 0.890 0.816 

SES BY 

INCOME 0.717 0.719 

MOED 0.774 0.713 

FAED 0.810 0.759 

PARENT ON 

SES 0.408 0.401 

MATHEFF ON 

PARENT 0.064 0.067 

SCIEFF ON 

PARENT 0.130 0.141 

READY ON 

PARENT 0.190 0.225 

SES 0.200 0.188 

PARENT ON 

X1TXMTH 0.130 0.113 

MATHEFF ON 

X1TXMTH 0.307 0.302 

SCIEFF ON 
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X1TXMTH 0.219 0.196 

READY ON 

X1TXMTH 0.408 0.335 

X1MTHINT 0.186 0.130 

X1SCIINT 0.081 0.049 

X1TXMTH ON 

SES 0.413 0.462 

X1MTHINT ON 

MATHEFF 0.552 0.549 

X1SCIINT ON 

SCIEFF 0.521 0.524 

MJRSTEM ON 

READY 0.361 0.302 

MJRSTEM ON 

X1MTHINT 0.101 0.049 

X1SCIINT 0.199 0.066 

MATHEFF WITH 

SCIEFF 0.419 0.394 

Note: All values are statistically significant p<0.005. 

 

Indirect Effects. To answer the secondary research question, I relied on testing 

for the indirect effect of self-efficacy on the intention to major in a STEM field (Byrne, 

2013). Indirect effects testing facilitated the estimation of the direct, indirect, and total 

effects exhibited by STEM self-efficacy through STEM interest. Testing for this indirect 

effect was the last step in my model testing approach. 

Model Fit Indices. To evaluate goodness of fit, I relied on several model fit 
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indices. These indices included the Comparative Fit Index (CFI), Tucker Lewis Index 

(TLI), Root Mean Square Error of Approximation (RMSEA), and chi-square estimation. 

The CFI and TLI were used to estimate the extent to which the model provided an 

appropriate fit to the data (Brown, 2015). CFI and TLI values greater than 0.95 are 

indicative of a strong model fit (Brown, 2015). Similarly, the RMSEA index evaluates fit, 

while also accounting for the large sample size used. RMSEA values between 0.00 and 

0.05 indicate good fit, while values greater than 0.10 suggest a poor fit (Byrne, 2013; Hu 

& Bentler, 1999). When referring to confidence intervals, I estimated at 90% confidence, 

rejecting the model if the RMSEA value was at or under 0.10 (Brown, 2015; Byrne, 

2013). 

Reliability. To appraise the reliability of the items underlying each of the latent 

constructs, I relied on Raykov’s (2009) composite of reliability ω. Though widely used, 

Cronbach’s alpha is a less dependable indicator for the internal consistency of scales, as it 

incorrectly assumes that the items are measured without error. Furthermore, coefficient 

alpha presumes that each item has a similar loading in the construct. Rather than using 

coefficient alpha, I assessed reliability using composite reliability ω, which assumes that 

the strength of the association will vary across items and that the items are measured with 

some level of error (Raykov, 2009; Stapleton, Yang, & Hancock, 2016).  

Data Source 

 This dissertation study relied on data from HSLS:09. HSLS:09 is a national 

longitudinal database administered by the United States Department of Education’s 

National Center for Education Statistics (NCES) following a cohort of 9th grade students 

beginning in 2009 through the most recent follow-up of data gathered in spring 2013 
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when the students were in their expected graduation year of high school.11  

I selected HSLS:09 for my dissertation study for several reasons. First, previous 

research (Lent et al., 2003; 2008a; 2008b) has emphasized the importance of using 

longitudinal data when examining the career development process outlined in SCCT. In 

this regard, HSLS:09 is ideally suited to explore the process of preparing for and 

considering the selection of a STEM major throughout high school. Using HSLS:09 

longitudinal data, I examined factors influencing STEM readiness and intention 

development from the time students were in their first year of high school and their 

subsequent behaviors, actions, and intentions throughout their high school career. 

Moreover, HSLS:09 is the most recent nationally representative longitudinal database 

available, providing data following the most recently surveyed cohort of high school 

students from 9th grade in 2009 with continued data collection through 2021.12 

Second, unlike the previous national longitudinal database (i.e., Educational 

Longitudinal Study of 2002) HSLS:09 survey design includes numerous measures 

directly related to STEM.13 This allowed me to use a more precise measure of student 

academic performance in and exposure to STEM-related content, as well as a more 

nuanced understanding of self-efficacy and interest in STEM-related fields. 

                                                
11 In the base year of 2009, approximately 23,000 9th graders were surveyed, along with their parents, 

counselors, and school administrators, from 944 schools. The first follow up occurred in 2012, when the 

students were in 11th grade, and the second follow-up occurred in 2013, when the students were projected 

to have graduated from high school. High school transcript data was also collected from 2013 to 2014. 
12 This longitudinal survey continues through students’ postsecondary education, and the second follow-up 

of data collection is currently in collection by NCES through 2017.  
13 HSLS:09 includes newer measures for the 2009 cohort focusing on the current national and educational 

context. HSLS:09 focuses on students’ trajectories and aspirations for postsecondary education and the 

workforce, as well as the selection process of STEM courses, majors, and careers (Ingels et al., 2011). 

Given the importance of national focus on improving enrollment in and graduation from STEM fields 

(Committee on STEM, 2013; National Science Board, 2015), HSLS:09 includes numerous measures and 

items related to science, technology, and math, in an effort to better capture the student experience in 

relation to STEM-relevant content and the desire to pursue STEM-related majors and careers.  
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Third, given that HSLS:09’s survey design includes measures from students and 

their parents, my study included self-reported measures from students’ parents on the 

extent to which they were involved in their child’s schooling during the secondary 

educational period. Furthermore, many of these measures of data are corroborated with 

non-self-reported data, including high school transcripts, College Board, Common Core, 

and the Integrated Postsecondary Education Data System data (Ingels et al., 2015). 

Accounting for Sampling Design Effects 

HSLS:09 follows a complex, multi-stage sample strategy with unequal probability 

of sample selection, to represent the population of 9th grade students in 2002 (Ingels et 

al., 2014). Stapleton (2013) notes that both confirmatory factor analyses and SEM are 

prone to produce biased point estimates and large sampling variances when using 

complex sample designs, as those incorporated in HSLS:09.14 Accordingly, I relied on 

the pseudomaximum likelihood estimation method in Mplus, which accounts for the 

incorporation of the primary sampling unit (PSU) for clustering, the stratum ID 

(STRAT_ID) for sample stratification, and the weighting variable (W3W1W2STU) for 

estimation of the national population. The selected panel weight allowed me to include 

only those 9th grade students who participated in the base year (2009), in the first follow-

up (2012), and when the students were in 12th grade (2013). According to Ingels and 

associates (2015), the W3W1W2STU weighting variable appropriately accounts for 

missing cases in which students did not participate in one or more of the follow-up NCES 

surveys. 

                                                
14 In addition, large sampling variances can occur when using structural modeling with a complex sampling 

design, which can increase the likelihood of a making a type-1 error (Heck & Thomas, 2015). 
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Constructs and Measures 

 The proposed conceptual model was comprised of five latent constructs and two 

single variables, including the outcome variable for the intention to select a STEM major. 

The latent constructs include SES, Parental Involvement, STEM Self-Efficacy, STEM 

Interest, and STEM Readiness.15 The two single variables include math ability and the 

intention to major in a STEM field. Table 2 provides a summary of the constructs and 

their corresponding indicators and the single variable measures. In this section, I also 

provide definitions of the constructs and the rationale for the selection of their 

corresponding measures. 

 

 

Table 2: Constructs and Indicators 

Construct Concept Indicators 

SES Indicator of wealth/ 

socioeconomic status 

● Family income (X1FAMINCOME) 

● Mother’s education 

(X1MOMEDU) 

● Father’s education (X1DADEDU) 

Math Ability Intellectual/academic 

ability in math 

● Student’s ability level in math (in 

9th grade) (X1TXMTH) 

Parental Involvement Parent involvement in 

student’s academics, 

schooling, career, and 

future plans 

● How often discussed courses or 

programs at school (P2COURSE) 

● How often discussed careers he/she 

may be interested in (P2CAREER) 

● How often discussed preparing for 

college entrance exams 

(P2CLGEXM) 

● How often discussed applying to 

                                                
15 In Chapters 3, 4, and 5, constructs will be designated by the capitalization of these factors, while the 

concepts will be designated by non-capitalization of these factors (e.g. Parental Involvement (construct) vs. 

parental involvement (concept)). 
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college/other schools after high 

school (P2CLGAPP) 

● Has arranged for student to attend 

college tour or campus program 

(P2CLGTOUR) 

STEM Self-efficacy Self-efficacy in math 

and science 

● Confidence in math tests 

(S1MTESTS) 

● Confidence in science tests 

(S1STESTS) 

● Certainty in understanding math 

textbook (S1MTEXTBOOK) 

● Certainty in understanding science 

textbook (S1STEXTBOOK) 

● Certainty in mastering skills in 

math (S1MSKILLS) 

● Certainty in mastering skills in 

science (S1SSKILLS) 

● Confidence in excelling in math 

assignments (S1MASSEXCL) 

● Confidence in excelling science 

assignments (S1SASSEXCL) 

STEM Interest Interest in math and 

science 

● Scale of student’s interest in math 

(in 9th grade) (X1MTHINT) 

● Scale of student’s interest in 

science (in 9th grade) (X1SCIINT) 

STEM Readiness Academic achievement 

in and exposure to 

STEM-related courses 

● GPA in all STEM courses 

(X3TGPASTEM) 

● Credits earned in math courses 

(X3TCREDMAT) 

● Credits earned in science courses 

(X3CREDSCI) 

Intention to Major in 

STEM (outcome 

variable) 

Intention to select 

STEM major 

● Major student considering in 

postsecondary education (by 12th 

grade) (X3FIELD_STEM) 

 

Socioeconomic Status 

SES is a measure of economic and sociological standing in society, commonly 

measured by combinations of income, occupation, or education (Cowan et al., 2012). The 
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construct of SES was appraised by measures of both familial wealth and parental 

education, including mother’s (or female guardian’s) education (X1MOMEDU) and 

father’s (or male guardian’s) education (X1DADEDU), along with family income 

(X1FAMINCOME). These measures reflect the social, economic, cultural, and 

environmental conditions to which students are exposed. These items were collected 

during the base year (2009) of the survey from the parent respondents. Due to the 

skewness of the family income variable, I recoded the variable to more closely reflect a 

normal distribution of data. The variable X1FAMINCOME was recoded into a variable 

with seven categories: 1: "Less than $15,000;" 2: "$15,000-$35,000;" 3: "$35,000-

$55,000;" 4: "$55,000-$95,000;" 5: "$95,000-$135,000;" 6: "$135,000-$195,000;" and 7: 

"$195,000+." 

Math Ability 

 Math ability impacts the extent to which students meet benchmarks in becoming 

academically prepared for a STEM field of study (Hackett, 1985; Rohde & Thompson, 

2007; Spinath, Spinath, Harlaar, & Plomin, 2006). To appraise the construct of Math 

Ability, I relied on a single item score (X1TXMTH) from HSLS:09’s math assessment16 

of algebraic reasoning and ability in math.17 This math ability test was administered to all 

participants in the base year (2009) of the HSLS:09 survey, when the students were in the 

9th grade (Ingels et al., 2011).  

                                                
16 The framework for this assessment was “developed by the staff at the American Institutes of Research 

with support of and review by John Dossey, Professor Emeritus of Mathematics at Illinois State University, 

who served as a project consultant” (Ingels et al., 2011, p. 23). 
17 This continuous variable is a theta score, which provides an estimate of ability and achievement of 9th 

grader in comparison to the estimated population as a whole. 
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Parental Involvement 

 Parental involvement can be defined as the extent to which a parent is involved in 

a child’s academic and schooling experience, which has been strongly related to students’ 

overall educational experience and academic achievement and subsequent college 

enrollment (Cabrera & LaNasa, 2000; Fan & Chen, 2001; Jeynes, 2007; McNeal, 1999; 

Perna & Titus, 2005; Reynolds, 1992). Cabrera and LaNasa (2000) suggest that parental 

involvement can be measured by both motivational and behavioral dimensions. The 

proactive and interactive behaviors of parents can have a stronger impact on high school 

students’ academic achievement (Stewart, 2008) and college enrollment (Perna & Titus, 

2005). According to Hill and Tyson (2009), parental involvement behaviors that reflect 

academic socialization have the strongest impact on students’ achievement. Academic 

socialization behaviors include communication about parental expectations for education, 

discussing school work and activities, and discussing plans and preparations for the 

future (Hill & Tyson, 2009). 

Accordingly, I appraised the construct of parental involvement via five indicators 

of proactive parental involvement in students’ schooling, as well as academic and career 

development. These item responses were collected in the first follow-up administered in 

2011 from the parent survey, while the cohort of students was in the 11th grade. These 

indicators include: (1) “How often discussed courses or programs at school” 

(P2COURSE); (2) “How often discussed careers he/she may be interested in” 

(P2CAREER); (3) “How often discussed preparing for college entrance exams” 

(P2CLGEXM); (4) “How often discussed applying to college/other schools after high 

school” (P2CLGAPP); and (5) “Has arranged for student to attend college tour or campus 
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program” (P2CLGTOUR). The response options for the first four variables include four 

categories: 1: "Never;" 2: "Once or twice;" 3: "Three or four times;" and 4: "More than 

four times." The response options for P2CLGTOUR are “Yes” or “No.” 

STEM Self-Efficacy 

 Self-efficacy can be defined as one’s belief in his or her ability to succeed in 

accomplishing a task. Self-efficacy is often interpreted as one’s mastery of experiences 

and skills, and confidence in one’s ability to perform and succeed (Bandura, 1977). 

Aligned with Bandura’s (2006) guide for constructing self-efficacy scales, I approached 

STEM self-efficacy as one’s belief in a mastery of skills and confidence in performance 

in the domains of STEM-relevant content, including math and science. Accordingly, I 

appraised the latent construct of STEM self-efficacy by four HSLS:09 items in both math 

and science self-efficacy.18 These items include: (1) “9th grader confident can do 

excellent job on math/science tests” (S1MTESTS, S1STESTS); (2) “9th grader certain 

can understand math/science textbooks” (S1MTEXTBOOK, S1STEXTBOOK); (3) “9th 

grader certain can master skills in math/science” (S1MSKILLS, S1SSKILLS); and (4) 

“9th grader confident can do excellent job on math/science assignments” 

(S1MASSEXCL, S1SASSEXCL) (Ingels et al., 2011, p. 109). Each of these raw 

variables includes four response values: (1) “Strongly Agree; (2) “Agree;” (3) 

“Disagree;” and (4) “Strongly Disagree.” To adjust for the skewness in each variable 

(i.e., respondents were less likely to select "Strongly Disagree" or "Disagree" on the 

Agree-Disagree scale), I recoded each self-efficacy variable into three categories 

                                                
18 Selection of these items was guided by the NCES’s development of the scaled scores for student 

variables, as determined by principle component factor analysis, with reliability assessed using Cronbach’s 

alpha (Ingels et al., 2011). 
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(combining responses for “Disagree” and “Strongly Disagree”) and reverse coded them 

to reflect a positive direction. 

STEM Interest 

 STEM interest can be defined as one’s interest in the fields of science, 

technology, engineering, or math. More specifically in high school, where core academic 

courses in STEM domains are focused on math or science, STEM interest can be 

understood as high school students’ interest in math or science classes, course content, or 

careers in STEM fields (Sadler et al., 2012; Seymour & Hewitt, 1997; Tyler-Wood, 

Knezek, & Christensen, 2010). In appraising STEM interest, I relied on two continuous 

variables created by NCES,19 measuring interest in math and interest in science 

(X1MTHINT, X1SCIINT). NCES analysts created these scales through principal 

components factor analysis, using the following six HSLS:09 items: (1) “9th grader is 

taking math/science because he/she really enjoys math/science;” (2) “9th grader thinks 

math/science is a waste of time;” (3) “9th grader thinks math/science is boring;” (4) 

“Favorite subject is math/science;” (5) “Least favorite subject is math/science;” and (6) 

“9th grader is enjoying math/science course very much” (Ingels et al., 2011, p. 109). 

These two scales capture whether or not the students are interested in and enjoy their 

math and science courses, and whether or not they find the course content to be useful to 

them. 

STEM Readiness 

 STEM readiness refers to the extent to which a high school student is 

                                                
19 According to Ingels et al. (2011), the questionnaires were cleaned and reverse coded and the reliability of 

the scale items were assessed using Cronbach’s alpha, which measures how closely related a set of items 

are as a group in a survey instrument (Santos, 1999). 
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academically and experientially prepared to pursue a STEM field of study (Mattern, 

Radunzel, & Westrick, 2015). The 2015 ACT report emphasizes that STEM readiness is 

more specific than college readiness, in that it focuses on achievement in the academic 

domains of math, science, and other STEM-related content. Specific benchmarks for 

STEM readiness, which extend beyond benchmarks for college readiness, have been 

proposed (Mattern et al., 2015). Since STEM fields of study often demand a strong 

knowledge base, skills, and abilities in the domains of math and science (Chen, 2009; 

Crisp et al., 2009; Whalen & Shelley, 2010), STEM readiness benchmarks revolve 

around achievement in these subjects. More specifically, STEM readiness can be 

benchmarked through both academic performance and credits earned in math and science 

(Chen, 2013; Maltese & Tai, 2011; Mattern et al., 2015; Thompson & Bolin, 2011; Tyson 

et al., 2007). As supported by this literature, I selected three indicators from HSLS:09 to 

appraise the construct of STEM readiness: (1) GPA in all STEM courses 

(X3TGPASTEM); (2) Credits earned in math courses20 (X3TCREDMAT); and (3) 

Credits earned in science courses21 (X3TCREDSCI).” To adjust for skewness, I recoded 

the GPA variable into seven categories: 1: "Up to 1.0;" 2: "Up to 1.5;" 3: "Up to 2.0;" 4: 

"Up to 2.5;" 5: "Up to 3.0;" 6: "Up to 3.5;” and 7: "Up to 4.0." I also recoded the raw 

math and science credit variables to adjust for skewness, and to have consistent 

categories. Both the math and science credits variables were recoded into six categories: 

1: "Fewer than 1;" 2: "1-2 credits;" 3: "2-3 credits;" 4: "3-4 credits;" 5: 5-6 credits;" and 

                                                
20 Math courses include basic math, pre-algebra, algebra I, geometry, algebra II, trigonometry, probability 

and statistics, AP/IB math, pre-calculus, calculus, AP/IB calculus, other basic math, and other advanced 

math. 

21 Science courses include general science, specialty science, advanced studies in science, and AP/IB 

science. 



 
 
 

 

78 

6: "More than 6 credits." 

Intention to Major in STEM 

 The variable I selected from the HSLS:09 database is a measurement of the 12th 

grader’s intention to major in a STEM field.22 This variable for STEM major selection 

was transformed by NCES based on the original question: “What field of study or 

program [will/were/was] [you/he/she] [be] considering?” (Ingels et al., 2015). This 

variable captures 12th graders’ responses regarding whether they are considering 

majoring in a STEM field, namely in science, technology, engineering, or math.23 The 

raw variable (S3FIELD_STEM) included three response categories: (1) "No (not in 

STEM);" (2) "Yes (in STEM);" and (3) "Don't Know." To eliminate ambiguity and assess 

certainty in students' intention to major in STEM, I recoded this variable to combine the 

"No" and "Don't Know" categories. This provides me with a binary variable for the major 

the student is intending to select: "Not in STEM" and "Yes in STEM." 

 

Chapter Summary 

 This chapter provided an in-depth overview of the methodology for my 

dissertation study. After reviewing my conceptual model of the STEM readiness and 

intention development process, I described the research design selected for analyzing the 

data. As discussed, I first conducted preliminary analyses on the dataset to explore the 

descriptive statistics of the data composition and the selected variables, checking for 

multivariate normality. Next, I conducted EFA and CFA to test the measurement model 

                                                
22 As actual selection of major has not yet been captured in the most recent follow-up of the HSLS:09 

survey, intention to major is the best measure available for a student’s selection of major.  
23 NCES considers the following majors in their categorization of STEM: Computer and Information 

Science and Support Services, Engineering, Engineering Technologies/Technicians, Biological and 

Biomedical Science, Mathematics and Statistics, Physical Sciences. 
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for each construct and determined whether the hypothesized indicators selected were 

consistent with the underlying nature of that construct. In order to select the most 

appropriate analytic method to account for missing data, I performed a sensitivity 

analysis, which revealed no differences in the results between the use of the two 

estimators, MLR and WLSMV. Finally, I proceeded with SEM analyses using Mplus to 

test the structural paths and model that I propose. The study relied on data from HSLS:09 

to appraise the constructs of SES, Math Ability, Parental Involvement, STEM Self-

Efficacy, STEM Interest, STEM Readiness, and Intention to Major in STEM. 
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Chapter IV: Results 

 This chapter presents the findings from my dissertation study, which was guided 

by the following research question and sub research question: 

- What are the cognitive and contextual factors impacting the 

developmental process high school students undergo in building readiness 

and intention toward a major in STEM fields of study?  

- What is the indirect effect of STEM self-efficacy on the intention 

to major in a STEM field?  

 As explained in Chapter 3, answering these two research questions calls for 

testing of the measurement and structural components of the STEM Readiness and 

Intention Development (SRID) Conceptual Model I proposed in Chapter 2. This model 

illustrates the various factors, both cognitive and contextual, influencing high school 

students’ development in relation to preparing for and intending to major in a STEM 

field. This model builds upon SCCT and Wang’s (2013) model of STEM choice, 

incorporating important constructs and measurements omitted by the extant literature 

(including parental involvement), while also including self-efficacy and interest in 

STEM-related content as key cognitive components in the developmental process. 

Accordingly, my model presumes that background characteristics are represented by 

socioeconomic status (SES) (background contextual affordance), which include parental 

education and family income, as well as math ability (personal input characteristics). As 

an interpretation of SCCT’s contextual influence proximal to choice behavior, the SRID 

Conceptual Model highlights parental involvement as a key factor influencing the 

preparation for and intention to major in a STEM field. 
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This chapter begins by providing a profile of the national cohort of high school 

students who were first surveyed as 9th grade students in 2009, and followed through 

their senior year of high school, at the moment many students were making important 

decisions about their future educational plans and careers. The purpose of the first section 

is to begin by providing a general profile of this nationally representative sample of 

students, highlighting the differences among those who considered pursuing STEM in 

comparison to those who did not. Next, I discuss the findings from the exploratory factor 

analysis (EFA) on the variables to explore the extent to which the items group with the 

constructs of my proposed model. Finally, I discuss the results from the confirmatory 

factor analysis (CFA) (measurement model results) and the structural equation model 

(SEM) analysis (structural model results).  

 

Descriptive Analysis 

Sample Profile 

 Prior to presenting the findings from the analyses, I offer an overview of the 2009 

cohort of 9th grade students in view of the constructs and indicators in the SRID 

Conceptual Model. Accordingly, Table 3 presents the descriptive statistics24 of the 2009 

cohort, including means, standard deviations, minimums, maximums, and the percentage 

of data missing for each variable included in the study’s analyses. Table 3 also presents 

the results from the normality tests, including the Doornik-Hansen multivariate test and 

the Mardia tests for skewness (measure of symmetry) and kurtosis (measure of 

                                                
24 As this study uses restricted data from the IES National Center for Education Statistics, the descriptive 

statistics I present comply with the policies of IES to report rounded means and standard deviations to one 

decimal place. 
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“tailedness”), which were used to determine if the data models had a normal distribution. 

These tests (see last row in Table 3) revealed that there is a lack of normality in the data, 

which called for the use of using advanced techniques of weighted least squares means 

and variance adjusted (WLSMV) estimator or robust maximum likelihood (MLR) with 

the structural equation modeling (SEM) analyses, as discussed in Chapter 3.25 

Table 4 presents a comparison of each of the proposed variables with the main 

outcome variable of interest: Intention to Major in a STEM field. This variable captures 

12th grade students’ responses regarding whether they are considering to major in a 

STEM field, namely in science, technology, engineering, or math. The descriptive 

analysis revealed that almost a quarter (23.3%) of the 12th grade students intended to 

major in STEM. To compare differences between the two sample populations (i.e., those 

who intended to major in STEM and those who did not), I conducted a test for difference 

in means.26 As cross-tabulation analysis is a more appropriate method for comparing 

categorical variables, I compared the categorical variables of interest with the Intention to 

Major in STEM variable using cross tabulation. I also reported Pearson’s chi-square and 

Cramer’s V to assess the strength of the association between the variables, and determine 

whether the associations are statistically significant. Pearson’s chi-square test evaluates 

the likelihood of difference between the two groups, and Cramer’s V measures the 

association between the two variables (varying from 0 to 1). These results are reported 

together in Table 4. 

                                                
25 See Chapter 3 for details on the sensitivity analysis and subsequent selection of the WLSMV method of 

SEM, which accounts for a lack of normality in the data. 

26 Note: The negative values displayed in the mean difference and t-statistic column indicate the negative 

relationship among students who did not intend to major in a STEM field as the variables of interest. This 

negative association suggests descriptive differences in these items, in comparison to those who intend to 

major in STEM.  
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Demographic overview. The 2009 sample of 9th grade students is comprised of 

53.1% women and 46.9% men. In terms of racial/ethnic demographics, the 2009 cohort 

was 56.5% White, 9.9% Black and African American, 14.2% Hispanic, 10.5% Asian, 

8.1% multi-racial, and about 0.8% Native American or other. Among those who 

considered pursuing a STEM major, 34.6% were women and 65.4% were men. The 

racial/ethnic demographic of the students who considered a major in a STEM field is 

comprised of 55.6% White, 6.7% Black and African American, 11.5% Hispanic, 17.5% 

Asian, 7.6% multi-racial, and about 1.1% Native American or other. 

Math Ability 

The math ability item (X1TXMTH) is a continuous variable ranging from -2.58 to 

3.03 (see Table 3). The mean is 0.0, which falls just below the median, and the standard 

deviation is 1.0. All students in the 2009 cohort were assessed on math ability in the 9th 

grade. Twelfth grade students reporting their intention to major in STEM had a mean 

score of 0.76, while those who did not had a mean score of 0.19. This suggests that 

students with stronger math ability were more likely to consider majoring in a STEM 

field of study (t=29.40, p<0.00). 

Socioeconomic Status 

The SES construct is comprised of three variables: family income 

(X1FAMINCOME), mother’s education (X1MOMEDU), and father’s education 

(X1DADEDU). The 2009 cohort of 9th grade students had a mean family income of 3.7 

on a 1 to 7 scale (see Table 3), which reflected an average family income of 

approximately $55,000 to $95,000 per year. The average level of education for both 

parents among the 9th grade cohort was the completion of an Associate’s degree.  
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When comparing the SES of those students who intended to major in STEM and 

those who did not, there were only slight differences in family income, mother’s 

education, and father’s education. As displayed in Table 4, there are statistically 

significant differences in family income and parental education, suggesting that those 

students who did not intend to major in STEM have slightly lower family income, 

mother’s education, and father’s education. 

Parental Involvement 

Five indicators were selected for the construct of Parental Involvement: parental 

discussions of school courses (P2COURSE), college entrance exams (P2CLGEXM), 

applying to college (P2CLGAPP), careers of interest (P2CAREER), and whether the 

parent arranged for a college tour (P2CLGTOUR). Most of the indicators of parental 

involvement, with the exception of P2CLGTOUR, displayed means between 3.0 and 3.5 

in a scale ranging from 1 to 4 (see Table 3). In other words, most parents discussed 

topics, such as school courses, future careers, applying to college, and college entrance 

exams, with their students an average of three to four times by the time students reached 

the 11th grade. In regards to P2CLGTOUR about half of the 2009 cohort had parents who 

arranged a college tour or campus program.  

Significant, but relatively small, differences were identified when comparing 

those students who intended to major in STEM and those who did not with regards to 

parental involvement. Those students who indicated intent to major in STEM received 

greater levels of parental involvement. As displayed in Table 4, there were significant 

differences between how often parents discussed school courses, college entrance exams, 

applying to college, and arranging for college tours. However, no significant differences 



 
 
 

 

85 

were found in how often parents discussed careers in which the student may be 

interested. Table 4 displays the chi-square and Cramer’s V, assessing the magnitude and 

association of the observed differences. 

STEM Self-Efficacy 

There are eight total self-efficacy indicators, four in the math domain 

(S1MTESTS, S1MTEXTBOOK, S1MSKILLS, S1MASSEXCL) and four in the science 

domain (S1STESTS, S1STEXTBOOK, S1SSKILLS, S1SASSEXCL). All self-efficacy 

variables ranged from 1 to 3, with means ranging from 1.7 (S1STEXTBOOK) to 2.1 

(S1MASSEXCL) (see Table 3). Such high means indicates that on average, the 2009 

cohort of 9th grade students responded that they “Agree” that they are confident or 

certain in various areas of both math and science domains.  

As shown in Table 3, there were significant differences among all self-efficacy 

variables between those students in the 2009 cohort who intended to major in STEM and 

those who did not. Those students who reported intent to major in STEM also reported 

higher levels of self-efficacy in 9th grade. The associated significant differences between 

these two groups were substantial (see chi-square values and Cramer’s V in Table 4), 

indicating that there are observed differences in self-efficacy measures between those 

students in the 2009 cohort who intended to major in STEM and those who did not intend 

to major in STEM. 

STEM Interest 

 For the construct of STEM Interest, I selected two continuous scaled variables, 

X1MTHINT and X1SCIINT, appraising interest in math and science respectively. With 

means of 0 and standard deviations of 1.0, these variables ranged from approximately -
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2.5 to approximately 2.05, indicating a normal (slightly skewed to the right) distribution 

of scores among the 2009 cohort of 9th grade students (see Table 3).  

When comparing the mean differences between those students who intended to 

major in STEM and those who did not, I found statistically significant differences for 

students’ interest in math (t=12.52, p<0.00) and students’ interest in science (t=13.85, 

p<0.00) (see Table 4). This suggests that students intending to major in STEM displayed 

higher levels of interest in math and science in 9th grade in comparison to those who did 

not intend to major in STEM. 

STEM Readiness 

 The variables I selected for the STEM Readiness construct included the credits 

earned in math courses (X3TCREDMAT), credits earned in science courses 

(X3TCREDSCI), and grade point average (GPA) in all STEM courses (X3TGPASTEM). 

The variables for credits earned in math and credits earned in science both range from 0 

to 6, with means of 3.5 and 3.1 respectively (see Table 3). This indicates that on average, 

by the time students were in 12th grade, they earned two to four credits in math courses, 

and two to three credits in science courses. GPA in STEM courses ranged from 1 to 7, 

with a mean of 4.3 indicating an average GPA in STEM courses of up to 2.5.  

In comparing STEM readiness between those students who reported an intention 

to major in STEM, I found that students who intended to major in STEM earned more 

credits in math courses (t=13.44, p<0.00), and science courses (t=25.22, p<0.00). They 

also had a higher GPA in STEM courses (t=25.56, p<0.00). This implies differences 

among the extent to which these two groups of students in the 2009 cohort prepared 

themselves for study in a STEM field –particularly through their course taking patterns 
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and academic performance in STEM courses – with students intending to major in STEM 

earning more credits in math and science courses, as well as earning a higher GPA in 

STEM courses. 

 

 

 

 

 

 

[Table 3 and Table 4 on next pages] 
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Table 3: Descriptive statistics 
 

Construct/Variable      Mean  Std. Dev. Min  Max  % 

Missing 

 
Math Ability 
Ability level in math (X1TXMTH)    0.0  1.0  -2.58  3.03  0.00 
 
Socioeconomic Status 
Family income (recode of X1FAMINCOME)   3.7  1.7  1  7  0.18 
Mother’s education (recode of X1MOMEDU)   3.0  1.3  1  7  0.04 
Father’s education (recode of X1DADEDU)   3.1  1.6  1  7  0.02 

 
Parental Involvement 
Parent discussion on school or selecting courses 

(P2COURSE)       3.1  0.9  1  4  0.84 
Parent discussion on preparing for college  

entrance exams (P2CLGEXM)     3.0  1.1  1  4  1.17 
Parent discussion on applying to college or  

other school (P2CLGAPP)     3.2  1.0  1  4  1.17 
Parent discussion on careers of interest 

(P2CAREER)       3.5  0.8  1  4  1.11 
Parent has arranged for student to attend college 

tour or campus program (P2CLGTOUR)    0.5  0.5  0  1  0.39 
 
STEM-Self Efficacy 
Confidence in math tests  

(recode of S1MTESTS)      2.0  0.7  1  3  1.46 
Certainty in understanding math textbook  

(recode of S1MTEXTBOOK)     1.8  0.7  1  3  1.68  
Certainty in mastering skills in math  

(recode of S1MSKILLS)     2.0  0.7  1  3  1.84 
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Confidence in excelling in math assignments  

(recode of S1MASSEXCL)     2.1  0.7  1  3  2.10  
Confidence in science tests  

(recode of S1STESTS)      1.9  0.7  1  3  1.73 
Certainty in understanding science textbook 

(recode of S1STEXTBOOK)     1.7  0.7  1  3  1.89 
Certainty in mastering skills in science 
(recode of S1SSKILLS)      1.9  0.7  1  3  2.09 
Confidence in excelling in science assignments  
(recode of S1SASSEXCL)     2.0  0.6  1  3  2.36 
 
STEM Interest 
Scaled interest in math (X1MTHINT)    0.0  1.0  -2.46  2.08  3.72 
Scaled interest in science (X1SCIINT)    0.0  1.0  -2.59  2.03  3.59 
 
STEM Readiness  
Credits earned in math  

(recode of X3TCREDMAT)     3.5  1.3  0  6  6.25 
Credits earned in science  

(recode of X3TCREDSCI)     3.1  1.3  0  6  6.25  
GPA in all STEM courses  

(recode of X3TGPASTEM)     4.3  1.8  1  7  0.17 
 
Intention to Major in STEM 
STEM major consideration     
(recode of S3FIELD_STEM)     0.2  0.4  0  1  1.68 

 

  

 
Multivariate Normality Tests    Doornik-Hansen multivariate test = 10,101.6, p<0.001 
       Mardia multivariate skewness = 20.1, p<0.001 
       Mardia multivariate kurtosis = 601.7, p<0.001 
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Table 4: Descriptive Comparison Analysis 
 

Comparing association with Intention to Major in STEM variable 
 

Pearson X2 Cramer’s V 

Socioeconomic Status 
  

Family income (X1FAMINCOME) 99.06*** 0.0974 

Mother’s education (X1MOMEDU) 149.86*** 0.1227 

Father’s education (X1DADEDU) 147.57*** 0.1312 

Parental Involvement 
  

How often discussed courses or programs at school (P2COURSE) 11.55** 0.0479 

How often discussed careers he/she may be interested in (P2CAREER) 4.09 0.0285 

How often discussed preparing for college entrance exams (P2CLGEXM) 36.13*** 0.0847 

How often discussed applying to college/other schools after high school (P2CLGAPP) 25.68*** 0.0714 

Has arranged for student to attend college tour or campus program (P2CLGTOUR) 12.79*** 0.0504 

Math Self-Efficacy 
  

Confidence in math tests (S1MTESTS) 249.24*** 0.1515 

Certainty in understanding math textbook (S1MTEXTBOOK) 291.43*** 0.1640 

Certainty in mastering skills in math (S1MSKILLS) 286.37*** 0.1627 
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Confidence in excelling in math assignments (S1MASSEXCL) 225.23*** 0.1444 

Science Self-Efficacy 
  

Confidence in science tests (S1STESTS) 296.77*** 0.1712 

Certainty in understanding science textbook (S1STEXTBOOK) 283.98*** 0.1675 

Certainty in mastering skills in science (S1SSKILLS) 273.67*** 0.1646 

Confidence in excelling science assignments (S1SASSEXCL) 223.17*** 0.1488 

Difference of means testing (for continuous variables) Mean difference t-statistic 

Math Ability 
  

Math Ability (X1TXMTH) 0.57 29.40*** 

STEM Interest 
  

Math Interest (X1MTHINT) 0.28 12.52*** 

Science Interest (X1SCIINT) 0.32 13.85*** 

STEM Readiness 
  

Credits earned in math (X3TCREDMAT) 0.29 13.44*** 

Credits earned in science (X3TCREDSCI) 0.61 25.22*** 

GPA in all STEM courses (X3TGPASTEM) 0.78 25.56*** 

Significance level: p<0.10*, p< 0.05** p<0.01 *** 
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Conclusions from Descriptive Analysis 

The profile derived from this descriptive analysis suggests that students who 

intended to major in STEM, in comparison to those who did not, had parents who were 

involved in students’ educational experiences, particularly in discussing school courses 

and strategies for preparing for college. Furthermore, students who intended to major in 

STEM exhibited higher levels of math ability in the 9th grade, as well as higher self-

efficacy measures in math and science domains and greater interest in math and science. 

By the 12th grade, students intending to major in STEM earned more credits in math and 

science and a higher GPA in STEM courses in comparison to their counterparts.  

 While the descriptive analyses provide a basic understanding of the composition 

of the data sample, as well as comparisons of differences between students who are and 

are not considering a STEM major, these results are merely descriptive. These analyses 

do not take into account the complex relationships among various influential factors 

throughout high school. The subsequent analyses of this study build upon the descriptive 

findings, acknowledging the complexity and nuances of the latent and non-latent 

cognitive and contextual constructs influencing STEM readiness and intention 

development.  

The next sections describe the two stages of analyses. The first stage describes the 

examination of the measurement properties of the 21 indicators presumed to reflect the 

constructs of my conceptual model. The analyses in this first stage consist of EFA, 

followed by CFA. The second stage of analysis focuses on addressing the study’s 

research questions through SEM and indirect effect testing. 
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Exploratory Factor Analysis Results 

I conducted an EFA on 21 of the 23 items27 listed in Table 3. Specifically, I 

sought to explore the extent to which the items I selected for each construct grouped in a 

manner consistent with my conceptual model (see Figure 1). The results of the EFA 

include estimates, referred to as factor loadings (Fabrigar & Wegener, 2011), of both the 

strength and the direction of the common factors for each of the examined measures. 

EFA also produces estimates of the number of factors that best account for the 

correlations among the items. This analysis helped me to identify whether the items I 

selected could be considered as a reliable measure of the intended construct. Following 

recommendations from the SEM literature (e.g., Brown, 2015; Kline, 2005), I regarded 

items with loadings greater than 0.5 to be a reliable indicator of the corresponding 

construct. 

The EFA yielded a five-factor solution accounting for 17% of the variance 

observed in the correlation matrix. Table 5 reports the loadings for each of the 20 items in 

the five factors, as well as the variance explained by each of the five factors (see last row 

in Table 5).  

 

 

 

[Table 5 on next page] 

 

                                                
27 Two items were not included in the EFA: math ability (X1TXMTH) and Intention to major in STEM 

(S3FIELD_STEM). These variables were not included because they each represent the only indicator in a 

single non-latent construct.  
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Table 5: Exploratory Factor Analyses 

 

Item 
Socioeconomic 

Status 
Parental 

Involvement 
Math Self- 
Efficacy 

Science Self- 
Efficacy 

STEM 

Readiness 

Family income (X1FAMINCOME) 0.782 -0.009 -0.045 -0.005 -0.052 

Mother’s education (X1MOMEDU) 0.796 0.029 -0.033 0.011 -0.057 

Father’s education (X1DADEDU) 0.821 -0.027 -0.024 -0.018 0.001 

How often discussed courses or programs at school 

(P2COURSE) 

-0.63 0.752 0.038 0.012 -0.073 

How often discussed careers he/she may be 

interested in (P2CAREER) 

-0.107 0.828 0.014 -0.001 -0.009 

How often discussed preparing for college entrance 

exams (P2CLGEXM) 

0.094 0.765 -0.015 -0.009 0.091 

How often discussed applying to college/other 

schools after high school (P2CLGAPP) 

0.061 0.789 -0.037 0.016 0.014 

Has arranged for student to attend college tour or 

campus program (P2CLGTOUR) 

0.292 0.290 0.049 -0.033 0.004 

Confidence in math tests (S1MTESTS) -0.024 -0.022 0.875 0.011 -0.012 

Certainty in understanding math textbook 

(S1MTEXTBOOK) 

-0.021 -0.004 0.816 0.054 -0.045 

Certainty in mastering skills in math (S1MSKILLS) 0.003 0.002 0.841 0.055 -0.025 
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Confidence in excelling in math assignments 

(S1MASSEXCL) 

-0.016 0.016 0.876 0.026 -0.047 

Confidence in science tests (S1STESTS) -0.021 -0.014 -0.002 0.851 0.009 

Certainty in understanding science textbook 

(S1STEXTBOOK) 

0.009 -0.002 0.062 0.795 -0.020 

Certainty in mastering skills in science 

(S1SSKILLS) 

0.035 0.020 0.081 0.819 -0.044 

Confidence in excelling science assignments 

(S1SASSEXCL) 

0.025 -0.008 0.053 0.826 -0.050 

Scale of student’s interest in math (in 9th grade) 

(X1MTHINT) 

-0.085 0.019 0.676 -0.090 0.092 

Scale of student’s interest in science (in 9th grade) 

(X1SCIINT) 

-0.098 0.037 -0.139 0.691 0.085 

GPA in all STEM courses (X3TGPASTEM) 0.217 -0.009 0.112 -0.008 0.559 

Credits earned in math courses (X3TCREDMAT) -0.178 0.063 -0.062 -0.112 0.790 

Credits earned in science courses (X3CREDSCI) -0.013 -0.006 -0.093 0.014 0.800 

Percent of variance explained by the factor 2.85 2.85 4.28 4.08 2.90 
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Socioeconomic Status 

The results from the EFA suggest that the items appraising SES, Parental 

Involvement, and STEM Readiness grouped together in a manner consistent with my 

proposed conceptual model. The items for family income (X1FAMINCOME), mother’s 

education (X1MOMEDU), and father’s education (X1DADEDU) had factor loadings of 

0.782, 0.796, and 0.821 respectively. Such high loadings suggest that most of the 

variance observed in these three items is accounted for by the latent construct of 

socioeconomic status (SES). In turn, the SES factor accounted for about 2.85% of the 

variance. 

Parental Involvement 

The parental involvement factor accounted for 2.85% of the variance. In contrast 

to my hypothesis, only four out of the five items I selected for parental involvement 

loaded in the corresponding factor. Discussing careers potentially interested in 

(P2CAREER), applying for college (P2CLGAPP), preparing for college admission tests 

(P2CLGEXM), and courses or programs at school (P2COURSE) had strong factor 

loadings of 0.828, 0.789, 0.765, and 0.752 respectively in the factor. Having arranged to 

attend college tours or campus programs (P2CLGTOUR) had a loading of 0.290 

suggesting that this item is a poor indicator of the factor. Following recommendations in 

the literature (Brown, 2015), I removed P2CLGTOUR from further analyses. 

STEM Self-Efficacy 

I hypothesized that the measures I selected for self-efficacy in both math- and 

science-based content would reflect a single construct of STEM Self-Efficacy. The EFA 

results suggest that these eight items actually appraise two separate latent factors. The 
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items selected for self-efficacy in math (S1MTESTS, S1MTEXTBOOK, S1MSKILLS, 

and S1MASSECL) had large factor loadings of 0.875, 0.816, 0.841, and 0.876 

respectively. In view of the topical area and the strong loadings associated among these 

four items, I named the factor “Math Self-Efficacy.” This factor accounts for 4.28% of 

the variance. 

 Similarly, the items selected for self-efficacy in science (S1STESTS, 

S1STEXTBOOK, S1SSKILLS, and S1SASSECL) had factor loadings of 0.851, 0.795, 

0.819, and 0.826 respectively. This grouping within a single common factor among the 

set of measures suggests a latent construct specifically for self-efficacy in science. This 

factor accounts for 4.08% of the variance. Given these results, I proceeded with CFA, 

SEM, and indirect effect analyses, with separate constructs for “Math Self-Efficacy” and 

“Science Self-Efficacy” rather than grouping all self-efficacy variables as one construct 

of “STEM Self-Efficacy.”  

STEM Interest 

I originally hypothesized that the two indicators measuring the scale of students’ 

interest in math (X1MTHINT) and interest in science (X1SCIINT) would be grouped 

together into a common factor, “STEM Interest.” The EFA results revealed that this was 

not the case. Rather, these items emerged as unique measures, suggesting that these items 

may serve as single indicators for separately measuring interest in math and interest in 

science in my conceptual model. Accordingly, I treated these items as single indicators, 

one measuring students’ interest in math and one measuring interest in science in my 

subsequent SEM analyses. 
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STEM Readiness 

As hypothesized, all three items I selected to capture STEM Readiness grouped 

together. GPA in all STEM courses (X3TGPASTEM), credits earned in math courses 

(X3TCREDMAT), and credits earned in science courses (X3TCREDSCI), had factor 

loadings of 0.559, 0.790, and 0.80 respectively. This factor accounts for 2.90% of the 

variance. 

Conclusions from EFA Results 

The results of the EFA led me to revise my hypothesis regarding the nature and 

composition of the latent factors associated to my conceptual model (see Figure 4). 

Accordingly, my revised model posits that the STEM readiness and conceptual 

development process is comprised of five latent constructs (SES, Parental Involvement, 

Math Self-Efficacy, Science Self-Efficacy, and STEM Readiness) and four single 

indicators (Math Ability, Math Interest, Science Interest, and Intention to Major in 

STEM). I further hypothesized that SES would be apprised by family income 

(X1FAMINCOME), mother’s education (X1MOMEDU), and father’s education 

(X1DADEDU), while Parental Involvement would be appraised by parent-driven 

discussions with their students about school courses (P2COURSE), careers 

(P2CAREER), preparation for college entrance exams (P2CLGEXM), and applying to 

college (P2CLGAPP). I also hypothesized that STEM Readiness could be reliably 

measured by credits earned in math (X3TCREDMAT), credits earned in science 

(X3TCREDSCI), and GPA in all STEM courses (X3TGPASTEM).  

In alignment with the EFA results, my revised measurement model views self-

efficacy as comprised of two distinct but interrelated factors: namely, Math Self-Efficacy 
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and Science Self-Efficacy. Moreover, I hypothesized that the construct Math-Self 

Efficacy could be reliably appraised by confidence in excelling in math tests 

(S1MTESTS), certainty in understanding math textbooks (S1MTEXTBOOK), certainty 

in mastering math skills (S1MSKILLS), and confidence in excelling in math assignments 

(S1MASSEXCL), while confidence in excelling in science tests (S1STESTS), certainty 

in understanding science textbooks (S1STEXTBOOK), certainty in mastering science 

skills (S1SSKILLS), and confidence in excelling in science assignments (S1SASSEXCL) 

would significantly load in the construct Science Self-Efficacy.  

 

Figure 4: The STEM Readiness and Intention Development Conceptual Model (Revised) 

 

Confirmatory Factor Analysis Results 

Following the EFA, I conducted a CFA to test my hypothesis of the constructs 

underscoring the revised version of the SRID Conceptual Model (Figure 4). As explained 
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in Chapter 3, CFA allows me to rigorously examine the extent to which the factor 

structure of my latent factors behave in the manner I postulated (Heck & Thomas, 2015; 

Brown, 2015; Wang & Wang, 2012). 

The CFA results (see Table 6) indicate that the revised model is a viable 

representation of the data. With the exception of the chi-square test, all goodness of fit 

values fall within acceptable ranges (χ2 = 1247.94, p < 0.001; RMSEA = 0.015, CI90% = 

[0.014, 0.016]; CFI =0.988, TLI = 0.986). The RMSEA value of 0.015 with a 90% 

confidence interval from 0.014-0.016 suggests a strong model fit (Brown, 2015; Byrne, 

2013; Hu & Bentler, 1999). The CFI value of 0.988 and the TLI value of 0.986, which 

are well above the recommended threshold of 0.95, support the hypothesized 

measurement component of my conceptual model (Brown, 2015). It is not surprising that 

the chi-square test lends no support for the five-factor model. The chi-square value is 

likely to yield non-supportive results with the presence of large sample sizes, as is the 

case in this study (Brown, 2015).  

Table 6 displays the CFA results. All loadings are reported in standardized units. 

The 18 items in the analysis displayed loadings in their corresponding factor far 

exceeding the recommended value of 0.50 (Brown, 2015) (see Table 6). Furthermore, all 

latent factors were well appraised by their corresponding items. The reliability of the 

latent factors, as appraised by Raykov’s (2009) method of composite reliability, ranged 

from 0.733 to 0.942, above the recommended threshold of 0.7 (Hair, Black, Babin, & 

Anderson, 2010; Hancock & Mueller, 2001). 
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Table 6: Measurement Component Results (Standardized) 

  

Construct 

Measure 

Socioeconomic 

Status 

Parental 

Involvement 

Math Self-

Efficacy 

Science Self-

Efficacy 

STEM 

Readiness 

X1FAMINCOME 0.717 - - - - 

X1MOMEDU 0.774 - - - - 

X1DADEDU 0.810 - - - - 

P2COURSE - 0.693 - - - 

P2CAREER - 0.781 - - - 

P2CLGEXM - 0.882 - - - 

P2CLGAPP - 0.836 - - - 

S1MTESTS - - 0.911 - - 

S1MTEXTBOOK - - 0.848 - - 

S1MSKILLS - - 0.896 - - 

S1MASSEXCL - - 0.928 - - 

S1STESTS - - - 0.874 - 

S1STEXTBOOK - - - 0.833 - 

S1SSKILLS - - - 0.893 - 

S1SASSEXCL - - - 0.890 - 

X3TGPASTEM - - - - 0.555 

X3TCREDMAT - - - - 0.664 

X3TCREDSCI - - - - 0.840  

ω Composite Reliability 0.811 0.877 0.942 0.927 0.733 

Goodness of Fit Indices 

χ2 = 1247.94, p < 0.001 

RMSEA = 0.015, CI90% = 0.014, 0.016 

CFI =0.988, TLI = 0.986 
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Socioeconomic Status 

As hypothesized, family income, mother’s education, and father’s education had 

large and significant loadings in the latent factor of SES. With a loading of 0.810, father’s 

education was the item that most defined SES, followed by mother’s education (0.774) 

and family income (0.717). Altogether, these three indicators constitute robust measures 

of the latent factor with a reliability coefficient of 0.811. 

Parental Involvement 

The latent factor of Parental Involvement is most represented by parent-driven 

discussions with students about college exams (0.882), followed by discussions of 

college admission tests (0.836), planning future careers (0.781), and discussion of school 

courses (0.693). Altogether, the four items provided a robust measure of the construct 

with a reliability value of 0.877.  

Math Self-Efficacy 

 Math Self-Efficacy is most represented by students’ confidence in excelling in 

math assignments (0.928), closely followed by confidence in excelling in math tests 

(0.911), certainty in mastering math skills (0.896), and certainty in understanding math 

textbooks (0.848). The reliability coefficient of 0.942 indicates that these four items 

comprise a robust measure of the latent factor of Math Self-Efficacy. 

Science Self-Efficacy 

 Similarly, the latent factor of Science Self-Efficacy is most represented by 

students’ confidence in excelling in science assignments (0.890), confidence in excelling 

in science tests (0.874), certainty in mastering science skills (0.893), and certainty in 

understanding science textbooks (0.833). Altogether, these items constitute a robust 
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measure of Science Self-Efficacy, with a reliability coefficient of 0.927.  

STEM Readiness 

STEM Readiness is best measured by the number of credits earned in science 

courses, with its loading of 0.840. The remaining two items have significant but modest 

loadings in this latent factor, including the number of credits earned in math courses 

(0.664) and GPA in all STEM courses (0.555). These more modest loadings explain why 

STEM Readiness displays the lowest, though entirely acceptable, reliability of 0.733 

among the five latent constructs. 

Conclusions from CFA Results 

 The results of the CFA suggest that the items I selected reliably appraise their 

corresponding constructs. The items selected for each of the five latent constructs, SES, 

Parental Involvement, Math Self-Efficacy, Science Self-Efficacy, and STEM Readiness, 

displayed loadings exceeding the recommended threshold. 

The results also revealed moderate to strong correlations among the latent 

constructs (as shown in Table 7). Math Self-Efficacy and Science Self-Efficacy are one 

of the most highly correlated latent constructs (r=0.47), which is to be expected given the 

nature of the variables within each construct. The STEM Readiness construct is also 

highly correlated with SES (r=0.48), Parental Involvement (r=0.43), Math Self-Efficacy 

(r=0.31), and Science Self-Efficacy (r=0.26). Furthermore, Parental Involvement is 

correlated with SES (r=0.46). This significant and positive correlation among the latent 

factors constitutes a necessary condition in proceeding with testing the structural equation 

model (Byrne, 2012). 
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Table 7: Estimated Correlations Among Latent Constructs 

   
 
 
 

Structural Equation Modeling Results 

After documenting the measurement components of the model, I proceeded with 

examining the hypothesized connections among the constructs, which constitutes the 

basis for my research questions. Based on the EFA results, I hypothesized that Math Self-

Efficacy and Science Self-Efficacy are separate but interrelated latent constructs, each of 

them with a direct link to interest in math and science (see Figure 4).  

As discussed in Chapter 3, I conducted a sensitivity analysis to examine the extent 

to which the listwise default option in WLSMV produced biased estimates. I relied on 

MLR as the alternative estimation method, as it is well suited to handle missing values 

due to its full information maximum likelihood procedure (see Heck & Thomas, 2015; 

Shreiber, 2016). As reported in Chapter 3, estimates under WLSMV were not 

substantially different from those estimated under MLR. Consequently, I decided to rely 

on the WLSMV method given its flexibility in handling a mixture of categorical and 

continuous variables, as the ones present in the High School Longitudinal Study of 2009. 

 SES Parental 

Involvement 

Math Self-

Efficacy 

Science Self-

Efficacy 

STEM 

Readiness 

Socioeconomic Status 1.00     

Parental Involvement 0.46 1.00    

Math Self-Efficacy 0.16 0.16 1.00   

Science Self-Efficacy 0.15 0.20 0.47 1.00  

STEM Readiness 0.48 0.43 0.32 0.26 1.00 
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 Figure 5 displays the structural coefficients (in standardized units) associated with 

the SRID Conceptual Model. As revealed by the model fit indices, the SRID Conceptual 

Model is a plausible representation of the data. The CFI and TLI values (CFI=0.988, 

TLI=0.986) are very close to 1 (Heck & Thomas, 2015), and the RMSEA value of 0.015 

is well below Hu and Bentler’s (1999) recommended threshold of 0.06. Moreover, the 

90% confidence interval associated with RMSEA falls in the range Byrne (2012) 

characterized as signifying good fit (CI90% = [0.014, 0.016]). The only exception to this 

trend is the chi-square value of 1247.94, which signifies a rejection of the model; 

however, this is a value that is expected given the large sample size of data in my study 

(Heck & Thomas, 2015; Brown, 2015). 

 

 

Figure 5: Structural Component Results (Standardized) 

χ2 = 1247.94, p < 0.001 

RMSEA = 0.015, CI90% = [0.014, 

0.016] 

CFI =0.988, TLI = 0.986 
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Intention to Major in STEM 

 The first equation examined the effects of STEM Readiness, Math Interest, and 

Science Interest on Intention to Major in STEM. This equation explained nearly 25% of 

the variance in Intention to Major in STEM (R2=0.24). All predictors were found to exert 

a significant and positive effect on Intention to Major in STEM. STEM Readiness was 

the most important predictor, with a moderate effect size of 0.361*28 on the outcome 

variable. Math Interest (0.101*) and Science Interest (0.199*) displayed small, but 

significant effects, on Intention to Major in STEM. 

STEM Readiness 

 All hypothesized paths to STEM Readiness were found to be significant. Parental 

Involvement, SES, Math Ability, Math Interest, and Science Interest accounted altogether 

for about 50% of the variance in STEM Readiness (R2=0.49). STEM Readiness was 

affected the most by Math Ability (0.408*), followed by SES (0.200*) and Parental 

Involvement (0.190*). In addition, Math Interest and Science Interest had small but 

significant effects on STEM Readiness (0.186*, 0.081*). 

Math Interest and Science Interest 

 Math Interest was most affected by Math Self-Efficacy, with a significant and 

positive effect of 0.552*. The second strongest effect was that of Science Self-Efficacy 

on Science Interest, with a significant and positive effect size of 0.521*. Math Interest 

had a small but significant effects on STEM Readiness (0.186*) and on Intention to 

Major in STEM (0.101*). In addition, Science Interest had a small but significant effects 

                                                
28 *p<0.001 
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on STEM Readiness (0.081*) and on Intention to Major in STEM (0.199*). 

Math Self-Efficacy and Science Self-Efficacy 

 Math Self-Efficacy was most affected by Math Ability (0.307*). Parental 

Involvement had a small but significant effect on Math Self-Efficacy as well (0.064*). 

Math Self-Efficacy was affected by both Math Ability and Parental Involvement. 

Similarly, Math Ability and Parental Involvement affected Science Self-Efficacy. 

Math Ability had a positive but relatively moderate effect size of 0.219*, while Parental 

Involvement had a small but significant effect on Science Self-Efficacy (0.130*). As 

expected, there was a correlation between Math Self-Efficacy and Science Self-Efficacy 

of 0.419*. 

Parental Involvement 

 The hypothesized paths to Parental Involvement were positive and significant. 

Parental involvement was affected by SES, with an effect size of 0.408* and by Math 

Ability, with a small but significant effect of 0.130. In turn, Parental Involvement had a 

significant effect on STEM Readiness (0.190*). 

Math Ability 

 As hypothesized, Math Ability was affected by SES with a significant and 

positive effect of 0.413*. As discussed previously, Math Ability affected Math Self-

Efficacy (0.307*) and Science Self-Efficacy (0.219*), as well as affected Parental 

Involvement (0.130*) and STEM Readiness (0.408*). 

 

Indirect Effects Results 

 As stated previously, the sub-research question of this study is: What is the 
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indirect effect of STEM self-efficacy on the intention to major in a STEM field? To 

answer this question, I relied on Mplus to examine the indirect effect of STEM self-

efficacy (i.e., math self-efficacy and science self-efficacy) in the structural model 

depicted in Figure 5. As noted in Chapter 3, Mplus allows researchers to estimate the 

direct, indirect, and total effects exhibited by STEM self-efficacy through STEM interest 

and STEM Readiness.  

Though I hypothesized that STEM self-efficacy would be a single latent 

construct, the EFA results revealed that self-efficacy is actually made up of two separate 

latent constructs (i.e., Math Self-Efficacy and Science Self-Efficacy). This finding led me 

to reconceptualize self-efficacy as comprised by two separate but interrelated latent 

factors: Math Self-Efficacy and Science Self-Efficacy. Accordingly, I tested both the 

indirect effect of math self-efficacy and the indirect effect of science self-efficacy on the 

intention to major in a STEM field. The results are displayed in Table 8. 

As displayed in Table 8, Math Self-Efficacy had a significant indirect effect on 

Intention to Major in STEM through Math Interest (0.056*) and through Math Interest 

and STEM Readiness (0.037*) for a total indirect effect of 0.093*. Science Self-Efficacy 

had a significant and slightly stronger indirect effect on Intention to Major in STEM 

through Science Interest (0.104*) and through Science Interest and STEM Readiness 

(0.015*), with a total indirect effect of 0.119*.  

 

 

[Table 8 on next page] 
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Table 8: Indirect Effects of Self-Efficacy on Intention to Major in STEM 
 

 

 

 

From Math Self-Efficacy to Intention to Major in STEM 

  

Indirect 

Total Indirect Effect 

 

Math Self-Efficacy → Math Interest →  

Intention to Major 

 

Math Self-Efficacy → Math Interest →  

STEM Readiness → Intention to Major 

0.056 0.037 0.093 

 

From Science Self-Efficacy to Intention to Major in STEM 

  

Indirect 

Total Indirect Effect 

 

Science Self-Efficacy →  

Science Interest → Intention to Major 

 

Science Self-Efficacy → Science Interest →  

STEM Readiness → Intention to Major 

0.104 0.015 0.119 
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Chapter Summary 

This chapter presented the results from the descriptive analysis, EFA, CFA, SEM 

analysis, and indirect effect testing. The descriptive analysis revealed that 23.2% of the 

9th grade students intended to major in STEM by the time they were in 12th grade. 

Students who intended to major in STEM, in comparison to those who did not, had 

parents who were more involved, had higher levels of math ability, displayed higher self-

efficacy measures, and were more interested in math and science. By the 12th grade, 

these students earned more credits in math and science and had a higher GPA in STEM 

courses, making them better prepared for STEM fields of study. In general, these findings 

suggest critical associations between students’ intention to major in STEM and SES, 

math ability, parental involvement, STEM self-efficacy, STEM interest, and STEM 

readiness. The results from the descriptive analysis provide grounds for building upon 

further and more complex analyses. 

The EFA identified five distinct latent factors and four single indicators among 

the selected items proposed in the conceptual model. In contrast to my hypothesis, the 

EFA revealed two separate factors among STEM self-efficacy items, suggesting that self-

efficacy perceptions among 9th grade students fall into two separate but interrelated 

domains of math self-efficacy and science self-efficacy. Likewise, the EFA results 

suggest interest in STEM falls into two separate domains: math interest and science 

interest. These EFA findings led me to modify my original model, recognizing Math 

Self-Efficacy and Science Self-Efficacy as separate latent factors, and Math Interest and 

Science Interest as separate individual indicators. 

The results from the CFA validated the relationships between the observed 
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measures and the latent factors hypothesized. Moreover, the composite reliability 

measure suggests that the items I selected are highly reliable in appraising each latent 

construct in the measurement model.  

The structural model results support every path I hypothesized in my revised 

version of the SRID Conceptual Model. The structural model accounts for almost 50% of 

the variance in STEM Readiness and almost 25% of the variance in the Intention to 

Major in a STEM field. All paths are positive and significant, and are consistent with 

predictions based on theory and previous research. The interpretation of these findings in 

light of theory and the extant literature are explored in detail in the next chapter, Chapter 

5. 
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Chapter V: Discussion and Conclusions 

 This chapter summarizes and discusses the findings of my study. Prior to this 

discussion, I offer an overview of the purpose of the study and the research questions. 

Next, I provide a brief overview of my revised conceptual model and its major 

hypothesis, while contrasting it with the theoretical framework of Social Cognitive 

Career Theory (SCCT) and other prominent literature (e.g., Wang, 2013). Following the 

discussion of findings, I address the limitations of the study. The chapter concludes with 

implications of these findings for both policy and practice, and highlights opportunities 

for future research. 

 

Purpose of the Study 

The purpose of this study was to investigate the various cognitive and contextual 

influences contributing to the developmental process that high school students undergo 

from 9th grade to 12th grade in preparing for and considering the selection of a major in a 

STEM field. This study sought to address gaps in previous research, such as the absence 

of parental involvement as a potential contextual factor, and improve upon both analytic 

and measurement shortcomings. Furthermore, this study sought to measure the impact 

that self-efficacy has on high school students’ intention to major in a STEM field. As 

such, this study was guided by the following research question and sub research question:  

- What are the cognitive and contextual factors impacting the developmental 

process high school students undergo in building readiness and intention toward a 

major in STEM fields of study? 

- What is the indirect effect of STEM self-efficacy on the intention to major 
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in a STEM field? 

The STEM Readiness and Intention Development Conceptual Model 

Theoretical Foundations 

In order to answer the research question and sub research question, I posited a 

conceptual model seeking to understand the STEM readiness and intention development 

process: the STEM Readiness and Intention Development (SRID) Conceptual Model. My 

model was guided by the theoretical framework of SCCT (Lent et al., 1994) and 

integrated adaptations of Wang’s (2013) conceptual model of STEM choice. SCCT has 

been a foundational framework in guiding studies on career interest development and 

career choice. SCCT emphasizes the interactions among key cognitive concepts (e.g., 

self-efficacy, interests, and goals), as well as personal inputs and contextual influences 

(e.g., background contextual factors and contextual influences proximal to choice 

behaviors).  

Previous research (Moakler & Kim, 2014; Sax et al., 2015; Wang, 2013a; 2013b), 

as well as efforts led by Lent and colleagues (2003; 2008a; 2008b; 2013), have relied on 

SCCT to guide and develop a conceptual understanding of career development. Wang’s 

(2013a) research, also guided by SCCT, sought to understand the STEM choice process 

while incorporating a construct from college readiness research. Wang advanced a 

conceptual model in which STEM choice is the result of a process linking self-efficacy, 

learning experiences, interests and goals, as well as college readiness. 

Addressing Gaps in Previous Research 

Through the development and testing of the SRID Conceptual Model, I sought to 

address gaps in prior research seeking to understand the STEM readiness and intention 
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development process.29 By conducting structural equation modeling (SEM) on 

longitudinal data tracking 9th grade students up to high school completion, using the 

High School Longitudinal Study of 2009 (HSLS:09), I was able to apply an appropriate 

statistical method for examining processes occurring through time. This method stands in 

sharp contrast with the majority of the literature, which has relied on applying regression 

techniques to cross-sectional data (Crisp et al., 2009; Lent et al., 2003; Moakler & Kim, 

2014; Rogers & Creed, 2011; Sax et al., 2016).  

My study also improves upon measures in STEM-related content by including 

relevant items of self-efficacy and interest in both math and science domains (Hall et al., 

2011; Lent et al., 1998; Moakler & Kim, 2014; Seymour & Hewitt, 1997; Wang, 2013a). 

Finally, this study sought to fill an important gap in the literature (Lent et al., 1994; 

Moakler & Kim, 2014; Wang, 2013a) by including parental involvement as a key factor 

in the consideration of a STEM major. While parental involvement is relevant in 

explaining preparation for and intention to major in a STEM field of study (Cabrera & 

LaNasa, 2001; Fan & Chen, 2001; Ferry et al., 2000; Hall et al., 2001; Hill & Tyson, 

2009; Jeynes, 2007), this construct had not been previously examined as an influential 

component in the STEM choice process (Moakler & Kim, 2014; Sax et al., 2016; Wang, 

2013).  

Building the Conceptual Model 

Cognitive Components. Guided by the foundational framework of SCCT, my 

conceptual model incorporated the cognitive components of STEM self-efficacy and 

STEM interest, acknowledging the important role these factors have on STEM readiness 

                                                
29 Chapter 2 provides a detailed overview of what is known and unknown in the research on this topic, 

while describing in detail the gaps in previous research. 
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and the intention to major in STEM (Bandura, 1994; Hackett & Betz, 1995; Lent et al., 

2003; Rittmayer & Beier, 2008). Building upon Wang’s (2013) study, my conceptual 

model incorporated the STEM-specific construct of STEM readiness. STEM readiness 

can also be regarded as an operationalization of SCCT’s learning experiences, as it 

includes high school students’ exposure to and performance in STEM-related coursework 

(Chen, 2013; Ferry et al., 2000; Mattern et al., 2015; Sadler et al., 2012). I also 

considered Intention to Major in STEM (the main outcome construct) as a cognitive 

component. As supported by previous research, intention to major in STEM indicates an 

action-oriented cognitive concept – also known as planned behavior (Ajzen, 1991) – 

which Wang (2013a) demonstrated has the most significant influence on actual entrance 

into STEM fields.  

Contextual Components. My conceptual model represented socioeconomic 

status (SES) as background characteristics, acknowledging the role that SES plays in the 

STEM readiness and intention development process (Cabrera & LaNasa, 2000; Eagle, 

1989; Lee & Burkam, 2002; Ma, 2009; Perna, 2006). Also aligned with SCCT, my 

conceptual model included math ability as a personal input which influenced the STEM 

readiness and intention development process (Cabrera & LaNasa, 2000; Conley, 2007; 

Hackett, 1985; Rohde & Thompson, 2007). According to SCCT, contextual influences 

proximal to choice behavior are influences that are directly related to career choice 

concerns, and moderate the relationship of interests with choice goals (Lent et al., 1994). 

To address gaps in previous research, my model incorporated parental involvement as 

contextual influences proximal to choice behavior (Cabrera & LaNasa, 2001; Fan & 

Chen, 2001; Ferry et al., 2000; Hall et al., 2001; Hill & Tyson, 2009; Jeynes, 2007). 
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Revising the Conceptual Model 

 Upon conducting the exploratory factor analysis (EFA), I revised the original 

SRID Conceptual Model. The revised version of the SRID Conceptual Model 

conceptualizes math and science as two separate, though interrelated, domains for the 

constructs of both STEM Self-Efficacy and STEM Interest.30 Each of these constructs 

was defined by its own set of indicators. The revised model acknowledges these separate 

domains in my hypothesis of the STEM readiness and intention development process for 

high school students. 

Testing the Conceptual Model 

 I relied on confirmatory factor analysis (CFA) to ascertain the extent to which the 

measures I selected were reliable and valid indicators of the five latent constructs 

embedded in the revised version of the SRID Conceptual Model. In summary, the CFA 

results confirmed my hypothesis that the five hypothetical constructs and their items 

provide a plausible representation of the data. The five constructs in the model were well-

appraised, with composite reliability coefficients ranging from 0.733 to 0.942. 

 Having satisfied the measurement condition, I then conducted SEM to test 

whether the hypothesized connections among the constructs envisioned in my model 

held. The SEM results suggested that my model – which was developed to answer my 

primary research question – was a viable representation of the factors influencing the 

STEM readiness and intention development process among high school students (χ2 = 

1247.94, p < 0.001; RMSEA = 0.015, CI90% = 0.014, 0.016; CFI =0.988, TLI = 0.986). 

The structural model explains almost 50% of the variance in STEM Readiness (R2=0.49), 

                                                
30 See Chapter 4: Results for a detailed description of the revisions made to the conceptual model, 

following the results from the EFA. 
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and almost 25% of the variance in the Intention to Major in STEM fields (R2=0.24). The 

SEM findings suggest that SES, math ability, parental involvement, math self-efficacy, 

science self-efficacy, math interest, and science interest, are critical factors contributing 

to the process of building STEM readiness and the intention to major in STEM among 

high school students. The following sections discuss the results associated with each of 

the constructs in the SRID Conceptual Model31. 

 

Discussion 

Socioeconomic Status 

The results of the SEM analysis revealed that SES had a strong and significant 

effect on Math Ability (0.413*) and Parental Involvement (0.408*), while exerting a 

moderate effect on STEM Readiness (0.200*). These results are consistent with previous 

research that emphasizes the role SES plays in academic preparation and educational 

achievement (Cabrera & LaNasa, 2000; Lee & Burkam, 2002; Perna, 2005; Rowan-

Kenyon, 2007; Sirin, 2005; White, 1982). In particular, previous research highlights the 

impact of SES on math ability (Lee & Burkam, 2002; Reyes & Stanic, 1988; Sirin, 2005) 

and parental involvement (Eagle, 1989). As previous research suggests, students with a 

higher SES are more likely to have a stronger math ability, as well as parents who were 

more involved in their schooling and educational experiences. 

In addition, the results of my study are aligned with previous literature suggesting 

that SES plays a role in the extent to which a student becomes prepared for a STEM field 

                                                
31 As mentioned in Chapter 3, constructs are designated by the capitalization of these factors, while the 

concepts are designated by non-capitalization of these factors (e.g. Parental Involvement (construct) vs. 

parental involvement (concept)).  
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of study (Cabrera & LaNasa, 2000; Hoffer, Rasinski, & Moore, 1995; Lee & Burkam, 

2002; Perna, 2006). These findings are also consistent with the work of Ma (2009), 

whose study highlights the role that SES plays in students’ selection of a college major. 

In summary, as predicted by both SCCT and the SRID Conceptual Model, SES is a key 

contextual factor in the STEM readiness and intention development process.  

Math Ability 

Math Ability had a strong effect on STEM Readiness (0.408*), and a moderate 

effect on Math Self-Efficacy (0.307*) and Science Self-Efficacy (0.219*). It also had a 

small, but significant effect on Parental Involvement (0.130*). These findings are also 

consistent with the extant literature (Conley, 2007; Hackett, 1985; Rohde & Thompson, 

2007; Spinath, Spinath, Harlaar, & Plomin, 2006). In particular, the strong effect of Math 

Ability on STEM Readiness is aligned with previous research which suggests that math 

ability impacts the extent to which students meet benchmarks in becoming academically 

prepared for a STEM field of study (Conley, 2007; Hackett, 1985; Rohde & Thompson, 

2007; Spinath et al., 2006). 

Math Ability also displayed a small, but significant impact on parental 

involvement (0.130*). This relationship is consistent with studies by Eccles and Harold 

(1993) and Patel and Stevens (2010), which focused on ability as a predictor of the level 

of parental involvement in the educational experiences of the child. 

My findings also suggest a strong relationship between math ability and self-

efficacy. Such a connection between these two factors is aligned with Bandura’s (1993) 

theoretical predictions, in which students’ view of their own abilities and capabilities 

impacts feelings of self-efficacy, and vice versa. This finding is also consistent with other 
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scholars who studied math ability and self-efficacy (Bell & Kozlowski, 2002; Hackett, 

1985; Pajares & Kranzler, 1995). In particular, these previous works suggest that math 

and science self-efficacy are particularly linked to students’ math ability. In other words, 

students with higher math ability are more likely to demonstrate stronger levels of self-

efficacy in math and science domains. Aligned with SCCT, personal inputs, such as math 

ability, predispose a student to engage more positively in learning experiences relevant to 

the application of math (Lent et al., 1994). 

Parental Involvement 

Parental Involvement had smaller, but significant effects on STEM Readiness 

(0.190*), Science Self-Efficacy (0.130*), as well as Math Self-Efficacy (0.064*). The 

role of parental involvement in self-efficacy and STEM readiness is consistent with the 

literature linking parental involvement with students’ overall educational experiences and 

academic achievement (Alliman-Brisset, Turner, & Skovholt, 2004; Ferry, Fouad, & 

Smith, 2000; Hill & Tyson, 2009; Turner & Lapan, 2002). Noteworthy is the fact that the 

indicators I selected for parental involvement are aligned with what Hill and Tyson 

(2009) note as a form of academic socialization, in which parental discussions with 

students about their education and future plans cultivate cultural and social capital.  

These results confirm my hypothesis regarding the importance of considering 

parental involvement as a contextual influence proximal to choice behavior, which adds a 

critical dimension to the SCCT framework and the conceptual model developed by Wang 

(2013). The positive effect of parental involvement on STEM readiness also highlights a 

direct connection between contextual influences proximal to choice behavior and learning 

experiences, an important aspect that is not covered in the SCCT framework nor Wang’s 
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conceptual model. In addition, the role that parental involvement has in this 

developmental process confirms Hall and associates’ (2011) previous work, which 

suggests that parental influences may be among the top four influences on STEM career 

choice among high school students. These results confirm my hypothesis that 

incorporating parental involvement in the STEM readiness and intention development 

process addresses gaps in previous research (Lent et al., 1993; Moakler & Kim, 2014; 

Sax et al., 2016; Wang, 2013). Overall, these results contribute to expanding the 

understanding of the important role of parental involvement. 

Math Self-Efficacy and Science Self-Efficacy 

Confirming my hypothesis, I found that self-efficacy played a critical role in the 

STEM readiness and intention development process among high school students. These 

findings are aligned with the foundational work of Bandura (1994), who emphasized that 

self-efficacy can impact academic performance and future decision-making.32 Other 

scholars have applied Bandura’s self-efficacy theory in a career development context by 

interpreting the influence of self-efficacy on career choice behavior (Hackett & Betz, 

1995; Lent et al., 2003; Rittmayer & Beier, 2008). The findings on self-efficacy are 

aligned with both SCCT and Wang’s (2013a) conceptual model, which suggest that self-

efficacy has a direct impact on interest in the career development process. 

Prior to analyses, I originally hypothesized that all eight self-efficacy items would 

group together as a single factor, signifying a single latent construct of STEM Self-

                                                
32 Self-efficacy impacts students’ academic performance through the acquisition of cognitive skills, 

attributional feedback, and goal setting. This may manifest in performance on e.g., exams, quizzes, 

homework assignments. Future decisions or personal goal setting can be affected by self-efficacy beliefs. 

Stronger self-efficacy beliefs tend to influence higher goal setting and stronger commitment in achieving 

those goals (Bandura, 1994). 
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Efficacy. In actuality, the EFA findings revealed that STEM self-efficacy among 9th 

grade students manifests as two independent, but interrelated, constructs in the domains 

of math and science. This important discovery highlights that self-efficacy among high 

school students can be developed in separate academic domains in the STEM readiness 

and intention development process, which is aligned with Bandura’s (1994) 

conceptualization of self-efficacy in various academic domains. Each domain of self-

efficacy plays an influential role in the STEM readiness and intention development 

process. In addition, this finding fills gaps in previous research, by including science self-

efficacy as a separate construct in addition to math self-efficacy, as well as an additional 

dimension in measuring self-efficacy overall. 

Math Self-Efficacy had the strongest impact on Math Interest (0.552*), followed 

by Science Self-Efficacy affecting Science Interest (0.521*). It is important to highlight 

that each domain of self-efficacy impacted the corresponding domain in interest. In other 

words, math self-efficacy impacted math interest, while science self-efficacy impacted 

science interest. This relationship between self-efficacy and interest in the specific 

domains of math and science adds a unique and important dimension to the SCCT 

framework and Wang’s (2013) conceptual model, emphasizing the multidimensionality 

of STEM self-efficacy and the impact it can have on interest in various aspects of STEM-

related content (i.e., math and science).  

Math Interest and Science Interest 

As was the case for STEM Self-Efficacy, the EFA step of my analyses revealed 

that STEM interest was manifested in two separate, but interrelated, indicators of math 

interest and science interest. As such, I incorporated math and science interest as separate 
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indicators. Each indicator was impacted by self-efficacy (in the corresponding domains of 

math and science) and both indicators impacted both STEM Readiness and Intention to 

Major in STEM. My findings in regard to math and science interest build upon the 

foundational work of Wang (2013a), by incorporating measures of interest in both math 

and science academic domains. The findings also identified a key relationship between 

math and science interest and STEM readiness, highlighting the impact of math and 

science interest on the extent to which students become academically prepared for STEM 

fields of study.  

Though comparatively small, Math Interest had a significant effect on STEM 

Readiness (0.186*), followed by the effect of Science Interest on STEM Readiness 

(0.081*). Math Interest and Science Interest also had small, but significant effects on 

Intention to Major in STEM (0.101*, 0.199* respectively). The findings of my study 

support the framework of SCCT (Lent et al., 1994), as well as Wang’s (2013) conceptual 

model, acknowledging that interest has a direct impact on the career development and 

decision-making process. In a STEM-related context, Seymour and Hewitt (1997) 

emphasized the important relationship between interest in math- and science-related 

content and a student’s decision to pursue a career in a STEM field. Previous research 

suggests that students’ interest in academic content has an impact on their academic 

achievement (Schiefele, Krapp, & Winteler, 1992; Singh, Granville, & Dika, 2002), as 

well as their course-taking plans (Lent, Brown, & Hackett, 1994; Thorndike-Christ, 1991; 

Updegraff; Eccles; Barber, & O’Brien, 1996), particularly in the areas of math and 

science (Hall et al., 2011; Seymour & Hewitt, 1997; Wang, 2013a). 
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STEM Readiness 

 STEM Readiness is one of the outcomes in my conceptual model, and is defined 

by the number of math and science courses taken, as well as GPA in STEM coursework 

(Mattern et al., 2015). Aligned with SCCT, I regard STEM Readiness as an 

operationalization of SCCT’s construct of learning experiences. As hypothesized by 

SCCT, I found that learning experiences (STEM Readiness) are impacted by personal 

inputs (Math Ability) and background contextual affordances (SES). However, SCCT 

does not posit a direct impact of contextual influences proximal to choice behavior on 

learning experiences. My study addresses this gap, finding that Parental Involvement (a 

contextual influence proximal to choice behavior) had a positive and direct impact on 

STEM Readiness. Confirming my hypotheses, the results revealed that STEM Readiness 

was affected most by Math Ability (0.408*), followed by SES (0.200*) and Parental 

Involvement (0.190*). In addition, Math Interest and Science Interest had small, but 

significant effects on STEM Readiness (0.186*, 0.081* respectively).  

These findings affirm suggestions in previous research about the relationship 

between STEM Readiness and other influential factors in high school students’ intention 

development process (Cabrera & LaNasa, 2000; Hoffer, Rasinski, & Moore, 1995; Lee & 

Burkam, 2002; Perna, 2006; Sirin, 2005; White, 1982). More specifically, college access 

and choice literature emphasize a significant relationship between SES and academic 

achievement (Cabrera & LaNasa, 2000; Lee & Burkam, 2002; Perna, 2006; Sirin, 2005; 

White, 1982), particularly in the selection of courses in math and science (Hoffer, 

Rasinki, & Moore, 1995). Indeed, the results of my study suggest that students with a 

stronger math ability are more likely to take math and science courses. Furthermore, 
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students with a stronger math ability are more likely to earn a higher GPA in STEM-

related courses than students with a weaker math ability (Conley, 2007). In addition, the 

results of my study confirm previous research linking parental involvement and the 

familial context to students’ academic achievement and college preparation (Cabrera & 

LaNasa, 2000; Fan & Chen, 2001; Jeynes, 2007; Tierney & Auerbach, 2005). In 

particular, my results affirms the findings of Ferry et al.’s (2000) study, which found that 

parental encouragement had a significant effect on the number of math and science 

courses taken and the grades earned in those math and science courses. 

Intention to Major in STEM 

 Students’ intention to major in a STEM field is regarded in previous research as 

an important factor related to both entrance into and success in STEM fields of study 

(Mattern et al., 2015; National Science Foundation, 2014; Wang, 2013a). Wang’s (2013a) 

study demonstrated that intention to major in STEM is the strongest predictor of 

enrollment in STEM majors in postsecondary education. Identifying the key factors 

throughout students’ high school experience that influence students’ intention to major in 

a STEM field can contribute to strengthening entrance into and future success in STEM 

fields of study.  

Building upon the SCCT framework and Wang’s model, the SRID Conceptual 

Model highlights the centrality of STEM readiness in the process that high school 

students undergo and its impact on students’ intention to major in STEM. As such, I 

hypothesized that Intention to Major in STEM would be most affected by STEM 

Readiness. The results of my study confirmed my hypothesis: Intention to Major in 

STEM is most affected by STEM Readiness (0.361*). Intention to Major was also 
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affected by Math Interest (0.101*) and Science Interest (0.199*), confirming previous 

research reflecting the important relationship between STEM interest and intention to 

major in STEM (Hall et al., 2011; Lent et al., 1994; Sadler et al., 2012; Seymour & 

Hewitt, 1997; Wang, 2013a).  

Indirect Effect of STEM Self-Efficacy  

The findings of my study emphasized a strong relationship between self-efficacy 

and interest, which provided further support for the exploration of my sub research 

question: “What is the indirect effect of STEM self-efficacy on the intention to major in a 

STEM field?” As predicted, Math Interest and Science Interest mediated some of the 

effect of Math Self-Efficacy and Science Self-Efficacy on Intention to Major in STEM. 

Math Self-Efficacy had a total indirect effect of 0.093* and Science Self-Efficacy had a 

total indirect effect of 0.119*.  

Overall, these findings are aligned with the theoretical framework of SCCT (Lent 

et al., 1994), which theorizes that self-efficacy strongly mediates career development 

through interest, with interest as a strong predictor of career choice (Lent et al., 2001; 

2003; Nauta, 2004; Nauta & Epperson, 2003; Scarf, 2013). Previous research also 

suggests that the mediating effect of self-efficacy on intention to major in STEM is 

especially relevant for adolescents in high school33 (Bandura, 2006; Pajares, 2005).  

 

                                                
33 During high school, adolescents are beginning a process of self-exploration, becoming aware of how 

their interests and values contribute to their occupational expectations and possible career choices 

(Bandura, 2006; Paa & McWhirter, 2000; Pajares, 2005). Adolescents and children also have highly 

adaptable self-efficacy beliefs, which can be altered and enhanced based on contextual strategies (Parjares, 

2005). 
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Limitations 

My study had several limitations that must be considered. First, the outcome 

variable I selected is merely a measure of student intention. While theories of planned 

behavior (Ajzen, 1985; 1991) suggest that intentions predict actual behavior, I must still 

draw assumptions regarding the extent to which students’ consideration of a STEM major 

will lead to the actual pursuit of a STEM major upon their completion of high school. As 

new waves of follow-up data are released in the coming years, future research and 

analyses may allow for the inclusion and examination of additional outcome measures in 

the STEM readiness and intention development process, including selection of STEM 

majors and enrollment in STEM fields.34 

Second, there are potential weaknesses regarding the use of secondary data.35 This 

dissertation study was limited to the constraints of the design structure and measurement 

items. When selecting variables for each construct, I was limited to those variables and 

survey items included in the HSLS:09 survey design. Furthermore, many of the survey 

measures in HSLS:09 are self-reported measures from students, parents, administrators, 

and counselors. While these measures provide key information from the subject 

perspective, self-reported data have inherent risks of biases, including comprehension 

issues and response biases (Fan et al., 2006; Wilcox, 2005). 

Third, school factors and school-level variables are not included in this study. 

This limits the extent to which I can draw conclusions about the influence of the school 

                                                
34 Until the next follow-up data in the longitudinal study become available, intention to major is the best 

measure currently available for major selection. These data are currently being processed by the U.S. 

Department of Education’s National Center for Education Statistics and are not yet publicly available. 

35 This includes the inability to develop specific survey questions and a lack of control in the timing of the 

survey distribution (Andersen, Prause, & Silver, 2011).  
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context in the STEM readiness and intention development process. It is also important to 

note that the SCCT model (Lent et al., 1994) and Wang’s (2013) conceptual model did 

not incorporate the ways in which the school context impacted the career or major choice 

process, aside from noting that it is a potential contextual influence. Accordingly, my 

study specifically focused on student-level processes, including only student-level 

constructs and indicators. Doing so allows for the focused investigation into the 

individual level of the STEM readiness and intention development process among high 

school students. As such, school-level variables were intentionally not included in the 

analyses. Rather, other individual-level contextual factors, including SES (i.e., family 

income, mother’s education, and father’s education), math ability, and parental 

involvement, were added to the conceptual model and analyses to incorporate the 

contextual influences contributing to students’ developmental processes. 

 Finally, there are specific limitations in regards to some of the measures selected. 

The only measures of math interest and science interest available in the HSLS:09 

database were those taken in the base year of the longitudinal survey, when students were 

in 9th grade. Interests can be fluid and evolving, and interests may change as students 

move from 9th grade to 12th grade. My study was also affected by the absence of a 

measure for science ability. To the best extent possible, I sought to focus on STEM-

relevant content by including measures from both math and science domains. For 

example, the constructs for self-efficacy included Math Self-Efficacy and Science Self-

Efficacy. Similarly, for the construct of interest, I included both Math Interest and 

Science Interest. Unfortunately, because science ability was not measured in the 

HSLS:09 survey, it was only possible for me to include math ability, limiting the extent 
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to which I could be consistent in including both domains of math and science. However, 

as emphasized in previous research, math ability has not only been recognized as an 

important factor in educational achievement and college readiness (Cabrera & LaNasa, 

2000; Conley, 2007; Perna, 2005; Rohde & Thompson, 2007), but also impacts the extent 

to which students meet benchmarks to become academically prepared for a STEM field 

of study (Hackett, 1985; Rohde & Thompson, 2007; Spinath et al., 2006). As such, this 

lack of inclusion of science ability may be deemed a more minor limitation of the study. 

 

Research Contributions 

 This dissertation contributes to the body of research on STEM pathways by 

examining the process high school students undergo in building readiness and intention in 

their pursuit of a STEM major in college. Compared to the depth of research on STEM 

retention and degree completion in postsecondary education (Cole & Espinoza, 2008; 

Crisp et al., 2009; Graham et al., 2013; Palmer et al., 2011; Watkins & Mazur, 2013), 

research focusing on the STEM readiness and intention development process for high 

school students is a newer and less explored area of research. Scholars working in this 

area are beginning to investigate student major choice selection, contextual impacts on 

the career decision-making process, and our understanding of pathways to STEM majors 

(Chen, 2013; Committee on STEM, 2013; Crisp, Nora, & Taggart, 2009; Lent et al., 

1994; 2000; 2001; 2003; Ma, 2009; Wang, 2013b). Consequently, it is not surprising to 

see that the extant literature is limited in its analytic approach (e.g., reliance in regression 

instead of SEM), inclusion of important contextual factors (e.g., omission of parental 

involvement), and quality of measures used in appraising constructs (e.g., need for 
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specificity in STEM-related content). 

Improved Analytic Approach 

Most studies on entrance into STEM fields, with the notable exception of Wang’s 

(2013) study, have not examined the process involved in the decision to select a STEM 

career and ultimately enroll in a STEM major field of study. Instead, the majority of 

extant research has focused on the characteristics of students who major in a STEM field 

and factors relevant in their selection of a STEM major (e.g., Crisp et al., 2009; Moakler 

& Kim, 2014; Sax et al., 2016). In contrast to a prevailing input-output regression 

analysis approach, I selected SEM as the statistical analytic technique to answer my two 

research questions. This statistical analysis approach allowed me to examine the process 

of STEM readiness and intention development, and the relationships among factors 

influencing this process. Moreover, the use of SEM allowed me to control for 

measurement error, which improved the accuracy of my estimates (Heck & Thomas, 

2015). 

 The majority of the extant research on STEM readiness and intention 

development (Lent et al., 2008; Moakler & Kim, 2014; Wang, 2013; Sax et al., 2016) 

approached the examination of this process using samples of college students majoring in 

STEM. Sampling college students who have already successfully made it through the 

STEM pipeline limits a clear understanding of the high school experience, which should 

be inclusive of students unable to access higher education. In turn, this dissertation study 

improved upon this limitation through the use of a nationally-representative sample of 

high school students, to focus on developing a better understanding of the experiences 

occurring throughout high school for all high school students. 



 
 
 

 

130 

Improved Data and Measurement 

With the exception of Wang’s (2013) study, the majority of previous research on 

entrance into STEM fields used cross-sectional data (Moakler & Kim, 2014; Sax et al., 

2016). The use of cross-sectional data is not completely aligned with this study’s 

theoretical framework of SCCT, which suggests that career development occurs as a 

process through time.36 Lent et al. (2003; 2008a; 2008b) suggested in numerous studies 

that longitudinal data is necessary for testing of the SCCT model, calling attention to the 

need for more studies to adopt this recommendation. Longitudinal data accounts for 

behaviors and actions over a period of time. My dissertation study sought to overcome 

the methodological problems associated with cross-sectional data by relying on 

longitudinal data from HSLS:09. 

My study improves upon the appraisal of key measures in the STEM readiness 

and intention development process. These additional measures extend beyond the work of 

SCCT and Wang’s (2013) conceptual model, and included improvements on measures of 

STEM self-efficacy and STEM interest. In addition, given the importance of parental 

involvement and support in future decision-making and preparation during adolescence 

(Keller & Whiston, 2008), my conceptual model included discussion-oriented parental 

involvement, which cultivates social and cultural capital, influencing the STEM readiness 

and intention development process for high school students. 

 

                                                
36 Unlike longitudinal data, which tracks students’ behaviors, actions, and experiences over an extended 

period of time, cross-sectional data examines different cohorts of students in one segment of time (Bowen 

& Wiersema, 1999).  
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Implications for Policy, Practice, and Future Research 

This dissertation draws attention to the importance of understanding the 

developmental process students undergo throughout high school in their preparation for 

and selection of a STEM major. The SRID Conceptual Model advanced in this study can 

be used by policymakers and practitioners to develop a deeper and more nuanced 

understanding of the STEM readiness and intention developmental process. This model 

identifies the key influences impacting this process for high school students from 9th to 

12th grade. The results from testing this model suggest that SES, math ability, parental 

involvement, math and science self-efficacy, and math and science interest, contribute to 

the extent to which students develop readiness for STEM and intention to major in a 

STEM field of study. A foundational understanding of this developmental process 

through the STEM pipeline can allow for the development of policies and practices that 

specifically target factors which impact students throughout high school. This 

contribution of knowledge and the potential use of the SRID Conceptual Model has 

important implications for policymakers, practitioners, and future research. 

Implications for Policymakers 

The United States continues to strive for an increased enrollment of students in 

STEM fields for global competitiveness and economic growth (Committee on STEM, 

2013; National Science Board, 2015). Current federal policies implemented at the K-12 

and postsecondary education level follow the national prioritization of STEM education. 

For example, the Every Student Succeeds Act, which replaced “No Child Left Behind,” 

has a potential funding stream specifically geared toward STEM activities and 

programming in school and afterschool programs (Afterschool Alliance, n.d.; U.S. 
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Department of Education, n.d.). More general educational funding sources, such as the 

21st Century Community Leaders Centers initiative, provide federal funding exclusively 

to afterschool programs, which can be geared toward academic enrichment in and 

exposure to STEM-related content (Afterschool Alliance, n.d.). In addition, some 

practices at the K-12 level have been integrated into the Common Core State Standards, 

while other programs have adopted a STEM focus to further strengthen K-12 math and 

science skills (Lee, Quinn, & Valdes, 2013; National Science Board, 2016). Furthermore, 

given the national focus on producing STEM graduates, policymakers have invested 

significant resources at the postsecondary educational level to improve retention and 

facilitate the persistence of students in STEM fields of study (Chen, 2013; Committee on 

STEM, 2013; PCAST, 2012). 

Despite the implementation of current policies and practices, however, our nation 

must produce an additional one million graduates in STEM fields (PCAST, 2012). To 

achieve this goal, there must be a targeted and strategic implementation of policies and 

intervention programs, which are guided by and based upon empirical evidence and 

research (PCAST, 2012). As the findings of my study suggest, these targeted strategies 

may include policies addressing the key cognitive and contextual factors identified in the 

study, namely SES, math ability, parental involvement, math and science self-efficacy, 

and math and science interest. Policymakers should consider prioritizing the 

implementation of policies and programs that involve parents in students’ educational 

experiences, given the impact of parental involvement on the STEM readiness and 

intention development process. Based on the findings of this study, policymakers should 

propose and support programs that encourage and prepare parents to have discussions 
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with their students on their courses or programs at school, their future careers, their 

preparation for college entrance exams, and their plans to apply to college after high 

school.  

Moreover, programs that focus on developing self-efficacy and interest in math 

and science may be more likely to contribute to building readiness and intention toward 

STEM. Some afterschool programs have been implemented to specifically focus on 

offering STEM programming, which contribute to the development of self-efficacy and 

interest in STEM fields. For example, an afterschool program called the Evoking 

Learning and Understanding through Investigations in the Natural Sciences 

(EVOLUTIONS) is geared toward high school students from 9th grade to 12th grade. 

Students participate in afterschool programming in science museums, where they take an 

active role in the learning process by engaging in hands-on workshops, activities, and 

projects (Afterschool Alliance, n.d.). The outcomes of such a program suggest that 

program participation increases students’ interest in the sciences and strengthens 

confidence in attitudes toward math and science (Afterschool Alliance, n.d.). 

Policymakers should consider the impact of afterschool programs, such as 

EVOLUTIONS, in influencing students’ development of self-efficacy and interest in 

math and science. Directing resources toward funding these efforts can contribute to 

facilitating high school students’ preparation for and intention to major in STEM fields. 

Implications for Practitioners  

For practitioners, the findings of this study can lead to the development of 

strategic intervention programs and practices at the high school level, a period when 

students are making important decisions about and academically preparing for their 
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future field of study. The SRID Conceptual Model may guide administrators, teachers, 

and counselors in implementing best practices for facilitating high school students’ 

navigation of the STEM readiness and intention development process. Understanding the 

conceptual model can encourage practitioners at the K-12 level to acknowledge the 

interconnected influences contributing to movement through the STEM pipeline, and 

identify how these pathways can be strengthened for individual students. 

For example, this proposed model draws attention to the influential role that 

parental involvement, math and science self-efficacy, and math and science interest, may 

play in STEM readiness and the intention to major in STEM. Given the significant role 

that parental involvement can play in the STEM readiness and intention development 

process, practitioners should consider investment and intervention in policies, programs, 

and practices at the high school level that strategically involve parents or family 

members. This may include STEM-related programs at schools that are designed to 

encourage and prepare parents to have discussions with their students on their courses or 

programs at school, their future careers, their preparation for college entrance exams, and 

their plans to apply to college. Successful programs and strategies include those that 

adopt a framework of “mutual responsibility for family-practitioner relationships,” in 

which both practitioners and family members take an active role in cultivating a culture 

of encouragement and support (Savitz-Romer & Bouffard, 2014, p. 200). For instance, 

UCLA’s Early Academic Outreach Program provides services and opportunities for 

students by working together with families and schools to cultivate a college-going 

culture (UCLA, n.d.). Outreach from schools can be one of the strongest predictors of the 

extent to which parents become involved in their student’s schooling, especially among 
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racial/ethnic minority families (Savitz-Romer & Bouffard, 2014).  

While acknowledging the impact of STEM self-efficacy and STEM interest, 

practitioners can also focus on developing intervention programs that encourage the 

development of self-efficacy in math and science domains and cultivate interest and 

enjoyment in math and science courses. This may include practices that strengthen self-

confidence in and enthusiasm about math and science. Young women and girls, in 

particular, display lower levels of self-efficacy than young men and boys, especially in 

math and science domains (Betz & Hackett, 1986). Practitioners should focus 

programming that targets and supports young women and girls, who have the potential to 

academically succeed in STEM but may internalize lower levels of self-efficacy in math 

or science. Lower levels of self-efficacy may deter students from considering a major in 

STEM. In the classroom or school context, teachers and counselors may focus on 

implementing strategies to develop self-efficacy in students. This may include positive 

reinforcement, open-ending questioning and discussions, and increasing availability 

outside of the classroom (Haskell, 2016).  

Some educational programs (e.g., afterschool programs, camps, and workshops) 

have been designed to provide opportunities for students to participate in hands-on 

STEM-related activities, develop STEM skills, and learn about STEM fields (AAUW, 

2004; Rittmayer & Beier, 2008). For example, one program invited high school girls to 

participate with mentors in hands-on activities and pedagogy about water quality, which 

increased their interest in and likelihood of later majoring in a science-related field 

(AAUW, 2004). While these types of programs focus on developing skillsets and 

knowledge in STEM, research strongly suggests that such interactive and meaningful 
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experiences outside of the classroom can develop self-efficacy in STEM (Bandura, 1994; 

Carpi, Ronan, Falconer, & Lents, 2007; Luzzo, Hasper, Albert, Bibby, & Martinelli, 

1999; Rittmayer & Beier, 2008).  

In summary, as suggested by the proposed conceptual model, strategies 

highlighting the key contextual and cognitive influences may contribute to a greater 

likelihood of building STEM readiness and intention to select a STEM major. 

Development of best practices that address and capitalize on the various integrated 

influences on these outcomes may be most impactful in facilitating STEM pathways. 

Future Research 

Examine by gender and race. There is an evident need to focus on the 

recruitment of minoritized student populations (e.g., women and racial/ethnic minorities), 

which are currently underrepresented in many STEM fields (APS, 2015; NSF, 2015). 

Targeted recruitment of minoritized populations and intervention strategies have the 

potential to be the driving force in increasing the overall enrollment in STEM fields 

across the United States. Effective implementation of such targeted strategies requires a 

robust understanding of the process students undergo in preparing for and considering the 

selection of a STEM major.  

Future research will examine the extent to which the SRID Conceptual Model 

holds for specific student populations. While this study’s model was designed for a 

national representation of the U.S. student body of high school students, future research 

may investigate the STEM readiness and intention development process for 

underrepresented students in STEM fields, through drawing comparisons by gender and 

by race/ethnicity. Given the significant disparities that exist in STEM fields by gender 
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and by race/ethnicity (APS, 2015; NSF, 2015), this work will be critical in understanding 

the experiences of underrepresented populations of students. This research may help to 

identify ways to address the significant gaps that exist by gender and race in STEM 

fields, as well as intervention strategies for overcoming these disparities while students 

are in the high school developmental process. Qualitative or mixed-methods research 

may be appropriate to explore the ways to support underrepresented students populations 

in their success through the STEM pipeline. 

As emphasized by the National Science Board’s (2016) report, a critical approach 

to increasing the rate of STEM graduates involves addressing the structural barriers 

individuals encounter in accessing and preparing for STEM fields. Future research can 

use the SRID Conceptual Model as a foundation for building conceptual models for 

specific student populations, especially those underrepresented in STEM fields, drawing 

implications for how to best support marginalized students. For policymakers looking to 

meet the national challenge of increasing the number of students who enroll in STEM 

programs, it is important to focus on the populations of students that face structural 

barriers in accessing and preparing for STEM fields. Recruiting underrepresented 

populations into STEM fields can be a driving force in increasing the number of STEM 

graduates in the nation. The support of policies and programs – specifically for 

underrepresented minoritized student populations – that focus on the key cognitive and 

contextual factors of this study is critical in achieving this national goal. 

Explore beyond high school. By identifying ways to improve pathways and 

facilitate students’ success in the STEM pipeline, future research may explore the 

developmental process beyond the high school experience. Once the next wave of 
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HSLS:09 longitudinal data becomes available, future research could build upon the 

findings of this dissertation study to explore whether those who intended to major in 

STEM persisted in pursuing a STEM field of study in postsecondary education. 

Additional research may seek to investigate the experiences of students earlier in the 

academic pipeline, including middle school or elementary school students. This line of 

future research could explore how experiences prior to high school may impact STEM 

readiness and intention to major in STEM among high school students and beyond. 

Improve STEM-related measures. Future research may continue to improve 

upon measures in STEM-related content. To address a limitation of this dissertation 

study, researchers developing longitudinal surveys may want to include additional 

measures of interest in STEM-related content, ensuring that they survey students about 

their interest throughout high school. As interest can be fluid and may evolve through 

time, it would be ideal to survey students (in a longitudinal survey, such as HSLS:09) 

about their interests at least once per year. Additionally, researchers may consider adding 

a measure of science ability that is assessed at the beginning of high school (i.e., during 

the time that math ability is assessed). A measure in science ability could help in 

examining the impact of science-related knowledge and abilities on self-efficacy in 

science and interest in science. Furthermore, additional measures of parental involvement 

in STEM-related content may be valuable in considering the specific role parents play in 

the STEM readiness and intention development process. 

Consider school-level context. My dissertation study sought to explore the 

STEM readiness and intention development process at the student level, as supported by 

the theoretical framework of SCCT. As my study did not include school-level variables, 
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another line of future research may consider measures in the school context. For example, 

this may include the role of teachers and counselors, or the resources and support systems 

available at the high school. Specific measures may address the impact of teachers or 

counselors on the development of self-efficacy in math and science, as well as their role 

in the cultivation of math or science interest in a classroom context. Furthermore, 

research on the school-level context may want to investigate the extent to which school 

climate, school culture, and teacher expectations impact the STEM readiness and 

intention development process. 

Expand facets of familial involvement. Though the HSLS:09 survey only 

includes surveys from students’ parents, future researchers may want to include 

additional measures of familial involvement. In the cases in which parents are not present 

or involved, there may be other adults or family members, such as grandparents, aunts, 

uncles, or community members, who are involved in students’ schooling or educational 

experiences. Family members or other adults who discuss topics with students, such as 

school courses, future careers, preparing for college entrance exams, and applying for 

college, may have a similar impact in the STEM readiness and intention development 

process to that of parents. Including additional measures of familial involvement beyond 

parental involvement can be more inclusive and can allow for the opportunity to expand 

upon various facets and impacts of familial involvement (Gonzalez, Moll, & Amanti, 

2006; Mwangi, 2015; Savitz-Romer & Bouffard, 2012). 

 

Conclusion 

 This dissertation investigated the cognitive and contextual influences contributing 
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to the developmental process that high school students undergo in preparing for and 

considering the selection of an academic major in a STEM field. Guided by the 

theoretical framework of SCCT (Lent et al., 1994) and Wang’s (2013) conceptual model, 

I answered two research questions through the development and testing of a new 

conceptual model, the SRID Conceptual Model. My model addresses gaps in previous 

research, such as the absence of parental involvement. My research design overcame 

measurement and analytic shortcomings, while examining the moderating effect of self-

efficacy on high school students’ intention to major in a STEM field. 

 The methods I employed included conducting a descriptive analysis, EFA, CFA, 

and SEM, using the HSLS:09 longitudinal survey. The results of these analyses suggest 

several cognitive and contextual influences contributing to building STEM readiness and 

students’ intention to major in STEM during high school. These influences include SES, 

math ability, parental involvement, math self-efficacy, science self-efficacy, math 

interest, and science interest.  

The results of this study suggest key findings in regards to the process of STEM 

readiness and intention development among high school students. Parental involvement 

was found to be a key contextual influence in the STEM readiness and intention 

development process. This finding emphasizes the influential role that the familial 

context plays in cultivating capital in the STEM pipeline. Furthermore, this study 

revealed that STEM readiness is impacted directly by several factors, including SES, 

math ability, parental involvement, math self-efficacy, science self-efficacy, math 

interest, and science interest. Intention to major in STEM is directly impacted by STEM 

readiness, as well as high school students’ interest in math and interest in science. In 
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addition, I found that self-efficacy in math and science had a mediating effect through 

math and science interest on high school students’ intention to major in STEM, 

emphasizing the critical impact of self-efficacy throughout the career development 

process (Lent et al., 1994). 

This dissertation study has important implications for policymakers, practitioners, 

and future research. In particular, this chapter encouraged policymakers and practitioners 

to develop policies and practices that specifically target factors that directly or indirectly 

impact this process among high school students. This may include strategic intervention 

programs at the high school level to facilitate and better support students in pathways to 

STEM fields of study. Future research may seek to examine the STEM readiness and 

intention development process among underrepresented student populations, explore the 

process beyond high school, improve upon STEM-related measures, consider the school 

level-context, and expand facets of familial involvement. Overall, this dissertation study 

expands our knowledge of the process that leads high school students to become prepared 

for and aspire to pursue majors in STEM. Through facilitating this process among all 

student populations, we may improve overall enrollment and persistence through the 

STEM pipeline and contribute to the national goal of increasing the number of graduates 

in STEM fields of study. 
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