
The InsTITuTe for sysTems research

Isr develops, applies and teaches advanced methodologies of design and 
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

Isr is a permanent institute of the university of maryland, within the  
a. James clark school of engineering. It is a graduated national science 

foundation engineering research center.

www.isr.umd.edu

Aggregating Alphabets to Construct Balanced Words

Jeffrey W. Herrmann

Isr TechnIcal rePorT 2009-12



 1 

Aggregating Alphabets to Construct Balanced Words 
 

Jeffrey W. Herrmann  
A. James Clark School of Engineering 

University of Maryland 
College Park, MD 20742 

jwh2@umd.edu 

Abstract 

Balanced words are useful for scheduling mixed-model, just-in-time assembly lines, planning 
preventive maintenance, managing inventory, and controlling asynchronous transfer mode 
(ATM) networks.  This paper considers the challenging problem of finding a balanced word (a 
periodic sequence) for a finite set of letters, when the desired densities of the letters in the 
alphabet are given.  We present an aggregation approach that combines letters with the same 
density, constructs a word for the aggregated alphabet, and then disaggregates this word into a 
feasible word for the original alphabet.  We consider two different measures for evaluating 
solutions and use the aggregation approach with different heuristics.  Computational 
experiments show that using aggregation not only finds more balanced words but also reduces 
computational effort. 
 
Keywords:  balanced words, fair sequences, aggregation, cyclic scheduling 

Introduction 

Balanced words can be good solutions for problems of finding a fair sequence.  The idea 

of fair sequences occurs in many different areas, including scheduling mixed-model, just-in-time 

assembly lines, planning preventive maintenance, inventory management, and controlling 

asynchronous transfer mode (ATM) networks.  Kubiak (2004) provides a good overview of the 

need for fair sequences in different domains and discusses results for multiple related problems, 

including the product rate variation problem, generalized pinwheel scheduling, the hard real-time 

periodic scheduling problem, the periodic maintenance scheduling problem, stride scheduling, 

minimizing response time variability (RTV), and peer-to-peer fair scheduling.   

The routing of jobs in stochastic systems also requires fair sequences.  Hajek (1985) 

considered a queueing system where the interarrival times are independent, identically 

distributed random variables with finite mean and the server has exponentially distributed 



 2 

processing times.  A given fraction of the arriving jobs must be sent to the server, while the rest 

are sent elsewhere.  Hajek showed that a regular admission sequence minimizes the server’s 

expected queue size and the expected waiting time of the admitted jobs.  Altman et al. (2000) 

show that, for very general stochastic systems, the optimal routing of jobs to servers is a 

balanced sequence.  Sano et al. (2004) introduced a generalization of balanced words and 

showed that using these policies to route job minimizes the maximum waiting time.   

The remainder of the paper proceeds as follows: we will review related work, formulate 

the balanced word problem, and discuss heuristics for generating sequence.  Then, we present the 

main contribution of this paper: the aggregation approach.  We then discuss the results of 

computational experiments designed to evaluate the effectiveness of using aggregation in 

combination with the different heuristics before concluding the paper. 

Balanced Words  

We are given a finite alphabet and a set of densities for the letters in the alphabet.  In 

scheduling problems, these letters correspond to different types of products that need to be 

produced at different rates.  We wish to construct an infinite sequence (word) over the letters in 

this alphabet in which each letter occurs at a rate that equals the given density.  If the densities 

are all rational, it is sufficient to construct a cyclic sequence in which each letter occurs the 

correct number of times in the finite cycle. 

Given a density p in (0, 1) and a phase θ  in [0, 1), the regular sequence ( ),pσ θ  has the 

value ( )1j p jpθ θ+ + − +       in position j.  For example, ( ) ( )2
7 ,0 0001001σ ∞= . 

If we consider just one letter a in the alphabet, we can derive from any sequence S an 

indicator sequence I(s, a) that has a 1 in position j if S has the letter a in position j.  Otherwise, 

I(s, a) has a 0 in position j.   



 3 

The regular word problem is to find a sequence S so that all of the indicator sequences are 

regular sequences.  The complexity of the problem is open (Kubiak, 2009).  If the alphabet has at 

most two distinct densities, then a regular word exists (Altman et al., 2000).   

Balanced words are a more general concept that regular words.  Two different measures 

for the degree of balance have been proposed. 

Kubiak (2009) gives the following definition: given a finite alphabet {1, …, n}, a c-

balanced word is an infinite sequence U such that each position is U is in the alphabet and, if x 

and y are two factors (subsequences) of the same size, then 
i i

x y c− ≤ , where 
i

x  is the 

number of times that i occurs in the factor x.  We will define the count-balance of a word U as 

the minimal such value of c.  For example, the count-balance of the word (1231211321)∞ equals 

2 because 
1 1

11 23 2− =  and 2
i i

x y− ≤  for all factors x and y and all i.   

The count-balance of a regular word equals 1.  For any given set of densities, the minimal 

possible count-balance is less than or equal to 3 (Kubiak, 2009). 

Sano et al. (2004) gives the following definition for a different measure: given a finite 

alphabet {1, …, n}, a word U over this alphabet, and a nonnegative integer m, a letter a is m-

balanced in U if, whenever there exists an a-chain aWa in U, any factor W’ in U such that 

1W W m′ = + +  satisfies 1
a a

W W′ ≥ + . The sequence U is m-balanced if each letter in the 

alphabet is m-balanced.  We will define the gap-balance of a word U as the minimal such value 

of m.  For example, in the infinite sequence (313132)∞, the gap-balance of the letters 2 and 3 

equals 0, and the gap-balance of the letter 1 equals 2.  Note that the factor 3 in the 1-chain 131 is 

2 letters shorter than 323, the longest factor with no instance of the letter 1.  Therefore, the gap-

balance of this word equals 2. 



 4 

The gap-balance of a word equals 0 if and only if it is a constant gap word, and the gap-

balance of a word equals 1 if and only if it is a regular word (Sano et al., 2004).  Moreover, the 

count-balance of any word that has a positive gap-balance is not larger than the gap-balance of 

that word (Sano et al., 2004).   

In other words, the count-balance is the maximum difference in the number of copies of a 

letter for two factors of the same length.  The gap-balance is the maximum difference in length 

of two factors that contain the same number of copies of a letter.  For both measures, a smaller 

value implies that the occurrences of each letter are distributed more evenly, which is the goal in 

many applications.  Appendix A presents the pseudocode for pseudo-polynomial algorithms that 

measure the count-balance and gap-balance of a word. 

Sano et al. (2004) present a search algorithm that randomly generates words and keeps 

the most balanced one.  Otherwise, we know of no algorithms designed specifically to generate 

balanced words.  We will study a number of algorithms used for similar problems. 

Problem Formulation 

Let A be a finite set of letters {1, …, n}.  Let U be an infinite word over this set such that 

tU A∈  for all t∈ .  The density of letter a A∈  is ap  if the following limit exists: 

 [0, )lim n
a n

U
p

n→∞
=  

If all of these limits exist, then the sum of the densities must equal 1: 

 1a
a A

p
∈

=∑  

We assume that all of the densities are rational.  Therefore, we consider infinite words U 

that are the infinite repetition of a finite word S; that is, U S∞= .  Given an alphabet A and a set 

of rational densities, there exists a positive integer T and positive integers 1x , …, nx  such that 



 5 

/i ip x T=  for i = 1,…, n and gcd ( )1, , nx x  = 1.  Thus, 1 nx x T+ + = .  Hereafter, we will 

describe an instance by the values of ( )1, , nx x , with 1 2 nx x x≥ ≥ ≥ . 

We will study two versions of the balanced word problem (BWP).  They differ only in 

the measure used.  BWP-count uses the count-balance measure, and BWP-gap uses the gap-

balance measure. 

Thus, we can describe BWP-count (and BWP-gap) as follows: Given an instance 

( )1, , nx x , find a finite word S of length T that minimizes the count-balance (gap-balance) of 

the infinite word U that is the infinite repetition of S subject to the constraints that exactly one 

letter is assigned to each position of S and each and every letter i occurs exactly ix  times in S.   

The complexity of BWP-count appears to be open.  Given an instance, finding a word 

with a count-balance that equals 1 requires finding a regular word.  The complexity of this 

problem is open (Kubiak, 2009).  Likewise, the complexity of BWP-gap appears to be open.  

Given an instance, finding a word with an gap-balance that equals 0 requires finding a constant 

gap word for ( )1, , nx x .  The complexity of the constant gap problem is open (Kubiak, 2004).  

Nevertheless, these problems are related to the Periodic Maintenance Scheduling Problem, which 

is NP-complete in the strong sense (Kubiak, 2009), and the RTV problem, which is NP-hard 

(Corominas et al., 2007).   

Consider, as an example, the following three-letter instance: ( )1 2 3, ,x x x  = (4, 3, 2).  In 

this system, ( )1 2 3, ,p p p  = (4/9, 1/3, 2/9), and T = 9.  Consider the word U = (112231123)∞.  The 

count-balance of U equals 2, and the gap-balance of U equals 3 (because the gap-balance of the 

letter 1 equals 3).  Now, consider the word V = (121312123)∞.  The count-balance of V also 

equals 2 (because 
2 2

212 131 2− = ), but the gap-balance of V equals 2 (because the gap-balance 

of the letter 2 equals 2). 

The count-balance measurement algorithm (Appendix A) uses the following quantities: 



 6 

 ,0,..., 1 1
max 1

i

j
A
j i k qk x q

M j+= −
=

 
= ∆ + − 

 
∑  

 ,0,..., 1 1
min 1

i

j
B
j i k qk x q

M j+= −
=

 
= ∆ + + 

 
∑  

If 1
A B
p p cM M + −≥ , then there is an integer m, with 1

A B
p p cM m M + −≥ ≥ , such that there is a 

factor x of length m with at most p – 1 copies of i (because A
pM  is the length of the longest factor 

with only p – 1 copies of i) and a factor y of length m with at least p + c copies of i (because 

1
B
p cM + −  is the length of the shortest factor with p + c copies of i).  Thus, 

( )1 1
i i

y x p c p c− ≥ + − − = + , so the count-balance must be at least c + 1. 

To evaluate the gap-balance, we need the smallest value v such that ' 1W W v= + +  

satisfies ' 1
i i

W W≥ + .  This is equivalent to '
i i

W W≤  implies 'W W v≤ + , which is the 

same as 'v W W≥ − .  So, for the letter i, we need to look for the shortest factor between two 

copies of i and the longest factor so that both have the same number of copies of i.  We define a 

“gap” as a factor that occurs between two copies of the letter i.  There are exactly ix  gaps for 

letter i.  The non-negative length of a gap ik∆  is the number of positions between the copies of i.  

The shortest factor between two copies of i that has j copies of i and the longest factor that has j 

copies of i will be some j+1 consecutive gaps plus the j copies of i.  In the gap-balance 

algorithm,  

 , ,1,...,1,..., 0 0
max min

ii

j j

j i k q i k qk xk x q q
δ + +==

= =

   
= ∆ − ∆   

   
∑ ∑  

is therefore the difference between the lengths of the shortest and longest factors that 

have j copies of i.  (In the above equation, the second subscript k+q must be reduced by ix  if it 

exceeds ix .) 



 7 

Heuristics 

To construct solutions for the BWP-count (and BWP-gap), we consider a number of 

heuristics that have been proposed for related problems.  The following discussion briefly 

describes the heuristics.  Detailed algorithms and examples are given in Appendix A.  We will 

conduct extensive computational testing to evaluate the performance and computational effort of 

these heuristics.  We will also use these heuristics with the aggregation approach presented later. 

GR.  The greedy regular (GR) algorithm, presented by van der Laan (2005), tries to make 

the sequence of each letter resemble a regular sequence as much as possible.  The highest-density 

letter will have a regular sequence.  The sequences for the other letter are regular with respect to 

the sequences of the higher-density letters.  The GR algorithm generates a periodic policy.  The 

computational effort of the GR algorithm is O(nT). 

Stride. Waldspurger and Weihl (1995) considered the problem of scheduling 

multithreaded computer systems.  In such a system, there are multiple clients, and each client has 

a number of tickets.  A client with twice as many tickets as another client should be allocated 

twice as many quanta (time slices) in any given time interval.  Waldspurger and Weihl 

introduced the stride scheduling algorithm to solve this problem.  They also presented a 

hierarchical stride scheduling approach that uses a balanced binary tree to group clients, uses 

stride scheduling to allocate quanta to the groups, and then, within each group, uses stride 

scheduling to allocate quanta to the clients.  Although they note that grouping clients with the 

same number of tickets would be desirable, their approach does not exploit this.  Indeed, the 

approach does not specify how to create the binary tree.  Kubiak (2004) showed that the stride 

scheduling algorithm is the same as Jefferson’s method of apportionment and is an instance of 



 8 

the more general parametric method of apportionment (Balinski and Young, 1982).  Thus, the 

stride scheduling algorithm can be parameterized.   

Two of the heuristics are versions of the parameterized stride scheduling algorithm, 

which builds a fair sequence and performs well at minimizing the maximum absolute deviation 

(Kubiak, 2004).  The algorithm has a single parameter δ that can range from 0 to 1.  This 

parameter affects the relative priority of low-density letters and their absolute position within the 

sequence.  When δ is near 0, low-density letters will be positioned earlier in the sequence.  When 

δ is near 1, low-density letters will be positioned later in the sequence.   

We will use the stride scheduling algorithm with δ = 0.5 and δ = 1 to generate periodic 

policies.  The computational effort of the parameterized stride scheduling algorithm is O(nT). 

Bottleneck.  The bottleneck minimization problem (Steiner and Yeomans, 1993) is 

related to fair sequencing of a mixed-model manufacturing facility.  To solve the BWP, we use 

an algorithm that Steiner and Yeomans (1993) developed.  The bottleneck algorithm calculates 

an earliest and latest start time for each unit of demand (each letter in the alphabet) and then 

allocates to each position in the word the eligible product (letter) with the smallest latest start 

time.  This heuristic runs in O(nT) time.  Appendix A describes the algorithm in detail.   

Search.  Sano et al. (2004) proposed a search algorithm for finding balanced words.  The 

search randomly selects phases { }1, , nφ φ  and then uses these phases to construct a word.  If the 

resulting word has a lower gap-balance than the best one found so far, it is saved. 

To generate a word from a set of phases, the algorithm starts at the first position and 

selects the letter i with the minimal phase.  The algorithm increases iφ  by / iT x  and moves to the 

next position. 



 9 

Aggregation 

To improve the performance of these heuristics, we employed an aggregation approach 

that first aggregates an alphabet, constructs a solution for the aggregate alphabet, and then 

disaggregates that solution.  Aggregation is a well-known and valuable technique for solving 

optimization problems, especially large-scale mathematical programming problems.  Model 

aggregation replaces a large optimization problem with a smaller, auxiliary problem that is easier 

to solve (Rogers et al., 1991).  The solution to the auxiliary model is then disaggregated to form 

a solution to the original problem.  Model aggregation has been applied to a variety of 

production and distribution problems, including machine scheduling problems.  For example, 

Rock and Schmidt (1983) and Nowicki and Smutnicki (1989) aggregated the machines in a flow 

shop scheduling problem to form a two-machine problem. 

We previously developed this aggregation scheme, which is similar to the substitution 

concept discussed by Wei and Liu (1983), to generate solutions for the RTV problem and 

showed that using aggregation with parameterized stride scheduling and an improvement 

heuristic generates solutions with lower RTV and reduces the computational effort (Herrmann, 

2007, 2009a, b).  This paper builds on the previous work but considers a more general problem. 

The aggregation approach used here repeatedly aggregates an alphabet until it cannot be 

aggregated any more.  Each aggregation combines letters that have the same density into a 

group.  These letters are removed, and the group becomes a new letter in the new aggregated 

alphabet.  The letters with the smallest densities are combined first.  Aggregation reduces the 

number of letters that need to be considered.   

The notation used in the algorithm that follows enables us to keep track of the 

aggregations in order to describe the disaggregation of a sequence precisely.  Let 0I  be the 



 10 

original instance (alphabet) and kI  be the k-th instance generated from 0I .  Let kn  be the number 

of letters in instance kI .  Let jB  be the set of letters that form the new letter j, and let ( )jB i  be 

the i-th letter in that set.  As the aggregation algorithm is presented, we describe its operation on 

the following five-letter example: 0I  = (3, 2, 2, 1, 1), n = 5, and T = 9. 

Aggregation.  Given: an instance 0I  with values ( )1 2, , , nx x x .   

1. Initialization.  Let k = 0 and 0n n= . 

2. Stopping rule.  If all of the letters in kI  have different values, return kI  and H 

= k because no further aggregation is possible.  Otherwise, let G be the set of 

letters with the same value such that any smaller value is unique.   

Example.  With k = 0, G = {4, 5} because 4 5x x= .   

3. Aggregation.  Let m = |G| and let i be one of the letters in G.  Create a new 

letter n + k + 1 with value 1n k ix mx+ + = .  Create the new instance 1kI +  by 

removing from kI  all m letters in G and adding letter n + k + 1.  Set 

1n kB G+ + = .  kn  = 1 1kn m− − + .  Increase k by 1 and go to Step 2. 

Example.  With k = 0 and G = {4, 5}, the new letter 6 has value 6 2 1x = × =2.  { }6 4,5B = .  

The letters in 1I  are {1, 2, 3, 6}.  When k = 1, G = {2, 3, 6}. The new letter 7 has value 

7 3 2x = × =6, and { }7 2,3,6B = .  The letters in 2I  are {1, 7}, which have different values.  

Table 1 describes the instances created for this example. 



 11 

Table 1. The values for the five original letters in the example instance 0I  and the two new 
letters in the aggregate instances 1I  and 2I .   

 1x  2x  3x  4x  5x  6x  7x  

0I  3 2 2 1 1   

1I  3 2 2   2  

2I  3      6 

 

At any point during the aggregation, the total value in a new instance will equal the total 

value of the original instance because the value of the new letter equals the sum of the values of 

the letters that were combined to form it.   

The aggregation procedure generates a sequence of instances 0I , …, HI .  (H is the index 

of the last aggregation created.)  The aggregation can be done at most 1n −  times because the 

number of letters decreases by at least one each time an aggregation occurs.  Thus 1H n≤ − .  

Aggregation runs in O( 2n ) time because each aggregation requires O(n) time and there are at 

most 1n −  aggregations.   

 

1 1 

3 

2 2 2 

6 

 
Figure 1.  The forest corresponding to the aggregation of the example. The five leaf nodes 

correspond to the original letters in the example.  The two parent nodes correspond to the new 
letters created during the aggregation.  The two root nodes correspond to the letters remaining in 

the most aggregated instance. 

We can represent the aggregation as a forest of weighted trees.  There is one tree for each 

letter in the aggregated instance HI .  The weight of the root of each tree is the total value of the 



 12 

letters in 0I  that were aggregated to form the corresponding letter in HI .  The weight of any 

node besides the root node is the weight of its parent divided by the number of children of the 

parent.  The leaves of a tree correspond to the letters in 0I  that were aggregated to form the 

corresponding letter in HI , and each one’s weight equals the value of that letter.  The forest has 

one parent node for each new letter formed during the aggregation, and the total number of nodes 

in the forest equals 2n H n+ < .  Figure 1 shows the forest corresponding to the aggregation of 

the (3, 2, 2, 1, 1) instance. 

Disaggregation 

When aggregation is complete, we must find a feasible solution for the aggregated 

instance HI  and then disaggregate that solution.  We will use the heuristics presented earlier to 

construct a feasible solution.  This section presents the disaggregation procedure.   

Let HS  be a feasible solution for the instance HI .  In particular, HS  is a sequence of 

length T.  Each position in HS  is a letter in the instance HI .  Disaggregating HS  requires H steps 

that correspond to the aggregations that generated the instances 1I  to HI , but they will, naturally, 

be considered in reverse order.  We disaggregate HS  to generate 1HS −  and then continue to 

disaggregate each solution in turn to generate 2HS − , …, 0S .  0S  is a feasible solution for 0I , the 

original instance.   

The basic idea of disaggregating a solution kS  is to replace each new letter with the 

letters used to form it.  Letter n+k was formed to create instance kI  from the letters in n kB + , 

which were in 1kI − .  It has n kx +  positions in kS .  According to the aggregation scheme, 

n k ix mx+ = , where m = | n kB + | and i is one of the letters in n kB + .  The first position in kS  assigned 



 13 

to letter n+k will, in the new solution 1kS − , go to the first letter in n kB + , the second position 

assigned to letter n+k will go to the second letter in n kB + , and so forth.  This will continue until 

all n kx +  positions have been assigned.  Each letter in n kB +  will get /n kx m+  positions in 1kS − .   

In the following algorithm, ( )kj S a=  means that letter j is in position a in solution kS , 

and ( )n kB i+  is the i-th letter in n kB + .   

Disaggregation.  Given: The instances 0I , …, HI  and the solution HS , a feasible 

solution for the instance HI .   

1.  Initialization.  Let k = H.   

2.  Set m = | n kB + | and i  = 1.  

3.  For a = 0, …, T-1, perform the following step: 

a. If ( )kS a  < n+k, assign ( ) ( )1k kS a S a− = .  Otherwise, assign ( ) ( )1k n kS a B i− += , 

increase i by 1, and, if i > m, set i = 1.   

4.  Decrease k by 1.  If k > 0, go to Step 2.  Otherwise, stop and return 0S . 

Example.  Consider the aggregation of the instance (3, 2, 2, 1, 1) presented earlier and the 

solution 2S  = 7-7-1-7-7-1-7-7-1, which is a feasible solution for the aggregated instance 2I .  

When k = 2, n+k = 7, and { }7 2,3,6B = .  The positions in 2S  that are assigned to letter 7 will be 

reassigned to letters 2, 3, and 6.  The resulting solution 1S  = 2-3-1-6-2-1-3-6-1.  

When k = 1, n+k = 6, and { }6 4,5B = .  The positions in 1S  that are assigned to letter 6 

will be reassigned to letters 4 and 5. The resulting solution 0S  = 2-3-1-4-2-1-3-5-1. Table 2 lists 

these three solutions. 



 14 

Table 2. The disaggregation of solution 2S  for instance 2I  in the example.  The first row is 2S , a 
feasible solution for instance 2I .  The second row is 1S , a feasible solution for instance 1I .  The 
third row is 0S , a feasible solution for instance 0I .  

a 0 1 2 3 4 5 6 7 8 

2S (a) 7 7 1 7 7 1 7 7 1 

1S (a) 2 3 1 6 2 1 3 6 1 

0S (a) 2 3 1 4 2 1 3 5 1 

 

As noted earlier, there are at most 1n −  aggregations.  Because each solution 

disaggregation requires O(T) effort, disaggregation runs in O(nT) time in total. 

Disaggregating Balanced Words 

How does disaggregating a word affect its count-balance or its gap-balance?  That is, is 

the count-balance (or gap-balance) of the disaggregated word equal to the count-balance of the 

aggregated word? 

Theorem 1.  Disaggregating a word does not increase its count-balance. 

Proof.  Consider the aggregated word U+ and the disaggregated word U-. The 

disaggregation replaces mx copies of the letter j in U+ by x copies of the m letters in jB  in a 

round-robin manner.   

Let c be the count-balance of U+ and let y and z be factors of U such that 
j j

c z y= − .  

Let a be one of the letters that replaces letter j.  Because the copies of j are replaced in a round-

robin manner, /
a j

y y m =    or /
a j

y y m =   .  Likewise, /
a j

z z m =    or /
a j

z z m =   .  

Therefore, / /
a a j j

z y z m y m   − ≤ −     



 15 

If 1c = , we consider three cases.  First, if ( )0 mod
j

z m≡ , then /
a j

z z m=  and 

/ / 1
j j

y m z m  = −  .  Thus, 1
a a

z y− ≤ .  Second, if ( )0 mod
j

y m≡ , then /
a j

y y m=  and 

/ / 1
j j

z m y m  = +  .  Thus, 1
a a

z y− ≤ .  Otherwise, / / 1
j j

z m y m   = +    , so 1
a a

z y− ≤ . 

If 2c = , we consider the following three cases.  First, if ( )0 mod
j

y m≡ , then 

/
a j

y y m=  and / / 1
j j

z m y m  = +  .  Thus, 1
a a

z y− ≤ .  Second, if ( )1 mod
j

y m m≡ − , 

then ( )1 mod
j

z m≡  and / / 2
j j

z m y m   = +    .  Therefore, 2
a a

z y− ≤ .  Otherwise, 

/ / 1
j j

z m y m   = +    , so 1
a a

z y− ≤ . 

If 3c ≥ , then we note that / / 1
j j

z m z m  < +   and / / 1
j j

y m y m  > −  .  Therefore, 

( ) / 2 / 2 / 2 2
a a a a

z y z y m c m c− ≤ − + = + ≤ + .  This difference must be an integer, so, when 

c = 3, 3
a a

z y− ≤ .  For 4c ≥ , it is clear than / 2 2c c+ ≤ .   

These cases all show that, in the disaggregated word, 
a a

z y c− ≤ , so the count-balance 

of the disaggregated word is not larger than the count-balance of the aggregated word.  Q.E.D. 

Theorem 2.  Disaggregating a word does not increase its gap-balance. 

Proof.  Consider the aggregated word U+ and the disaggregated word U-. The 

disaggregation replaces mx copies of the letter j in U+ by x copies of the m letters in jB  in a 

round-robin manner.   

Let v be the gap-balance of a letter i in U- that replaced the letter j in U+.  Then there 

exist factors 'W  and W such that '
i i

W W=  and 'W W v= + .  Moreover, the positions 

immediately before and after 'W  and W contain the letter i.  Let '
i i

t W W= = .  Therefore, 



 16 

factors 'W  and W contain t copies of i and 1t +  copies of each of the 1m −  other letters than 

replaced the letter j.  Therefore, in the word U+, the positions corresponding to 'W  contain 

( )( )1 1t m t+ − +  copies of j.  Likewise, the positions corresponding to W contain 

( )( )1 1t m t+ − +  copies of j.  Moreover, the positions immediately before and after 'W  and W 

contain the letter j.  Because 'W W v= + , the gap-balance of the letter j in U+ must be at least 

v.  Therefore, the gap-balance of any letter that replaced j is less than or equal to the gap-balance 

of j.  The gap-balance of no other letter changes because of the disaggregation, so the gap-

balance of the disaggregated word is less than or equal to the gap-balance of the aggregated 

word.  Q.E.D. 

Computational Experiments 

The purpose of the computational experiments was to compare the performance of the 

heuristics and to show how the aggregation technique performs in combination with these 

heuristics to find balanced words.  All of the algorithms were implemented in Matlab and 

executed using Matlab R2006b on a Dell Optiplex GX745 with Intel Core2Duo CPU 6600 @ 

2.40 GHz and 2.00 GB RAM running Microsoft Windows XP Professional Version 2002 

Service Pack 3. 

We generated 1,800 instances as follows.  First, we set the value of T and the number of 

letters n.  To generate an instance, we generated T n−  random numbers from a discrete uniform 

distribution over { }1, , n .  We then let ix  equal one plus the number of copies of i in the set of 

T n−  random numbers (this avoided the possibility that any 0ix = ).  We generated 100 

instances for each of the combinations of T and n shown in Table 3. 



 17 

Table 3. Combinations of T and n used to generate instances. 

T n         
100 10 20 30 40 50 60 70 80 90 
500 50 100 150 200 250 300 350 400 450 

 

All of these instances can be aggregated.  For each instance, we constructed solutions as 

follows.  First, we applied one of the basic heuristics to the instance (we call this the H solution).  

Next, we aggregated the instance.  For the aggregate instance, we applied the heuristic to 

construct an aggregated solution.  We disaggregated this solution to construct the AHD solution.  

This makes two policies using one basic heuristic.  We repeated this for the remaining basic 

heuristics for a total of 10 policies. 

Before discussing the results of the heuristics, we consider first how many times that an 

instance could be aggregated.  Table 4 shows that the average number of aggregations decreases 

steadily as n increases.  For instance, the average number of aggregations per instance is near six 

for T = 100 and n = 20, but, as n increases, this decreases to just over two.   

Table 4. Average number of aggregations for the instances in each problem set. 
   

T n Average number 
of aggregations 

100 10 2.66 
 20 6.00 
 30 5.71 
 40 5.11 
 50 4.03 
 60 3.68 
 70 3.23 
 80 2.64 
 90 2.07 

500 50 10.77 
 100 9.20 
 150 7.39 
 200 6.09 
 250 5.10 
 300 4.34 
 350 3.84 
 400 3.20 
 450 2.69 

 



 18 

As n approaches T, the average number of letters in the aggregated instances also 

decreases because the aggregation depends upon the number of distinct values of values.  Each 

distinct value leads to an aggregation of multiple letters and generates a letter in the aggregated 

instance.  Thus, the number of letters in the aggregated instance generally equals the number of 

aggregations needed to create it.  Of course, there are some cases in which two groups can be 

combined, which increases the number of aggregations and reduces the number of letters, and 

some letters may have unique values, but this occurred less often as n increased.  As n 

approaches T, the number of distinct values decreases, so there are fewer aggregations and fewer 

letters in the aggregated instances.   

We will first consider the results for minimizing the count-balance.  As shown in Table 5, 

the stride scheduling and bottleneck heuristics generated words with larger count-balances.  The 

performance of the GR heuristic improved as n increased (and approached T).  Using 

aggregation led to the best solutions with the stride, bottleneck, and search algorithms.  

Aggregation was not as useful with the GR heuristic. 

As shown in Table 6, with the gap-balance, the general trend is similar, but the 

differences are greater because the gap-balance can be quite large for some words.  The 

bottleneck heuristic generated words with larger gap-balances.  Using aggregation with the stride 

and search heuristics consistently generated the best solutions.  The GR heuristic generated poor-

quality solutions when n was small, but, as as n approached T, the solution quality dramatically 

improved.  Interestingly, using aggregation with the GR heuristic generated better solutions 

when n was small, but constructed more unbalanced solutions as n approached T. 



 19 

Table 5. Average values of the count-balance for the H and AHD solutions generated using five 
basic heuristics.   

  Search Bottleneck GR Stride 0.5 Stride 1.0 
D N H AHD H AHD H AHD H AHD H AHD 

100 10 2 2 2.85 2 2.89 2.62 2.70 2.01 2.91 2.02 
 20 2 2 2.99 2 2.24 2.43 2.85 2 3.15 2 
 30 2 2 3 2 2 2.26 3 2 3.60 2 
 40 2 2 2.98 2 2 2.03 3.04 1.99 3.22 1.99 
 50 2 1.97 3 1.97 2 2 2.80 1.95 3.75 1.99 
 60 2 1.81 3 1.86 2 1.94 3.24 1.82 4.12 1.86 
 70 2 1.65 3 1.71 1.99 1.71 3.37 1.63 3.57 1.68 
 80 2 1.68 2.9 1.85 1.9 1.85 3.08 1.58 3.08 1.85 
 90 2 1.36 2.43 1.36 1.43 1.36 2.43 1.36 2.43 1.36 

500 50 2 2 3 2 3.31 2.82 3 2 3.05 2 
 100 2 2 3 2 2.16 2.47 3 2 3.75 2 
 150 2 2 3 2 2 2.19 3.02 2 4.34 2 
 200 2 2 3 2 2 2.02 3.54 2 4.19 2 
 250 2 2 3 2 2 2 3.71 2 4.71 2 
 300 2 2 3 2 2 2 3.68 1.95 4.81 1.99 
 350 2 1.95 3 2 2 1.98 3.79 1.92 4.19 1.96 
 400 2 1.76 3 2 2 1.93 3.65 1.71 3.65 1.81 
 450 2 1.43 2.92 1.75 1.92 1.75 2.96 1.42 2.96 1.43 

 

Table 6. Average values of the gap-balance for the H and AHD solutions generated using five 
basic heuristics.   

  Search Bottleneck GR Stride 0.5 Stride 1.0 
D N H AHD H AHD H AHD H AHD H AHD 

100 10 4.19 3.98 8.84 6.14 23.22 17.49 8.55 4.57 8.84 5.45 
 20 5.00 3.73 18.02 7.98 50.12 16.98 16.04 3.97 18.66 4.70 
 30 5.37 3.37 26.04 5.71 37.42 12.22 23.70 3.32 28.39 3.69 
 40 5.37 3.05 33.41 4.89 22.23 10.70 29.29 2.89 38.17 3.40 
 50 5.40 2.70 41.07 5.15 15.38 9.10 34.20 2.65 47.80 2.95 
 60 5.18 2.19 47.24 4.83 9.65 7.26 49.46 2.16 57.15 2.31 
 70 4.77 1.80 55.33 4.16 5.02 5.46 64.16 1.80 67.11 1.88 
 80 4.27 1.62 61.66 3.03 2.48 4.96 75.74 1.58 76.18 1.78 
 90 3.15 0.79 80.00 2.23 0.86 2.23 83.80 0.79 83.80 0.79 

500 50 11.20 6.93 48.41 16.88 244.27 78.62 45.31 7.28 48.52 9.60 
 100 13.32 5.88 94.61 18.47 296.16 48.92 84.33 5.89 98.47 6.91 
 150 14.36 5.17 133.22 19.14 197.40 41.10 117.60 5.09 147.92 5.67 
 200 14.50 4.32 171.85 22.88 118.38 32.25 150.47 4.16 197.91 4.53 
 250 14.82 3.67 203.50 21.70 80.88 25.55 179.02 3.49 247.60 3.90 
 300 14.86 3.01 237.93 20.71 48.40 19.53 249.33 2.91 296.20 3.17 
 350 14.79 2.50 281.61 15.74 25.88 16.22 322.94 2.52 345.97 2.63 
 400 13.99 1.92 311.46 13.51 10.08 13.19 388.71 1.92 395.38 2.06 
 450 12.87 1.36 400.08 13.71 2.66 6.38 443.66 1.34 443.82 1.37 

 

We also measured the clock time needed to generate these policies.  Table 7 summarizes 

these results, and Figure 2 shows the average time needed to generate the different policies for 

different heuristics and different values of T.  These are averages over all of the corresponding 

problem sets.   



 20 

As T increased, the time required increased for all heuristics and policies.  The search 

heuristic took the most time, and using aggregation further increased the time required.  This 

occurs because the search heuristic repeatedly evaluates the gap-balance of the solutions 

generated, aggregating increases the densities, and evaluating the gap-balance requires more 

effort as the number of large densities increases.  The other heuristics (with or without 

aggregation) took much less time.  For these heuristics, the time required increased when T 

increased, but increasing n made little no difference, except for the stride scheduling heuristic, 

which, when T = 500, required more time as n increased.  Using aggregation reduced the time 

required for the bottleneck heuristic for all values of n and T.  Using aggregation with the GR 

heuristic did not affect the time required.  Using aggregation with the stride scheduling heuristic 

increased the time required slightly when T = 100 but reduced the time required when T = 500.  

For both values of T, using aggregation with stride scheduling heuristic required less time than 

the GR heuristic. 

These results show that using the stride scheduling heuristic with aggregation generates 

the best solutions with the least computational effort (compared to the other heuristics). 

Table 7. Average values of the gap-balance for the H and AHD solutions generated using five 
basic heuristics.   

  Search Bottleneck GR Stride 0.5 Stride 1.0 
D N H AHD H AHD H AHD H AHD H HE 

100 10 2.9596 4.9964 0.0015 0.0014 0.0020 0.0023 0.0009 0.0012 0.0005 0.0012 
 20 2.1294 5.5540 0.0011 0.0009 0.0016 0.0019 0.0006 0.0008 0.0006 0.0008 
 30 1.8855 5.8556 0.0012 0.0009 0.0016 0.0019 0.0006 0.0008 0.0006 0.0008 
 40 1.7923 6.1272 0.0012 0.0008 0.0017 0.0019 0.0007 0.0008 0.0006 0.0008 
 50 1.7395 6.6604 0.0011 0.0008 0.0017 0.0019 0.0007 0.0008 0.0007 0.0008 
 60 1.6999 7.7378 0.0011 0.0007 0.0017 0.0018 0.0007 0.0008 0.0007 0.0008 
 70 1.6655 9.7657 0.0011 0.0006 0.0018 0.0019 0.0008 0.0008 0.0008 0.0008 
 80 1.6308 11.1628 0.0011 0.0006 0.0018 0.0018 0.0008 0.0008 0.0008 0.0008 
 90 1.5928 15.1616 0.0010 0.0006 0.0019 0.0018 0.0009 0.0008 0.0009 0.0008 

500 50 14.4718 74.3008 0.0135 0.0063 0.0080 0.0085 0.0035 0.0034 0.0034 0.0034 
 100 10.7971 93.3957 0.0175 0.0050 0.0083 0.0085 0.0046 0.0034 0.0045 0.0034 
 150 10.2488 112.3142 0.0192 0.0043 0.0088 0.0086 0.0057 0.0035 0.0056 0.0034 
 200 10.3019 136.1293 0.0207 0.0037 0.0092 0.0087 0.0068 0.0036 0.0066 0.0036 
 250 10.5470 166.3376 0.0215 0.0033 0.0096 0.0089 0.0079 0.0038 0.0077 0.0038 
 300 10.8360 195.6134 0.0217 0.0030 0.0100 0.0091 0.0090 0.0040 0.0087 0.0040 
 350 11.1434 245.6855 0.0220 0.0032 0.0105 0.0095 0.0101 0.0044 0.0098 0.0044 
 400 11.4403 341.7110 0.0219 0.0034 0.0110 0.0097 0.0111 0.0046 0.0108 0.0046 
 450 11.7140 528.2417 0.0205 0.0037 0.0115 0.0100 0.0122 0.0050 0.0118 0.0050 



 21 

 

0.0001

0.001

0.01

0.1

1

10

100

H AHD H AHD H AHD H AHD H AHD

A
ve

ra
ge

 T
im

e 
(s

ec
on

ds
)

T = 500

T = 100

Search Bottleneck GR Stride 0.5 Stride 1.0

  
Figure 2.  Average time required to generate policies for different heuristics, solutions, and 

values of T.  Times are averaged over the corresponding problem sets and instances within those 
sets.  Note that the vertical scale is logarithmic in order to improve the clarity of the figure. 

Summary and Conclusions 

This paper presents an aggregation approach for the problem of finding balanced words, 

which have applications in many sequencing problems.  We used two different measures to 

evaluate words.  We combined this approach with various heuristics in order to determine when 

aggregation is useful.  The aggregation algorithm runs in polynomial time, but the solution 

generation and disaggregation algorithms require pseudo-polynomial time. 

The results show that using aggregation can generate more balanced solutions.  

Moreover, using aggregation can reduce the computational effort needed to construct a solution.   

Among the heuristics, the results of our experiments show that the GR heuristic generates 

balanced words without aggregation.  When combined with aggregation, stride scheduling 

generates the best solutions.  The bottleneck heuristic does not perform as well.  The search 



 22 

algorithm of Sano et al. (2004) generates good solutions, but it requires additional computational 

effort.   

For the BWP, we recommend using aggregation with stride scheduling.  These 

techniques generate the best policies and require little computational effort. 

The results here, along with the results of Herrmann (2009a, b) on using aggregation for 

the RTV problem, indicate that this type of aggregation approach is a powerful technique for 

problems that require generating a fair sequence.  Unlike the previous work, which focused on 

specific scheduling problems, the work presented in this paper considers the more general 

problem of finding balanced words, which have applications in numerous domains. 

The aggregation procedure presented here cannot aggregate an instance if all of the letters 

have different values.  For such cases, the results here indicate which heuristics perform well 

without aggregation.  In general, it may be useful to develop and test other types of aggregation.  

Future work will consider systematic approaches along this line.   

References 
Altman, E., B. Gaujal, and A. Hordijk (2000) “Balanced sequences and optimal routing,” 

Journal of the ACM, Volume 47, Number 4, pages 752–775. 

Balinski, M.L, and H.P. Young (1982) Fair Representation.  Yale University Press, New Haven, 

Connecticut. 

Corominas, Albert, Wieslaw Kubiak, and Natalia Moreno Palli (2007) “Response time 

variability,” Journal of Scheduling, 10:97-110. 

Hajek, B. (1985) “Extremal Splittings of Point Processes,” Mathematics of Operations Research, 

Volume 10, pages 543-556. 



 23 

Herrmann, Jeffrey W. (2007) “Generating Cyclic Fair Sequences using Aggregation and Stride 

Scheduling,” Technical Report 2007-12, Institute for Systems Research, University of 

Maryland, College Park.  Available online at http://hdl.handle.net/1903/7082 

Herrmann, Jeffrey W. (2008) “Constructing Perfect Aggregations to Eliminate Response Time 

Variability in Cyclic Fair Sequences,” Technical Report 2008-29, Institute for Systems 

Research, University of Maryland, College Park.  Available online at 

http://hdl.handle.net/1903/8643 

Herrmann, Jeffrey W. (2009a) “Generating Cyclic Fair Sequences for Multiple Servers,” MISTA 

2009, Dublin, Ireland, August 10-12, 2009. 

Herrmann, Jeffrey W. (2009b) “Using Aggregation to Reduce Response Time Variability in 

Cyclic Fair Sequences,” to appear in Journal of Scheduling, 2009. 

Kubiak, W. (2004) Fair sequences.  In Handbook of Scheduling: Algorithms, Models and 

Performance Analysis, Leung, J.Y-T., editor, Chapman & Hall/CRC, Boca Raton, 

Florida.  

Kubiak, W. (2009) Proportional Optimization and Fairness, Springer, New York. 

Nowicki, E., and C. Smutnicki (1989) “Worst-case analysis of an approximation algorithm for 

flow shop scheduling,” Operations Research Letters, 8:171-177. 

Rock, H., and G. Schmidt (1983) “Machine Aggregation Heuristics in Shop Scheduling,” 

Methods of Operations Research, 45:303-314. 

Rogers, David F., Robert D. Plante, Richard T. Wong, and James R. Evans (1991) “Aggregation 

and Disaggregation Techniques and Methodology in Optimization,” Operations 

Research, 39(4):553-582. 



 24 

Sano, Shinya, Naoto Miyoshi, and Ryohei Kataoka (2004) “gap-balanced words: A 

generalization of balanced words,” Theoretical Computer Science, Volume 314, Issues 1-

2, 25 February 2004, pages 97-120. 

van der Laan, D.A. (2000) “Routing Jobs to Servers with Deterministic Service Times,” 

Technical report 2000-20, Leiden University. 

van der Laan, Dinard (2005) “Routing Jobs to Servers with Deterministic Service Times,” 

Mathematics of Operations Research, Volume 30, Number 1, pages 195-224. 

Waldspurger, C.A., and Weihl, W.E. (1995) Stride scheduling: Deterministic proportional-share 

resource management.  Technical Memorandum MIT/LCS/TM-528, MIT Laboratory for 

Computer Science, Cambridge, Massachusetts. 

Wei, W.D., and Liu, C.L. (1983) On a periodic maintenance problem.  Operations Research 

Letters, 2(2):90-93. 



 25 

Appendix A.  Algorithms for the Heuristics. 

count-balance algorithm 

The count-balance algorithm determines the count-balance of the infinite word generate from a 

finite word and can be described as follows.  The input is an instance ( )1, , nx x  with 

1 2 nx x x≥ ≥ ≥ .  Let 1 nT x x= + + .  In this algorithm, tS  refers to the letter in position t of S.  

Note that, if n = 1, then the count-balance of S equals 0. 

1. Set c = 1.  Set { }
1,...,

max :i tt T
L t S i

=
= =  and 0ig =  for all 1, ,i n=  . 

2. For 1, ,t T=  , perform the following steps: 

a. Let ti S= .  Increase ig  by 1.  If iL t< , set 1
iig it L∆ = − − ; else set 

1
iig iT t L∆ = + − − . 

3. For 1, ,i n=  , perform the following steps: 

a. If 1ix c≥ +  and { } { }
1,..., 1,...,

min max
i i

ij ijj x j x= =
∆ < ∆ , go to step b.  Else, go to next i. 

b. For 1, , ij x=  , perform the following step: 

i.  Set ,0,..., 1 1
max 1

i

j
A
j i k qk x q

M j+= −
=

 
= ∆ + − 

 
∑  and ,0,..., 1 1

min 1
i

j
B
j i k qk x q

M j+= −
=

 
= ∆ + + 

 
∑   

(in these summations, , , ii k q i k q x+ + −∆ = ∆  if ik q x+ > ). 

c. Set 1p = .   

d.  If 1
A B
p p cM M + −≥ , increase c by 1 and go back to step c.   

e.  Increase p by 1.  If 1ip x c≤ − + , then go back to step d.   

4.  Return c as the count-balance.   



 26 

gap-balance algorithm 

The gap-balance algorithm determines the gap-balance of the infinite word generate from a finite 

word and can be described as follows.  The input is an instance ( )1, , nx x  with 

1 2 nx x x≥ ≥ ≥ .  Let 1 nT x x= + + .  In this algorithm, tS  refers to the letter in position t of S.  

Note that, if n = 1, then the count-balance of S equals 0. 

1. Set c = 1.  Set { }
1,...,

max :i tt T
L t S i

=
= =  and 0ig =  for all 1, ,i n=  . 

2. For 1, ,t T=  , perform the following steps: 

a. Let ti S= .  Increase ig  by 1.  If iL t< , set 1
iig it L∆ = − − ; else set 

1
iig iT t L∆ = + − − . 

3. For 1, ,i n=  , perform the following steps: 

a. If 2ix ≥  and { } { }
1,..., 1,...,

min max
i i

ij ijj x j x= =
∆ < ∆ , go to step b.   

Else, set 0ib =  and go to next i. 

b. For 0, , 2ij x= − , set , ,1,...,1,..., 0 0
max min

ii

j j

j i k q i k qk xk x q q
δ + +==

= =

   
= ∆ − ∆   

   
∑ ∑  (in these 

summations, , , ii k q i k q x+ + −∆ = ∆  if ik q x+ > ). 

c. Set { }
0,..., 2
max

i
i jj x

b δ
= −

= .   

4.  Return m = { }
1,...,

max ii n
b

=
as the gap-balance of S.   

 



 27 

GR algorithm 

The GR algorithm can be described as follows.  The input is an instance ( )1, , nx x  with 

1 2 nx x x≥ ≥ ≥ .  Let 1 nT x x= + + .   

1. Set 
n

i k
k i

X x
=

=∑ , 0iN = , and 0iR =  for all 1, ,i n=  . 

2. For 0, , 1t T= − , perform the following steps: 

a. Set ( )1i i i i ix R N X∆ = + −  for all 1, ,i n=  . 

b. Set tP  to the letter s where { }min : 0is i= ∆ > .) 

c. Increase sN  by 1. 

d. Increase iR  by 1 for all 1, ,i s=  . 

3.  Return 0 1,..., TP P −  as the solution. 

Table A.1. The construction of a periodic solution for the instance (4, 3, 2) using the GR 
heuristic.   

t 0 1 2 3 4 5 6 7 8 

1N  0 1 1 2 2 3 3 4 4 

2N  0 0 1 1 2 2 2 2 3 

3N  0 0 0 0 0 0 1 1 1 

1R  0 1 2 3 4 5 6 7 8 

2R  0 0 1 1 2 2 3 3 4 

3R  0 0 0 0 0 0 1 1 1 

1∆  4 -1 3 -2 2 -3 1 -4 0 

2∆  3 3 1 1 -1 -1 2 2 0 

3∆  2 2 2 2 2 2 2 2 2 
tP  1 2 1 2 1 3 1 2 3 

 



 28 

Parameterized stride scheduling algorithm 

The parameterized stride scheduling algorithm can be described as follows.  The inputs are an 

instance ( )1, , nx x  and the parameter δ.  Let 1 nT x x= + + .  

1. Initialization.  iN  = 0 for i = 1, …, n.   

2. For t = 0, …, T-1, perform the following steps: 

a. Set tP  to the letter s that has the largest value of i

i

x
N δ+

.  In case of a tie, select the 

letter with smallest ix . 

b. Increase sN  by 1.   

3.  Return 0 1,..., TP P −  as the solution. 

Table A.2. The construction of a solution for the instance (4, 3, 2) using the stride scheduling 
heuristic with δ = 0.5.   

t 0 1 2 3 4 5 6 7 8 

1N  0 1 1 2 2 3 3 4 4 

2N  0 0 1 1 2 2 2 2 3 

3N  0 0 0 0 0 0 1 1 1 

( )1 1/x N δ+  8 2.67 2.67 2.67 1.6 1.6 1.14 1.14 1.14 
( )2 2/x N δ+  6 6 2 2 2 1.2 1.2 1.2 0.86 
( )2 2/x N δ+  4 4 4 1.33 1.33 1.33 1.33 0.8 0.8 

tP  1 2 3 1 2 1 3 2 1 
 

Bottleneck algorithm 

The bottleneck algorithm can be described as follows.  The input is an instance ( )1, , nx x .  Let 

1 nT x x= + + .   

1. Set w = 0 and 1iy =  for all 1, ,i n=  . 



 29 

2. For 1, ,i n=   and 1, , ij x=  , calculate the following quantities: 

 ( )1
1ij

i

T j w
EST

x
− + 

= − 
 

 

 ij
i

Tj wLST
x

 −
=  
 

 

3. For 0, , 1k T= − , perform the following steps: 

a. Let R = { }: , ,
i ii i iy iyi y x EST k LST k≤ ≤ ≥ .  If R is empty, go to Step 5. 

b. Let i be the product in R that has the smallest 
iiyLST .   

c. Assign product i to position k + 1, and increase iy  by 1.   

4.  Save the current sequence.  If w < { }max ix , then set w to the value of the 

smallest ix  that is greater than w, and go to Step 2.  Otherwise, go to Step 5. 

5.  Return the last saved sequence. 

Search algorithm 

The Search algorithm can be described as follows.  The input is an instance ( )1, , nx x  with 

1 2 nx x x≥ ≥ ≥ .  Let 1 nT x x= + + .  Let M be the total number of samples. 

1. For 1, ,a M=  , perform the following steps: 

a. Randomly select [0, / ]i iT xφ ∈  for all 1, ,i n=  . 

b. For 1, ,t T=  , set tP  to the letter i with { }1min , ,i nφ φ φ=   and then increase iφ  

by / iT x . 

c. Determine the gap-balance of P.  If this is the best gap-balance so far, save P. 

2.  Return the best word found. 

 


	Abstract
	Introduction
	Balanced Words
	Problem Formulation
	Heuristics
	Aggregation
	Disaggregation
	Disaggregating Balanced Words
	Computational Experiments
	Summary and Conclusions

