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Inspite of all the advances, automatic parallelization has not entered the gen-

eral purpose compiling environment for several reasons.

• There have been two distinct schools of thought in parallelization domain

namely, affine and non-affine which have remained incompatible with each

other over the years. Thus, a good practical compiler will have to be able to

analyze and parallelize any type of code – affine or non-affine or a mix of both.

• To be able to achieve the best performance, compilers will have to derive the

order of transformations best suitable for a given program on a given system.

This problem, known as “Phase Ordering”, is a very crucial impedance for

practical compilers, more so for parallelizing compilers. The ideal compiler

should be able to consider various orders of transformations and reason about

the performance benefits of the same.

In order to achieve such a compiler, in this paper, we propose a unified program

representation which has the following characteristics:



• Modular in nature.

• Ability to represent both affine and non-affine transformations.

• Ability to use detailed static run-time estimators directly on the representa-

tion.
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Chapter 1

Introduction

In the multi-core era, most of the world’s computers are parallel, but most soft-

ware remains serial. Given the huge investment in existing serial code worldwide,

and that rewriting serial code into parallel code is time-consuming, error-prone, and

expensive, there is a great need for automatic parallelization and cache-optimization

of serial code. Some success has been seen for programs with affine array refer-

ences [18][5] – an array reference is said to be affine if its indices are linear combi-

nations of loop induction variables. For example, A[2i + 3j + 7, i− 2] is affine, but

A[i2] is not. Affine accesses are particularly well suited for parallelism and cache op-

timizations. However, only scientific and media programs are predominantly affine;

and even those sometimes have small amounts of non-affine code in otherwise affine

loops, ruining performance. Non-affine methods have also seen some work [6][12]

primarily using graph-based methods.

Despite decades of research, the results of automatic parallelization remain

somewhat disappointing. We identify two main reasons. First, existing affine and

non-affine methods remain fundamentally incompatible because of different internal

representations of candidate transformed code. Since most real-world code is a mix

of affine and non-affine code, neither class of parallelizers has been able to conquer

general-purpose code. Second, and just as important, existing compiled parallel
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code finds it hard to attain even a reasonable fraction of the peak performance of

a parallel computer. Parallel code that is manually tuned by a highly trained com-

puter engineer almost always yields code that is superior, often by a large margin,

compared to automatically parallelized code.

The root cause of the superior performance of manually tuned code is that a

human programmer is often able to deduce program optimization transformations

that a compiler is unable to find. In theory, the compiler should be able to find the

transformation order chosen by the human – in most cases, both use the same toolkit

of program transformations to achieve lower run-time. Such human-applied or com-

piler affine transformations include tiling, loop interchange, fission, fusion, reversal,

skewing, interleaving, peeling, and strip-mining. Non-affine transformations [12][13]

include Decoupled Software Pipelining (DSWP), Parallel-stage DSWP (PS-DSWP),

Cyclic Multi-threading (CMT+) and Control Speculation. These transformations

are extremely crucial to performance to increase parallelism by breaking loop-carried

dependencies, or improving cache locality, or both.

Unfortunately, the problem of finding a good transformation order and trans-

formation parameters (e.g., tile sizes) is a challenging problem. This is the well-

known “phase ordering” problem in compilers: a sequence of transformations must

be applied in precisely the right order, with the right parameter values if applicable,

to exactly the same loop dimensions to achieve the best run-time. Although this

is a somewhat important problem for serial program transformations, it is crucial

for transformations used for parallelization. For example, we have encountered a

loop in the gemver benchmark in the Polybench benchmark suite for which the
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best transformation order is a loop interchange, followed by a fusion, followed by

a strip-mining, followed by another loop interchange to different dimensions . No

shorter transformation order gives a run-time that is even close to the best order.

We have found several benchmarks where the run-time of a basic parallelizer without

transformations is improved by a factor of 5-10X by using a carefully constructed,

manually discovered sequence of transformations.

To effectively solve the phase-ordering problem, a compiler must be able to

apply mixed sequences of affine and non-affine code together. This is because real-

world programs often belie easy categorization as just “non-affine” or just “affine”.

In reality, most programs are a mix of affine and non-affine code, with the ratio being

more affine code in scientific domains, and less so in the general-purpose domain.

For example, scientific codes are often mostly affine, but may have small amounts

of non-affine code that may introduce loop-carried dependencies, such as a printf()

or other calls with side effects, pointer accesses, or heap data structure accesses.

Existing affine compilers today tend to be very limited in the scope of programs

they can transform. They are infamously “brittle”, breaking on codes that were

not written to perfectly match what they can handle. The result is that affine

parallelizers fail on such codes.

Non-affine parallelizers are also hobbled – they can handle any code, but can-

not apply affine transformations. This limits them since affine methods can exploit

such codes in a much more scalable fashion. The result is that non-affine methods

yield lower performance than is possible with an truly integrated affine + non-affine

method.
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The above two shortcomings make it clear that combined compiler methods

to handle affine and non-affine transformations together are desirable since they are

likely to achieve higher performance of the compiled code. However composing both

types of transformations in a single compiler to be used simultaneously on the same

program loop is very challenging. Existing compilers do not do this.

The fundamental difficulty in integrating affine and non-affine transforma-

tions is that they use different and incompatible program representations. Good

program representations are essential to the success of compilers. For example,

the control-flow graph and data flow representations such as SSA are invaluable

for optimization even though they can be derived from the compiler’s intermediate

representation (IR). This is because they make underlying control- and data-flow

information explicit, thus decoupling the discovery of such information from its use.

Such decoupling allows for the modular design of a compiler, and avoids unnecessary

re-computation of analysis results in every optimization pass. Similarly, the well-

known Program Dependence Graph (PDG) is widely used for parallelization since

it makes both types of dependences – control and data – explicit. This is useful

even though everything in the PDG can be derived from the control-flow graph and

dataflow representations.

In a similar vein, there is a need for a unified program representation that can

make explicit the information needed for both affine and non-affine transformations.

Unfortunately, existing program representations for both are unusable by the other.

As a result, affine and non-affine transformations remain hard to combine. To

understand why, we consider both types of representations below.
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Affine mathematical representations represent affine array references and loop-

carried dependencies between them using custom mathematical representations for

affine code, such as matrices in traditional methods [18, 7], and systems of linear in-

equalities in polyhedral methods [5]. These representations have the advantage that

they contain detailed information needed to apply affine transformations. Further

since they contain little other information, they are fast to update when the compiler

is searching through a very large number of possible transformation sequences. The

loop’s IR is converted to the mathematical representation before the transformation

search commences. Thereafter the IR is not used during the search. Only when

the search has found the best transformation sequence is the IR regenerated so that

code generation can commence from it.

Unfortunately after an affine transformation is applied, existing affine represen-

tations do not represent the program explicitly at all. Indeed, the result of applying

an affine matrix transformation is not represented in any general-purpose represen-

tation that non-affine transformations can reason about. Instead affine-transformed

codes only exist in mathematical representation, with no concrete representation

until final code generation. As a result, if a non-affine transformation is to analyze

the result of a set of affine transformations, it has to derive the resultant code by

applying these transformations in the IR and then building the relevant program

representation it depends on from scratch. This is clumsy, non-intuitive, unnatural

and defeats modularity. To build a truly integrated compiler, it would be desirable if

both affine and non-affine transformations explicitly represented code in a way that

is useful for either types of subsequent transformations, so a seamless transformation
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search is possible. This is the goal of our unified representation.

Another drawback of affine mathematical representations is that they are not

complete program representations – they only represent affine references and their

loop-carried dependencies, but not the rest of the loop. Hence a general-purpose

tool to estimate the run-time of a code fragment at compile-time cannot be applied

after an affine transform. Such static run-time estimators (SREs) can be a useful

tool to compare candidate transformation sequences to choose the best.

Non-affine representations There is less standardization in the literature on

representations for non-affine transformations. Methods such as DSWP [12] use

the well-known Program Dependence Graph (PDG) representation. Earlier meth-

ods such as those in the Parafrase compiler use the Closure of Data and control

Dependencies Graph (CDDG) [11, 10]. Both the PDG and CDDG represent in-

structions in the program along with data and control dependencies between them.

They are suitable for non-affine transformations which often attempt to break (or

speculate on) dependencies, so applying transformations is quick at compile-time

since they usually only need to modify affected dependencies. Hence transformation

orders can be searched for quickly.

Unfortunately graph based representations such as the PDG have their own

drawback: they do not represent affine array indices or affine distance vectors, crucial

for performing affine transformations. Further, there is no easy means to represent

affine transformations such as loop interchange which changes the way a loop-nest

is structured or loop reversal which changes the direction a loop is accessed be-
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cause such information is not explicit in the PDG. The PDG has no special way

of representing structured loops such as for loops with bounds, induction variables

and increments. Whereas this kind of information may not be required for pure

non-affine based techniques, it is essential for affine analysis.

Hence graph-based representations are not suitable for applying mixed se-

quences containing both affine and non-affine transformations either. They have

no quick way of deriving affine information required for affine analysis. They have

no quick way of updating affine information after a non-affine transformation. Of

course the IR can be rewritten to regenerate affine information after each trans-

formation in the search, but that would be too slow to be feasible given the large

number of transformations a search might attempt.

Discussion The end result of the drawbacks of the existing representations above

is that there is no unified explicit program representation today that is suitable for

applying both affine and non-affine transformations in a unified manner. There is a

need for a single integrated compiler framework that enables building parallelizing

and cache-optimizing compilers for any type of code – affine code, non-affine code, or

any mix of the two. It should robustly apply the best possible transformation order

for each program by quickly searching through a large number of transformation

sequences. A unified explicit program representation would greatly facilitate this

goal.

We propose a new representation for programs that maintains the results of

both affine and non-affine transforms explicitly, so that either type of transform
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can use it for subsequent transforms. Based on the combination of the new loop

representation called the Loop Nest Graph (LNG) and the well-known Program

Dependence Graph (PDG), it has several features that are desirable when searching

for program transformations in any compiler, but particularly parallelizing or cache-

optimizing compilers. While the PDG maintains information regarding instructions

within a loop and non-affine dependencies between these instructions, the LNG

(which is built on top of the PDG) maintains information regarding the loops in a

loop-nest and affine dependencies across the loops in the loop-nest. The advantages

of this representation include:

• Modular One of the biggest advantages of using the LNG + PDG represen-

tation is the decoupling of the building of the program representation phase and

the analysis phase. Intuitively, this is similar to how a PDG decouples paralleliza-

tion methods from methods to construct the PDG. It is also similar to how an

SSA representation decouples dataflow optimizations from SSA construction. As

a result, the analysis phase can work on building the algorithms to use this infor-

mation directly without having to deal with building individual representations

themselves.

• Recording the effects of Transformations directly Another advantage

of our representation is the ability to reflect the effects of both the affine and

non-affine transformations in a unified framework such that any future analysis

can use the information directly, instead of going back to IR. We do this by

recording the transformations directly in the LNG + PDG representation. The
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updates however are not intended to maintain complete information about the

transformations, and as a result, do minimal changes often updating only one of

the two structures.

• Use in detailed SREs The LNG + PDG forms a natural representation to

be used by a detailed Static Runtime Estimator(SRE) to estimate run-time tak-

ing into account detailed system characteristics such as cache, memory, network,

synchronization, and pipeline characteristics. Use of an SRE helps the compiler

evaluate and choose between different compositions of transformations. Using a

compiler framework capable of deriving candidate orders of transformations, and

using a good SRE to choose between them, we can foresee automatic compila-

tion results approaching the performance of manually tuned code by using the

characteristics of the target machine in transformation search.

Current program representations have limitations that inhibit their use by

SREs. Affine mathematical representations such as the distance vectors and

polyhedral representations are not complete program representations – they only

represent affine references and their loop-carried dependencies, but not the rest

of the loop. As a result, SREs cannot be applied on them. On the other hand,

although the PDG maintains complete enough information about the instructions

in a loop, the information about structured for loops needed for affine run-time

estimation, such as loop-nest structure and bounds, is not explicit in the PDG.

Instead the SRE would need to recover it, violating the modular design of SREs

and PDGs. In contrast the LNG and PDG combination has explicit information
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for both types of parallelizers, enabling modular SREs.

Although the focus of this paper is not the transformation search but the pro-

gram representation used for it, a prototype search method using our representation

has been built. Results show that it finds transformation orders among a selection

of both affine and non-affine transformations without going back to the IR.
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Chapter 2

Related Work

Compilers rely on low overhead program representations when they need to

evaluate different orders of transformations. Several program representations have

been proposed for parallel compilers to aid with analysis and representation of trans-

formations. These representations are motivated by the kind of analysis and the kind

of loop optimizations considered by the compilers.

An interesting variant to this approach of using program transformations is it-

erative compilation [17, 1]. Instead of relying on any common intermediate program

representation to derive and evaluate different compositions of transformations, it-

erative compilation strategy involves generating code for various orders of transfor-

mations and executing it to compare the performance. Since it involves going back

to the IR for every candidate order of transformations, iterative compilation can

have a significant compile time overhead. Although some methods reduce the com-

pile time by bringing down the number of choices considered by the use of limited

set of heuristics [17] or machine learning algorithms [1], the compile time however

is still significant enough to restrict its use in practical compilers. Our use of a

low overhead means of representing just the essential information in the program,

helps us overcome this high compile time problem. With an accurate SRE, our

representation will provide the same benefits as iterative compilation with orders of
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magnitude less compile-time.

For affine programs, distance vectors [20, 3] have been used by the SUIF com-

piler [18] to analyze and parallelize affine code. A distance vector represents a

memory dependence between two array accesses across the iteration space of their

common loop nests. For example the distance vector (2,0) means that each outer

loop iteration depends on an iteration that is two before it, and the inner loop

iterations are independent. The collective set of such distance vectors for every

memory dependence in the loop forms the basis for analyzing the loop for various

affine loop transformations such as loop interchange, loop reversal and loop skewing.

One of the biggest advantages of this representation is that analysis and representa-

tion of the above affine loop transformations can be abstracted into simple matrix

transformations.

Unfortunately, one limitation of the representation is that merely updating

distance vectors cannot represent the effect of non-unimodular loop transformations

such as loop fusion, loop fission and loop peeling. As a result, heuristics which

are based solely on the distance vectors for evaluation of different orders of trans-

formations cannot use these transformations directly. Wolf et al. [19] propose an

algorithm where fission and fusion are considered in the initial and final phases,

while the middle phase of the algorithm uses the distance vectors to compute and

evaluate various orders of transformations. Thus, these transformations are never

truly part of evaluation of various orders. For example, this model cannot come

up with a transformation order such as interchange followed by fusion followed by

interchange. In our representation, we use distance vectors in combination with the
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LNG and the PDG to create a hierarchical loop dependence graph, through which

we can represent all these transformations in any order.

The polyhedral representation [4] is the other significant program represen-

tation for affine code, which has been used by PLUTO compiler [5]. Polyhedral

methods [8] represent each statement in an affine loop separately as a point in an it-

eration domain. The iteration space thus defined is a polyhedron in a d-dimensional

space, where d is the nesting depth of the loop in question. The polyhedral repre-

sentation represents complex compositions of affine transformations as a scheduling

function. Although the Polyhedral model is very powerful, it has a serious drawback

– since it translates affine code into a series of linear inequalities, this mathematical

representation has no way of representing non-affine code. As a result it is inap-

plicable to mostly-affine code which has small amounts of non-affine code – this

is common in real-word codes. Further, we will be able to represent every trans-

formation that can be represented in Polyhedral framework by means of the LNG

+ PDG combination. Indeed many of the program transformations we found in

polyhedral papers that they said are not handled by the traditional model can be

found by using a mixed series of unimodular and non-unimodular transformations

we considered using our representation.

Dependence-graph representations such as the PDG [9], the CDDG [11, 10]

and the parallel program graph [16] are often used by non-affine transformations.

The Parafrase-2 [15] compiler uses the CDDG to partition and schedule a given pro-

gram. The CDDG is a hierarchical structure that enables detecting parallel tasks

at various levels; however it is an immensely complicated structure to make changes
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to and thus is not suitable for representing transformations directly in the program

representation, which is an essential feature if we want to apply several transfor-

mations. The PDG is another dependence-graph representation that is particularly

conducive for incremental optimizations. The PDG encapsulates useful information

that helps detect opportunities for optimizations, vectorization and parallelization.

The main drawback of all graph-based representations is that they are restricted to

non-affine transformations; for example, the PDG has been used for transformations

such as DSWP, PS-DSWP and Control Speculation [12, 13]. We extend the PDG

for affine analysis by combining it with the LNG.

A related representation is the PPG [16] which builds on the PDG for rep-

resenting already parallel programs. The PPG extends the serial representation of

PDG by adding parallel control flow edges and synchronization edges for parallel

programs. Unlike the PPG, our aim is to be able to detect parallelism oportunities

rather than represent parallel programs. Hence our representation is catered to rep-

resenting the serial program. Through this representation of LNG + PDG, we seek

to extend the PDG representation for encompassing different kinds of transforma-

tions.
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Chapter 3

Program Representation

3.1 Overview

The most important and challenging factor motivating the development of

our program representation is the ability to analyze and represent both affine and

non-affine transformations. Affine and non-affine methods have distinctly different

characteristics. Whereas affine analyses use mathematical representations such as

distance vectors to analyze and represent transformations, non-affine analyses rely

on the use of dependence graphs such as the CDDG and the PDG. Lack of any obvi-

ous commonality between the two methods, as observed by the existing technologies,

poses a major challenge.

Understanding the commonalities and the differences in the features that the

affine and non-affine transformations look for is the key to a unified representation.

A good representation relies on the ability to make explicit the information needed

by both these domains. Though the kind of analyses and transformations considered

by the two domains are seemingly different, they rely on a common feature of being

able to understand the inherent dependencies in the program and more particularly

within a loop. The difference lies in the way the dependencies are studied and

interpreted by the different transformations. Non-affine transformations analyze a

dependence graph to partition it into several independent or less-dependent tasks.
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Affine transformations, on the other hand aim to run loop iterations in parallel

with other iterations by exploiting regular dependence patterns encapsulated in

distance vectors. To do so, they use loop restructuring, iteration space reording and

loop-nest reordering. As a result, non-affine transformations require the ability to

understand all the dependencies within a loop; affine transformations require the

abilty to understand and represent the characteristics relevant to the loop-nest such

as the loop-nest structure and the loop-carried dependencies across all the different

levels of the loop-nest. Thus the difference in the representations needed.

There is a need for a representation that can act as a bridge between these two

distinct set of needs helping realize a truly integrated program representation. The

integrated program representation should be capable of not only maintaining the

information relevant to both the affine and the non-affine methods but also repre-

sent the effect of transformations without going back to IR. Current representations

are catered for either affine or non-affine methods exclusively because of which they

maintain information relevant only for these methods. Combining the two represen-

tations – the PDG and distance vectors – though seems intuitive, is also insufficient

for our purpose. Neither the PDG nor the distance vectors can reflect the changes

of the other set of tranformations directly. The two representations are inherently

incompatibile with each other.

We propose a new loop representation, the Loop Nest Graph (LNG) which in

combination with the PDG and distance vectors has all the above features. The LNG

acts as the bridge between the affine-catering mathematical representation (distance

vectors) and the dependence graph representation (PDG). By representing every
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loop as an individual node, the LNG represents a graph of dependencies between

the loops in a loop-nest, thus naturally representing the nesting structure in an

easily accessible way. Because of its reliance on loops as individual nodes, the LNG

also forms the natural representation to maintain affine information such as loop

characteristics for structured loops and distance vectors as annotations on loop-

carried affine dependencies. This representation therefore serves the dual purpose

of representing information required by the affine analysis, as well as representing

the effects of affine transformations in a way that non-affine analyses can understand

and update.

This representation forms a two-tiered structure. The PDG is at the lower tier

representing dependence information between individual instructions in a loop which

is useful for non-affine analysis. The LNG in combination with distance vectors is

at the top tier maintaining loop and dependence information in a loop-nest which

the affine analysis can use effectively. Thus combining the LNG with the PDG and

distance vectors gives us the flexibility to take advantage of existing research with

little or no modification.

3.2 PDG

The PDG [9] is a well-known and powerful representation which is suited for

several loop optimizations and parallelization techniques. The PDG has been used

for several loop transformations such as Loop Peeling and Loop Unrolling. It is

also the basis for parallelization techniques such as DSWP [12]. An important
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Figure 3.1: Example program with the PDG and LNG

advantage of the PDG is that it can be used to incrementally apply several of these

optimizations without having to go to the IR.

The PDG has several characteristics that makes it conducive to the optimiza-

tions we are interested in. One of the most important reasons the PDG is particularly

relevant is its reliance on dependence information. In basic terms, the presence of a

dependence between two instructions implies that there exists constraints regarding

the execution of the two instructions, and the absence of a dependence implies that

the two instructions can execute in parallel. As a result, dependencies play a crucial

role in exposing parallelism. Since the program dependence graph captures depen-

dencies in a program instead of emphasizing the flow of control or data, it becomes

a natural choice for a compiler interested in parallelization.
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Another feature of the PDG that is useful is its ability to represent the de-

pendencies at any level we are interested in – program level, function level and loop

level. Every level captures dependencies relevant only to that level’s view. For

example, a function level view of the PDG can capture dependencies between two

loops, but may not capture dependencies such as loop-carried dependencies within

each of the loops. In our representation, we use the PDG to represent dependencies

for every loop in the function (including each level within a loop nest).

The loop PDG is the base layer of our representation, maintaining detailed

dependence information of the loop which may be required by certain analyses.

Every loop in the function is associated with a PDG representation that maintains

dependence information between every pair of instructions in the loop.

The loop PDG represents the loop as a graph where every instruction in the

loop is a unique node and edges represent the dependencies between the nodes.

The PDG is a directed graph GPDG = (VPDG, EPDG) |

VPDG = {S0, S1 . . . , Sn} where Si is an instruction in the loop

EPDG = {(u, v) | ∀u, v ∈ VPDG and v is dependent on u}

3.1(c) shows the PDG for the loop in example 3.1(a). Each instruction in the

IR shown in the example 3.1(b) is a node in the PDG. In this example, {S0, S1 . . . , S9}

represents the set of nodes in the PDG. (S1, S2) is an example edge that represents

the dependence of the instruction S2 on S1.

Different kinds of dependencies are represented in the PDG. Each edge (u, v)

in the PDG is associated with one of these dependence types.
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• PDG Control Dependence Edge: (EPDGCD
) A node v is control dependent

on node u if the node u determines whether node v executes or not. Use of control

dependencies instead of control flow helps avoid the fixed sequencing forced by the

latter. The control dependence property is derived from the control flow graph of

the loop [9]. For the control flow graph, GCFG of a loop

(u, v) ∈ EPDGCD
is a PDG control dependence edge iff

a) ∃ a path P from u to v in GCFG with any w ∈ P post-dominated by v and

b) u is not post-dominated by v.

In the Example 3.1(c), {(S1, S2), (S3, S5)} are some examples of control depen-

dence edges in the PDG.

• PDG Data Dependence Edge: (EPDGDD
) A data dependence edge denotes

the possibility of both the instructions (nodes) accessing the same location. This

automatically imposes execution constraints, thus restricting parallelism. Hence

data-dependencies form important constraints in parallelism detection. Since data

dependencies, especially the memory dependencies are difficult to disambiguate,

they often are the most crucial parallelism-inhibiting dependencies. Several trans-

formations specifically target breaking or moving these dependencies to enhance

parallelism.

(u, v) ∈ EPDGDD
is a PDG data dependence edge iff

a) ∃ a path from u to v in GCFG and

b) u and v can access the same location and

c) either u or v or both are a write or store operation.

20



Data dependence edges are further classified into register dependence and memory

dependence edges. (u, v) is a register dependence edge if u writes to a register v

reads from1. In the example 3.1(c), (S4, S6) is an example register dependence

edge. (u, v) is a memory dependence edge if u writes to a memory location that

could be read by v. In the example 3.1(c), (S7, S5) is a memory anti-dependence

edge.

Data dependence edges are determined using data-flow analysis techniques and

the control flow graph. Eliminating memory dependencies further requires several

kinds of memory dependence analyses, alias analyses and memory disambiguation

techniques to prove that a pair of memory operations do not alias.

PDG Loop-carried Data Dependence Edge (EPDGLCDD
) is a special kind

of data dependence edge in the loop PDG which has the additional property of

being loop-carried in nature. (S9, S4) is an example of a loop-carried register-

dependence edge and (S7, S5) of a loop-carried memory-dependence edge for the

memory location B[j].

3.3 LNG

The LNG is a proposed top-level graph which defines the loop structure of

a function. It forms a layer over the loop PDGs, providing information from a

loop-nest perspective. The LNG has the following three features :

• Represents every loop as an individual node, thus making loops as top-level

1Here registers mean virtual registers before register allocation, or physical registers after
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structures making them directly accessible for any loop related information. Rep-

resenting the loop as a node also helps define the loop-nest structure, which is a

useful representation for several affine transformations.

• Makes structured loops explicit. Structured loops such as for loops are the

prime candidates for affine analyses. Several characteristics of the structured

loops such as induction variables and loop bounds can be derived precisely and

are hence represented directly.

• Encapsulates affine dependencies. For every PDG loop-carried memory depen-

dence edge that is affine, we copy that edge to the LNG and annotate it with its

distance vector. This is convenient for affine transformations since unimodular

transformations can be defined solely based on the distance vectors of the loop. In

addition, non-unimodular transformations can be represented by updating other

parts of the LNG+ PDG in addition to the distance vectors.

The LNG thus forms a generic program representation representing depen-

dence information from a loop-nest perspective, which is particularly relevant to

affine analysis. The biggest advantage of the LNG is its easy compatibility with other

dependence graph structures such as the PDG. Any analysis that needs loop-nest

related information and specific loop attributes can directly use the LNG without

having to derive it from the IR or the PDG.

The LNG represents the loop nest as a graph where every loop and every

instruction is a unique node, with edges that define the loop-nesting relationship

and affine memory dependence relationship between two nodes.
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The LNG is a directed graph GLNG = (VLNG, ELNG) |

VLNG is a set of nodes, one for each instruction and loop in the program; and

ELNG is a set of edges (u, v) which have either (a) a loop-nest relationship as defined

below or (b) an affine memory dependence.

3.1(d) shows the LNG for the loop in 3.1(a). {L1, L2, S0, . . . , S9} are the set

of LNG nodes. {(L1, L2), (L2, S5)} are some examples of LNG edges.

There are two kinds of nodes in the LNG:

• LNG Loop Node: (VLNGLoop
) Every loop in the function is represented as an

LNG loop node. Each loop node further maintains important loop characteristics

such as loop bounds and induction variable characteristics for structured loops.

In the example 3.1(d), VLNGLoop
= {L1, L2}.

• LNG Instruction Node: (VLNGInst
) Every instruction is represented as an

LNG instruction node. In the example 3.1(d), VLNGInst
= {S0, S1, . . . , S9}. There

is a one-to-one correspondence to the instructions represented in the PDGs2.

Similar to the PDG, the LNG maintains five types of edges, listed below.

• LNG Loop Control Edge: (ELNGLCE
) This type of edge denotes the loop-

nest relationship between nodes. There exists an LNG loop control edge from

node u to node v if u is the immediate parent loop of v. {(L1, L2), (L2, S5)} are

some examples of the LNG control edges. An LNG control edge from one loop

2During implementation, the LNG does not replicate all the information about the instruction

in the PDG; instead it contains a structure with a pointer to the PDG instruction. Having the

structure allows the LNG to add information such as extra edges to the instructions.
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node u to another v defines the loop nesting information that the v is a child loop

of u. An edge from an LNG loop node to an LNG instruction node defines the

association of the instruction with its immediate parent loop. Determining the

LNG loop control edges involves well-known dominator analysis used to recognize

loops in a program.

There exists an LNG control edge (u, v) ∈ ELNGLCE
iff

a) u ∈ VLNGLoop
and v ∈ ∪{VLNGLoop

, VLNGInst
} and

b) u is the immediate dominator of v.

• LNG Affine Memory Dependence Edge: (ELNGAMDE
) Each loop-carried

memory dependence between two affine memory access instructions is represented

in the LNG with an LNG affine memory dependence edge. These edges are further

annotated with distance vectors. Non-affine loop-carried dependencies are not

included in this set. In the example 3.1(d), (S7, S5) is an LNG affine loop memory

edge. The edge is annotated with the distance vector (1, 0) associated with the

memory accesses.

In addition to the above two edge types, the LNG maintains three special edges

associated with every structured for loop, which we together refer to as the LNG

Loop Structure Edges (ELNGLSE
). We follow the usual definition of for loops: a for

loop is a loop whose exit condition is a relational operator comparing an induction

variable with a loop-invariant quantity. The three defining characteristics of a for

loop are the incoming definition, update, and exit condition of the loop’s induction

variable (IV). These are represented in the LNG by the following three types of
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edges:

• LNG Loop IV Definition Edge: (ELNGIV −Def
) A special kind of LNG loop

structure edge from a for loop to its induction variable definition before the loop.

The set of such induction variable definitions is called VLNGIV −Def
. In the example

3.1(d), ELNTIV −Def
= {(L2, S2), (L1, S0)} and VLNTIV −Def

= {S0, S2}.

• LNG Loop IV Update Edge: (ELNGIV −Up
) A special kind of LNG loop

structure edge from a for loop to the instruction in that loop that updates its

induction variable. By the definition of induction variable, this updating instruc-

tion is unique. The set of such induction variable updates is called VLNGIV −Up
. In

the example 3.1(d), ELNTIV −Up
= {(L2, S8), (L1, S9)} and VLNTIV −Up

= {S8, S9}.

• LNG Loop IV Exit Condition Edge: (ELNGIV −ECE
) A special kind of LNG

loop structure edge from a for loop to the instruction in the loop that calculates

its exit condition. The set of such induction variable exit condition instructions

is called VLNGIV −ECE
. In the example 3.1(d), ELNTIV −ECE

= {(L2, S3), (L1, S1)}

and VLNTIV −ECE
= {S1, S3}.

For convenience sake, we define

VLNTLSE
= VLNTIV −Def

∪ VLNTIV −Up
∪ VLNTIV −ECE

and

ELNTLSE
= ELNTIV −Def

∪ ELNTIV −Up
∪ ELNTIV −ECE

.
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Chapter 4

Representation of Transformations

To illustrate how the LNG and the PDG are updated for transformations, we

consider four transformations as examples below.

4.1 Loop Interchange

Loop interchange is an important affine-based loop transformation. Loop in-

terchange is desirable for a number of reasons such as improving cache performance

or increasing granularity of parallelism. Loop interchange can also act as an en-

abler transform – enabling other transforms such as fusion to become applicable.

Traditional analysis for the legality of loop interchange relies on analyzing distance

vectors of the loop-nest.

The effects of loop interchange are captured in the two representations in the

following manner:

• Loop interchange is a reordering transformation. It only affects the order in

which the loop is executed, without changing the code inside the loop. As a result,

the most important effect of interchange is on the induction variable behavior of

the two loops. This is reflected in the LNG by interchanging the two loop nodes

and the associated LNG loop structure edges.

For a given LNG GLNG, a new G′
LNG is derived for loop interchange of Loop1 and
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Loop2 by interchanging the position of VLNGLoop1
with VLNGLoop2

along with their

associated loop structure edges in the LNG.

In the example, this would involve interchanging L1 with L2, along with their

associated loop structure edges.

To reflect the corresponding changes in the PDG, we use the special loop struc-

ture nodes that are maintained in the LNG (VLNGLSE
). Thus this would involve

interchanging the control edges associated with the loop structure nodes of the

two loops, which would mean:

Swap the control-dependence edges associated with VLNG1IV −Def
and VLNG2IV −Def

Similarly, swap the control-dependence edges associated with VLNG1IV −Up
and

VLNG2IV −Up

Similarly, swap the control-dependence edges associated with VLNG1IV −ECE
and

VLNG2IV −ECE

• Because of the change in the order of execution, loop interchange affects the

data dependencies in both the structures. It changes the order in which memory

is accessed, thus changing the dependence patterns (distance vectors) associated

with the affine memory dependencies (ELNGAMDE
). This is reflected in the LNG

by performing an interchange on the columns of the distance vectors associated

with the loop-nest as described by unimodular theory [2]. In the example 3.1(d),

the two columns of the distance vector (1, 0) would be interchanged to yield (0, 1).
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∀ edge e = (u, v) ∈ ELNGAMDE

interchange distance vectors(e);

Since each LNG affine memory dependence is a copy of the unannotated depen-

dence in the PDG, when the former changes the latter must be changed as well.

When a distance vector component is changed to zero by interchange, the de-

pendence can be removed from the PDG. Thus the dependence edge (S7, S5) is

removed after the interchange.

If d1, d2 were the depths of loops interchanged,

for(d=d1,d2)

∀ edge e = (u, v) ∈ ELNGAMDE

if(distance vector(e)[d] changes to 0)

remove edge(pdg edge(u, v))

else if (distance vector(e)[d] changes to non-zero)

add loop carried edge(pdg edge(u, v))

where pdg edge(u, v) is the edge from node u to node v in the PDG associated

with the loop at depth d in the loop-nest.

Loop interchange does not affect the register dependencies in the PDG because

the intra-loop dependencies are not affected by interchanging the loops.

The example 4.1 shows the effect of interchanging the two loops in the example

3.1(b). The highlighted nodes in both the LNG and the PDG show the swapped

nodes and the highlighted edge shows the change in the loop-carried memory de-

pendence due to the change in distance vector.
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a) Before Interchange                              b) After Interchange

Figure 4.1: Example for Interchange

4.2 Loop Fusion

Loop Fusion is another well-understood and often-used loop transformation.

Loop fusion affects the runtime in two ways. First, fusing two loops brings down

the number of loops thus reducing the synchronization nodes during parallelization.

Fusion also has a number of cache benefits, where it can promote cache and data

reuse, thus improving the runtime. Loop fusion is advantageous and desirable for

both affine and non-affine methods.

Loop Fusion affects both the LNG and the PDG in the loop control structure.
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S5

S4

S1

S0

S9

S7

S6

S5

S4

S1

S0

S9

S7

S6

S3

S0

S8

for(i=0; i < N; ++i)

C[i] = A[i];

for(i=0; i < N; ++i)

D[i] =  B[i];

for(i=0; i < N; ++i) {

C[i] = A[i];  

D[i] = B[i];

}

L1

S9S1S0

S5S4

L2

S8S3S2

S7S6

L1

S9S1S0

S6S5S4 S7

Figure 4.2: Example for Fusion
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Like for interchange, changes in the LNG guide the changes to the PDG. Fusing two

loops can be visualized as fusing the two corresponding LNG loop nodes into one

LNG loop node such that all the dependencies associated with the two loop nodes

will now be associated with the fused node.

Let L1 and L2 represent the two LNG loop nodes and Lfused the fused loop

node. For fusion to be legal, the loop structures must be the same for L1 and L2, so

we can inherit the loop structure for Lfused from either (say L1). Then we inherit

the LNG + PDG nodes and dependences for Lfused by unioning those for L1 and

L2. Thus, if Lfused = L1, we inherit the edges from L2 by:

for(e = outedges(L2))

if(e /∈ ELNG2LSE
)

change the source of edge e to L1

Representing fusion of the two loops in the PDG would involve fusing the loop

structures of the corresponding loop PDGs into one fused PDG. Control dependen-

cies in the PDG that define the loop structure are associated with exit condition

node (VLNGIV −ECE
). Instead of replicating the PDG for a fused loop, we use one

of the candidate PDGs as our base (say L1) and add the control dependencies for

the loop L2 to the PDG. Thus, fusion of the PDGs involves associating the control

dependencies that define the loop structure in the loop L2 with the VLNG1IV −ECE
of

L1.
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for(e = outedges(VLNG2IV −ECE
))

if(e ∈ EPDGCD
)

change the source of edge e to VLNG1IV −ECE

Whereas the data dependencies within the loops are not affected, new data

dependencies can result from the fusion of loops due to pre-fusion inter-loop depen-

dencies converting to intra-loop dependencies after fusion. Since the analysis for

fusion involves analyzing such inter-loop dependencies, we use this analysis phase to

save the set of possible resultant dependence edges. Once the fusion is determined

to be legal, we use the saved information to update the dependencies. Thus changes

to data dependencies due to fusion follow directly from the analysis.

The example 4.2 shows an example of the fusion of two loops and the resultant

PDG + LNG structure.

4.3 Reduction

Reduction is a well-known loop transformation useful in the parallelization of

both affine and non-affine programs. Reduction is possible on any statement of the

form v = v ⊕ expr in a loop, where ⊕ is a commutative and associative operation

such as sum, product, min and max; and v is loop-invariant in that dimension of

the loop. This creates a loop-carried dependence in the loop, inhibiting parallelism.

This reduction dependence can be broken by creating private copies of the variable

v for each parallel thread and finally accumulating all the copies into the original

after the execution of the entire loop.
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Reduction appears in the PDG as a loop-carried data dependence edge. The

effect of performing a reduction operation is equivalent to removing the loop-carried

dependence EPDGLCDD
associated with the operation v = v⊕ expr. Reduction does

not affect the LNG because we do not represent any register dependencies in the

LNG.

Reduction is a constant-time operation involving the removal of the edge cor-

responding to the reduction operation.

4.4 DSWP

Decoupled software pipelining [12] is a cyclic multi-threading technique which

has been used to extract parallelism from general-purpose non-affine code. DSWP

uses the PDG to analyze the dependencies and splits the loop into several pipeline

stages. It has been shown that the DSWP can also be scaled to higher number

of threads when coupled with other parallelizaiton techniques such as DOALL in

Parallel Stage-DSWP [13]. This makes the DSWP a very useful transformation to

work with affine transformations.

In contrast to the two affine transformations mentioned previously, the PDG

guides the changes in the LNG for DSWP. Changes to the PDG due to DSWP

techniques follow directly from the analysis [12]. Since DSWP partitions the body

of the loop into threads that execute on different pipeline stages, its only affect on

the LNG is with respect to the association of instructions with the threads. We

represent this information by splitting the LNG loop node in question into several
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S0:    i=0; 

S1:    y=0;

S2:    while(i<M) {

S3:         computation();

S4:         j=0; 

S5:         while(j<N) {

S6:              x=arr[j];

S7:              y = y+x

S8:               j++;

}

S9:       i++;

}

S1

S7

S6

S5

S4

S2

S8

S9

S3

L1

L2

S9S2S0

S8S5S4

S7S6

S3

for (i=0; i<M;  i++) {

y=0;

computation();     

for(j=0; j<N; j++) {

y = y + arr[j];

}

}

a) Original Code in C

b) C equivalent of IR

c) PDG d) LNG

Figure 4.3: Example for DSWP

34



S1

S7

S6

S5

S4

S2

S8

S9

S1

S2

S9

S3

L1

S9S2S0

S3

L1

L2

S9S2S0

S8S5S4

S7S6

c) PDG for
i) Thread 1                  ii) Thread 2

d) LNG for
i) Thread 1                    ii) Thread 2

for (i=0; i<M;  i++) {

y=0;

computation();     

for(j=0; j<N; j++) {

y = y + arr[j];

}

}

for(j=0; j<N; j++) 

y = y + arr[j];

computation()

for(j=0; j<N; j++) 

y = y + arr[j];

computation()

for(j=0; j<N; j++) 

y = y + arr[j];

computation()

Thread 1 Thread 2

a) Original Code in C

b) DSWP’s  two pipeline stages

Figure 4.4: PDG and LNG for DSWP

loop nodes, and associating its contained instructions correctly with the new split

loop nodes as dictated by the analysis. Updating the LNG involves producing a

new LNG for each of the threads and distributing the nodes and edges between the

different threaded versions of the LNG. Each of the threads is associated with a new

PDG and a new LNG and represents split portions of the original PDG and LNG.

The threads correspond to different pipeline stages of execution.

The figure 4.3 shows an example program with the associated PDG and LNG.

The figure 4.4(b) shows the result of applying DSWP on the code in 4.3(a). 4.4(c)

shows the resultant PDGs for the two threads associated with the two pipeline
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stages. 4.4(d) shows the resultant LNGs for the two threads associated with the

two pipeline stages.
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Chapter 5

Results

In order to show the practicality of our representation, we use a very basic par-

allelizing compiler framework which consists of the following set of transformations

– loop interchange, loop fusion, reduction and DSWP. The experimental compiler

incrementally applies different transformations and derives a set of candidate orders

by using an exhaustive search with pruning. These orders are then evaluated using

a simple SRE implementation which uses a limited estimation of cache and program

characteristics. At each transformation, only the LNG + PDG are updated, not the

IR. Only when one of the orders is chosen, do we apply the set of transformations

to the IR and produce parallel code.

We use benchmarks from the Polybench benchmark suite [14] – these bench-

marks represent heavily used kernels in scientific and multi-media workloads and

are suited for affine analysis. The table in figure 5.1 shows results of parallelism and

cache-optimization on these benchmarks. As can be seen, several of the benchmarks

give substantial improvement even for the single thread case due improvement in

cache locality from using loop interchange and fusion. Of course the main point of

our results is not the magnitude of the improvement since we are not proposing any

particular search method. Rather the main point is that our results demonstrate

that our LNG + PDG representation is sound, and allows mixed affine and non-
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Benchmark 1 2 4 8 16 24

Baseline 1.00 2.07 4.14 6.83 12.31 12.59
2mm

Optimized 3.90 7.78 15.17 23.89 34.06 46.19

Baseline 1.00 1.99 3.94 6.46 11.77 16.25
3mm

Optimized 3.24 6.44 12.48 23.93 36.81 49.52

Baseline 1.00 1.77 2.14 1.49 1.40 1.18
adi

Optimized 1.08 1.64 3.11 3.29 6.57 7.70

Baseline 1.00 1.74 2.33 1.61 1.61 1.54
atax

Optimized 0.99 1.26 1.80 1.60 1.91 1.96

Baseline 1.00 2.03 4.07 6.27 9.52 9.01
doitgen

Optimized 1.00 2.03 4.07 6.27 9.52 9.01

Baseline 1.00 1.90 3.98 6.86 11.06 12.10
gemm

Optimized 4.29 8.55 16.70 30.83 24.11 29.22

Baseline 1.00 1.73 3.01 2.40 2.49 1.94
gesummv

Optimized 1.00 1.71 3.00 2.40 2.49 1.95

Baseline 1.00 3.44 7.62 5.80 14.19 11.63
jacobi-2d-imper

Optimized 1.00 3.37 7.64 5.65 13.04 13.45

Baseline 1.00 1.48 2.38 2.61 4.04 4.33
Average

Optimized 1.57 2.63 4.61 6.79 8.85 10.69

baseline=without transformations;

optimized=with transformations

Table 5.1: Speedup on x86 24-core machine for Polybench benchmark
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Table 5.2: Speedup for Affine and Non-affine Transformations

affine sequences to be applied correctly without going to IR. The results demonstrate

that such a compiler has been correctly built using our representation, and can find

runtime-improving transformations.

To show the possibility of combining affine and non-affine transformations,

consider the example program in figure 5.1(a) which benefits from both DSWP and

loop interchange. The results in table 5.2 show that the speedup of the program is

better when using a combination of affine and non-affine transformations – inter-

change and DSWP (5.8X) as compared to using either interchange only (2.8X) or

non-affine only (1.1X). The DSWP partitions the loop such that the inner loop is

on one thread and the “computation()” on the other thus reducing the runtime as

shown in 5.1(c). Loop Interchange, which is an affine loop transformation, on the

inner loop modifies the cache access pattern of one of the pipeline stages to improve
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for (x=0; x<Tot; ++x) {

y=0;

computation();

for(i=0; i<M; i++) {

for (j=0; j<N; j++) {

y = y + arr[j][i];

}

}

}

for(i=0; i<M; i++)   {  
for(j=0; j<N; j++) 

y = y + arr[j][i];

computation()

computation()

computation()

Thread 1 Thread 2

for(i=0; i<M; i++)   {  
for(j=0; j<N; j++) 

y = y + arr[j][i];

for(i=0; i<M; i++)   {  
for(j=0; j<N; j++) 

y = y + arr[i][j];

for (x=0; x<Tot; ++x) {

y=0;

computation();

for(j=0; j<N; j++) {

for (i=0; i<M; i++) {

y = y + arr[j][i];

}

}

}

a) Example in C

b) With Interchange only c) With DSWP only

for(j=0; j<N/2; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

computation()

computation()

computation()

Thread 1 Thread 2

for(j=N/2; j<N; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

Thread 3

for(j=0; j<N/2; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

for(j=0; j<N/2; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

for(j=N/2; j<N; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

for(j=N/2; j<N; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

e) DSWP  on 2 threads + Interchange with DOALL on 2 threads

for(j=0; j<N/2; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

computation()

computation()

computation()

Thread 1 Thread 2

for(j=0; j<N/2; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

for(j=0; j<N/2; j++)   {  
for(i=0; i<M; i++) 

y = y + arr[j][i];

d) DSWP + Interchange

Figure 5.1: Example for Affine and Non-affine Transformations
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cache reuse, thus reduce runtime as shown in 5.1(b). Thus in combination, the

transformations – DSWP on 2 threads and interchange with DOALL on 2 threads

– yield a better result.
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Chapter 5

Conclusion

We have combined two of the existing representations – Program Dependence

Graph (PDG) and distance vectors – with a new loop-nest representation called the

Loop Nest Graph (LNG) to provide an integrated program representation which is

capable of working with both affine and non-affine methods. Thus combining two of

the well-understood and regularly-used representations allows us to use the existing

research associated with each of these representations directly without having to

reinvest in new research. We have shown how to represent some of the transforma-

tions in this integrated framework.

Future work involves building a compiler framework using this representa-

tion. We have shown its use in a basic compiler which evaluates various orders

of transformations. We would like to extend it by adding more affine and non-

affine transformations and parallelization methos. Future work also includes a good

static runtime estimator which is capable of using the various system and program

characteristics to estimate the performance. With all the three pieces, we hope to

build a general-purpose parallelizing compiler capable of handling both affine and

non-affine programs. We believe, with the integrated capability of both affine and

non-affine transformations, the parallelizing compiler will be able to handle any

general-purpose code.
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