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Graphs are powerful tools to describe social, technological and biological net-

works, with nodes representing agents (people, websites, gene, etc.) and edges (or

links) representing relations (or interactions) between agents. Examples of real-

world networks include social networks, the World Wide Web, collaboration net-

works, protein networks, etc. Researchers often model these networks as random

graphs.

In this dissertation, we study a recently introduced social network model,

named the Multiplicative Attribute Graph model (MAG), which takes into account

the randomness of nodal attributes in the process of link formation (i.e., the prob-

ability of a link existing between two nodes depends on their attributes). Kim and

Lesckovec, who defined the model, have claimed that this model exhibit some of

the properties a real world social network is expected to have. Focusing on a ho-

mogeneous version of this model, we investigate the existence of zero-one laws for

graph properties, e.g., the absence of isolated nodes, graph connectivity and the



emergence of triangles. We obtain conditions on the parameters of the model, so

that these properties occur with high or vanishingly probability as the number of

nodes becomes unboundedly large. In that regime, we also investigate the property

of triadic closure and the nodal degree distribution.
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Chapter 1

Introduction

An undirected and loopless graph is a collection of nodes and edges linking

pairs of distinct end points from the node set. Such a graph is usually denoted

by G “ pV,Eq where V is a (non-empty) set of nodes and E is a set of edges. A

graph is a powerful way to describe a set of agents (represented by nodes) and their

interactions (represented by edges). These agents can be people forming social or

collaborating networks; websites forming the World Wide Web (WWW); genes form-

ing protein networks, etc. A link between two agents describes an interaction, such

as a social relationship, a path for information diffusion or a physical connection.

Given the role graphs play in multiple disciplines and their complex structures,

researchers have devoted intense efforts to their studies. Researchers have mainly

focused on network modeling, network analysis and network inference. This thesis

studies properties of a recently proposed social network model and contribute to the

area of social network modeling.

1



1.1 Social network structures

To create a good model of social networks, we need to first understand some

basic structures, at the root of modeling. Social networks have been studied for al-

most a century. As early as 1940, Brown [1] had already mentioned social structures

embedded in human societies:

The social phenomena which we observe in any human society are not

the immediate result of the nature of individual human beings, but are

the result of the social structure by which they are united.

There is a strong belief among researches that social phenomena are all con-

nected tightly with social structures, either being implied in or resulting from them.

These structures are of interest to researchers who study how humans self-organize,

and to those who wish to study the implications of those structures in various (eco-

nomic, political) interactions. They led to the study of mechanisms that generate

different kinds of structures so that we can model these structures and make simple

simulations of real world networks.

For the purpose of this dissertation, all graphs under considerations are simple

(i.e., each pair of nodes can only be connected by one edge and no self-loop is allowed)

and undirected. An extended introduction to on graph theory can be found in the

reference [2].
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1.2 Social network models

Generally speaking, there are two main modeling approaches. One relies on

random graph theory while the other one is based on statistics models inferred from

social network data. Here, we mainly focus on the random graph approach.

Given a probability triple pΩ,F ,Pq, a (undirected) random graph G on the

vertex set Vn “ t1, ..., nu is a graph-valued random variable (rv) defined by

Gpnq : Ω Ñ GpVnq,

where GpVnq is the set of all undirected simple graphs on Vn. Different graph-

generating algorithms have been proposed in the literature and the properties emerg-

ing from the resulting graphs have been extensively studied. We are going to

review some of the most classic models, starting with the standard Erdős-Rényi

graphs [5, 6, 8].

Erdős-Rényi graphs Given a set of n nodes, the npn´1q
2

distinct edges emerge inde-

pendently with probability p ą 0 which usually scales with n.

Several remarkable results were presented in [5], showing that sharp phases

transitions arise under certain scalings p : N0 Ñ p0, 1q. For example, with pn “ c lnn
n

,

if c ą 1, the graph is connected (and therefore has no isolated nodes) with high

probability. On the other hand, if c ă 1, the graph contains isolated nodes (and

therefore it is not connected) with high probability.

However this model fails to be a good social network model because its degree

distribution converges to a Poisson distribution with parameter λ if lim
nÑ8

npn “ λ ą
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0, which is not usually observed in the real data set. Moreover, Erdős-Rényi graphs

does not have high clustering coefficients. However, Erdős-Rényi graphs frequently

serve as benchmarks for other random graph models; its sharp phases transition

thresholds shed light on similar properties in other models.

Next, we introduce an elegant model which has a power law degree distribution.

Barabási-Albert graphs A degree distribution is of power law if the frequency of

degree d is asymptotically proportional to d´γ for some γ ą 0. Data collected from

real world networks reveal that a lot of social networks have power law degree distri-

butions [10–14]. In order to construct a model with a power-law degree distribution,

Barabási and Albert proposed a model [9] based on the idea of preferential attach-

ment. This model reflects the notion that the rich get richer, as a “newborn” node

will choose its neighbor from the existing nodes with a probability proportional to

their current degrees. Barabási and Albert showed how this simple model can gen-

erate a power law degree distribution with γ “ 3. However, its tree-like structure

precludes it from being a good model for social networks.

To address this clustering issue, we bring the next model to readers’ attention.

Watts-Strogatz graphs In order to address the combination of relative small diam-

eters and high level of clustering, Watts and Strogatz [15] proposed a model which

became known as the small world model. Having n nodes in a circle, each node

initially connects to other nodes within k steps away on the circle. For each link,

it is rewired with probability p in p0, 1q, i.e., with one end point fixed, the other
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one is chosen uniformly at random. For p “ 1, the model reduce essentially to an

Erdős-Rényi graph model, while for p “ 0, the graph remains a lattice.

The small world model is so named since even for a small rewiring probability,

the diameter of the graph will be significantly smaller than in the original lattice

while the graph still maintains a high level of clustering.

However, it is not a growth model, as the number of nodes is fixed before links

being rewired. Moreover, its degree distribution is somewhere between a Poisson

distribution and a uniform distribution, a feature rarely observed in the real world.

We finish this brief introduction to random graph models by introducing

the notion of zero-one laws, which are frequently explored in this dissertation. Fix

n “ 2, 3, . . . , and assume that Gpnq has vertex set Vn “ t1, . . . , nu. Often, the pmf

of Gpnq depends on a parameter (vector), say ν, in some subset Y Ď Rd for some d

in N0. This parameter is sometimes (partially) scaled with n so that the collection

tGpn; νnq, n “ 2, 3, . . . u now defines a family of random graphs. One of the main

goals of this dissertation is to obtain conditions on the scaling ν : N0 Ñ Y such that

either

lim
nÑ8

P rGpn; νnq has property As “ 0 (Zero-law)

or

lim
nÑ8

P rGpn; νnq has property As “ 1 (One-law).

for a given graph property A.

5



1.3 Modeling social networks with nodal attributes

In most networks, nodes (agents) themselves are associated with a rich set

of properties. For example, a person has a profile in terms of gender, living loca-

tions, education background, working experiences, hobbies, etc.; web pages contain

content, themes, domains; cities have population, geometric locations, economic per-

formance indicators and so on. These features and properties should influence links

formation and should affect network structures, both global and local. Discussions

about the dependency between nodal attributes and a network can be found in [20]

by Fosdick and Hoff. However, most of the existing random graph models, especially

the three mentioned above, do not take nodal attributes into consideration.

A recent study by Kim and Leskovec [17], which used nodal attributes to

govern the link establishment probabilities, attracts our attention. This model is

claimed to exhibit complex behaviors while still being analytically tractable; it is

referred as Multiplicative Attribute Graph (MAG). Each node u is associated with

an E-valued random vector known as its attributes. These attributes are mutually

independent. The probability of adjacency (or establishment of a link) is governed

by the attributes of two end points through a symmetric mapping Q : EˆE Ñ p0, 1q.

Some closely related models can also be found in [18,19].

Kim and Leskovec [17] studied various properties under a homogeneity as-

sumption. More precisely, we have E “ t0, 1uL, an L-length binary (random) vec-

tor, of which the component Bernoulli random variables are i.i.d.s. Q “ qL, where

q : t0, 1u ˆ t0, 1u Ñ p0, 1q is a symmetric mapping. The emergence of a link is gov-
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erned by the attribute vectors of the two end points of this link, and link variables

are mutually independent once attribute vectors of all the nodes are given. Formal

definition will be given in a later chapter. Under a scaling of the form Ln “ ρn lnn

(where n is the number of the nodes) for some sequences tρn, n “ 1, 2, . . . u where

lim
nÑ8

ρn “ ρ ą 0, the zero-one law for connectivity and approximations to the nodal

degree distribution were given as the total number of nodes n grows unboundly

large.

1.4 Contribution

While giving Kim and Leskovec full credits for introducing the MAG model,

we find that the proof of the zero-one law for connectivity is incorrect and the

approximation to the degree distribution is inaccurate. Improving their modeling

efforts, we re-investigate and give a correct proof to the zero-one law for connectivity.

We also give a convergence result for the nodal degree distribution without any

approximation. Our result relaxes the assumption of α ą β ą γ used by Kim and

Leskovec and it is not limited to the tail of the degree distribution as suggested by

these authors.

Moreover, we also study some properties that are not addressed by Kim and

Leskovec. The zero-one law for the absence of isolated nodes is one of them. It is

interesting to see whether the zero-one law for the absence of isolated nodes coincide

with the zero-one law for connectivity, which is true for Erdös Rényi graphs [6],

random geometric graphs [3] and random key graphs [27]. We establish a zero-one
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law for the absence of isolated nodes with an accurate proof. According to our

results, the assumption α ą β ą γ can be relaxed. Yet the new conditions are too

weak for the zero-one law for connectivity to hold. A counterexample is given.

Another property that has not been studied by Kim and Leskovec is the prop-

erty of triadic closure. We show that MAG has the property of triadic closure,

establish a zero-one law for the emergence of triangles and present a limiting result

regarding the total clustering coefficient.

1.5 The road map

In Chapter 2, we first formally define the MAG model, and then discuss some of

its basic properties which have been introduced in [17]. Some preliminary asymptotic

laws and mathematical techniques are also included in this chapter. We establish the

zero-one law for the absence of isolated nodes in Chapter 3, and give an alternative

proof to the zero-one law for connectivity which bypass the technical mistake made

by Kim and Leskovec in Chapter 4.

Both the property of triadic closure and the zero-one laws for the existence of

triangles will be established in Chapter 5. Last but not least, we discuss the nodal

degree distribution and its approximation in Chapter 6 and Chapter 7, respectively.

Some additional proofs are given in Appendix.

1.6 Notation and conventions

Some frequently used notation in this dissertation:
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All limiting statements, including asymptotic equivalence and convergence,

are understood with the number of nodes n growing unboundedly large. All ran-

dom variables (rvs) under considerations are defined on the same probability triple

pΩ,F ,Pq; the corresponding expectation operator and variance operator are denoted

by E and Var, respectively.

For a sequence of events tEn, n “ 1, 2, . . . u, we say that En happens asymp-

totically almost surely (a.a.s.) if lim
nÑ8

P rEns “ 1. For a sequence of R´valued rvs

tA,An, n “ 1, 2, . . . u, we write An
P
ÝÑn A to denote that An converges in probability

to A. Similarly, An ñn A denotes that An converges in distribution to A.

For sequences a, b : N0 Ñ R, we write an „ bn if lim
nÑ8

an
bn
“ 1, and an “Approx bn

if lim
nÑ8

pan´ bnq “ 0. Additionally, we write an “ opbnq if lim
nÑ8

an
bn
“ 0, and we use the

notation an “ Ωpbnq if there exist a constant c ą 0 and a positive integer N such

that an ě c ¨ bn whenever n ě N .

We also denote by |S| the cardinality of the discrete set S. The indicator

function of an event E is denoted by 1rEs.

9



Chapter 2

Introduction to Multiplicative At-

tribute Graph Model

2.1 General model

The multiplicative attribute graph (MAG) model is parameterized by a num-

ber of quantities, chief amongst them the number n of nodes and the number L of

attributes associated with each node - Both n and L are positive integers. Nodes

are labeled u “ 1, 2, ¨ ¨ ¨ , n, while attributes are labeled ` “ 1, 2, ¨ ¨ ¨ , L.

As in the work of Kim and Leskovec [17], we assume that each of the L

attributes associated with a node is binary in nature with 1 (resp. 0) signifying that

the attribute is present (resp. absent). We conveniently organize these L attributes

into a vector

a “ pa1, . . . , aLq, a P t0, 1uL (2.1)

with a` in t0, 1u for ` “ 1, . . . , L.

10



The propensity of nodes to attach to each other is governed by their attributes

in a way to be clarified shortly. To formalize this notion, we follow the approach

adopted by Kim and Leskovec [17], the construction used here being equivalent to

the one found there.

2.1.1 The underlying random variables

On the probability triple pΩ,F ,Pq, we are given two set of rvs, namely the

collection

tA,A`, A`puq, ` “ 1, . . . , L; u “ 1, . . . , nu

and the triangular array

tUpu, vq, 1 ď u ă v ď nu.

The following assumptions are enforced throughout the dissertation:

(i) The collection tA,A`, A`puq, ` “ 1, . . . , L; u “ 1, . . . , nu and the triangular ar-

ray

tUpu, vq, 1 ď u ă v ď nu are mutually independent;

(ii) The rvs tUpu, vq, 1 ď u ă v ď nu are i.i.d. rvs, each of which is uniformly

distributed on the interval p0, 1q; and

(iii) The rvs tA,A`, A`puq, ` “ 1, . . . , L;u “ 1, . . . , nu form a collection of i.i.d.

t0, 1u-valued rvs with pmf µ “ pµp0q, µp1qq where

P rA “ 0s “ µp0q and P rA “ 1s “ µp1q.
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To avoid trivial situations of limited interest, we assume that both µp0q and

µp1q are elements of the open interval p0, 1q such that µp0q ` µp1q “ 1.

For each L “ 1, 2, . . ., we set

AL “ pA1, . . . , ALq

and

ALpuq “ pA1puq, . . . , ALpuqq, u “ 1, 2, . . . .

Under the enforced assumptions, the t0, 1uL-valued rvs tALpuq, u “ 1, . . . , nu are

mutually independent, each with i.i.d. components distributed like the generic ran-

dom variable A. We also define

SLpuq “
L
ÿ

`“1

A`puq, u “ 1, 2, . . . , n, (2.2)

and

SL “
L
ÿ

`“1

A`. (2.3)

Thus, SLpuq counts the number of attributes node u has. From the enforced

assumptions, it is plain that the rvs tSLpuq, u “ 1, 2, . . . nu form a sequence of

i.i.d. rvs, each being distributed according to the rv SL which is itself a Binomial

rv BinpL, µp1qq.

For notational reason we find it convenient augment the triangular array of

uniform rvs into the larger collection tUpu, vq, u, v “ 1, 2, . . . nu through the defini-

tions

Upu, uq “ 1 and Upv, uq “ Upu, vq, 1 ď u ă v ď n.

12



2.1.2 Adjacency

On the way to defining MAGs, we introduce notions of adjacency between

nodes based on their attributes. To do so, we start with 2 ˆ 2 attribute score

matrices Q` given by

Q` “ q`pa, bq ”

¨

˚

˚

˝

q`p1, 1q q`p1, 0q

q`p0, 1q q`p0, 0q

˛

‹

‹

‚

for ` “ 1, 2, . . . , L. Throughout we assume the symmetry conditions

q`p1, 0q “ q`p0, 1q, ` “ 1, 2, . . . , L (2.4)

together with

q`pa, bq P r0, 1s,
a, b P t0, 1u

` “ 1, 2, . . . , L.

(2.5)

With these symmetric 2 ˆ 2 matrices tQ`, ` “ 1, 2, . . . , Lu, we associate a

mapping QL : t0, 1uL ˆ t0, 1uL Ñ r0, 1s given by

QLpaL, bLq “
L
ź

`“1

q`pa`, b`q, aL, bL P t0, 1u
L. (2.6)

Interpretations for these quantities will be given shortly. The enforced assumptions

(2.4)-(2.5) on the score matrices Q1, . . . ,QL readily imply

QLpbL,aLq “ QLpaL, bLq, aL, bL P t0, 1u
L (2.7)

with

0 ď QLpaL, bLq ď 1, aL, bL P t0, 1u
L. (2.8)
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Pick two distinct nodes u, v in t1, 2, . . . , nu. We say that node u is L-adjacent

to node v, written u „L v, if the condition

Upu, vq ď QLpALpuq,ALpvqq (2.9)

holds, in which case an (undirected) edge from node u to node v is said to exist.

Obviously, L-adjacency is a binary relation on the set of all nodes. Since Upu, vq “

Upv, uq, it is plain from (2.7) that u is L-adjacent to node v if and only if v is L-

adjacent to node u — This will allow us to say that nodes u and v are L-adjacent

without any risk of confusion.

We can readily encode L-adjacency through the t0, 1u-valued rvs

$

’

’

&

’

’

%

χLpu, vq,
u, v “ 1, 2, . . . , n

u ‰ v

,

/

/

.

/

/

-

given by

χLpu, vq “ 1rUpu, vq ď QLpALpuq,ALpvqqs,
u, v “ 1, 2, . . . , n

u ‰ v

(2.10)

with χLpu, vq “ 1 (resp. χLpu, vq “ 0) corresponding to the existence (absence) of

an edge between u and v. In view of earlier remarks, we observe that the conditions

χLpu, vq “ χLpv, uq,
u, v “ 1, 2, . . . , n

u ‰ v

(2.11)

and

χLpu, uq “ 0, u “ 1, 2, . . . , n. (2.12)

are all satisfied.
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2.1.3 Defining MAGs

Fix n “ 1, 2, . . . , and L “ 1, 2, . . . . A MAG over a set of n nodes, labeled

1, 2, . . . , n, with each node having L attributes, labeled 1, 2, . . . , L, is the random

graph Mpn;Lq, whose edge set is determined through the rvs in (2.10). From (2.11)-

(2.12) it follows that edges in Mpn;Lq are undirected and that there are no self-loops.

For the sake of simplicity, for each n “ 1, 2, . . . , we denote the node set of

Mpn;Lq by Vn “ t1, . . . , nu. This will allow us to say u in Vn is equivalent to

u “ 1, . . . , n, and we will use the notion u in Vn in the rest of this dissertation.

This definition is equivalent to the one given by Kim and Leskovec [17]. Indeed,

with the help of Assumptions (i) and (ii), the rvs forming the triangular array

χLpu, vq “ 1rUpu, vq ď QLpALpuq,ALpvqqs,
u, v P Vn

u ă v

are conditionally mutually independent given the i.i.d. attribute rvs tALpuq, u P

Vnu. Indeed, we have

PrχLpu, vq “ 1, 1 ď u ă v ď n|ALpwq “ aLpwq, w P Vns

“
ź

1ďuăvďn

PrχLpu, vq “ 1|ALpwq “ aLpwq, w P Vns

“
ź

1ďuăvďn

PrχLpu, vq “ 1|ALpuq “ aLpuq,ALpvq “ aLpvqs

“
ź

1ďuăvďn

QLpaLpuq, aLpvqq, (2.13)
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with

PrχLpu, vq “ 1|ALpuq,ALpvqs

“ QLpALpuq,ALpvqq

“

L
ź

`“1

q`pA`puq, A`pvqq,
u, v P Vn

u ă v.

(2.14)

2.1.4 A homogeneous version

For the MAGs defined in the previous section, there are 3L ` 3 parameters,

namely n, L, µp1q and tq`p1, 1q, q`p1, 0q, q`p0, 0q, ` “ 1, 2, . . . , Lu. But it is

hard to obtain close form results when the parameter set is large. Following Kim

and Leskovec [17], we shall consider a homogeneous version of MAGs whose score

matrices are identical, namely

Q` ” Q, ` “ 1, 2, . . . , L.

In the rest of this dissertation, unless explicitly stated otherwise, this homogeneity

assumption will be enforced throughout. To further simplify the notation, we write

q`p1, 1q “ qp1, 1q “ α,

q`p1, 0q “ q`p0, 1q “ qp1, 0q “ qp0, 1q “ β

and

q`p0, 0q “ qp0, 0q “ γ

for ` “ 1, 2, . . . , L. We also define

Γp1q “ Erqp1, Aqs “ µp1qα ` µp0qβ (2.15)
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and

Γp0q “ Erqp0, Aqs “ µp1qβ ` µp0qγ. (2.16)

These building blocks are assumed given and held fixed during the discussions —

They will not be explicitly displayed in the notation.

2.2 Properties of MAG

Before discussing various structural properties of MAGs, we present some fun-

damental properties which build the ground of MAGs. We first review link estab-

lishment probabilities given by Kim and Leskovec [17]. This is then followed by a

discussion of the independence of the edge assignment rvs.

2.2.1 Link establishment

Fix n “ 2, 3, . . . and L “ 1, 2, . . . . For distinct nodes u, v in Vn, easy calcula-

tions [17] yield

Pru „L v|SLpuq “ `s “ Γp1q`Γp0qL´`, ` “ 0, 1, . . . , L. (2.17)

Taking expectation we get

PrχLpu, vq “ 1s “ Pru „L vs

“ ErPru „L v|SLpuqss

“ pµp1qΓp1q ` µp0qΓp0qqL (2.18)

as we used the fact that SLpuq is a Binomial rv with parameters pL, µp1qq.

17



2.2.2 Independence

Many probabilistic bounds and properties rely on the mutual independence of

the rvs involved. We discuss two such instances.

Lemma 2.1. The link rvs in the triangular array tχLpu, vq, u, v P Vn, u ă vu are

not mutually independent.

To establish Lemma 2.1, we only need to show that, for three distinct nodes

u, v and w in Vn,

PrχLpu, vq “ 1, χLpu,wq “ 1s ‰ PrχLpu, vq “ 1sP rχLpu,wq “ 1s .

Proof. Fix n “ 2, 3, . . . and L “ 1, 2, . . . . For three distinct nodes u, v and w in

Vn, by iterated expectations, we have

PrχLpu, vq “ 1, χLpu,wq “ 1s “ Er1rχLpu, vq “ 1, χLpu,wq “ 1ss

“ ErEr1rχLpu, vq “ 1, χLpu,wq “ 1s|ALpuqss.(2.19)

From the definition (2.10) of link variables, we can rewrite (2.19) as

Er1rχLpu, vq “ 1, χLpu,wq “ 1s|ALpuqs

“ E r1rUpu, vq ď QLpaLpuq,ALpvqqs1rUpu,wq ď QLpaLpuq,ALpwqqssaLpuq“ALpuq

. (2.20)

The two pair of rvs pUpu, vq,ALpvqq and pUpu,wq,ALpwqq are independent. As a

18



result, for each aLpuq in t0, 1uL, it holds that

Er1rUpu, vq ď QLpaLpuq,ALpvqqs1rUpu,wq ď QLpaLpuq,ALpwqqss

“ Er1rUpu, vq ď QLpaLpuq,ALpvqqssEr1rUpu,wq ď QLpaLpuq,ALpwqqss

“ Er1rUpu, vq ď QLpaLpuq,ALpvqqss
2 (2.21)

where the last step is based on the fact that the collections tALptq, t P Vnu and

tUpt, sq, t, s P Vn, t ă su are both collections of i.i.d. rvs. It is also plain that

Er1rUpu, vq ď QLpaLpuq,ALpvqqss

“ E rE r1rUpu, vq ď QLpaLpuq,ALpvqqs|ALpvqss

“ ErQLpaLpuq,ALpvqqs. (2.22)

Upon setting

Q‹LpaLq “ E rQL paL,ALqs , aL P t0, 1u
L, (2.23)

we see that

Q‹LpaLq “ E

«

L
ź

`“1

qpa`, A`q

ff

“

L
ź

`“1

E rqpa`, A`qs

“

L
ź

`“1

E rqp1, A`qsa` ¨ E rqp0, A`qs1´a`

“ Γp1q
řL
`“1 a` ¨ Γp0q

řL
`“1p1´a`q (2.24)

with the help of the notation (2.15)-(2.16). In particular it follows that

Q‹LpALpuqq “ Γp1qSLpuqΓp0qL´SLpuq, u P Vn. (2.25)
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Therefore, by virtue of (2.20)-(2.24), (2.19) now becomes

PrχLpu, vq “ 1, χLpu,wq “ 1s “ E
“

ErQLpaLpuq,ALpuqqs
2
aLpuq“ALpuq

‰

“ E
“

Q‹LpaLpuqq
2
aLpuq“ALpuq

‰

“ E
“

Q‹LpALpuqq
2
‰

“ E
”

`

Γp1qSLpuqΓp0qL´SLpuq
˘2
ı

“
`

µp1qΓp1q2 ` µp0qΓp0q2
˘L

(2.26)

upon using the fact that the rv SLpuq is a binomial rv with parameters pL, µp1qq.

However, using (2.18) we have

PrχLpu, vq “ 1sPrχLpu,wq “ 1s “ pµp1qΓp1q ` µp0qΓp0qq2L. (2.27)

This implies

PrχLpu, vq “ 1, χLpu,wq “ 1s ‰ PrχLpu, vq “ 1sPrχLpu,wq “ 1s

and the link variables χLpu, vq and χLpu,wq are not mutually independent. �

On the other hand, the following fact holds.

Lemma 2.2. For n “ 2, 3, . . . , and any node u in Vn, the rvs tχLpu, vq, v P Vn, v ‰

uu are conditionally mutually independent given SLpuq.

Proof. Fix n “ 2, 3, . . . and a node u in Vn. For ` “ 1, 2, . . . , L, we have

P

«

č

vPVn, v‰u

rχLpu, vq “ bvs

ˇ

ˇ

ˇ

ˇ

ˇ

SLpuq “ `

ff

“ E

«

ź

vPVn, v‰u

pbvχLpu, vq ` p1´ bvqp1´ χLpu, vqqq

ˇ

ˇ

ˇ

ˇ

ˇ

SLpuq “ `

ff

“ E

«

E

«

ź

vPVn, v‰u

pbvχLpu, vq ` p1´ bvqp1´ χLpu, vqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq

ff
ˇ

ˇ

ˇ

ˇ

ˇ

SLpuq “ `

ff
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where bv in t0, 1u for v in Vn and v ‰ u. From (2.21)-(2.25), we get

E

«

ź

vPVn, v‰u

pbvχLpu, vq ` p1´ bvqp1´ χLpu, vqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq

ff

“ E

»

—

—

–

ź

vPVn, v‰u

¨

˚

˚

˝

bv1rUpu, vq ď QpaLpuq,ALpvqqs

`p1´ bvq1rUpu, vq ą QpaLpuq,ALpvqqs

˛

‹

‹

‚

fi

ffi

ffi

fl

aLpuq“ALpuq

“

˜

ź

vPVn, v‰u

´

bvQ
˚
LpaLpuqq ` p1´ bvqp1´Q

˚
LpaLpuqqq

¯

¸

aLpuq“ALpuq

“
`

Γp1qSLpuqΓp0qL´SLpuq
˘

ř

vPVn, v‰u
bv `

1´ Γp1qSLpuqΓp0qL´SLpuq
˘

ř

vPVn, v‰u
1´bv

since the rvs tpUpu, vq,ALpvqq , v P Vn, v ‰ uu form a collection of i.i.d. rvs.

Consequently, it is plain that

P

«

č

vPVn, v‰u

rχLpu, vq “ bvs

ˇ

ˇ

ˇ

ˇ

ˇ

SLpuq “ `

ff

“ E

»

—

—

–

`

Γp1qSLpuqΓp0qL´SLpuq
˘

ř

vPVn, v‰u
bv

ˆ
`

1´ Γp1qSLpuqΓp0qL´SLpuq
˘

ř

vPVn, v‰u
1´bv

ˇ

ˇ

ˇ

ˇ

ˇ

SLpuq “ `

fi

ffi

ffi

fl

“
`

Γp1q`Γp0qL´`
˘

ř

vPVn, v‰u
bv `

1´ Γp1q`Γp0qL´`
˘

ř

vPVn, v‰u
1´bv

“
ź

v:bv“1

PrχLpu, vq “ 1|SLpuq “ `s
ź

v:bv“0

p1´ PrχLpu, vq “ 1|SLpuq “ `sq

“

n
ź

v“1; v‰u

PrχLpu, vq “ bv|SLpuq “ `s,

bv P t0, 1u,

v P Vn

v ‰ u

(2.28)

as we made use of (2.17) and the desired mutual independence follows. �
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2.3 The asymptotic theory

Recall from [5, 6] that an Erdős-Rényi graph Gpn, pq is an undirected graph

with n nodes, labeled 1, . . . , n, where adjacency is defined through the i.i.d. t0, 1u-

valued rvs tτpu, vq, 1 ď u ă v ď nu with

Prτpu, vq “ 1s “ Pru „ vs “ p, 1 ď u ă v ď n. (2.29)

The asymptotic properties of Gpn, pq when n grows unboundedly large have

been extensively studied. Under scalings p : N0 Ñ p0, 1q such that lim
nÑ8

pn “ 0,

critical conditions for various zero-one laws [8] have been found for several proper-

ties, including the emergence of giant components, the absence of isolated nodes,

connectivity and the emergence of triangles.

For the MAG model, we are interested in establishing such zero-one laws. For

any two distinct nodes u, v in Vn, in order to have a scaling such that lim
nÑ8

PrχLpu, vq “

1s “ 0, we consider a scaling L : N0 Ñ N0 : n Ñ Ln with lim
nÑ8

Ln “ 8. With

α, β, γ, µp1q in p0, 1q fixed, it holds that

lim
nÑ8

Pru „Ln vs “ lim
nÑ8

pµp1qΓp1q ` µp0qΓp0qqLn “ 0. (2.30)

With ρ ą 0, the scaling L : N0 Ñ N0 is said to be ρ-admissible if

Ln „ ρ lnn (2.31)

in which case we can write

Ln “ ρn lnn, n “ 1, 2, . . .
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for some sequence % : N0 Ñ R` such that lim
nÑ8

ρn “ ρ ą 0. For reasons behind

selecting (2.31), please refer to [17]. In this dissertation, unless explicitly specified,

all scalings are assumed to be ρ-admissible. An asymptotic MAG with parameters

pn, µp1q, ρn, α, β, γq is denoted by Mpn;Lnq, where pµp1q, α, β, γq are assumed fixed

and will not be explicitly displayed in the notation.

2.4 Four useful techniques

While establishing various properties for MAGs, some mathematical tech-

niques will be repeatedly used. In this section we present four of these techniques

for future reference.

2.4.1 Behaviors of p1` xnq
n

Consider a scaling: N0 Ñ p´1, 1q : n Ñ xn. We are interested in bounds and

limits of the sequence n Ñ p1 ` xnq
n where n becomes unboundedly large. The

following fact is crucial:

Proposition 2.3. For x in p ´ 1, 1q and p ą 0 fixed, we have

p1` xqp ď epx. (2.32)

Proof. Fix x in p´1, 1q and note that

p1` xqp “ epplnp1`xqq. (2.33)
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The result is now a simple consequence of the fact that

lnp1` xq “

`8
ÿ

i“1

p´1qi`1x
i

i
ď x (2.34)

by Taylor series expansion. �

For any sequence N0 Ñ R : nÑ xn, if lim
nÑ8

xn “ 0, it is then plain from (2.34)

that

lnp1` xnq “ xnp1` op1qq,

and we readily obtain [25, Prop. 3.1.1, p. 116], the following useful fact:

Lemma 2.4. For any sequence x : N0 Ñ p´1, 1q, there exists c in r´8,`8s such

that if

lim
nÑ8

nxn “ c,

then

lim
nÑ8

p1` xnq
n
“ ec. (2.35)

2.4.2 The limit of nCLn
n

Lemma 2.5. Consider a ρ-admissible scaling L : N0 Ñ N0 for some ρ ą 0. For any

sequence C : N0 Ñ p0,8q such that lim
nÑ8

Cn “ C for some C ą 0, it holds that

lim
nÑ8

nCLn
n “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

8 if 1` ρ lnC ą 0

0 if 1` ρ lnC ă 0.

(2.36)
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Proof. The ρ-admissibility of the scaling L : N0 Ñ N0 yields

nCLn
n “ neLn logCn “ neρn lnCn¨lnn “ n1`ρn lnCn , n “ 2, 3, . . . (2.37)

for some sequence % : N0 Ñ N0 such that lim
nÑ8

ρn “ ρ. Letting n go to infinity

readily yields the desired conclusion (2.36). �

2.4.3 Stirling’s approximation for binomial coefficient

In the later chapters, we will have the opportunity to use Stirling’s approxi-

mation for factorials given by

p! „
a

2πp
´p

e

¯p

ppÑ 8q. (2.38)

The following lemma is a direct consequence of (2.38).

Lemma 2.6. Consider a scaling t : N0 Ñ N0 : nÑ tn with lim
nÑ8

tn “ 8 and another

scaling τ : N0 Ñ N0 : nÑ τn such that lim
nÑ8

τn “ 8 and τn ă tn for n “ 1, 2, . . . . It

holds that

ˆ

tn
τn

˙

„

?
tn

a

2πτnptn ´ τnq

ˆ

tn
τn

˙τn ˆ tn
tn ´ τn

˙tn´τn

.

Proof. Lemma 2.6 is established once we notice that

ˆ

tn
τn

˙

“
tn!

τn!ptn ´ τnq!

for n “ 1, 2, . . . . �
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2.4.4 The method of first and second moments

A conventional way to obtain zero-one laws is through the method of first

and second moments. In this subsection we provide the main ingredients of this

approach as we will need it in its various applications.

Let tZn, n “ 1, 2, . . .u denote a collection of N-valued rvs such that E rZ2
ns ă 8

for each n “ 1, 2, . . .. The method of first moment [26, Eqn. (3.10), p. 55] relies on

the well-known bound

1´ E rZns ď P rZn “ 0s , n “ 1, 2, . . . (2.39)

while the method of second moment [26, Remark 3.1, p. 55] has its starting point

in the inequality

P rZn “ 0s ď 1´
pE rZnsq2

E rZ2
ns

, n “ 1, 2, . . . . (2.40)

Letting n go to infinity in the resulting inequalities, we conclude from (2.39)

that

lim
nÑ8

P rZn “ 0s “ 1 (2.41)

if

lim
nÑ8

E rZns “ 0, (2.42)

while the bound (2.40) implies

lim
nÑ8

P rZn “ 0s “ 0 (2.43)

whenever

lim sup
nÑ8

E rZ2
ns

pE rZnsq2
ď 1. (2.44)
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This strategy is often used when the rvs tZn, n “ 1, 2, . . .u are count variables

with the following structure (as will be the cases we are going to handle): For

n “ 1, 2, . . ., assume the rv Zn has the form

Zn “
n
ÿ

u“1

ζn,u

where the rvs ζn,1, . . . , ζn,n are t0, 1u-valued rvs. If in addition, the rvs ζn,1, . . . , ζn,n

are exchangeable (i.e. they are identically distributed), then we easily arrive at the

expressions

E rZns “ E

«

n
ÿ

u“1

ζn,u

ff

“ nE rζn,1s (2.45)

and

E
“

Z2
n

‰

“ E

»

–

˜

ÿ

u“1

ζn,u

¸2
fi

fl “ nE rζn,1s ` npn´ 1qE rζn,1 ¨ ζn,2s (2.46)

by virtue of the binary nature of the rvs involved. Therefore, using (2.45) we find

E rZ2
ns

pE rZnsq2
“

1

E rZns
`
n´ 1

n
¨
E rζn,1 ¨ ζn,2s
pE rζn,1sq2

. (2.47)

It is now plain that (2.44) can be achieved if we show the two convergence

statements

lim
nÑ8

E rZns “ 8, (2.48)

and

lim sup
nÑ8

E rζn,1 ¨ ζn,2s
pE rζn,1sq2

ď 1. (2.49)
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Chapter 3

Absence of Isolated Nodes

In the previous chapter, we introduced the MAG model and gave the homo-

geneous version that will be considered in this dissertation. In this present chapter,

we are interested in establishing a zero-one law for the absence of isolated nodes

in MAGs when the number n of nodes and the number L of nodal attributes grow

unboundedly large, the latter quantity scaling with the former.

We remind readers that we have the quantities Γp0q and Γp1q were defined by

Γp1q “ Erqp1, Aqs “ µp1qα ` µp0qβ

and

Γp0q “ Erqp0, Aqs “ µp1qβ ` µp0qγ

and that the results are all given under the condition Γp0q ď Γp1q. When Γp1q ă

Γp0q, the results can be obtained mutatis mutandis by exchanging the roles of the

attributes 0 and 1, i.e., the roles of µp0q (resp. Γp0q) and µp1q (resp. Γp1q) need to

be interchanged in various statements. Details are left to the interested reader.
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3.1 The zero-one laws

The zero-one law for the absence of isolated nodes is given in two parts deter-

mined by the sign of 1` ρ lnµp0q.

Theorem 3.1. Assume Γp0q ă Γp1q. With ρ ą 0, we further assume that

1` ρ lnµp0q ą 0. (3.1)

Then, for any ρ-admissible scaling L : N0 Ñ N0, we have

lim
nÑ8

P r Mpn;Lnq contains no isolated nodes s

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if 1` ρ ln Γp0q ă 0

1 if 1` ρ ln Γp0q ą 0.

(3.2)

Theorem 3.1 takes a very different form when (3.1) does not hold. To state

the results, we introduce the quantity

Gpν, µq “
´µ

ν

¯ν
ˆ

1´ µ

1´ ν

˙1´ν

, 0 ă ν, µ ă 1. (3.3)

For each µ in p0, 1q, the mapping p0, 1q Ñ R` : ν Ñ Gpν, µq is well defined and

continuous. By continuity we can extend it into a continuous mapping defined on

the closed interval r0, 1s with

Gp0, µq “ lim
νÓ0

Gpν, µq “ 1´ µ

and

Gp1, µq “ lim
νÒ1

Gpν, µq “ µ.
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These limits are using the convention 00 “ 1 in the expression (3.3). In a similar

way, for each µ in p0, 1q the mapping p0, 1q Ñ R : ν Ñ lnGpν, µq is well defined and

continuous with

lnGpν, µq “ ´ν ln

ˆ

ν

µ

˙

´ p1´ νq ln

ˆ

1´ ν

1´ µ

˙

, 0 ă ν ă 1. (3.4)

We can also extend this second mapping into a continuous mapping defined on the

closed interval r0, 1s with

lnGp0, µq “ lim
νÓ0

lnGpν, µq “ lnp1´ µq

and

lnGp1, µq “ lim
νÒ1

lnGpν, µq “ lnµ.

This is consistent with applying the usual convention 0 ln 0 “ 0 in the expression

(3.4). Elementary calculus shows that the mapping r0, 1s Ñ R : ν Ñ lnGpν, µq is

concave, and that its maximum is achieved at ν “ µ with lnGpµ, µq “ 0. Thus, the

mapping r0, 1s Ñ R : ν Ñ lnGpν, µq increases on p0, µq, reaches its maximum at

ν “ µ and then decreases on pµ, 1q.

With these preliminaries in place, for each µ in p0, 1q and ρ ą 0, consider the

non-linear equation

1` ρ lnGpν, µq “ 0, ν P r0, 1s. (3.5)

If the condition

1` ρ lnp1´ µq ă 0

holds, then the equation (3.5) has a non-empty set of solutions. More precisely,

there always exists a root, denoted ν‹pρq, in the interval p0, µq since 1`ρ lnGp0, µq “
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1` ρ lnp1´ µq ă 0 while 1` ρ lnGpµ, µq “ 1. Additionally, only when

1` ρ lnGp1, µq “ 1` ρ lnµ ď 0,

does there exist a second root located in the interval pµ, 1s.

Theorem 3.2. Assume Γp0q ă Γp1q. With ρ ą 0, we further assume that

1` ρ lnµp0q ă 0. (3.6)

Then, for any ρ-admissble scaling L : N0 Ñ N0, we have

lim
nÑ8

P r Mpn;Lnq contains no isolated nodes s

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if 1` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

ă 0

1 if 1` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

ą 0

(3.7)

where ν‹pρq is the unique solution in the interval p0, µp1qq to the equation

1` ρ lnGpν, µp1qq “ 0, ν P r0, 1s. (3.8)

For future reference, in order to avoid repetitions, we close with a discussion

of the constraint on the sign of 1 ` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

which appears in the

statement of Theorem 3.2. As we will discover shortly in subsequent sections, forth-

coming arguments will require asserting either the existence of a value ν in the

interval p0, ν‹pρqq such that

1` ρ ln
`

Γp1qνΓp0q1´ν
˘

ă 0, (3.9)
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or the existence of a value ν in the interval pν‹pρq, µp1qq such that

1` ρ ln
`

Γp1qνΓp0q1´ν
˘

ą 0. (3.10)

We now argue that the existence of a value ν in the requisite intervals is indeed

guaranteed by the conditions

1` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

ă 0 (3.11)

and

1` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

ą 0, (3.12)

respectively. In fact a little bit more holds:

Indeed, using the fact that

1` ρ ln
`

Γp1qνΓp0q1´ν
˘

“ 1` ρ pν ln Γp1q ` p1´ νq ln Γp0qq , ν P r0, 1s,

we note that the mapping ν Ñ 1` ρ ln pΓp1qνΓp0q1´νq is affine (thus continuous) on

r0, 1s and strictly increasing (since Γp0q ă Γp1q) with intercepts at ν “ 0 and ν “ 1

given by 1 ` ρ ln Γp0q and 1 ` ρ ln Γp1q, respectively. This elementary observation

has the following implications: If (3.11) holds, then by continuity and monotonicity

there exists a non-trivial interval I´pρq “ pα´pρq, β´pρqq contained in p0, µp1qq with

the following properties: The interval I´pρq contains ν‹pρq and (3.9) holds on it.

When Γp0q “ Γp1q, it is easy to check that we can take I´pρq “ p0, µp1qq.

On the other hand, if (3.12) holds, then by continuity and monotonicity there

now exists a non-trivial interval I`pρq “ pα`pρq, β`pρqq contained in p0, µp1qq with

the following properties: The interval I`pρq contains ν‹pρq and (3.10) holds on it.

When Γp0q “ Γp1q, it is easy to check that we can take I`pρq “ p0, µp1qq.
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3.2 Counting isolated nodes

Fix n “ 2, 3, . . . and L “ 1, 2, . . .. For each u “ 1, . . . , n, node u is isolated in

Mpn;Lq if no other node (in Vnztuu) is L-adjacent to node u. The t0, 1u-valued rv

ξn,Lpuq given by

ξn,Lpuq “
n
ź

vPVn, v‰u

p1´ χLpu, vqq (3.13)

encodes the fact that node u is isolated in Mpn;Lq. To count the number of isolated

nodes in Mpn;Lq we introduce the random variable InpLq given by

InpLq “
n
ÿ

u“1

ξn,Lpuq. (3.14)

Interest in these count variables stems from the observation that Mpn;Lq contains

no isolated nodes if and only if InpLq “ 0, leading to the key relation

P r Mpn;Lq contains no isolated nodes s “ P rInpLq “ 0s . (3.15)

This fact will be used to establish Theorems 3.1 and 3.2 by leveraging easy bounds

on the probability P rInpLq “ 0s in terms of the first and second moments of the

random variable InpLq (as discussed in Section 2.4.4).

However, some of the forthcoming arguments will require a finer accounting

which we now introduce. Recall that for each node u in Vn, the number of attributes

exhibited by node u amongst its L attributes is captured by the rv SLpuq introduced

at (2.2). For each ` “ 0, 1, . . . , L, the t0, 1u-valued random variable ξ
p`q
n,Lpuq indicates

whether node u is isolated in Mpn;Lq while exhibiting ` attributes amongst its L

attributes, thus

ξ
p`q
n,Lpuq “ ξn,Lpuq1 rSLpuq “ `s . (3.16)
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The total number of nodes which are isolated and have ` attributes amongst the

first L attributes is then given by

Ip`qn pLq “
n
ÿ

u“1

ξ
p`q
n,Lpuq “

n
ÿ

u“1

ξn,Lpuq1 rSLpuq “ `s . (3.17)

Simple accounting now shows that

ξn,Lpuq “
L
ÿ

`“0

ξ
p`q
n,Lpuq (3.18)

and

InpLq “
L
ÿ

`“0

Ip`qn pLq, (3.19)

whence the elementary bounds

Ip`qn pLq ď InpLq, ` “ 0, 1, . . . , L. (3.20)

3.3 Useful lemmas for Theorem 3.1

We begin with an easy calculation of the first moments.

Lemma 3.3. Consider arbitrary n “ 2, 3, . . . and L “ 1, 2, . . .. For each u in Vn,

with SLpuq given by (2.2), it holds that

E
”

ξ
p`q
n,Lpuq

ı

“
`

1´ Γp1q`Γp0qL´`
˘n´1

¨ P rSLpuq “ `s , ` “ 0, 1, . . . , L (3.21)

and

E rξn,Lpuqs “ E
”

`

1´ Γp1qSLpuqΓp0qL´SLpuq
˘n´1

ı

. (3.22)
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Recall that the rvs tA,A`, ` “ 1, 2, . . .u are i.i.d. t0, 1u-valued rvs with pmf

µ, and corresponding sequence of partial sums tSL, L “ 1, 2, . . .u given by (2.3).

Under the enforced Assumptions (i)-(iii) it is plain that for each L “ 1, 2, . . ., the rvs

SLp1q, SLp2q, . . . , SLpnq are i.i.d., each distributed according to the random variable

SL. The two relations

E
“

Ip`qn pLq
‰

“ n
`

1´ Γp1q`Γp0qL´`
˘n´1

¨ P rSL “ `s , ` “ 0, 1, . . . , L (3.23)

and

E rInpLqs “ nE
”

`

1´ Γp1qSLΓp0qL´SL
˘n´1

ı

(3.24)

are now immediate consequences of the relations (3.17) and (3.19), respectively.

Also recall (2.23), namely

Q‹LpaLq “ E rQL paL,ALqs , aL P t0, 1u
L,

so that

Q‹LpALpuqq “ Γp1qSLpuqΓp0qL´SLpuq, u P Vn.

Proof. It suffices to show that (3.21) holds since (3.22) follows as an easy conse-

quence of the expression (3.18). Pick positive n “ 2, 3, . . . and L “ 1, 2, . . ., and

consider node u Vn. For each ` “ 0, 1, . . . , L, with the relation (3.16) holding, a

standard preconditioning argument yields

E
”

ξ
p`q
n,Lpuq

ı

“ E
”

1 rSLpuq “ `s ¨ E
”

ξn,Lpuq
ˇ

ˇ

ˇ
ALpuq

ıı

(3.25)

as we note that the rv SLpuq is determined by the attribute vector ALpuq.
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With (3.13) as a point of departure, we have

ξn,Lpuq “
ź

vPVn, v‰u

p1´ χLpu, vqq (3.26)

Because of the conditional independence established in Lemma 2.2, we have

E
”

ξn,Lpuq
ˇ

ˇ

ˇ
ALpuq

ı

“ E

«

ź

vPVn, v‰u

p1´ χLpu, vqq
ˇ

ˇ

ˇ
ALpuq

ff

“
ź

vPVn, v‰u

E
”

p1´ χLpu, vqq
ˇ

ˇ

ˇ
ALpuq

ı

“ p1´ E rQLpALpuq,ALpvqq|ALpuqsq
n´1

“ p1´Q‹LpALpuqqq
n´1 (3.27)

where the last two steps made use of the fact that the rvs tχLpu, vq, v P Vn, v ‰ uu

are i.i.d. rvs conditioning on ALpuq. Using (3.25) yields

E
”

ξ
p`q
n,Lpuq

ı

“ E
“

1 rSLpuq “ `s ¨ p1´Q‹LpALpuqqq
n´1

‰

“ E
”

1 rSLpuq “ `s ¨
`

1´ Γp1qSLpuqΓp0qL´SLpuq
˘n´1

ı

(3.28)

by virtue of (2.25), and the desired conclusion (3.21) follows in a straightforward

manner. �

The expressions for the second order quantities are much more involved as the

next intermediary result already shows.

Lemma 3.4. Consider arbitrary n “ 2, 3, . . . and L “ 1, 2, . . .. For distinct u, v in

Vn, it holds that

E
”

ξn,Lpuqξn,Lpvq
ˇ

ˇ

ˇ
ALpuq,ALpvq

ı

(3.29)

“ p1´QLpALpuq,ALpvqqq ¨ p1´Q
‹
LpALpuqq ´Q

‹
LpALpvqq `Q

‹‹
L pALpuq,ALpvqqq

n´2
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where

Q‹‹L paL, bLq “ E rQLpaL,ALqQLpbL,ALqs , aL, bL P t0, 1u
L. (3.30)

The proof of this result can be found in Appendix A. In principle, it is now

possible to evaluate the expressions

E
”

ξ
pkq
n,Lpuqξ

p`q
n,Lpvq

ı

, k, ` “ 0, . . . , L

Indeed, for k, ` “ 0, 1, . . . , L, not necessarily distinct, the relation (3.16) yields

ξ
pkq
n,Lpuqξ

p`q
n,Lpvq “ 1 rSLpuq “ ks1 rSLpvq “ `s ξn,Lpuqξn,Lpvq (3.31)

and an easy preconditioning argument leads to

E
”

ξ
pkq
n,Lpuq ¨ ξ

p`q
n,Lpvq

ı

“ E
”

1 rSLpuq “ ks1 rSLpvq “ `s ¨ E
”

ξn,Lpuqξn,Lpvq
ˇ

ˇ

ˇ
ALpuq,ALpvq

ıı

(3.32)

because the rvs SLpuq and SLpvq are determined by the attribute vectors ALpuq and

ALpvq, respectively. Using (3.18) we readily obtain

E rξn,Lpuqξn,Lpvqs “
L
ÿ

k“0

L
ÿ

`“0

E
”

ξ
pkq
n,Lpuqξ

p`q
n,Lpvq

ı

.

It is plain from (3.29) that these expressions are becoming quite unwieldy. To
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see why this is so, with arbitrary aL and bL in t0, 1uL, we note that

Q‹‹L paL, bLq

“ E rQLpaL,ALqQLpbL,ALqs

“ E

«

L
ź

`“1

qpa`, A`qqpb`, A`q

ff

“

L
ź

`“1

E rqpa`, A`qqpb`, A`qs

“

L
ź

`“1

E rqpa`, Aqqpb`, Aqs

“

L
ź

`“1

E
“

qp1, Aq2
‰a`b` E rqp1, Aqqp0, Aqsa`p1´b`q`b`p1´a`q E

“

qp0, Aq2
‰p1´a`qp1´b`q

“ E
“

qp1, Aq2
‰

řL
`“1 a`b` E rqp1, Aqqp0, Aqs

řL
`“1 a`p1´b`q`b`p1´a`q E

“

qp0, Aq2
‰

řL
`“1p1´a`qp1´b`q

by arguments similar to the ones used for reaching the expression (2.24). Here lies

the rub: The quantities Q‹LpALpuqq and Q‹LpALpvqq depend on ALpuq and ALpvq

only through the sums SLpuq and SLpvq, respectively. On the other hand, the rv

Q‹‹L pALpuq,ALpvqq does not depend on the sums SLpuq and SLpvq, but instead on

the three sums
L
ÿ

`“1

A`puqA`pvq,

L
ÿ

`“1

pA`puq p1´ A`pvqq ` A`pvq p1´ A`puqqq

and
L
ÿ

`“1

p1´ A`puqq p1´ A`pvqq .

Fortunately, the exact expression (3.29) (and its consequences) will not be

needed as only the following crude bounds will suffice: For k, ` “ 0, 1, . . . , L, not
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necessarily distinct, the expression (3.32) yields the bound

E
”

ξ
pkq
n,Lpuq ¨ ξ

p`q
n,Lpvq

ı

ď P rSLpuq “ k, SLpvq “ `s

“ P rSLpuq “ ksP rSLpvq “ `s (3.33)

since

E
”

ξn,Lpuqξn,Lpvq
ˇ

ˇ

ˇ
ALpuq,ALpvq

ı

ď 1 a.s.

3.4 A zero-infinity law when 1` ρ lnµp0q ą 0

The proof of Theorem 3.1 proceeds in two steps which are presented in this

and the next sections. Throughout condition (3.1) is assumed to hold.

The first step deals with the first moment conditions (2.42) and (2.48), and is

contained in the following “zero-infinity” law for the first moment. Note the analogy

with Theorem 3.1.

Proposition 3.5. Assume Γp0q ă Γp1q. With ρ ą 0, assume that (3.1) holds. For

any ρ-admissble scaling L : N0 Ñ N0, we have

lim
nÑ8

E rInpLnqs “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

8 if 1` ρ ln Γp0q ă 0

0 if 1` ρ ln Γp0q ą 0.

(3.34)

Proof. Fix n “ 2, 3, . . .. Under the assumed inequality Γp0q ă Γp1q, the expression
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(3.24) implies

E rInpLqs ď n
`

1´ Γp0qL
˘n´1

ď ne´pn´1qΓp0qL

“ elnn´pn´1qΓp0qL , L “ 1, 2, . . . (3.35)

Now, for any ρ-admissible scaling L : N0 Ñ N0 we have

E rInpLnqs ď elnn´pn´1qΓp0qLn (3.36)

with

lnn´ pn´ 1qΓp0qLn “ lnn´ pn´ 1qΓp0qρn lnn
“ lnn´

n´ 1

n
n1`ρn ln Γp0q (3.37)

for some sequence % : N0 Ñ N0 satisfying lim
nÑ8

ρn “ ρ. Under the condition 1 `

ρ ln Γp0q ą 0, we have

lim
nÑ8

`

lnn´ pn´ 1qΓp0qLn
˘

“ ´8

and the conclusion lim
nÑ8

E rInpLnqs “ 0 follows upon letting n go to infinity in (3.36)-

(3.37).

We now turn to the case 1 ` ρ ln Γp0q ă 0: Fix n “ 2, 3, . . .. For each L “

1, 2, . . ., the bound (3.20) (with ` “ 0) yields

E
“

Ip0qn pLq
‰

“ n
`

1´ Γp0qL
˘n´1

¨ P rSL “ 0s ď E rInpLqs (3.38)

as we make use of (3.23) (with ` “ 0). Recall that P rSL “ 0s “ µp0qL since SL is

a binomial rv BinpL, µp1qq. Now, for any ρ-admissible scaling L : N0 Ñ N0 we can

write

E
“

Ip0qn pLnq
‰

“ nµp0qLn
`

1´ Γp0qLn
˘n´1

ď E rInpLnqs (3.39)
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for some sequence % : N0 Ñ N0 such that lim
nÑ8

ρn “ ρ. Let n go to infinity in (3.39):

Lemma 2.4 (with xn “ Γp0qLn ) gives lim
nÑ8

`

1´ Γp0qLn
˘n´1

“ 1 under the condition

1` ρ ln Γp0q ă 0, while Lemma 2.5 (with Cn “ µp0q for all n “ 1, 2, . . . ) yields

lim
nÑ8

nµp0qLn “ 8 (3.40)

under (3.1). The desired conclusion lim
nÑ8

E rInpLnqs “ 8 follows from the bound

(3.20).

�

Upon inspecting the proof of Proposition 3.5 we see (with the help of (3.39))

that we have also shown the following result to be used shortly.

Proposition 3.6. Assume Γp0q ă Γp1q. With ρ ą 0, assume also that (3.1) holds.

For any ρ-admissble scaling L : N0 Ñ N0, we have

lim
nÑ8

E
“

Ip0qn pLnq
‰

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

8 if 1` ρ ln Γp0q ă 0

0 if 1` ρ ln Γp0q ą 0.

(3.41)

The reason for this additional “infinity-zero” law will soon become apparent.

3.5 A proof of Theorem 3.1

Let L : N0 Ñ N0 denote a ρ-admissible scaling. Under the condition 1 `

ρ ln Γp0q ą 0, Proposition 3.5 yields lim
nÑ8

E rInpLnqs “ 0, whence lim
nÑ8

P rInpLnq “ 0s “

1 by the method of first moment, and this establishes the one-law part of Theorem

3.1.
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The proof of the zero-law part of Theorem 3.1 is more involved. Indeed, in

view of the second moment results of Section 2.4.4, a straightforward application of

the method of second moment to the count rvs

Zn “ InpLnq n “ 2, 3, . . . (3.42)

appears problematic. Instead we focus on the related count variables

Zn “ Ip0qn pLnq, n “ 2, 3, . . . . (3.43)

Under the condition 1 ` ρ ln Γp0q ă 0, Proposition 3.6 already gives the con-

vergence lim
nÑ8

E
”

I
p0q
n pLnq

ı

“ 8. If we were able to establish the appropriate version

of (2.49), namely

lim sup
nÑ8

E
”

ξ
p0q
n,Ln

p1q ¨ ξ
p0q
n,2pLnq

ı

´

E
”

ξ
p0q
n,Ln

p1q
ı¯2 ď 1, (3.44)

we would then be in a position to conclude

lim
nÑ8

P
“

Ip0qn pLnq “ 0
‰

“ 0 (3.45)

by the method of second moment applied to the rvs (3.43). Using the bound (3.20)

(with ` “ 0) we would then obtain limnÑ8 P rInpLnq “ 0s “ 0, and this completes

the proof of the zero-law part of Theorem 3.1.

To establish (3.44) we proceed as follows: Fix n “ 2, 3, . . . and L “ 1, . . ..

Applying (3.21) (with ` “ 0) gives

E
”

ξ
p0q
n,Lp1q

ı

“
`

1´ Γp0qL
˘n´1

¨ P rSLp1q “ 0s “
`

1´ Γp0qL
˘n´1

¨ µp0qL.

On the other hand, specializing (3.33) to k “ ` “ 0 we obtain the bound

E
”

ξ
p0q
n,Lp1q ¨ ξ

p0q
n,Lp2q

ı

ď P rSLp1q “ 0sP rSLp2q “ 0s “ µp0q2L,
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whence

E
”

ξ
p0q
n,Lp1q ¨ ξ

p0q
n,Lp2q

ı

´

E
”

ξ
p0q
n,Lp1q

ı¯2 ď
µp0q2L

`

p1´ Γp0qLqn´1
¨ µp0qL

˘2

“
1

p1´ Γp0qLq2pn´1q
.

As we substitute according to the ρ-admissible scaling L : N0 Ñ N0 in this last

inequality we obtain

E
”

ξ
p0q
n,Ln

p1q ¨ ξ
p0q
n,Ln

p2q
ı

´

E
”

ξ
p0q
n,Ln

p1q
ı¯2 ď

1

p1´ Γp0qLnq2pn´1q
, n “ 2, 3, . . . .

Let n go infinity in this resulting inequality: We readily get lim
nÑ8

`

1´ Γp0qLn
˘n
“ 1

by virtue of Lemma 2.4 (with xn “ Γp0qLn ) under the condition 1 ` ρ ln Γp0q ă 0

and (3.44) follows. This concludes the proof of Theorem 3.1. �

3.6 A zero-infinity laws when 1` ρ lnµp0q ă 0

Although the arguments for proving Theorem 3.2 are similar to the ones used

in the proof of Theorem 3.1, they differ in some major ways as will become clear

from the proof the analog of Proposition 3.6.

Here as well, we begin with the appropriate first moment conditions (2.42) and

(2.48). This is contained in the following “zero-infinity” law for the first moment;

note the analogy with Theorem 3.2.

Proposition 3.7. Assume Γp0q ă Γp1q. With ρ ą 0, assume also that (3.6) holds.
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For any ρ-admissble scaling L : N0 Ñ N0, we have

lim
nÑ8

E rInpLnqs “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

8 if 1` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

ă 0

0 if 1` ρ ln
`

Γp1qν‹pρqΓp0q1´ν‹pρq
˘

ą 0

(3.46)

where ν‹pρq is the unique solution in the interval p0, µp1qq to the equation (3.8).

As in the proof Theorem 3.1 we need to complement the “zero-infinity” law of

Proposition 3.7. This time, however, the needed result assumes a more complicated

form than the one taken in Proposition 3.6.

We prove the zero-law first. It follows from (3.24) that

E rInpLqs “ nE
”

`

1´ Γp1qSLΓp0qL´SL
˘n´1

ı

“ n
L
ÿ

`“0

ˆ

L

`

˙

µp1q`µp0qL´`
`

1´ Γp1q`Γp0qL´`
˘n´1

(3.47)

for n “ 2, 3, . . . . We will split this sum into two parts and show that each part

converges to 0 when n grows unboundedly large under the condition (3.12).

Proof. Based on the arguments at the end of Section 3.1, when the condition (3.12)

holds, there exists ε ą 0 such that 1` ρ ln
`

Γp1qν‹pρq´εΓp0q1´ν‹pρq`ε
˘

ą 0.

Fix n “ 2, 3, . . . . For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0, (3.47)
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takes the from

E rInpLnqs

“n
Ln
ÿ

`“0

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

“

tpν˚pρq´εqLnu
ÿ

`“0

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

(3.48a)

`

Ln
ÿ

`“tpν˚pρq´εqLnu`1

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

(3.48b)

For ` “ 0, 1, . . . , Ln, it holds that

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

ď n

ˆ

Ln
`

˙

µp1q`µp0qLn´`. (3.49)

Since ν˚pρq ´ ε lies in p0, µp1qq,
`

Ln
`

˘

µp1q`µp0qLn´` increases with respect to ` when

0 ď ` ď pν˚pρq ´ εqLn, and an upper bound for (3.48a) is given by

tpν˚pρq´εqLnu
ÿ

`“0

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

ď Ln ¨ n

ˆ

Ln
tpν˚pρq ´ εqLnu

˙

µp1qtpν˚pρq´εqLnuµp0qLn´tpν˚pρq´εqLnu. (3.50)
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By virtue of Lemma 2.6 (with tn “ Ln and τn “ tpν˚pρq ´ εqLnu), it holds that

ˆ

Ln
tpν˚pρq ´ εqLnu

˙

µp1qtpν˚pρq´εqLnuµp0qLn´tpν˚pρq´εqLnu

„

?
Ln

a

2πtpν˚pρq ´ εqLnupLn ´ tpν˚pρq ´ εqLnuq

ˆ

ˆ

µp1qLn
tpν˚pρq ´ εqLnu

˙tpν˚pρq´εqLnu ˆ

µp0qLn
Ln ´ tpν˚pρq ´ εqLnu

˙Ln´tpν˚pρq´εqLnu

ă

ˆ

µp1qLn
tpν˚pρq ´ εqLnu

˙tpν˚pρq´εqLnu ˆ

µp0qLn
Ln ´ tpν˚pρq ´ εqLnu

˙Ln´tpν˚pρq´εqLnu

“ G

ˆ

tpν˚pρq ´ εqLnu

Ln
, µp1q

˙Ln

(3.51)

where second to the last step was based on the fact that

lim
nÑ8

?
Ln

a

2πtpν˚pρq ´ εqLnupLn ´ tpν˚pρq ´ εqLnuq
“ 0,

and the last step used the definition of Gp¨, ¨q in (3.3). As a result, the upper bound

in (3.50) becomes

tpν˚pρq´εqLnu
ÿ

`“0

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

ď Ln ¨ nG

ˆ

tpν˚pρq ´ εqLnu

Ln
, µp1q

˙Ln

(3.52)

for sufficiently large n.

The definition of ν˚pρq gives 1 ` ρ lnG pν˚pρq ´ ε, µp1qq ă 0. Let n go to

infinity in (3.52): Because lim
nÑ8

tpν˚pρq´εqLnu

Ln
“ ν˚pρq ´ ε, Lemma 2.5

´

with Cn “

G
´

tpν˚pρq´εqLnu

Ln
, µp1q

¯¯

yields

lim
nÑ8

Ln ¨ nG

ˆ

tpν˚pρq ´ εqLnu

Ln
, µp1q

˙Ln

“ 0,

whence

lim
nÑ8

tpν˚pρq´εqLnu
ÿ

`“0

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

“ 0. (3.53)
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Now we derive an upper bound for (3.48b). It is plain that

Ln
ÿ

`“tpν˚pρq´εqLnu`1

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

ď n
`

1´ Γp1qrpν˚pρq´εqLnsΓp0qLn´rpν˚pρq´εqLns
˘n´1

ď n
`

1´ Γp1qpν˚pρq´εqLnΓp0qLn´pν˚pρq´εqLn
˘n´1

(3.54)

since
`

1´ Γp1q`Γp0qLn´`
˘n´1

is monotonically decreasing in ` under the assumption

Γp1q ą Γp0q, and the bound

Ln
ÿ

`“tpν˚pρq´εqLnu`1

ˆ

Ln
`

˙

µp1q`µp0qLn´` ď 1

holds. With arguments similar to (3.35)-(3.37), we conclude that

lim
nÑ8

n
`

1´ Γp1qpν˚pρq´εqLnΓp0qLn´pν˚pρq´εqLn
˘n´1

“ 0,

whence

lim
nÑ8

Ln
ÿ

`“tpν˚pρq´εqLnu`1

n

ˆ

Ln
`

˙

µp1q`µp0qLn´`
`

1´ Γp1q`Γp0qLn´`
˘n´1

“ 0 (3.55)

under the condition 1` ρ ln
`

Γp1qν‹pρq´εΓp0q1´ν‹pρq`ε
˘

ą 0.

Combining the two partial sums (3.53) and (3.55), the desired zero-law is

readily established.

�

3.7 An alternative approach to the infinity-law in Proposition 3.7

For the infinity-law part, we need to rely on the proposition given next. As in

the proof of Theorem 3.1 we need to complement the “zero-infinity” law of Propo-

sition 3.7. This time, however, the needed result assumes a more complicated form
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than the one taken in Proposition 3.6. First we need to set the stage: Pick ν in

p0, 1q, and consider any sequence ` : N0 Ñ N such that

`n ď Ln, n “ 1, 2, . . . (3.56)

under the additional property

lim
nÑ8

`n
Ln
“ ν. (3.57)

Any sequence ` : N0 Ñ N satisfying (3.56) is said to be a sequence associated with

the scaling L : N0 Ñ N0. An associated sequence satisfying (3.57) can be easily

generated through the formula

`n “ tνLnu, n “ 1, 2, . . . .

Any associated sequence ` : N0 Ñ N induces the r0, 1s-valued sequence ν : N0 Ñ N

defined by

νn “
`n
Ln
, n “ 1, 2, . . . .

In this notation the constraints (3.56) and (3.57) can now be expressed as

`n “ νnLn, n “ 1, 2, . . . (3.58)

and

lim
nÑ8

νn “ ν. (3.59)

Proposition 3.8. Assume Γp0q ă Γp1q. With ρ ą 0, assume also that (3.6) holds.

Consider a ρ-admissible scaling L : N0 Ñ N0, and an associated sequence ` : N0 Ñ N

which satisfies both (3.56) and (3.57) for some ν in p0, 1q. Under the condition

(3.11), ν can be selected in the interval pν‹pρq, µp1qq such that

lim
nÑ8

E
“

Ip`nqn pLnq
‰

“ 8. (3.60)
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Proof. Fix n “ 2, 3, . . . and L “ 1, 2, . . .. Our point of departure is the expression

(3.23), namely

E
“

Ip`qn pLq
‰

“ n
`

1´ Γp1q`Γp0qL´`
˘n´1

¨ P rSLp1q “ `s

“ n
`

1´ Γp1q`Γp0qL´`
˘n´1

¨

ˆ

L

`

˙

µp1q`µp0qL´` (3.61)

with ` “ 0, 1, . . . , L.

Pick ν in p0, 1q. Substituting L and ` according to the scaling L : N0 Ñ N0

and any associated sequence ` : N0 Ñ N satisfying (3.56) (or equivalently, (3.58))

and (3.57) for the selected ν, we get

E
“

Ip`nqn pLnq
‰

“ n
`

1´ Γp1q`nΓp0qLn´`n
˘n´1

¨

ˆ

Ln
`n

˙

µp1q`nµp0qLn´`n

“ n

ˆ

Ln
νnLn

˙

`

µp1qνnµp0q1´νn
˘Ln

¨

´

1´
`

Γp1qνnΓp0q1´νn
˘Ln

¯n´1

where we note that νnLn and Ln ´ νnLn “ p1´ νnqLn are integers by construction.

Lemma 2.6 gives

ˆ

Ln
νnLn

˙

„

?
2πLn

`

Ln
e

˘Ln

?
2πνnLn

`

νnLn
e

˘νnLn
¨
a

2πp1´ νnqLn

´

p1´νnqLn
e

¯p1´νnqLn

“
1

a

2πνnp1´ νnqLn
¨

1

pννnn p1´ νnq
1´νnq

Ln

so that

n

ˆ

Ln
νnLn

˙

`

µp1qνnµp0q1´νn
˘Ln

„
n

a

2πνnp1´ νnqLn
¨

ˆ

µp1qνnµp0q1´νn

ννnn p1´ νnq
1´νn

˙Ln

“
n

a

2πνnp1´ νnqLn
¨Gpνn, µp1qq

Ln . (3.62)
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Collecting we obtain

E
“

Ip`nqn pLnq
‰

„
n

a

2πνnp1´ νnqLn
¨Gpνn, µp1qq

Ln ¨

´

1´
`

Γp1qνnΓp0q1´νn
˘Ln

¯n´1

„
1

a

2πνp1´ νq
¨
n ¨Gpνn, µp1qq

Ln

?
Ln

¨

´

1´
`

Γp1qνnΓp0q1´νn
˘Ln

¯n´1

as we make use of (3.59) in the last step.

Recall now that both conditions (3.6) and (3.11) are enforced. Therefore, as

discussed at the end of Section 3.1, condition (3.9) holds on the interval I´pρq “

pα´pρq, β´pρqq Ď p0, µp1qq, said interval containing ν‹pρq. As we restrict ν to be an

element of pν‹pρq, β´pρqq, we conclude by Lemma 2.4 that

lim
nÑ8

´

1´
`

Γp1qνnΓp0q1´νn
˘Ln

¯n´1

“ 1, (3.63)

and the desired conclusion lim
nÑ8

E
”

I
p`nq
n pLnq

ı

“ 8 follows provided we show

lim inf
nÑ8

n ¨Gpνn, µp1qq
Ln

?
Ln

ą 0. (3.64)

It is always possible to find ε ą 0 so that the interval pν´ε, ν`εq is contained

in the interval pν‹pρq, β´pρqq. By virtue of (3.57) there exists a finite integer npεq

such that

ν ´ ε ă νn ă ν ` ε, n ě npεq

and on that range, the monotonicity of the mapping ν Ñ 1 ` ρ lnGpν, µp1qq on

p0, µp1qq yields

0 ă 1` ρ lnGpν ´ ε, µp1qq ď 1` ρ lnGpνn, µp1qq

because 1` ρ lnGpν, µp1qq ą 0 on the interval pν‹pρq, β´pρqq. It is plain that

n ¨Gpνn, µp1qq
Ln “ n1`ρn lnGpνn,µp1qq

ě n1`ρn lnGpν´ε,µp1qq, n ě npεq (3.65)
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and the conclusion

lim inf
nÑ8

n ¨Gpνn, µp1qq
Ln

?
Ln

ě lim inf
nÑ8

n1`ρn lnGpν´ε,µp1qq

?
ρn lnn

“ 8 (3.66)

follows immediately as we use the aforementioned fact that 1`ρ lnGpν´ε, µp1qq ą 0.

This establishes (3.64), and the proof of Proposition 3.8 is now completed. The

infinity-law in Proposition 3.7 is now established as we use (3.20). �

An alternative proof of Proposition 3.7 is given in Section 3.10 and Section

3.11, and relies on a change of measure argument introduced in Section 3.9.

3.8 A proof of Theorem 3.2

Let L : N0 Ñ N0 denote a ρ-admissible scaling for some ρ ą 0. Under the

condition 1`ρ ln Γp1qν‹pρqΓp0q1´ν‹pρq ą 0, Proposition 3.7 yields lim
nÑ8

E rInpLnqs “ 0,

whence lim
nÑ8

P rInpLnq “ 0s “ 1 by the method of first moments, and this establishes

the one-law part of Theorem 3.2.

Assume now that 1 ` ρ ln Γp1qν‹pρqΓp0q1´ν‹pρq ă 0. Here as well, we will not

attempt to apply the method of second moment directly to the count variables

(3.42) in order to establish the zero-law part of Theorem 3.2. Under the enforced

assumptions, we shall show instead that ν can be selected in pν‹pρq, µp1qqq in such

a manner that the method of second moment applies to the count variables

Zn “ Ip`nqn pLnq, n “ 1, 2, . . . (3.67)

where the sequence ` : N0 Ñ N associated with the scaling L : N0 Ñ N0 satisfies

(3.59) with the selected value.
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This will require showing the validity of both

lim
nÑ8

E
“

Ip`nqn pLnq
‰

“ 8 (3.68)

and

lim sup
nÑ8

E
”

ξ
p`nq
n,Ln

p1q ¨ ξ
p`nq
n,Ln

p2q
ı

´

E
”

ξ
p`nq
n,Ln

p1q
ı¯2 ď 1. (3.69)

Once this is done, it will follow from the method of second moment applied to the

rvs (3.67) that

lim
nÑ8

P
“

Ip`nqn pLnq “ 0
‰

“ 1. (3.70)

Using the bound (3.20) (with L “ Ln and ` “ `n for each n “ 2, 3, . . .) we immedi-

ately obtain limnÑ8 P rInpLnq “ 0s “ 1, and the zero-law part of Theorem 3.2 will

then be established.

To establish the convergence statements (3.68) and (3.69), we proceed as fol-

lows: By Proposition 3.8 we already know that there exists some ν in the interval

pν‹pρq, µp1qq such that (3.60), namely (3.68), holds – In fact the proof shows that

it happens for every ν in the interval pν‹pρq, β´pρqq. It remains only to establish

(3.69) for any ν selected in the interval pν‹pρq, β´pρqq. To that end, fix n “ 2, 3, . . .

and L “ 1, 2, . . .. Using the expression (3.21) we can write

E
”

ξ
p`q
n,Lp1q

ı

“
`

1´ Γp1q`Γp0qL´`
˘n´1

¨ P rSLp1q “ `s

“
`

1´ Γp1q`Γp0qL´`
˘n´1

¨

ˆ

L

`

˙

µp1q`µp0qL´` (3.71)

with ` “ 0, 1, . . . , L, On the other hand, specializing (3.33) to k “ ` yields

E
”

ξ
p`q
n,Lp1q ¨ ξ

p`q
n,Lp2q

ı

ď P rSLp1q “ `sP rSLp2q “ `s “

ˆˆ

L

`

˙

µp1q`µp0qL´`
˙2

, (3.72)

52



whence

E
”

ξ
p`q
n,Lp1q ¨ ξ

p`q
n,Lp2q

ı

´

E
”

ξ
p`q
n,Lp1q

ı¯2 ď

``

L
`

˘

µp1q`µp0qL´`
˘2

´

p1´ Γp1q`Γp0qL´`qn´1
¨
`

L
`

˘

µp1q`µp0qL´`.
¯2

“
1

p1´ Γp1q`Γp0qL´`q2pn´1q
.

Now, substitute in this last inequality according to the given ρ-admissible

scaling L : N0 Ñ N0 and the sequence ` : N0 Ñ N associated with it where ν

appearing in (3.59) is the one selected earlier in the interval pν‹pρq, β´pρqq. This

yields

E
”

ξ
p`nq
n,Ln

p1q ¨ ξ
p`nq
n,Ln

p2q
ı

´

E
”

ξ
p`nq
n,Ln

p1q
ı¯2

ď
1

p1´ Γp1q`nΓp`nqLn´`nq
2pn´1q

“
1

´

1´ pΓp1qνnΓp0qp1´νnqq
Ln
¯2pn´1q

, n “ 2, 3, . . . (3.73)

Letting n go infinity in (3.73) we get lim
nÑ8

´

1´
`

Γp1qνnΓp0qp1´νnq
˘Ln

¯n´1

“ 1 by

virtue of Lemma 2.4 since the condition 1`ρ ln Γp1qνΓp0q1´ν ă 0 holds for the value

ν selected in the interval pν‹pρq, β´pρqq. This establishes (3.69) and the proof of

Theorem 3.2 is now complete. �

3.9 A change of measure

Int the last three section of this chapter, we present an alternative approach

to establish the zero-infinity law stated in Proposition 3.7 based on the idea of a

change of measure.
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As stated earlier, all rvs are defined on the measurable space pΩ,Fq and their

statistics computed under the given probability measure P as stipulated by Assump-

tions (i)-(iii). To proceed we will find it convenient to embed P into a collection

of probability measures tPν , ν P p0, 1qu defined on the σ-field F with the following

properties: For each ν in p0, 1q, under the probability measure Pν , Assumptions

(i) and (ii) remain unchanged but Assumption (iii) is replaced by the following

assumption:

(iii-ν) The rvs tA,A`, A`puq, ` “ 1, 2, . . . L; u P Vnu form a collection of i.i.d. t0, 1u-

valued rvs with pmf ν “ pν, 1´ νq where

PνrA “ 0s “ 1´ ν and PνrA “ 1s “ ν.

Let Eν denote the expectation operator associated with Pν .

Obviously, we have P ” Pν when selecting ν “ µp1q. It is always possible to

construct a measurable space pΩ,Fq, the appropriate collections of rvs on it and a

collection tPν , ν P p0, 1qu of probability measures defined on the σ-field F with the

requisite properties; details are well known and omitted here for the sake of brevity.

In fact, given ν in p0, 1q, for each L “ 1, . . ., the probability measures P and

Pν are mutually absolutely continuous when restricted to the σ-field σtA1, . . . , ALu

with Radon-Nikodym derivative given by

ˆ

dP
dPν

˙

L

“

L
ź

`“1

ˆ

µp1q

ν

˙A`
ˆ

1´ µp1q

1´ ν

˙1´A`

“

ˆ

µp1q

ν

˙SL
ˆ

1´ µp1q

1´ ν

˙L´SL

.

It is worth noting that the probability measures P and Pν are not mutually absolutely

continuous on the entire σ-field F .
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To take advantage of this change of measure we proceed as follows: Fix ν in

p0, 1q, n “ 2, 3, . . . and L “ 1, 2, . . .. The expression (3.24) can be written

E rInpLqs “ nE
”

`

1´ Γp1qSLΓp0qL´SL
˘n´1

ı

“ n ¨ Eν

«

`

1´ Γp1qSLΓp0qL´SL
˘n´1

¨

ˆ

µp1q

ν

˙SL
ˆ

1´ µp1q

1´ ν

˙L´SL
ff

“ n

˜

ˆ

µp1q

ν

˙ν ˆ
1´ µp1q

1´ ν

˙1´ν
¸L

¨ Enpν, Lq

“ nGpν, µp1qqL ¨ Enpν, Lq (3.74)

where we have set

Enpν, Lq “ Eν

«

`

1´ Γp1qSLΓp0qL´SL
˘n´1

¨

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙SL´Lν
ff

(3.75)

with the definition (3.3) used in the last step. For future reference we note the

decomposition

Enpν, Lq “ E`n pν, Lq ` E
´
n pν, Lq (3.76)

with E`n pν, Lq and E´n pν, Lq given by

E`n pν, Lq “ Eν

«

`

1´ Γp1qSLΓp0qL´SL
˘n´1

¨

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙SL´Lν

1 rSL ´ νL ą 0s

ff

and

E´n pν, Lq “ Eν

«

`

1´ Γp1qSLΓp0qL´SL
˘n´1

¨

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙SL´Lν

1 rSL ´ νL ď 0s

ff

.

It is plain that

µp1q

ν
¨

1´ ν

1´ µp1q
ą 1 if and only if ν ă µp1q. (3.77)
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We shall also use the simple fact that

Γp1qSLΓp0qL´SL “
`

Γp1qνΓp0q1´ν
˘L
¨

ˆ

Γp1q

Γp0q

˙SL´Lν

. (3.78)

These observations form the basis for the arguments given next.

3.10 A proof of Proposition 3.7 – The zero-law

Consider a ρ-admissible scaling L : N0 Ñ N0 such that (3.6) holds, or equiva-

lently,

1` ρ lnp1´ µp1qq ă 0. (3.79)

By the discussion preceding the statement of Theorem 3.2, the non-linear equation

(3.8) admits a single solution ν‹pρq in the interval p0, µp1qq and

1` ρ lnGpν, µp1qq ă 0, ν P p0, ν‹pρqq.

It follows that

lim
nÑ8

nGpν, µp1qqLn “ 0, ν P p0, ν‹pρqq.

Therefore, by virtue of (3.74) the desired result lim
nÑ8

E rInpLnqs “ 0 will be

established if we show that

lim sup
nÑ8

Enpν, Lnq ă 8 (3.80)

for some ν in p0, ν‹pρqq. This issue is explored with the help of the decomposition

(3.76): Fix n “ 2, 3, . . . and pick ν in the interval p0, ν‹pρqq. Thus, (3.77) holds, and

we have
ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙SLn´Lnν

ď

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙p1´νqLn
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since SLn ď Ln. Using Γp0q ă Γp1q in (3.78) we then conclude that

`

Γp1qνΓp0q1´ν
˘Ln

ď Γp1qSLnΓp0qLn´SLn on rSLn ´ Lnν ą 0s,

whence

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

ď

´

1´
`

Γp1qνΓp0q1´ν
˘Ln

¯n´1

on rSLn ´ Lnν ą 0s.

Using these bounds in the definition of E`n pν, Lnq, we obtain

E`n pν, Lnq

ď

´

1´
`

Γp1qνΓp0q1´ν
˘Ln

¯n´1

¨

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙p1´νqLn

Pν rSLn ´ νLn ą 0s

ď

´

1´
`

Γp1qνΓp0q1´ν
˘Ln

¯n´1

¨

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙p1´νqLn

. (3.81)

Next we turn to bounding E´n pν, Lnq. Because Γp0q ă Γp1q ă 1, we always

have

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

ď 1

and exploiting the bound (3.77) gives

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙SLn´Lnν

ď 1 on rSLn ´ Lnν ď 0s.

As we apply these two bounds to the expression of E´n pν, Lnq we find

E´n pν, Lnq ď Pν rSLn ´ Lnν ď 0s ď 1. (3.82)

Thus, in order to establish (3.80) we need only show that

lim sup
nÑ8

E`n pν, Lnq ă 8 (3.83)

for some ν in p0, ν‹pρqq, possibly under additional conditions which ensure that

the constraint (3.10) also holds. As per the discussion following Theorem 3.2, the
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condition (3.12) guarantees (3.10) when ν is selected in the interval pα`pρq, ν‹pρqq,

as we do from now on.

First, for each n “ 2, 3, . . . consider each of the factors in the bound at (3.81).

We find that

´

1´
`

Γp1qνΓp0q1´ν
˘Ln

¯n´1

“

´

1´
`

Γp1qνΓp0q1´ν
˘ρn lnn

¯n´1

ď e´pn´1qpΓp1qνΓp0q1´νq
ρn lnn

“ e´
pn´1q
n

¨n
1`ρn lnpΓp1qνΓp0q1´νq

(3.84)

and

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙p1´νqLn

“

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙p1´νqρn lnn

“ np1´νqρn lnp
µp1q
ν
¨ 1´ν
1´µp1qq. (3.85)

By the ρ-admissibility of the scaling L : N0 Ñ N0, for every ε ą 0 there exists

a positive integer n‹pεq such that

ρ´ ε ă ρn ă ρ` ε, n ě n‹pεq.

On that range the bounds (3.84) and (3.85) imply

´

1´
`

Γp1qνΓp0q1´ν
˘Ln

¯n´1

ď e´
pn´1q
n

¨n
1`pρ`εq lnpΓp1qνΓp0q1´νq

(3.86)

and

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙p1´νqLn

ď np1´νqpρ`εq lnp
µp1q
ν
¨ 1´ν
1´µp1qq (3.87)

as we recall that Γp0q and Γp1q both live in p0, 1q and the inequality (3.77) holds.

Given that (3.10) holds for the choice of ν, then it is also the case that

1` pρ` εq ln
`

Γp1qνΓp0q1´ν
˘

ą 0 (3.88)
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provided ε ą 0 is selected small enough (as we do from now on).

Let n go to infinity in (3.81). It is plain from (3.84) that

lim
nÑ8

e´pn´1qpΓp1qνΓp0q1´νq
ρn lnn

“ 0

by virtue of condition (3.88), while (3.85) implies

lim
nÑ8

ˆ

µ

ν
¨

1´ ν

1´ µ

˙p1´νqρn lnn

“ 8

under (3.77). Nevertheless, appealing to the bounds (3.86) and (3.87), lim
nÑ8

E`n pν, Lnq “

0 in view of the fact that

lim
nÑ8

ˆ

e´
pn´1q
n

¨n
1`pρ`εq lnpΓp1qνΓp0q1´νq

¨ np1´νqpρ`εq lnp
µp1q
ν
¨ 1´ν
1´µp1qq

˙

“ 0.

This is because the first factor goes to zero like e´n
δ

(with δ ą 0) while the second

factor explodes to infinity like nβ (with β ą 0). Obviously, lim supnÑ8E
´
n pν, Lnq ď 1

and the conclusion lim supnÑ8Enpν, Lnq ď 1 follows. This concludes the proof of

the zero-law in Theorem 3.2. �

3.11 A proof of Proposition 3.7 – The infinity-law

Consider a ρ-admissible scaling L : N0 Ñ N0 such that (3.6) holds, or equiva-

lently, (3.79). We already know that

1` ρ lnGpν, µp1qq ą 0, ν P pν‹pρq, µp1qq, (3.89)

and the convergence

lim
nÑ8

nGpν, µp1qqLn “ 8, ν P pν‹pρq, µp1qq
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follows by Lemma 2.4 (with Cn “ Gpν, µp1qq for all n “ 1, 2, . . .). By virtue of (3.74)

the desired result lim
nÑ8

E rInpLnqs “ 8 will be established if we show that

lim inf
nÑ8

E`n pν, Lnq ą 0 (3.90)

for some ν in pν‹pρq, µp1qq possibly constrained by some additional condition.

Pick ν still in pν‹pρq, µp1qq for the time being, and fix n “ 2, 3, . . .. Because

(3.77) holds here, we have

ˆ

µp1q

ν
¨

1´ ν

1´ µp1q

˙SLn´Lnν

ě 1 on rSLn ´ Lnν ą 0s (3.91)

so that

E`n pν, Lnq ě Eν
”

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

1 rSLn ´ νLn ą 0s
ı

. (3.92)

Next, we write

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

“

˜

1´

ˆ

Γp1q
SLn
Ln Γp0q1´

SLn
Ln

˙Ln
¸n´1

(3.93)

and note that

ˇ

ˇ

ˇ

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

ˇ

ˇ

ˇ
ď 1. (3.94)

Now further restrict the value of ν to the interval pν‹pρq, β´pρqq discussed at

the end of Section 3.1. Condition (3.11) ensures that (3.9) holds, and by Lemma 2.4

(with νn “
SLn
Ln

for all n “ 1, 2, . . ., with the help of (3.93)), we have the convergence

lim
nÑ8

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

“ 1 Pν ´ a.s.. (3.95)

Indeed, the Strong Law of Large Numbers (under Pν) yields the convergence

lim
nÑ8

SLn
Ln

“ ν Pν ´ a.s.
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and this leads to the needed conclusion

lim
nÑ8

ˆ

1` ρn ln

ˆ

Γp1q
SLn
Ln Γp0q1´

SLn
Ln

˙˙

“ 1` ρ ln
`

Γp0q1´νΓp1qν
˘

ă 0 Pν ´ a.s.

under (3.9).

Pick ε in p0, 1q. It follows from the bound (3.92) that

E`n pν, Lnq ě p1´ εqPν rAnpεq X rSLn ´ νLn ą 0ss , n “ 2, 3, . . . (3.96)

where for notational simplicity we have introduced the event

Anpεq “
”

`

1´ Γp1qSLnΓp0qLn´SLn
˘n´1

ą 1´ ε
ı

.

Since a.s. convergence implies convergence in probability (under Pν), it is plain from

(3.95) that lim
nÑ8

Pν rAnpεqs “ 1. On the other hand we also have

lim
nÑ8

PνrSLn ´ Lnν ą 0s “
1

2

by the Central Limit Theorem (under Pν), whence

lim
nÑ8

Pν rAnpεq X rSLn ´ νLn ą 0ss “
1

2

by standard arguments. Therefore, lim infnÑ8E
`
n pν, Lnq ě p1´εq{2 and the desired

conclusion lim infnÑ8E
`
n pν, Lnq ě 1 follows since ε is arbitrary in p0, 1q. This

concludes the proof of the infinity-law in Theorem 3.2. �
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Chapter 4

The Zero-one Law for Connectivity

In the precious chapter, we have established the zero-one law for the absence

of isolated nodes. A very related property to the absence of isolated nodes is con-

nectivity since the one law for the absence of isolated nodes serves as a necessary

condition for connectivity while the zero law serves as a sufficient condition for a

graph not being connected. For instance, for Erdös-Rényi graphs [6], random geo-

metric graphs [3] and random key graphs [27], the zero-one law for the absence of

isolated nodes coincide with the zero-one law for connectivity.

In this chapter, we are interested in establishing the zero-one law for connec-

tivity in MAGs. Recall that an undirected graph G is said to be connected if there

is at least one path between every (unordered) pair of distinct nodes in G. It is of

interest to know whether the two zero-one laws coincide in MAGs. If not, then it is

natural to consider what is the zero-one law for connectivity in MAGs.

Unfortunately, the two zero-one laws are not identical in MAGs. In other

words, Γp1q ą Γp0q is too weak for the zero-one law for connectivity to hold. To
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convince the reader, we give a counter example to show that the graph, with high

probability, is not connected while there is no isolated nodes for n large:

Consider the setting where α “ γ “ 1, β “ 0 and µp1q ą µp0q, in which

case Γp1q “ µp1q ą Γp0q “ µp0q. With the conditions 1 ` ρ lnµp0q ą 0 and

1`ρ ln Γp0q ą 0 enforced, with high probability, no isolated nodes are guaranteed by

the one law in Theorem 3.1. However, in this case, nodes only connect to other nodes

which have exactly the same attribute vectors as themselves. As the probability of

all nodes having identical attribute vectors converges to 0 when n and Ln grow

unboundedly large, the graph is not connected with high probability.

As a result, in this chapter, we will establish the zero-one law for connectivity

in MAGs under some additional assumptions.

4.1 The theorem

Instead of assuming 0 ď Γp0q ď Γp1q ď 1, we will need the stronger condition

α ą β ą γ (4.1)

to be enforced. The condition (4.1) implies Γp1q ě Γp0q, but rules out the case

α “ γ “ 1 and β “ 0.

Theorem 4.1. Assume α ą β ą γ. For any ρ-admissible scaling L : N0 Ñ N0 with

ρ ą 0, we further assume 1` ρ lnµp0q ą 0. We have

lim
nÑ8

P r Mpn;Lnq is connected s “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if 1` ρ ln Γp0q ă 0

1 if 1` ρ ln Γp0q ą 0.

(4.2)
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As the zero law for the absence of isolated nodes in Theorem 3.1 automatically

implies the zero law for connectivity in Theorem 4.1, we only need to show that the

one law for connectivity holds in order to complete the proof of Theorem 4.1.

4.2 A general idea

A graph G is connected iff no cut of any sizes exists in G. A well-known proof

[8], which makes use of this equivalence, establishes the zero-one law for connectivity

for Erdös-Rényi graphs. However, unlike in Erdös-Rényi graphs, the link variables

tχLpu, vq, 1 ă u ă v ă nu

in Mpn;Lq are not mutually independent, so that it may not be easy to make use of

this equivalence directly. Alternatively, we will first look at some properties of nodal

attributes since the link variables are conditionally mutually independent given all

nodal attributes.

Fix n “ 2, 3, . . . and L “ 1, 2, . . . . We say that a node u in Vn has the

attribute property PL Ď t0, 1uL in Mpn;Lq iff ALpuq is an element of PL. The

(random) collection of nodes which have the property PL is denoted by TnpPLq. We

are interested in finding a property PL such that the random subset TnpPLq can

serve as a core component in Mpn;Lq in a sense to be specified shortly. When n

and L grow unboundedly large, where the latter quantity scales with the former, we

seek to balance the following two criteria:

1. The subgraph induced by TnpPLq in Mpn;Lq is a.a.s. connected.

64



2. All nodes outside TnpPLq (i.e. in VnzTnpPLq) connect a.a.s. to TnpPLq in one

hop.

Obviously, the random subset TnpPLq cannot be too large for otherwise Criterion 1

would be hard to prove. As a matter of fact, if the one law for connectivity holds,

then Vn itself is a set (i.e. PL “ t0, 1uL) that trivially satisfies Criterion 1. But

the random subset TnpPLq cannot be too small either for otherwise it may not be

connected in one hop to the nodes in VnzTnpPLq.

Moreover, it is worth pointing out that for any attribute property PL, with

tALpuq, u P Vnu given, the random subset TnpPLq can be thought as deterministic.

4.3 The second criterion

Before additional conditions are imposed, we explore the requirements on the

random subset TnpPLq to ensure that all the nodes outside the random subset TnpPLq

connect a.a.s. in one hop to TnpPLq. The following lemma gives a useful bound to

the probability of the desired event.

Lemma 4.2. For n “ 2, 3, . . . , L “ 1, 2, . . . and a fixed attribute property PL, it

holds that

P

»

—

—

–

č

uPVnzTnpPLq

»

—

—

–

Node u connects in one hop

to TnpPLq

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ALpwq, w P Vn

fi

ffi

ffi

fl

ě 1´
ÿ

uPVn

1ru P VnzTnpPLqs

¨

˝

ź

vPTnpPLq

`

1´QLpALpuq,ALpvqq
˘

˛

‚. (4.3)
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Proof. Fix n “ 2, 3, . . . and L “ 1, 2, . . . . For each node u in Vn, let NLpuq

denote the set of nodes who are L´adjacent to u. For any node u in VnzTnpPLq, u

connects in one hop to TnpPLq iff the intersection of TnpPLq and NLpuq is not empty.

Moreover, recall that the random subset TnpPLq is determined once tALpwq, w P Vnu

is given, and so is VnzTnpPLq. As a result,

P

»

—

—

–

č

uPVnzTnpPLq

»

—

—

–

Node u connects in one hop

to TnpPLq

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ALpwq, w P Vn

fi

ffi

ffi

fl

“ P

»

–

č

uPVnzTnpPLq

“

NLpuq X TnpPLq ‰ H
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ALpwq, w P Vn

fi

fl

“ 1´ P

»

–

ď

uPVnzTnpPLq

“

NLpuq X TnpPLq “ H
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ALpwq, w P Vn

fi

fl

ě 1´
ÿ

uPVnzTnpPLq

P
”

NLpuq X TnpPLq “ H
ˇ

ˇ

ˇ
ALpwq, w P Vn

ı

(4.4)

where a standard union bound was applied in the second to last step. Further

simplifications are possible for (4.4) by using the fact that 1ru P VnzTnpPLqs “ 0 if

u is in TnpPLq. Indeed, we get

ÿ

uPVnzTnpPLq

P
”

NLpuq X TnpPLq “ H
ˇ

ˇ

ˇ
ALpwq, w P Vn

ı

“
ÿ

uPVn

1ru P VnzTnpPLqsP
”

NLpuq X TnpPLq “ H
ˇ

ˇ

ˇ
ALpwq, w P Vn

ı

. (4.5)

Because NLpuq X TnpPLq “ H iff u does not connect to any nodes in TnpPLq,
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we get

P
“

NLpuq X TnpPLq “ H
ˇ

ˇALpwq, w P Vn
‰

“ P

»

–

č

vPTnpPLq, v‰u

ru „L vs
c

ˇ

ˇ

ˇ

ˇ

ˇ

ALpwq, w P Vn

fi

fl

“ P

»

–

č

vPTnpPLq, v‰u

“

Upu, vq ą QLpALpuq,ALpvqq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ALpwq, w P Vn

fi

fl

“
ź

vPTnpPLq, v‰u

P
“

Upu, vq ą QLpALpuq,ALpvqq
ˇ

ˇALpwq, w P Vn
‰

“
ź

vPTnpPLq, v‰u

p1´QLpALpuq,ALpvqqq, u P Vn (4.6)

upon using the fact that the rvs tUpu, vq, u P Vn, v P TnpPLq, v ‰ uu are mutually

independent.

Lemma 4.2 is now straightforward once we substitute the expression (4.6) for

P
”

NLpuq X TnpPLq “ H
ˇ

ˇ

ˇ
ALpwq, w P Vn

ı

into (4.5). �

Upon taking expectations on both sides of (4.3), we get the following corollary.

Corollary 4.3. Fix L “ 1, 2, . . . . For a given attribute property PL, we have

lim
nÑ8

P

»

—

—

–

č

uPVnzTnpPLq

»

—

—

–

Node u connects in one hop

to TnpPLq

fi

ffi

ffi

fl

fi

ffi

ffi

fl

“ 1 (4.7)

if

lim
nÑ8

ÿ

uPVn

E

»

—

—

—

—

—

—

—

—

–

1ru P VnzTnpPLqs
ź

v P TnpPLq,

v ‰ u

p1´QLpALpuq,ALpvqqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0. (4.8)
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4.4 A core component of MAG

With conditions for Criterion 2 settled, we now seek to identify the candidate

property PL, so that the (random) subset TnpPLq can serve as a core component in

the sense of Criterion 1.

4.4.1 A connectivity criterion

We first explore the connectivity conditions when the random subset TnpPLq

is fixed. This is the content of the following lemma.

Lemma 4.4. For n “ 2, 3, . . . , L “ 1, 2, . . . , and a deterministic subset T of Vn,

we have

P r TnpPLq is connected |TnpPLq “ T s ě 1´

|T |
2
ÿ

r“1

ˆ

|T |

2
e´BpPLq

|T |
2

˙r

(4.9)

provided there exits a scalar BpPLq in p0, 1q, such that

QLpALpuq,ALpvqq ě BpPLq (4.10)

whenever both ALpuq and ALpvq are in PL.

Proof. Fix n “ 2, 3, . . . and L “ 1, 2, . . . . With TnpPLq “ T Ă Vn given, the

probability that TnpPLq “ T is connected is equal to the probability that no cut of
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any sizes exists in the subgraph of Mpn;Lq induced by T , namely

P r TnpPLq is connected |TnpPLq “ T s

“ P

»

–

č

RĂTnpPLq

“

R connects to TnpPLqzR
‰

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl

“ 1´ P

»

–

ď

RĂT, 1ď|R|ď |T |
2

“

R does not connect to T zR
‰

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl .(4.11)

A standard union bound leads to

P

»

–

ď

RĂT, 1ď|R|ď |T |
2

“

R does not connect to T zR
‰

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl

ď

|T |
2
ÿ

r“1

ÿ

RĂT, |R|“r

P

»

–

č

uPR, vPT zR

ru „L vs
c

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl . (4.12)

Pre-conditioning on tALpwq, w P Vnu, the events tru „L vs, u, v P Vn, u ă vu

are now mutually independent. The probability that R does not connect to T zR

becomes

P

»

–

č

uPR, vPT zR

ru „L vs
c

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl

“

P
”´

Ş

uPR, vPT zRru „L vs
c
¯

Ş

rTnpPLq “ T s
ı

P rTnpPLq “ T s

“

E
”

P
”´

Ş

uPR, vPV zR

“

Upu, vq ą QLpALpuq,ALpvqq
‰

¯

Ş

rTnpPLq “ T s
ˇ

ˇ

ˇ
ALpwq, w P Vn

ıı

P rTnpPLq “ T s

“

E
”

P
”

Ş

uPR, vPVnzR

“

Upu, vq ą QL pALpuq,ALpvqq
‰

ˇ

ˇ

ˇ
ALpwq, w P Vn

ı

1rTnpPLq “ T s
ı

P rTnpPLq “ T s

“

E
”´

ś

uPR ,vPT zR

`

1´QLpALpuq,ALpvqq
˘

¯

¨ 1rTnpPLq “ T s
ı

P rTnpPLq “ T s
(4.13)

where the second to last step used the fact that TnpPLq is σtALpwq, w P Vnu

measurable.
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The condition TnpPLq “ T amounts to ALpwq is an element of PL for all w in

T . As a result, condition (4.10) implies

¨

˝

ź

uPR ,vPT zR

p1´QLpALpuq,ALpvqqq

˛

‚¨ 1rTnpPLq “ T s

ď

¨

˝

ź

uPR ,vPT zR

p1´BpPLqq

˛

‚¨ 1rTnpPL “ T s

“ p1´BpPLqq|R|p|T |´|R|q1rTnpPLq “ T s. (4.14)

Using this bound in (4.13), we find

P

»

–

č

uPR, vPT zR

ru „L vs
c

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl

ď
E
“

p1´BpPLqq|R|p|T |´|R|q1rTnpPLq “ T s
‰

P rTnpPLq “ T s

“
p1´BpPLqq|R|p|T |´|R|qE r1rTnpPLq “ T ss

P rTnpPLq “ T s

“ p1´BpPLqq|R|p|T |´|R|q. (4.15)

Collecting (4.12), (4.13) and (4.15), we obtain

P

»

–

ď

RĂT, 1ď|R|ď |T |
2

“

R does not connect to T zR
‰

ˇ

ˇ

ˇ

ˇ

ˇ

TnpPLq “ T

fi

fl

ď

|T |
2
ÿ

r“1

ÿ

RĂT, |R|“r

p1´BpPLqq|R|p|T |´|R|q

ď

|T |
2
ÿ

r“1

ˆ

|T |

r

˙

p1´BpPLqq
r|T |

2 . (4.16)

This bound depends on the deterministic set T only through its cardinality |T |. By

Lemma 2.4 and the trivial bound

ˆ

|T |

r

˙

ď p|T |qr , r “ 0, 1, . . . ,
|T |

2
,
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further simplifications are possible, namely,

|T |
2
ÿ

r“1

ˆ

|T |

r

˙

p1´BpPLqq
r|T |

2 ď
ř

|T |
2
r“1 p|T |q

r e´BpPLq
r|T |

2

“
ř

|T |
2
r“1

´

|T |e´BpPLq
|T |
2

¯r

. (4.17)

Combining (4.16) and (4.17), we readily obtain (4.9) with the help of (4.11).

�

Lemma 4.4 tells us that if the sum in (4.17) is small, then there is a high

probability that TnpPLq “ T is connected when n becomes large. As the sum

depends on only the two quantities BpPLq and |T |, we seek to balance these two

quantities so that the sum in (4.17) can be made sufficiently small.

4.4.2 Constructing TnpPLq

For n “ 2, 3, . . . and L “ 1, 2, . . . , we define two (random) subsets of Vn as

follow:

WnpL; `q “ tu P Vn : SLpuq “ `u, ` “ 0, 1, 2, . . . , L

and

ZnpL; `q “ tu P Vn : SLpuq ě `u, ` “ 0, 1, 2, . . . , L

where the rvs tSLpuq, u P Vnu were defined in (2.2). From the inclusion WnpL; `q Ď

ZnpL; `q, we get the elementary bound

|WnpL; `q| ď |ZnpL; `q|, ` “ 0, 1, . . . , L. (4.18)

For any ρ-admissible scaling L : N0 Ñ N0, we want to argue that the cardinality

of the random set ZnpLn; rλLnsq with λ selected as µp1qβ
µp1qβ`µp0qγ

is large with high
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probability and the probabilities of link establishments between nodes in this set

are not too small as n grows large, so that it can be an ideal (random) subset to

serve as the core component in the sense of Criterion 1. In the first step, we will

show that the cardinality of ZnpLn; rλLnsq is sufficiently (unboundedly) large a.a.s..

Lemma 4.5. Assume α ą β ą γ. For any ρ-admissible scaling L : N0 Ñ N0 with

ρ ą 0, assume that

1` ρ ln Γp0q ą 0. (4.19)

For any constant c in p0, 1q, it holds that

lim
nÑ8

P
„

|ZnpLn; rλLnsq|

E r|WnpLn; rλLnsq|s
ą c



“ 1 (4.20)

with λ selected as

λ “
µp1qβ

µp1qβ ` µp0qγ
. (4.21)

Before establishing Lemma 4.5, we state another useful fact that will facilitate

the forthcoming analysis.

Lemma 4.6. For any ρ-admissible scaling L : N0 Ñ N0 with ρ ą 0, there exists a

positive integer N such that

ˆ

Ln
rλLns

˙

ě
kpλq

2
a

2πλp1´ λqLn

ˆ

1

λ

˙λLn ˆ 1

1´ λ

˙p1´λqLn

, n ě N (4.22)

with

λ P p0, 1q and kpλq “ min

ˆ

1,
1´ λ

λ

˙

.
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Details of Lemma 4.6 can be found in Appendix B.

Fix c in p0, 1q. We know from (4.18) that

P
„

|ZnpLn; rλLnsq|

E r|WnpLn; rλLnsq|s
ą c



ě P
„

|WnpLn; rλLnsq|

E r|WnpLn; rλLnsq|s
ą c



, n “ 2, 3, . . . .

(4.23)

Lemma 4.5 will be established if we can show that

lim
nÑ8

P
„

|WnpLn; rλLnsq|

E r|WnpLn; rλLnsq|s
ą c



“ 1.

Now we proceed to prove Lemma 4.5.

Proof. For n “ 2, 3, . . . and L “ 1, 2, . . . , the expression

|WnpL; `q| “
n
ÿ

u“1

1rSLpuq “ `s, ` “ 0, 1, . . . , L (4.24)

shows that the quantity |WnpL; `q| is the sum of i.i.d. 0, 1´valued indicator rvs

 

1
“

SLpuq “ `
‰

, u P Vn
(

. The expected cardinality of the random set WnpL; `q is

therefore given by

E r|WnpL; `q|s “ E

«

n
ÿ

u“1

1rSLpuq “ `s

ff

“ nP rSLp1q “ `s

“ n

ˆ

L

`

˙

µp1q`µp0qL´`, ` “ 0, 1, . . . , L (4.25)

upon using the fact that the rvs tSLpuq, u P Vnu are a collection of i.i.d. binomial

rvs with parameters pµp1q, Lq.

For any ρ-admissible scaling L : N0 Ñ N0 with ρ ą 0, by Lemma 4.6, with

sufficiently large n and

δpn;Lnq “ rλLns´ λLn,

73



we conclude that

E r|WnpLn; rλLnsq|s

“ n

ˆ

Ln
rλLns

˙

µp1qrλLnsµp0qLn´rλLns

ě n
kpλq

2
a

2πλp1´ λqLn

ˆ

µp1q

λ

˙λLn ˆ µp0q

1´ λ

˙p1´λqLn ˆµp1q

µp0q

˙δpn;Lnq

ě n
k˚pλ, µp1qq

a

2πλp1´ λqLn

ˆ

µp1q

λ

˙λLn ˆ µp0q

1´ λ

˙p1´λqLn

(4.26)

where we have set

k˚pλ;µp1qq “
kpλq

2
ˆmin

ˆ

1,
µp1q

µp0q

˙

.

Indeed, the last step was based on the facts that

ˆ

µp1q

µp0q

˙δpn;Lnq

ě 1, if
µp1q

µp0q
ě 1

and
ˆ

µp1q

µp0q

˙δpn;Lnq

ě
µp1q

µp0q
, if

µp1q

µp0q
ă 1.

Consider the quantity

βλLnγp1´λqLn “ nρnτ ă 1 (4.27)

where τ is given by

τ “ τpλ, β, γq “ λ ln β ` p1´ λq ln γ ă 0.

74



Multiplying (4.26) by (4.27), we get

Er|WnpLn; rλLnsq|sβλLnγp1´λqLn

ě n
k˚pλ;µp1qq

a

2πλp1´ λqLn

ˆ

µp1qβ

λ

˙λLn ˆµp0qγ

1´ λ

˙p1´λqLn

“ n
k˚pλ;µp1qq

a

2πλp1´ λqLn
Γp0qLn

“ n1`ρn ln Γp0q k˚pλ;µp1qq
a

2πλp1´ λqLn
, (4.28)

as elementary calculations yield

µp1qβ

λ
“
µp0qγ

1´ λ
“ Γp0q. (4.29)

Under the condition 1` ρ ln Γp0q ą 0, we obtain

lim
nÑ8

Er|WnpLn; rλLnsq|sβλLnγp1´λqLn “ 8

and the result

lim
nÑ8

Er|WnpLn; rλLnsq|s “ 8 (4.30)

follows by virtue of (4.27). Moreover, when n is large, it is plain that

Er|WnpLn; rλLnsq|s ě n1`ρn ln Γp0q´ρnτ
k˚pλ;µp1qq

a

2πλp1´ λqLn
.

As a result, for any constant c in p0, 1q, a lower bound to the probability of

the event |WnpLn; rλLnsq| ą cE r|WnpLn; rλLnsq|s can be obtained by the Chernoff-

Hoeffding inequality [23, Prop. 2.4]. This takes the form

P
“
ˇ

ˇWnpLn; rλLnsq
ˇ

ˇ ą cE
“
ˇ

ˇWnpLn; rλLnsq
ˇ

ˇ

‰‰

“ 1´ P
“
ˇ

ˇWnpLn; rλLnsq
ˇ

ˇ ď cE
“
ˇ

ˇWnpLn; rλLnsq
ˇ

ˇ

‰‰

ě 1´ e´
p1´cq2Er|WnpLn;rλLnsq|s

2 . (4.31)
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By virtue of (4.23) and (4.30), we get

lim inf
nÑ8

P
„

|ZnpLn; rλLnsq|

E r|WnpLn; rλLnsq|s
ą c



ě lim inf
nÑ8

P

«

ˇ

ˇWnpLn; rλLnsq
ˇ

ˇ

E r|WnpLn; rλLnsq|s
ą c

ff

“ 1

which completes the proof of the lemma.

�

Fix n “ 2, 3, . . . and L “ 1, 2, . . . , if

PL “

#

aL P t0, 1u
L :

L
ÿ

`“1

a` ě rλLs

+

,

then

TnpPLq “ ZnpL; rλLsq.

The bound BpPLq can be constructed as follows. Under the assumption α ą β ą γ,

we now show that

P ru „L v|ALpuq,ALpvqs ě βλLγp1´λqL,
u, v P ZnpL; rλLsq,

u ‰ v.

(4.32)

Indeed, we know

P ru „L v|ALpuq,ALpvqs

“ α
řL
`“1 A`puqA`pvqβ

řL
`“1p1´A`puqqA`pvq`A`puqp1´A`pvqqγ

řL
`“1p1´A`puqqp1´A`pvqq (4.33)

for distinct u, v in Vn. For distinct u and v in ZnpL; rλLsq, we can split (4.33) into
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two parts, namely

α
řL
`“1 A`puqA`pvqβ

řL
`“1p1´A`puqqA`pvq ě β

řL
`“1 A`pvuq

“ βλL`p
řL
`“1 A`pvq´λLq

ě βλLγp
řL
`“1 A`pvq´λLq (4.34)

and

βA`puqp1´A`pvqqγ
řL
`“1p1´A`puqqp1´A`pvqq ě γ

řL
`“1p1´A`pvqq

“ γp1´λqL´p
řL
`“1 A`pvq´λLq. (4.35)

The bound in (4.34) follows from the fact that
řL
`“1A`puq´λL ą 0 since

řL
`“1A`pwq ě

rλLs ě λL for all w in ZnpL; rλLsq. Now, multiplying (4.34) to (4.35), we get the

bound in (4.32). The quantity βλLγp1´λqL is therefore a qualified candidate for

BpPLq.

Eventually, for any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0, we are ready

to show that ZnpLn; rλLnsq is a.a.s. connected, and therefore can serve as a core

component in the sense of Criterion 1.

Lemma 4.7. Assume α ą β ą γ. For any ρ´admissible scaling L : N0 Ñ N0 with

ρ ą 0, we further assume that 1` ρ ln Γp0q ą 0. With

λ “
µp1qβ

µp1qβ ` µp0qγ
,

the subgraph induced by nodes in ZnpLn; rλLnsq of Mpn;Lnq is connected a.a.s.,

namely

lim
nÑ8

P r ZnpLn; rλLnsq is connected s “ 1. (4.36)
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Proof. Fix n “ 2, 3, . . . . For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0, let

PLn “

#

aLn P t0, 1u
Ln :

Ln
ÿ

`“1

a` ě rλLns

+

, n “ 2, 3, . . . .

Therefore we have

TnpPLnq “ ZnpLn; rλLnsq.

With ZnpLn; rλLnsq “ T Ă Vn given, Lemma 4.4 yields

P r ZnpLn; rλLnsq is connected |ZnpLn; rλLnsq “ T s

ě 1´

|T |
2
ÿ

r“1

´

|T |e´BpPLn q
|T |
2

¯r

. (4.37)

Now, assume |T | ě cE r|WnpLn; rλLnsq|s for some c in p0, 1q. As a result, for

n sufficiently large and with

BpPLnq “ βλLnγp1´λqLn ,

the inequality (4.28) yields

|T |

2
BpPLnq ě

c

2
E r|WnpLn; rλLnsq|s βλLnγp1´λqLn

ě cnp1`ρn ln Γp0qq k˚pλ;µp1qq

2
a

2πλp1´ λqLn
. (4.38)

For any δ in p0, 1` ρ ln Γp0qq, there exists a positive integer N “ Npδq such that

|T |

2
BpPLnq “

|T |

2
βλLnγp1´λqLn

ě nδ, n ě N

Fix δ in p0, 1` ρ ln Γp0qq. For sufficiently large n, noting that

|T |e´BpPLn q
|T |
2 ď elnn´nδ

ă 1,
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we get

|T |
2
ÿ

r“1

´

|T |e´BpPLn q
|T |
2

¯r

ď

|T |
2
ÿ

r“1

´

elnn´nδ
¯r

“

elnn´nδ
´

1´ e
|T |
2 plnn´n

δq
¯

1´ elnn´nδ

ď
elnn´nδ

1´ elnn´nδ
. (4.39)

It is now plain from (4.37) and (4.39) that there exists N in N0 such that

P
“

ZnpLn; rλLnsq is connected
ˇ

ˇZnpLn; rλLnsq “ T
‰

ě 1´
elnn´nδ

1´ elnn´nδ
, |T | ě cE r|WnpLn; rλLnsq|s , n ě N.

But we have

P
“

r ZnpLn; rλLnsq is connected s X r |ZnpLn; rλLnsq| ě cE r|WnpLn; rλLnsq|s s
‰

“ P
“

|ZnpLn; rλLnsq| ě cE r|WnpLn; rλLnsq|s
‰

ˆP
“

ZnpLn; rλLnsq is connected
ˇ

ˇZnpLn; rλLnsq ě cE r|WnpLn; rλLnsq|s
‰

ě

˜

1´
elnn´nδ

1´ elnn´nδ

¸

P r|ZnpLn; rλLnsq| ě cE r|WnpLn; rλLnsq|ss (4.40)

with

lim
nÑ8

P r|ZnpLn; rλLnsq| ě cE r|WnpLn; rλLnsq|ss “ 1

from Lemma 4.5 and

lim
nÑ8

˜

1´
elnn´nδ

1´ elnn´nδ

¸

“ 1.

Therefore

lim inf
nÑ8

P

»

—

—

–

r ZnpLn; rλLnsq is connected
‰

X
“

|ZnpLn; rλLnsq| ě cE r|WnpLn; rλLnsq|s
‰

fi

ffi

ffi

fl

ě 1.
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The desire result readily follows by leveraging the trivial bound that

P
““

ZnpLn; rλLnsq is connected
‰

X
“

|ZnpLn; rλLnsq| ě cE r|WnpLn; rλLnsq|s
‰‰

ď P r ZnpLn; rλLnsq is connected s

ď 1.

�

4.5 A proof of Theorem 4.1

From Lemma 4.7, we know that the subgraph induced by the random node

set

ZnpLn; rλLnsq Ď Vn is a.a.s. connected. This random subset serves as a core com-

ponent in Mpn;Lnq in the sense of Criterion 1. To complete the proof for the one

law of connectivity, we only need to show that the random node set ZnpLn; rλLnsq

satisfies the condition in Corollary 4.3, namely

lim
nÑ8

ÿ

uPVn

E

»

—

—

—

—

—

—

—

—

–

1ru P VnzZnpLn; rλLnsqs
ź

v P ZnpLn; rλLnsq,

v ‰ u

p1´QLnpALnpuq,ALnpvqqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0.

(4.41)

Fix n “ 2, 3, . . . . For any node u in Vn, under the assumption α ą β ą γ, it

follows that
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ź

vPZnpLn;rλLnsq, v‰u

`

1´QLnpALnpuq,ALnpvqq
˘

“
ź

vPZnpLn;rλLnsq, v‰u

´

1´ α
řLn
`“1 A`puqA`pvqβ

řLn
`“1pp1´A`puqqA`pvq

ˆ βp1´A`pvqqA`puqqγ
řLn
`“1p1´A`puqqp1´A`pvqq

¯

“
ź

vPZnpLn;rλLnsq, v‰u

ˆ

1´
´

α
řLn
`“1 A`puqβ

řLn
`“1p1´A`puqq

¯

řLn
`“1 A`pvq

ˆ

´

β
řLn
`“1 A`puqγ

řLn
`“1p1´A`puqq

¯

řLn
`“1p1´A`pvqq

˙

ď
ź

vPZnpLn;rλLnsq, v‰u

´

1´ β
řLn
`“1 A`pvqγ

řLn
`“1p1´A`pvqq

¯

ď
ź

vPZnpLn;rλLnsq, v‰u

˜

1´ βλLnγp1´λqLn
ˆ

β

γ

˙

řL
`“1 A`pvq´λLn

¸

ď
ź

vPZnpLn;rλLnsq, v‰u

`

1´ βλLnγp1´λqLn
˘

(4.42)

since v in ZnpLn; rλLnsq implies
řL
`“1A`pvq ´ λLn ą 0. Substituting (4.42) into the

condition (4.41) gives

n
ÿ

u“1

E

»

–1ru P VnzZnpLn; rλLnsqs
ź

vPZnpLn;rλLnsq, v‰u

`

1´QLnpALnpuq,ALnpvqq
˘

fi

fl

ď

n
ÿ

u“1

E

»

–1ru P VnzZnpLn; rλLnsqs
ź

vPZnpLn;rλLnsq, v‰u

p1´ βλLnγp1´λqLnq

fi

fl

ď

n
ÿ

u“1

E

«

ź

vPVn,v‰u

`

1´ βλLnγp1´λqLn1rv P ZnpLn; rλLnsqs
˘

ff

“ n
n
ź

v“2

E
“`

1´ βλLnγp1´λqLn1rv P ZnpLn; rλLnsqs
˘‰

“ n
`

1´ βλLnγp1´λqLnP r1 P ZnpLn; rλLnsqs
˘n´1

. (4.43)
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By virtue of Lemma 2.4, it is plain that

n
`

1´ βλLnγp1´λqLnP r1 P ZnpLn; rλLnsqs
˘n´1

ď ne´pn´1qβλLnγp1´λqLnPr1PZnpLn;rλLnsqs

“ elnn´n´1
n
βλLnγp1´λqLnEr|ZnpLn;rλLnsq|s (4.44)

since nP r1 P ZnpLn; rλLnsqs “ E r|ZnpLn; rλLnsq|s. Recall from (4.18) and (4.28)

that

βλLnγp1´λqLnE r|ZnpLn; rλLnsq|s ě βλLnγp1´λqLnE r|WnpLn; rλLnsq|s

ě np1`ρn ln Γp0qq k˚pλ;µp1qq
a

2πλp1´ λqLn

for sufficiently large n. Under the condition 1 ` ρ ln Γp0q ą 0, fix some δ in p0, 1 `

ρ ln Γp0qq. There exists a positive integer N “ Npδq such that

np1`ρn ln Γp0qq k˚pλ;µp1qq
a

2πλp1´ λqLn
ą nδ, n ě N.

It is plain that

lim
nÑ8

elnn´n´1
n
nδ
“ 0, δ ą 0,

and therefore

lim
nÑ8

elnn´n´1
n
βλLnγp1´λqLnEr|ZnpLn;rλLnsq|s

ď lim
nÑ8

elnn´n´1
n
nδ

“ 0.

As a result, the left hand side of (4.44) converges to 0 when n grows unboundedly

large, and the condition in Corollary 4.3 is therefore satisfied. This completes the

proof of Theorem 4.1 . �
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Chapter 5

Triadic Closure

In the previous two chapters, the zero-one law for the absence of isolated nodes

and the zero-one law for connectivity for MAG were established. Now we turn our

attention to two other important properties of MAGs, the number of triangles and

triadic closure.

Triangles, or cliques formed by three nodes are one of the most important

building blocks of social networks. They form the basic structure that reflects tran-

sitivity, where the number of triangles is closely related to the clustering properties

of the graph. In this chapter, we discuss triadic closure, the emergence of triangles

and the limiting behavior of the total clustering coefficient in MAGs.

5.1 The property of triadic closure

Our discussion starts with a widely studied phenomenon, known as triadic

closure, which depicts the tendency of closing a triad to form a triangle. In the

context of social networks, if A is familiar with both B and C, then B and C are
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more likely to know each other. This can be formalized by requiring

Prw „ v|u „ w, u „ vs ą Prw „ vs, distinct u, v, w P Vn,

i.e. by sharing a common neighbor (acquaintance), two nodes are more likely to be

themselves adjacent.

We claim that Mpn;Lq has the property of triadic closure. This is the content

of Theorem 5.1.

Theorem 5.1. Assume α ą β ą γ. The following two strict inequalities

Pru „L v|u „L w, v „L ws ą Pru „L vs, distinct u, v, w P Vn (5.1)

and

Pru „L v, v „L w, u „L w, s ą Pru „L vs3, distinct u, v, w P Vn. (5.2)

hold for n “ 3, 4, . . . and L “ 1, 2, . . . .

As stated in (2.10), the link variables have the form

χLpu, vq “ 1
“

Upu, vq ď QLpALpuq,ALpvqq
‰

,
u, v P Vn

u ‰ v.

(5.3)

For each pair of distinct nodes u and v in Vn, u being L-adjacent to v (u „L v) is

equivalent to the event χLpu, vq “ 1, whence we have

Pru „L vs “ E rχLpu, vqs ,

Pru „L v, v „L ws “ E rχLpu, vqχLpv, wqs
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and

Pru „L v, v „L w, u „L ws “ E rχLpu, vqχLpv, wqχLpu,wqs

for distinct u, v and w in Vn.

Therefore, establishing (5.1) and (5.2) is equivalent to showing

E rχLpu, vq, χLpv, wqs ą E rχLpu, vqsE rχLpv, wqs

and

E rχLpu, vqχLpv, wqχLpu,wqs ą E rχLpu, vqsE rχLpv, wqχLpu,wqs ,

respectively. As these two inequalities are reminiscent of the notion of association

of rvs [21], it is not surprising that we rely on the following technical facts to prove

Theorem 5.1.

According to the definition of association, the R´valued rvs X1, . . . , Xm for

some positive integer m are associated iff

E rfpXqgpXqs ě E rfpXqsE rgpXqs

for all nondecreasing mappings f, g : Rm Ñ R for which E rfpXqgpXqs, E rfpXqs

and E rgpXqs exist where we use the notation X “ pX1, . . . , Xmq.

Lemma 5.2. For positive integers n and L, if the rvs in the triangular array

tχLpu, vq, u, v P Vn, u ă vu

are associated, then the two inequalities

E rχLp1, 2qχLp2, 3qχLp1, 3qs ě E rχLp1, 2qsE rχLp2, 3qχLp1, 3qs (5.4)
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and

E rχLp1, 2qχLp2, 3qs ě E rχLp1, 2qsE rχLp2, 3qs (5.5)

hold.

Proof. Here we use the definition of association with x “ txu,v, u, v P Vn, u ă vu so

that m “
npn´1q

2
for some integer n. We define two mappings h1, h2, h3 : R

npn´1q
2 Ñ R

by

h1pxq ” x1,2,

h2pxq ” x`1,3x
`
2,3

and

h3pxq ” x2,3.

respectively, where x` “ maxp0, xq for x in R.

If we set χL “ tχLpu, vq, u, v P Vn, u ă vu, then it is plain that

h1pχLq “ χLp1, 2q,

h2pχLq “ χLp1, 3q
`χLp2, 3q

`
“ χLp1, 3qχLp2, 3q

and

h3pχLq “ χLp2, 3q,

respectively, since all rvs in χL are t0, 1u-valued. By the association of the rvs in

χ, we get the two inequalities

E rχLp1, 2qχLp2, 3qχLp1, 3qs ě E rχLp1, 2qsE rχLp1, 3qχLp2, 3qs
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and

E rχLp1, 2qχLp2, 3qs ě E rχLp1, 2qsE rχLp2, 3qs .

�

5.2 Association of rvs

Thus, in order to make use of Lemma 5.2, we need to prove that the rvs in

the triangular array tχLpu, vq, u, v P Vn, u ă vu form a collection of associated rvs.

Lemma 5.3. For each n “ 2, 3, . . . and L “ 1, 2, . . . , the rvs

tχLpu, vq, u, v P Vn, u ă vu

are associated if α ą β ą γ or α ă β ă γ.

This lemma will be established with the help of the following two lemmas.

Lemma 5.4. For some positive integer m, let U1, . . . , Um and P1, . . . , Pm be two

independent collections of rvs. It is further assumed that

1. The rvs U1, . . . , Um are i.i.d. rvs, each of which is uniformly distributed on the

interval p0, 1q.

2. The rvs P1, . . . , Pm are r0, 1s´valued rvs.

We set

Xk “ 1
“

Uk ď Pk
‰

, k “ 1, . . . ,m. (5.6)

If the rvs P1, . . . , Pm form a collection of associated rvs, then the rvs X1, . . . , Xm

also form a collection of associated rvs.
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Proof. Set

X “ pX1, . . . , Xmq and P “ pP1, . . . , Pmq.

When we need to explicitly address the relationship between X and P, we write

X “ XpPq “
`

X1pP1q, . . . , XmpPmq
˘

,

where

Xkppkq “ 1
“

Uk ď pk
‰

, pk P r0, 1s, k “ 1, . . . ,m.

With non-decreasing mappings f, g : Rm Ñ R, we need to show that

E rfpXqgpXqs ě E rfpXqsE rgpXqs . (5.7)

Under the enforced assumptions, we have

E rfpXqgpXqs “ E rE rfpXpPqqgpXpPqq|Pss

“ E
”

E rfpXppqqgpXppqqsp“P
ı

, p P r0, 1sm. (5.8)

With p in r0, 1sm fixed, the rvs X1pp1q, . . . , Xmppmq are mutually independent

and independent of P, hence associated [21, Thm 2.1]. Therefore

E rfpXppqqgpXppqqs ě E rfpXppqqsE rgpXppqqs . (5.9)

Now consider the two mappings pf : r0, 1sm Ñ R and pg : r0, 1sm Ñ R given by

pfppq “ E rfpXppqqs , p P r0, 1sm (5.10)

and

pgppq “ E rgpXppqqs , p P r0, 1sm. (5.11)
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With this notation, the inequality (5.9) becomes

E rfpXppqqgpXppqqs ě pfppqpgppq. (5.12)

It now follows from (5.8) that

E rfpXqgpXqs “ E rE rfpXpPqqgpXpPqq|Pss

ě E
”

pfpPqpgpPq
ı

. (5.13)

The mappings p Ñ pfppq and p Ñ pgppq are non-decreasing in p, a property

inherited from the fact that the mappings f, g : Rm Ñ R are themselves non-

decreasing. The fact that the rvs P1, . . . , Pm are associated immediately implies

E
”

pfpPqpgpPq
ı

ě E
”

pfpPq
ı

E
”

pgpPq
ı

(5.14)

with

E
”

pfpPq
ı

“ E
”

E rfpXppqqsp“P
ı

“ E rfpXqs

and

E
”

pgpPq
ı

“ E
”

E rgpXppqqsp“P
ı

“ E rgpXqs .

The desired result (5.7) now follows. �

It is easy to see that (5.3) is of the form (5.6) with m “
npn´1q

2
and

P “ tQLpALpuq,ALpvqq, u, v P Vn, u ă vu.

By virtue of Lemma 5.4, the rvs tχLpu, vq, u, v P Vn, u ă vu are therefore associated

if we show that the rvs tQLpALpuq,ALpvqq, u, v P Vn, u ă vu are associated.
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Lemma 5.5. For n “ 3, 4, . . . and L “ 1, 2, . . . , if either α ą β ą γ or α ă β ă γ,

then the rvs

tQLpALpuq,ALpvqq, u, v P Vn, u ă vu

are associated.

Proof. Fix n “ 3, 4, . . . and L “ 1, 2, . . . . Recall that, for u, v P Vn, u ă v, we

have

QLpALpuq,ALpvqq “
L
ź

`“1

qpA`puq, A`pvqq. (5.15)

For each pair of pu, vq in Vn where u ă v, the rv QLpALpuq,ALpvqq is non-decreasing

in the non-negative rvs tqpA`puq, A`pvqq, ` “ 1, . . . , Lu. If the rvs tqpA`puq, A`pvqq, ` “

1, . . . , L, u, v P Vn, u ă vu are associated, then the target rvs tQLpALpuq,ALpvqq, u, v P

Vn, u ă vu are associated since association is preserved under this non-decreasing

transformation [21, Property 4].

Furthermore, because the rvs tA`puq, ` “ 1, . . . , L, u P Vnu are mutually

independent, the collections of rvs tqpA`puq, A`pvqq, u, v P Vn, u ă vu ` “ 1, 2, . . . , L

form L mutually independent sets of rvs.

Now, it suffices to show that, for each ` “ 1, . . . , L, the non-negative rvs

tqpA`puq, A`pvqq, u, v P Vn, u ă vu

are associated since the union of independent sets of associated rvs is a set of asso-

ciated rvs [21, Property 2].

For each ` “ 1, . . . , L, the rvs tA`puq, u P Vnu being mutually independent,

hence associated [21, Thm 2.1], whence the rvs tqpA`puq, A`pvqq, u, v P Vn, u ă vu
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are associated since

qpa, bq “ abα ` pap1´ bq ` bp1´ aqqβ ` p1´ aqp1´ bqγ, pa, bq P r0, 1s2

is monotone.

Indeed, partial differentiation with respect to a and b give

Bqpa, bq

Ba
“ bα ` pp1´ bq ´ bqβ ´ p1´ bqγ

“ bpα ´ βq ` p1´ bqpβ ´ γq

and

Bqpa, bq

Bb
“ aα ` pp1´ aq ´ aqβ ´ p1´ aqγ

“ apα ´ βq ` p1´ aqpβ ´ γq,

respectively. Both partial derivatives obviously being non-negative (resp. non-

positive) when α ą β ą γ (resp α ă β ă γ). It follows that qpa, bq is monotonically

increasing (resp. decreasing) on r0, 1s2 Lemma 5.5 is now readily established, so is

Lemma 5.3. �

5.3 Probability of forming a triangle

For n “ 2, 3, . . . and L “ 1, 2, . . . , the rvs tχLpu, vq, u, v P Vn, u ă vu being

associated, it follows that both the inequalities

E rχLp1, 2qχLp2, 3qχLp1, 3qs ě E rχLp1, 2qsE rχLp2, 3qχLp1, 3qs

and

E rχLp1, 2qχLp2, 3qs ě E rχLp1, 2qsE rχLp2, 3qs
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hold, or equivalently,

P r1 „L 2, 2 „L 3, 1 „L 3s ě P r1 „L 2sP r1 „L 3, 2 „L 3s

and

P r1 „L 2, 2 „L 3s ě P r1 „L 2sP r2 „L 3s

by virtue of Lemma 5.2.

To establish the two strict inequalities of (5.1) and (5.2), we need to show that

P r1 „L 2, 1 „L 3, 2 „L 3s ‰ P r1 „L 2sP r1 „L 3, 2 „L 3s (5.16)

and

P r1 „L 2, 1 „L 3, 2 „L 3s ‰ P r1 „L 2s3 . (5.17)

Since both inequalities involve the probability of forming a triangle, we proceed by

computing this quantity.

Lemma 5.6. For n “ 3, 4, . . . , L “ 1, 2, . . . and distinct u, v and w in Vn, we have

P ru „L v, u „L w, v „L ws

“
`

µp1q3α3
` 3µp1q2µp0qαβ2

` 3µp1qµp0q2β2γ ` µp0q3γ3
˘L
. (5.18)

Proof. Fix n “ 3, 4, . . . , L “ 1, 2, . . . , L and pick distinct u, v, w from Vn. From
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the definition of the link variables in (5.3), we have

P ru „L v, u „L w, v „L ws

“ P

»

—

—

—

—

—

—

–

Upu, vq ď QLpALpuq,ALpvqq,

Upu,wq ď QLpALpuq,ALpwqq,

Upw, vq ď QLpALpwq,ALpvqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (5.19)

Since the rvs tUpu, vq, u, v P Vn, u ă vu are mutually independent and independent

of the rvs tALpuq, u P Vnu, the right hand side of (5.19) becomes

P
“

u „L v, u „L w, v „L w
‰

“ E
“

QLpALpuq,ALpvqqQLpALpuq,ALpwqqQLpALpwq,ALpvqq
‰

“ E

«

L
ź

`“1

qpA`puq, A`pvqq
L
ź

`“1

qpA`puq, A`pwqq
L
ź

`“1

qpA`pwq, A`pvqq

ff

“

L
ź

`“1

E
“

qpA`puq, A`pvqqqpA`puq, A`pwqqqpA`pwq, A`pvqq
‰

“

L
ź

`“1

`

µp1q3α3
` 3µp1q2µp0qαβ2

` 3µp1qµp0q2β2γ ` µp0q3γ3
˘

“
`

µp1q3α3
` 3µp1q2µp0qαβ2

` 3µp1qµp0q2β2γ ` µp0q3γ3
˘L

(5.20)

as we make use of (5.15) and of the mutual independence of the rvs tA`puq, ` “

1, . . . , L, u P Vnu.

�

Noting that

P ru „L vs “ pµp1qΓp1q ` µp0qΓp0qqL

and

P ru „L v, u „L ws “
`

µp1qΓp1q2 ` µp0qΓp0q2
˘L
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from (2.18) and (2.26), the desired results (5.16) and (5.17) now follow.

The proof of Theorem 5.1 is completed as we note that none of the quan-

tities P ru „L vs, P ru „L w, v „L ws or P ru „L v, u „L w, v „L ws depend on the

particular choice of nodes in Vn.

�

5.4 The zero-one law for the existence of triangles

Having the expression for the probability of forming a triangle, it is natural to

investigate the zero-one law for the emergence of triangles. To facilitate the analysis,

with

θ “ pµp1q, α, β, γq,

we write

Kpθq “ E rqpA`p1q, A`p2qqqpA`p1q, A`p3qqqpA`p2q, A`p3qqs

“ µp1q3α3
` 3µp1q2µp0qαβ2

` 3µp1qµp0q2β2γ ` µp0q3γ3. (5.21)

Obviously, the quantity Kpθq is in p0, 1q. Moreover, the probability of forming a

triangle can now be rewritten as

P ru „L v, u „L w, v „L ws “ KpθqL

for n “ 3, 4, . . . ,, L “ 1, 2, . . . . and distinct u, v, w in Vn.

The zero-one law for the emergence of triangles is given in the following two

theorems. We start with the zero law.
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Theorem 5.7. Assume α ą β ą γ. For any ρ´admissible scaling L : N0 Ñ N0 with

ρ ą 0, the zero law

lim
nÑ8

Pr Mpn, Lnq contains triangles s “ 0

holds if

3` ρ lnKpθq ă 0. (5.22)

The one law takes a very similar form.

Theorem 5.8. Assume α ą β ą γ. For any ρ´admissible scaling L : N0 Ñ N0 with

ρ ą 0, the one law

lim
nÑ8

Pr Mpn;Lnq contains triangles s “ 1

holds if

3` ρ lnKpθq ą 0. (5.23)

We start by counting triangles. Pick positive integers n “ 3, 4, . . . and L “

1, 2, . . . . For distinct u, v and w in Vn, let ξn,Lpu, v, wq denote the indicator that a

triangle having end points pu, v, wq exists in Mpn;Lq, it is given by

ξn,Lpu, v, wq “ 1ru „L v, u „L w, v „L ws “ χLpu, vqχLpv, wqχLpu,wq. (5.24)

It is obvious that the order of the triple does not matter, (e.g. ξn,Lpu, v, wq “

ξn,Lpv, u, wq, etc.,) under the enforced symmetric condition for the link variables,
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namely

χLpu, vq “ χLpv, uq,
u, v P Vn

u ‰ v.

The number of distinct triangles in Mpn;Lq is given by the counting rv TnpLq

defined by

TnpLq “
ÿ

1ďuăvăwďn

ξn,Lpu, v, wq. (5.25)

Interest in this count variable stems from the observation that Mpn;Lq contains at

least one triangle iff TnpLq ą 0, leading to the key relation

P r Mpn;Lq contains triangles s “ P rTnpLq ą 0s .

This fact will be used to establish the zero-one law for the emergence of triangles by

leveraging easy bounds on the probability P rTnpLq ą 0s and P rTnpLq “ 0s in terms

of the first and second moments of the rv TnpLq (as discussed in Section 2.4.4).

The following proposition is an immediate consequence from Lemma 5.6.

Proposition 5.9. For n “ 3, 4, . . . and L “ 1, 2, . . . , we have

E rTnpLqs “
ˆ

n

3

˙

KpθqL (5.26)

with Kpθq defined at (5.21).

Proof. Fix n “ 2, 3, . . . and L “ 1, 2 . . . . With the notation defined in (5.21), we

have

E rξn,Lpu, v, wqs “ E r1ru „L v, u „L w, v „L wss

“ P ru „L v, u „L w, v „L ws

“ KpθqL (5.27)

96



for distinct u, v, w in Vn. As a result, the expected number of triangles in Mpn;Lq

is given by

E rTnpLqs “ E

«

ÿ

1ďuăvăwďn

ξn,Lpu, v, wq

ff

“
ÿ

1ďuăvăwďn

P ru „L v, u „L w, v „L ws

“
ÿ

1ďuăvăwďn

KpθqL

“

ˆ

n

3

˙

KpθqL (5.28)

since there are
`

n
3

˘

distinct unordered subsets of Vn. �

The second moment of the count variable (5.25) can also be evaluated in the

usual manner.

Proposition 5.10. For n “ 3, 4, . . . and L “ 1, 2, . . . , we have

E
“

TnpLq
2
‰

“

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3s

`3pn´ 3q

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3, 1 „L 4, 2 „L 4s

`3

ˆ

n

3

˙ˆ

n´ 3

2

˙

Pr1 „L 2, 2 „L 3, 1 „L 3, 1 „ 4, 5 „L 4, 1 „L 5s

`

ˆ

n

3

˙ˆ

n´ 3

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3s2. (5.29)

Additional details about Proposition 5.10 are given in Section C.

5.5 A proof of Theorem 5.7

The first step deals with the first moment of the count variable TnpLnq. A

zero-infinity law is given as a straightforward consequence of Proposition 5.9.
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Proposition 5.11. Assume α ą β ą γ. For any ρ´admissible scaling L : N0 Ñ N0

with ρ ą 0, we have

lim
nÑ8

ErTnpLnqs “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

8 if 3` ρ lnKpθq ą 0

0 if 3` ρ lnKpθq ă 0.

(5.30)

Proof. Fix n “ 3, 4, . . . . For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0,

recall from Proposition 5.9 that

E rTnpLnqs “
ˆ

n

3

˙

KpθqLn .

We have

E rTnpLnqs “
npn´ 1qpn´ 2q

3
KpθqLn

“
npn´ 1qpn´ 2q

n3

1

3
n3`ρn lnKpθq (5.31)

which diverges to 8 (resp. converges to 0) if 3`ρ lnKpθq ą 0 (resp. 3`ρ lnKpθq ă

0) as we note that

lim
nÑ8

npn´ 1qpn´ 2q

n3
“ 1.

�

Under the condition (5.22), Theorem 5.7 follows immediately upon applying

the bound in (2.39) with Zn “ TnpLnq here. �
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5.6 A proof of Theorem 5.8

To prove Theorem 5.8, we use the method of second moment already discussed

in Section 2.4.4 through the bound

E rTnpLnqs2

E rTnpLnq2s
ď P rTnpLnq ą 0s , n “ 3, 4, . . . . (5.32)

Theorem 5.8 will be established if we show that condition (5.23) implies

lim sup
nÑ8

E rTnpLnq2s
E rTnpLnqs2

“ 1. (5.33)

Fix n “ 3, 4, . . . . For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0,

Proposition 5.10 yields

ErTnpLnq2s
ErTnpLnqs2

“

`

1`
`

n´3
3

˘

E rTnpLnqs
˘

E rTnpLnqs
ErTnpLnqs2

`
3pn´ 3q

`

n
3

˘

E rξn,Lnp1, 2, 3qξn,Lnp1, 2, 4qs
ErTnpLnqs2

`
3
`

n
3

˘`

n´3
2

˘

E rξn,Lnp1, 2, 3qξn,Lnp1, 4, 5qs
ErTnpLnqs2

“

`

n´3
3

˘

`

n
3

˘ `
1

`

n
3

˘

KpθqLn

`
3pn´ 3qPr1 „Ln 2, 2 „Ln 3, 3 „Ln 1, 4 „Ln 1, 4 „Ln 2s

`

n
3

˘

Kpθq2Ln

`
3
`

n´3
2

˘

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1, 4 „Ln 1, 4 „Ln 5, 1 „Ln 5s
`

n
3

˘

Kpθq2Ln
.

Under condition (5.23), we have lim
nÑ8

`

n
3

˘

KpθqLn “ 8 by Proposition 5.11, implying

lim
nÑ8

1
`

n
3

˘

KpθqLn
“ 0.

Since

lim
nÑ8

`

n´3
3

˘

`

n
3

˘ “ lim
nÑ8

pn´ 3qpn´ 4qpn´ 5q

npn´ 1qpn´ 2q
“ 1,

99



Theorem 5.8 holds if we show that both ratios

3pn´ 3q
`

n
3

˘

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1, 4 „Ln 1, 4 „Ln 2s
``

n
3

˘

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1s
˘2 (5.34)

and

3
`

n
3

˘`

n´3
2

˘

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1, 4 „Ln 1, 4 „Ln 5, 1 „Ln 5s
``

n
3

˘

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1s
˘2 (5.35)

converge to 0 when n grows unboundedly large.

By arguments similar to those given in the proof of Lemma 5.6, we have

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1, 4 „Ln 1, 4 „Ln 2s

“ E
“

QLnpALnp1q,ALnp2qq ¨QLnpALnp1q,ALnp3qq ¨QLnpALnp2q,ALnp3qq

¨QLnpALnp1q,ALnp4qq ¨QLnpALnp2q,ALnp4qq
‰

“ E
“

qpA1p1q, A1p2qq ¨ qpA1p1q, A1p3qq ¨ qpA1p2q, A1p3qq

¨qpA1p1q, A1p4qq ¨ qpA1p2q, A1p4qq
‰Ln

“ ΦpθqLn (5.36)

where we have set

Φpθq “ E
“

qpA1p1q, A1p2qq ¨ qpA1p1q, A1p3qq ¨ qpA1p2q, A1p3qq

¨qpA1p1q, A1p4qq ¨ qpA1p2q, A1p4qq
‰

“ µp1q4α5
` µp1q3µp0qp2α3β2

` 2α2β3
q ` µp1q2µp0q2pαβ4

` β4γ ` 4αβ3γq

`µp1qµp0q3p2β3γ2
` 2β2γ3

q ` µp0q4γ5. (5.37)
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In the same manner, we obtain

Pr1 „Ln 2, 2 „Ln 3, 3 „Ln 1, 1 „Ln 4, 1 „Ln 5, 4 „Ln 5s

“ E
“

QLnpALnp1q,ALnp2qq ¨QLnpALnp1q,ALnp3qq ¨QLnpALnp2q,ALnp3qq

¨QLnpALnp1q,ALnp4qq ¨QLnpALnp1q,ALnp5qq ¨QLnpALnp4q,ALnp5q
‰

“ E
“

qpA1p1q, A1p2qq ¨ qpA1p1q, A1p3qq ¨ qpA1p2q, A1p3qq

¨qpA1p1q, A1p4qq ¨ qpA1p1q, A1p5qq ¨ qpA1p4q, A1p5qq
‰Ln

“ ΨpθqLn (5.38)

where we have defined

Ψpθq “ E
“

qpA1p1q, A1p2qq ¨ qpA1p1q, A1p3qq ¨ qpA1p2q, A1p3qq

¨qpA1p1q, A1p4qq ¨ qpA1p1q, A1p5qq ¨ qpA1p4q, A1p5qq
‰

“ µp1q5α6
` µp1q4µp0qp4α4β2

` α2β4
q

`µp1q3µp0q2p2α3β2γ ` 4α2β4
` 4αβ4γq

`µp1q2µp0q3p4αβ4γ ` 2αβ2γ3
` 4β4γ2

q

`µp1qµp0q4p4β2γ4
` β4γ2

q ` µp0q5γ6. (5.39)

As a result, for n “ 3, 4, . . . , the ratio (5.34) becomes

3pn´ 3qΦpθqLn
`

n
3

˘

Kpθq2Ln

“
3pn´ 3qn´4`4p1` 1

4
ρn ln Ψpθqq

`

n
3

˘

n´6`6p1` 1
3
ρn lnKpθqq

“
3pn´ 3qn´4

`

n
3

˘

n´6
n4p1` 1

4
ρn ln Φpθqq´6p1` 1

3
ρn lnKpθqq. (5.40)

Since

lim
nÑ8

3pn´ 3qn´4

`

n
3

˘

n´6
“ 18,
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the ratio (5.34) converges to 0 if

lim sup
nÑ8

ˆ

4

ˆ

1`
1

4
ρn ln Φpθq

˙

´ 6

ˆ

1`
1

3
ρn lnKpθq

˙˙

ă 0. (5.41)

Observe that

4

ˆ

1`
1

4
ρn ln Φpθq

˙

´ 6

ˆ

1`
1

3
ρn lnKpθq

˙

ď 4

ˆ

1`
1

4
ρn ln Φpθq

˙

´ 4

ˆ

1`
1

3
ρn lnKpθq

˙

“ 4

ˆ

1

4
ρn ln Φpθq ´

1

3
ρn lnKpθq

˙

for sufficiently large n, since lim
nÑ8

1` 1
3
ρn lnKpθq “ 1` 1

3
ρ lnKpθq ą 0 under condition

(5.23). It is plain that the inequality (5.41) holds if

1

4
ln Φpθq ă

1

3
lnKpθq,

or equivalently,

Φpθq3 ă Kpθq4.

However, it is plain that

Φpθq3 ´Kpθq4 ă 0

by direct (and painstaking) calculations.

Similarly, for n “ 3, 4, . . . , the ratio (5.35) can be rewritten as

3
`

n´3
2

˘

ΨpθqLn
`

n
3

˘

Kpθq2Ln

“
3
`

n´3
2

˘

n´5`5p1` 1
5
ρn ln Ψpθqq

`

n
3

˘

n´6`6p1` 1
3
ρn lnKpθqq

“
3
`

n´3
2

˘

n´5

`

n
3

˘

n´6
n5p1` 1

5
ρn ln Ψpθqq´6p1` 1

3
ρn lnKpθqq. (5.42)
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Since

lim
nÑ8

3
`

n´3
2

˘

n´5

`

n
3

˘

n´6
“ 9,

we have (5.35) converge to 0 if

lim sup
nÑ8

ˆ

5

ˆ

1`
1

5
ρn ln Ψpθq

˙

´ 6

ˆ

1`
1

3
ρn lnKpθq

˙˙

ă 0. (5.43)

Observe that

5

ˆ

1`
1

5
ρn ln Ψpθq

˙

´ 6

ˆ

1`
1

3
ρn lnKpθq

˙

ď 5

ˆ

1`
1

5
ρn ln Ψpθq

˙

´ 5

ˆ

1`
1

3
ρn lnKpθq

˙

“ 5

ˆ

1

5
ρn ln Ψpθq ´

1

3
ρn lnKpθq

˙

for sufficiently large n, since lim
nÑ8

1` 1
3
ρn lnKpθq “ 1` 1

3
ρ lnKpθq ą 0 under condition

(5.23). Simple calculations show that (5.43) holds if

1

5
ln Ψpθq ´

1

3
lnKpθq ă 0,

or equivalently,

Ψpθq3 ă Kpθq5.

Indeed, a direct, though tedious, subtraction yields

Ψpθq3 ´Kpθq5 ă 0.

Collecting, we have that both ratios in (5.34) and (5.35) converge to 0 when

n grows unboundedly large, implying

lim
nÑ8

E rTnpLnqs2

E rTnpLnq2s
“ 1,
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which serves as a lower bound to lim
nÑ8

P rTnpLnq ą 0s. This completes the proof of

the one law for the emergence of triangles by virtue of ??eq:ZeroLawZ)-2.44 with

Zn “ TnpLnq. �

5.7 Convergence of the total clustering coefficient

Many real world social networks are known to exhibit high clustering (or tran-

sitivity) [4]. This phenomenon is informally characterized by the propensity of a

node’s neighbors to also be neighbors of each other. The clustering properties of a

network are closely related to the property of triadic closure discussed in Section

5.1 and to the emergence of triangles discussed in Section 5.4. To that end, we

find it interesting to look at clustering coefficients in MAGs and to investigate their

limiting behavior when the number of nodes n grows unboundedly large.

While there are several clustering coefficients, we are specifically interested in

the version defined by

C˚pMpn;Lqq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

TnpLq
1
3
T˚n pLq

if T ˚n pLq ą 0

0 if T ˚n pLq “ 0

(5.44)

where

T ˚n pLq “
n
ÿ

u“1

ÿ

1ďvăwďn;v,w‰u

1ru „L v, u „L ws

is the number of triads (i.e., spanning trees consisting of three nodes) in Mpn;Lq.

The quantity C˚pMpn;Lqq is known as the total clustering coefficient and is expected

to give a good approximation to the left hand side of (5.1). The next theorem
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formalizes this idea.

Theorem 5.12. Assume α ą β ą γ. For each L “ 1, 2, . . . , we have

C˚pMpn;Lqq
P
ÝÑn Pr1 „L 2|1 „L 3, 2 „L 3s. (5.45)

We will prove Theorem 5.12 with the help of the following two auxiliary lem-

mas. The first one concerns the convergence of the number of triangles.

Lemma 5.13. Assume α ą β ą γ. For each L “ 1, 2, . . . , we have

1
`

n
3

˘TnpLq
P
ÝÑn Pr1 „L 2, 2 „L 3, 1 „L 3s ą 0. (5.46)

The second lemma deals with the convergence of the number of triads.

Lemma 5.14. Assume α ą β ą γ. For each L “ 1, 2, . . . , we have

1

3
`

n
3

˘T ˚n pLq
P
ÝÑn Pr1 „L 2, 2 „L 3s ą 0. (5.47)

Theorem 5.12 can be established once these two lemmas are proved. The basic

argument relies on the following continuity result for convergence in probability [22,

Cor 2, p. 31]. For a sequence of Rd-valued rvs tXn, n “ 1, 2, . . . u such that Xn
P
ÝÑn a

for some a in Rd, we have

hpXnq
P
ÝÑn hpaq

if h : Rd Ñ R is a mapping that continuous at a.
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From (5.44), we know that C˚pMpn;Lqq can be expressed as the ratio

C˚pMpn;Lqq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1

pn3q
TnpLq

1

3pn3q
T˚n pLq

if T ˚n pLq ą 0

0 if T ˚n pLq “ 0.

(5.48)

We define the mapping Rˆ R` Ñ R : px, yq Ñ hpx, yq by

hpx, yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x
y

if y ą 0

0 if y “ 0.

It is obvious that

C˚pMpn;Lqq “ h

˜

1
`

n
3

˘TnpLq,
1

3
`

n
3

˘T ˚n pLq

¸

, n “ 3, 4, . . . .

Having the rvs

ˆ

1

pn3q
TnpLq,

1

3pn3q
T ˚n pLq

˙

converge in probability to pPr1 „L 2, 2 „L

3, 1 „L 3s,Pr1 „L 2, 2 „L 3sq and hpx, yq being continuous at pPr1 „L 2, 2 „L

3, 1 „L 3s,Pr1 „L 2, 2 „L 3sq, the convergence in Theorem 5.12 is now straightfor-

ward.

5.8 A proof of Lemma 5.13 and Lemma 5.14

The proof of Lemma 5.13 is given first:

Proof. Fix n “ 3, 4, . . . and L “ 1, 2, . . . . Recall that the count variable TnpLq

takes the form stated in (5.25). By Proposition 5.9, we have

E

«

1
`

n
3

˘TnpLq

ff

“
1
`

n
3

˘

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3s

“ Pr1 „L 2, 2 „L 3, 1 „L 3s. (5.49)
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For arbitrary ε ą 0, Chebyshev’s inequality gives

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

1
`

n
3

˘TnpLq ´ Pr1 „L 2, 2 „L 3, 1 „L 3s

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

ff

ď

Var

ˆ

1

pn3q
TnpLq

˙

ε2
.

The lemma is established if we show that lim
nÑ8

Var

ˆ

1

pn3q
TnpLq

˙

“ 0.

For each n “ 2, 3, . . . we have

Var

˜

1
`

n
3

˘TnpLq

¸

“
1

`

n
3

˘2

`

ErTnpLq2s ´ E2
rTnpLqs

˘

with

1
`

n
3

˘2ErTnpLq
2
s “

1
`

n
3

˘Pr1 „L 2, 2 „L 3, 1 „L 3s

`
3pn´ 3q

`

n
3

˘ Pr1 „L 2, 2 „L 3, 1 „L 3, 1 „L 4, 2 „L 4s

`
3
`

n´3
2

˘

`

n
3

˘ Pr1 „L 2, 2 „L 3, 1 „L 3, 1 „L 4, 5 „L 4, 1 „L 5s

`

`

n´3
3

˘

`

n
3

˘ Pr1 „L 2, 2 „L 3, 1 „L 3s2 (5.50)

by Proposition 5.10. As n goes to infinity, we have

lim
nÑ8

`

n´3
3

˘

`

n
3

˘ “ lim
nÑ8

pn´ 3qpn´ 4qpn´ 5q

npn´ 1qpn´ 2q
“ 1

while all other coefficients in (5.50) converge to 0.

As a result, it follows that

lim
nÑ8

1
`

n
3

˘2ErTnpLq
2
s “ Pr1 „L 2, 2 „L 3, 1 „L 3s2.

While it is plain from (5.49) that

1
`

n
3

˘2

`

ErTnpLqs
˘2
“ Pr1 „L 2, 2 „L 3, 1 „L 3s2
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it follows that

lim
nÑ8

Var

˜

1
`

n
3

˘TnpLq

¸

“ 0.

Thus, for L “ 1, 2, . . . and arbitrary ε ą 0, we have

lim
nÑ8

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

1
`

n
3

˘TnpLq ´ Pr1 „L 2, 2 „L 3, 1 „L 3s

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

ff

“ 0,

and the convergence (5.46) holds

�

The proof of Lemma 5.14 proceeds in a similar way. Before we proceed, we

first give an expression for the second moment of the number of triads.

Proposition 5.15. For n “ 3, 4, . . . and L “ 1, 2, . . . , we have

E
“

T ˚n pLq
2
‰

“ 3

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3s

`6

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3s

`3

ˆ

n

3

˙ˆ

n´ 3

1

˙

Pr1 „L 2, 2 „L 3, 2 „L 4s

`6

ˆ

n

3

˙ˆ

n´ 3

1

˙

Pr1 „L 2, 2 „L 3, 1 „L 4, 2 „L 4s

`3

ˆ

n

3

˙ˆ

n´ 3

1

˙

Pr1 „L 2, 2 „L 3, 1 „L 4, 3 „L 4s

`6

ˆ

n

3

˙ˆ

n´ 3

1

˙

Pr1 „L 2, 2 „L 3, 3 „L 4s

`3

ˆ

n

3

˙ˆ

n´ 3

2

˙

Pr1 „L 2, 2 „L 3, 2 „L 4, 2 „L 5s

`12

ˆ

n

3

˙ˆ

n´ 3

2

˙

Pr1 „L 2, 2 „L 3, 1 „L 4, 1 „L 5s

`12

ˆ

n

3

˙ˆ

n´ 3

2

˙

Pr1 „L 2, 2 „L 3, 3 „L 4, 4 „L 5s

`9

ˆ

n

3

˙ˆ

n´ 3

3

˙

Pr1 „L 2, 2 „L 3s2. (5.51)
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Now we proceed with establishing Lemma 5.14.

Proof. Fix each n “ 3, 4, . . . , and L “ 1, 2, . . . . We have

E

«

1

3
`

n
3

˘T ˚n pLq

ff

“
1

3
`

n
3

˘E

«

n
ÿ

u“1

ÿ

1ďvăwďn, v,w‰u

1ru „L v, u „L ws

ff

“
1

3
`

n
3

˘

n
ÿ

u“1

ÿ

1ďvăwďn, v,w‰u

P ru „L v, u „L ws

“ Pr1 „L 2, 1 „L 3s. (5.52)

For arbitrary ε ą 0, Chebyshev’s inequality gives

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

3
`

n
3

˘T ˚n pLq ´ Pr1 „L 2, 1 „L 3s

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

ff

ď

Var

ˆ

1

3pn3q
T ˚n pLq

˙

ε2
.

The lemma will be established once we show that lim
nÑ8

Var

ˆ

1

3pn3q
T ˚n pLq

˙

“ 0.

For each n “ 2, 3, . . . , we have

Var

˜

1

3
`

n
3

˘T ˚n pLq

¸

“
1

9
`

n
3

˘2

`

ErT ˚n pLq2s ´ E2
rT ˚n pLqs

˘
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with

1

9
`

n
3

˘2E
“

T ˚n pLq
2
‰

“
1

3
`

n
3

˘Pr1 „L 2, 2 „L 3s

`
2

3
`

n
3

˘Pr1 „L 2, 2 „L 3, 1 „L 3s

`

`

n´3
1

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 2 „L 4s

`
2
`

n´3
1

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 1 „L 4, 2 „L 4s

`

`

n´3
1

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 1 „L 4, 3 „L 4s

`
2
`

n´3
1

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 3 „L 4s

`

`

n´3
2

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 2 „L 4, 2 „L 5s

`
4
`

n´3
2

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 1 „L 4, 1 „L 5s

`
4
`

n´3
2

˘

3
`

n
3

˘ Pr1 „L 2, 2 „L 3, 3 „L 4, 4 „L 5s

`

`

n´3
3

˘

`

n
3

˘ Pr1 „L 2, 2 „L 3s2

by Proposition 5.15.

While the last coefficient converges to 1, the other ones converge to 0 when n

goes to infinity. As a result, we have

lim
nÑ8

1

9
`

n
3

˘2E
“

T ˚n pLq
2
‰

“ Pr1 „L 2, 2 „L 3s2 (5.53)

which implies

lim
nÑ8

Var

˜

1

3
`

n
3

˘T ˚n pLq

¸

“ 0

as we recall that

E

«

1

3
`

n
3

˘T ˚n pLq

ff

“ Pr1 „L 2, 1 „L 3s
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for L “ 1, 2, . . . . This result leads us to conclude to the validity of 5.47.

�
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Chapter 6

Degree Distribution

The last property to be discussed in this dissertation is the nodal degree dis-

tribution in the MAG model. In this chapter, we discuss the limiting behavior of

the nodal degree distribution.

Given a graph GpV,Eq, the degree of a node u in V is the number of neighbors

to which u is connected in one hop. In Mpn;Lq, the degree of node u in Vn is the

number of nodes that are L-adjacent to u. Let the rv Dn,Lpuq denote the degree of

node u in Vn of Mpn;Lq. It is easy to see

Dn,Lpuq “
ÿ

vPVn,v‰u

χLpu, vq, u P Vn. (6.1)

6.1 The PMF and the conditional PMF of Dn,Lpuq

We first obtain the closed form expression of the pmf of the degree variable

Dn,Lpuq for a node u in Vn.

Proposition 6.1. For n “ 2, 3, . . . , L “ 1, 2, . . . and u in Vn, the pmf of the rv
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Dn,Lpuq is given by

P rDn,Lpuq “ ds

“

L
ÿ

`“0

ˆ

L

`

˙

µp1q`µp0qL´`P rDn,Lpuq “ d|SLpuq “ `s , d “ 0, 1, . . . , n´ 1, (6.2)

where

P rDn,Lpuq “ d|SLpuq “ `s

“

ˆ

n´ 1

d

˙

`

Γp1q`Γp0qL´`
˘d `

1´ Γp1q`Γp0qL´`
˘n´1´d

(6.3)

for each ` “ 0, 1, . . . , L.

Proof. Fix n “ 2, 3, . . . , L “ 1, 2, . . . and u in Vn. The rv Dn,Lpuq is the sum of

the n ´ 1 link variables tχLpu, vq, v ‰ u, v P Vnu. Since the link variables are

not mutually independent, we cannot evaluate the distribution of the rv Dn,Lpuq

directly.

However, from Lemma 2.2, we know that the rvs tχLpu, vq, v ‰ u, v P Vnu are

conditionally mutually independent given SLpuq and that they are therefore condi-

tional Bernoulli rvs with parameter Γp1qSLpuqΓp0qL´SLpuq. Hence, given SLpuq, the rv

Dn,Lpuq is a conditionally binomial rv with parameters
`

n´ 1,Γp1qSLpuqΓp0qL´SLpuq
˘

.

The conditional pmf of the rv Dn,Lpuq is therefore given by (6.3), and the law

of total probability yields

P rDn,Lpuq “ ds

“

L
ÿ

`“0

P rDn,Lpuq “ d|SLpuq “ `sP rSLpuq “ `s

“

L
ÿ

`“0

ˆ

L

`

˙

µp1q`µp0qL´`P rDpuq “ d|SLpuq “ `s ,
u P Vn

d “ 0, 1, . . . , n´ 1.

(6.4)
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The pmf of the rv Dn,Lpuq does not depend on the choice of node u in Vn. We

shall write Dn,L for Dn,Lp1q, and all subsequent discussions are given in terms of the

generic rv Dn,L. Throughout, let Z be a standard Gaussian rv (i.e., with mean 0

and variance 1).

6.2 The convergence theorem

The pmf of the rv Dn,L does not have a well-known form. We seek a condition

that the scaled degree rv will converge to well-known distribution. The main result

of this chapter is the following convergence, the content of the next theorem.

Theorem 6.2. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0

with ρ ą 0, it holds that

a

Ln

ˆ

1

Ln

`

lnD`n,Ln
˘

´

ˆ

1

ρn
` µp1q ln Γp1q ` µp0q ln Γp0q

˙˙

ñn

ˆ

a

µp1qµp0q ln
Γp1q

Γp0q

˙

Z

(6.5)

whenever 1` ρ ln Γp0q ą 0, where

D`n,Ln “ Dn,Ln ` 1rDn,Ln “ 0s. (6.6)

The reason for using the rv D`n,Ln instead of the rv Dn,Ln is to avoid the

boundary case Dn,Ln “ 0. Later, it will be clear that the probability of Dn,Ln “ 0

is asymptotically negligible.
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We establish this convergence result in the next two sections by a proper

decomposition of the left hand side of (6.5).

6.3 Applying the Central Limit Theorem

We proceed with two lemmas, which will make the convergence a straightfor-

ward consequence of the standard Central Limit Theorem.

Lemma 6.3. For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0, we have

a

Ln

ˆ

1

Ln
lnE rDn,Ln |SLnp1qs ´

ˆ

1

ρn
` µp1q ln

Γp1q

Γp0q
` ln Γp0q

˙˙

ñn

ˆ

a

µp1qµp0q ln
Γp1q

Γp0q

˙

Z.

(6.7)

Proof. Earlier in Section 6.1, we showed that for each n “ 2, 3, . . . and L “ 1, 2, . . . ,

the rvDn,L is a conditional binomial rv with parameters
`

n´ 1,Γp1qSLp1qΓp0qL´SLp1q
˘

given SLp1q. The conditional expectation of the rv Dn,L is therefore given by

E rDn,L|SLp1qs “ pn´ 1qΓp1qSLp1qΓp0qL´SLp1q. (6.8)

It follows that

lnE rDn,L|SLp1qs “ lnpn´ 1q ` SLp1q ln
Γp1q

Γp0q
` L ln Γp0q.

Fix n “ 2, 3, . . . . For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0, a

simple subtraction yields

1

Ln
lnE rDn,Ln |SLnp1qs ´

ˆ

1

ρn
` µp1q ln

Γp1q

Γp0q
` ln Γp0q

˙

“

ˆ

lnpn´ 1q

Ln
´

1

ρn

˙

`

ˆ

1

Ln
SLnp1q ´ µp1q

˙

ln
Γp1q

Γp0q
. (6.9)
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Because the rv SLnp1q is a sum of Ln i.i.d. Bernoulli rvs with parameter µp1q defined

in (2.2), the Central Limit Theorem yields

a

Ln

ˆ

1

Ln
SLnp1q ´ µp1q

˙

ñn

a

µp1qµp0qZ

where Z is a standard Gaussian rv, whence

a

Ln

ˆ

1

Ln
SLnp1q ´ µp1q

˙

ln
Γp1q

Γp0q
ñn

a

µp1qµp0q

ˆ

ln
Γp1q

Γp0q

˙

Z.

On the other hand, we have

a

Ln

ˆ

lnpn´ 1q

Ln
´

1

ρn

˙

“
a

Ln

ˆ

lnpn´ 1q ´ lnn

Ln

˙

“
1
?
Ln

ln
n´ 1

n
(6.10)

so that

lim
nÑ8

a

Ln

ˆ

lnpn´ 1q

Ln
´

1

ρn

˙

“ 0.

Collecting, we readily conclude the desired convergence (6.7). �

Motivated by Lemma 6.3, for n “ 2, 3, . . . , we can always decompose the left

hand side of (6.5) as

a

Ln

ˆ

1

Ln
ln
`

D`n,Ln
˘

´

ˆ

1

ρn
` µp1q ln Γp1q ` µp0q ln Γp0q

˙˙

“
a

Ln

ˆ

1

Ln
ln
`

D`n,Ln
˘

´
1

Ln
lnE rDn,Ln |SLnp1qs

˙

`
a

Ln

ˆ

1

Ln
lnE rDn,Ln |SLnp1qs ´

ˆ

1

ρn
` µp1q ln

Γp1q

Γp0q
` ln Γp0q

˙˙

.(6.11)

Theorem 6.2 will then be established if we can show that

a

Ln

ˆ

1

Ln
ln
`

D`n,Ln
˘

´
1

Ln
lnE rDn,Ln |SLnp1qs

˙

P
ÝÑn 0 (6.12)

under the assumption Γp1q ą Γp0q. This issue will be addressed in the next section.
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6.4 A proof of Theorem 6.2

Observe that

lnD`n,Ln ´ lnE rDn,Ln |SLnp1qs “ ln

˜

D`n,Ln
E rDn,Ln |SLnp1qs

¸

(6.13)

for n “ 2, 3, . . . . Because the function x Ñ lnx is continuous on p0,8q, the left

hand side of (6.13) converges in probability to 0 if

D`n,Ln
E rDn,Ln |SLnp1qs

P
ÝÑn 1. (6.14)

We will first show that

Dn,Ln

E rDn,Ln |SLnp1qs
P
ÝÑn 1, (6.15)

and then argue that

lim
nÑ8

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

D`n,Ln
E rDn,Ln |SLnp1qs

´
Dn,Ln

E rDn,Ln |SLnp1qs

ˇ

ˇ

ˇ

ˇ

ˇ

ą 0

ff

“ 0. (6.16)

Lemma 6.4. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0 with

ρ ą 0, it holds that

Dn,Ln

E rDn,Ln |SLnp1qs
P
ÝÑn 1 (6.17)

if 1` ρ ln Γp0q ą 0.

Proof. In order to establish the convergence (6.17), we would like to show that

lim
nÑ8

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

ff

“ 0

for any δ ą 0.
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For n “ 2, 3, . . . , and any δ ą 0 fixed, the Markov inequality gives

P

«ˇ

ˇ

ˇ

ˇ

ˇ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą δ

ff

ď

E

«

ˆ

Dn,Ln
ErDn,Ln |SLn p1qs

´ 1

˙2
ff

δ2
. (6.18)

As a result, Lemma 6.4 will be established if we show

lim
nÑ8

E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ff

“ 0. (6.19)

Fix n “ 2, 3, . . . . By iterated expectations, we get

E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ff

“ E

«

E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

SLnp1q

ffff

.

It is plain that

E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

SLnp1q

ff

“ E

«

D2
n,Ln

E rDn,Ln |SLnp1qs
2 ´ 2

Dn,Ln

E rDn,Ln |SLnp1qs
` 1

ˇ

ˇ

ˇ

ˇ

ˇ

SLnp1q

ff

“
E
“

D2
n,Ln

|SLnp1q
‰

E rDn,Ln |SLnp1qs
2 ´ 1. (6.20)

Recalling that

Dn,Ln “

n
ÿ

v“2

χLnp1, vq,

we get

D2
n,Ln “

n
ÿ

v“2

χLnp1, vq `
n
ÿ

v“2

n
ÿ

w“2,w‰v

χLnp1, vqχLnp1, wq

upon using the fact that χLnp1, vq
2 “ χLnp1, vq for v “ 2, . . . , n.

Since the rvs tχLnp1, vq, v “ 2, . . . , nu are conditionally mutually independent
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given SLnp1q, we obtain

E
“

D2
n,Ln |SLnp1q

‰

“ E

«

n
ÿ

v“2

χLnp1, vq `
n
ÿ

v“2

n
ÿ

w“2,w‰v

χLnp1, vqχp1, wq

ˇ

ˇ

ˇ

ˇ

ˇ

SLnp1q

ff

“

n
ÿ

v“2

E rχLnp1, vq|SLnp1qs

`

n
ÿ

v“2

n
ÿ

w“2,w‰v

E rχLnp1, vq|SLnp1qsE rχLnp1, wq|SLnp1qs

“ pn´ 1qΓp1qSLnΓp0qLn´SLn ` pn´ 1qpn´ 2qΓp1q2SLnΓp0q2pLn´SLn q.

While it is plain from (6.8) that

E rDn,Ln |SLnp1qs
2
“ pn´ 1q2Γp1q2SLnΓp0q2pLn´SLn q,

we have

E
“

D2
n,Ln

|SLnp1q
‰

E rDn,Ln |SLnp1qs
2 ´ 1

“
pn´ 1qΓp1qSLnΓp0qLn´SLn ` pn´ 1qpn´ 2qΓp1q2SLnΓp0q2pLn´SLn q

pn´ 1q2Γp1q2SLnΓp0q2pLn´SLn q
´ 1

“
1

pn´ 1qΓp1qSLnΓp0qLn´SLn
`
n´ 2

n´ 1
´ 1

ď
1

pn´ 1qΓp0qLn
´

1

n´ 1
. (6.21)

In the last step, we used the fact that Γp1q ą Γp0q. Taking expectations on both

side of (6.21) we get

E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ff

ď
1

pn´ 1qΓp0qLn
´

1

n´ 1
, n “ 2, 3, . . . . (6.22)

Let n go to infinity in (6.22). Under the condition 1` ρ ln Γp0q ą 0, we have

lim
nÑ8

pn´ 1qΓp0qLn “ 8,

and therefore (6.19) holds. This completes the proof of Lemma 6.4. �
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To establish the convergence in (6.12), we still need to establish (6.16) which

allows us to conclude (6.14).

Indeed, for each n “ 2, 3, . . . , it is plain from (6.6) that

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

D`n,Ln
E rDn,Ln |SLnp1qs

´
Dn,Ln

E rDn,Ln |SLnp1qs

ˇ

ˇ

ˇ

ˇ

ˇ

ą 0

ff

“ P

«ˇ

ˇ

ˇ

ˇ

ˇ

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs

ˇ

ˇ

ˇ

ˇ

ˇ

ą 0

ff

“ P rDn,Ln “ 0s .

Under the condition 1` ρ ln Γp0q ą 0, the one-law of Theorem 3.1 yields

lim
nÑ8

P r Mpn;Lnq has no isolated nodes s “ 1.

The easy bound

1´ P r Mpn;Lnq has no isolated nodes s ě P rDn,Ln “ 0s

therefore implies

lim
nÑ8

P rDn,Ln “ 0s “ 0,

and (6.16) holds. This completes the proof of Theorem 6.2. �

6.5 A log-normal limit

Theorem 6.2 says that the logarithm of the rv D`n,Ln converges in distribution

to a Gaussian rv after properly centering and scaling. The rv D`n,Ln should then

converge in distribution to a log-normal rv through the continuous mapping R Ñ

R : xÑ ex. Because of the vanishingly probability of the event Dn,Ln “ 0 as n grows

unboundedly large, the rv Dn,Ln should also converge in distribution to a log-normal

rv with a proper scaling. The following corollary formalizes this idea.
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Corollary 6.5. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0

with ρ ą 0, it holds that

pDn,Lnq
1?
Ln e´

?
Lnp 1

ρn
`µp1q ln Γp1q`µp0q ln Γp0qq ñn lnN

ˆ

0, µp1qµp0q ln2 Γp1q

Γp0q

˙

(6.23)

if 1` ρ ln Γp0q ą 0.

Proof. By the Continuous Mapping Theorem for weak convergence, we easily get

eΛ`n,Ln ñn lnN
ˆ

0, µp1qµp0q ln2 Γp1q

Γp0q

˙

(6.24)

from Theorem 6.2, where have we used the notation

Λ`n,Ln “
a

Ln

ˆ

1

Ln
ln
`

D`n,Ln
˘

´

ˆ

1

ρn
` µp1q ln Γp1q ` µp0q ln Γp0q

˙˙

, n “ 2, 3, . . . .

In other words, the sequence

!

`

D`n,Ln
˘

1?
Ln e´

?
Lnp 1

ρn
`µp1q ln Γp1q`µp0q ln Γp0qq, n “ 2, 3, . . .

)

converges in distribution to a log-Normal rv with parameters
´

0, µp1qµp0q ln2 Γp1q
Γp0q

¯

.

Moreover, we have

P
”
ˇ

ˇ

ˇ
pD`n,Lnq

1?
Ln ´ pDn,Lnq

1?
Ln

ˇ

ˇ

ˇ
e´
?
Lnp 1

ρn
`µp1q ln Γp1q`µp0q ln Γp0qq ą 0

ı

“ PrDn,Ln “ 0s n “ 2, 3, . . . (6.25)

with

lim
nÑ8

PrDn,Ln “ 0s “ 0,

and the desired convergence (6.23) follows. �
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This result is significantly different from the one given by Kim and Leskovec

in [17], which argued that the tail of the pmf of the degree rv is approximately log-

normal distribution. It was not a limiting result and it is unclear in their argument

that how a discreet distribution is approximated by a continuous distribution. Here,

we have a simple and concise approach which leads to an exact convergence result.

In the next chapter, we are going to approximate the CDF of the rv Dn,Ln

based on the convergence results we have just obtained; the performance of this

approximation will then be evaluated.
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Chapter 7

Approximating the Degree Distri-

bution

From Section 6.1, we know that, for n “ 2, 3, . . . and L “ 1, 2, . . . fixed, the

rv Dn,L is a compounded binomial rv and its CDF is given by the sum of its pmf

available (6.2), namely

FDn,Lpxq “

minptxu,n´1q
ÿ

d“0

L
ÿ

`“0

ˆ

L

`

˙

µp1q`µp0qL´`P rDn,L “ d|SLp1q “ `s , x ě 0,

with

P rDn,L “ d|SLp1q “ `s

“

ˆ

n´ 1

d

˙

`

Γp1q`Γp0qL´`
˘d `

1´ Γp1q`Γp0qL´`
˘n´1´d

.

Calculating this CDF for any x ą 0 is no easy task. Therefore, we need to

find a good approximation as an efficient alternative. Below, we present such an

approximation and then evaluate its performance when n is large.
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7.1 The approximation

Theorem 7.1. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0

with ρ ą 0, under the condition 1` ρ ln Γp0q ą 0, it holds for each t in R that

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

P rDn,Ln ď xn,Lnptqs ´ P
„

σ0Z ď
1
?
Ln

lnpxn,Lnptqq ´ En,Ln

ˇ

ˇ

ˇ

ˇ

“ 0 (7.1)

with

xn,Lnptq “ e
?
Lnpt`En,Lnq, (7.2)

where we have set

σ0 “
a

µp1qµp0q

ˆ

ln
Γp1q

Γp0q

˙

(7.3)

and

En,Ln “
a

Ln

ˆ

1

ρn
` µp1q ln

Γp1q

Γp0q
` ln Γp0q

˙

, n “ 2, 3, . . . . (7.4)

Proof. Consider any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0. For n “ 2, 3, . . .

and t in R, we substitute (7.2) into (7.1) to get

ˇ

ˇ

ˇ
P
”

Dn,Ln ď e
?
Lnpt`En,Lnq

ı

´ P rσ0Z ď ts
ˇ

ˇ

ˇ
. (7.5)

If Dn,Ln in (7.5) is replaced by D`n,Ln , then it is plain that

lim
nÑ8

ˇ

ˇ

ˇ
P
”

D`n,Ln ď e
?
Lnpt`En,Lnq

ı

´ P rσ0Z ď ts
ˇ

ˇ

ˇ

“ lim
nÑ8

ˇ

ˇ

ˇ

ˇ

P
„

1
?
Ln

ln
`

D`n,Ln
˘

´ En,Ln ď t



´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ˇ

“ 0
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by Theorem 6.2. To establish Theorem 7.1, we only need to show that

lim
nÑ8

ˇ

ˇ

ˇ
P
”

D`n,Ln ď e
?
Lnpt`En,Lnq

ı

´ P
”

Dn,Ln ď e
?
Lnpt`En,Lnq

ı
ˇ

ˇ

ˇ
“ 0. (7.6)

However, for each n “ 2, 3, . . . , we have

P
“

D`n,Ln ď x
‰

“ P rDn,Ln ď xs , x ě 1, (7.7)

while

P rDn,Ln ď xs ´ P
“

D`n,Ln ď x
‰

“ PrDn,Ln “ 0s, x P r0, 1q (7.8)

from (6.6). With lim
nÑ8

PrDn,Ln “ 0s “ 0, we readily conclude that (7.6) holds, and

this completes the proof of Theorem 7.1. �

As a result, we can use P
”

σ0Z ď
1?
Ln

lnpxn,Lnptqq ´ En,Ln
ı

to approximate

P rDn,Ln ď xn,Lnptqs for each t in R when n is large. We are interested in the perfor-

mance of this approximation as n is growing large. An upper bound to the absolute

difference

∆nptq “

ˇ

ˇ

ˇ

ˇ

P rDn,Ln ď xn,Lnptqs ´ P
„

σ0Z ď
1
?
Ln

ln pxn,Lnptqq ´ En,Ln

ˇ

ˇ

ˇ

ˇ

(7.9)

is given in the next section.

7.2 A Berry-Esseen type result

Theorem 7.2. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0

with ρ ą 0, under the condition 1 ` ρ ln Γp0q ą 0, there exist a positive constant C

and a positive integer N such that

sup
tPR

∆nptq ď
C
?
Ln

(7.10)
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whenever n ě N , where ∆nptq was defined in (7.9).

To establish Theorem 7.2, we need the CDF of the rv D`n,Ln to bridge the gap

between the CDF of the rv Dn,Ln and the CDF of the rv σ0Z so that Theorem 6.2

can be applied. A natural approach of proving Theorem 7.2 is to decompose the

left hand side of (7.10).

7.3 A decomposition of (7.10)

Consider a ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0. For n “ 2, 3, . . . ,

the triangular inequality gives

sup
tPR

ˇ

ˇ

ˇ

ˇ

P rDn,Ln ď xn,Lnptqs ´ P
„

σ0Z ď
1
?
Ln

ln pxn,Lnptqq ´ En,Ln

ˇ

ˇ

ˇ

ˇ

ď sup
tPR

ˇ

ˇP rDn,Ln ď xn,Lnptqs ´ P
“

D`n,Ln ď xn,Lnptq
‰
ˇ

ˇ (7.11a)

` sup
tPR

ˇ

ˇ

ˇ

ˇ

P
“

D`n,Ln ď xn,Lnptq
‰

´ P
„

σ0Z ď
1
?
Ln

ln pxn,Lnptqq ´ En,Ln

ˇ

ˇ

ˇ

ˇ

. (7.11b)

Given the relationship between the rvs D`n,Ln and Dn,Ln in (6.6), an upper bound

to (7.11a) is easy to obtain; Lemma 7.4 given later will address this issue. Before

presenting this upper bound, we first proceed to further decompose (7.11b).

7.4 A decomposition of (7.11b)

Fix n “ 2, 3, . . . . We know from (7.2) that (7.11b) is equivalent to

sup
tPR

ˇ

ˇ

ˇ

ˇ

P
„

1
?
Ln

ln
`

D`n,Ln
˘

´ En,Ln ď t



´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ˇ

. (7.12)
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From (6.11) and (6.9) we also know that the rv 1?
Ln

ln
`

D`n,Ln
˘

´ En,Ln can be de-

composed as

a

Ln

ˆ

1

Ln
ln
`

D`n,Ln
˘

´

ˆ

1

ρn
` µp1q ln Γp1q ` µp0q ln Γp0q

˙˙

“
a

Ln

ˆ

1

Ln
ln
`

D`n,Ln
˘

´
1

Ln
lnE rDn,Ln |SLnp1qs

˙

`
a

Ln

ˆ

1

Ln
lnE rDn,Ln |SLnp1qs ´

ˆ

1

ρn
` µp1q ln

Γp1q

Γp0q
` ln Γp0q

˙˙

“
1
?
Ln

ˆ

ln
`

D`n,Ln
˘

´ lnE rDn,Ln |SLnp1qs ` ln
n´ 1

n

˙

`
a

Ln

ˆ

1

Ln
SLnp1q ´ µp1q

˙

ln
Γp1q

Γp0q

“ Xn,Ln ` YLn

where we have set

Xn,Ln “
1
?
Ln

ˆ

ln
`

D`n,Ln
˘

´ lnE rDn,Ln |SLnp1qs ` ln
n´ 1

n

˙

(7.13)

and

YLn “
1
?
Ln
pSLnp1q ´ Lnµp1qq ln

Γp1q

Γp0q
. (7.14)

Bounding (7.11b) is therefore equivalent to bounding

sup
tPR

ˇ

ˇP rXn,Ln ` YLn ď ts ´ P rσ0Z ď ts
ˇ

ˇ. (7.15)

The next lemma gives an upper bound to (7.15).

Lemma 7.3. For n “ 2, 3, . . . , L “ 1, 2, . . . and any ε ą 0, with the notation used
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in (7.13) and (7.14), we have

sup
yPR

ˇ

ˇP rXn,L ` YL ď ts ´ P rσ0Z ď ts
ˇ

ˇ

ď sup
yPR

ˇ

ˇP rYL ď ys ´ P rσ0Z ď ys
ˇ

ˇ (7.16a)

` sup
yPR

P ry ă σ0Z ď y ` εs (7.16b)

` 2P r|Xn,L| ą εs . (7.16c)

The proof of Lemma 7.3 is given at the end of this section. We are going

to develop four lemmas to deal with bounds to each of the terms (7.11a), (7.16a),

(7.16b) and (7.16c), respectively, when L is substituted by a ρ´admissible Ln.

7.5 Four building blocks for Theorem 7.2

Recall that

D`n,Ln “ Dn,Ln ` 1rDn,Ln “ 0s, n “ 2, 3, . . . .

The following lemma bridges the gap between the CDFs of the two rvs Dn,Ln and

D`n,Ln .

Lemma 7.4. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0 with

ρ ą 0, there exists δ ą 0 such that

sup
xPR`

ˇ

ˇP
“

D`n,Ln ď x
‰

´ P rDn,Ln ď xs
ˇ

ˇ “ P rDn,Ln “ 0s “ ope´n
δ

q

if 1` ρ ln Γp0q ą 0.
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Proof. Consider a ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0. For n “ 2, 3, . . . ,

it is plain from (7.7) and (7.8) that

sup
xPr0,`8q

ˇ

ˇP
“

D`n,Ln ď x
‰

´ P rDn,Ln ď xs
ˇ

ˇ “ P rDn,Ln “ 0s .

Now, recall the easy bound

P rDn,Ln “ 0s ď P rInpLnq ą 0s ď E rInpLnqs

where InpLnq is the number of isolated nodes in Mpn;Lnq defined in (3.14) with

(3.36) stating that

E rInpLnqs ď elnn´pn´1qΓp0qLn
“ elnn´n´1

n
n1`ρn ln Γp0q

.

Under the condition 1 ` ρ ln Γp0q ą 0, it is plain that there exists a constant δ˚ in

p0, 1` ρ ln Γp0qq such that

elnn´n´1
n
n1`ρn ln Γp0q

“ o
´

e´n
δ˚
¯

,

whence

P rDn,Ln “ 0s “ o
´

e´n
δ
¯

, δ P p0, δ˚s.

This readily concludes Lemma 7.4. �

The second lemma deals with the upper bound to (7.16a) and relates to the

convergence rate of the standard Central Limit Theorem. It is a direct application

of the Berry-Esseen Theorem [24, Thm 3, p. 299] applied to the sum of a collection

of i.i.d. Bernoulli rvs.
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Lemma 7.5. For any ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0, there exists a

universal constant C˚ ą 0 such that

sup
yPR
|P rYLn ď ys ´ P rσ0Z ď ys | ď

1
?
Ln

C˚ pµp1q2 ` µp0q2q
a

µp1qµp0q
(7.17)

for n “ 2, 3, . . . , where YLn and σ0 is defined in (7.14) and (7.3), respectively.

Proof. Consider a ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0. Fix n “ 2, 3, . . . .

We note that

pSLnp1q ´ Lnµp1qq ln
Γp1q

Γp0q
“

a

LnYLn

“

Ln
ÿ

`“1

ˆ

`

A`p1q ´ µp1q
˘

¨ ln
Γp1q

Γp0q

˙

where the rvs
!

`

A`p1q ´ µp1q
˘

¨ ln Γp1q
Γp0q

, ` “ 1, . . . , Ln

)

are i.i.d. zero-mean rvs since

the rvs tA`p1q, ` “ 1, . . . , Lnu form a collection of i.i.d. Bernoulli rvs with parameter

µp1q. It is easy to check that

Γ3
Ln “

Ln
ÿ

`“1

E

«

ˇ

ˇ

ˇ

ˇ

`

A`p1q ´ µp1q
˘

¨ ln
Γp1q

Γp0q

ˇ

ˇ

ˇ

ˇ

3
ff

“ Lnµp1qµp0q
`

µp1q2 ` µp0q2
˘

¨

ˇ

ˇ

ˇ

ˇ

ln
Γp1q

Γp0q

ˇ

ˇ

ˇ

ˇ

3

and

s2
Ln “

Ln
ÿ

`“1

E

«

ˆ

`

A`p1q ´ µp1q
˘

¨ ln
Γp1q

Γp0q

˙2
ff

“ Lnµp1qµp0q

ˆ

ln
Γp1q

Γp0q

˙2

“ Lnσ
2
0.

Applying the Berry-Esseen Theorem gives

sup
´8ăwă`8

ˇ

ˇ

ˇ
P
”

a

LnYn ă sLnw
ı

´ P rZ ď ws
ˇ

ˇ

ˇ
ď C˚

ˆ

ΓLn
sLn

˙3

“
1
?
Ln

C˚ pµp1q2 ` µp0q2q
a

µp1qµp0q
(7.18)

for some C˚ ą 0 which does not depend on n. It is now plain that (7.17) follows by

letting y “ σ0w. �
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In the next lemma, we are interested in the convergence rate of the rv Xn,Ln

defined in (7.13).

Lemma 7.6. Assume Γp1q ą Γp0q. For any ρ´admissible scaling L : N0 Ñ N0 with

ρ ą 0, and any ε ą 0, there exists a positive integer N such that

P r|Xn,Ln | ą εs ď
2

pn´ 1qΓp0qLn
1

´

1´ e´
?
Lnε`ln n

n´1

¯2 , n ě N

if 1` ρ ln Γp0q ą 0.

Details of Lemma 7.6 can be found in Appendix D. The upper bound to (7.16b)

is based on the uniform continuity of the CDF of a Gaussian rv with parameters

p0, σ2q .

Lemma 7.7. Let σ be any positive number. For any positive ∆ ą 0, we have

sup
xPR

P rx ă σZ ď x`∆s ď
1

?
2πσ2

∆`
1

2σ2
?

2π
e´

1
2 ∆2.

Proof. Let FσZpxq and fσZpxq denote the CDF and the pdf of a Gaussian rv with

parameters p0, σ2q, respectively. By definition, we know

fσZpxq “ F 1σZpxq, x P R.

For any x0 in R, Taylor series expansion yields

FσZpx0 `∆q “ FσZpx0q `∆fσZpx0q `R1 px0; ∆q , n “ 1, 2, . . .

where R1px0; ∆q is given by the Lagrange Mean Value Theorem, namely

R1px0; ∆q “
f 1σZpx

˚
0q

2
∆2 (7.19)
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for some x˚0 in rx0, x0 `∆s.

Simple calculations yield

f 1σZpxq “ ´
x

σ3
?

2π
e´

x2

2σ2

which has bound

|f 1σZpxq| ď
1

σ2
?

2π
e´

1
2 , x P R.

The remainder term (7.19) is therefore uniformly bounded with respect to x, namely

´
1

2σ2
?

2π
e´

1
2 ∆2

ď R1px; ∆q ď
1

2σ2
?

2π
e´

1
2 ∆2, x P R.

As a result, it is plain that, for any x0 in R,

P rx0 ă σZ ď x0 `∆s “ FσZpx0 `∆q ´ FσZpx0q

ď ∆
1

?
2πσ2

e´
x2
0
2 `

1

2σ2
?

2π
e´

1
2 ∆2.

The lemma is established upon noting that sup
xPR

e´
x2

2 “ 1. �

7.6 A proof of Theorem 7.2

By Lemma 7.4, we know that there exist a constant C1 ą 0 and a positive

integer N1 such that (7.11a) is bounded above by C1?
Ln

whenever n ě N1. Next we

proceed to give an upper bound to (7.11b). We need to find a constant C2 ą 0 and

a positive integer N2 such that (7.11b) is bounded above by C2?
Ln

whenever n ě N2,

in which case we are able to conclude Theorem 7.2 by letting C “ C1 ` C2 and

N “ maxpN1, N2q.
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According to Lemma 7.5, there exists a constant C˚21 ą 0 such that (7.16a)

can be bounded above by

sup
yPR

ˇ

ˇ

ˇ
P rYLn ď ys ´ P rσ0Z ď ys

ˇ

ˇ

ˇ
ď

C21
?
Ln
, n “ 2, 3, . . . .

where

C21 “
C˚21 pµp1q

2 ` µp0q2q
a

µp1qµp0q
.

In a similar manner, an upper bound to (7.16b) is given by

sup
xPR

P rx ă σ0Z ď x` εs ď
1

a

2πσ2
0

ε`
1

2σ2
?

2π
e´

1
2 ε2, ε ą 0

by virtue of Lemma 7.7. Let ε “ 1?
Ln

, then there exists a positive integer N22 such

that

1

2σ2
?

2π
e´

1
2

1

Ln
ă

1
a

2πσ2
0

1
?
Ln
, n ě N22,

which implies

1
a

2πσ2
0

1
?
Ln
`

1

2σ2
?

2π
e´

1
2

1

Ln
ă

C22
?
Ln
, n ě N22

with

C22 “
2

a

2πσ2
0

.

With ε “ 1?
Ln

, an upper bound to (7.16c) is given by Lemma 7.6, and takes

the form

P
„

|Xn,Ln | ą
1
?
Ln



ď
2

pn´ 1qΓp0qLn
1

´

1´ e´1`ln n
n´1

¯2 , n ě N23

for some positive integer N23. Under the condition 1 ` ρ ln Γp0q ą 0, there exists a

positive integer N24 such that

2

pn´ 1qΓp0qLn
1

´

1´ e´1`ln n
n´1

¯2 ă
1

2
?
Ln
, n ě N24.
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Collecting these bounds, we see that (7.11b) is bounded above by C2?
Ln

whenever

n ě N2 with C2 “ C21 ` C22 ` 1 and N2 “ max pN22, N23, N24q. The proof of

Theorem 7.2 is now completed. �

7.7 A proof of Lemma 7.3

Fix n “ 2, 3, . . . , and L “ 1, 2, . . . . For any ε ą 0 and t in R, we have

P rXn,L ` YL ď ts “ P rXn,L ` YL ď t, |Xn,L| ď εs ` P rXn,L ` YL ď t, |Xn,L| ą εs .

For each t in R, we can write

ˇ

ˇ

ˇ
P rXn,L ` YL ď ts ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
P rXn,L ` YL ď t, |Xn,L| ď εs ` P rXn,L ` YL ď t, |Xn,L| ą εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
P rXn,L ` YL ď t, |Xn,L| ď εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ
` P rXn,L ` YL ď t, |Xn,L| ą εs

by the triangular inequality.

Further simplifications are possible, namely

ˇ

ˇ

ˇ
P rXn,L ` YL ď ts ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
P rXn,L ` YL ď t, |Xn,L| ď εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ
` P r|Xn,L| ą εs (7.20)

since

P rXn,L ` YL ď t, |Xn,L| ą εs ď P r|Xn,L| ą εs .

The following lemma will simplify our analysis.

Lemma 7.8. Let a1, a2, a3, a4, b1 and b2 be scalars in R .
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1. If a3 ď a1 ď a4, then

|a1 ` b1| ď maxp|a3 ` b1|, |a4 ` b1|q.

2. If b2 ą 0, then

maxp|a1 ` b1|, |a2 ` b1 ˘ b2|q ď maxp|a1 ` b1|, |a2 ` b1|q ` b2.

3. It holds that

maxpa1 ` b1, a2 ` b2q ď maxpa1, a2q `maxpb1, b2q.

We can easily obtain an upper bound to P rXn,L ` YL ď t, |Xn,L| ď εs, namely

P rXn,L ` YL ď t, |Xn,L| ď εs ď P rYL ď t` ε, |Xn,L| ď εs

ď P rYL ď t` εs

while a lower bound is given by

P rXn,L ` YL ď t, |Xn,L| ď εs ě P rYL ď t´ ε, |Xn,L| ď εs

“ P rYL ď t´ εs ´ P rYL ď t´ ε, |Xn,L| ą εs

ě P rYL ď t´ εs ´ P r|Xn,L| ą εs .

By virtue of Part 1 and Part 2 of Lemma 7.8, the bound to (7.15) can be refined as
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follows: Starting with (7.20), we get

ˇ

ˇ

ˇ
P rXn,L ` YL ď ts ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
P rXn,L ` YL ď t, |Xn,L| ď εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ
` P r|Xn,L| ą εs

ď max

¨

˚

˚

˝

|P rYL ď t` εs ´ P rσ0Z ď ts
ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P r|Xn,L| ą εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

˛

‹

‹

‚

`P r|Xn,L| ą εs

ď max

¨

˚

˚

˝

|P rYL ď t` εs ´ P rσ0Z ď ts
ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ
` P r|Xn,L| ą εs

˛

‹

‹

‚

`P r|Xn,L| ą εs

ď max
´ˇ

ˇ

ˇ
P rYL ď t` εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

¯

`2P r|Xn,L| ą εs . (7.21)

Further considering of the two items in the maximum in (7.21) yields

ˇ

ˇ

ˇ
P rYL ď t` εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
P rYL ď t` εs ´ P rσ0Z ď t` εs ` P rσ0Z ď t` εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
P rYL ď t` εs ´ P rσ0Z ď t` εs

ˇ

ˇ

ˇ
` P rt ă σ0Z ď t` εs

and

ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P rσ0Z ď t´ εs ` P rσ0Z ď t´ εs ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P rσ0Z ď t´ εs

ˇ

ˇ

ˇ
` P rt´ ε ă σ0Z ď ts .
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By Part 3 of Lemma 7.8 , the upper bound to (7.15) becomes

ˇ

ˇ

ˇ
P rXn,L ` YL ď ts ´ P rσ0Z ď ts

ˇ

ˇ

ˇ

ď max
´
ˇ

ˇ

ˇ
P rYL ď t` εs ´ P rσ0Z ď t` εs

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
P rYL ď t´ εs ´ P rσ0Z ď t´ εs

ˇ

ˇ

ˇ

¯

`max
´

P rt ă σ0Z ď t` εs ,P rt´ ε ă σ0Z ď ts
¯

` 2P r|Xn,L| ą εs

ď sup
yPR

ˇ

ˇ

ˇ
P rYL ď ys ´ P rσ0Z ď ys

ˇ

ˇ

ˇ

` sup
yPR

P ry ă σ0Z ď y ` εs ` 2P r|Xn,L| ą εs . (7.22)

The proof of Lemma 7.3 is completed by noting that the bound in (7.22) does not

depend on t. �

7.8 Simulations

To visualize the approximation to the CDF of the rv Dn,Ln , we plot the empir-

ical CDF of the rv Dn,Ln where the data is collected from simulations, and compare

it with the CDF of the rv e
?
Lnpσ0Z`En,Ln q. The comparison is based on the approxi-

mation in (7.1), namely

P rDn,Ln ď xs “Approx P
„

σ0Z ď
1
?
Ln

lnpxq ´ En,Ln


“ P
”

e
?
Lnpσ0Z`En,Ln q ď x

ı

for x “ 1, 2, . . . .

Fix n “ 2, 3, . . . and a ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0. By

Theorem 7.2, the quantity

∆n,Ln “ max
x“0,1,...,n´1

ˇ

ˇ

ˇ

ˇ

ˇ

P rDn,Ln ă xs ´ P
”

e
?
Lnpσ0Z`En,Ln q ď x

ı

ˇ

ˇ

ˇ

ˇ

ˇ

is bounded above by C
Ln

for some C ą 0 when n is sufficiently large.
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Let K “ 1, 2, . . . be the sample size which does not depend on the number of

nodes n. Fix α, β, γ and µp1q in p0, 1q. For each n “ 2, 3, . . . and the corresponding

Ln, we generateK independent MAGs. The degree of node 1 is collected from each of

these K MAGs to form the collection of i.i.d. degree samples tDn,Ln,i, i “ 1, . . . , Ku.

We use

p∆n,Ln,K “ max
x“0,1,...,n´1

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

i“1

1rDn,Ln,i ď xs ´ P
”

e
?
Lnpσ0Z`En,Ln q ď x

ı

ˇ

ˇ

ˇ

ˇ

ˇ

to evaluate the performance of the approximation instead of ∆n,Ln since the empiri-

cal CDF 1
K

řK
i“1 1rDn,L,i ď xs is a strongly consistent point estimator of P rDn,L ď xs

for each n “ 2, 3, . . . , L “ 1, 2, . . . and x “ 0, 1, . . . , n´ 1.

Selected results are plotted in Figure 7.1. This figure is generated as follows:

We have set α “ 0.9, β “ 0.7, γ “ 0.6, µp1q “ 0.35 and the ρ´admissible scaling to

be

Ln “ tρ lnnu.

We varied n and ρ while keeping 1 ` ρ ln Γp0q ą 0. Four cases are considered (i.e.,

pn “ 4000, ρ “ 1q, pn “ 4000, ρ “ 1.5q, pn “ 8500, ρ “ 1q and pn “ 8500, ρ “ 1.5q).

For each case, we generated 1000 graphs (i.e., K “ 1000), and collected the degree

value of node 1 from each graph so that all samples are mutually independent. The

black dots form the empirical CDF of Dn,Ln while the red line reflects the function

F pxq “ P
”

e
?
Lnpσ0Z`En,Ln q ď x

ı

. We find that p∆maxs are very small in all cases,

especially comparing with 1?
L

. Due to computational limitations, we cannot make

Ln (or ρn lnn) very large in order to see an obvious trend of convergence. But

nevertheless, the maximum difference between the two CDFs being less than 0.05
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suggested that our approximation is very accurate.
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(a) ρ “ 1, n “ 4000, Ln “ 8, p∆max “

0.0355

(b) ρ “ 1.5, n “ 4000, Ln “ 12,

p∆max “ 0.0422

(c) ρ “ 1, n “ 8500, Ln “ 9, p∆max “

0.0420

(d) ρ “ 1.5, n “ 8500, Ln “ 13,

p∆max “ 0.0451

Figure 7.1: CDF Comparison
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Appendix A:

A proof of Lemma 3.4

The arguments are very similar to the ones given in the proof of Lemma 3.3.

Pick positive n “ 2, 3, . . . and L “ 1, 2, . . ., and consider distinct nodes u, v P Vn.

For k, ` “ 0, 1, . . . , L, not necessarily distinct, we start from the relation (3.32).

Note that the factor ξn,Lpuqξn,Lpvq can be expressed as

ξn,Lpuqξn,Lpvq “

n
ź

w“1, w‰u

p1´ χLpu,wqq ¨
n
ź

w“1, w‰v

p1´ χLpv, wqq

“ p1´ χLpu, vqq ¨
n
ź

w“1, w‰u,v

p1´ χLpu,wqq p1´ χLpv, wqq

with factors that can be represented as

1´ χLpu, vq “ 1 rUu,v ą QLpALpuq,ALpvqqs

and

n
ź

w“1, w‰u,v

p1´ χLpu,wqq p1´ χLpv, wqq

“

n
ź

w“1, w‰u,v

1 rUu,w ą QLpALpuq,ALpwqqs ¨ 1 rUv,w ą QLpALpvq,ALpwqqs .
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Under the enforced independence assumptions, it is now straightforward to conclude

that

E
”

ξn,Lpuqξn,Lpvq
ˇ

ˇ

ˇ
ALp1q, . . . ,ALpnq

ı

“ p1´QLpALpuq,ALpvqqq ¨
n
ź

w“1, w‰u,v

p1´QLpALpuq,ALpwqqq p1´QLpALpvq,ALpwqqq .

The smoothing property of conditional expectations is again invoked, this time to

obtain

E
”

ξn,Lpuqξn,Lpvq
ˇ

ˇ

ˇ
ALpuq,ALpvq

ı

“ E

«

E
”

ξn,Lpuqξn,Lpvq
ˇ

ˇ

ˇ
ALp1q, . . . ,ALpnq

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq,ALpvq

ff

“ p1´QLpALpuq,ALpvqqq ¨ E

«

n
ź

w“1, w‰u,v

. . .

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq,ALpvq

ff

(A.1)

where

E

«

n
ź

w“1, w‰u,v

. . .
ˇ

ˇ

ˇ
ALpuq,ALpvq

ff

“ E

«

n
ź

w“1, w‰u,v

p1´QLpALpuq,ALpwqqq p1´QLpALpvq,ALpwqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq,ALpvq

ff

“ E

«

n
ź

w“1, w‰u,v

p1´QLpaL,ALpwqqq p1´QLpbL,ALpwqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq,ALpvq

ff

aL “ ALpuq

bL “ ALpvq

“ E

«

n
ź

w“1, w‰u,v

p1´QLpaL,ALpwqqq p1´QLpb,ALpwqqq

ff

aL“ALpuq,bL“ALpvq

“

n
ź

w“1, w‰u,v

E rp1´QLpaL,ALpwqqq p1´QLpbL,ALpwqqqsaL“ALpuq,bL“ALpvq

“

´

E rp1´QLpaL,ALqq p1´QLpbL,ALqqsaL“ALpuq,bL“ALpvq

¯n´2

(A.2)
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under the enforced i.i.d. assumptions on the rvs ALp1q, . . . ,ALpnq. Using the

notation introduced earlier at (2.23) and (3.30) we can write

E rp1´QLpaL,ALqq p1´QLpbL,ALqqs

“ 1´Q‹LpaLq ´Q
‹
LpbLq `Q

‹‹
L paL, bLq, aL, bL P t0, 1u

L. (A.3)

This allows us to conclude that

E

«

n
ź

w“1, w‰u,v

p1´QLpALpuq,ALpwqqq p1´QLpALpvq,ALpwqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ALpuq,ALpvq

ff

“ p1´Q‹LpALpuqq ´Q
‹
LpALpvqq `Q

‹‹
L pALpuq,ALpvqqq

n´2 , (A.4)

and substituting into (A.1) we obtain the desired conclusion (3.29). �
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Appendix B:

A proof of Lemma 4.6

For any ρ-admissible scaling L : N0 Ñ N0, Lemma 2.6 gives

ˆ

Ln
rλLns

˙

„

?
2πLn

`

Ln
e

˘Ln

a

2πrλLns

´

rλLns

e

¯rλLns a

2πpLn ´ rλLnsq

´

Ln´rλLns

e

¯Ln´rλLns

“

?
2πLn

`

Ln
e

˘Ln

?
2πλLn

`

λLn
e

˘λLn
a

2πp1´ λqLn

´

p1´λqLn
e

¯p1´λqLn
(B.1a)

ˆ

d

λLnp1´ λqLn
prλLnsqpLn ´ rλLnsq

(B.1b)

ˆ

ˆ

λLn
rλLns

˙rλLns ˆ

p1´ λqLn
Ln ´ rλLns

˙Ln´rλLns

(B.1c)

ˆ

ˆ

p1´ λq

λ

˙δpn;Lnq

(B.1d)

with

δpn;Lnq “ rλLns´ λLn (B.2)

taking values in p0, 1q for n “ 1, 2, . . . .
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The lemma will be established if we show that (B.1b) and (B.1c) converge

to 1 when n goes to infinity and (B.1d) is bounded below by a carefully selected

constant.

It is plain that (B.1b) converges to 1 since

lim
nÑ8

λLn
rλLns

“ 1 and lim
nÑ8

p1´ λqLn
Ln ´ rλLns

“ 1.

Indeed, for each n “ 2, 3, . . . , we have

λLn
rλLns

“
rλLns´ δpn;Lnq

rλLns
“ 1´

δpn;Lnq

rλLns
(B.3)

with δpn;Lnq bounded between 0 and 1 and rλLns goes to infinity when n grows

unboundedly large. Similar arguments yield

lim
nÑ8

p1´ λqLn
Ln ´ rλLns

“ lim
nÑ8

ˆ

1`
δpn;Lnq

Ln ´ rλLns

˙

“ 1.

For (B.1c), it involves the technique of Taylor series expansion for lnp1 ` xq

when x is close to 0, namely

lnp1` xq “ x´
x2

2
` opx2

q

From (B.3), we know

ˆ

λLn
rλLns

˙rλLns

“

ˆ

1´
δpn;Lnq

rλLns

˙rλLns

“ erλLns lnp1´
δpn;Lnq

rλLns q. (B.4)

Since δpn;Lnq
rλLns

converges to 0 when n goes to infinity, Taylor series expansion of

ln
´

1´ δpn;Lnq
rλLns

¯

gives

ln

ˆ

1´
δpn;Lnq

rλLns

˙

“ ´
δpn;Lnq

rλLns
´
δpn;Lnq

2

2rλLns2
` o

ˆ

δpn;Lnq
2

rλLns2

˙

.
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As a result, (B.4) becomes

ˆ

λLn
rλLns

˙rλLns

“ e
´δpn;Lnq´

δpn;Lnq
2

2rλLns
`o

ˆ

δpn;Lnq
2

rλLns

˙

. (B.5)

In a similar manner, we have

ˆ

p1´ λqLn
Ln ´ rλLns

˙Ln´rλLns

“

ˆ

1`
δpn;Lnq

Ln ´ rλLns

˙Ln´rλLns

“ epLn´rλLnsq lnp1`
δpn;Lnq
Ln´rλLnsq. (B.6)

Taylor series expansion of ln
´

1` δpn;Lnq
Ln´rλLns

¯

gives

ln

ˆ

1`
δpn;Lnq

Ln ´ rλLns

˙

“
δpn;Lnq

Ln ´ rλLns
´

δpn;Lnq
2

2pLn ´ rλLnsq2
` o

ˆ

δpn;Lnq
2

pLn ´ rλLnsq2

˙

.

since δpn;Lnq
Ln´rλLns

converges to 0 when n goes to 8. Then (B.6) becomes

ˆ

p1´ λqLn
Ln ´ rλLns

˙Ln´rλLns

“ e
δpn;Lnq´

δpn;Lnq
2

2pLn´rλLnsq
`o

ˆ

δpn;Lnq
2

Ln´rλLns

˙

. (B.7)

Multiplying (B.5) by (B.7), we get

ˆ

λLn
rλLns

˙rλLns ˆ

p1´ λqLn
Ln ´ rλLns

˙Ln´rλLns

“ e
´
δpn;Lnq

2

2rλLns
`o

ˆ

δpn;Lnq
2

2rλLns

˙

´
δpn;Lnq

2

2pLn´rλLnsq
`o

ˆ

δpn;Lnq
2

2pLn´rλLnsq

˙

. (B.8)

It is now plain that (B.1c) converges to 1 since the exponent in (B.8) converges to

0 when n grows unboundedly large.

For (B.1d), it is plain that

ˆ

1´ λ

λ

˙δpn;Lnq

ě 1 if
1´ λ

λ
ě 1

and
ˆ

1´ λ

λ

˙δpn;Lnq

ě
1´ λ

λ
if

1´ λ

λ
ă 1.
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It follows that (B.1d) is bounded below by the quantity kpλq given by

kpλq “ min

ˆ

1,
1´ λ

λ

˙

.

Consequently, as (B.1b) and (B.1c) both converge to 1, we conclude that

ˆ

Ln
rλLns

˙

„

?
2πLn

`

Ln
e

˘Ln

?
2πλLn

`

λLn
e

˘λLn
a

2πp1´ λqLn

´

p1´λqLn
e

¯p1´λqLn

ˆ

1´ λ

λ

˙δpn;Lnq

“
1

a

2πλp1´ λqLn

ˆ

1

λ

˙λLn ˆ 1

1´ λ

˙p1´λqLn ˆ1´ λ

λ

˙δpn;Lnq

Moreover, from the lower bound on (B.1d), we conclude that

1
a

2πλp1´ λqLn

ˆ

1

λ

˙λLn ˆ 1

1´ λ

˙p1´λqLn ˆ1´ λ

λ

˙δpn;Lnq

ě
kpλq

a

2πλp1´ λqLn

ˆ

1

λ

˙λLn ˆ 1

1´ λ

˙p1´λqLn

ą
kpλq

2
a

2πλp1´ λqLn

ˆ

1

λ

˙λLn ˆ 1

1´ λ

˙p1´λqLn

, n “ 1, 2, . . . . (B.9)

Because of the strict inequality in (B.9), there exists a positive integer N such that

ˆ

Ln
rλLns

˙

ě
kpλq

2
a

2πλp1´ λqLn

ˆ

1

λ

˙λLn ˆ 1

1´ λ

˙p1´λqLn

, n ě N.

This completes the proof of Lemma 4.6. �
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Appendix C:

A proof of Proposition 5.10

The calculation is pretty straight forward. Recall that TnpLq is the sum of

indicator rvs tξn,Lpu, v, wq, u, v, w P Vn, u ă v ă wu. Expanding the square of this

sum, we obtain four parts, namely

1. ξn,Lpu, v, wqξn,Lpu, v, wq, product of components where all three end points are

the same. There are
`

n
3

˘

of them;

2. ξn,Lpu, v, wqξn,Lpu, v, sq, product of components which share two end points.

There are
`

n
3

˘`

3
2

˘`

n´3
1

˘

different combinations;

3. ξn,Lpu, v, wqξn,Lpu, s, rq, product of components which share only one end point.

There are
`

n
3

˘`

3
1

˘`

n´3
2

˘

different combinations;

4. ξn,Lpu, v, wqξn,Lps, r, tq, product of distinct components which share no end

points. There are
`

n
3

˘`

n´3
3

˘

different combinations.
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Therefore, we can write

ErTnpLq2s “ E

»

–

˜

ÿ

1ďuăvăwďn

ξn,Lpu, v, wq

¸2
fi

fl

“ E

«

ÿ

1ďuăvăwďn

ξn,Lpu, v, wq

ff

`E

»

—

—

—

—

—

–

ÿ

1ďuăvăwďn

ÿ

u˚, v˚ P tu, v, wu, u˚ ‰ v˚,

s P Vnztu, v, wu

ξn,Lpu, v, wqξn,Lpu
˚, v˚, sq

fi

ffi

ffi

ffi

ffi

ffi

fl

`E

»

—

—

—

—

—

–

ÿ

1ďuăvăwďn

ÿ

u˚ P tu, v, wu,

r, s P Vnztu, v, wu, r ă s

ξn,Lpu, v, wqξn,Lpu
˚, r, sq

fi

ffi

ffi

ffi

ffi

ffi

fl

`E

»

—

—

—

—

—

–

ÿ

1ďuăvăwďn

ÿ

r ă s ă t,

r, s, t P Vnztu, v, wu

ξn,Lpu, v, wqξn,Lpr, s, tq

fi

ffi

ffi

ffi

ffi

ffi

fl

,

and this leads to

ErTnpLq2s “

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3s

`3pn´ 1q

ˆ

n

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3, 1 „L 4, 2 „L 4s

`3

ˆ

n

3

˙ˆ

n´ 3

2

˙

Pr1 „L 2, 2 „L 3, 1 „L 3, 1 „L 4, 5 „L 4, 1 „L 5s

`

ˆ

n

3

˙ˆ

n´ 3

3

˙

Pr1 „L 2, 2 „L 3, 1 „L 3s2.

�
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Appendix D:

A proof of Lemma 7.6

Consider a ρ´admissible scaling L : N0 Ñ N0 with ρ ą 0. Fix n “ 2, 3, . . .

and ε ą 0. The triangular inequality yields

ˇ

ˇ

ˇ

ˇ

1
?
Ln

ˆ

lnD`n,Ln ´ lnE rDn,Ln |SLnp1qs ` ln
n´ 1

n

˙ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
Ln

`

lnD`n,Ln ´ lnE rDn,Ln |SLnp1qs
˘

ˇ

ˇ

ˇ

ˇ

`
1
?
Ln

ln
n

n´ 1
,

whence,

P r|Xn,Ln | ą εs ď P
„
ˇ

ˇ

ˇ

ˇ

1
?
Ln

`

lnD`n,Ln ´ lnE rDn,Ln |SLnp1qs
˘

ˇ

ˇ

ˇ

ˇ

`
1
?
Ln

ln
n

n´ 1
ą ε



.

(D.1)

For notational simplicity, we write

ε1n,Ln “
a

Lnε´ ln
n

n´ 1
, n “ 2, 3, . . . .

Because limnÑ8 ln n
n´1

“ 0, it is easy to see that, for any ε ą 0, there exists a

positive integer Npεq such that

ε1n,Ln ą 0, n ě Npεq.
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Then, when n ě Npεq, (D.1) can be rewritten as

P r|Xn,Ln | ą εs ď P

«
ˇ

ˇ

ˇ

ˇ

ˇ

ln
D`n,Ln

E rDn,Ln |SLnp1qs

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε1n,Ln

ff

“ P

«

ln
D`n,Ln

E rDn,Ln |SLnp1qs
ą ε1n,Ln

ff

` P

«

ln
D`n,Ln

E rDn,Ln |SLnp1qs
ă ´ε1n,Ln

ff

“ P

«

D`n,Ln
E rDn,Ln |SLnp1qs

´ 1 ą eε
1
n,Ln ´ 1

ff

`P

«

D`n,Ln
E rDn,Ln |SLnp1qs

´ 1 ă e´ε
1
n,Ln ´ 1

ff

ď P

«
ˇ

ˇ

ˇ

ˇ

ˇ

D`n,Ln
E rDn,Ln |SLnp1qs

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą 1´ e´ε
1
n,Ln

ff

(D.2)

where the last step was based on the fact that

1´ e´ε
1
n,Ln ă eε

1
n,Ln ´ 1, ε1n,Ln ą 0.

Upon applying Markov inequality to the last step, we get

P

»

–

˜

D`n,Ln
E rDn,Ln |SLnp1qs

´ 1

¸2

ą

´

1´ eε
1
n,Ln

¯2

fi

fl ď

E

«

ˆ

D`n,Ln
ErDn,Ln |SLn p1qs

´ 1

˙2
ff

p1´ eε
1
n,Ln q

2 .

(D.3)

With (6.6), the numerator of the left hand side of (D.3) takes the form

E

»

–

˜

D`n,Ln
E rDn,Ln |SLnp1qs

´ 1

¸2
fi

fl

“ E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1`

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs

˙2
ff

“ E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ff

(D.4a)

` E
„

2

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs



(D.4b)

` E

«

ˆ

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs

˙2
ff

. (D.4c)
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By (6.22), an upper bound to (D.4a) is given by

E

«

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙2
ff

ď
1

pn´ 1qΓp0qLn
´

1

n´ 1
ă

1

pn´ 1qΓp0qLn
. (D.5)

Because of the indicator function 1rDn,Ln “ 0s, (D.4b) can be rewritten as

E
„

2

ˆ

Dn,Ln

E rDn,Ln |SLnp1qs
´ 1

˙

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs



“ ´2E
„

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs



ă 0. (D.6)

For (D.4c), by preconditioning on SLnp1q, E rDn,Ln |SLnp1qs is determined,

namely

E

«

ˆ

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs

˙2
ff

“ E

«

E r1rDn,Ln “ 0s|SLnp1qs

E rDn,Ln |SLnp1qs
2

ff

“ E
„

P rDn,Ln “ 0|Sn,Lnp1qs

pn´ 1q2Γp1q2SLn p1qΓp0q2Ln´2SLn p1q



upon using the fact that 1rDn,Ln “ 0s “ 1rDn,Ln “ 0s2.

Under the assumption Γp1q ą Γp0q, it is plain that

pn´ 1qΓp1qSLn p1qΓp0qLn´SLn p1q ě pn´ 1qΓp0qLn

and

P rDn,Ln “ 0|SLnp1qs “
`

1´ Γp1qSLn p1qΓp0qLn´SLn p1q
˘n´1

ď
`

1´ Γp0qLn
˘n´1

Using these facts, we get the bounds

E

«

ˆ

1rDn,Ln “ 0s

E rDn,Ln |SLnp1qs

˙2
ff

ď E

«

`

1´ Γp0qLn
˘n´1

pn´ 1q2Γp0q2Ln

ff

ď
e´pn´1qΓp0qLn

pn´ 1q2Γp0q2Ln
. (D.7)
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Collecting (D.5), (D.6) and (D.7) we obtained, an upper bound to (D.4) is in the

form

E

»

–

˜

D`n,Ln
E rDn,Ln |SLnp1qs

´ 1

¸2
fi

fl ď
1

pn´ 1qΓp0qLn
`

e´pn´1qΓp0qLn

pn´ 1q2Γp0q2Ln
. (D.8)

Under the condition 1` ρ ln Γp0q ą 0, we have

lim
nÑ8

pn´ 1qΓp0qLn “ 8,

so that there exists N1 ą 0 such that for n ě N1, we have

e´pn´1qΓp0qLn

pn´ 1q2Γp0q2Ln
ă

1

pn´ 1qΓp0qLn
, n ě N1.

Together with (D.2) and (D.3), we readily conclude that

P r|Xn,Ln | ą εs ď
2

pn´ 1qΓp0qLn
1

´

1´ e´
?
Lnε`ln n

n´1

¯2 , n ą N

with N “ maxpN1, Npεqq. �

153



Bibliography

[1] A. R. Radcliffe-Brown, “On social structure,” The Journal of the Royal An-
thropological Institute of Great Britain and Ireland 70 (1940), pp. 1-12.

[2] D. West, Introduction to Graph Theory, Prentice Hall, New Jersey (NJ), 1996.

[3] M.D. Penrose, Random Geometric Graphs, Oxford Studies in Probability 5,
Oxford University Press, New York (NY), 2003.

[4] M. A. Serrano and M. Boguna, “Clustering in complex networks. I. General
formalism,” Physical Review E 74 (2006), 056114.
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