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Preface

Many high dimensional chaotic systems have periodic saddles of different un-

stable dimensions embedded within the chaotic set. To study dynamical systems

with this kind of unstable dimension variability, a property called “multi-chaos” is

introduced and investigated, where a chaotic set has densely many periodic saddles

of unstable dimension k embedded in it, for at least 2 different values of k. Our

studies involve the dynamics on quasiperiodic subsets of the chaotic system. We be-

gin by defining a method of weighted Birkhoff averages in Chapter 1, and we show

that in quasiperiodic dynamical systems, our weighted averages converge far faster

than the unweighted ergodic averages proposed by Birkhoff, provided the functional

f is sufficiently differentiable. In Chapter 2, this weighted Birkhoff average is used

as a computational tool, and is used for numerically identifying one or two period

quasiperiodic sets. In particular, the method is used to compute rotation num-

bers and conjugacies (i.e. changes of variables) and their Fourier series, often with

30-digit precision.

In Chapter 3, the focus is on skew-product maps on the torus of the form

(xn+1, yn+1) = (mxn, g(xn, yn)) mod 1 Sufficient conditions for a torus map to be

conjugate to a skew-product map are presented, with these conditions being open

in the C1 topology.

In Chapter 4, we finally construct a family of toral maps which happen to be

the first examples of multi-chaos. The conjugacy theorem established in Chapter 3

is used, along with the assumption of a quasiperiodic curve being present, to prove

the occurrence of multi-chaos.
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In Appendix A, we conclude the investigation of toral skew-product map by

proving that if there is a dense set of periodic saddles, then the torus splits into

a finite number of invariant cylinders with disjoint interiors, with the map being

transitive on each cylinder.
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Chapter 1: Super-convergence of ergodic averages on quasiperiodic

orbits

Abstract. The Birkhoff Ergodic Theorem asserts that time averages of a

function evaluated along a trajectory of length N converge to the space average, the

integral of f , as N →∞, for ergodic dynamical systems. But that convergence can

be slow. Instead of uniform averages that assign equal weights to points along the

trajectory, we consider averages with a non-uniform distribution of weights, weigh-

ing the early and late points of the trajectory much less than those near the midpoint

N/2. We show that in typical quasiperiodic dynamical systems, our weighted av-

erages converge far faster provided f is sufficiently differentiable. This result can

be applied to obtain efficient numerical computation of rotation numbers, invariant

densities and conjugacies of quasiperiodic systems.

1.1 Introduction

Let T : X → X be a map on a topological space X with a probability measure

µ for which T is invariant. Given a point x in X and a real- or vector-valued function
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f on X, we will refer to a long-time average of the form

BN(f) :=
1

N

N−1∑
n=0

f(T n(x)), (1.1)

as a Birkhoff average. Throughout this paper, f : X → E where E is a finite-

dimensional real vector space. The limits of such sequences frequently occur in

dynamical systems. If µ is a probability measure on X and T preserves the proba-

bility measure µ and is ergodic, then the von Neumann Ergodic Theorem (e.g. see

Theorem 4.5.2. in [1]) states that for f ∈ L2(X,µ), the Birkhoff average (1.1)

converges in the L2 norm to the integral
∫
X
fdµ. The Birkhoff Ergodic Theorem

(see Theorem 4.5.5. in [1]) strengthens von Neumann’s theorem and concludes that

if f ∈ L1(X,µ), then (1.1) converges to the integral
∫
X
fdµ for µ-a.e. point x ∈ X.

The Birkhoff average (1.1) can be interpreted as an approximation to an integral,

but convergence is very slow, such as for some constant C,

∣∣∣∣ 1

N
ΣN
n=1f(T n(x))−

∫
X

fdµ

∣∣∣∣ ≤ CN−1,

For general ergodic dynamical systems, the rate of convergence of these sums can

be arbitrarily slow, as shown in [2]. For many purposes the speed of convergence is

irrelevant but it is important for numerical computations.

Definitions. Let (aN)∞N=0 be a sequence in a normed vector space such that

aN → b as N → ∞. We say (aN) has super-polynomial convergence to b or

super converges to b if for each integer m > 0 there is a constant Cm > 0 such

that

|aN − b| ≤ CmN
−m for all m ∈ N.
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Instead of weighting the terms f(T n(x)) in the average equally, we weight the

early and late terms of the set 1, · · · , N much less than the terms with n ∼ N/2 in

the middle . We insert a weighting function w into the Birkhoff average, which will

primarily be the following well known C∞ function that we will call the exponential

weighting,

w(t) =


exp

(
1

t(t−1)

)
, for t ∈ (0, 1)

0, for t /∈ (0, 1)

(1.2)

Let Td denote a d-dimensional torus. For X = Td and a continuous f and for

φ ∈ Td, we define what we call a Weighted Birkhoff (WBN) average

WBN(f)(x) :=
1

AN

N−1∑
n=0

w
( n
N

)
f(T nx), where AN :=

N−1∑
n=0

w
( n
N

)
. (1.3)

Of course the sum of the terms w
(
n
N

)
/AN is 1. Continuity of w guarantees

lim
N→∞

AN
N

=

∫ 1

0

w(t)dt. (1.4)

We introduced the exponentially weighted Birkhoff average of Eqns. (1.3,1.4)

for numerical investigations of quasiperiodic systems in [3]. Motivated by finding

how effective our method was numerically, we discovered the theorem and proof in

this paper.

Quasiperiodicity. Each ~ρ ∈ (0, 1)d defines a rotation, i.e. a map T~ρ on the

d-dimensional torus Td, defined as

T~ρ : θ 7→ θ + ~ρ mod 1 in each coordinate. (1.5)

This map acts on each coordinate θj by rotating it by some angle ρj. We call the

ρjs “rotation numbers”.
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A vector ~ρ = (ρ1, . . . , ρd) ∈ Rd is said to be irrational if there are no integers

kj for which k1ρ1 + · · · + knρn ∈ Z, except when all kj are zero. In particular, this

implies that each ρj must be irrational.

The simplest example of d-dimensional quasiperiodicity is a (pure) irrational

rotation, that is, a rotation by an irrational vector ρ. A continuous but not neces-

sarily invertible map T : X → X is said to be d-dimensionally Cm quasiperiodic

on a set X0 ⊆ X for some d ∈ N iff there is a Cm-diffeomorphism h : Td → X0, such

that,

T (h(θ)) = h(T~ρ(θ)). (1.6)

where T~ρ is an irrational rotation. In this case, h is a conjugacy of T |X0 to T~ρ.

Unique invariant probability measure. Lebesgue probability measure λ

on Td is the unique invariant probability measure for any irrational rotation T~ρ. A

map T : X0 → X0 therefore has a unique invariant probability measure µ which is

defined as

µ(U) := λ(h−1(U)), for every Borel set U ⊆ X0.

Diophantine rotations. An irrational vector ~ρ ∈ Rd is said to be Diophan-

tine if for some β > 0 it is Diophantine of class β (see [4], Definition 3.1), which

means there exists Cρ > 0 such that for every ~k ∈ Zd, ~k 6= 0 and every p ∈ Z,

|~k · ~ρ− p| ≥ Cρ
‖k‖d+β.

(1.7)

For every β > 0 the set of Diophantine vectors of class β have full Lebesgue measure

in Rd (see [4], 4.1). The Diophantine class is crucial in the study of quasiperiodic

behavior, for example in [5] and [6].
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Theorem 1.1.1 Let X be a C∞ manifold and T : X → X be a d-dimensional C∞

quasiperiodic map on X0 ⊆ X, with invariant probability measure µ. Assume T

has a Diophantine rotation vector. Let f : X → E be C∞, where E is a finite-

dimensional, real vector space. Assume w is the exponential weighting (see Eqn.

(1.2)). Then for each x0 ∈ X0, the weighted Birkhoff average WBNf(x0) has super

convergence to limN→∞BN(f) =
∫
X0
fdµ.

In particular WBNf(x0) and BN(f)(x0) have the same limit as N →∞, so the

weighted Birkhoff average provides a fast way of computing the limit of a Birkhoff

average.

In [7], A. Luque and J. Villanueva develop methods for obtaining rotation

numbers by taking repeated averages of averages of a quasiperiodic signal. By

taking p nested averages, their method obtains the rotation number with an error

bounded by CpN
−p, where Cp is a constant. The method of computation depends

on p and as p increases the computational complexity increases for fixed N . Also,

their computation time T (p,N) obeys T (p,N)/N →∞ as p→∞. In comparison,

computation time for our weighted Birkhoff average is simply proportional to N

since it requires a sum of N numbers.

The convergence of weighted ergodic sums have been discussed in [8] , [9] and

[10], but without any conclusions on the rate of convergence. In [11], a convergence

rate of O(N−α), (0 < α < 1), was obtained for functions in L2+ε for a certain choice

of weights.

If the ergodic process T is chaotic instead of quasiperiodic, (for example,

5



Bernoulli shifts), then weighted Birkhoff averages provide no advantage over Birkhoff

averages.

The exponential weighting function’s properties needed in our proof of the

above result are that w ∈ C∞([0, 1]), that w and all of its derivatives are 0 at both

0 and 1, and that
∫ 1

0
w(x)dx 6= 0.

1.2 Applications of Theorem 1.1.1

Why are we interested in quasiperiodic subsets of dynamical sys-

tems? There are a variety of “basic sets” that can be seen in dynamical systems,

where by basic set we mean a set that has a dense trajectory and is not in a strictly

larger set having that property. But for typical dynamical systems (typical in some

measure-theoretic sense), it is conjectured in [12] that only three kinds can be found,

namely, periodic orbits, chaotic sets, and quasiperiodic sets. A typical Hamiltonian

system corresponds not to a single dynamical system but rather to a one-parameter

family of dynamical systems, so for Hamiltonian systems it is possible that one could

only find those three kind of basic sets when studying a typical energy surface of a

typical Hamiltonian. Tools have been lacking to determine if a set is quasiperiodic,

and so our effort here is to provide such a tool.

Why do we care about trajectory averages of smooth functions?

Suppose the map T : X → X has an (invariant) d-dimensional quasiperiodic subset

X0 with rotation vector ~ρ, so Tρ : Td → Td is the rotation map in (1.5). Let

h : Td → X0 be a conjugacy map that embeds Td into X. Given some point
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x0 ∈ X0, we can choose the conjugacy map h uniquely by requiring h(~0) = x0. If

the map T on the larger space X is C∞ or analytic, do we know anything about the

smoothness of X0 or the smoothness of T restricted to X0? Do we know how typical

~ρ is likely to be? While almost every ~ρ ∈ Td is Diophantine, it is not obvious that our

~ρ is similarly typical. Our result here allows us to compute ~ρ to 30-digit (quadruple)

precision in [3] and we can evaluate the smoothness of h, which generally appears

to be real-analytic in [3], in the sense that the Fourier coefficients ak of h converge

to 0 exponentially fast as k → ∞ – in the examples investigated. If T is analytic

in a complex neighborhood X0 and g is analytic in a complex neighborhood of its

domain, then we expect to see the Fourier coefficients of g converge exponentially

fast to 0. The ability to resolve such behavior depends on fast computation of

Fourier coefficients, as is possible with WBN . Also, see our examples 1 and 2 below.

We will look at a few useful applications of Theorem 1.1.1 in the following

applications or “examples”.

1.2.1 Rotation vectors

Rotation numbers and vectors play a key role in quasiperiodicity, so we begin

by providing some elementary and entertaining facts. Dimension 2 is adequate for

conveying these ideas which extend to dimension d ≥ 2 as well.

Dependence of rotation vector on coordinates. We have defined ~ρ in

Eqn. 1.5 in terms of a given coordinate system. We can say the coordinate system

has quasiperiodic coordinates when Eqn. 1.5 holds for some (ρ1, ρ2). Conversely,
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we call the vector (ρ1, ρ2) a representation of ~ρ if there exists a basis (v1, v2) of

R2 such that ~ρ = ρ1v1 + ρ2v2 mod 1. Any change of quasiperiodic coordinates

to quasiperiodic coordinates is linear on the lift to R2. Le S denote this set of

linear maps. Then S is also the set of integer-entried matrices with determinant

±1. (For simplicity, we assume that the origin is fixed.) Define Γ(~ρ) be the set of

all representations.

Proposition A Given a representation (ρ1, ρ2) of ~ρ, A(ρ1, ρ2) is a represen-

tation of ~ρ for each A ∈ S.

To see this, let A =

 a b

c d

 ∈ S and (ρ1, ρ2) be a representation of ~ρ in

terms of basis vectors u1, u2 in R2 viewed as the lift of T2. Since A is invertible,

there is a basis v1, v2 such that vi = A−1ui, for i = 1, 2. Then ~ρ = Σρiui = ΣρiAvi =

ρ1(av1 + bv2) + ρ2(cv1 + dv2) = (aρ1 + cρ2)v1 + (bρ1 + dρ2)v2 = ρ′1v1 + ρ′2v2, where

(ρ′1, ρ
′
2) = A(ρ1, ρ2).

Proposition B Given a representation ρ = (ρ1, ρ2) of ~ρ, every representation

ρ′ = (ρ′1, ρ
′
2) of ~ρ is of the form A(ρ1, ρ2) for some A ∈ S.

To see this, let ~ρ =
∑
ρiui =

∑
ρ′ivi, where u1, u2 and v1, v2 are bases. Choose

A ∈ S such that Avi = ui. Then as above, Aρ = ρ′.

Proposition C For each A ∈ S, AΓ(~ρ) = Γ(~ρ).

From Proposition A, for each A ∈ S, AΓ(~ρ) ⊆ Γ(~ρ). Furthermore, since A−1

is also in S, we must have that

Γ(~ρ) = AA−1Γ(~ρ) ⊆ AΓ(~ρ) ⊆ Γ(~ρ).

Proposition D For ~ρ Diophantine, the set of pairs Γ(~ρ) mod 1 is dense in
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T2.

To see this, note that the matrices Bm :=

 1 m

0 1

 and Ck =

 1 0

k 1

 are

in S for all integers m and k, as is A := BmCk. Then the vectors (ρ1, yk) = Ck(ρ1, ρ2)

mod 1 are “vertical” translates (translates in the direction (0, 1)) of (ρ1, ρ2) mod 1.

where {yk} is a dense set in S1. When we similarly apply Bm for all m to each (ρ1, yk)

we obtain a dense set of “horizontal” translates of (ρ1, yk) and thereby obtain a dense

set in T2. Of course every coordinate of every point in that dense set is of the form

k1ρ1 + k2ρ2 mod 1 where k1 and k2 are integers.

Example 1, Determining the Rotation Vector. The spirit of the Birkhoff

ergodic theorem is that knowing a function’s values only along a typical trajectory,

one can determine, in the limit, the function’s spatial average. We do not need to

know the points on the trajectory or even where the invariant set is. Given a map

T : X → X with a quasiperiodic set X0 and a trajectory (xn) ⊂ X0, an investigator

must convert each xn into a set of d-dimensional angles φn, as shown for a 1D-case

in Fig. 1.1. Our goal is to determine the rotation vector ~ρ ∈ Td, purely from

(φn) ∈ Td. There are some hidden subtelities. The standard approach towards

computing ~ρ is as the limit ~ρ = lim
N→∞

N−1(φ̄N − φ̄0), where the quantity φ̄N − φ̄0

is computed as
N−1∑
n=0

∆φn, where ∆φn := ∠(φn+1, φn) is some measure of the angle

from φn to φn+1. Even in the 1D-case, there are two ways to measure the angle

between φn and φn+1. In general, it can be difficult to define such a ∆φ : X0 → Rd

which is continuous. In some 1D cases, ∆φ can be chosen to be the positive angle

from φn to φn+1. That would not work however in Fig. 1.1, where ∆φ must be the
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shortest angular difference from φn to φn+1. In another example, if an astronomer

measures the angular position of Mars from the earth, the angle sometimes makes

small positive changes and sometimes negative, exhibiting “retrograde motion”. In

such a case, it is appropriate to choose ∆φ so as to minimize the absolute value of

the angular change.

To avoid these problems, we will make two assumptions on φ and ∆φ. We

begin with a definition.

Definition. Let φ : X0 → Td be a C∞ map. Then the lift φ̄ : X̄0 ≡ Rd → Rd

can be written in the form φ̄(θ) = Aθ̄ + g(θ), where g : Rd → Rd is bounded (and

periodic with period 1 in each coordinate), and A is a matrix called the homology

matrix of φ, so that

A = φ∗ : H1(X0)→ H1(Td).

Note that while this matrix A has a slightly different meaning from the A in the

above proposition, the entries of A are again integers. We say φ is a unit degree

map if the determinant of A is ±1. In that case, A−1 is also an integer valued

matrix with determinant ±1. Note that, if φ is unit-degree, then there is a choice

of coordinates for θ under which A is the identity, and henceforth, we will assume

that A is the identity.

(A1) φ is a unit degree map.

(A2) ∆φ : X0 → Rd is a continuous map such that for each x ∈ X0, each lift

¯φ(x) of φ(x), ∆φ(x)+ ¯φ(x) is a lift of φ(T (x). Let φn be the point φ(xn). Then note

that ∆φ(xn) is a lift of φn+1 − φn. Fix any lift φ̄0 of φ0 and inductively define φ̄n

10



:= φ̄n−1 + ∆φ(θn−1). Note that by virtue of ∆φ, φ̄n is always a lift of φn.

Corollary 1.2.1 Let X,X0, T, and w be as in Theorem 1.1.1. Let φ : X0 → Td

and ∆φ : X0 → Rd satisfy assumptions (A1) and (A2). Then for every initial point

x0 ∈ X0,

WBN(∆φ) :=
1

AN

N−1∑
n=0

w
( n
N

)
∆φn

has super convergence to a vector ~̄ρ, which is a lift of the rotation vector ~ρ, uniformly

in x0 as N →∞.

In other words, ~ρ = ~̄ρ mod 1, (i.e., mod 1 in each coordinate).

Proof By Theorem 1.1.1, the sum has super convergence to the integral
∫
X0

∆φdµ.

By the Birkhoff Ergodic Theorem,
∫
X0

∆φdµ is also the limit of the unweighted

Birkhoff sum 1
N

N−1∑
n=0

∆Φn, which is equal to 1
N

N−1∑
n=0

[φ̄n+1 − φ̄n], which is equal to

(φ̄N − φ̄0)/N . Therefore, the sum in the claim has super convergence to the limit

lim
N→∞

φ̄N−φ̄0
N

. We will now show that this limit is the rotation number ~ρ.

Note that since (xn) is a quasiperiodic trajectory, there exists an unknown

rotation vector ~ρ and an unknown continuous, periodic function h : Rd → Rd so

that for each n, x̄n = n~ρ+ h(n~ρ) is a lift of xn.

Therefore φ̄n = Ax̄n + g(x̄n) = nA~ρ+ Ah(n~ρ) + g(n~ρ+ h(n~ρ)).

Therefore φ̄N
N

= A~ρ+ Ah(n~ρ)
N

+ g(nρ+h(n~ρ))
N

, which tends to A~ρ as N →∞.

Therefore, lim
N→∞

φ̄N−1−φ̄0
N

= A~ρ.

Remark. Here we give one way of constructing the map ∆φ. Suppose there

exists a vector ~p ∈ [0, 1)d such that the set {T (θ) − θ + ~p : θ ∈ (0, 1)d} lies in the
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open box interior (0, 1)d in Rd. Given a point θ ∈ X0, let θ̄ be any lift of θ to Rd.

Let T̄ θ be that unique lift of Tθ to Rd which satisfies T̄ θ− θ̄+ ~p ∈ [0, 1)d. Then the

following function ∆φ : X0 → Rd is smooth and independent of the choice of the

lift.

∆φ(θ) := φ̄(T̄ θ)− φ̄(θ̄).

Remark. Consider the case of a 1-dimensional quasiperiodic set X0 embedded

in X = R2. Let C := CB ∪ CU be the complement of X0 in R2, where CB and CU

are the bounded and unbounded components of C respectively. For p ∈ R2 \ X0,

define

φ(x) = (x− p)/‖x− p‖. (1.8)

Hence φ(θ) ∈ Td where d = 1. If p ∈ CB, then φ is a unit degree map. Suppose that

the range of values of φ(Tx)− φ(x) mod 1 does not include an angle θ0. Then ∆φ

can be taken to be the difference

∆φ(x) : φ(T (x))− φ(x)− θ0 mod 1 (1.9)

So ∆φn is the length of the arc joining φn to φn+1 and avoiding the angle θ0. We

have illustrated this in Fig. 1.1.

1.2.2 Computing Fourier series.

Example 2, Fourier Series of the embedding. Assume X0 ⊂ RD. If a

map T is quasiperiodic on X0, then there is a homeomorphism h : Td → X0 ⊂ RD

such that for every theta ∈ Td, T (h(θ)) = h(θ + ~ρ).
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Figure 1.1: Rotation number on a quasiperiodic curve. Given a quasiperi-

odic curve X0 embedded in X = R2, one can define φ as in Eq. 1.8. Let

ρφ := limN→∞
1
N

N−1∑
n=0

w
(
n
N

)
[φ̄n+1−φ̄n]. If p lies outside the curve X0, then ρφ = 0. If

p lies in the interior of X0, then ρφ is ρ or 1−ρ, both being legitimate representations

of ρ.

We can compute a Fourier series for h(θ) provided the rotation number ~ρ

for the map is known, but that can be calculated as a weighted average, as ex-

plained above in Corollary 1.2.1. The map h is not known explicitly, but its values

(xn := h(n~ρ mod 1))n=0,1,2,... are known. For every ~k ∈ Zd, the ~k-th Fourier coef-

ficient of h is described below.

a~k(h) :=

∫
Td

h(θ)e−i2π
~k·θdθ.

Now h can be represented by its Fourier series. For every θ ∈ Td,

h(θ) = Σ
~k∈Zd

a~ke
i2π~k·θ.

The smoothness of h is not known apriori, but once the computation of the fourier

coefficients have converged, the smoothness can be non-rigorously deduced from

the decay rate of the coefficients a~k with ‖~k‖. Therefore, the crucial step in this

estimation is an accurate calculation of each a~k, which can be obtained as the limit

of a weighted Birkhoff average, as stated in the following Corollary.
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Corollary 1.2.2 Under the assumptions of Corollary 1.2.1, the quantity

lim
N→∞

WBN [h(θ)e−i2π
~k·θ] = lim

N→∞

1

AN

N−1∑
n=0

w
( n
N

)
xne

−i2πn~k·~ρ

has super-convergence as N →∞ to a~k(h), the ~k-th Fourier coefficient of h

Proof By Theorem 1.1.1, the limit of the weighted Birkhoff average of the smooth

function h(θ)e−i2π
~k·θ has super convergence to the integral

∫
Td h(θ)e−i2π

~k·θdθ, which

is precisely a~k(h) , the ~k-th Fourier coefficient of h.

The question of smoothness of conjugacy to a pure rotation is an old prob-

lem. While we can only determine the degree of differentiability of the conjugacy

function h computationally (non-rigorously) by observing how quickly its Fourier

series coefficients ak go to 0 as ‖k‖ → ∞, the papers [4], [13], [14] and [15] arrive

at rigorous conclusions on the differentiability of h by making various assumptions

on the smoothness of the quasiperiodic map T and the Diophantine class of its ro-

tation number ρ. In our case, we conclude that h is real-analytic if ‖ak‖ decreases

exponentially fast, i.e., log ‖a~k‖ ≤ A+B|~k| for some A and B, to the extent check-

able with a given computer precision. Also see [3] for a discussion on computing

Fourier coefficients of maps between tori instead of maps from the torus to RD. For

example, for the circle map θ 7→ θ+ g(θ) mod 1 , it is appropriate to compute the

Fourier series of the periodic part g(θ) of the map.

Example 3, computing the integral of a periodic C∞ function. We

designed the above theorem as a tool for investigating quasiperiodic sets, but some-

times we can artificially create the quasiperiodic dynamics. To integrate a C∞ map
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with respect to the Lebesgue measure when the map is periodic in each of its d

variables, we can rescale its domain to a d-dimensional torus Td = [0, 1]d mod 1 in

each coordinate. Choose ~ρ = (ρ1, · · · , ρd) ∈ (0, 1)d of Diophantine class β > 0. Let

T = T~ρ be the rotation by the Diophantine vector ρ on Td. Let w be the exponential

weighting function Eq. (1.2). Then by Theorem 1.1.1, for every θ ∈ Td, WBN(f)(θ)

has super convergence to
∫
Td fdµ and convergence is uniform in θ.

1.3 A Cm version of our Theorem

Theorem 1.1.1 is a special case of the technically more detailed Theorem 1.3.1

which we shall state and prove in this section. We have formulated Prop. 1.3.3 to

show the source of the N−m term that guarantees the rapid convergence of weighted

Birkhoff averages.

Window functions. We will say that a function w : R → R is a window

function if w is 0 outside [0, 1] and is positive in (0, 1). For m ∈ N, we will say that

the window function is of order m if w is Cm. Hence for m ≥ 1, w and its first m

derivatives are 0 at 0 and 1. We will say that a window function has order 0 if it is

continuous, for example, the window function which is x(1− x) on [0, 1] is order-0,

while sin2(πt) is order-1. In order to include the situation in (1.1), we say that the

window function which is 1 on [0, 1] (and 0 outside) is of order -1. We say that

w is of order ∞ if it is of order m for every m ∈ N, for example, the exponential

weighting function in Eq. (1.2).

Theorem 1.3.1 For some m,M ∈ N, let X be a CM manifold and T : X → X
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be a CM d-dimensional quasiperiodic map on X0 ⊆ X, with invariant probability

measure µ and a rotation vector of Diophantine class β. Let f : X → E be CM ,

where E is a finite-dimensional, real vector space. Assume w is an order-m window

function. Assume

m <
M − d
d+ β

(1.10)

Then

(WBNf)(x0) =

∫
X0

f dµ+O

(
1

Nm

)
uniformly in x0 ∈ X0, as N →∞. (1.11)

We note again that WBN(f)(x0) converges to
∫
X0
f dµ, which is also the limit

of the corresponding Birkhoff averages. Hence WBN provides an efficient way of

computing the limit of Birkhoff averages.

Are the estimates sharp? The estimates used in the proof may be able

to be improved and hence, Eq. 1.11 might be sharpened. For the case where X

and T are C∞ and w is order-∞ and the dimension d of X0 is 1, we have made

a couple of heuristic numerical experiments using examples of f that are C1 and

C3 (M = 1 and 3, respectively) using the golden mean
√

5−1
2

and 1
e

as values for ρ.

For the golden mean, β = 0. Our experiments were in quadruple precision (32-digit

precision).

If f is C3, then m is 1 by Eq. 1.10, so Eq. 1.11 predicts a convergence

rate of O(N−1). But in numerical experiments we observe convergence rates of

approximately O(N−5.7) and O(N−4.9) for ρ equal to the golden mean and 1
e

respec-

tively. For the examples where f is C1, the corresponding rates were approximately

O(N−3.1) and O(N−3.1), even though Eq. 1.11 does not make any predictions about
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this case.

1.3.1 Proof of Theorem 1.3.1

To prove Theorem 1.3.1, we use the coordinates θ on X0 for which Eq. (1.6)

holds. So for the rest of this section, X0 = Td and T is an irrational rotation T~ρ,

as described in Eq. (1.5). Of course T n~ρ = Tn~ρ : θ 7→ θ + n~ρ mod Zd. As a result,

f(T n~ρ (θ)) = f(θ + n~ρ). Therefore, in this dynamical system, (1.3) takes the form

WBNf =
1

AN
Σ
n
w
( n
N

)
f(θ + n~ρ). (1.12)

Our first lemma gives an upper bound on the decay rate of the quantity

|ei2π~k·~ρ − 1| for a vector ~ρ of Diophantine class β, and for each ~k ∈ Zd. This

inequality is suggested by Arnold’s study of small denominators in [16].

Lemma 1.3.2 (A Diophantine Inequality.) For a vector ~ρ of Diophantine class

β > 0, there exists Cρ > 0 such that

1

|ei2π~k·~ρ − 1|
≤ (4Cρ)

−1‖~k‖d+β for each ~k ∈ Zd.

Proof A little trigonometry reveals |ei2π~k·~ρ−1| = 2| sin(π~k ·~ρ)| which equals 2| sin(~k ·

~ρ − p)π)| for every integer p. Choose p so that (~k · ~ρ − p)π ∈ [−π/2,+π/2]. But

| sin(x)| ≥ 2|x|π for x ∈ [−π/2, π/2]. Therefore, |ei2π~k·~ρ − 1| ≥ 2|~k · ~ρ − p|π) 2
π

=

4|~k ·~ρ−p| ≥ 4Cρ‖k‖−d−β from Ineq. (1.7). Taking reciprocals, we get the inequality

claimed by the lemma.

A convention for summation notation. Since w
(
n
N

)
is 0 for n ≤ 0 or

n ≥ N , we can adopt the convention of writing Σ
n

denote the sum over all integers.
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For any map h : Z→ C, note that

Σ
n
w
( n
N

)
h(n) =

∞∑
n=−∞

w
( n
N

)
h(n) =

N−1∑
n=1

w
( n
N

)
h(n).

Some operators. Let for each N ∈ N, let σ1/N denote the operator on functions on

R which is defined as (σ1/Nw)(t) = w(t− 1
N

). Note that σ1/Nw
(
n
N

)
= w(n−1

N
). Let I

denote the identity operator. Given a transformation T , the Koopman operator

U operates on functions and is defined as

Uf := f ◦ T.

In our case, since T ≡ T~ρ,

(Uf)(θ) = f ◦ T~ρ = f(θ + ρ).

Proposition 1.3.3 (Polynomial Decay) For every positive integer m and every

Cm function w : R→ R with support in [0, 1],

Σ
n
w
( n
N

)
Un(U − I)m = Σ

n
(σ1/N − I)mw

( n
N

)
Un = Σ

n
w(m)(

n

N
)[N−m + o(N−m)]Un.

Proof We will first prove the first equality for m = 1. We will use the fact that

Σ
n
w
(
n
N

)
Un+1 = Σ

n
w(n−1

N
)Un, which follows from the fact that the index n runs over

all integers.

Σ
n
w
( n
N

)
Un(U − I) = Σ

n
w
( n
N

)
Un+1 − Σ

n
w
( n
N

)
Un.

= Σ
n
w(
n− 1

N
)Un − Σ

n
w
( n
N

)
Un.

= Σ
n

(σ1/N − I)w
( n
N

)
Un.

Apply the above operation m times to obtain the first inequality.
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Since w is a Cm function, its m-th derivative w(m) is continuous and an ap-

plication of Taylor’s theorem yields the following equation for each t ∈ R. See [17],

Chapter VII for more details.

(σ1/N − I)mw(t) = N−mw(m)(t) + o(N−m).

Making this substitution completes the proof.

For each f ∈ L2(Td, λ) we can write its Fourier series representation

f(θ) =
∑
k∈Zd

ake
i2πk·θ, where θ ∈ Td.

Let Zd0 denote the set of integer-valued vectors excluding the zero vector, i.e., Zd\{0}.

Proposition 1.3.4 Let T : Td → Td be a rotation by the irrational vector ρ. (see

(1.5)). There is a constant Cw,m > 0 such that for every f ∈ L2(Td, λ), every

θ ∈ Td, ∣∣∣∣(WBN)(f)(θ)−
∫
Td

fdλ

∣∣∣∣ ≤ Cw,m
Nm

Σ
k∈Zd

0

∣∣∣∣ ak
(ei2πk·ρ − 1)m

∣∣∣∣ .
Proof For each k ∈ Zd, let fk denote the function fk(θ) = ei2πk·θ on Td. Then fk

is an eigenvector for the operator U with eigenvalue ei2πk·ρ, because of the following

relation.

Unfk = Unei2πk·θ = Un−1ei2πk·(θ+ρ) = ei2πk·(θ+nρ). (1.13)

Therefore, WBN(U − I)mfk = WBN(ei2πk·ρ− 1)mfk = (ei2πk·ρ− 1)mWBNe
i2πk·θ, i.e.,

(ei2πkρ − 1)m(WBNfk)(θ) = WBN(U − I)mfk(θ)

=
1

AN
Σ
n
w
( n
N

)
Un(U − I)mei2πk·θ

=
1

AN
Σ
n
w(m)(

n

N
)[N−m + o(N−m)]Unei2πk·θ by Prop. 1.3.3.
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There exists some constant C ′w,m ≥ 1 such that N−m + o(N−m) ≤ C ′w,mN
−m. Also

note that for ∀θ,

|Unfk(θ)| = |ei2πk·(nρ+θ)| = 1. Therefore,

|(WBNfk)(θ)| ≤
1

|ei2πkρ − 1|m
1

AN
C ′w,mN

−mΣ
n
|w(m)(

n

N
)|

≤ 1

|ei2πkρ − 1|m
N

AN
C ′w,mN

−m‖w(m)‖C0

≤ 1

|ei2πkρ − 1|m
C ′′w∫ 1

0
w(t)dt

C ′w,mN
−m‖w(m)‖C0 from Eq.(1.4)

for some constant C ′′w > 0. In summary, there exists a constant Cw,m = C ′′wC
′
w,m

‖w(m)‖C0∫ 1
0 w(t)dt

>

0 such that for every θ ∈ Td,

|(WBNfk)(θ)| ≤ Cw,mN
−m|ei2πkρ − 1|−m. (1.14)

Note that the Fourier coefficient a0 of f is the integral
∫
Td fdλ and is also

WB(a0f0)(θ) for every N since f0 ≡ 1. Therefore, by (1.14)∣∣∣∣(WBN)(f)(θ)−
∫
Td

fdλ

∣∣∣∣ =

∣∣∣∣ Σ
k∈Zd

0

ak(WBNfk)(θ)

∣∣∣∣
≤ Σ

k∈Zd
0

|ak(WBNfk)(θ)|

≤ Cw,m
Nm

Σ
k∈Zd

0

|ak|
|ei2πkρ − 1|m

.

Proof of Theorem 1.3.1 Since f ∈ CM , there exists Cf,M > 0 depending on

f and M such that for each k ∈ Zd0, |ak| ≤ Cf,M‖k‖−M . This bound on the decay

rate of Fourier coefficients can be obtained by differentiating the Fourier series of f ,

M times. Since f is CM , f (M) is continuous and hence integrable. By the Riemann

Lebesgue lemma (see Chapter II.1, [18]), the Fourier coefficients of f (M) converge

to zero and hence the inequality holds. The Diophantine property of ρ allows us to
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combine this inequality with the inequality in Lemma 1.3.2 to give

Σ
k∈Zd

0

∣∣∣∣ ak
(ei2πkρ − 1)m

∣∣∣∣ ≤ Cf,m
(4Cρ)m

Σ
k∈Zd

0

‖k‖−(M−m(d+β)) (1.15)

It is known that the sum Σ
k∈Zd

0

‖k‖−α converges when α > d. Therefore, the criteria

M −m(d+β) > d ensures that Σ
k∈Zd

0

‖k‖−(M−m(d+β)) <∞. Therefore, by Proposition

1.3.4,

∣∣∣∣(WBN)(f)(θ)−
∫
Td

fdλ

∣∣∣∣ ≤ Cw,m
Nm

Cf,m
(4Cρ)m

Σ
k∈Zd

0

‖k‖−(M−(d+β)m) = O(
1

Nm
).

In other words, (WBN)(f)(θ) =
∫
Td fdλ+O( 1

Nm ) uniformly in θ.
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Chapter 2: Quantitative Quasiperiodicity

Abstract. The Birkhoff Ergodic Theorem concludes that time averages, i.e.,

Birkhoff averages, ΣN−1
n=0 f(xn)/N of a function f along a length N ergodic trajectory

(xn) of a function T converge to the space average
∫
fdµ, where µ is the unique

invariant probability measure. Convergence of the time average to the space average

is slow. We introduce a modified average of f(xn) by giving weights to the “end”

terms which smoothly vanish to zero as n approaches 0 or N − 1 (smoothly as a

function of n
N

. When (xn) is a trajectory on a quasiperiodic torus and f and T are

C∞, we show that our weighted Birkhoff averages converge “super” fast to
∫
fdµ

with respect to the number of iterates N , i.e. with error decaying faster than N−m

for every integer m. Our goal is to show that our weighted Birkhoff average is a

powerful computational tool, and this paper illustrates its use for several examples

where the quasiperiodic set is one or two dimensional. In particular, we compute

rotation numbers and conjugacies (i.e. changes of variables) and their Fourier series,

often with 30-digit precision.
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2.1 Introduction

Quasiperiodicity is a key type of observed dynamical behavior in a diverse set

of applications. Tori with quasiperiodic motion persist for small perturbations by

the Kolmogorov-Arnold-Moser theory, but such behavior is also observed for non-

conservative systems well beyond this restricted regime. We believe that quasiperi-

odicity is one of only three types of dynamical behaviors occurring in basic sets of

typical systems. See [12] for the statement of our formal conjecture of this basic

set triumvirate. For example, quasiperiodicity occurs in a system of weakly coupled

oscillators, in which there is an invariant smooth attracting torus in phase space

with behavior that can be described exclusively by the phase angles of rotation of

the system. Indeed, it is the property of the motion being described using only a

set of phase angles that always characterizes quasiperiodic behavior. In a now clas-

sical set of papers, Newhouse, Ruelle, and Takens demonstrated a route to chaos

through a region with quasiperiodic behavior, causing a surge in the study of the

motion [19]. There is active current interest in development of a systematic nu-

merical and theoretical approach to bifurcation theory for quasiperiodic systems.

Our goal in this paper is to present a fast numerical method for the fast calculation

of the limit of Birkhoff averages in quasiperiodic systems, allowing us to compute

various key quantities. If f is integrable and the dynamical system is ergodic on the

set in which the trajectory lives, then the Birkhoff Ergodic Theorem asserts that

the Birkhoff average ΣN−1
n=0 f(xn)/N of a function f along an ergodic trajectory (xn)

converges to the space average
∫
fdµ as N → ∞ for µ-almost every x0, where µ
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is the unique invariant probability measure. In particular, almost all trajectories

with initial point in the ergodic set have the same limit of their Birkhoff averages.

We develop a numerical method for calculating the limit of such averages, where

instead of weighting the terms f(xn) in the average equally, we weight the early

and late terms of the set {0, . . . , N − 1} much less than the terms with n ∼ N/2

in the middle. That is, rather than using the equal weighting (1/N) in the Birkhoff

average, we use a weighting function w(n/N), which will primarily be the following

well known C∞ function that we will call the exponential weighting function,

wexp(t) = exp(1/(t(t−1)). In a companion paper [20], it is rigorously shown that for

C∞ quasiperiodic systems with a C∞ function f , this weighting function leads to

super convergence with respect to N , meaning faster than any polynomial in N−1.

This super convergence arises from the fact that we are taking advantage of the

quasiperiodic nature of the map or flow. In particular, our method uses the under-

lying structure of a quasiperiodic system, and would not give improved convergence

results for chaotic systems. We demonstrate the method and its convergence rate

by computing rotation numbers, conjugacies, and their Fourier series in dimensions

one and two. We will refer to a one-dimensional quasiperiodic curve as a curve.

Other authors have considered related numerical methods before, in particu-

lar [7, 21], which we will compare to our approach when we introduce our method

in Section 2.2. See also [5, 6, 11,22–28].

We start by describing our results for a key example of quasiperiodicity: the

(circular, planar) restricted three-body problem (R3BP). This is an idealized model

of the motion of the planet, a large moon, and a spacecraft governed by Newtonian
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mechanics, in a model studied by Poincaré [29, 30]. In particular, we consider a

planar three-body problem consisting of two massive bodies (“planet” and “moon”)

moving in circles about their center of mass and a third body (“spacecraft”) whose

mass is infinitesimal, having no effect on the dynamics of the other two.

We assume that the moon has mass µ and the planet mass is 1 − µ where

µ = 0.1, and writing equations in rotating coordinates around the center of mass.

Thus the planet remains fixed at (−0.1, 0), and the moon is fixed at (0.9, 0). In these

coordinates, the satellite’s location and velocity are given by the generalized position

vector (q1, q2) and generalized velocity vector (p1, p2). The equations of motion are

as follows (see [30]).

dq1/dt = p1 + q2,

dq2/dt = p2 − q1,

dp1/dt = p2 − µ(q1 − 1 + ρ)d−3
moon − (1− µ)(q1 + µ)d−3

planet,

dp2/dt = −p1 − µq2d
−3
moon − (1− µ)q2d

−3
planet,

(2.1)

where

dmoon = ((q1 − 1 + µ)2 + q2
2)0.5 and dplanet = ((q1 + µ)2 + q2

2)0.5.

The following function H is a Hamiltonian for this system

H = [(p2
1 + p2

2)/2] + [q2p1 − q1p2]− [µ d−1
planet + (1− µ) d−1

moon]. (2.2)

The terms in the square brackets are resp. the kinetic energy, angular moment, and

the angular potential. For fixed H, Poincaré reduced this problem to the study of

the Poincaré return map for a fixed value of H, only considering a discrete trajectory
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of the values of (q1, p1) on the section q2 = 0 and dq2/dt > 0. Thus we consider a

map in two dimensions rather than a flow in four dimensions. Fig. 2.2 shows one

possible motion of the spacecraft for the full flow. The orbit is spiraling on a torus.

The black curve shows the corresponding trajectory on the Poincaré return map.

Fig. 2.1 shows the Poincaré return map for the spacecraft for a variety of starting

points. A variety of orbits are shown, most of which are quasiperiodic invariant

curves. An exception is A-trajectory in Fig. 2.1(a), which is an invariant recurrent

set consisting of 42 curves. Each curve is an invariant quasiperiodic curve under the

42nd iterate of the map.

Using weighted Birkhoff averages, we find that the Fourier series coefficients

decrease exponentially fast (see Fig. 2.3(c)), which strongly suggests the conjugacy

function is real analytic. The speed of convergence in Fig. 2.3(d) means that we

have an effective computational method yielding an accuracy that is close to the

limit of numeric precision, provided N is sufficiently large. In particular, we have

computed trajectories for the Poincaré return map using an 8th order Runge-Kutta

method with time step 10−5, in quadruple precision. Fig. 2.3(d) is consistent with

30-digit accuracy. Section 2.2 formally define the computed values given in this list

for the quasiperiodic orbit of the three-body problem labeled B1 in Fig. 2.1(b). Here

is a list of what our numerical methods yield for the restricted three-body problem:

1. The rotation number is given in Table 2.1, computed to 30 digits of accuracy,

and Fig. 2.3(d) shows the accuracy plateauing at about 30-digit precision.

2. We can compute the Fourier series of up to 200 terms. There is a conju-
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Example Equation Rotation number(s) Related Figures

R3BP 2.1 0.063961728757453097164077724400302 2.1, 2.2, 2.3

Standard map 2.3 0.12055272197375513300298164369839 2.4, 2.5

Forced van der Pol oscillator, F = 5 2.4 0.29206126329199589285577578718959 2.6

Forced van der Pol oscillator, F = 15 2.4 0.37553441113144010884908928083318 2.6

Forced van der Pol oscillator, F = 25 2.4 0.56235370092685056634419221336154 2.6

Two-dimensional torus 2.5 ρ1, ρ2 in Table 2.2 2.7, 2.9

Table 2.1: Summary of our numerical calculations.

gacy map h between the first return map and a pure rotation on the circle.

Evaluating the Fourier series allows us to reconstruct the conjugacy map (cf.

Fig. 2.3(a)).

3. The exponential decay of the coefficients in the Fourier series described in

Fig. 2.3(c) is a strong indication of the analyticity of conjugacy function (cf.

Fig. 2.3(b)).

Our paper proceeds as follows: In Section 2.2, we describe our numerical

method in detail. We illustrate our method for a series of four examples, including

an example of a two-dimensionally quasiperiodic map. In all cases, we get fast

convergence and are in most cases able to give results with about thirty digits of

precision. For convenience of the reader, have summarized our numerical findings

in Table 2.1. Finally, Section 2.3 contains our concluding remarks.
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2.2 The WBN method and its applications

2.2.1 Three Dynamical Systems

The standard map. The standard map is an area preserving map on the

two-dimensional torus, often studied as a typical example of analytic twist maps

(see [31]). It is defined as follows∗

S1

 x

y

 =

 x+ y

y + sin(x+ y)

 (mod 2π). (2.3)

Fig. 2.4(a) shows the trajectories starting at a variety of different initial conditions

plotted in different colors. The shaded set is a large invariant chaotic set with chaotic

behavior, but many other invariant sets consist of one or more topological circles, on

which the system has quasiperiodic behavior. For example, initial condition (π, 1.65)

leads to chaos while (π, 1.5) leads to a quasiperiodic trajectory. As is clearly the

case here, one-dimensional quasiperiodic sets often occur in families for non-linear

processes, structured like the rings of an onion. There are typically narrow bands of

chaos between quasiperiodic onion rings. Usually these inner rings are differentiable

images of the d-torus. Yamaguchi and Tanikawa [31] and Chow et. al. [32] show

that the outermost limit (the onion’s skin, to continue the analogy) will still be a

torus, but may not be differentiable. We have computed the rotation number for

the standard map orbit shown in the Fig. 2.4(b) using quadruple precision. Its value

is given in Table 2.1.

∗The standard map generally depends on a parameter α, but we only consider the case α = 1.
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The forced Van der Pol oscillator. Fig. 2.6 shows orbits for the time-

2π/0.83 map of the following periodically forced Van der Pol oscillator with nonlinear

damping [33]

d2x

dt2
− 0.2

(
1− x2

) dx
dt

+ 20x3 = F sin (0.83t) , (2.4)

for several values of F . While the innermost orbit shown is a chaotic attractor,

the outer orbits are topological circles with quasiperiodic behavior†. Our computed

rotation numbers for the three orbits F = 15.0, 25.0, and 35.0 are given in Table 2.1.

A two-dimensional torus map. So far, the quasiperiodic sets studied here

are closed curves. We now introduce an example of a two-dimensional quasiperiodic

torus map on T2. This is a two-dimensional version of Arnold’s family of one-

dimensional maps (see [16]). It was originally introduced in two papers [34,35]. The

map is given by (T1, T2) where

T1(x, y) =
[
x+ ω1 +

ε

2π
P1(x, y))

]
(mod 1),

T2(x, y) =
[
y + ω2 +

ε

2π
P2(x, y)

]
(mod 1),

and Pi(x, y), i = 1, 2 are periodic functions with period one in both variables, defined

by:

Pi(x, y) =
4∑
j=1

ai,j sin(2παi,j), with αi,j = rjx+ sjy + bi,j.

The values of all coefficients are given in Table 2.2. This choice of this function is

based on [34,35]. Both papers use the same form of equation, though the constants

are close to but not precisely the same as the ones used previously. This is fitting

†As with the standard map, we have specified all non-essential parameters rather than stating

the most general form of the Van der Pol equation.
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Coefficient Value

ε 0.4234823

ω1 0.71151134457776362264681206697006238

ω2 0.87735009811261456100917086672849971

a1,j (−0.268,−0.9106, 0.3,−0.04)

a2,j (0.08,−0.56, 0.947,−0.4003)

b1,j (0.985, 0.504, 0.947, 0.2334)

b2,j (0.99, 0.33, 0.29, 0.155)

rj (1, 0, 1, 0)

sj (0, 1, 1,−1)

Computed ρ1 0.718053759982066107095244936117

Computed ρ2 0.885304666596099792113366824157

Table 2.2: Coefficients for the torus map. All values are used in quadruple pre-

cision, but in this table the repeated zeros on the end of the number are suppressed.

with the point of view advocated by these papers: that the constants should be

randomly chosen. Since we are using higher precision, we have chosen constants

that are irrational to the level of our precision. The forward orbit is dense on the

torus, and the map is a nonlinear map which exhibits two-dimensional quasiperiodic

behavior.

Fig. 2.7(a) depicts iterates of the orbit, indicating that it is dense in the torus.

We use our weighted Birkhoff average to compute the two Lyapunov exponents,
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which have super convergence to zero. Fig. 2.7(b) shows one of them. In terms of

method, this is just a matter of changing the function f used in WBN in Eq. (1.3).

Likewise, finding rotation numbers in two dimensions uses the same technique as in

the one-dimensional case (cf. Fig. 2.7(c)). In all of our calculations, the computation

is significantly longer than in one dimension in order to get the same accuracy,

perhaps because in two dimensions, coverage of dense orbit varies like the square of

the side length of the domain.

Convergence rate of WBN . In order to illustrate how fast the convergence

of our method is as N → ∞, we introduce four different possible values for the

weighting function w, depicted in Fig. 2.8(a), and compare the convergence results

for computing the rotation number for each of these choices of w.

wequal(t) = 1 (Birkhoff’s choice) (2.5)

wquad(t) = t(1− t)

w(sin2)(t) = sin2(πt)

wexp(t) = exp (−1/(t(1− t))) .

Recall that the last function in the list, wexp, is the function used in our calculations.

If we compute with the first choice of w, we recover the truncated sum in the

definition of the Birkhoff average. To estimate the error, we expect the difference

f(xN+1)− f(xN) to be of order one, implying that

WBwequal,N+1 −WBwequal,N ∼ 1/N.

The choice of a particular starting point also creates a similar uncertainty of order

1/N . Every function w is always positive between 0 and 1. For all but the first
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choice, the function vanishes as t approaches 0 and 1. In addition, going down the

list, increasing number of derivatives of w vanish for t → 0 and t → 1, with all

derivatives of wexp vanishing at 0 and 1. We thus expect the effect of the starting

and endpoints to decay at the same rate as this number of vanishing derivatives.

Indeed, we find that wquad corresponds approximately to order 1/N2 convergence,

w(sin2) to 1/N3 convergence, and wexp to convergence faster than any polynomial in

1/N , i.e., for every integer m, there is a constant C > 0 such that for N sufficiently

large, |WBNf −
∫
fdµ| ≤ CN−m. Figs. 2.8(b) and 2.7(b,c) show this effect.

Related methods. See [7,21] for references to earlier methods for computing

rotation numbers. In [7,21], A. Luque and J. Villanueva develop fast methods for ob-

taining rotation numbers for analytic functions on a quasiperiodic torus, sometimes

with quasiperiodic forcing with several rotation numbers. The paper [7] examines a

smooth function f on a quasiperiodic torus. Let fn denote the value of f at the nth

trajectory point. From this sequence they can obtain the rotation number with error

satisfying |error| ≤ CpN
−p for any p where Cp is a constant. The method of com-

putation depends on p and as p increases the computational complexity increases

for fixed N . If T (p,N) is their computation time, it appears that T (p,N)/N →∞

as p → ∞. In comparison, computation time for our weighted Birkhoff average is

simply proportional to N since it requires a sum of N numbers. The paper gives

one figure (Fig. 6) from which the rate of convergence can be computed. It is for

a R3BP. Their rotation-number error is proportional to N−3.5 and is ≈ 10−18 at

N = 221(≈ 2 million).

Several variants of the Newton’s method have been employed to determine
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quasiperiodic trajectories in different settings. In [36] the monodromy variant of

Newton’s method was applied to locate periodic or quasi-periodic relative satellite

motion. A PDE-based approach was taken in [37], where the authors defined an

invariance equation which involves partial derivatives. The invariant tori are then

computed using finite element methods. See also Section 2 in [37] for more references

on the numerical computation of invariant tori.

2.2.2 Error in the calculation when the true rotation number is known

In order to test the error in the calculation of rotation number, we present

two examples below where we know the exact rotation number. This allow us to

determine the actual error in the calculation for the WBN method as N increases.

In both cases the error decreases to less than 10−31 and then it grows as N increases,

apparently due to accumulated round-off error.

Example 1. Let (θn) be an orbit under the pure rotation described in Eq.

(1.5) for a rotation by ρ =
√

2− 1. Assume that what we observe is φ, a perturbed

version of θ, namely,

φn = θn + α cos(2πθn) + β sin(2πθn), where θn = nρ (mod 1). (2.6)

We use the weighted Birkhoff average as in Eq. (1.2.1) (changing y to φ) to obtain

an estimate of the rotation number ρ from this orbit. Fig. 2.10 shows the results

for α = 0.1 and β = 0.2 in (a) and for the case α = 0.0 and β = 0.0 in (b).

Example 2. Fig. 2.11 shows a geometric version of the problem from the

previous example, and again the error in the rotation number is small.
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2.2.3 Fourier coefficients and change of coordinates reconstruction

For a quasiperiodic curve as shown in Fig. 2.3(a), there are two approaches to

representing the curve. Firstly, we can write the coordinates (X, Y ) as a function

of θ ∈ S1, or secondly, we can reduce the dimension and represent the points on the

curve by an angle φ ∈ S1, that is, φ(X(θ), Y (θ)), which is also h(θ) = θ + g(θ). We

have shown g in Fig. 2.3(b) and the exponential decay of the norm of the Fourier

coefficients in Fig. 2.3(c). To limit the number of graphs in this paper, we have

only created the Fourier series for the periodic part g(θ).

Given a continuous periodic map f : S1 → R,the Fourier series representation

of f is the following.

For every t ∈ S1, f(t) =
b0

2
+
∞∑
k=1

bk cos(2kπt) +
∞∑
k=0

ck sin(2kπt), (2.7)

where the coefficients bk and ck are given by the formulas

bk = 2

∫
θ∈S1

f(θ) cos(2kπθ) dθ, (2.8)

ck = 2

∫
θ∈S1

f(θ) sin(2kπθ) dθ. (2.9)

To be able to use the fast Fourier transform, 2M equally spaced points on the

circle are required. If we only have access to an ergodic orbit (xn) on a curve, then

we cannot use the fast Fourier transform as we only have the function values f(xn)

along a quasiperiodic trajectory, and a rotation number ρ. So instead, we obtain

these coefficients using a weighted Birkhoff average on a trajectory (xn) by applying

the functional WBN . For k = 0, we find a0 by applying WBN to the function 1. For
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k > 0, we find bk and ck as follows.

bk = WBN(f(θ) cos(2kπθ)) =
N−1∑
n=0

f(xn) cos(2kπnρ)ŵn,N . (2.10)

ck = WBN(f(θ) sin(2kπθ)) =
N−1∑
n=0

f(xn) sin(2kπnρ)ŵn,N . (2.11)

By specifying that θ0 = 0, our computation of rotation number ρ provides all iter-

ates. Namely, θn = nρ. Using the Fourier coefficients, we can thus reconstruct the

periodic part of the change of variables function g (see Eq. (3.4)). This is depicted

for the R3BP in Fig. 2.3, for the standard map in Fig. 2.5, for the forced van der

Pol equation in Fig. 2.6. In all three one-dimensional cases, we depict
√
b2
k + c2

k as

a function of k. Our main observation is that the Fourier coefficients decay expo-

nentially; that is, for some positive numbers α and β, in dimension one, the Fourier

coefficients bk and ck satisfy

√
|bk|2 + |ck|2 ≤ αe−β|k| for all k ∈ Z. (2.12)

This is characteristic of analytic functions. We therefore state that all of the con-

jugacy functions that we computed in our examples are effectively analytic, “effec-

tively” meaning within the precision of our quadruple precision numerics.

In two dimensions, the computation of Fourier coefficients is similar, but in-

stead of only having one set of cosine and sine functions, for each (j, k), we have

two linearly independent sets of complex-valued functions, where i =
√
−1:

ei(jx+ky) and ei(jx−ky).

We define aj,k and bj,k to be the complex-valued coefficients corresponding to each

of these functions.
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The reconstructed conjugacy function and decay of coefficients for the two-

dimensional torus is depicted in Fig. 2.9(a). The decay of coefficients shown in

Fig. 2.9(b) shows
√
j2 + k2 on the horizontal axis, and |bj,k| and |cj,k| on the verti-

cal axis, where both of these coefficients are complex, meaning that | · | represents

the modulus. Again here, the coefficients decay exponentially, though the decay of

coefficients is considerably slower in two dimensions due to the added dimension.

The data looks quite a lot more crowded in this case, since there are many dif-

ferent values of (j, k) such that the values of
√
j2 + k2 are identical or very close.

In addition, the two sets of coefficients bj,k and cj,k generally converge at different

exponential rates. This is why there is a strange looking set consisting of an upper

and a lower cloud of data in Fig. 2.9(b). While more information on the difference

between these coefficients is gained by interactively viewing the data in three di-

mensions, we have not been able to find a satisfactory static flat projection of this

data. We feel that in a still image, the data cloud shown conveys the maximum

information.

We end this section by noting a few sources of error in the computation of

Fourier coefficients. If the number of iterates N is too small, then we will not have

sufficient coverage to get a good approximation of the coefficients, and the problem

becomes more acute as the coefficient number |k| grows. If our approximation

of the rotation number is not good, then we cannot expect the approximations

of our Fourier coefficients to be good either, and given an error in the rotation

number, there will be an kmax such that the Fourier coefficients ak with |k| > kmax

cannot be approximated with any reasonable accuracy. A more subtle form of a
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error comes from the fact that if the frequency we are trying to estimate is close

to being comensurate with the rotation number, then we will get unexpectedly

insufficient coverage of the space when performing iteration. This last type of error

is present in both weighted and unweighted averaging techniques and is related to

problems of small divisors. Rather than bog down our discussion here, we comment

that this is an inherent problem, but it only comes up for the relatively rare and

checkable condition of rotation numbers which are close to rational numbers with

small denominators, and that does not apply to any of our rotation numbers. We

intend to address this last type of error in more detail in another paper.

2.3 Concluding remarks

We have developed a straightforward but effective computational tool for

quickly computing a large variety of quantities for quasiperiodic orbits. These quan-

tities include rotation vectors, Fourier reconstruction of conjugacy maps, and in some

cases Lyapunov exponents. The methods work well in one and higher dimensions.

They are effective using both double and quadruple precision, though we have cho-

sen to do most of our calculations in higher precision to show the full possibilities

and quick convergence properties of our method.
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(a) (b)

(c)

Figure 2.1: Poincaré-return map for R3BP. All three parts of this figure show a

projection to the q1−p1 plane of solutions to the R3BP in Eq. (2.1). The value of the

Hamiltonian H for all the curves shown in the figures is the same and H ≈ −2.63.

Parts (a) and (b) show various quasiperiodic trajectories on the Poincaré section

q2 = 0. Note that the planet is fixed at the point (−0.1, 0) and the moon at (0.9, 0).

Thus some trajectories orbit both the planet-moon system and some only orbit the

planet or the moon. Each time the flow hits q2 = 0 and dq2/dt > 0, we plot (q1, p1).

Each trajectory shown is a quasiperiodic curve. Part (c) shows in white all the

initial points (q1, p1) on the Poincaré surface for which there exists a p2 so that the

Hamiltonian H at (q1, q2 = 0, p1, p2) is the same as the one in parts (a) and (b).

Part (c) also shows the trajectory which corresponds to the curve B1 in (a) and (b).
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(a) (b)

(c) (d)

Figure 2.2: Torus flow for the R3BP. This trajectory is the solution of Eq.

(2.1), shown as curve B1 in Fig. 2.1. All four views are of the same two-dimensional

quasiperiodic torus lying in R4. Each picture consists of the same trajectory spiraling

densely on this torus. We require four different views of this torus because the

embedding into three dimensions gives a highly non-intuitive images. The black

curve is the set of values of the Poincaré return map with q2 = 0 for this flow torus.
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(a) (b)

(c) (d)

Figure 2.3: Quasiperiodicity for the R3BP. For the quasiperiodic curve B1 in

Fig. 2.1, part (a) shows how the invariant curve is parameterized by coordinates

φ ∈ S1 ≡ [0, 1). Part (b) depicts the periodic part g(θ) of the conjugacy between

the quasiperiodic behavior and pure rotation by ρ. See Eq. (3.4) for a description

of g(θ). Part (c) shows the norm of the Fourier coefficients of the conjugacy as a

function of index. This exponential decay indicates that the conjugacy function is

analytic, up to numerical precision. Part (d) shows the convergence rate of the error

in the rotation number ρN as a function of the number of iterates N . The “error” is

the difference |ρN−ρN∗|, where N∗ = 400, 000 is large enough so that ρN appears to

have converged. The step size used for the 8th order Runge-Kutta scheme is 10−5.
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(a) (b)

Figure 2.4: The standard map. Part (a) shows a variety of orbits from different

initial conditions in the standard map S1 defined in Eq. (2.3) are plotted on the left.

We can see both chaos (shaded area) and quasiperiodic orbits under this map. A

single curve with quasiperiodic behavior is plotted in part (b). The orbit has initial

conditions (x, y) ≈ (−0.607, 2.01). That is, if we restrict the map to this invariant

curve, then it is topologically conjugate to a pure irrational rotation.
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(a) (b)

Figure 2.5: The standard map conjugacy. This figure shown the analysis of the

quasiperiodic trajectory in Fig. 2.4. Part (a) depicts the periodic part g(θ) of the

conjugacy between the quasiperiodic behavior and pure rotation by ρ. See Eq. (3.4)

for a description of g(θ). Part (b) shows the decay of the Fourier coefficients. Since

the conjugacy is an odd function, the odd-numbered Fourier sine and cosine terms

are zero and therefore have been omitted from the picture. The decay of the Fourier

terms can be bounded from above be an exponential decay, which suggests that the

conjugacy is analytic. An orbit of length N = 107 is used for these computations.

A smaller orbit of length N = 106 does not lead to any significant changes.
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(a) (b) (c)

Figure 2.6: Forced van der Pol oscillator. Part (a) shows attracting orbits for

a number of different forcing values F for the stroboscopic map of the van der Pol

flow given in Eq. (2.4). The plot depicts points (X, Y ) = (x(tk), x
′(tk)), where

tk = 2kπ/0.83, k = 0, 1, 2, . . . . The chaotic orbit lying inside the cycles corresponds

to F = 45.0. There are stable quasiperiodic orbits shown as curves, which from

outermost to innermost correspond to F = 5.0, 15.0, 25.0 and 35.0 respectively. Part

(b) is the periodic part g(θ) of the conjugacy (Equation (3.4)) to a pure rotation, for

F = 5.0, 15.0 and 25.0. Part (c) gives a strong indication of the analyticity of the

conjugacy to a pure rotation by studying the decay of the norm of the kth Fourier

coefficients with respect to k. The decay is exponentially fast up to the resolution

of the numerics.
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(a) (b)

(c)

Figure 2.7: Different choices of w for WBN . Part (a) shows an orbit of length

104 for the two-dimensional quasiperiodic torus map. The orbit appears to be dense,

which is consistent with quasiperiodicity. The two Lyapunov exponents of the orbit

are computed using WBN and we find them to be 0 up to our numerical accuracy.

The convergence of this computation for one of the two Lyapunov exponents is

shown in blue in (b). The highest to lowest curves show the convergence rates resp.

for the first three weighting functions given in Eq. (2.5), resp. in red, magenta,

green, and blue. Part (c) shows the convergence rate for the first rotation number

for the four different weighting functions, with the same color scheme.
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(a) (b)

Figure 2.8: Rate of convergence for different weight functions. Part (a) is a

plot of three non-constant weighting functions from Eq. (2.5) and below wquad (top),

wsin2 (second), wexp (lowest). Since only the shape matters, they have been rescaled

so that each has a peak of approximately 1.0. For a given w and a given number of

iterates N , the rotation number ρ̂ approximation is calculated for B1 of the R3BP,

the error of the calculation is the difference |ρ− ρ̂|. Part (b) shows the convergence

rate of this error as a function of N . The exponential weight function wexp allows

WBN to reach a limit by N = 50, 000 after which it fluctuates by approximately

10−30.
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(a) (b)

Figure 2.9: Conjugacy for the torus. Part (a) depicts the reconstruction of the

periodic part g (see Equation 3.4) of the first component of the conjugacy function

for the torus map. The surface is colored by height. The second conjugacy function

is similar but not depicted here. Part (b) shows the decay of the Fourier coefficients

for this component of the conjugacy function on the log-linear scale.
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(a) (b)

Figure 2.10: Testing how well the WBN method can determine the rotation

number. Part (a) shows the convergence in the calculation of a known rotation

number ρ =
√

2−1, for the trajectory (φn) = (nρ mod 1) in Eq. (2.6), with α = 0.1,

β = 0.2, and ρ =
√

2−1. The error quickly drops to the limit of numerical precision

and then increases slowly as N increases. This increase in the error is apparently

due to accumulated round-off error. Part (b) shows the increasing round-off error

in the rotation number for the trivial case (α = β = 0), and again the error grows

after passing a minimum as N increases.
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(a) (b)

Figure 2.11: The error in the computed value of rotation number when

the rotation number is known. Part (a) shows the geometric configuration of

the problem, with a constant rotation vector ρ =
√

2 − 1 about the origin. The

trajectory is (nρ (mod 1)), but the observer measures the angle φ as seen from its

perspective at P , which is midway between the center of the circle, O, and the circle

itself. Part (b) shows the convergence in the rotation number calculation using

the simple Birkhoff average (upper graph) and the weighted Birkhoff average WBN

(lower graph), for the trajectory (φn) described in (a). The error from the rigorous

value
√

2 − 1 is calculated for several values of number N . The weighted Birkhoff

average WBn(φn+1 − φn) reaches 32-digit precision by N = 30, 000.
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Chapter 3: An open set of torus-maps conjugate to skew products

Abstract. Skew-product maps on the torus, which are of the form

(xn+1, yn+1) = (mxn, g(xn, yn)) mod 1,

are relatively easy to analyze and include a variety of interesting dynamical systems.

Notice that the dynamics in the X coordinate is xn+1 = mxn mod 1. We present

sufficient conditions for a torus map to be conjugate to a skew-product map. The

set of maps which satisfy these conditions are open in the C1 topology.

3.1 Introduction

Recall that the torus T2 be the product S1×S1. In this paper, we are primarily

interested in a class of maps on the torus, called “skew product maps”, which are

of the form

F0(x, y) = (mx, cx+ dy +G0(x, y)) mod 1 (in each coordinate). (3.1)

where m, c, d are integers, with |m| > 1, and G0 : R2 → R is continuous and Z-

periodic in x and y. [A map h : R2 → R is said to be Z -periodic in x and y if for

every pair of integers n1 and n2, h(x+ n1, y + n2) = h(x, y)].
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Note that the dynamics in the X coordinate is an expanding circle map

xn+1 = mxn mod 1. (3.2)

In other words, skew-product maps have the this circle map as a “factor” map.

See [38] for a nice overview of skew-product maps and their treatment as random

maps or non-autonomous differential equations. In [39], Kleptsyn and Nalskii, using

the setting of stochastic circle diffeomorphisms, prove the important result that the

orbits of almost every (with respect to a certain measure) pair of initial conditions

on a fiber are asymptotic. [40] looks at skew products with expanding circle maps

and proved the occurrence of topological mixing for an open set of maps. The

authors of [41] studied the mechanism by which chaos occurs on a certain class

of skew-product maps. Other features, like the measure of the non-wandering set,

and perturbation of skew product systems, has been in investigated in [42] and [43]

respectively. Our main theorem describes a large family of torus maps which are

topologically conjugate to maps of the form (3.1) and hence, have many of the

properties of skew-product maps.

Lifts of torus maps. For any continuous torus map F : T2 → T2, there is a

lift, a map F̂ : R2 → R2 for which

F (z) = F̂ (z) mod 1 (3.3)

It follows that there is a 2× 2 integer-valued matrix M that we call the homology

matrix of F and a bounded function G : R2 → R2 such that

F̂ (z) = Mz +G(z). (3.4)
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Note that G is Z-periodic. We call G the periodic part of F . Because of the

Z-periodicity, G mod 1 can also be viewed as a map from T2 → T2. Note that if

for all z ∈ T2, | detM(z)| = m > 0 and if | det dF | > 0, then F is an m-to-1 of the

torus, so every point has exactly m pre-images under F .

The following theorem shows that there is a set of torus-maps, open in the C1

topology, that are conjugate to skew product maps.

Theorem 3.1.1 Let M be a 2 × 2 integer-entried matrix satisfying the following

assumption.

(A1) M has a eigenvalue m for which |m| = | detM | > 1. (Hence the other eigen-

value has absolute value 1.)

Then there is a constant δ = δ(M) > 0 such that if G : R2 → R2 is a C1, Z-periodic

map satisfying ‖G‖C1 < δ, then the torus map given by F (z) = Mz +G(z) mod 1

is conjugate to a map of the form (3.1).

For example if M is symmetric, setting δ = 0.5(|m| − 1) suffices. From here

onward, we will assume m is positive – to simplify the notation. The case

where m is negative takes only minor modifications.

Our discovery of this theorem began when we observed a striking fact, that if

a the homology matrix of continuous map F : T2 → T2 satisfies (A1), then F has

x 7→ mx mod 1 as a factor map. That is, there is a continuous function Φ that

maps T2 onto S1 and for all integers k ≥ 0

Φ(F k(z)) = mkΦ(z).

We will prove Theorem 3.1.1 as a corollary to the more general Proposition
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Figure 3.1: A tiling of the plane. The vectors (n1, n2) and vLm, the left eigenvector

of the homology matrix M corresponding to eigenvalue m, are chosen with integer

coordinates in such a way that n1u1 +n2u2 = 1 where (u1, u2) = vLm, another vector

with integer coordinates. The region P/Z2 is a one-to-one representation of T2. Note

that φ(z) := vLm·z attains a value of 0 on vectors on the line {tv1 = t(u2,−u1) : t ∈ R}

and a value of 1 on the line {(n1, n2) + t(u2,−u1) : t ∈ R}. These two lines are

parallel to the eigenvector v1 and form two opposite edge of P . φ is constant along

every line parallel to v1.
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3.1.2 stated later in this section. To state that result, we will first introduce a notion

called “invariant, expanding cones”.

Invariant, expanding cones. Much of what we do can be immediately ex-

tended to higher dimensions, but here we stay with T2. The property of “dominating

expansion” for example can be defined on any manifold, but here, we will define it

on T2. Let e1, e2 be two nowhere parallel vector fields on T2. A tangent vector v at

a point z ∈ T2 can be represented as v = (a, b)e := ae1(z) + be2(z). Let v′ = dF (z)v

and let the representation of v′ in terms of the vector fields e1(F (z)), e2(F (z)) be

(a′, b′)e. We say (e1, e2) is an expanding cone structure if there are constants

K > 1 and α > 0 such that the following are satisfied for every point z:

(i) If |b| ≤ α|a|, then |b′| ≤ α|a′|, and

(ii) if |b| ≤ α|a|, then |a′| ≥ K|a|.

We can rephrase that as follows. At every point z ∈ T2, the α-cone, denoted

Cα(z) is the set of vectors (a, b)e (writing in (e1, e2) coordinates) in the tangent space

at z such that |b| ≤ α|a|. We say F has an expanding cone-structure with respect

to (e1, e2) if e1 and e2 are nowhere zero or parallel, and for some α > 0 and some

K > 1, Cα(F (z)) ⊂ DF (z)(Cα(z)) and if (a′, b′)e = DF (z)(a, b)e, then |a′| > K||a|.

Note that by rescaling the vector field e1, we can make α = 1 so without loss of

generality, we assume α = 1 and omit it from our notation. See Figure 3.2 for a

schematic diagram.

Invariant cone systems are in particular, present in hyperbolic systems, as also
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Figure 3.2: Invariant, expanding cones. This figure illustrates an invariant,

expanding cone structure for a torus map F : T2 → T2. For the sake of simplicity,

e1 and e2 have been taken to be the unit vector fields along the X and Y directions

of the torus respectively, and α = 1. The triangles drawn in red and green lie in

the tangent spaces at z and F (z) respectively, and pictorially represent part of the

cones containing the vectors {(u, v) | ‖v‖ ≤ ‖u‖ ≤ 1} in their respective spaces.

Any vector within the red cone C(z) at z is mapped into the green cone C(F (z)) at

F (z) under the action of DF (z) and also stretched by a factor of at least K > 1.

in various weaker forms of hyperbolicity like dominated cones [44] and dominated

splittings [45]. Note that in non-hyperbolic systems, the tangent subspaces spanned

by e1 and e2 are not invariant. Most of techniques used to prove properties in these

different versions of hyperbolicity cannot be extended to the broader class of maps

we are interested in, like maps which are either not diffeomorphisms or without a

continuous invariant splitting of the tangent space.

Recall that two dynamical systems are said to be conjugate if there is a change

of coordinates that is continuous and with a continuous inverse, transforming one

dynamical system to the other. This change of variables is called a conjugacy. Our

main results assume that the map F has a non-singular Jacobian at every point.
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Such a map is called local diffeomorphism, i.e., every point has a neighborhood in

which the map is a diffeomorphism. Proposition 3.1.2 below establishes some easily

verifiable and satisfiable conditions under which a torus map is conjugate to F0 in

(3.1). Notice that F in Proposition 3.1.2 is not invertible but an m-fold covering

map.

Theorem 3.1.2 Let F : T2 → T2 be C1 that satisfies the following.

(A1) The homology matrix M has a eigenvalue m for which |m| = | detM | > 1.

(Hence the other eigenvalue has absolute value 1.); and

(A2) there is an expanding cone-structure [with respect to a pair of vector fields

denoted e1, e2].

(A3)Assume DF is invertible,

Then F is conjugate to a map of the form (3.1).

Proposition 3.1.2 is proved in Section 3.3. Theorem 3.1.1 is proved in Section 3.3.2.

3.2 Construction of the factor map

Outline of the proof of the Proposition 3.1.2 To construct the conjugacy

claimed in Proposition 3.1.2, in Section 3.2.1, we will first construct a factor map

Φ̂ : R2 → R satisfying Φ̂(F̂ (z)) = mΦ̂(z), where F̂ : R2 → R2 is the lift of F and

is given by Eq. 3.4 without taking mod 1 in each coordinate. Finally, in Lemma

3.3.2 we will complete the construction of the conjugacy H. It turns out that H is a

continuous map but not differentiable. In Section 3.3.1 we will prove that however,
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H ◦F ◦H−1 is differentiable with respect to the Y-variable. Before the construction,

we will make use of the assumptions made on the homology matrix M of F .

3.2.1 The map Φ̂.

The heart of the proof of Proposition 3.1.2 is the following proposition, which

says that the torus can be factored into the expanding circle map (3.2).

Proposition 3.2.1 (Existence of a factor map) Given the assumptions and no-

tation of Proposition 3.1.2, there exists a continuous map Φ̂ : R2 → R such that

(i) for each z ∈ R2 and each k ∈ N, Φ̂(F̂ k(z)) = mkΦ̂(z),

(ii) for each z ∈ R2 and each pair n1, n2 of integers, Φ̂(z + (n1, n2)) − Φ̂(z) is an

integer;

(iii) there exist integers n1, n2 such that Φ̂((n1, n2))− Φ̂((0, 0)) = 1.

A map Φ̂ : R2 → R will be called an m-factor map is it satisfies the properties

(i) and (ii) concluded in Proposition 3.2.1. Proposition 3.2.1 therefore states that

there is an m-factor map Φ̂.

Proof Write M =

 a b

c d

, where a, b, c and d integers. By assumption, one

of the eigenvalues is 1. Since the product of the eigenvalues is detM , the other

eigenvalue is ad − bc = m > 1. Let v1 and vm be the respective eigenvectors,

scaled so that their coordinates are integers that as small as possible; hence, the

entries of each of the vectors v1, and v2, are “reduced” to lowest terms so that

the only common factor of its coordinates is 1; that is, they are relatively prime.
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If one coordinate is 0, the other has absolute value 1. The sign of the vector is

of no importance. Let v1 = (u2,−u1) be a reduced vectors. Then vLm = (u1, u2)

is a (reduced) integer-coordinate vector that is orthogonal to v1 and also a left

eigenvector of M with eigenvalue m, i.e.,

(vLm)TM = m(vLm)T . (3.5)

It follows from an application of the Euclidean division algorithm that there are

integers n1, n2 such that

n1u1 + n2u2 = 1.

Let φ : R2 → R be defined as φ(z) = vLm · z. Note that φ is a linear map and

|φ(z)| ≤ ‖vLm‖‖z‖ (3.6)

For example, if a, d 6= 1, then v1 = (b, 1 − a), vm = (b, m − a), vLm = (a − 1, b),

φ(x, y) = (a− 1)x+ by. ‖φ‖ = ‖vLm‖ =
√

(a− 1)2 + b2.

Φ̂ is defined as follows.

Φ̂(x, y) = lim
n→∞

m−nφ(F̂ n(x, y)). (3.7)

Φ̂ is continuous and well defined. To prove that (3.7) converges, we will

use the following equation which is a consequence of Eq. 3.5.

m−nφ ◦ F̂ n(z) = vLm · z + Σ
k=1,...,n

m−kvLm ·G ◦ F̂ k−1(z) (3.8)

Equations 3.7 and 3.8 enable us to express Φ̂ as an infinite series of operators.

Φ̂(z) = lim
n∈N

m−nφ ◦ F̂ n(z) = vLm · z + Σ
k=1,2,...,

m−kvLm ·G ◦ F̂ k−1(z) (3.9)
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Since G is Z-periodic, it is uniformly bounded. Since m > 1 and each of the terms

vLm ·G ◦ F̂ k−1(z) are bounded by Eq. 3.6, the limit Φ̂(z) exists as an uniform limit,

by the Weierstrass M-test (see [46]). Since each finite sum is a continuous function,

by the Uniform Limit Theorem (see [46]), Φ̂(z) is also continuous.

Let ‖G‖C0 denote the C0-norm of G, defined as sup
z∈R2

‖G(z)‖. The following

inequalities follows from the definition of Φ̂ and will be important for making con-

clusions about the fibers of Φ̂.

For every z ∈ R2, |Φ̂(z)− φ(z)| ≤ 1

m− 1
‖vLm‖‖G‖C0 (3.10)

For every z1, z2 ∈ R2, ||Φ̂(z1)−Φ̂(z2)|−|φ(z1)−φ(z2)|| ≤ 2

m− 1
‖vLm‖‖G‖C0 (3.11)

Φ̂ is onto. We will now prove that for every x0 ∈ R and every line L in R2

parallel to vLm, there exists a point (x, y) on the line for which Φ̂(x, y) = x0. In

particular, Φ̂ is onto .

To see this, let the contrary to this statement be true. Since Φ̂ is continuous,

the image under Φ̂ of this line is some half open interval, which without loss of

generality, is of the form (xinf ,∞), where x0 < xinf . Now chose some point on the

line z0 on the line for which Φ̂(z0) = xinf + 1. By Equation 3.10,

φ(z0) < Φ̂(z0) +
1

m− 1
‖vLm‖‖G‖C0 = xinf + 1 +

1

m− 1
‖vLm‖‖G‖C0 .

For every l > 0, z0 − lvLm ∈ L. Note that

φ(z0 − lvLm) = φ(z0)− l‖vLm‖2 < xinf + 1 +
1

m− 1
‖vLm‖‖G‖C0 − l‖vLm‖2.

By assumption, Φ̂(z0 − lvLm) > xinf . Therefore, we must have,

Φ̂(z0−LvLm)−φ(z0−LvLm) > xinf−[xinf+1+
1

m− 1
‖vLm‖‖G‖C0−l‖vLm‖2] = −1− 1

m− 1
‖vLm‖‖G‖C0+l‖vLm‖2].
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This equation is true for every l > 0. If l is chosen large enough to satisfy l‖vLm‖2 >

1 + 2
m−1
‖vLm‖‖G‖C0 , it leads to a contradiction of Equation 3.10. Therefore, our

assumption of the contrary was false.

Φ̂ is a factor map. Note that Φ̂ ◦ F̂ (z) = lim
n→∞

φ(F̂n+1(z))
mn = lim

n→∞
mφ(F̂n+1(z))

mn+1 =

m lim
n→∞

φ(F̂n+1(z)
mn+1 = mΦ̂(x, y). Therefore, we have proved the following.

For every z ∈ R2, Φ̂ ◦ F̂ (z) = m× Φ̂(z) ( mod 1) (3.12)

We will now prove that Φ̂ : R2 → R factors into a map Φ: T2 → S1. To

see this first recall that G defined in Equation 3.4 is Z-periodic, therefore for every

~k ∈ Z2, every z ∈ R2,

F̂ (z + ~k) = M(z + ~k) +G(z + ~k) = Mz +M~k +G(z) = M~k +G(z)

Therefore, since G is Z-periodic, for every j = 0, 1, 2, . . .,

G(F̂ j(z + ~k)) = G(M j~k + F̂ j(z)) = G(F̂ j(z)).

Therefore, by Equation 3.9

Φ̂(z + ~k) = φ(z + ~k) + Σ
j=1,2,...,

m−jφ(f(F̂ j−1(z + ~k)))

= φ(z) + φ(~k) + Σ
j=1,2,...,

m−jφ(f(F̂ j−1(z)))

= Φ̂(z) + φ(~k)

Note that φ(~k) ∈ Z. Therefore, Φ̂(z + ~k) = Φ̂(z) mod 1. This proves the claim.

The map on R sending x to mx factors via the map proj : R → S1 into the

map x 7→ mx mod 1 on the circle S1, i.e.,

For every x ∈ R, m× proj(x) = proj(mx) ( mod 1) (3.13)
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Equations (3.12) and (3.13) combine together to give the following.

For every z ∈ T2, Φ(F (z)) = mΦ(z) mod 1. (3.14)

3.3 Proof of Proposition 3.1.2

Definition [conic curve]. A differentiable curve in R2 or in T2 is said to be

a conic curve if its tangent at every point lies inside the expanding cone at that

point on the manifold. Note that the image of a conic-curve under the map is again

a conic curve, with an expansion in length by a factor of at least K.

Proposition 3.3.1 The fibers of Φ, which are the sets Φ−1(θ0) for some θ0 ∈ S1,

are topological circles.

Proof To prove this, we will first prove the analogous statement for Φ̂, i.e., for

every x0 ∈ R, Φ̂−1(x0) is an open curve. We will then use the fact that Φ is a factor

of Φ̂ to prove the claim of the theorem. The direction Eu on T2 lifts uniquely under

the quotient map q : R2 → T2 to a direction which will also be denoted as Eu. Eu

partitions R2 into a collection of parallel lines.

Claim. Two distinct points in Φ̂−1(x0) cannot be connected by a conic curve.

To see this, first assume the contrary. So there are distinct points z1, z2 ∈ Φ̂−1(x0)

and γ is a conic curve joining z1 and z2. Then for every n ∈ N, F n(γ) is again a conic

curve whose endpoints are F n(z1) and F n(z2), both lying in the fiber Φ̂−1(mnx0)

by Equation 3.14. By Equation 3.11, we can conclude that |φ(F nz1 − F nz2)| ≤

2
m−1
‖vLm‖‖G‖C0 . Let l be the length of γ. Then the length of F n(γ) is at least
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Knγ. Note that the unit eigen direction v1 cannot lie inside the expanding cone.

Therefore, there is a uniform constant τ > 0 such that for any conic curve of length

l joining two points A and B,

|φ(A−B)| = vLm · (A−B) ≥ ‖vLm‖τ l.

Therefore,

2

m− 1
‖vLm‖‖G‖C0 ≥ φ(F nz1 − F nz2)| ≥ ‖vLm‖lknτ.

This inequality holds for every n = 1, 2, . . .. But while the left hand side remains

bounded, the right hand side diverges to∞ as n→∞. This leads to a contradiction,

so our assumption of the contrary was false.

claim Φ̂−1(x0) is a curve. To see this, first note that any straight line parallel

to vLm is a conic curve. Therefore Φ̂−1(x0) intersect every line parallel to vLm. This

combined with the above claim implies that Φ̂−1(x0) intersect every line parallel to

vLm at a unique point. Since Φ̂ is continuous, Φ̂−1(x0) is a closed set. Therefore,

Φ̂−1(x0) is a continuous curve.

Let P ⊂ R2 be the parallelogram with vertices (0, 0), (u2,−u1), (n1, n2) and

(n1 + u2, n2 − u1). Moreover, the area of P is 1 and contains no point with integral

coordinates in its interior. See Figure 3.1 for an illustration. Note that P/Z2 is a

one-to-one representation of T2.

claim Φ−1(θ0) is a closed curve. Let x0 ∈ R be some lift of θ0 under the

projection map proj. Then Φ−1(θ0) is the image under proj of the sets Φ̂−1(x0 +n),

where n ranges over all integers. However, only one of these curves intersect the

interior of the region P , which is mapped homeomorphically under proj onto T2, so
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the image is also a curve. Using the dominated cone structure and the periodicity

of Φ̂, it can be proved that the images under proj of all the curves Φ̂−1(x0 + n) is

this single closed curve.

We are now ready to construct the conjugacy.

Lemma 3.3.2 Let H : T2 → T2 be defined as H(x, y) = (Φ(x, y), (n2,−n1) · (x, y)).

Then H is a homeomorphism and H ◦F ◦H−1 is of the form given in Equation 3.1.

Proof Since Φ is continuous, H is continuous. We will first prove thatH is invertible

and then show that, in fact it is a homeomorphism. Finally, we will show that H

gives the desired conjugacy. We begin with the observation that φ(z) := vLm · z

attains a value of 0 on vectors on the line {tv1 = t(u2,−u1) : t ∈ R} and a value

of 1 on the line {(n1, n2) + t(u2,−u1) : t ∈ R}. These two lines are parallel to the

vector v1 and form two opposite edge of P . φ is constant along every line parallel

to v1. Also, for every x0 ∈ R, the interior of the region P intersects exactly one of

the curves Φ̂−1(x0 + n) for n ∈ N.

Since T2 is a compact set and H is continuous, to prove invertibility, it is

enough to show that the map is both one-to-one and onto. Let (x0, y0) ∈ T2.

Then Φ−1(x0) is a topological circle uniformly transverse to all lines parallel to

(n1, n2), there is at least one point z = (x, y) on Φ−1(x0) such (n2,−n1) · (x, y) = y0.

Therefore, H(z) = (x0, y0). Therefore, H is onto. Consider any two inverse images

z′ = (x′, y′) and z′′ = (x′′, y′′) of (x0, y0). So both (x′, y′) and (x′′, y′′) lie on H−1(x0).

Then by the definition of H, (n2,−n1) · (y′′ − y′) = 0, so z′, z′′ can be joined by a

line parallel to (n2, n1) axis, which is a conic curve. If x′′ 6= x′, this would contradict
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the fact that different points on Φ−1(x0) cannot be joined by a conic curve. This

forces x′′ to be equal to x′. Therefore, the map is also one-to-one.

For any (x0, y0) ∈ T2, let (x1, y1) := H−1(x, y), (x2, y2) := F (x1, y1) and

(x3, y3) := H(x2, y2). To show that H is the desired conjugacy have to show that

x3 = mx0 ( mod 1). Note that x3 = Φ(x2, y2) = Φ ◦ F (x1, y1). By Equation 3.14,

x3 = m×Φ(x1, y1). But since (x1, y1) = H−1(x0, y0), Φ(x1, y1) must be equal to x0.

Therefore, x3 = mx0 ( mod 1).

3.3.1 The fibers of Φ̂

In this section, we will prove that the fibers of φ, which are the sets φ−1(x) for

x ∈ R are differentiable curves. Before proving that, we will describe a generalized

notion of tangent vectors which is applicable to continuous curves.

Let λ : (0, 1)→ Rd be a continuous curve. Let t0 ∈ (0, 1) and z0 = λ(t0). For

every non-zero vector v ∈ Rd, let v̂ denote the normalized vector v
‖v‖ , where ‖v‖ is

the Euclidean norm of v. A unit vector v̂0 will be called a generalized tangent

direction to λ at z0 is there is a sequence (tn)n∈N such that tn → t0, and if vn

denotes the vector λ(tn)− λ(t0), then v̂n → v̂0.

Properties of generalized tangent directions. The following properties

of generalized tangent directions follow immediately from their definition.

1. Since the definition of a generalized tangent direction is a local property, the

definition can be extended to continuous curves in manifolds, like T2.

2. Every curve has at least one generalized tangent direction at each of its points.
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This is because, the vectors ûn all lie in the unit sphere Sd−1 of the tangent

space at z0. Since this unit circle is compact, for any sequence tn → t0 and

un := λ(tn)− λ(t0), the vectors ûn will have at least one limit point.

3. Note that a curve is C1 iff there is a unique generalized tangent direction (upto

change of sign), at each of its points.

Lemma 3.3.3 Let λ : S1 →M be a continuous curve in a d dimensional manifold

M . Let F : M →M be a local diffeomorphism. Then DF maps generalized tangent

directions of λ into generalized tangent directions of F (λ).

Proof Let v̂ be a generalized tangent direction to λ at a point z0 = λ(t0) for some

t0 ∈ S1. We will prove that DF (z0)(v) is along a generalized tangent direction

to F (λ) at F (z0). By definition, there is a sequence tn → t0 such that if vn :=

λ(tn)− λ(t0), then v̂n → v̂0. Let zn denote the point λ(tn). So zn = z0 + vn.

Let λ(r0) correspond to the point F (z0), and similarly, λ(rn) = F (λ(tn)), where

r0, r1, r2, . . . ∈ S1. Then note that rn → r0. By the definition of the derivative of a

function F , lim
n→∞

‖F (z0+vn)−(F (z0)+Df(z0)vn)‖
‖vn‖ = 0.

Therefore, F (zn) = F (z0 +un)→ F (z0) +DF (z0)vn or F (zn)−F (z0)→ DF (z0)vn.

Therefore, F (zn)−F (z0)
‖F (zn)−F (z0)‖ →

DF (z0)vn
‖DF (z0)vn‖ .

But since vn → v0, we must have that DF (z0)vn → DF (z0)v0 or DF (z0)vn
‖DF (z0)vn‖ →

DF (z0)v0
‖DF (z0)v0‖ .

Therefore, F (zn)−F (z0)
‖F (zn)−F (z0)‖ →

DF (z0)v0
‖DF (z0)v0‖ .

Therefore, DF (z0)v0 must be a generalized tangent direction to the curve F (λ) at

the point F (z0).
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Proposition 3.3.4 Under the same assumptions as Proposition 3.1.2 and with Φ̂

as in Eq. 3.7, the fibers of Φ̂ in R2 are C1 curves.

Proof Before proving this proposition we make two important observations. Firstly,

the fiber Φ̂−1(x0) is mapped under F n into the fiber Φ̂−1(mnx0), by Eqn. 3.12.

Secondly, a fiber Φ̂−1(x0) cannot have a generalized tangent direction lying inside

the α-cone, because of Proposition 3.3.1.

By Proposition 3.3.1, Φ̂−1(x0) is the graph of some continuous map λ : S1 → R

and is parameterized as {(λ(t), t)|t ∈ S1}. Suppose λ is not differentiable at some

t0 ∈ S1. So it has at least two distinct non-zero tangent vectors at z0 := λ(t0),

namely, u and v. Let v be written as the direct sum u′⊕ex, where u′ is parallel to u.

Then since ex lies within the α-cone, it expands faster than u under the action of DF .

Therefore, for n sufficiently large, the vector DF n(z0)v = DF n(z0)u′ + DF n(z0)ex

is a generalized tangent direction to Φ̂−1(mnx0) at the point F n(z0) and must lie in

C(F n(z0)), contradicting the second observation we had made in the beginning of

this proof. Therefore, there does not exist two such vectors u and v and so Φ̂−1(x0)

must be a C1 curve.

Corollary 3.3.5 Let it be assumed Without loss of generality that the X direction is

contained within the expanding cones. Every fiber Sθ := Φ−1θ is a C1 closed curve,

expressible as a the graph of a C1 function {(λ(y), y) : y ∈ S1,} with the slope of λ

bounded above by α.

Proof Note that the fibers of Φ are the images of the fibers of Φ̂ under the map

proj× Id. By Prop. 3.3.1 and 3.3.4, the former are C1 curves which intersect every
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line Y = constant at a unique point. Therefore, the fibers of Φ̂ are also are also

graphs of C1 maps from X coordinate into Y coordinate. Two distinct points in

Φ̂−1(x0) cannot be connected by a conic curve, the slope of λ is bounded above by

α. Since proj is C2, the images themselves must be C1 closed curves with the same

properties.

3.3.2 Proof of Theorem 3.1.1

The proof of this corollary starts with two observations,

(i)the existence of an expanding cone structure is an open condition in the C1-

topology of maps.

(ii) the homology matrix of a torus map is independent of the periodic part G of the

map. [See Eq. 3.4]. Secondly, for the linear torus map given by the homology matrix,

namely, M : T2 → T2, there is an expanding cone structure with K = m, α = ∞,

e1 = vm, e2 = v1. Therefore, there is a bound δ > 0 such that if ‖G(y)‖C1 < δ, then

the map still retains the same homology matrix and an expanding cone structure.
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Chapter 4: The occurrence of Multi-chaos

Abstract. In the most frequently studied dynamical systems all the peri-

odic orbits in a chaotic set have the same number of unstable dimensions, but this

property seems to fail in high dimensional systems. In this paper, we define a prop-

erty called “multi-chaos”, in which there are dense periodic orbits of more than one

unstable dimension, along with the usual properties of chaos. We will construct a

family of toral maps which happen to be the first examples of multi-chaos. These

maps are non-hyperbolic and non-invertible and cannot be studied using the ap-

proach of invariant splittings of the tangent space. Our technique is to construct

a continuous change of variables for these systems so that one of the new variables

satisfies x → mx mod 1 ; in particular the dynamics in X are independent of the

other variable.

4.1 Introduction

Chaos and Multi-chaos. A variety of definitionsof chaos are available de-

pending on the tools at hand and whether the investigation is computational (where

there is a well defined system on which computational experiments can be made),

experimental (where data is collected from a physical experiment), or theoretical
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(where the goal is a rigorous investigation, for example in [12]). A new definition

by Hunt and Ott [47] that includes situations in which there are no periodic orbits.

Here we will define a closed uncountable set X ⊂M to be chaotic if it satisfies the

following.

(Mi) X is an invariant set of F .

(Mii) X has a dense trajectory.

(Miii) X has a dense set of periodic orbits.

In many simple systems, a chaotic set has a fixed number of unstable dimensions in

the sense that all periodic orbits in the set have the same unstable dimension. We

will say a set X is k-chaotic if all of its periodic orbits have k-dimensional unstable

manifolds and the set X is at least k-dimensional. We will say X is multi-chaotic

if

(Miv) X is k-chaotic for two or more values of k.

In the theory of blow-out bifurcations and riddled basins, one often sees chaotic

sets that contain a piece of an invariant plane of dimension k1 in which there are

periodic orbits of different unstable dimensions, some of which are larger than k1.

Hence, at least part of their unstable manifolds are transverse to the plane. Often

there is a larger chaotic set that contains that piece of invariant plane. Such sets

have the potential of being multi-chaotic, but no examples have been shown to have

that property. In fact this paper contains the first rigorous demonstration of the

existence of a multi-chaotic set. Experiments on higher dimensional chaotic sets

have shown that the periodic orbits frequently have different numbers of unstable
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dimensions. Our paper is a part of a larger investigation in which we look for various

means by which we can have multi-chaos. In [48], Glendining examined a system of

coupled dynamical systems and proved the existence repellor periodic orbits that are

dense in the two-dimensional chaotic attractor X. Our numerical investigations seem

to suggest that the chaotic saddles are dense i the other properties of multi-chaos

are also present.

The multi unstable dimension problem. Consider a dynamical system

with two hyperbolic periodic points P and Q. If they have the same unstable dimen-

sion and in addition, the stable manifold of each intersects the unstable manifold

of the other, the configuration is called a heteroclinic cycle. Then there is an

invariant Cantor set with a dense trajectory that contains both P and Q. Hence the

dense trajectory comes arbitrarily close to both P and Q. If the unstable dimension

of Q is more than that of P , then generically, the stable and unstable manifolds

of P and Q respectively will not intersect since the sum of their dimensions is less

than the dimension of the ambient space. Therefore, in such a case, the mechanism

of heteroclinic intersections by which trajectories can be dense near Q is lost. So

we are faced with the problem of determining why should there be trajectories ar-

bitrarily near P which pass arbitrarily close to Q and return close to P , etc., in

chaotic sets with varying unstable dimensions. We are interested in explaining the

geometry that leads to chaos and in particular, dense trajectories in such systems.

Figure 4.1 illustrates this case in a 3-dimensional setting.

There are several examples of maps in which saddles of different unstable di-

mensions co-exist. In [49], Smale and Abraham investigated a 4-dimensional system
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which is a Cartesian product of the cat map on the torus and the horseshoe map on

the 2-sphere. In [50], the authors discussed the property of “non-shadowability” for

a family of maps with saddles of varying dimensions. The presence of two saddles

of different unstable dimensions was used in [51] to prove the existence of a set of

ergodic, non-hyperbolic maps residual in Diff1(M).

The simplest maps that could exhibit varying unstable dimensions are in 2

dimensional systems, where a repellor and saddle can co-exist. Of course, the stable

manifold of a repellor P is the set of points x such that F n(x) = P for some non-

negative integer n. The presence of a dense trajectory requires that the map is not

one-to-one. In this paper, we study a certain class of maps on the 2-torus T2 , that

have both repellors and saddles. Such a map on the 2-torus was studied in [41]. We

will assume that the dynamics has a dominant expanding direction, which leads to

the presence of an invariant structure in the tangent space called an invariant cone

system.

Chaos from quasiperiodicity. In [52], it was shown that dynamical systems

with three-period quasiperiodicity on the 3-torus T3 could be given arbitrarily small

perturbations and be made chaotic. This proved that chaotic systems are topo-

logically dense near three-period quasiperiodicity. In [34], the authors considered

the measure-theoretic density of these chaotic configurations near the quasiperiodic

state and found numerically that they were not prevalent. It was also conjectured

here that the route to chaos proposed by Ruelle and Takens in [53] was not typical.

The latter’s idea involves the destabilization of a third incommensurate frequency

of a two-period quasiperiodic attractor. The quasiperiodic route to chaos was also

70



(a) (b)

Figure 4.1: A Heteroclinic cycle is created when stable and unstable manifolds of a

saddle P intersect the unstable and stable manifolds respectively of another saddle

Q. Part (a) displays such a case for two saddles in a 2-dimensional setting. Since

the unstable dimensions of P and Q are the same, the two intersections persist

under small perturbations of the dynamical system. The regions marked in green

are portions of neighborhoods of P and Q and each of these regions have a Cantor

set of points which keep coming close to P and Q infinitely many times in their

trajectories. Part (b) shows a configuration in a 3-dimensional setting in which the

unstable dimensions of P and Q are 2 and 1 respectively. As a result, for almost

every perturbation of the system, W s(Q) and W u(P ) will not intersect. Thus, the

configuration of a heteroclinic cycle is absent and we have to look for some other

mechanism by which points near P land close to Q and vice versa.
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reportedly observed in quasiperiodically driven systems, in [54]. In [55], Glendinning

constructed an open family of 2D-flows such that the return maps on a suitable cho-

sen Poincare section undergo transition to chaos. At the boundary of chaos, there

is a single stable periodic orbit and countably infinitely many periodic points.

Vertical circles A vertical circle is a set of the form {X = x} = {x}×S1 ⊂

T2, where x ∈ S1. It will be denoted as Sx . Then the map (3.1) maps vertical

circles into vertical circles, that is,

For every x ∈ S1, F (Sx) = SF (x) (4.1)

All the vertical circles Sx with x of the form

x0 =
k

mn − 1
mod 1 (4.2)

are invariant under F n. These will be called the periodic circles of the map. So

if z0 = (x0, y0) is a periodic point, then x0 must be of the form (4.2) and z0 is a

fixed point of the circle map F n|Sx0
. Depending upon whether this fixed point is

attracting, neutrally stable or repelling for F n|Sx0
, z0 is a saddle, non-hyperbolic

periodic point or repellor for F .

Our first result, Theorem 4.1.1, proves the occurrence of multi-chaos. Here

we use maps that have an expanding cone structure containing the X direction. In

general for a maps given by Eq. 3.1, such a structure will be present if the following

condition holds.

‖g‖C1 ≤ 0.5m

Theorem 4.1.1 (Theorem A) Assume that a torus map F : T2 → T2 is given by

Equation 3.1, has a periodic saddle S and an expanding cone structure containing
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the X direction. Then if there exists a periodic circle Sx such that F p|Sx is conjugate

to an irrational rotation. Then the map (3.1) has multi-chaos.

Theorem 4.1.2 given below is a consequence of Theorems 4.1.1 and 3.1.2. It is

in effect, a generalization of Theorem 4.1.1 .

Theorem 4.1.2 (Theorem B) Let F : T2 → T2 be a C1 map of the torus such

that detDF is invertible everywhere and satisfies the following.

(i) Its winding matrix M has a unit eigenvalue and a determinant greater than 1.

(ii) There is an expanding cone system containing either the X-direction (1, 0) or

the Y-direction (0, 1).

(iii) F has a periodic saddle and an invariant quasiperiodic circle.

Then F is conjugate to a map of the form (3.1) and has multi-chaos.

Corollary 4.1.3 Let M be a matrix with integer entries with a unit eigenvalue and

determinant more than 1. Then there is a δ > 0 such that for every Z-periodic

f : R2 → R2 such that ‖f‖C1 < δ, the map F : T2 → T2 whose lift is F̄ = M + f is

conjugate to a map of the form (3.1) and has multi-chaos.

Section 4.2 has some definitions and properties needed to prove the two theo-

rems. Section 4.3 contains the proof to Theorem 4.1.1.
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4.2 Some definitions and lemmas

4.2.1 Stable and unstable manifolds.

Let M be a closed d-manifold, F : M → M be a C1 map and let P be

a hyperbolic periodic point of period p. This means that the matrix DF p(P ) is

a hyperbolic matrix. In particular, this means that F is a diffeomorphism when

restricted to some small neighborhood of P . Within a suitably chosen small neigh-

borhood of P of radius ε, the map F p is conjugate to the hyperbolic linear map in

DF p(P ) : Rd → Rd which has the origin as its fixed point. Such a linear map has

stable and unstable subspaces, which correspond to the local stable and unstable

manifolds of P , which are defined below.

W s
ε (P ) := {y ∈M : for every integer n ≥ 0, d(fpn(y), P ) < ε}.

W u
ε (P ) := {y ∈M : for every integer n ≥ 0, d(f−pn(y), P ) < ε}.

The global stable and unstable manifolds for P can now be defined as

W s(x) := {y ∈M : lim
n∈N

d(fn(y), fn(x)) = 0}.

W u(x) := {y ∈M : lim
n∈N

d(f−n(y), f−n(x)) = 0}.

Let z0 = (x0, y0) be a periodic saddle of period p for the map given by Equation

3.1. Let W s = W s(z0) be the stable manifold of this saddle. Then B(z0) = W s∩Sx0

is an open sub-interval of the vertical circle Sx0 containing z0. Then W s is given by

W s(z0) = ∪
n=0,1,2,...

F pn(B(z0)), where B(z0) = W s(z0) ∩ Sx0 .

Remark. If P is a periodic repellor of period p, then W u
ε (P ) = Bε(P ), the

open ε-ball around P . Therefore, W u(P ) is the open set ∪
n∈N

F pnBε(P ). It is therefore
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a d-dimensional manifold. Similarly, W s(P ) is the 0-dimensional manifold which is

the countable union of points ∪
n∈N

F−pn(P ).

4.2.2 Snap-back repellors

Dense set of repellors F.R. Marotto introduced the notion of snapback

repellor in 1978 [56], based on Li-Yorkes theorem on chaos. He redefined snapback

repellors in 2005 as follows.

Definition [56]. Let R be a periodic repellor of F . Suppose that there exists a point

Q 6= R such thatQ ∈ W u(R), F n(Q) = R for some n ∈ N and det(DF (·)) 6= 0. Then

R is called a snapback repellor of F . Note that Q is a homoclinic intersection point

for P and any periodic repellor with homoclinic intersection point(s) are snap-back

repellors. Snap-back repellors provide a powerful tool for proving various aspects

of chaos. For example, in [57], the authors present an estimate of the radius of the

repelling neighborhood of a snap-back repellor and used it to search for homoclinic

orbits.

The situation we will analyze is simpler than Marotto’s, and we will state a

simplified version of a lemma by Marotto which we will also prove for the sake of

completion.

Lemma 4.2.1 (Snap-back repellor lemma) Let F be a C1 map on a manifold

M Let R be a snapback repellor and Q a homoclinic point of R. Then Q is a limit

point of periodic repellors.

Proof Let U be a neighbourhood of R. It will be proved that exists a periodic re-
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pellor in U . Let W be a neighbourhood of R about which the map can be linearized.

Since ∂2(g) > 1 at R, by taking small enough, it can be assumed without loss of gen-

erality that ∂2(g) > K > 1 in W . Since Q ∈ W u(R), exists M ∈ N 3 exists QM ∈

F−M(Q)∩W . Hence for every n ∈ N, exists QM+n ∈ F−(M+n)(Q)∩W . Let V ⊆ U

be a neighborhood of Q such that FN(V ) ⊆ W . Let VM be a neighbourhood of QM

in W which maps onto V under FM . Let for every n ∈ N, VM+n denote the n-th

inverse image of VM that lies within W . Since W is a linearizable neighbourhood of

the repellor R, diam(VM+n)→ 0 implies that for all large n, VM+n ⊂ FN(V ).

However, FN+M+n(VM+n) = FN(V ) ⊃ VM+n,

⇒ by the Brower fixed point theorem, exists a point P of periodicity M + N + n

in VM+n. Since P ∈ VM+n, the first n iterates of P lie within W and atmost M +N

iterates lie outside W . By the choice of W , for large n, P is a repelling periodic

point.

Now FM+n ∈ V ⊂ U , hence U has a repelling periodic point as claimed.

4.3 Proof of Theorem 4.1.1

By the hypothesis of the theorem, there is a periodic saddle S of period p1

and a periodic circle Sx0 [see Eq. 4.2 for definition] of period p2 such that F p2|Sx0 is

an irrational rotation. By the definition of quasiperiodicity, the restriction F p2|Sx0

must be conjugate to an irrational rotation. Let N = p1p2. Then S and Sx0 are fixed

under FN and FN |Sx0 is conjugate to an irrational rotation. Given the assumptions

of Theorem 1.1., we will assume without loss of generality,
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(H1) p1 = p2 = 1, S = (0, 0) and x0 = 0.5, which we shall call “the middle circle”

and denote as Γ .

Outline of the proof. We will first prove two necessary properties of the

map, which will be used to establish the various features of multi-chaos for the map.

Specifically, in Lemma 4.3.1, we prove that the map in Theorem 4.1.1is topologically

transitive and in Section 4.3.1 we prove that the saddle has a dense unstable mani-

fold. Finally, in Section 4.3.2, we use these two properties of F to prove properties

(i)-(iv) of multi-chaos.

A map F : M →M on a manifold M is said to be strongly transitive if for

every open D ⊂M , there is n ∈ N such that ∪
1≤k≤n

F k(D) = M .

Lemma 4.3.1 Under the hypothesis of Theorem 4.1.1, F is strongly transitive.

Proof Let us assume the simplifying assumption (H1). Since F is uniformly ex-

panding in the x-direction by factor m > 1, for sufficiently large n1 ∈ N, F n(D)

stretches across all x-coordinates and in particular, intersects Γ in an open interval

I. Since F |Γ is a quasiperiodic map, for sufficiently large n2 ∈ N, ∪
k∈[n2]

F k(I) = Γ.

Therefore, ∪
k∈[n2]

F n1+k(I) contains a neighborhood V of Γ. By the compactness of

Γ and the expanding nature of F in the x-direction, for sufficiently large n3 ∈ N,

F n3(V ) = T2. Hence, the union of the first n = n1 + n2 + n3 iterates of D cover T2.
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4.3.1 Density of W u.

Proof that W u is dense. The proof of the density of W u will be by contra-

diction. Suppose W u is not dense in T2, i.e., there exists an open, non-empty set U

such that U ∩W u = Φ. Since W u is forward invariant, it may be assumed without

loss of generality that U is backward-invariant. By Lemma 4.3.1, U must be an

open, dense set disjoint from W u. Let K be the closure of W u. Then every point

on K lies on the boundary of U . Note that W u is a conic-curve and therefore, must

intersect Γ at least one point z. Since F |Γ is conjugate to an irrational rotation,

the orbit of z must be dense in Γ. However, the orbit of z is also a part of W u.

Therefore, Γ ⊂ K.

A vertical curve is a curve on the torus with a constant X-coordinate. The

following lemma establishes that of a vertical curve contained in the open sets U and

at distance δ from Γ has a length l bounded by αδ, where α comes from the definition

of expanding cones. However, we will also show that the ratio lδ is unbounded for

vertical curves contained in U . This contradiction will complete the proof of W u

being dense.

Lemma 4.3.2 (An upper bound) Assume the hypothesis of Theorem 4.1.1 and

also (H1). Let λ be a vertical curve in T2 of length l > 0 and at a distance δ from

Γ ( 0 < δ ≤ 0.5). Then we must have l
δ
≤ 2α.

Proof Let x1 be the X coordinate of the curve λ. without loss of generality, we may

assume that x1 = 0.5−δ. Let (0.5−δ, y0) and (0.5−δ, y2) be the two endpoints of λ,
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with y0 < y1. Let the vertical mid-point be (0.5−δ, y1), where y1 = 0.5(y0+y2). Then

by assumption, the point 0.5, y1) is a point on Γ. Since W u has dense intersections

with Γ, for every ε > 0, there is a point (0.5, y′1) ∈ Γ ∩W u at a distance less than ε

from (0.5, y1). Let the segment of W u starting at (0.5, y′1) intersect Sx1 = S0.5−δ at

(0.5− δ, y3). Without loss of generality, let y3 ≤ y0.

Then since W u is a conic-curve with slope bounded by α, |y3 − y1| ≤ |y3 − y′1| +

|y1 − y′1| ≤ αδ + ε.

But l = 2|y0 − y1| ≤ 2|y3 − y1| ≤ 2α|δ| + 2ε. Since this inequality holds for every

ε > 0, it must hold for ε = 0. This gives the inequality l
δ
≤ 2α.

Contradiction of Lemma 4.3.2. Let δ ∈ (−0.1, 0.1) be fixed. The intersec-

tion of the open set U with the topological circle {δ} × S1 is a disjoint collection

of maximal, open arcs. Let I0 be such a component interval with Y-span l > 0.

For every integer n ≥ 1, there is a continuous arc In which lies in the interior of

(−δ, δ)×Sx0 such that F n(In) = I0. Let mx := z ∈ T2

min
|∂xF1| and my := z ∈ T2

max
|∂yF2|.

Since mx > my. So In lies within the annulus (− δ
mn

x
, δ
mn

x
)× S1 and has a Y-span of

atleast l
mn

y
. Note that In is still a C1-curve with slope bounded below by α′ > α.

Also, In lies in U , since U is backward invariant. However, the ratio of the Y-span

to the distance from its mid-point is l
(
mx

my

)n
which tends to ∞ as n→∞. This is

a contradiction of Lemma 4.3.2.

Therefore, the assumption that W u is not dense has lead to a contradiction

and must be false. Hence W u must be dense in T2.
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4.3.2 Density of periodic saddles and repellors

Proof of density of periodic saddles. We had assumed without loss of

generality that the point (0, 0) is a saddle. The circle S0 is fixed under F , so let

S1, . . . , Sk be the saddles on this circle, S1 being equal to (0, 0). Then the union

of the stable manifolds of these saddle contains all the points on S0 other than the

repellors and so is dense in S0. The set of pre-images of this circle is the set of

vertical circles {x = 2kπ
3n−1

with k ≥ 0 and n > 1 integers }, which is dense in T2.

Since the unstable manifolds of these saddles are also dense, the set of homoclinic

intersections of W u with W s for the saddles are dense. However, any homoclinic

intersection point is a limit point of periodic saddles. Therefore, the set of periodic

saddles must be dense in the whole torus.

In this section, the following useful result will be proved which will be used to

show that repellors are dense in the torus.

Proposition 4.3.3 For every z ∈ T2, the set of pre-images of z, given by ∪
n∈N

F−n(z),

is dense in T2.

Proof Let I denote the set ∪
n∈N

F−n(z). Since I is backward invariant, so is Ī, its

closure. Since F is expanding uniformly in the X-direction, and F |Γ is quasiperiodic,

Γ ⊂ Ī. Let U = T2 − Ī. Then U is an open set and forward invariant. The proof of

Lemma 4.3.1 shows that if U is nonempty, then U must contain Γ, a contradiction.

Hence U is empty, Ī = T2 and therefore I is dense in T2.

Proof of existence of a repellor. By assumption, there is a saddle S in
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the torus. Let it lie on the circle Sx. Then S is a fixed point of F |Sx. Moreover,

it must be an attracting fixed point as the unstable manifold of S is transverse to

the Y-direction. Therefore, F |Sx must also have a repellor R on Sx. Then R is a

repellor for F .

Proof of density of periodic repellors. Since R is a repellor, it has a

repelling neighbourhood W , hence W ⊂ W u(R). Since W u is closed under forward

iterates, ∪
n=0,1,2,...

F nW ⊆ W u. By Lemma 4.3.1, ∪
n=0,1,2,...

F nW ] = T2. Therefore,

W u(R) = T2. Also, the set of inverse images of R is dense in T2. Each of these

pre-images are snap-back repellors, as they lie in T2, the unstable manifold of R. By

the Snap-back repellor lemma, Appendix 4.2.1, every snap-back repellor is a limit

point of periodic repellors, hence, the set of periodic repellors too must be dense.

Proof of existence of a dense trajectory A dense trajectory is equivalent

to transitivity of the map. Recall that a map is called transitive if for any pair

of non-empty open sets A and B, there exists some n ∈ N such that F−n(A) ∩ B

is non empty. Transitivity is however implied by Lemma 4.3.1. Therefore, F has

multi-chaos and Theorem 4.1.1 is proved.

4.3.3 Topological mixing.

In fact, we can add a stronger property of the map F , that of being topologi-

cally mixing. Recall that a map is called topologically mixing if for any pair of

non-empty open sets A and B, there exists some N ∈ N such that for every n ∈ N
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such that n > N , F−n(A)∩B is non empty. The topological mixing property of the

map is proved by the following proposition.

Proposition 4.3.4 Assume that the unstable manifold of every saddle is dense for

the map (3.1). Then F is topologically mixing.

Proof Let A, B be two non-empty, open subsets. Since F0 is uniformly expanding

in the X-direction, for some integer k > 0, F k(A) will intersect the stable manifold

of some periodic saddle P of period p. By assumption, the unstable manifold W u

of P is dense in T2, it passes through B. Let z ∈ W u ∩ B. Then there is a δ > 0

such that B contains a δ neighborhood of z. By the lambda lemma, there is an

integer N > 0 such that for every integer n > N , F n(F k(A)) contains points within

distance δ of z ∈ W u and therefore, lying within B. Therefore, for every integer

n > k+N , F k+N(A)∩B is non-empty, which implies that F is topologically mixing.
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Appendix A: Dense saddles in skew product maps

Abstract In this chapter, we look at a specific class of maps in the torus and

explore the consequences of this map having a dense set of periodic saddles. The

main result states that under these assumptions, the torus splits into a countable

number of invariant cylinders with disjoint interiors and the map is transitive on

each cylinder.

Our main result states that a map on the torus with dense saddles may not

be transitive, but there will be a decomposition of the torus into a finite number

of cylinders with disjoint interiors with the map transitive on each component. Let

z0 = (x0, y0) ∈ T2 be a periodic point of period p ∈ N. Then one of the eigenvalues

of dF p(z0) is mp. Therefore, depending upon whether the other eigenvalue, which

equals |∂2(g◦F p−1)(z0))|, is lesser than, equal to or greater than 1, z0 is a saddle, non-

hyperbolic or a repellor. Our main result will carry the additional assumption that

the expansion in the X-direction by m dominates any expansion in the Y-direction.

This can be stated as

|∂2g(x, y)| < m for ∀(x, y) ∈ T2. (A.1)

We will also find use for a stronger condition on the expansion, which is

|∂2g(x, y)| < 0.5m for ∀(x, y) ∈ T2. (A.2)
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So if z0 = (x0, y0) is a periodic point, then x0 must be of the form (4.2) and z0 is

a fixed point of the circle map F n|Sx0 . Depending upon whether this fixed point

is attracting, neutrally stable or repelling for F n|Sx0 , z0 is a saddle, non-hyperbolic

periodic point or repellor for F .

A cylinder is a set diffeomorphic to S1× [0, 1]. Recall that a map is transitive

if it has a dense trajectory or equivalently, for every pair of open sets U and V , there

is some n ∈ N for which F−n(U) ∩ V 6= Φ. A set X is called forward-invariant wrt

F if F (X) ⊆ X. It is called strongly forward-inavariant if F (X) = X. Backward-

invariance and invariance is similarly defined.

Theorem A.0.5 (Main result) Let (3.1) be a local diffeomorphism that has dense

periodic saddles and satisfies (A.2). Then either the map is transitive or there exists

some p ∈ N such that the torus is a union of finitely many cylinders with disjoint

interiors such that F p acts transitively on each cylinder and the action of F on the

set of cylinders is a permutation whose cycles are of order p.

The following two corollaries are immediate consequences of the main theorem.

They show that the splitting of the torus into invariant cylinders can be refuted by

easily satisfiable conditions.

Corollary A.0.6 Let (3.1) be a local diffeomorphism with dense periodic saddles ,

satisfies (A.2), such that there is a periodic circle Γk,n of the form (4.2) on which

F n is transitive. Then the map F is transitive on T2.

Corollary A.0.7 Let (3.1) be a local diffeomorphism that has dense periodic saddles

84



and satisfies (A.2). Moreover, suppose that there are two periodic points whose

periods are coprime. Then the map F is transitive on T2.

Section A.1 has some definitions and properties needed to prove Theorem

A.0.5. Finally, section A.2 presents the proof to Theorem A.0.5.

A non-transitive torus map with dense periodic saddles. Consider the

cylinder C = S1 × [0, 1]. We will first construct a map on this cylinder which has

a dense set of periodic saddles and leaves the boundaries S1 × {0} and S1 × {1}

invariant. Then the map on the torus can be constructed by gluing corresponding

boundaries of each cylinder together. We will continue to use the notation Sx to

denote the vertical line segments {x} × [0, 1].

The following map on the cylinder is a modification of a torus map studied

in [41].

F (x, y) = (3x (mod ()1), y + 0.01 sin(2πy) + 0.2g(y) sin2(πx)), (A.3)

where (x, y) ∈ S1× [0, 1]. Here g : [0, 1]→ [0, 1] is a smooth map which equals 0 in a

small neighborhood of 0 and 1 and equals 1 for y ∈ [0.01, 0.99]. The map has a fixed

saddle point z at (0, 0.5). Let R be the set bounded by the circle S1× [0.4] and from

the bottom by portions of the unstable manifold of z. Using a bit of arithmetic, it

was shown in [41] that R ⊂ S1× [0, 0.4] and that R ⊂ F (R). Therefore, every point

in R has a preimage in R. Also note that ∂Fy

∂y
> 1 in R. From this it follows that the

unstable manifold Wu of z is dense in R. This region also has a periodic repellor,

so the forward iterates of R covers the interior of the cylinder C. Therefore, W u is

everywhere dense.
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Now note that the stable manifold W s of z contains S0 − {z} and all of its

inverse images. The inverse images of S0 are the vertical lines {Sx | x = k
3n

(

mod 1), k, n ∈ N}. W s is dense on each such vertical line and these lines are dense

in C. Therefore W s is dense in C.

Therefore, the intersections of W u with W s are transverse homoclinic points

and dense in C. Each of them are limit points of periodic points, hence, the set of

periodic points is dense in C.

A.1 Definitions and properties

A.1.1 Stable and unstable manifolds.

In this section, the definitions of local and global, stable and unstable manifolds

are reviewed.

Local stable and unstable manifolds for hyperbolic maps. LetM be a closed

n-manifold, F : M → M be a C1 diffeomorphism, Λ ⊆ M is a compact hyperbolic

set. Then for ∀x ∈ Λ, ∀ε > 0 :

W s
ε (x) := {y ∈M | ∀n ∈ N0, d(fn(y), fn(x)) < ε}.

W u
ε (x) := {y ∈M | ∀n ∈ N0, d(f−n(y), f−n(x)) < ε}.

Global stable and unstable manifolds for hyperbolic maps. LetM be a closed

n-manifold, F : M → M be a C1 diffeomorphism, Λ ⊆ M is a compact hyperbolic

set. Then for ∀x ∈ Λ, ∀ε > 0 :

W s(x) := {y ∈M | lim
n→∞

d(fn(y), fn(x)) = 0}.
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W u(x) := {y ∈M | lim
n→∞

d(f−n(y), f−n(x)) = 0}.

It follows from hyperbolic systems’ theory and proved in various sources, such as [58],

that ∃ε0 > 0 such that for ∀0 < ε < ε0,

W s
ε (x) is a manifold and W s(x) = ∪

n∈N0

F−n(W s
ε (x)).

W u
ε (x) is an embedded manifold and W u(x) = ∪

n∈N0

F n(W u
ε (x)).

Stable and unstable manifolds of hyperbolic periodic points. Let a point P

on a n-dimensional manifold M be a hyperbolic periodic point of period p, of a map

F . Then P must be a hyperbolic fixed point of the map F p. By the Hartman-

Grobman theorem [59], there is a neighbourhood W of P in which F p is C1 con-

jugate to the linear map dF p(P ). The local stable and unstable manifolds of P

exists in this neighborhood. The global stable and unstable manifolds can then be

described as above.

A.1.2 Invariant cone systems.

Invariant system of cones : Let M be a manifold, F : M → M a C1 map. Let

T (M) = Eu +Es be a splitting of the tangent bundle and for ∀x ∈M , ∀α > 0, the

α-unstable cone at x, denoted as Cuα(x), is defined to be {(vu, vs) ∈ T (x,M)||vs| ≤

α|vu|}. Then (M,F ) is said to have a system of invariant cones wrt the splitting

Eu ⊕ Es if ∃α > 0 such that for ∀x ∈M , ∀v ∈ Cuα(x), v′ = dF (x)(v) ∈ Cuα(F (x)).

Invariant, expanding system of cones : Let M be a manifold, F : M → M a

C1 map. Let T (M) = Eu + Es be a splitting of the tangent bundle. Then (M,F )

is said to have a an invariant expanding cone system if ∃α > 0, k > 1 such that for

87



∀x ∈M , ∀v ∈ Cuα(x), v′ = dF (x)(v) ∈ Cuα(F (x)) and |v′| > k|v|.

If the splitting Eu ⊕ Es and constants α > 0 and K > 0 are clear from the

context, then they will be dropped from the notation and the invariant, expanding

cone system Cuα will be simply denoted as { C(x) | x ∈M} or { Cα(x) | x ∈M}.

We will now describe curves whose tangent bundle is contained in the cone

system. Borrowing from a similar idea in physics, we will call such curves causal.

Differentiable causal curves A C1 curve λ : R→M is said to be a causal curve

if its tangent vector at every point lies inside the cone associated with that point.

In other words, for ∀t ∈ R, λ′(t) ∈ Cα(λ(t)).

This definition of causality can be extended from differentiable curves to continuous

curves

Causal curves A C0 curve λ : R→M is said to be a causal curve if at every point

z0 on λ and any neighborhood U of z0, any point z on U can be joined to z0 by a

differentiable, causal curve γ lying inside U .

Causal curves are therefore Lipschitz curves. By Rademacher’s theorem (see

[60], Theorem 3.1.6), they are differentiable at Lebesgue almost every point. In

particular, they are rectifiable and their length can be obtained by integrating their

slopes.

Lemma A.1.1 (Properties of an expanding system of unstable cones) Let

M be a manifold, F : M →M a C1 map with an invariant, expanding cone system

88



wrt the splitting Es
⊕

Eu and constants K and α. Let λ : R→M be a causal curve.

Then

1. The image F (λ) under the map of the causal curve λ is also a causal curve.

2. length(F (λ)) > K length(λ).

3. length(F n(λ)) > Kn length(λ), which →∞ as n→∞.

Proof 1. For ∀t ∈ R, (F ◦ λ)′(t) = dF (λ(t))λ′(t). Since the cone system is

forward invariant, this vector ∈ Ku
α(λ(t)), hence F (λ) is a causal curve too.

2. length(F (λ)) =
∫
R
|(F ◦ λ)′(t)|dt ≤

∫
R
k|(λ)′(t)|dt = K length(λ).

3. This follows from (i) and (ii) above.

Cone system for (3.1). Let ex and ey denote the vector fields along the X

and Y directions respectively. Take Eu to be ex and Es to be ey. Then the map

(3.1) has an invariant cone system wrt the splitting ex⊕ ey if it satisfies (A.1). The

cone system will be expanding if the stronger condition (A.2) is satisfied.

In an invariant cone system, the cone C(x) at a point x is mapped under

DF (x) into the cone at F (x). The following quantities an track how thin the images

DF n(x)(C(x)) get with the iteration number n.

For ∀n ∈ N, ∀z ∈M, αn(z) := sup{‖v‖
‖u‖
| (u, v) ∈ DF n(Cα(z))}. (A.4)

For ∀z ∈M, ᾱ(z) := inf
n∈N

αn(z). (A.5)
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If ᾱ(z) > 0, then all of the images DF n(C(z)) will contain the ᾱ-cone wrt the

splitting Eu ⊕ Es. Note that the Eu(DF n(z)) always lies inside DF n(C(z)). This

can be summarized as follows.

For ∀z ∈M, ∀n ∈ N, Eu(F n(z)) ⊆ Cᾱ(F n(z)) ⊆ dF n(Cα(z)) ⊆ Cα(F n(z)) (A.6)

So if ᾱ(z) = 0, Eu must be invariant under DF along the orbit of z. Conversely, if

Eu is not an invariant sub-bundle, then ᾱ > 0.

Stable and unstable manifolds. It turns out that in dynamical systems

with an expanding, invariant cone system, the stable and unstable manifolds, W s

and W u , have a nice behavior which have been described in the following two

propositions.

Proposition A.1.2 In a 2-manifold M with an invariant, expanding cone system,

the unstable manifold of a saddle is an embedded, causal curve.

Proof Let z be a saddle, W u its unstable manifold. By Lemma A.3.1, C(z)∩Tz(W u)

contains a subspace of dimension 1. Since W u is 1-dimensional, Tz(W
u) must be

contained in the interior of C(z). By continuity of the tangent space along W u

and of the cone system C, ∃ε > 0 such that for ∀z′ ∈ W u
ε (z), Tz′(W

u) ∈ C(z′).

Therefore, since the curve W u
ε (z) is causal and since W u(x) = ∪

n∈N0

F n(W u
ε (z)), by

Lemma A.1.1, it is an embedded, causal curve.

Proposition A.1.3 In a manifold M with an invariant, expanding cone system,

the stable manifold of a saddle is everywhere transverse to the invariant cones.
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Proof Let W s be the stable manifold of a saddle z. The proof has two parts. First

we will prove that W s
ε is transverse to the cone system for some ε > 0. Secondly,

we will show this implies that the entire stable manifold is transverse to the cone

system.

Since Tz(W
s) is a contracting eigenspace and vectors in C(z) expand by at least

k > 1, Tz(W
s) must be disjoint from C(z). Since both C and W s are C1 structures

and C(z) is a closed set, for sufficiently small ε > 0, W s
ε is transverse to the cone

system.

Suppose at some z0 ∈ W s, ∃w ∈ Tz0(W
s) ∩ C(z0). By the definition of the

stable manifold, zn := F n(z0) → z, so for every large n ∈ N, zn ∈ W s
ε . By the

invariance of the cone structure, dF n(w) ∈ C(zn), a contradiction of the previous

conclusion. So no such z0 exists and W s is everywhere transverse to the cone system.

A.2 Proof of Theorem A.0.5

In this section it will be assumed that F in (3.1) is a local diffeomorphism and

its periodic saddles are dense in T2. If F is transitive, then the theorem is already

proved, so we will proceed with the assumption that F is not transitive. So there

exists an open subset U of T2 whose images are not dense in T2.

By assumption, there exists a periodic point of period p ∈ N in U . Hence,

∀n ∈ N, F pn(U) intersects U . Since U , is connected, so is F pn(U), therefore, for

∀N ∈ N, Un := ∪
0≤n≤N

F pn(U) is a connected set. U∞ := ∪
n∈N0

F pn(U) is open and

K := Ū∞ is closed and hence compact. Both K and U∞ are forward invariant under
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F p.

Given any subset A of a topological space X, Int(A) will denote the interior

of the set A.

By Lemma A.3.3, U∞ = Int(K), ∂(K) and KC are strongly forward and

backward invariant under F p. As a consequence, we can conclude that,

Lemma A.2.1 Unstable manifolds of periodic saddles do not cross ∂K. Moreover,

if a saddle lies on ∂K, then its unstable manifold lies in ∂K.

Claim 1. The connected component of the boundary of K are C1, causal, closed

curves. Thence, we will conclude that K is homeomorphic to a cylinder. This is

proved in Section A.2.1.

Claim 2. T2 decomposes into a finite number of such cylinders with disjoint interiors

and each cylinder is mapped into and onto another cylinder. This is proved in Section

A.2.1.

A.2.1 The proof of Claim 1

The boundary of K. By making U smaller if necessary, we may assume

without loss of generality that U is homeomorphic to an open rectangle and that its

boundary has four C1 components, the top and the bottom boundary are tangent

to Eu and its left and right boundaries are tangent to Es. For ∀x ∈ S1, Kx is

the 1-dimensional set Sx ∩K. This is a compact set and hence a union of compact

intervals. Therefore, a point z0 = (x0, y0) ∈ ∂K is either the boundary of a proper

component interval of Kx0 or a singleton component of Kx0 . We will first prove

92



that each connected component of ∂K is an embedded curve. To prove this, we will

show that there is a unique C0 curve embedded in ∂K that passes through z0. The

claim will be proved separately for both the possibilities for z0 in Lemmas A.2.2 and

A.2.3.

Lemma A.2.2 For ∀z0 = (x0, y0) ∈ ∂K which are boundary points of proper com-

ponent intervals of Kx0, ∃ a unique C0 curve embedded in ∂K that passes through

z0.

Proof If Sx0 is given the usual orientation, then every proper component interval of

Kx0 has an upper boundary and a lower boundary. Without loss of generality, the

point z0 = (x0, y0), which lies on the boundary of a proper component interval of

Kx0 , is an upper boundary. We will first demonstrate the existence of a continuous

curve embedded in ∂K and passing through z0.

Since z0 ∈ ∂K, ∃zn ∈ U and kn ∈ N such that F pkn(zn) → z and F pkn(zn) ∈

Sx0 . Since z is the upper boundary of a component interval, this convergence is

from below. Let γ be the upper boundary of U . Let z′n be the point in γ with

the same X-coordinate as zn. Since F is orientation preserving, F pkn(z′n) → z and

F pkn(z′n) ∈ Sx0 .

Let I be a small open interval in S1 around x0. For all x ∈ I, let yn(x) be the

y coordinate of the point where the curve γn := F pkn(γ) first hits Sx after passing

through F pkn(z′n). Since γ is a causal curve, so are its images γn under F pkn . Then

it follows that Γ(x) := sup
n∈N

yn(x) is a continuous, causal curve passing through z

and lying in ∂K.
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We will now prove that this embedded curve is unique. Suppose ∃ two different

curves Γ1 and Γ2 in ∂K passing through z0. Let Q be a periodic saddle close to

z0 such that one of these curves lies above it and the other below it. Then since

the unstable manifold of Q is causal, it must intersect one of these curves, which

contradicts Lemma A.2.1.

Lemma A.2.3 For ∀z0 = (x0, y0) ∈ ∂K which are singleton components of Kx0, ∃

a unique C0 curve embedded in ∂K that passes through z0.

Proof Let z0 = (x0, y0) be a singleton component of Sx0 . Since it lies on ∂K, it is

a limit point of points zn in the interior of K.

We will first show that these points zn can be chosen to lie on Sx0 . Suppose

not, then let zn = (xn, yn). Then without loss of generality, xn → x−0 . Let I(xn) =

[Γ1(xn),Γ2(xn)] be the component of Kxn that contains zn. By Lemma A.2.2, Γ1

and Γ2 can be extended to C0 curves in a left neighborhood of x0. Since there are

no points in the interior of K in a neighborhood of z0 in Sx0 , Γ1, Γ2 intersect Sx0 at

z0. Let Q be a periodic saddle close to z0 such that one of these curves lies above

it and the other below it. Then since the unstable manifold of Q is causal, it must

intersect one of these curves, which contradicts Lemma A.2.1. So the assumption

was false and hence, z0 is a limit of proper component intervals of Kx0 .

Let these component intervals be In = [an, bn]. Without loss of generality, In-s

converge to z0 from below. By Lemma A.2.1, there exists C0 curves Γn embedded

in ∂K and passing through bn. For ∀x in a neighborhood of x0, Γ(x) := ¯lim
n→∞

Γn(x).

This Γ lies in ∂K and is C0 and causal. It is also the unique curve in ∂K passing
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through z0.

Lemma A.2.4 No point z0 = (x0, y0) on a boundary curve of ∂K passing through

an upper/lower boundary point can be a singleton component of Kx0.

Proof Let Γ1 be a boundary curve of ∂K passing through an upper boundary

point z1. Without loss of generality, z0 is the closest point to z1 lying on Γ1, so

the segment of the curve Γ1 from z1 to z0 must have only upper boundary points

and consequently, has an adjacent lower boundary curve Γ2. Since Γ1, Γ2 are C0

and z0 is an isolated point of Kx0 ., they must intersect at z0. This contradicts the

uniqueness of embedded curves in ∂K passing through z0.

Lemma A.2.5 A boundary curve of ∂K passing through an upper boundary point,

cannot intersect a boundary curve of ∂K passing through a lower boundary point.

Proof Let the contrary be true, so there exists a boundary curve Γ1 of ∂K passing

through an upper boundary point z1 and intersecting a boundary curve Γ2 of ∂K

passing through a lower boundary point z2. Let the point of intersection be z0 =

(x0, y0). Then since Γ1, Γ2 are continuous, z is a singleton component of Kx0 .

However, this is not possible by Lemma A.2.4

Lemma A.2.6 Let z ∈ ∂K be a lower boundary point. Then F p(z) is also a lower

boundary point and the connected component of ∂K containing z has only lower

boundary points. Analogous statements hold true for upper boundary points.

Proof Since F is orientation preserving and by Lemma A.2.1, lower boundary

points are mapped into lower boundary points. Since T2 itself is orientable, an em-
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bedded curve, which is a co-dimension 1 embedded submanifold, is also orientable

and hence, if a boundary has a lower boundary point, then all of its points are lower

boundaries.

Now consider an adjacent upper boundary and lower boundary Γ1 and Γ2

respectively. These two curves do not intersect each other. Hence, the region R

enclosed by them is either homeomorphic to a cylinder or an infinite tape. If it is a

cylinder, then the Claim 1 is proved. So we will demonstrate that it cannot be an

infinite tape.

The proof will by contradiction, so we will assume that R is an infinite tape.

Therefore, Γ1, Γ2 must be open curves of infinite length. We will first show that

none of them can have more than one periodic saddle using the following lemma.

Lemma A.2.7 Let Γ be an causal, open curve in T2 invariant under F p. Then at

most one periodic point can lie on Γ.

Proof Since Γ is causal and is invariant under F p, it must have infinite length.

The proof will be by contradiction. So let Q1, Q2 be two periodic points on

Γ with periods p1, p2 respectively. Let N = pp1p2. Then Q1, Q2 are fixed points of

FN and Γ is invariant under FN .

Γ must be the unstable manifold of both with Q1 and Q2. Let L be the section

of the curve joining with Q1 and Q2. Then for ∀n ∈ N, F nN(L) is a sub-segment

of Γ with Q1 and Q2 as its endpoints. Since Γ is an open curve and since F is a

local diffeomorphism, L is the only such curve-segment, hence FN(L) = L. This

contradicts the expansion property of the map F on causal curves.
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However, the next lemma proves that periodic points on the Γi-s are dense.

This leads to a contradiction and consequently, proves Claim 1.

Lemma A.2.8 Every point z0 in an upper boundary curve is a limit point of peri-

odic points lying on that curve.

Proof Suppose z0 = (x0, y0) is a point on an upper boundary of K. Let Γ1 be the

upper boundary passing through z0 and let Γ2 be the adjacent lower boundary. Let

I be a small neighborhood of x0 in S1. Then the region R := {z = (x, y) ∈ T2 | x ∈

I, Γ2(x) ≤ y ≤ Γ1(x)} is homeomorphic to a rectangle. Since periodic saddles are

dense, ∃ a periodic saddle z1 = (x1, y1) in R of period q ∈ N. Then the circle Sx1

must be invariant under F pq and for a sufficiently large N ∈ N, all the periodic

points on Sx1 are fixed under F pqN . Let L be the line segment Sx1 ∩R. L contains

the periodic point Q.

Note that Q is an attracting fixed point for the map FNP |Sx1 . By Lemma

A.3.3, the end-points of L must be fixed points.

A.2.2 The proof of Claim 2

As a result of the lemmas in the previous section, we can conclude that the

invariant set K is diffeomorphic to a cylinder S1 × [0, 1] and Int(K), KC and ∂K

are invariant under F p. Now instead of considering the iterated map F p, we wil

examine the action of F on K.

Lemma A.2.9 Suppose for some m ∈ N, Fm(K) ∩K 6= Φ. Then Fm(K) = K.
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Proof Let the contrary be assumed, i.e., Fm(K) ∩K 6= Φ for some m ∈ N. Since

F p(K) = K, it may be assumed without loss of generality that 0 < m < p. Since F

is a local diffeomorphism and F p−m(Fm(K) = K, we must have,

Fm(∂K) = ∂(Fm(K)), Fm(Int(K)) = Int(Fm(K) (A.7)

The boundary of K is composed of two disjoint, closed, causal curves which are the

upper and lower boundaries respectively. Since F is orientation preserving, F maps

upper(lower) boundaries to upper(lower) boundaries, so Fm(K) is also a cylinder.

The only way by which the upper/lower boundary of K intersects the upper/lower

boundary of Fm(K) and satisfy (A.7) is if they coincide. Therfore, Fm(K) = K.

Lemma A.2.10 The images of K under F form a disjoint collection of cylinders.

Proof Suppose for some 0 ≤ m < n < p, Fm(K)∩F n(K) 6= Φ. Then F p−n(Fm(K)∩

F n(K)) 6= Φ. But F p−n(Fm(K)∩F n(K)) ⊆ F p−n+m(K)∩F p(K) = F p−n+m(K)∩K.

Therefore, ∃p′ := p− (n−m) which is less than p and for which F p′(K) ∩K 6= Φ.

Without loss of generality, p′ is the minimum such integer > 0.

Then by Lemma A.2.9, this implies that F p′(K) = K. From this it follows that the

images K = F 0(K), . . . , F p′−1(K) are all distinct cylinders.

Lemma A.2.11 The number periodic cylinders is finite.

Proof Henceforth, K and its images F 1(K), F 2(K), . . . will be called periodic cylin-

ders. Since by assumption, F is not transitive, it does not have dense trajectories.

Therefore, every point is in a periodic cylinder. We will show that there are only
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a finite number of periodic cylinders, whence, T2 can be decomposed into a finite

“stack” of cylinders with disjoint interiors.

Let K be a periodic cylinder. For ∀k, n ∈ N, the intersection Γk,n ∩ ∂K has

a periodic point, where Γk,n is described in (4.2). Since (3.1) is C1, each Γk,n can

have a finite number of periodic points on it wrt the map F n. Therefore, the set of

such periodic cylinders K must be finite in number.

Lemma A.2.12 All the periodic cylinders have the same period.

Proof Let p be the minimum period of a periodic cylinder K1. Therefore, if Γ is its

upper boundary, then F p(Γ) = Γ. But Γ is the lower boundary of the cylinder K2

stacked above K1. Therefore, the period of K2 must be a divisor of p and because of

the minimality of p, must be p itself. A repetition of this argument a finite number

of times establishes that all the cylinders have the same period p.

Therefore, we have proved our main result Theorem A.0.5.

A.3 Appendix : Some lemmas

Lemma A.3.1 Let z be a saddle and W u its unstable manifold. If dim(W u) = 1,

then W u is an embedded causal curve.

Proof Suppose that M is an n-manifold. Let Sn−1 be the unit sphere in Tz(M).

Then the intersection Q := C(z) ∩ Sn−1 is compact. If the dimension of Eu is k for

some 0 < k < n, and α = tan(θ) for some θ ∈ (0, π
2
, then Q is diffeomorphic to

Sk−1 ×Dn−k−1 × [−θ, θ] via the map φ : (u, v, t) 7→ cos(t)u+ sin(t)v .
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If k = 1, then Q ∼= S0 × Dn−1. Now consider the map G : Sn−1 → Sn−1

defined as G(w) = dF (z)(w)
‖w‖ . This map is well defined and smooth because dF (z) is

invertible and linear. Since C(z) is invariant under dF (z), G : K → K. Therefore,

by the Brower fixed point theorem, G has a fixed point w in K. But w is a fixed

point of G iff ∃λ > 0 such that dF (z)(w) = λw. Since dF is an expanding map on

C, λ must be > 1.

Since dF (z) is hyperbolic, all subspaces of Tz(M) invariant under dF (z) must

be subspaces of either Tz(W
u) or Tz(W

s). In particular, the eigenvector w must be

in one of these subspaces. Since its eigenvalue λ is > 1, w must ∈ Tz(W u). Then the

span of w is the 1-dimensional subspace contained in the intersection C(z)∩Tz(W u).

Lemma A.3.2 Let F : M → M be a local diffeomorphism on a compact manifold

M. Let the periodic points of F be dense in M and let U ⊂M be open and forward-

invariant under F . Suppose that K := Ū is a proper subset of M . Then F p(K) = K,

F (∂K) = ∂K and F (KC) = KC.

Proof Since K is forward invariant under F , F (K) ⊆ K. Suppose it is a strict

subset, i.e., F (K) ⊂ K. Since K is compact, F (K) is compact and hence closed.

Therefore, K − F (K) has non-empty interior V . Let Q ∈ V be a periodic point of

period q. Then F q(Q) = Q. However, Q = F q(Q) ∈ F q(K) which is disjoint from

V which contains Q, leading to a contradiction. Hence the assumption was wrong

and F (K) = K.

We will first prove that F (∂K) ⊆ ∂K. Let the contrary be assumed, hence

∃x ∈ ∂K such that F (x) ∈ Int(K). Since F is a local diffeomorphism, it is an
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open mapping too. Hence, ∃ a neighborhood V of x such that F (V ) is an open set

contained in the interior Int(K) of K. Since x is a boundary point, V contains an

open set in the exterior of K. Let Q be a periodic point of period q lying in V −K.

Then F q(Q) = Q. But F (Q) ∈ F (V ) ⊂ K, and by the forward invariance of K

under F , F n(Q) never exits K and hence is never equal to Q which lies outside K,

leading to a contradiction.

We will next prove that in fact, strict equality holds. Let the contrary be

assumed, i.e., F (∂K) ⊂ ∂K. Then ∃x ∈ ∂K such that F (x) is disjoint from ∂K.

However, since F (K) = K, x must have an inverse image y in Int(K). Take a

neighborhood V of y in K. Then F (V ) is a neighborhood of x. Since x is a

boundary point, F (V ) intersects KC . this contradicts the forward invariance of K.

Hence the initial assumption was untrue and F (∂K) must equal ∂K.

The last equality follows from the previous two.

Lemma A.3.3 Let F be a a C1 map on S1 with a non-zero derivative. Let J ⊂ S1

be an compact set such that both J and ∂J are forward invariant. Let a component

interval L of J contain an attractor. Then the endpoints of L are periodic points.

Proof For N ∈ N sufficiently large, all the periodic points of FN are fixed points.

J and ∂J remain invariant under FN . Consider an endpoint A of L. The proof will

be by contradiction, so suppose that A is not a fixed point of FN .

Let Q be the fixed point on L closest to A. By assumption, Q 6= A. Q must

be an attractor or repellor. We will prove that both cases lead to contradictions and

hence, the assumption about A not being a fixed point will be proved false.
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If Q is an attractor, then A is in the basin of attraction of Q and FN maps A

closer to Q. In other words, FN(A) ∈ Int(L) ⊆ Int(J), violating the invariance of

∂J .

If Q is a repellor, then A lies in the basin of repulsion of Q and hence, A has

an inverse image under FN in the interior of the line segment QA. Since F has

non-zero derivative, FN(QA) must contain a neighborhood of A. Since A ∈ ∂J ,

FN(QA) intersects the exterior of J . This contradicts the invariance of J .
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[6] C Simó, P Sousa-Silva, and M Terra. Practical stability domains near L4,5

in the restricted three-body problem: Some preliminary facts. Progress and

Challenges in Dynamical Systems, 54:367–382, 2013.

[7] A Luque and J Villanueva. Quasi-periodic frequency analysis using averaging-

extrapolation methods. SIAM J. Appl. Dyn. Syst., 13(1):1–46, 2014.

[8] M Lin and M Weber. Weighted ergodic theorems and strong laws of large

numbers. Ergodic Theory and Dynamical Systems, 27 (02):511–543, 2007.

[9] A Bellow, R Jones, and J Rosenblatt. Almost everywhere convergence of

weighted ergodic averages. ProQuest, 2009.

[10] A Bellow and V Losert. The weighted pointwise ergodic theorem and the

individual ergodic theorem along subsequences. Transactions of the American

Mathematical Society, 288 (1):307–345, March, 1985.

[11] F Durand and D Shneider. Ergodic averages with deterministic weights. An-

nales de l’Institut Fourier, 52 (2):561–583, 2002.

[12] E Sander and J A Yorke. The many facets of chaos. International Journal of

Bifurcation and Chaos, 25(4):15300, 2015.

[13] Y Katznelson and D Ornstein. The absolute continuity of the conjugation of

certain diffeomorphisms of the circle. Ergodic Theory and Dynamical Systems,

9:681–690, 1989.

104



[14] Y Katznelson and D Ornstein. The differentiability of the conjugation of certain

diffeomorphisms of the circle. Ergodic Theory and Dynamical Systems, 9:643–

680, 1989.

[15] J C Yoccoz. Conjugaison differentiable des diffeomorphismes du cercle dont le

nombre de rotation verifie une condition diophantine. Annales scientifiques de

l’cole Normale Suprieure, 17 (3):333–359, 1984.

[16] V Arnold. Small denominators. i. mapping of the circumference onto itself.

Amer. Math. Soc. Transl. (2), 46:213–284, 1965.

[17] Milne-Thomson and Louis Melville. The calculus of finite differences. American

Mathematical Soc., 2000.

[18] S Bochner and K Chandrasekharan. Fourier Transforms. Princeton University

Press, 1949.

[19] S Newhouse, D Ruelle, and F Takens. Occurrence of strange axioma attractors

near quasi periodic flows on tm, m3. Comm. Math. Phys., 64(1):35–40, 1978/79.

[20] S Das and J A Yorke. Super convergence of ergodic averages for quasiperiodic

orbits. Preprint : arXiv:1506.06810 [math.DS], 2015.

[21] T M Seara and J Villanueva. On the numerical computation of Diophantine

rotation numbers of analytic circle maps. Phys. D, 217(2):107–120, 2006.

[22] C Baesens, J Guckenheimer, S Kim, and R S MacKay. Three coupled oscillators

: mode-locking, global bifurcations and toroidal chaos, 1991.

105



[23] H W Broer and G B Huitema. Unfoldings of quasi-periodic tori in reversible

systems, 1995.
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