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Abstract

Title of Thesis:Mitigation of Explosive Blast Effects on Vehicle Floorboard

Thesis Directed By:  Professor William Fourney

Department of Mechanical Engineering

This thesis investigates methods for mitigating the blast effects on the floorboard of
passenger vehicles due to the detonation of explosives buried in water saturated sand
underneath vehicles. The effects on floorboard acceleration of adding a vehicle hull,
several types of floorboard bracing, the use of foam to fill the gap between the floorboard
and hull, and the use of foam to isolate the floorboard from the hull. In addition, several
tests have been conducted to examine how the distance of the floorboard from the ground
affects the acceleration of the floorboard after the detonation. Testing showed that the
addition of a hull to a vehicle, the hulls geometry, bracing of the floorboard, and increasing
ground clearance all are able to help reduce floorboard accelerations. However, floorboard
bracing had the potential to make accelerations much higher it is hit by the hull during
testing. Foam filling between the hull and floorboard as well as a foam frame to isolate the
floorboard from the hull did not have positive results. The primary method of investigation
is differentiating a velocity profile found with the use of bar magnet velocity gages on the
small scale model floorboard. Several other possible methods of investigation are

discussed.
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Ch 1: Introduction

1.1  Overview

This thesis describes research conducted at the Dynamic Effects Laboratory at the Clark
School of Engineering at the University of Maryland, College Park. The purpose of this
research is to use small scale testing to investigate several methods to mitigate the
acceleration experienced by the floorboard of a hulled vehicle after the detonation of an
explosive charge buried in water saturated sand beneath the vehicle. This subject is of
interest to the designers of armored vehicles, such as the Mine Resistant Ambush Protected

(MRAP) vehicles currently being designed for service in the fleet.

The mitigation effects investigated in this thesis include the effect of the hull itself, hull
geometry, several bracing systems to support the floorboard, the use of foam to fill the gap
between the floorboard and hull, and the use of a compliant foam frame to isolate the
floorboard from the hull. The scope of this thesis is limited such that both the floorboard

and hull of the vehicle are deformed without fracture.

As of 5 April 2008, 2198 of the 3559 hostile deaths and 21,306 of the 31,590 troops
wounded in action by hostile action during Operations Enduring Freedom and Iraqi
Freedom were from explosive devices, such as IED’s and Mines [1.1]. With a large
amount of troop casualties and injuries resulting from explosive attacks, it is of great
interest for the military to have vehicles designed to minimize the risk from these attacks.
Small scale testing provides a quick, economical, and relatively safe method to run many

tests for gathering the necessary data to design these vehicles.



1.2 Scaling

There are several models to scale explosive effects. These models include the cube-root
scaling models based on mass and energy which are derived from dimensional analysis and
ignore gravitational effects, models based on dimensional analysis which include gravity,
and empirically justified modifications of the above methods [1.2-4]. The scaling used
throughout this thesis and in the Dynamic Effects lab in general, is the cube-root scaling
method based on the mass of the charge. Previous testing in the Dynamic Effects
Laboratory has shown that the cube-root scaling method provides sufficient accuracy in

predicting full scale effects from small scale testing [1.5-6, 1.9].

The scaling model used is defined by the following:

1
3 .
SF — EmaSSFull—Scale E/ — Zengthfull—scale — tlmefull—scale eq 1 1
ass Small—Scale len thsmall -scale am esmall —scale

Where SF is the scaling factor, which is 13.14 throughout this thesis, was chosen because it

was used for related testing by a previous graduate student in the Dynamic Effects
Laboratory [1.8]. Originally, 13.14 was chosen as a scaling factor because it corresponded
to stock aluminum sheet which was available at the local supply store and made a

reasonable scale for modeling the vehicles being investegated.

The small scale thicknesses of the floorboard and hull are 0.020 in and 0.090 in,
respectively. These correspond to 0.26 and 1.2 in full scale thicknesses, respectively. The

small scale distance from the surface of the sand to the top of the charge and to the bottom



of the model floorboard are 0.30 in and 3.19 in, respectively. This corresponds to 3.9 in
and 42 in, respectively, for a 5 b charge. Several tests have stand off distance (SoD )
values of 1.75 in and 2.55 in, which correspond to 23.0 in and 33.5 in, respectively. The
SoD is the distance from the bottom of the floorboard to the top of the sand’s surface.
While the larger floorboard heights are larger than expected in actual vehicles, it allowed
for the high ground clearance needed to investigate extreme geometries of the hull. The
small scale mine contains 1.0 g of explosive, which corresponds to 2269 g (5 1b) of

explosive in full scale.

1.3 Explosive Loading

Because this thesis considers the effects of explosives buried in sand underneath vehicles, it
is valuable to first understand previous work on target loading in similar situations. When
the explosive is detonated, there are three types of loading that a target can undergo: stress
wave, ejected soil, and air blast [1.9]. The stress wave loading becomes insignificant

because of the low impedance of air compared to the impedance of saturated sand [1.5].

When the buried charge is detonated, soil and hot gas are ejected from the sand bed
creating a crater. The soil is ejected at supersonic speeds and accounts for a significant
portion of the impulse on a plate above the sand bed. The ejected sand applies a large
pressure to the target over a short interval of time. The ejected sand, the resulting crater,
and the target can form a sort of enclosure around the high pressure explosive product
which continues to load the target in the form of the air blast mentioned above. This air
blast acts over a longer period of time and accounts for the remaining impulse imparted to

the target [1.9].



Several mitigation methods are investigated in this thesis to reduce the acceleration of the
vehicle’s floorboard. The effects of such mitigation methods as adding a hull to a vehicle,
changing the vehicle’s hull geometry, and supporting the floorboard with bracing are
investigated. Other methods looked at include attempts to use foam filling between the
hull and floorboard in order to absorb as much of the loading as possible and the use of
foam to isolate the floorboard from the shock experienced in the vehicle’s hull. In addition

to this, the effects of the height of the vehicle off the ground are briefly examined.



Ch 2: Research Equipment

2.1 Explosive Charge

The charges used for all tests are made by inserting an RP-87 Exploding Bridge Wire
(EBW) detonator into Deta Sheet. Deta Sheet is a plasticized sheet explosive consisting of
63% pentaerythritol tetranitrate (PETN), a very stable high explosive, by mass. Each test
uses 1.48 g of Deta Sheet, which contains 0.93 g of explosive. It is pressed into a
cylindrical Delrin plastic charge casing with an inner diameter of 14.8 mm, height of 6.5

mm, and wall thickness of 0.9 mm.

The RP-87 is manufactured by Teledyne RISI (P/N 167-9643). It contains 26 mg of PETN
and 43 mg RDX, a commonly used military explosive referred to as Cyclonite. It is
inserted about 1/16 in into the Deta Sheet and covered with epoxy to hold it in place. The
dimensions of the RP-87 and the explosive train can be found in Figures 2.1 and 2.2,
respectively; the firing parameters can be found in Table 2.1, which were obtained from the

manufacturer’s website [2.1]. The fully assembled charge can be seen in Figure 2.3.
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Figure 2. 1: RP-87 Dimensions




RP-87 Explosive Train
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1. Plastic molded head

2. Brass sleeve

3. Bridgewire {Gold)

4. Initiating explosive: 26 mg PETN

&. Output explosive: 43 mg ROX with binder
6. Stainless steel cup 0.006" thick

Figure 2. 2: RP-87 Explosive Train

RP-87 Firing Parameters

Threshold Burst Current: 210 amps
Threshold Voltage: Approx. 500 volts
Threshold Voltage Std. Deviation: 75 volts maximum
Function Time: 1.95 psec. typical
Function Time Simultaneity 0.125 psec Max.
Standard Deviation:

Table 2.1 RP-87 Firing Parameters

Figure 2.3: Explosive Charge




2.2 FS-17 EBW Firing System

The firing system used to detonate the charge is the FS-17 EBW firing system,
manufactured by Reynolds Industries Inc. The system consists of a control unit (P/N
167-8917) and a firing module (P/N 167-8371). The unit, which can be seen in Figure 2.4,
is battery operated and provides a 4000 Volt electrical spike which induces detonation of
the charge [2.2]. The trigger mechanism, which can be seen on the far right in Figure 2.4,
allows the camera and oscilloscope used for collecting data to be triggered in sync with the
detonation. Using the firing system ensures that the charge will not be prematurely

detonated, which could cause injury to workers in the lab.

Figure 2.4: Firing System



2.3  Dummy Charge

In order to make sure the firing system is working correctly and both the oscilloscope and
camera are being triggered at the correct time, a dummy charge is used. This is constructed
by running two wires through a graphite block which is inserted into an aluminum tube.
When the firing system is working correctly, it generates a 4000 volt electric pulse which
causes an arc across the approximately 1/8 in air gap between the two wires. If the
triggering mechanism is working correctly, the camera and oscilloscope will be triggered in
time to read the voltage spike on the oscilloscope and see the arc in the video. The

dummy charge can be seen in Fi gure 2.5.

Figure 2.5: Dummy Charge



2.4  Sand Pit

The explosives tests are conducted in the sand pit, located in the subbasement of the
laboratory. The pit, which can be seen in Figure 2.6, is a steel box 5 foot square by two
feet deep. It has a water saturation control system that fills the box with water from the
bottom, as can be seen in Figure 2.6. The system consists of a column which fills up with
water that is then piped to the bottom of the box. This provides even water saturation of
the sand. The bottom of the pit contains a mesh underneath a layer of coarse gravel which
prevents sand from contaminating the water saturation system. On top of the gravel is the

Home Depot’s HD-2 sand.

Figure 2.6: Sand Pit



2.5 Vehicle Model

Each test models the hull and floorboard of a vehicle. As is typical of actual
vehicles, aluminum is used to construct the model. The floorboard is made of 0.020 in
thick 6061-T6 Al sheet metal. The hull is made of 0.090 in thick 6061-T6 Al sheet metal.
These correspond to a 0.26 in thick floorboard and a 1.18 in thick hull in full scale. The
two components are separated by an aluminum frame. The frame is constructed from 1 in
by % in aluminum bar. It is welded into a rectangular frame 14 in x 16 in the outer
dimensions, which can be seen in Figure 2.7. On top of the floorboard is a second frame of
the same dimensions as the first frame. The floorboard, hull, and frames are fastened to

one another by eighteen 3/8 in stainless steel bolts, as shown in Figure 2.8.
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Figure 2.7: Frame Geometry
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Floor Board

Hull Angle

Figure 2.8: Vehicle Model Assembly

The floorboard is always made of a flat sheet. The top of the floorboard is painted white in
order to prevent glare from overexposing the video footage of experiments. The hull is
bent using a hand sheet metal break. Wedges of the correct angles are used to ensure the
precision of