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Nonlinear processes in hot, magnetized plasma are notoriously difficult to un-

derstand without the use of numerical simulations. In recent decades, first principles,

kinetic simulations have been widely and successfully used to study plasma turbu-

lence and reconnection in weakly collisional systems. In this thesis, extensions of

well-known, Lagrangian, particle-in-cell (PIC) simulation algorithms for problems

such as these are derived and implemented. The algorithms are tested for multiple

species (electrons and ions, with the physical mass ratio) in non-trivial magnetic

geometry (cylindrical/toroidal). The advances presented here address two major

shortcomings of conventional gyrokinetic PIC algorithms, with demonstrated excel-

lent performance on large, parallel supercomputers. Although the gyrokinetic for-

malism rigorously describes the evolution of fluctuations which are small compared

to a typical Larmor radius, most existing algorithms use low-order approximations

of the gyroaveraging operator, and cannot accurately describe small scale fluctua-

tions. The gyroaveraging algorithm presented here accurately and uniquely treats



a wide range of fluctuation scales, above and below the thermal gyroradius. The

second shortcoming of traditional algorithms relates to the slow loss of accuracy that

is associated with the build-up of noise. In this thesis, a PIC pitch-angle scattering

collision operator is developed. This collision operator is physically motivated and

controls the growth of noise without introducing non-physical dissipation. Basic

tests of the new algorithms are presented in linear and nonlinear regimes, using one

to thousands of processors simultaneously.
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Chapter 1

Gyrokinetic theory and simulation

1.1 Introduction

Turbulence, reconnection and other nonlinear plasma processes are important

elements of many problems in plasma physics. Whether one is trying to understand

the properties of the solar wind sweeping past the Earth or the confinement of

thermonuclear plasma in laboratory experiments such as tokamaks, the critical role

of nonlinear plasma processes usually cannot be ignored. The theoretical tool of

choice for getting a conceptual understanding of nonlinear plasma processes is the

simulation. This thesis describes extensions of well-known algorithms for plasma

simulation. The specific algorithms presented are generalizations of widely-used

gyrokinetic particle-in-cell algorithms.

Particle-in-cell (PIC) techniques were discovered and popularized by Dawson,

[18] Buneman, [10] Hockney and Eastwood, [33] and Birdsall and Langdon. [6, 7]

Kinetic simulation algorithms are important for problems for which the interparticle

collisions are not frequent enough to enforce a Maxwellian distribution. When the
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collisions are that fast, one prefers fluid models. In many plasmas, collisions are fast

enough to keep the slowly evolving background distribution Maxwellian, but not

the rapidly evolving fluctuations. For these plasmas, when sufficiently magnetized,

gyrokinetic [1, 44] simulations are employed.

Gyrokinetic PIC simulations began with Lee in the 1980’s, [44] and has flour-

ished in the years since.1 Kotschenreuther and Denton [19] and Dimits and Lee [21]

developed δf algorithms for gyrokinetic PIC simulations. Kotschenreuther empha-

sized the low-noise properties of the δf scheme (to be discussed in detail below),

while Dimits and Lee emphasized the favorable run-time performance. By the time

the Kotschenreuther and Denton paper was published, it was clear that good conser-

vation properties of the δf scheme were difficult to achieve, requiring large numbers

of particles and expensive runs. Aydemir [2] discussed the problem of statistical

noise in plasma particle simulations around the same time (1994). In the inter-

vening years, the Lausanne group worked extensively on the problems of noise and

conservation laws, in largely unpublished work. However, only recently have careful

benchmarks led to a community consensus on the issue of the “growing weights”

problem associated with δf algorithms.[48]

The heart of the matter of noise in GK δf simulations is this: each simu-

lation particle represents the departure of the distribution function from a back-

ground Maxwellian with spatial gradients. This departure is identified as a particle

“weight”. As the simulation particles move up and down the gradient, their weights

must grow (in absolute value), because the departure from the background that they

1Gyrokinetics will be defined and discussed below.
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represent is proportional to the distance they are moved along the gradient. After a

period of time, those particles whose weights have grown the largest begin to domi-

nate the charge and current integrals for the sources in Maxwell’s equations. It is as

if the number of particles in the simulation were decreasing in time; clearly, beyond

some point, if nothing can be done to control the RMS growth of the weights, sta-

tistical noise will swamp the signal, and the fluctuating electric and magnetic fields

will no longer represent the coherent dynamics of interest.

The algebraic growth of the weights in time is not purely numerical in nature.

In a real plasma, δf(v) develops more and more structure as time increases, due

to effects like Landau damping, or phase mixing. In the physical system, there

are almost always sufficient numbers of collisions to bring about irreversibility by

smoothing out these oscillatory structures at some scale in velocity space. The

growing weights in a δf PIC simulation are the numerical manifestation of phase

mixing.

Krommes [41] and Brunner, et al., [9] realized that collisions were needed in δf

PIC simulations to give irreversibility. Lee and Tang [45] recognized that without

collisions, the weights would grow indefinitely in a δf simulation of an unstable

plasma. The collision operators in wide use, however, such as the Monte Carlo

operator of Dimits and Cohen [20], surprisingly do not limit the growth of weights.

In fact, as pointed out by Brunner, et al., these collision operators actually speed

the growth of the weights! One can understand this by realizing that the Monte

Carlo schemes (for example) do not change the weight, but rather the velocity of

a simulation particle. This puts the particle onto a different trajectory, with (on

3



average) a correspondingly larger weight than before. More sophisticated collision

operators have been proposed [41], but these schemes are generally of the class

for which the reduction in weight is proportional to the weight itself, rather than

directly to the presence of structure in f(v). Parker and Chen have proposed a

coarse-graining algorithm to reduce the average weights. However, their scheme

cannot be easily related to a physical effect. It tends to be very dissipative for large

number of particles and ineffective for small number of particles. More will be said

about these schemes in Chapters 4 and 5. Recently, a scheme similar to ours was

published by Hinton [31], but Hinton’s scheme has not yet been implemented in any

simulation code.

In this thesis, the problem of growing noise in δf PIC simulations is solved

by employing a pitch-angle scattering collision operator in the velocity space. To

evaluate C(f) ∼ ν d2f/dξ2 requires interpolating f(v) at each spatial grid point,

which is why it has generally been avoided. The algorithm presented here paral-

lelizes very efficiently, however, making this interpolation an acceptable cost. This

is expected to be particularly the case when long-time simulations are desired, or

when the physical form of the collision operator is thought to be important – such

as for the trapped-electron-mode instability in tokamaks. In any case, the collisional

algorithm derived here is straightforward, physical, and is guaranteed to control the

growth of the weights as long as enough simulation particles are used. Because our

collision operator allows accurate long-time simulation of fast turbulence dynam-

ics, it is a critical component of a useful multiscale simulation algorithm for kinetic

plasma turbulence.
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A second problem addressed in this thesis is a multiscale spatial issue. Gy-

rokinetic theory treats perturbations both larger and smaller than the thermal ion

gyroradius rigorously. This is achieved with the employ of a non-local, integral

gyroaveraging operator (a ring average in the plane perpendicular to the magnetic

field). All existing GK PIC codes approximate this operator with a ring-shaped

stencil.[44] Typically, a four-point stencil is used, and perturbation comparable to

or smaller than the thermal gyroradius are treated inaccurately. In Chapter 2, we

present an alternative gyroaveraging algorithm which uses the spectral form of the

gyroaveraging operator. This form is accurate even for very small spatial fluctu-

ations. Again, such an algorithm was thought to be prohibitively expensive, but

our implementation is as fast as existing, low-accuracy schemes, particularly in the

limit in which one believes short wavelength fluctuations are important, and should

be resolved. Again, the canonical example is the trapped electron mode instability,

whose perpendicular wavelength is associated more with the electron banana width

than with the ion gyroradius. A less familiar example, but one which we explore

in Chapter 6, is the entropy mode in a Z-pinch.[53, 54] Our algorithm faithfully

reproduces the entropy mode instability even when k⊥ρi � 1. We reiterate that

our combined algorithm, which amounts to a re-imagining of the GK PIC family

of algorithms, is efficient and parallelizes well. Parallelization is achieved without

domain decomposition, which would make the spectral solver more expensive to

evaluate.

In this chapter we introduce the gyrokinetic orderings [1, 26] and derive the

gyrokinetic equation. We will start from the Boltzmann equation, and focus on
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including collisional physics systematically. Our derivation follows that of Howes,

et al. [34]

1.2 The gyrokinetic equation

The Boltzmann equation, which can be derived from the fundamental Liou-

ville equation with the application of the BBGKY hierarchy, describes the evolution

of the single particle distribution function in a weakly coupled plasma, which sat-

isfies n0eλ
3
De � 1. Here, n0e is the mean electron number density and λDe is the

electron Debye length. Upon identifying the acceleration experienced by species s

with the electromagnetic (Lorentz) force divided by the mass ms, one may write the

Boltzmann equation as:

dfs
dt

=
∂fs
∂t

+ v · ∇fs +
qs
ms

(
−∇φ− 1

c

∂A

∂t
+

v ×B

c

)
· ∂fs
∂v

=

(
∂fs
∂t

)
coll

. (1.1)

Note that the electric field is expressed in potential form, as is customary in the

gyrokinetic literature. When the magnetic vector potential is used, the Coulomb

gauge will be employed, so that ∇ ·A = 0.

The gyrokinetic ordering describes low-frequency plasma motions in magne-

tized plasma, such that any dynamical frequency of interest ω satisfies ω � Ω,

where Ω is the ion cyclotron frequency. Due to strong magnetization of the plasma

the ion Larmor radius ρi is much smaller than the typical macroscopic length scale

L of the plasma, so that

ρi ≡
vTi
Ωi

� L, ω � Ωi.
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The gyrokinetic ordering is carried out in powers of ε, given by

ε ≡ ρi
L
� 1.

For the timescale of the turbulent fluctuations in the system one assumes:

ω ∼ vTi
L
∼ O(εΩi).

An additional timescale in the problem is the transport rate at which the equilibrium

solution of the problem evolves over time.

t−1
transport ∼ ε2

vTi
L
∼ O(ε3Ωi).

The distribution function fs as well as the magnetic and electric fields B and E can

be broken up into an equilibrium part and into perturbed parts δ which vary at the

frequency ω. The subscript for the perturbed part indicates the order in ε of the

perturbation. Note that from here on we are dropping the subscript s that indicates

the species.

f(x,v, t) = F0(x,v, t) + δf1(x,v, t) + δf2(x,v, t) + . . . ,

B(x, t) = B0 + δB(x, t) = B0 +∇×A ,

E(x, t) = δE(x, t) = −∇φ− 1

c

∂A

∂t
.

The following table contains all the gyrokinetic ordering assumptions:
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TABLE 1

Gyrokinetic ordering assumptions

Slowly varying equilibrium 1
F0

∂F0

∂t
∼ O

(
ε2
vTi
L

)

Small amplitude fluctuations about the equilibrium δf1
F0
∼ δB

B0
∼ δE

(vTi/c)B0
∼ O(ε)

Medium time-scale variation of fluctuations 1
δf

∂δf
∂t
∼ 1

δB
∂δB
∂t
∼ 1

δE
∂δE
∂t
∼ ω

Medium time-scale collisions ν ∼ ω ∼ O(εΩi)

Small scale spatial variations of perturbations across B0 k⊥ ∼ b0×∇δf
δf

∼ (b0×∇)δB
|δB| ∼

∼ (b0×∇)δE
|δE| ∼ O

(
1
ρi

)

Large scale spatial variations of perturbations along B0 k‖ ∼ b0·∇δf
δf
∼ (b0·∇)δB

|δB| ∼

∼ (b0·∇)δE
|δE| ∼ O

(
1
L

)

⇒ k‖
k⊥
∼ ρi

L
∼ O(ε)

Large scale spatial variation of equilibrium across B ∇⊥F0

F0
∼ ∇⊥T0

T0

∼ ∇⊥n0

n0
∼ O

(
1
L

)

We shall develop the gyrokinetic equation in a magnetic flux tube, assumed to be

triply periodic. Commensurate with the orderings above, the flux tube is assumed

to be macroscopically long in the direction of the magnetic field, but thin across the

magnetic field. In such a flux tube, the discrete set of wavenumbers automatically

satisfy the relation k‖L ∼ k⊥ρ.
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1.3 From Boltzmann to Gyrokinetic

1.3.1 Coordinate system for gyrokinetics

The motion of a particle can be described in terms of its position in physical

space, r, or by following the center of its gyration motion, the gyro-center R. The

transformation from the particle position to its gyro-center is given by:

R = r +
v × b0

Ω0

.

This transformation to gyro-center position is known as the Catto Transformation.

We also define the perpendicular velocity v⊥, the parallel velocity v‖ and the gyro-

angle θ all with respect to the direction of the background magnetic field B0 = b0B0.

One can write this as

v = v‖b0 + v⊥[cos(θ)ê1 + sin(θ)ê2], (1.2)

in which the unit vectors ê1, ê2 and b0 form a right handed coordinate basis,

and in general vary on the macroscopic spatial scale L and the slow time scale

t−1
transport ∼ O(ε3Ωi). The fastest motion in the problem is the gyration motion of

the particles around the strong background magnetic field lines. Upon denoting the

gyrophase angle as θ, one can write this as

dθ

dt
= −Ω +O(εΩ).

In gyrokinetics it is useful to take advantage of the separation of time scales and

to average over the gyration motion of particles, so that one describes the evolution
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ẑ

ri

ŷ

x̂

B0

Ri

ρi

Figure 1.1: Physical and gyro-center coordinate. In a strong magnetic background

field a particle executes fast gyration motion around its gyro-center R. The radius

of this motion is the gyro-radius ρ. The physical position of the particle is given by

the vector r. In this diagram the strong background magnetic field B0 points in the

z-direction, while the gyration motion is perpendicular to B0 in the (x,y)-plane.

of a distribution of rings rather than the individual particle positions. There are

two different forms for the gyro-average that are required.

Ring average at fixed gyro-center position R

We integrate over the gyro-angle θ while keeping the gyro-center R and the velocities

v⊥ and v‖ fixed:

< A(r,v, t) >R=
1

2π

∮
dθA

(
R− v × b0

Ω
,v, t

)
(1.3)

Ring average at fixed particle position r

Again we integrate over gyro-angle θ, but this time we hold the particle position r

10



and the velocities v⊥ and v‖ fixed:

< A(r,v, t) >r=
1

2π

∮
dθA

(
r +

v × b0

Ω
,v, t

)
(1.4)

The assumptions described in Table 1 allow one to order the terms of the

Boltzmann equation Eq.(1.1) relative to ε.

1.3.2 O(ε−1)

The lowest order term in the equation gives:

(v ×B0) · ∇vF0 = 0 (1.5)

By transforming velocity variables from v to (v⊥, v‖, θ) one finds that the equilibrium

solution F0 is independent of gyrophase angle θ, as follows. Eqs. (1.2) and (1.5) can

be combined to yield

(v ×B0) · ∇vF0 = (1.6)

v⊥ sin(θ)
∂

∂vx
F0 − v⊥ cos(θ)

∂

∂vy
F0 = (1.7)

−∂v

∂θ
· ∇vF0 = −v⊥

∂

∂θ
F0 = 0 (1.8)

⇒ ∂F0

∂θ
= 0. (1.9)

Thus, the lowest order (equilibrium) distribution function is independent of the gy-

rophase angle θ.
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1.3.3 O(1)

At next order the Fokker-Plank equation becomes

v⊥ · ∇δf1 +
q

m

(
−∇φ+

v × δB
c

)
· ∂F0

∂v
− Ω

∂δf1

∂θ
= C(F0, F0) (1.10)

To find the solution for F0 from Eq.(1.10), we multiply by (1+F0) and integrate over

the entire phase space. Transverse to the magnetic field, the domain of integration is

sufficiently small that F0(x, y) ∼ const, and as noted earlier, periodicity is assumed.

The perturbed quantities will therefore have zero spatial average. Only the RHS

survives the phase-space integration. Using Boltzmann’s H-Theorem we know that

this gives us the unique solution that F0 is Maxwellian:

∫
d3r

∫
d3v(lnF0)C(F0, F0) = 0 ⇒︸︷︷︸

H−theorem

F0 =
n0

(
√

2πvT )3
exp

(
− v2

2vT

)
. (1.11)

Since the Maxwellian solution F0 leads to C(F0, F0) = 0, we can now substitute

Eq.(1.11) into Eq.(1.10) to find

v⊥ · ∇δf1 − Ω
∂δf1

∂θ
= −v · ∇

(
qφ

T0

)
F0. (1.12)

On the right hand side of the Eq. (1.12) we can drop the term v‖b0 ·∇
(
qφ
T

)
F0 since

this term is one order smaller in ε (because k‖ � k⊥). Therefore the particular

solution of the differential equation Eq.(1.12) can be identified as

δf1p = −
(
qφ

T

)
F0. (1.13)

By going from particle position to gyro-center position and using the identity

Ω

(
∂

∂θ

)
R

= Ω

(
∂

∂θ

)
r

− v⊥ · ∇ (1.14)
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we find that the homogenous solution, h, has to satisfy the following equation:

v⊥ · ∇h− Ω

(
∂h

∂θ

)
r

=

(
∂h

∂θ

)
R

= 0 (1.15)

Therefore the homogenous solution to Eq.(1.12) is independent of the gyro-angle θ

at constant gyro-center position R:

h = h(R, v, v⊥, t) =< h(R, v, v⊥, t) >R .

Collecting the results obtained so far, the distribution function f can be writ-

ten as

f =

(
1− qφ

T

)
F0 + h(R, v, v⊥, t) +O(ε2) (1.16)

with

δf1 = h(R, v, v⊥, t)−
qφ

T
F0.

The gyro-averaged perturbed distribution function thus can be written as

< δf1 >R= h(R, v, v⊥, t)−
q < φ >R

T
F0.

We note for future reference that < δf1 > describes the turbulence, and will be the

quantity that we simulate.

1.3.4 O(ε)

Using the solution given in Eq.(1.16) the Fokker-Planck equation, Eq.(1.1) to

order ε in gyro-center coordinates becomes:

∂h

∂t
+

dR

dt
·
(
∂h

∂R
+
∂F0

∂R

)
+ v⊥ · ∇F0 +

q

m

(
−∇⊥φ+

v × δB
c

)
·
(

v

v

∂h

∂v
+

v⊥
v⊥

∂h

∂v⊥

)

= C(h, F0) + C(F0, h) + Ω

(
∂δf2

∂θ

)
R

+
q

T0

(
∂φ

∂t
− v

c
· ∂A

∂t

)
F0 (1.17)
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with:

dR

dt
= v‖b0 +

c

B0

(
−∇φ− 1

c

∂A

∂t
+

v × δB
c

)
× b0

Note that the collision operator involve the distribution functions F0 and h both

for electrons and ions. To get an equation that no longer depends on the second

order perturbed distribution function δf2 we use Eq.(1.3) to take gyro-average at

constant gyro-center position R. By using the identity that < v⊥ ·∇A >R= 0 for an

arbitrary function A(r) we can simplify Eq.(1.17) a great deal and get the following

equation to solve:

∂h

∂t
+

〈
dR

dt

〉
R

·
(
∂h

∂R
+
∂F0

∂R

)
=

(
∂h

∂t

)
coll

+
q

T0

∂ < χ >R

∂t
F0 (1.18)

with:

(
∂h

∂t

)
coll

= 〈C(F0, h) + C(h, F0)〉R (1.19)〈
dR

dt

〉
R

= v‖b0 −
c

B0

∂ 〈χ〉R
∂R

× b0 (1.20)

and the gyrokinetic potential χ = φ− v ·A
c

(1.21)

The final term on the right hand side of Eq. (1.18) describes the work done

on the particles by the fluctuating fields. The physical meanings for the terms in

Eq. (1.20) are:

• v‖b0 : free streaming along the equilibrium field

• c
B0

∂〈χ〉R
∂R
× b0 : gyro-averaged perpendicular drifts.

Together with the low-frequency Maxwell equations,2 these equations consti-

tute the model we will study through the first part of the thesis. In the final chapter,

2Actually, since we are addressing only the electrostatic gyrokinetic problem, we need only

quasineutrality.
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we change the geometry of the problem and go from a slab to a toroidal geometry.

This will add a curvature drift to the set of equations. Furthermore we are going

to allow for the magnetic field to have a spatial dependence in the perpendicular

direction. This will lead to an additional drift term, the ∇B-drift.

1.4 Non-dimensionalization

Eqs. (1.18-1.21) can be expressed in non-dimensional form, consistent with the

orderings of Table I. Short distances across the magnetic field, characteristic of the

scale of the perturbations of interest, are normalized by ρi. For simplicity, if the

equilibrium magnetic field points in the z direction, then

(xN , yN) = (
x

ρi
,
y

ρi
).

Distances along the magnetic field are normalized by the macroscopic length L,

previously introduced, so that

zN =
z

L
.

Time is normalized by the quantity vt/L,

tN =
tvt
L
.

It is convenient to scale the perturbed quantities by L/ρi = ε−1, so that they are

manifestly of order unity. Apart from this factor, the electrostatic potential is

normalized in the usual way,

ΦN =
qΦ

T

L

ρi
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where q and T are conventionally taken to be the (hydrogenic) ion charge and

temperature, respectively. Upon making these substitutions, one finds that the final

equations (and thus any simulation results) depend on only a few nondimensional

quantities, such as the relative charges of the plasma species, their relative densities,

various ratios of equilibrium gradients, and so on. There is no dependence of this

nonlinear gyrokinetic set of equations on the expansion parameter ρi/L itself. When

modeling a particular physical system, one should always check that that physical

system has a sufficiently small value of ρi/L. How small this parameter must be for

gyrokinetic simulations to be a faithful description of the system is a question that

is outside gyrokinetic theory itself.

The full set of non-dimensional equations will be presented in the following

chapter, after the method of characteristics has been employed to produce the form

of the equations simulated in this thesis.
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Chapter 2

Introduction to the Code

To study gyrokinetic dynamics, a new Particle In Cell Code (GSP) has been

produced. The numerical method used is a δf -method, which solves the nonlinear

gyrokinetic equation along a set of characteristics. This method for solving the

gyrokinetic equation was first implemented by Kotschenreuther and Denton [19]

and by Dimits and Lee [21]. Since then several codes have been developed and the

method has been extended to solve the electromagnetic gyrokinetic equation in a

toroidal geometry. In the last decade massively parallel nonlinear δf -PIC codes such

as Gtc [46] and Pg3Eq [22] were developed.

In a δf -method, only the perturbed part of the distribution function evolves

over time and the equilibrium part of the distribution function is held constant. The

part of the noise in the system that is associated with capturing the equilibrium part

F0 from the actual particle positions in the code is eliminated. This leads to a great

advantage in terms of noise reduction since the fluctuations in the perturbed part of

the distribution function may be orders of magnitude smaller than the equilibrium

distribution, but are still crucial for determining physical quantities such as heat flux
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and particle transport. Hence, by not having to resolve F0 with the sampled particles

in the code, one zeros the discrete particle noise in the background distribution and

it becomes possible to address the problem with a smaller number of particles. The

alternative to a δf -code is a Full-f -Code. In such a code the particles sample the

full distribution f = F0 + δf . Early full-f particle gyrokinetic codes were developed

by Lee [44], and by Tajima and co-workers. Currently, a full-f semi-Lagrangian

algorithm has been developed by Grandgirard, et al., at Cadarache. Approaches

to these extensions of gyrokinetics have varied. Tajima, et al., integrated the full

characteristics of the Vlasov equation, including particle gyration. This is very

expensive, as one must treat frequencies much higher than those of direct interest.

More recently, it has been the practice to include ad hoc higher-order corrections to

Eqs. (1.18-1.21), such as might arise in a system for which ρi/L is not very small.

In most or all of these cases, no formal derivation of a set of equations to replace the

gyrokinetic model has been attempted. Here, we focus on simulating gyrokinetic

dynamics in the ρi/L = 0 limit.

Besides all the development of particle codes there have also been extensive

studies of the gyrokinetic equation using continuum methods. The first initial value

continuum code, gs2, was developed by Kotschenreuther [40] to solve the linear

gyrokinetic equation in ballooning coordinates. Liu and Dorland [24] extended this

code to include nonlinear dynamics and general geometry [5] for parallel computers.

Other nonlinear contiuum gyrokinetic codes in wide use for fusion calculations are

Gyro developed by Candy and Waltz [11] and Gene developed by Jenko [37].

In this thesis we use gs2 and AstroGK [35] to benchmark the results from

18



our PIC-code GSP with the results from those codes. AstroGK is a simpler of

version of gs2 that was developed by Dorland, Tatsuno, Howes, and Numata [35],

in which geometry effects from a toroidal geometry have been eliminated from gs2

and instead the gyrokinetic equation is solved in a slab.

To explain the numerical scheme that we are using we choose a fairly simple

physical case. We allow for background gradients in the temperature profile T0 and

in the particle density n0. Both these gradients are in the perpendicular direction

to the background magnetic field B0. In addition we make the system collisionless,

electrostatic (χ = φ) and solve it in a slab (no curvature). Note that already in

Chapter 1 we made the assumption of being in a slab and had no curvature drifts.

Under these assumptions, we can rewrite the equations in terms of < δf > instead

of h. The system of equations Eq.(1.18) - Eq.(1.21) then becomes:

∂

∂t
〈δf〉R + v‖b0 · ∇ 〈δf〉R + 〈vE×B〉R · ∇ 〈δf〉R =

−〈vE×B〉R · ∇F0 − v‖
q

T
F0 b0 · ∇ 〈φ〉R (2.1)

with: vE×B =
c

B0

b0 ×∇φ (2.2)

The symbol vE×B stands for the E×B-drift, which is entirely in the plane perpen-

dicular to the background magnetic field B0. From here on we are going to use the

operators ∇‖ = b0 ·∇, and ∇⊥, which is in the perpendicular direction to b0. Since

our code is a δf particle-in-cell code we now consider the method of characteristics.
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2.1 Method of Characteristics

A PIC-δf -code solves Eq.(2.1) using the method of characteristics together

with time-dependent weights. Since Eq.(2.1) is a first-order partial differential equa-

tion (PDE), we can find characteristic curves along which the PDE becomes a set

of Ordinary Differential Equations (ODEs). We then solve the set of ODEs along

the characteristic curves.

Following the notation from Sarra [57] we can rewrite a PDE in a general form

with n independent variables qi to get the following expression:

n∑
i=1

Ai
∂δf

∂qi
= B (2.3)

We have to solve Eq.(2.1), a quasilinear PDE. Quasilinear means that the coeffi-

cients Ai can be functions of all variables qi and the value of δf , but not of any

partial derivative. Therefore the characteristic curves are given parametrically by

(q1.q2, . . . , qn, δf) = (q1(c), q2(c), . . . , qn(c), δf(c)) and we can rewrite Eq.(2.3) by

the following system of (n+ 1) ODEs:

d

dc
qi = Ai(qi, . . . , qn, δf), for i = 1, . . . , n (2.4)

d

dc
δf =

n∑
i=1

∂u

∂qi

dδf

dc
=

n∑
i=1

∂δf

∂qi
Ai = B (2.5)

Eq.(2.4) gives us the n characteristic curves for this system while Eq.(2.5) defines

that δf is a constant along those characteristics.

We rewrite Eq.(2.1) so we can apply this method, where the parameter c

becomes the time t and the variables qi represent the 5-dimensional phase space

(x, y, z, v⊥, v‖), given by the spatial components of the gyro-center position R and
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two velocity components:

d

dt
< δf >R=

=
∂ < δf >R

∂t
+

(
d

dt
R

)
· ∇ < δf >R +

(
d

dt
v⊥

)
∂ < δf >R

∂v⊥
+

(
d

dt
v‖

)
∂ < δf >R

∂v‖
=

= −〈vE×B〉R · ∇F0 − v‖
q

T
F0 b0 · ∇ 〈φ〉R (2.6)

So the characteristics for this system are:

d

dt
R⊥ = < vE×B >R (2.7)

d

dt
R‖ = v‖ (2.8)

d

dt
v‖ = 0 (2.9)

d

dt
v⊥ = 0 (2.10)

Along those characteristics the PDE δf is a solution of:

d

dt
δf = −〈vE×B〉R · ∇F0 − v‖

q

T
F0 b0 · ∇ 〈φ〉R . (2.11)

Thus in the code the particles that are pushed around represent gyro-center positions

and move in the 5D phase-space accordingly to the Eq.(2.7)-Eq.(2.8). We will take

advantage of the fact that the trajectories are constant in velocity space (Eq.(2.9) -

Eq.(2.10)). We will refer to this again when we talk about how the velocity space

is set up in section 2.3.1.

To deal with Eq.(2.11) we define particle weights. The weight of an individual

particle i with gyro-center position Ri and velocities v⊥i, v‖i is defined to be the ratio

of the gyro-averaged perturbed distribution function divided by the background

distribution F0 evaluated at the particle’s position in the 5D phase space:

wi ≡
< δf >R

F0

|Ri,v⊥i,v‖i (2.12)
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The perturbed distribution function for a total number of N simulation particles is

then obtained by evaluating the following sum:

δf(x, y, z, v‖, v⊥) =
N∑
i=1

wiδ(x−Ri)δ(v‖ − v‖i)δ(v⊥ − v⊥i) (2.13)

In the code we use a regular grid for the spatial coordinates (x, y, z). To represent the

perturbed distribution function on such a grid, we have to replace in Eq.(2.13) the

δ-function in x by a particle shaping function S that depends on the grid-coordinates

(X, Y, Z). For the shaping function we use a bilinear interpolation scheme that is

second order accurate to determine the values of δf(X, Y, Z, v‖, v⊥).

The bilinear interpolation scheme uses interpolation weights which we repre-

sent by the symbol gi,j. The subscript i stands for the individual particle i whose

gyro-center is located at xi, yi, zi and the subscript j is a triplet of integer numbers

(j1, j2, j3) that characterizes a grid-point Xj1 , Yj2 , Zj3 . Therefore gi,j gives us the

contribution of the bilinear interpolation of particle i onto grid-point Xj1 , Yj2 , Zj3 .

The grid-points are equally spaced in each direction, respectively by ∆x,∆y and

∆z. The formula for the interpolation weights is:

gi,j =
1

∆x∆y∆z
Gxj,iGyj,iGzj,i (2.14)

with: Gxj,i =



Xj+1 −Rxi : Xj < Rxi < Xj+1

Rxi −Xj−1 : Xj−1 < Rxi < Xj

0 : else.

(2.15)

Hence the perturbed distribution function interpolated onto the grid is found by

evaluating:

δf(Xj, Yj, Zj, v‖, v⊥) =
N∑
i=1

wigi,jδ(v‖ − v‖i)δ(v⊥ − v⊥i)
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The time dependence of δf has two contributions. First, the gyro-center par-

ticle positions change over time based on Eq.(2.7) and Eq.(2.8), leading to a change

in the interpolation weights gi,j. Second, the particle weights evolve over time deter-

mined by Eq.(2.21). Before we go on to derive the time dependence of the weights

we want to emphasize the time dependence of the gyro-center positions in the per-

pendicular direction, Eq.(2.7), is a nonlinear term. When we are running the code

linearly, the RHS of Eq.(2.7) is set to zero. In this case the characteristics consist

just of a free streaming motion down the field lines and we only need to update

the particles parallel coordinate, z, while the other four coordinates in phase space

are held fixed for each individual particle. Thus in a linear run, all dynamics are

captured by updating the weights over time while the particles are free streaming

down the field lines.

To find the equation that describes the evolution of the particle weights over

time we start from the ODE that was given in Eq.(2.11) and find the following

behavior for the particle weights over time:

d

dt
wi = −

(
< vE×B >R ·

∇F0

F0

+
q

T0

v‖ < E‖ >R

)
. (2.16)

The equilibrium F0 is described by a Maxwellian with v2 = v2
⊥+v2

‖. For the particle

density and the temperature profile we allow a spatial dependence in the x-direction.

Hence F0 is given by:

F0 =
n(x)(√

2π
√

T (x)
mi

)3 exp

− v2

2T (x)
mi

 (2.17)

with: T (x) = T0 exp
(
− x

LT

)
and n(x) = n0 exp

(
− x

Ln

)
. (2.18)
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Now we can use this definition for the Maxwellian F0 to evaluate the gradient of the

background distribution function in Eq.(2.16):

∇F0

F0

=
n′(x)

n(x)
− 3

2

T ′(x)

T (x)
+
v2T ′(x)mi

2T 2(x)
= (2.19)

= − 1

Ln
+

3

2LT
− v2

2LTv2
Ti

. (2.20)

We end up with the following ODE for the particle weights:

d

dt
wi = −

(
< vE×B >R ·x̂

(
− 1

Ln
+

3

2LT
− v2

2LTv2
Ti

)
+

q

T0

v‖ < E‖ >R

)
(2.21)

This leaves us with a set of three ODEs solve, Eq.(2.7), Eq.(2.8) and Eq.(2.21). The

code uses a second order predictor-corrector method to solve those ODEs. Eq.(2.7)

and Eq.(2.21) both have an explicit dependence on the electrostatic potential φ and

its gradient ∇φ. Hence, in order to be able to solve these equations we need to

use Maxwell’s equations to find the electrostatic potential φ given the perturbed

distribution function δf . Before turning to the field equations, we quickly non-

dimensionalize the characteristic equations.

2.2 Non-dimensional gyrokinetic equations

We wish to evolve Eqs. 2.7-2.10) and (2.21) numerically. It is convenient to

non-dimensionalize the equations first. See Appendix B for a complete tabulated

list of the normalized quantities.

Consider Eq. (2.7) first:

d

dt
R⊥ = < vE×B >R .
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We define a “reference” Larmor radius ρref whose temperature, mass, charge and

density are chosen appropriately for any given problem. The reference Larmor

radius is defined in turn in terms of the reference thermal speed vTref ≡
√
Tref/mref

and the reference cyclotron frequency Ωref ≡ Zref |e|B/mrefc. In the directions

perpendicular to the local equilibrium magnetic field, we normalize lengths by ρref .

Upon dividing both side of Eq. (2.7) by ρref , one finds

d

dt
R⊥N =

< vE×B >R

ρref
, (2.22)

where R⊥N = R⊥/ρref . As anticipated at the end of the previous chapter, we

normalize the electrostatic potential as

φN ≡
Zref |e|φ
Tref

a

ρref
, (2.23)

where we have introduced an arbitrary equilibrium scale length a and all other

symbols are conventional. It is convenient to normalize time by a/vTref ,

tN ≡
tvTref
a

.

After normalizing the perpendicular gradient in Eq. (2.22) by ρref and upon em-

ploying the definition of φN in Eq. (2.23), one finds

d

dtN
R⊥N =

< vE×B,N >R

ρref
, (2.24)

where the normalized E×B velocity is given by

< vE×B,N >R≡ ẑ×∇N < φN >R .

Unless there is ambiguity, we will drop the subscript N in the sequel.

25



To normalize Eq. (2.8), we recall that since k‖/k⊥ ∼ ε, it is most convenient to

normalize lengths along the field line by a, the reference macroscopic length. Thus,

zN ≡
z

a
.

We choose to normalize particle speeds by vts, the thermal speed of the sth species,

instead of by vTref . The normalized version of Eq. (2.8) then reads

d

dtN
R‖,N =

√
TsN
msN

v‖N .

Proceeding entirely analogously, and remembering that the perturbed fields (δf, φ)

are normalized with a factor of a/ρref so that they are manifestly of order unity in

a nonlinear state, the normalized version of Eq. (2.21) reads

d

dtN
wiN = −

(
< vE×B,N >R ·x̂

(
− a

Lns
+

3

2

a

LTs
− v2

2

a

LTs

)
+

ZsN√
TsNmsN

v‖N < E‖N >R

)
.

With these normalizations, the quantity a/ρref does not appear in the simulated

system, as is appropriate, since the gyrokinetic equations are independent of the

asymptotic expansion parameter ε. Of course, to compare the simulated quantities

with any physical system, it is necessary to define ρref and a, and to use these values

to express the simulation results in physical units.

2.3 Poisson’s Equation

We use Poisson’s equation to determine the electrostatic potential φ. In the

electrostatic case Poisson’s equation has the following form:

∇2φ = −4π (qini + qene) (2.25)
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When k−1
⊥ is long compared to the Debye length, λD, we can drop the left hand side

of the Poisson’s equation and get the quasineutrality condition:

qini = −qene (2.26)

For simplicity we are continuing considering a hydrogenic plasma (⇒ ni = ne). The

perturbed particle density n is calculated by gyro-averaging the perturbed distri-

bution function at constant particle position r and integrating it over the entire

velocity part of phase space:

n =
∫
< δf >r dv‖v⊥ dv⊥ (2.27)

We recall from Chapter 1 that δf = h− q
T
φF0 and < δf >R= h− q

T
< φ >R F0. By

combining these two identities for h we find the following equation for the perturbed

distribution function δf :

δfs =< δfs >R +
qs
Ts
F0 (< φ >R −φ) (2.28)

Plugging Eq.(2.28) into Eq.(2.27) we obtain the following integral equation that we

have to solve for finding the perturbed ion particle density:

ni =
∫
< δfi >r dv‖v⊥dv⊥ =

=
∫ 〈(

< δfi >R +
|e|
Ti
F0 (< φ >R −φ)

)〉
r

dv‖v⊥dv⊥. (2.29)

The electron particle density ne has an easy solution since we assume Boltzmann

electrons and therefore obtain

ne =
|e|φ
Te

n0. (2.30)
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The assumption of Boltzmann allows us to have just one kinetic species in the code,

the ions. So from here on when we talk about particles and their trajectories we

mean ions if not otherwise specified. So now we can set Eq.(2.30) equal to Eq.(2.29)

and get the following equation:

∫ 〈(
< δf >R +

|e|
Ti
F0 (< φ >R −φ)

)〉
r

dv‖v⊥dv⊥ = ne =
|e|φ
Te

n0 (2.31)

We can then use Eq.(2.31) to find a solution for φ. Numerically we do this in

Fourier space and by explicitly evaluating the gyro-averages in Eq.(2.31). This is

something new that we are doing in this thesis. In a standard gyrokinetic PIC code

the gyro-averaging is done in a different way. When calculating 〈δf〉R the standard

PIC-codes place a finite number of test-particles onto a ring that is centered at

the gyro-center position R of a particle. The radius of this ring for particle i is

given by its ion-gyro-radius, ρi = v⊥i
Ω0

. This is done for every individual gyro-center

position. Then the test-particle positions are interpolated onto the grid on which

the code the code represents δf . So if the code uses a total number of particles that

is N , the interpolation onto the grid will actually be done for Nring ×N particles,

where Nring is the number of test-particles that are placed on each ring around the

gyro-center position of a particle. In Fig(2.1) we give a pictorial description for this

approximation approach for taking the gyro-average by placing test particles on a

ring.

The following two identities for the gyro-agerages are important to describe

our method and are used in Eq.(2.31) to solve for φ in Fourier Space.

< eik·r >R= J0(
k⊥v⊥

Ω
)eik·R, < eik·R >r= J0(

k⊥v⊥
Ω

)eik·r (2.32)
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Figure 2.1: Evaluation of the gyro-average by placing a number of test-particles on

a ring that describes the gyration motion of a particle. To simplify the problem we

show an interpolation scheme onto a 2-dimensional grid (X, Y ) instead of the full

3D version. We are using four test particles (Nring = 4) that we place on a ring

with radius ρi around the gyro-center Ri of particle i. The test particles’ positions

are given by Rik with k = 1, 2, 3, 4. The dashed arrows represent the interpolation

weights gik,(jx,jy) that are non-zero a. gik,(jx,jy) is the interpolation weight of test

particle ik that is interpolated onto the grid-point (Xjx , Yjy)
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Applying them to Eq.(2.31) we find an equation for φ:

n0

(
|e|
Te

+
|e|
Ti

(
1− Γ0(k2

⊥ρ
2
i )
))

φ =
∫
J0

(
k⊥v⊥

Ω

)
< δf >R v⊥dv⊥dv‖ ⇒

φ =

∫
J0

(
k⊥v⊥

Ω

)
< δf >R v⊥dv⊥dv‖

n0

(
|e|
Te

+ |e|
Ti

(1− Γ0(k2
⊥ρ

2
i ))
) (2.33)

The quantity J0 is the zeroth order Bessel function of the first kind and Γ0(x) =

I0(x)e−x, where I0 is the zeroth order Bessel function of the second kind. To ex-

plicitly evaluate J0 in the velocity space integral of Eq.(2.33) we use a grid in v⊥.

In the next section we describe the representation of the velocity space that we are

using to calculate the integrals in Eq.(2.33) for obtaining φ.

2.3.1 Velocity Space for Solving Poisson’s Equation

In Gsp the perpendicular velocities, v⊥, are initialized on a regular grid

and the parallel velocities, v‖, are initialized gridless, drawn from a uniform random

distribution. Each individual particle i therefore gets a random velocity v‖i and a

velocity v⊥i that is part of a discrete set of velocities v⊥ which lie on an equally

spaced grid. We restrict the value for the energy of a single particle, Ei = v2
⊥i + v2

‖i

to be smaller than a maximum value Emax, which is a parameter that we can set in

the input file to the code. By doing this we initialize the particles inside a semi-circle

with radius = Emax in the upper half of the (v⊥, v‖)-plane, as shown in Fig.(2.3).

We want to have a velocity-space density of simulation particles that is roughly

constant. That means that for a constant value of v⊥ the number of particles is

inversely proportional to the value of v⊥. This is explained by the fact that the

maximum value of v‖ for a fixed value of v⊥ is limited by v‖ ≤
√
Emax − v2

⊥. So
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Figure 2.2: This sketch shows how we are dividing phase space in ”slices” with

constant value of v⊥ to solve Poisson’s equation. We interpo late the weights of a

all particles that have the same value for v⊥ onto a four-dimensional slice of phase-

space. That four-dimensional slice consists of the three spatial dimensions and the

parallel velocity. When solving Eq. (2.33) we interpolate the particles onto a grid

in physical space while integrating out the the v‖-dependence.

as v⊥ increases, the maximum value for v‖ decreases. In order to keep the particle

density fixed in velocity space the number of particles has to decrease in the same
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Figure 2.3: Velocity grid used in calculation of φ. The perpendicular velocities

are initialized on an equally spaced grid while the parallel velocities are initialized

grid-less. Hence, we have horizontal lines with a fixed value of v⊥ on which the v‖

values are initialized randomly. The energy of a particle is limited to be smaller

than Emax . Therefore the coordinate-pair (v‖i, v⊥i) for a particle is forced to lie

within a semicircle with radius Emax.

order as the maximum value of v⊥ decreases while increasing the value of v⊥. This

means that the number of particles, Ñ(v⊥), initialized for a given value of v⊥ has to

fulfill the following proportionality relationship

Ñ(v⊥) ∼
√
Emax − v2

⊥ (2.34)

to ensures a constant particle density in (v‖, v⊥).

There is a further complexity about the organization of the velocity part of

phase space. As stated above the equilibrium part of the distribution function, F0,

is a Maxwellian in velocity space. Furthermore, one of the ordering assumptions
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in the derivation of the gyrokinetic equation from the Fokker-Planck-Equation in

chapter 1 is that the ratio of δf to F0 is of order ε. To ensure that this ratio is

satisfied for all value of v2 we initialize the velocity dependence of δf to be also

Maxwellian. Above we described that the parallel particle velocities are drawn from

a uniform distribution and that we have a scheme that gives us a constant particle

density in velocity space. Hence, the distribution of the particles is uniform and

not Maxwellian. To obtain nevertheless a Maxwellian velocity distribution for δf

we assign a “velocity-weight” for each individual particle. The “velocity-weights”

for particle i are factors that are given by:

H0(v⊥i) = e
−
v2⊥i
2v2
T ,

H0(v‖i) = e
−
v2‖i
2v2
T .

We need to normalize H0(v⊥) and H0(v‖). This is done in the code for H0(v‖) on a

point by point basis in the 4-dimensional space (x, y, z, v⊥). Since we have a limited

number of particles and a finite maximum value of v‖ for each of those 4-dimensional

points we do not expect to be able to fully resolve the Maxwellian with the number

of particles that we have in the code. So instead of normalizing by the exact factor

of 1√
2π

for a Maxwellian distribution, we normalize by a factor that is a function of

X, Y, Z and v⊥ and is called NORMv‖(X, Y, Z, v⊥). It is a local estimate for how

well we represent the Maxwellian distribution with a finite number of particles. The

normalization function is given on the grid in physical space. That means that we

need an interpolation from the particle positions to the grid-point coordinates when
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solving for the integral while calculating NORMv‖(X, Y, Z, v⊥),

NORMv‖(X, Y, Z, v⊥) =
∫
H0(v‖)dv‖|x,y,z,v⊥ =

=
∫ N∑

i=1

δ(v⊥ − v⊥i)S(X−Ri)H0(v‖)dv‖ =

=
∫ Ñ(v⊥)∑

i′=1

gi′,(jx,jy ,jz)H0(v‖)dv‖ =

=
Ñ(v⊥)∑
i′=1

gi′,(jx,jy ,jz)H0(v‖i′ )∆v‖. (2.35)

The definition for Ñ(v⊥) is given in Eq.(2.34) as the number of particles that we

have in the code for a fixed value of v⊥. The interpolation weights gi,j are specified

in Eq.(4.6). Note: the interpolation weights at a fixed grid-point (X, Y, Z) are going

to be zero for a huge fraction of the Ñ(v⊥) particles. That leaves us with a fairly

small number of particles for which we are estimating NORMv‖(X, Y, Z, v⊥). But

this is exactly the logic behind getting a local estimate for the normalization factor.

All velocity integrals in v‖ are done while holding a 4-dimensional grid-point in

phase space fixed. Therefore the number of particles for which contribute to such

an integral is reduced by substantial amount. We can reduce the error that we get

from discrete particle noise by having a local estimate for the normalization. If the

total number of particles N gets large enough the results in the code are independent

whether we are using a local or a global normalization for the velocity integrals.

We use a similar approach for the normalization of H0(v⊥). But since we have

a grid for the v⊥ values we don’t have to solve a Monte-Carlo integration and the

problem becomes quite easier. Nevertheless, since we have a finite number of grid-

points and do have a upper limit for the maximum value of v⊥ we are not going to
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be able to numerically evaluate the integral of a Maxwellian to match the analytical

result. Therefore we are not normalizing the velocity-weights H0(v⊥) by 2π. Instead

we normalize by the value we receive by numerically calculating the 1-dimensional

integral
∫
H0(v⊥)v⊥dv⊥ on the Nv⊥ grid points for v⊥ which are equally spaced with

an interval length of ∆v⊥:

NORMv⊥ =
∫
H0(v⊥)v⊥dv⊥ =

Nv⊥∑
i

H0(v⊥i)∆v⊥. (2.36)

2.3.2 Advantages of explicitly solving for the gyro-average

In the previous section we explained the numerically differences between eval-

uating the gyro-averages in Eq.(2.33) by either using a finite number of test-particles

placed on a ring around Ri or by explicitly calculating the Bessel functions. We

needed to initialize the particles on a grid in v⊥ in order to be able to calculate

J0(k⊥v⊥/Ω). In other words we are solving Eq.(2.33) for 4-dimensional slices of

phase-space with a fixed value of v⊥ and then integrating over these slices. Numeri-

cally we have to pay the price that we need to take a Fourier transformation for each

value of v⊥ before we can integrate the results for the different phase-space slices

with constant v⊥. This means that we are have to perform Nv⊥ Fourier Transfor-

mations instead of just one that is used in the ring-average approximation method.

Recall Nv⊥ is the number of grid-points for v⊥. A typical value is Nv⊥ ∼ 32. In
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exchange for the numerical price we need to pay for this scheme we also get two

major advantages. First, the number of interpolation steps we need to evaluate in

the code is reduced by a factor of Nring. Since the number of particles N is a very

large number (for nonlinear runs of the order of several hundred million particles)

even when Nring is just equal to four it makes numerically a substantial difference to

reduce the work needed for the interpolation step by a factor of four, since the overall

algorithm scaling would be O(NringN). By contrast, although the cost of an FFT is

non-trivial, there are not many extra to do, leading to a scaling of O(N) +O(Nv⊥).

Since for a large number of particles the interpolation is one of the bottlenecks of

the algorithm this is an important advantage. The second benefit of our algorithm

compared to the standard approach with test particles placed on a ring is that we

get better accuracy. This advantage gets more significant as the value for k⊥ρi gets

larger.

We can actually show this in a rigorous way by using the identity that was

given in Eq.(2.32), < eik·r >R= J0(k⊥ρi)e
ik·R. We approximate the right hand side

of this identity by using either four, eight or 16 points that we place on a ring

with gyro-radius ρi around the gyro-center position R. The algebra for the 4-point

averaging leads to the following expression:

J0(k⊥ρi)e
ik·R =< eik·r >R ≈ 1

4
eik·R

(
eikxρi + e−ikxρi + eikyρi + e−ikyρi

)
=

1

4
eik·R (2 cos(kxρi) + 2 cos(kyρi))

with kx = ky =
1√
2
k⊥ ⇔

= cos

(
k⊥ρi√

2

)
eik·R (2.37)
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Therefore the error from using the approximation that uses 4 test particles becomes

the difference between J0(k⊥ρi) and cos(k⊥ρi/
√

2). These two functions are both

plotted in Fig(2.4) versus k⊥ρi. In addition to the two functions we also plot the

relative difference between them in Fig.(2.5). We do the same algebra for a ring-

average that uses eight and 16 points. For the eight-point case we get:

J0(k⊥ρi) ≈
1

8

(
eikxρi + e−ikxρi + eikyρi + e−ikyρi

)
+

+
1

8

(
e
i

(
kxρi√

2
+
kyρi√

2

)
+ e

i

(
− kxρi√

2
+
kyρi√

2

)
+ e

i

(
kxρi√

2
− kyρi√

2

)
+ e

i

(
− kxρi√

2
− kyρi√

2

))

and with kx = ky =
1√
2
k⊥ ⇔

=
1

8

(
2 + 4 cos

(
k⊥ρi√

2

)
+ 2 cos(k⊥ρi)

)
(2.38)

And the same algebra done for the 16-point gyro-averaging approximation leads to:

J0(k⊥ρi) ≈
1

16

(
eikxρi + e−ikxρi + eikyρi + e−ikyρi

)
+

+
1

16

(
e
i

(
kxρi√

2
+
kyρi√

2

)
+ e

i

(
− kxρi√

2
+
kyρi√

2

)
+ e

i

(
kxρi√

2
− kyρi√

2

)
+ e

i

(
− kxρi√

2
− kyρi√

2

))

+
1

16

(
ei(cos(π/8)kxρi+sin(π/8)kyρi) + ei(cos(π/8)kxρi−sin(π/8)kyρi)

)
+

+
1

16

(
ei(− cos(π/8)kxρi+sin(π/8)kyρi) + ei(− cos(π/8)kxρi−sin(π/8)kyρi)

)
+

1

16

(
ei(cos(3π/8)kyρi+sin(3π/8)kxρi) + ei(cos(3π/8)kyρi−sin(3π/8)kxρi)

)
+

+
1

16

(
ei(− cos(3π/8)kyρi+sin(3π/8)kxρi) + ei(− cos(3π/8)kyρi−sin(3π/8)kxρi)

)
with kx = ky =

1√
2
k⊥ ⇔

=
1

16

(
2 + 4 cos

(
k⊥ρi√

2

)
+ 2 cos(k⊥ρi)

)
+

+
1

16

(
2 cos

(
k⊥ρi√

2
(cos (π/8) + sin (π/8))

))
+

+
1

16

(
2 cos

(
k⊥ρi√

2
(cos (π/8)− sin (π/8))

))
+
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+
1

16

(
2 cos

(
k⊥ρi√

2
(cos (3π/8) + sin (3π/8))

))
+

+
1

16

(
2 cos

(
k⊥ρi√

2
(cos (3π/8)− sin (3π/8))

))
(2.39)

The results for the eight and 16-point estimates are plotted along with the four-point

estimate in Fig(2.4) and Fig.(2.5). These plots show for which range of values of

k⊥ρi the ring-averages are good approximations and when they become inaccurate.

For values of k⊥ρi > 2 the error from using four-averages get significant and the

method seems to be no longer valid. For eight-point averages this is the case for

k⊥ρi > 5 and for the 16-point average for k⊥ρi > 12. This is an important result

since in most other gyrokinetic PIC-codes the default setting is Nring = 4 and they

are able just to resolve problems up to k⊥ρi of 2.

This becomes of importance when we study in chapter 5.5 instabilities in a

Z-pinch configuration. As discussed by Ricci et al., [53, 54] there exists a regime

for which the ideal interchange mode is stable but leaves behind a non-MHD mode

known as the entropy mode (also referred to as the drift-temperature-gradient mode)

[38, 59]. Since it was found [38, 39, 59, 60] that the growth rate of the entropy modes

linearly dependent on k codes that are restricted to a regime with kρi ∼ 1 or even

kρi � 1 will not be able to simulate the most unstable regime of the entropy

mode. So explicitly this means that δf -PIC codes using 4-point averaging method

for calculating gyro-averaged quantities (and are therefore restricted to regimes with

kρi < 2) cannot be used for studying entropy modes in a Z-pinch configuration. A

similar restriction likely applies to trapped electron modes in the tokamak.
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Figure 2.4: Comparision of the zeroth ordered Bessel Function to approximations

with different number of test particles. We vary the number Nring of test particles

that we use to approximate J0(k⊥ρi) and plot the expressions Eq.(2.37), Eq.(2.38)

and Eq.(2.39) that we obtained by evaluating the gyro-averaging estimates with

four, eight and 16 test particles respectively. In comparison to the approximations

we also plot the analytical form of J0(k⊥ρi) versus k⊥ρi.
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Figure 2.5: Difference between test particle estimates and the analytical form of

J0(k⊥ρi). The 4-point approximation starts to differ significantly from J0(k⊥ρi) at

a value of k⊥ρi ∼ 2. For the 8-point approximation the approximation becomes

inaccurate for k⊥ρi ∼ 5 while for the 16-point approximation is in agreement with

the analytical form of J0(k⊥ρi) until a value of k⊥ρi ∼ 12.
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Chapter 3

Challenges for particle simulations

As described in the previous chapter we need to calculate the electrostatic

potential φ in the code. In order to do this we integrate out the velocity part

of the gyro-averaged 5D perturbed distribution function δf . The accuracy of this

operation is of crucial importance for the accuracy of the overall algorithm. Since

we represent the distribution function with a finite number of particles that we

interpolate onto a grid, we have to deal with discrete particle noise. As mentioned

above we reduce the discrete particle noise by a significant amount by representing

only the perturbed distribution δf , which is the departure from the full distribution

function, the Maxwellian background solution. But the scheme is dependent on the

local variance of the particle weights. When the particle weights have a variance

that is too large we cannot assume that the code is still correctly resolving the

problem. In this chapter we are developing a measure for the local variance in the

code and show how we can relate our estimate for the variance to an estimate for

the discrete particle noise error in the code.
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3.1 General properties of the Monte-Carlo in-

tegration schemes

It is a well known problem that the accuracy of the local estimator for δf(x,v)

at a given point on the 5D phase-space grid is facing challenges from discrete particle

noise [48] [9]. Aydemir wrote the seminal paper on applications of Monte-Carlo

integration schemes for particle simulations [2]. He found the estimate for the error

ε of an general integral that calculates a moment of the form

I(A) =
∫
V
A(q)f(q)dΓ

to be:

ε ' σδf√
N

with N , the total number of random samples and the variance σδf given by:

σ2
δf =

∫
V

(δg− < δg >)2 p(q)dΓ (3.1)

with: δg ≡ A(q)δf(q)

p(q)
; p(q) probability density (3.2)

< δg > is the expected value of the random variable δg ≡ A(qf(q/p(q).

I(A) =< δg >=
∫
V

A(q)f(q)

p(q)
p(q)dΓ (3.3)

So we need to translate this error estimate for a general Monte-Carlo integral

into an error estimates for our problem. We are mostly concerned with the error we

get when solving for φ. Discrete particle noise will effect the estimator for δf on the

grid and carry over as an error to φ. As a consequence the values for the particle
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drift velocities vE×B will be affected by the accuracy of this problem as well. In

Eq.(2.33) we are evaluating integrals of the form:
∫
δfdΓ. Since the definition of

the particle weights in a δf -method is wi = δf/F0 the integrals we are concerned

about are proportional to the integral of the average weights of the particle.

∫
δfdv ∼ 1

N

N∑
i=1

wi =< w > (3.4)

and the variance for this becomes:

σ2
w =

1

N

N∑
i=i

(wi− < w >)2 =< w2 > − < w >2 (3.5)

As was pointed out by Aydemir [2] we are not interested in the error in absolute

terms. Instead we want to know how big the error is compared to the actual value

of the integral to have a measure for how accurate our scheme is. Hence, we define

the relative variance σ2
w,r:

σ2
w,r =

1

N

N∑
i=i

(wi− < w >)2

w̄
=

1

< w >

(
< w2 > − < w >2

)
(3.6)

We are interested in understanding how the error estimate is evolving over

time. With the fully nonlinear code we are studying physical quantities such as the

heat flux. We would like to determine when the code reaches saturation level, and

is out of the linear growth phase. In such a phase the exponential growth of w̄ has

stopped. Hence we assume that d
dt
< w >= 0 and the time-behavior of Eq.(3.6) is

then given by:

d

dt
σ2
w,r =

2

N < w >

N∑
i=1

(
wi
d

dt
wi

)
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Thus, the change of the variance is given by the time evolution of the mean-squared

weights < w2 >. In the previous chapter we described the δf -method for solving the

gyrokinetic equation with a PIC code. We explained that the particle weights are

treated as an independent variable and evolved over time accordingly to Eq.(2.21).

This has direct consequences to the time behavior of the mean-squared particle

weight < w2 >:

d

dt
< w2 >=

2

N

N∑
i=1

wi
d

dt
wi =

= − 2

N

N∑
i=1

wi

< vE×Bi
>R ·x̂︸ ︷︷ ︸

vDxi

(
− 1

Ln
+

3

2LT
− v2

i

2LTv2
Ti

)
+

q

T0

v‖i < E‖i >R


= 2

(
1

Ln
− 3

2LT

)
Γp +

2

LT
Γe +

2q

NT0

N∑
i=1

wiv‖i < E‖i >R (3.7)

with the particle flux : Γp ≡
1

N

N∑
i=1

wivDxi (3.8)

and the energy flux : Γe ≡
1

N

N∑
i=1

wiv
2
i vDxi (3.9)

Lee and Tang [45] relate the rate of increase in the < w2 > in the entropy

theorem to the energy flux which they identify as the dominant term in Eq.(3.7) as:

d < w2 >

dt
∼ 2Γe

LT
(3.10)

This means that the relative error is also going to show the same monotonically

increasing behavior. So it will be increasing in time without a bound and eventually

we won’t be able to trust the outcome of the simulation anymore. When we are
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using a large number of particles the discrete particle noise is initially reduced,

and it will take a longer time until the error becomes too big. But nevertheless

increasing the number of particles does not solve the problem of having an increase

in the mean-squared weights and therefore an increase in the discrete particle noise

over time. This is particularly important for the study of problems for which the

algebraic growth of the weights is fast, or when one needs to integrate over many

nonlinear eddy turnover times.

In chapter 4.1.2 we use Gsp to study ITG driven turbulence. We have to run

the code nonlinearly until it reaches a saturated state. We then want to determine

the amount of heat flux that is present in the saturated nonlinear state. By the

time that we reach saturation the level of noise that is present in the system must

be low enough to not affect the accuracy of the measurement of the heat flux.

The above calculation does not look at size of the structures that are dominant

in the simulations that need to be resolved. Although the increase in the mean-

squared weight is seen in PIC δf -codes, the results for the Cyclone base case are

well benchmarked against continuum codes. We hypothesize that this comes from

the fact that the dominant spatial structures that develop in the Cyclone base case

are much larger than the spatial grid size in the simulations, are isotropic in the

perpendicular plane, and that the codes do not run long enough for the increase

in the variance of the weights to have a significant effect on the measured physical

quantities. These hypotheses were addressed in Nevins, et al. [48]

In Fig.(3.1 a)) and Fig.(3.1 b)) we show in a cartoon the effect that the growth

for the variance of the weights has. On the abscissa we have a 1-dimensional subset
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of particle positions in the 5-dimensional phase space. A vector in the 5-dimensional

phase space is symbolized by q. The particles are scattered in such a space. We

also introduce a grid in the 5-D space onto which we will interpolate the particle

weights. The value of the particle weights are represented on the ordinate. We

show a representation of the particle weights on a grid-points that are symbolized

by capital letters, Qj. We interpolate the weights of individual particles at position

qi to find the weighted average weights on the grid. The symbol for the weights of

individual particles are crosses and the value for the weights on the grid-points are

marked by circles. Fig.(3.1 a)) and Fig.(3.1 b)) both show such weight distribution

in a steady state of the simulation but Fig(3.1 b)) shows the same system at a later

time. In this cartoon the variance increases from the earlier time in a) to the later

time in b) although the values on the grid haven’t changed by much. Therefore

this is a cartoon where the increase in the variance has not affected the estimate

of the weight distribution too strongly. But we can see how on a finer grid in q

the growth in the variance of the weights would have changed the estimate for the

interpolated weights on the grid. One can also see that at a time which is even later,

the monotone increase in the variance will eventually lead to growing error for w̄j.

To test this hypothesis we are now developing a method that measures the

variance as a local measure that depends on the scale that we are trying to resolve.

We are going to look more carefully at the fact that we are using an interpolation

algorithm in Eq.(2.33) when we are finding φ.

When we are now going to talk about the accuracy of Eq.(3.4) as a measure of

how well local structures can be resolved we change to a new set of velocity variables.
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We do this since we are going to use the same variables for the collision operator

that we are going to introduce in the next chapter.

3.2 Pitch-angle, Energy coordinates

The two new variables are energy, E = v2 = v2
⊥+ v2

‖ and pitch-angle ξ = v‖/v.

In Fig(3.2) we show a sketch of the velocity part of the 5D grid in these new variables.

The grid-points are placed in the old v⊥, v‖-grid on arcs which represent a

constant value for the energy E. On those arcs we place the grid-points for different

values of the pitch-angle. The arc-length between grid-points on those semi-circles is

held fixed for a given value of E. The distance between two of these semi-circles with

constant energy is 2∆E. The lowest energy band is placed at a value of E = ∆E.

We have a total of NE different energy-grid-points. For labeling the grid-points

(X, Y, Z,E, ξ) we define the five dimensional index vector j = (jx, jy, jz, jE, jξ). In

Fig.(3.2) we fix the position in physical space and all the grid-points shown have the

same indices jx, jy, jz. To find the value of the perturbed distribution function we

use the bilinear interpolation scheme for the physical space with the interpolation

weights gi,jx,jy,jz that were defined in Eq.(4.6) and a nearest neighbor interpolation

in E and ξ. This means that all particles that have energy values that fall into

the area that is given by |Ei − EjE | ≤ ∆E will be projected onto a grid-point

that lies on the semi-circle with radius EjE . The number of ξ grid points we are

placing onto an arc with constant energy E is increased when we go to higher

energy values EjE . The rationale behind putting more grid-points on arcs that
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represent higher energy values is that we want to keep the volume fixed that is

used for interpolating particles onto a specific grid-point. Since the particles were

initialized on the v‖, v⊥-grid with a constant density, a constant interpolation volume

relates to an approximately constant number of particles that are interpolated onto

a gridpoint. Since the discrete particle noise scales with the number of particles used

to determine the value of the function we are integrating, the property of roughly

equal numbers of particles is desirable. To ensure a constant interpolation volume

we find the following recursive relationship for the number of pitch-angle grid-points

Nξ(jE) as a function of the energy index, jE. The calculation is based on setting the

volumes for two interpolation volumes equal on subsequent energy grid-points, jE

and jE+1 and finding a relationship for the number of ξ-grid-points on those energy

values.

(2jE∆E)2 − (2(jE − 1)∆E)2

Nξ(jE)
=

(2(jE + 1)∆E)2 − (2jE∆E)2

Nξ(jE + 1)

⇔ Nξ(jE + 1)

Nξ(jE)
= 4

2jE + 1

2jE − 1
(3.11)

By choosing the number of grid-points on the lowest energy level, Nξ(jE = 1),

the remaining values for Nξ(jE) are then specified by the recursive relationship in

Eq.(3.11). Having the new velocity-space representation defined we can get back to

the task of trying to calculating the accuracy of Eq.(3.4).
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3.3 Discrete particle noise and resolving phase

space

For the new coordinate system we are defining a variance that is dependent

on how coarse we make the grid. This is an attempt to capture how the discrete

particle noise has an impact on how well we can resolve small scale structures (in x

and v) with the code. With the new velocity coordinates that we defined in section

3.2 we have a total of N5D grid-points. Nx,Ny and Nz are the number of grid-

points that we have in the spatial part of phase space in the x−, y− and z−direction

respectively.

N5D = NxNyNz

 NE∑
jE=1

Nξ(jE)

 (3.12)

We now define now a local variance of the weights for one of those N5D grid-

points. The local variance is the weighted variance of those weights that have a finite

interpolation weight onto a grid-point that is marked by the index vector j. We are

using nearest neighbor grid-point interpolation for the velocity components of phase

space and bilinear interpolation for the spatial components of phase space. The

bilinear interpolation uses the interpolation weights that were defined in Eq.(4.6),

σ2
δf,jE ,jξ,jx,jy ,jz

= σ2
δf,j =

∑N
i=1 (wi − w̄j)2 gi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
, (3.13)

with:

w̄j =

∑N
i=1 gi,jx,y,zδi,jEδi,jξwi∑N

i=1 gi,jx,y,z
, (3.14)
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with : δi,jE =


1 : |Ei − EjE | ≤ ∆E

0 : else,

(3.15)

and : δi,jξ =


1 : |ξi − ξjξ | ≤ ∆ξ

0 : else.

(3.16)

The total variance then becomes the sum of the local variances divided by the

number of grid-points, N5D,

σ2
δf =

1

N5D

NE∑
jE=1

Nξ(jE)∑
jξ=1

Nx∑
jx=1

Ny∑
jy=1

Nz∑
jz=1

σ2
δf,j =

∑
j

σ2
δf,j. (3.17)

From here on we are going to use the symbol
∑

j which stands for the sum

over all 5 j-indices jx, jy, jz, jE and jξ and also contains the factor 1
N5D

.

Here again we are going to define a relative variance as a better measure for

the accuracy of the integration scheme.

σ2
δf,r =

∑
j σ

2
δf,j∑

j w̄j
(3.18)

This allows us to define the relative error of Eq.(3.4) as:

εr =
σδf,r√
N

(3.19)

Now we have to redo the exercise of trying to find how this error estimate will

evolve over time. To be able to do this we define the mean-squared weights < w2 >

as the sum of the local mean-squared weights < w2 >j.

< w2 >=
∑
j

∑N
i=1 w

2
i gi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
=
∑
j

< w2 >j (3.20)
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We are mostly concerned with noise in the code once the nonlinear simulation

reaches a steady state and we want to calculate physical quantities like the heat

flux from the code. So we are here now trying to estimate the time dependence of

the noise in the code for a steady state. Since the weights are scaled to be O(ρ
a
)

the nonlinear and linear terms become of the same order once the estimates for the

weights are of order one. This is at the time when we reach a fully nonlinear state

and we can therefore then make estimate that (
∑

j w̄j ≈ 1).

The time evolution of the relative variance σ2
δf,r in a steady nonlinear state is

then

d

dt
σ2
δf,r =

∑
j
d
dt
σ2
δf,j∑

j w̄j

− σ2
δf,j

∑
j
d
dt
w̄j(∑

j w̄j

)2 . (3.21)

Since we are looking at a steady state we assume that the sum of the variations

of the local changes of the average weights on the grid-points will evaluate to a very

small term. Therefore we will drop the second term in Eq.(3.21) and use (
∑

j w̄j ≈ 1):

d

dt
σ2
δf,r ≈

∑
j

d

dt

∑N
i=1 (wi − w̄j)

2 gi,jx,y,zδi,jEδi,jξ∑N
i=1 gi,jx,y,zδi,jEδi,jξ


=

∑
j

∑N
i=1 2 (wi − w̄j)

(
d
dt
wi − d

dt
w̄j

)
gi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
+

+

∑N
i=1 (wi − w̄j)

2 d
dt
gi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
−

−
∑N
i=1 (wi − w̄j)

2 gi,jx,y,zδi,jEδi,jξ
∑N
i=1

d
dt
gi,jx,y,zδi,jEδi,jξ(∑N

i=1 gi,jx,y,zδi,jEδi,jξ
)2

 . (3.22)

The changes in gi,j over time that come from the fact that the particles fol-

low their characteristics should not have an effect that influences the variance over

time since we do not expect to see a local accumulation of particles. Instead the
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particles should keep filling out the physical part of phase space rather uniformly.

So the changes from d
dt
gi,j average to zero. That leaves us with the first term in

Eq.(3.22) which has the four components (we are using the notation d
dt
a = ȧ):

+wiẇi,−w̄jẇi,−wi ˙̄wj,+w̄j ˙̄wj. The last two terms have opposite signs and when we

evaluate the inner sum over i they cancel out. So we receive the following estimate

for the time dependance of the variance:

d

dt
σ2
δf,r ≈ 2

∑
j

∑N
i=1 (wiẇi − w̄jẇi) gi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ

= 2
∑
j

(∑N
i=1wiẇigi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
+ ¯̇wj

)
. (3.23)

The second term is very small for a steady-state since the sum over all changes

of the average values of the weights on the grid-points will nearly cancel out. Oth-

erwise we wouldn’t have reached a steady state yet. This means that the relative

variance changes over time as the sum of the change of the local mean-squared

weights divided by the local mean weight. Local refers here to the values we find

from interpolation onto a grid-point. So we get the following estimate for the time

evolution of the relative variance of the weights:

d

dt
σ2
δf,r ≈ 2

∑
j

∑N
i=1wiẇigi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
. (3.24)

As in the previous section we can use the time derivative of the weights,

described in Eq.(2.21) to plug into Eq.(3.24). This yields

d

dt
σ2
δf,r ≈ (3.25)

∑
j

−2
∑N
i=1wi

(
vDxi

(
− 1
Ln

+ 3
2LT
− v2i

2LT v
2
Ti

)
+

qv‖i
T0

< E‖i >R

)
gi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
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= 2
∑
j

( 1

Ln
− 3

2LT

)
Γp,j +

1

LT
Γe,j +

∑N
i=1wi

qv‖i
T0

< E‖i >R gi,jx,y,zδi,jEδi,jξ∑N
i=1 gi,jx,y,zδi,jEδi,jξ

 ,

with the drift velocity in the x-direction: vDxi =< vE×Bi
>R ·x̂ (3.26)

with the particle flux : Γp,j ≡
∑N
i=1 wivDxigi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
(3.27)

and the energy flux : Γe,j ≡
∑N
i=1 wiv

2
i vDxigi,jx,y,zδi,jEδi,jξ∑N

i=1 gi,jx,y,zδi,jEδi,jξ
. (3.28)

Also for this more complicated system the arguments from Lee and Tang [45]

will hold that the term involving the energy flux must be the dominant term. So

we can simplify Eq.(3.25) in the same way as we did for Eq.(3.7) when we found

Eq.(3.10). This results in the following estimate for the time evolution of the relative

variance of the weights

d

dt
σ2
δf,r ≈

∑
j

2

LT
Γe,j. (3.29)

Note that if we had just one grid-point then the Eq.(3.29) reduces to Eq.(3.10).

So with Eq.(3.29) we then get the following estimate for the error of the integrals

that we are evaluating in the code,

εr =
1√
N

∑
j

σδf,j, (3.30)

and :
d

dt
εr =

1√
N

∑
j

2

LT
Γe,j. (3.31)
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a)

w̄j = w̄(Qj)

wi = w(qi)

w =
δf

F0

q

b)

w̄j = w̄(Qj)

wi = w(qi)

q

w =
δf

F0

Figure 3.1: Cartoon of the weight distribution in phase space shown at different

times in the nonlinear steady state phase of the simulation. The circles stand for

the value of the interpolated weights on the grid-points Qj and the crosses the value

of the weight of particle i at the 5D phase space position qi. The variance of the

weights increases form an earlier time that is shown in a) to a later time shown in

b)
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v⊥

v‖

3∆E
∆E

jE = 3, jξ = 4

grid-point(EjE , ξjξ)

Figure 3.2: Sketch of the velocity grid using the coordinates energy E = v2
⊥ + v2

‖

and pitch-angle ξ =
v‖
v

. The grid-points (EjE , ξjξ) lie on arcs with constant values

of energy. The spacing between those semicircles of constant energy is 2∆E, with

∆E being a parameter that we is set in the input file of our code. The number

of grid-points with the same energy value but different values for the pitch-angle

increases as the energy is increased and is determined by the recursive relationship

in Eq.(3.11).
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Chapter 4

Coarse-graining phase space

The fact that the particle weights grow continuously in a saturated state of a

δf PIC-code simulation as we described in the previous chapter is well-known and

has been addressed in the literature as the “growing weight problem” [41, 42, 48].

Chen and Parker [14] addressed the problem by introducing a coarse-graining

algorithm. The basic idea behind their algorithm is to obtain δf on a 5-dimensional

phase space grid and then to reset the particle weights according to the phase-space

values. This will result in “averaging” particle weights that are close to the same

grid-point in phase space. When the weights are reset the particle’s spatial and

velocity coordinates remain unchanged.

4.1 Resetting particle weights

In the above described method, one finds the average weights on the grid-points

by interpolation and the resets the particle weights at the particle position using the

same interpolation scheme. The formal description of this method is governed by

the following equations. First we find the average weight on the N5D phase-space
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grid points. Chen and Parker [14] proposed the use of pitch-angle/energy velocity

coordinates like those we introduced in section 3.2 (although the details differ). So

we apply the same 5-dimensional index vector j = (jx, jy, jz, jE, jξ) that we used

before to identify the grid-points, to find the best estimate of δf at j:

w̄j =

∑N
i=1wigi,j∑N
i=1 gi,j

. (4.1)

The particle weights then get reassigned to:

w′i =
N5D∑
j=1

gi,jw̄j. (4.2)

We can choose any interpolation scheme. Here we are going to show two versions.

First, we show this algorithm with nearest-grid-point interpolation, and second, the

coarse-graining method that uses a bilinear interpolation method.

4.1.1 Coarse-graining with nearest-neighbor interpola-

tion

The easiest interpolation scheme is a nearest grid-point interpolation. The

interpolation weights gi,j then become:

gNGPi,j =


1 : |qi,j −Qj| ≤ ∆Qj

2
with: j = jx, jy, jz, jE, jξ

0 : else.

(4.3)

With Qj we describe the position jth component of the phase space grid-points,

where j is describes one of the 5 elements of the index-vector j. The position of a

particle i in phase space is given by the vector qi,j = (qi,jx , qi,jy , qi,jz , qi,jE , qi,jξ) =

(xi, yi, zi, Ei, ξi).
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Qjy1

Qjy2

Qjy3

Qjy4

Qjy5

Qjx1
Qjx2

Qjx3
Qjx4

Qjx5

∆Qjy

∆Qjx

∆Qjx

∆Qjy

i10 i9

i8 i7

i6

i3

i5

i2i1

i4

Figure 4.1: This sketch shows a 2-dimensional version of the coarse-graining opera-

tion that uses nearest grid-point interpolation. The dotted arrows show onto which

grid-point a particle weight gets interpolated. The interpolation volume has the

dimension ∆Qjx ×∆Qjy . Particles i1, i4 as well as i7, i8, i10 are getting interpolated

onto the same grid-point and as a consequence their particle weights will be set to

their respective average values.

The coarse graining then simply sets the individual particle weights to the

average value of those particles that are near the same gridpoint.
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In Fig.(4.1) we give a 2-dimensional example for the coarse-graining algorithm

that uses nearest-neighbor interpolation. The individual particles are labeled by the

indices ik. The particles i1 and i4 fall both into the interpolation volume around

the grid-point (Qjx2
, Qjy2

). Therefore their particle weights of particle i1 and i4 will

be set to w′i1 = w′i4 = 1
2

(wi1 + wi4) after we apply the coarse-graining operator.

The particles i7, i8 and i10 are all within the interpolation volume of grid-point

(Qjx3
, Qjy4

). So their weights become w′i7 = w′i8 = w′i10 = 1
3

(wi7 + wi8 + wi10). All

other particle weights will stay unchanged in this example since they do not have

one or more neighbor particles that fall inside the same interpolation volume of a

grid-point.

The averaging of nearby particle weights introduces strong dissipation in the

simulation. We visualize this effect in Fig.(4.2) where we show how we lose structure

in the weight distribution by setting all particle weights that fall inside one interpo-

lation volume to the same average value. This means that the equations describing

the time evolution of the mean-squared particle weights [Eq.(3.7)] gets an additional

term D that must capture the dissipation due to coarse graining:

d

dt
< w2 >= 2

(
1

Ln
− 3

2LT

)
Γp +

2

LT
Γe +

2q

NT0

N∑
i=1

wiv‖i < E‖i >R −D. (4.4)

The trick is now to balance with the dissipative term D the energy flux term

2Γe/LT that dominates the growth of the weights. In fact, this scheme introduces

strong dissipation, so that Chen and Parker [14] apply this term just every Ns-

timesteps (with Ns = 10 in a typical run for the Cyclone base case [23]) and suggest

that one should run the code in the limit where there are not too many particles
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w′
ik

= w′(qik)

wik = w(qik)
w̄j = w̄(Qj)

w =
δf

F0

q

Figure 4.2: This sketch shows how the coarse-graining algorithm that uses the near-

est grid-point interpolations changes the the individual particle weights. From this

visualization it is recognizable that is method is strongly dissipative.

per 5D-grid cell, so that most particles do not get affected by the coarse graining

operator. In addition to those two steps to reduce the dissipation they also introduce

the following lag average formula for reassigning the weights:

w′′i = (1− δ)wi + δw′i = (1− δ)wi + δ
N5d∑
j=1

gi,jw̄j. (4.5)

Chen and Parker recommend to set the parameter δ � 1. This allows to

apply the coarse-graining operation more often while not making it too dissipative
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and therefore one can choose a smaller value for Ns. A large value for Ns together

with a larger value for δ has the disadvantage that it introduces a larger discontinuity

into the simulation.

4.1.2 Coarse-graining with bilinear interpolation

We can repeat the method that we introduced above but replace the inter-

polation algorithm from nearest neighbor interpolation to a bilinear interpolation

scheme. The scheme is equivalent to the scheme that we introduced in Eq.(4.6), but

is now generalized for five dimensions:

gBLii,j =
GQjx,i

GQjy,i
GQjz,i

GQjE,i
GQjξ,i

∆Qjx∆Qjx∆Qjx∆QjE∆Qjξ

, (4.6)

with: GQj(·),i
=



Qj(·)+1,i − q(·),i : Qj(·),i < q(·),i < Qj(·)+1,i

q(·),i −Qj(·),i : Qj(·)−1,i < qj(·),i < Qj(·),i

0 : else.

(4.7)
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Qjy1

Qjy2

Qjy3

Qjy4

Qjy5

Qjx1
Qjx2

Qjx3
Qjx4

Qjx5

∆Qjy

∆Qjx

i10
i9

i8 i7

i6

i3

i5

i2i1

i4

Figure 4.3: This sketch shows a 2-dimensional version of the coarse-graining opera-

tion that uses bilinear interpolation. The dotted arrows show onto which grid-points

a particle weight gets interpolated. Though we are using the same number of par-

ticles in this case as in Fig(4.1) here all ten particle weights will be changed at this

time step while for the nearest-neighbor technique just five out of the ten particle

weights were affected by the coarse graining.
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w′
ik

= w′(qik)

wik = w(qik)
w̄j = w̄(Qj)

w =
δf

F0

q

Figure 4.4: This sketch shows how the coarse-graining algorithm that uses the bilin-

ear interpolation technique changes the the individual particle weights. From this

visualization it is recognizable that is method is still strongly dissipative though it

is less dissipative than the nearest-neighbor interpolation scheme sketched out in

Fig(4.2).
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Chapter 5

Collision operator

In most physical plasmas, dissipation is present. Its importance for reaching

a true steady state in a non-equilibrium system has been discussed by Krommes

[41, 42]. Collisions are the physical origin of dissipation in a plasma. Without them,

the distribution function could develop infinitesimally small structures in velocity

space [3], [58]. Besides being unphysical (since collisions are going to prevent small

structures from developing), small structures in velocity space are also a numerical

challenge. Therefore the presence of either artificial or physical dissipation in nu-

merical simulations of plasmas is required. The secular growth of particle weights

is a direct consequence of treating the plasma as dissipationless in a simulation.

Phase-space filamentation is the accumulated result of this effect and leads to fine

scales in the distribution function that will not be resolved with a finite number

of particles in the code. Since the only physical process to stop the formation of

fine scale structures are collisions, purely collisionless simulations of steady-state

turbulent systems can be questioned.

Implementations of collisions in δf codes normally involves a Monte Carlo
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scattering operator that randomly changes the the particle coordinates in the code

[20]. Simulation results of PIC codes that include a Monte Carlo scattering op-

erator have shown an increase in the growth of the mean-squared particle weights

compared to standard δf PIC codes [9, 15]. This counterintuitive result, that col-

lisions which are supposed to limit phase-space filamentations and therefore should

limit the growth in the weights lead instead to a growth in the weight, is explained by

Chen and White [16]. They find that while the δf distribution might be smoothed

by a Monte-Carlo collision operator, the distribution of weights across small scales

will be broadened in time. This led to additional efforts to try to solve the problem

of growing weights in PIC codes. In the previous chapter we already described the

coarse-graining method of Chen and Parker [14] that adds artificial dissipation to

the simulation to deal with the problem of growing mean-squared weights in a δf

particle code. Another approach is to add a Krook operator or a Krook-like term, as

the thermostatted δf scheme by Krommes [41]. McMillan et al., have been working

on modified Krook operator for a global δf simulation [47]. Their Krook operator is

modified to project out the unphysical effects a relaxation operator like the Krook

operator has on zonal flows. In this chapter we are going to show that a Krook

operator damps away flow profiles in the plasma fast and explain why this is an

effect that is an artifact and not physical.

Eulerian codes do not face the challenge that particle codes face with respect

to growing weights and how those weights will at late times affect the accuracy of

the results. But also in continuum codes fine structures that form in velocity space

lead to problems. Not just that those small scale structures may be unphysical, they
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also post a challenge to accurately evaluate velocity space integrals in the code. If

the small scale structures grow and fill in smaller and smaller scales, eventually the

velocity space grid in an Eulerian code will fail to resolve the distribution functions

and the results will be questionable. Therefore most current Eulerian gyrokinetic

codes employ some form of numerical dissipation [3], [12]. As for particle codes

there are several different collision operators in Eulerian codes, most prominently

the Krook and the Lorentz pitch-angle scattering operators. Barnes et al.[4] most

recently have been working on an improved model operator which includes pitch-

angle scattering and energy diffusion and has a lot of the desired properties of an

accurate collision operator as it conserves particle number, momentum and energy

plus satisfies Boltzmann’s H-theorem.

Our approach is to add a pitch-angle collision operator to the PIC code. This

seems to be the first attempt for a δf PIC code to have an actual collisional operator

that acts directly on the distribution function δf . The operator reassigns particle

weights accordingly to the changes of δf based on the collisions. Particle positions

and particle velocities will not be updated by the operator. By resetting the weights

and leaving the phase-space coordinates of the particles fixed our method is similar

to the coarse-graining by Chen and Parker [14]. The big difference is that our

collision operator comes from of the derivation of gyrokinetics from the Fokker Plank

equation while Chen and Parker add an artificial term that is designed to damp the

weight growth but is not tied to the underlying equations describing the physics.
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5.1 Krook operator

Before discussing in detail about the pitch-angle scattering operator in detail,

we briefly sum up some of the main features of a relaxation operator like the Krook

operator and show how it is implemented in the code. As we will show later in this

chapter the Krook operator can efficiently suppress the growth of the mean squared

weight in a PIC simulation but imposes problems to zonal flows as they are strongly

damped.

The Krook operator has the following form:

CK(δf) ≡ −νδf. (5.1)

The implementation of such an operator to a particle code is rather trivial. The

Krook operator resets the values of all particle weights by an amount that is identical

in relative terms to the individual particle weight. An explicit scheme leads to the

following change in the perturbed distribution function:(
∂ < δf >R

∂t

)
C

≈ < δfn+1 >R − < δf ∗ >R

∆t
= −ν < δf ∗ >R

⇒ < δfn+1 >R= (1−∆tν) < δf ∗ >R (5.2)

Since the particle weights are defined as wi = δf/F0|xi,vi
, we can directly reassign

the particle weights in the same way the distribution function has been updated in

Eq.(5.2):

wn+1
i = (1−∆tν)w∗i . (5.3)

From Eq.(5.3) it is obvious that the Krook operator leads to an overall relax-

ation in the particle weights. This relaxation is totally independent of the structure
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the perturbed distribution function develops in phase space. A distribution function

that is entirely flat and has no spatial or velocity dependence will be damped in the

same way as one that is highly oscilliatory. The shape won’t be affected just the

overall values of the weights are getting reduced. So the amplitude of an oscillatory

distribution will be reduced, but not its frequency.

5.2 Pitch-angle collision operator

Landau [43] calculated the effect of small angle Coulomb collisions on a dis-

tribution function. The complexity of the Landau operator makes it difficult to

use for numerical purposes. As a consequence, simpler model operators have been

developed over the years [56, 32, 13].

As before, we are looking at the electrostatic version of the gyrokinetic equation

in a slab geometry, described in Chapter 2. But now we do not treat the problem

as collisionless any longer. By adding a collision operator, Eq.(2.1) becomes:

∂

∂t
〈δf〉R + v‖b0 · ∇ 〈δf〉R + 〈vE×B〉R · ∇ 〈δf〉R =

−〈vE×B〉R · ∇F0 − v‖
q

T
F0 b0 · ∇ 〈φ〉R + 〈CM(δf)〉R . (5.4)

For the collision operator CM(δf) we use in our PIC-code the pitch-angle

scattering operator for ion-ion collisions. This operator has the advantage that it

can conserve particle number, momentum, and energy. It is constructed by taking

the test-particle pitch angle scattering collision operator and correcting it with an

additional term that ensures momentum conversation. In this form it was first

introduced by Rosenbluth et al. [55], [30].
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The pitch-angle scattering operator acts on h(x, y, z, ξ, E), the part of the

perturbed distribution function that is the homogenous solution to Eq.(1.12) and

was introduced in Chapter 1.3.3. The operator has the following form:

CM(hs) =
νssD
2

(
∂

∂ξ
(1− ξ2)

∂hs
∂ξ

+
1

1− ξ2

∂2hs
∂ζ

+
v ·U[hs]

vTs

)
, (5.5)

with

U[hs] =
3

2

∫
d3v v νssD hs∫

d3v(v/vTs)
2 νssD F0s(v)

, (5.6)

νssD = νss

(√
2 vTs
v

)3 ((
1−

v2
Ts

v2

)
erf

(
v√

2 vTs

)
+

vTs√
2 v

erf ′
(

v√
2 vTs

))
. (5.7)

All derivatives are taken at constant particle position r. The gyrokinetic version

of this operator was introduced by Catto & Tsang [13], [20] by applying the gyro-

average operator to Eq.(5.5).

< CM [hs] >Rs =
∑
k

eik·RνssD

{
1

2

∂

∂ξ
(1− ξ2)

∂hsk
∂ξ
− v2(1 + ξ2)

8v2
ts

k2
⊥ρ

2
shsk

}
+

+
∑
k

eik·RνssD

{
v⊥J1(as)U⊥[hsk] + v‖J0(as)U‖[hsk

2vTs
F0s

}
. (5.8)

with as = k⊥v⊥/Ωs, and:

U⊥[hsk] =
3

2

∫
d3vv‖J0(as)ν

ss
D hsk(v⊥, v‖)∫

d3(v2/2vts)ν
ss
DF0s(v)

, U‖[hsk] =
3

2

∫
d3vv⊥J1(as)ν

ss
D hsk(v⊥, v‖)∫

d3(v2/2vts)ν
ss
DF0s(v)

.

The derivatives in velocity space are now taken at constant gyrocenter position

Rs. The second term in the first bracket of Eq.(5.8) is diffusive. This diffusion is

physical and due to the fact that the ring-averaged collision operator leads to changes

in the velocity of a particle which can lead to spatial repositioning of the particle’s

gyrocenter.
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The lowest order form of the pitch-angle collision operator Eq.(5.8) in the limit

of k⊥ρs � 1 is:

< CM [hs] >Rs= (5.9)

νssD (v)

{
1

2

∂

∂ξ
(1− ξ2)

∂hsk
∂ξ

+
3v‖

∫
d3v′v′‖ν

ss
D (v′)hs(v

′
⊥, v

′
‖)∫

d3v′v′2νssD (v′)F0s(v
′)

F0s

}
+O(k⊥ρ

2
s).

Our goal is to implement the collision operator that is given in Eq.(5.8) into our

particle code. In the next section we are going to explain how the numerics of our

PIC code need to be changed from the collisionless case to do that.

5.3 Numerical implementation of pitch-angle

scattering in GSP

When solving Eq.(5.4) with the pitch-angle-scattering operator [Eq.(5.8)] for

the term < CM(δf) >, we use an implicit scheme to evaluate the collision operator.

We are now going to describe the numerical scheme for the version of the code that

contains the pitch-angle collision operator. We also give an pictorial overview of the

numerical scheme of the collisional code in Fig.(5.1).

As a first step we rewrite Eq.(5.4) in terms of h and introduce operators A

and C. A captures the rate of change of h for the collisionless part of the gyrokinetic

equation and C represents the rate of change of h due to collisions.

Eq.(5.4)⇔ ∂

∂t
h = A(h)+ < C(h) >R (5.10)

=

(
∂h

∂t

)
A

+

(
∂h

∂t

)
C

(5.11)
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We now to solve this system and to separate the terms in the code we apply

Godunov dimensional splitting [27], which is a scheme that is first order accurate in

time:

(
∂h

∂t

)
A
≈ h∗ − hn

∆t
= A(hn, hn+1), (5.12)(

∂h

∂t

)
C
≈ hn+1 − h∗

∆t
=< C(hn, hn+1) >R . (5.13)

Hence, as a first step we find the solution for Eq.(5.12). This is the collisional

problem that we described before. So the code is doing the exact same as before

in order to find h∗. The code finds the new particle coordinates in phase-space by

having the particles follow their trajectories and updates their weights according to

Eq.(2.21). Given qi(t
∗) and wi(t

∗) the code determines the perturbed distribution

function δf ∗.

To evaluate the
(
∂h
∂t

)
C

operator, we find h, the non-Boltzmann part of the low-

est order perturbed distribution function from the relation: h =< δf >R + q<φ>R

T
F0.

To be able to apply the pitch-angle collision operator we need to find the values of

the perturbed distribution function on a grid in phase-space so that we can eval-

uate the derivatives in Eq.(5.8). We use the same energy-pitch-angle-grid that we

describe in chapter 3.2. The complication of having to find the distribution func-

tion h and therefore δf respectively can be avoided for the case that we do choose

the Krook operator Eq.(5.1) instead of the pitch-angle scattering operator. This

means that the Krook operator is numerically less expensive than the pitch-angle

scattering operator. The difference it takes the code to perform one time-step is

quite large when we compare the version of the code that uses the Krook operator
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with the version that uses pitch-angle scattering. When the code runs with the

Krook operator instead of the pitch-angle collision operator the time per time-step

is reduced by a factor of ∼ 3. So the code does exactly the same it did in the

︸
︷︷

︸

h(Qj(t∗))
(

∂h

∂t

)

C

(
∂h

∂t

)

A

h(Qj(tn+1))
hh

h(Qj(t∗))

q

wi(t∗)

qi(tn), wi(tn) φ

wi(tn)

q

q qq

qi(tn) qi(t∗)vDi(t
n)

w =
δf

F0

w =
δf

F0

w =
δf

F0

wi(tn+1)
wi(t∗)

vDi(t
n)φ︸

︷︷
︸

Figure 5.1: Flow-chart that explains the code’s numerical scheme that includes

pitch-angle collisions. First we solve the operator
(
∂h
∂t

)
A

that excludes collisions

to find the particles coordinates qi(t
∗) and particle weights wi(t

∗) at time t∗. The

collision operator
(
∂h
∂t

)
C

then determines the particle weights wi(t
n+1) but leaves the

particle spatial and velocity coordinates unchanged (qi(t
∗) = qi(t

n+1)).

collisionless case to find δf ∗ given δfn, the solution at the previous time step n. As

in the version of the code with coarse graining, we need to interpolate the perturbed

distribution function on the 5D-grid (x, y, z, ξ, E). To be able to solve for C(h) we
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need to find the function h given δf . Actually we are not going to use h but (h/F0)

for the collision operator. With the normalization used in the code this means that

we just need to add the gyro-averaged potential φ(x, y, z) to (δf(x, y, z, ξ, E)/F0) to

get h/F0. In the next step we use an explicit scheme to find h at the new time-step

n + 1 and transform this back to δf by subtracting the gyro-averaged potential φ.

The following list sketches out the numerical scheme for the code that is solving a

system that is described by:

Eq.(5.4)⇔ ∂

∂t
δf = A(δf, F0) + C(δf) (5.14)

1. ∂
∂t
δf = A(δf, F0)⇒ δf∗−δfn

∆t
= A(δfn, F0)

2. Find δf on a 5D-grid; see chapter 3, Fig.(3.2) and chapter 4 where we use the

same 5D version of δf for the coarse-graining operator

3. Determine h(x, y, x, ξ, E) : δf∗

F0
+ < φN >= h∗

F0

4. Implicitly solve the collision operator: ∂
∂t
h∗ = C(hn+1)

in matrix notation form this becomes: hn+1−h∗
∆t

= C(hn+1)

5. The code inverts a tri-diagonal matrix to find hn+1:

hn+1 = (I−∆tC)−1h∗

6. Find the distribution function δf at new time step tn+1

δfn+1

F0
= hn+1

F0
− < φn >
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7. Re-interpolate δf to the particle positions and change the particle weights

accordingly; see Eq. (5.19)-(5.21)

Step 1. to 3. are either trivial or have been explained in the collisionless limit

of the code. Step 4. needs further explanation. In order to evaluate the collision

operator Eq.(5.8) we need to determine the collision frequency νD(v),

νD(v) =
ν 2

3
2

(
erf
(
vN√

2

) (
1− v−2

N

)
+ e−v

2
N/2

√
2

πv2N

)
v3
N

, (5.15)

with vN = v
vT

.

Using energy E and pitch-angle ξ as coordinates for the velocity part of phase-

space, the collision frequency νD(v) is a constant factor for a given energy band that

consists of a fixed value for v. Because of the denominator v3
N , the collision frequency

falls of rapidly for higher energy values. When we are studying (later in this chapter)

the effect that pitch-angle scattering has on the perturbed distribution function δf ,

we will see that the smoothing gets weak for large energy values. This is a direct

consequence of the velocity dependence of νD . The parameter ν sets the level of

collisionality in the plasma. In the code, for a fixed value of the energy Ej, we have

(2× j − 1) ∗ number ξ = Nj, grid points. So the pitch-angle scattering operator is

solved in the code in the following way:

C(h(Ej, ξ)) =
νD(vj)

2

∂

∂ξ
(1− ξ2)

∂

∂ξ
h ⇒ i : ithξ - grid-point

=
νD(vj)

2

(
1− ξ2

i+ 1
2

)
hi+1−hi
ξi+1−ξi −

(
1− ξ2

i− 1
2

)
hi−hi−1

ξi−ξi−1

ξi+ 1
2
− ξi− 1

2

=
νD

ξi+1 − ξi−1

hi+1

(
1− ξ2

i+ 1
2

)
ξi+1 − ξi︸ ︷︷ ︸

=c

+hi−1

(
1− ξ2

i− 1
2

)
ξi − ξi−1︸ ︷︷ ︸

=a

−hi(c + a)

 .
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Thus we can write the operator C(h) in matrix form:

C(h) =



b1 c1 0 . . . . . . . . . . . . 0

a2 b2 c2 0 . . . . . . . . . 0

0 a3 b3 c3 0 . . . . . . 0

0 0 a4 b4 c4 0 . . . 0

...
...

...
...

...
...

...
...

0 . . . . . . . . . 0 aN−1 bN−1 cN−1

0 . . . . . . . . . . . . 0 aN−1 bN





h1

h2

...

...

...

...

hN



, (5.16)

with ai =
νD

ξi+1 − ξi−1

(
1− ξ2

i− 1
2

)
ξi − ξi−1

, bi = −(ai + ci), ci =
νD

ξi+1 − ξi−1

(
1− ξ2

i+ 1
2

)
ξi+1 − ξi−1

.

(5.17)

Since we are solving the pitch-angle-scattering collision term implicitly we are deal-

ing with the following equation.

hn+1 − h∗

∆t
= C(hn+1)⇒ hn+1 = (I−∆tC)−1h∗

To determine hn+1 we invert the tri-diagonal matrix I − ∆tC using the standard

techniques.

After evaluating the collision operator we find in step 5 the value of δf
F0

on the

5D-grid (x, y, z, ξ, E). This gives us the average value of the particle weights on the

grid at the new time tn+1.

w̄t+1
j =

(
δf t+1

F0

)
xt+1
j ,Et+1

j ,ξt+1
j

=

∑N
i=1 g

t+1
i,j w

t+1
i∑N

i=1 g
t+1
i,j

, (5.18)
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with gi,j the interpolation weight of particle i onto the grid-point −(xj, Ej, ξj).

We need to re-interpolate these average weights to the particle positions and

change the current particle weights. To do this we have a choice to make. We

can as we did in coarse-graining introduce an additional dissipative term. This

dissipative term has the equivalent origin as it had in the coarse-graining method

and is based on adjusting an individual particle weight by a certain fraction toward

the average weight on its corresponding grid-points. By corresponding grid-points

we mean those eight grid-points which have an interpolation weight on a specific

particle that is non-zero. Instead of adding a dissipative term that comes from the

interpolation we choose to update the value of the weight of an individual particle

relative to the change of the average weight on the grid-points which are due to

the pitch-angle collisions. We want to make sure the reassigned particle weights are

consistent with the results from the collision operator. Consequently, the reassigned

weights wt+1
i should give us w̄n+1

j back if we would interpolate them again onto the

grid. By interpolating back and forth between grid-points and particle positions we

don’t want to introduce any changes to the weights. The following reassignment

algorithm has those desired properties:

wn+1
i = w∗i +

∑
j

wn+1
i,j , (5.19)

with wn+1
i,j = g∗i,j

(
w̄n+1

j − w̄∗j
)
. (5.20)

We can modify this weights reassignment to include a lag average as it is defined

for the coarse-graining operator. This is done by assigning weight wn+1
i,j as:

wn+1
i,j = g∗i,j

(
(1− γ)(w̄n+1

j − w̄∗j ) + γw̄∗
)
. (5.21)
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For γ = 0.0 we get Eq.(5.20) back. The other extreme case is that we choose

γ = 1.0. In that case a particle is assigned the weighted averages w̄∗j from the eight

neighboring grid-points of a particle. This is exactly the coarse-graining operation

without the lag averaging term [the case with δ = 1 in Eq.(4.5)] and is therefore

completely independent of the effects of pitch-angle collisions. For all results that

we are presenting in this thesis we use γ = 0 in order to make the reassignment

procedure of the weights consistent with the results we get from the pitch-angle

scattering operator.

Note that unlike in the case for coarse graining, we use the collision operator

at each time step and choose not to apply the operator just after a chosen time

interval ∆T .

5.4 Testing the pitch-angle-scattering collision

operator

Here we show several test cases for the pitch-angle-scattering collision operator.

First we test the numerical implementation in the code for a set of test functions.

Then we initialize a set of predefined profiles for the perturbed distribution function

and check the effects that pitch-angle scattering has on those profiles in comparison

to the effects of the Krook operator and to the coarse-graining operation.
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5.4.1 Test of the numerical implementation on a known

test function

To test the implementation of the pit-angle-scattering operator we set the

distribution function h∗(x, y, z, ξ, E) equal to a function for which we can easily

determine analytically the form of hn+1. The two functions h∗1 and h∗2 that we

tested are:

h∗1(x, y, z, ξ, E) = ξ(1−∆tvD(v)) (5.22)

⇒ hn+1
1 = ξ

h∗2(x, y, z, ξ, E) = cos(ξ)−∆tνD(v)
(
2ξ sin(ξ)− (1− ξ2) cos(ξ)

)
(5.23)

⇒ hn+1
2 = cos(ξ).

The numerical results from the collision operator are compared to the analytic

solution for h1 and h2 in Fig.(5.2).

When we include more grid points the result become even better and we are

able to reduce the error further. The error is most dominant for low values of

the energy E, for which we have the fewest grid-points in ξ. [See Fig.(3.2), which

explains the velocity grid.]

5.4.2 Test of the pitch-angle operator on sharply peaked

profile in velocity space

In this section we study the effect the pitch-angle collision operator has on

very sharply peaked profile in velocity space. To generate such a profile we set the
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Figure 5.2: a) C(h∗1) compared to the analytical solution ξ, b) C(h∗2) compared to

the analytical solution cos(ξ) , c) the relative error of C(h∗1) compared to the analytic

solution ξ. Note that the error is largest for the lowest energy-band for which we

just have four points in this example, d) the relative error of C(h∗2) compared to the

analytic solution cos(ξ).

values of the particle weights in a predefined form and run the code without any

spatial dependence for the temperature and density profile, no curvature and for a

slab geometry. Such a run is linearly stable and the velocity profile of δf is nearly
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constant over time when ν = 0. To test the effect of the pitch angle operator on such

a sharply peaked profile we run the code in with those linearly stable parameters

and initialize the particle weights constant throughout the entire domain but for one

cell in velocity space (E, ξ), where we make the weights significantly larger. For the

case that we are illustrating in Fig.(5.3) we choose all weights to be equal to unity.

The only exception is that all weights that fall into the interpolation volume that is

specified by the energy index jE = 4 and the pitch-angle index jξ = 1 are initially

set to have a value of 200. We see in Fig. (5.3) that the pitch-angle collision operator

leads to a flattening of the gradient in the velocity profile by eventually distributing

the weights uniformly within the energy band (jE = 4) in which we had initialized

the peak of the weight profile. The weights for particles with energy values that

lie above or below the energy value of the peak will be unaffected by the pitch-

angle collision operator since the pitch-angle collision operator does not include any

energy diffusion. When we look at Fig.(5.3) we notice that the value for the overall

largest weights in the simulation was reduced by two orders of magnitude from the

start to the finish of the simulation at which point the pitch-angle dependence of the

weights distribution has almost entirely disappeared due to collisions. In addition,

we have to point out that the particle momentum is not going to be conserved by

the pitch-angle collision operator. To ensure momentum conservation we need to

code the additional terms that we introduced earlier, in Eq.(5.6). Currently those

terms have not been added to the code but will be in the future to overcome the

unphysical result of violating moment conservation.

The two other operators that we introduced in order to deal with the problem
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Figure 5.3: Time evaluation of a perturbed distribution function with a sharply

peaked velocity profile. The pitch angle collision operator flattens the sharp gradient

in the velocity profile of average particle weight < w >= δf
F0

and leads to a flat profile

within the energy band of the original peak.
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of growing weights in gyrokinetic particle code simulations have a different effect

on this form of the perturbed distribution. Both the Krook operator as well as

coarse-graining will not smooth the velocity dependence of δf . The Krook operator

just reduces the overall value of the weights, but since all weights are reduced by

an amount that is equal in relative terms, the structure in velocity space will be

preserved and just the absolute values of the weights are reduced. This means that

the Krook operator deals with the growing weights by artificially reducing the overall

values but it fails to identify filamentation issues that occur in velocity space. The

coarse-graining operation has the same problem as the Krook operator as it fails

to smoothen the sharp gradient in the form of the perturbed distribution function.

This is due to the fact that coarse-graining averages the particle weights that fall

within one interpolation cell. In our case we initialize the particle weights to be

identical within each cell. Furthermore we don’t have any spatial dependence of the

weight distribution. We are only putting a velocity dependence in δf . Since the

particle velocities are not updated along the characteristics and the we do not have

a spatial dependence in the problem, coarse graining will neither affect the overall

shape of this specific perturbed distribution function nor will it reduce the overall

weights.

5.4.3 Collision Operator acting on flow profile

As in the previous section we are going to test the effects of coarse graining,

the Krook operator and pitch-angle collisions on a predefined profile of δf . As we
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explained before the Krook operator counteracts the growth of the particle weights

and reduces therefore the computational noise that is accumulated by the growing

weights. But by doing so it fails to distinguish between small scale structures and

large scale structures and instead damps all scales at the same rate. Therefore it

also damps out wave modes that we wish to simulate with our code. In this section

we design a test case in order to study the effects from the three different operators

on long lived zonal flow profiles. While it is obvious that the Krook operator will

damp those flows at the same rate as it damps all structures in the system a similar

claim for the coarse graining and pitch-angle scattering operator is not apparent.

Indeed it is desirable property for a good collision model that large scale structures

such as zonal flows do not get damped away heavily by the collisions and instead

keep their character as a long lived structure.

We initialize the particle weights with a sinusoidal dependence in the x̂-

direction. We choose the wavelength for the sinusoidal weight profile to be Lx/2.

The perturbed distribution function contains the same spatial dependence as the

weights and we find that the φ-spectrum is dominated by the wavelength that we

selected for the initialization of the weights. Such a profile in φ with a strong spatial

dependence in the perpendicular direction to the magnetic field leads to a strong

E×B-drift. Hence we find a dominant flow in our simulation. The parameters that

define the strength of the three different collision operator are set to the values that

we find in §5.5 to be strong enough to lead to a constant value over time in the

nonlinear phase of an ITG-driven turbulence simulation for the sum of the squared

particle weights. So the parameters work well in an example in which our goal is to
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Figure 5.4: Flow-profile initialized to model the effect of different types of collision

operators on zonal flows

suppress the weight growth, but at the same time not damp out heavily flow profiles

that develop during the simulation.

For the result we are showing Fig. (5.5) we are using the parameters that we

identify from the Fig. (5.7) - (5.9) as sufficient to stop the weight growth. Those

parameters are summarized in Table 5.1.

From Fig. (5.5) we can conclude that coarse-graining and pitch-angle scattering

have for the example that we are looking at the desired property of weakly damping

a flow profile while the Krook operator damps the large scale profile in φ strongly.

These results give a hint that it will be much harder for strong zonal flows to develop

when we are including the Krook operator in the simulation compared to the coarse-

graining or pitch-angle scattering operator.

84



 2.64

 2.66

 2.68

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

 

 

 

 

collisionless

coarse-graining
Krook operator

pitch-angle scattering

time
[

a

vT

]

φ2

Figure 5.5: Flow-profile initialized to model the effect of different types of collision

operators on zonal flows

5.5 ITG base case with different collision op-

erators

While studying plasma turbulence with nonlinear particle codes growing weights

pose a problem. As mentioned before the accuracy of the results from particle sim-

ulations decreases as the mean-squared particle weights increases. In this section

we show the results of electrostatic simulations of Ion-Temperature-Gradient (ITG)
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turbulence with adiabatic electrons using our PIC-code Gsp . Ion-temperature-

gradient-driven turbulence has been studied theoretically [17] and numerically [25]

for a long time as it can lead to highly elongated streamers in the plasma which

have a strong effect on the transport behavior in the plasma.

ITG driven turbulence is a good candidate for testing the collision operators

since it is a well studied and documented problem [23], [50], [52]. We benchmark

our results from Gsp that we are presenting here with simulation results from the

Eulerian code Astrogk .

We set up an linear instability driven by a temperature gradient. For this

run we use a temperature gradient scale length LT = 0.1 and no gradient in the

background density (LN → ∞). Gsp finds a linear growth rate for this problem

of γ = 0.41 and a frequency of ω = −1.155. Astrogk determines the growth

rate as γ = 0.408 and the frequency of this instability as ω = −1.202. So for this

case we have overall a pretty good agreement for the linear growth behavior. When

we run Gsp nonlinearly and long enough for the code to reach a fully non-linear

state we observe in the code that the integrated quantity φ2 as well as the heat flux

role over after reaching a peak value and start to decay while settling to reach a

saturated state. We show the results of the collisionless nonlinear run with Gsp

in Fig. (5.6). We observe that although the heat flux and φ2 are decreasing in

the nonlinear phase the weights stop growing exponentially but continue to grow

algebraicy. This is a concern since as the weights keep growing the accuracy of

the measurements of physical quantities in the code such as the heat flux will be

reduced. Therefore it is obvious that if we keep running the code longer and trying
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to obtain measurements for the physical quantities in the system for a non-linear

state that reached saturation eventually the code results will be dominated by noise

and the measurements’ accuracy will be questionable.
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Figure 5.6: GSP results for ITG - turbulence. The results are obtained by running

GSP without collisions and with a temperature gradient scale length of LT = 0.1.

Shown are the behavior of the integrated quantities for φ2, heat flux, squared

weights, and weights versus time.

Therefore we test now the three different operators that we added to the

code to see how they can deal with reducing the growth of the weights in the non-
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linear phase of the simulations. To find the parameters that are sufficient for the

three different operators to succeed in stopping the squared weights from growing

in the non-linear phase of the simulation we restart the simulation at time t = 60 a
vT

where we ended the collisionless nonlinear simulation before. When we restart the

simulation we include one of the three operators to the code and tune its parameters

such that the growth of the squared weights discontinues (see Fig. (5.7)-(5.9)). It

is important to remember that the growth of the weights is not a problem of the

numerical scheme we are using. The growing weights result directly from the set of

equations we are modeling and are due to the fact that we left out the collisional

term on the right hand side of the gyrokinetic equation, Eq. (1.18). The Krook and

the coarse-graining operator are both artificial operators in the sense that they try

to correct the fact that the physical collisions were left out in Eq. (2.1). In contrast

the pitch-angle scattering operator added to Gsp is a physical operator in the

sense that it describes the collisional term on the right hand side of Eq. (1.18). It is

not an operator that is artificial and tries to make up for the fact that a simplified

set of equations is modeled. The pitch-angle scattering operator models the effects

of the collisions onto the perturbed distribution function δf and therefore changes

the particle weights w in our PIC - code.

We start to examine the effect of the various collision operators on the weight

growth in the nonlinear phase of the simulation with the Krook operator. We

can choose ν in Eq.(5.1) such that the weights squared stop increasing over time

when we restart the collisionless run shown in Fig.(5.6) at time t = 60 a
vT

with the

Krook operator turned on. As documented in Fig.(5.7), we observe that a relaxation
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Figure 5.7: Restart of nonlinear run with Krook operator in order to determine the

coefficient ν for the Krook operator that is sufficient to cancel out the growth of the

sum of the squared particle weights

coefficient of ν = 0.0055 for the Krook operator keeps the squared particle weights

constant over time. We then restart the entire run from the beginning with the

Krook operator turned on and ν set to be 0.0055. We restart the run from the

beginning instead of just restarting it at time t = 60 a
vT

to rule out that we have

to deal with some sort of hysteresis effect from running the code collisionless from

time t = 0 to t = 60. We want to study how the heat flux and the linear growth

will be affected by the Krook operator. Those results are presented together with
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the results from the other collision operators in Fig. (5.10) - Fig. (5.12).
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Figure 5.8: Restart of nonlinear run with coarse-graining operator. The damping of

the weight growth is linearly proportional to the lag average parameter δ and the

time step ∆T that lies between consecutive coarse-graining operations

We choose a similar approach for evaluating the coarse-graining operator.

Again we first determine the parameters that will eliminate the weight growth when

we restart the nonlinear run at time t = 60 a
vT

with coarse-graining turned on. A

further complication is the fact that the coarse-graining operator has two parameters

that we can choose. The first parameter is the factor δ in Eq.(4.5) that determines

the fraction to which the individual weight is set to the weight that are found by
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interpolation on the 5D grid. The second parameter is the time between coarse

graining operations, ∆T . When Parker and Chen [14] are studying the Cyclone

base case they are applying the coarse graining operation every 10 time steps and

work with the parameter δ in the range between 0.05 and 0.1. Our studies suggest

these parameters are way too dissipative for our simulations. The reason for this

difference is that we are using a lot more particles in our simulations than Parker

and Chen did. For the runs shown in Fig.(5.6) we are using 32 grid points in all three

spatial dimensions and have ∼ 19 million particles. For the energy/pitch-angle grid

we are using a total of 256 grid-points. That means that we have a total of 223 ∼ 8.4

million phase-space grid-points. Since we are using a bilinear interpolation scheme

for the spatial components of the phase-space and a nearest-neighbor interpolation

in velocity space we end up with interpolation on average ∼ 18 particles onto one

grid-point in phase-space. This might not seem a lot but is a significantly larger

amount than Parker and Chen used. They did not publish their exact numbers,

but stated that their number of particles is much smaller than their number of 5D

grid-points. Thus, when we identify in Fig. (5.8) the right values for the parameters

of the coarse-graining operation we find that δ = 6 ∗ 10−4 and ∆T = 0.1 achieve to

keep the weights constant. The amount of dissipation for coarse-graining is propor-

tional to the lag average parameter δ and inversely proportional to the time-step

size ∆T . So we can get the same results when we use a δ-parameter that is larger by

a factor of 5 and at the same time apply the operator 5 times less often by making

∆T 5 times bigger in size. As long as we are working with parameters that are

small enough these linear relationships hold. When restarting the ion-temperature-
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gradient-driven simulation shown with the coarse-graining operator turned on in the

code we use the ∆T = 0.5 and δ = 0.003 since Fig. (5.8) shows these parameters

also control the weights and we can save computational time since we have to de-

termine the full 5-D distribution function 5 times less often compared to the set of

parameters that are δ = 6 ∗ 10−4 and ∆T = 0.1.
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Figure 5.9: Restart of nonlinear run with pitch-angle collision operator in order to

determine the coefficient νii that produces the right amount of damping to cancel

out the growth of the sum of the squared particle weights

For the pitch-angle scattering operator we go through the same parameter

finding procedure as we did for the other two collision operator and identify the
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collisionality for the ion-ion collisions that is large enough to damp out the weight

growth of the particles in the ITG - simulation with the set of parameters used

to create Fig.(5.6) . The collision frequency we find to sufficient for canceling the

weight increase is νii = 0.115 as we show in Fig. (5.9). This value will depend on

the resolution of the velocity space grid in general.

Now that we have found the parameters for the Krook, coarse-graining and

pitch-angle scattering operator that are large enough to stop the squared weights

from linearly increasing, over time we can restart in Gsp the same run that was

collisionless before but now with those collision operators turned on. That way we

can study the effect the operators have on the physical quantities we are measuring

with the code. In Fig. (5.10) - (5.12) we show φ2, the heat flux Γe, and the sum

over squared particle weights for the collisional runs with the Krook-operator, the

coarse-graining, and pitch-angle scattering respectively turned on.

In Fig. (5.10) we are comparing the integrated electrostatic potential in the

four different runs on a linear and on a logarithmic scale. Note that since we are

redoing the runs that we used for Fig. (5.6) we have a temperature gradient scale

length of LT = 0.1 and no density gradient in the simulation. The growth rates

and frequencies during the linear growth phase become in the four different cases:

Furthermore we see from Fig. (5.10) that the overall qualitative behavior for the

integrated squared electrostatic potential over time is similar in the four runs. After

a linear growth phase the runs enter a non-linear phase around the same time and

start to decay towards a saturation level. Since we introduce dissipation with all

three collision operators that we have included into the code we see that the overall
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Run collision parameters growth rate γ frequency ω

Collisionless - 0.41 -1.155

Coarse-graining δ = 0.003, ∆T = 0.5 0.405 -1.150

Krook ν = 0.0055 0.398 -1.148

Pitch-angle scattering νii = 0.115 0.39 -1.135

Table 5.1: Growth rates for linear phase of ITG-driven simulation and its depen-

dence on the kind of collision operator included to control the weight growth in the

nonlinear phase.

level for the electrostatic potential is lower in all three cases with collisions compared

to the collisionless case. In addition, we notice that the Krook operator introduces

the strongest limitation to the linear growth and the maximal value that φ2 reaches

is the lowest for the case that includes the Krook operator.

The levels that we find for the heat fluxes at the end of the simulations are

similar for all four runs but lower by a factor of 2 for the case that uses the Krook

operator. The qualitative behavior is very similar in all cases but it is hard to draw

a final conclusion whether or not the values for the saturated heat fluxes differ in

the four cases since we didn’t run the code long enough in this example to be sure

that we reached a saturated level. Therefore it would be desirable to run the code

longer and see how the heat fluxes keep developing over time. We are planning on
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doing this test shortly.

In Fig. (5.12) we can see how well we reached our goal to stop the squared

weight from growing in the nonlinear phase of the simulation. We can see that the

three forms of collisional terms in the code all succeed in reducing the weight growth.

For the Krook operator as well as for the coarse-graining operator we observe linear

growth during the non-linear phase of the simulation that is a lot lower than for

the collisionless case. In those both cases the weights keep increasing, though at a

much smaller rate than in the collisionless simulation. The pitch-angle scattering

operator is the only one of the three that actually succeeds in stopping the weight

growth entirely. Indeed it even leads to a reducing of the squared weights during the

linear phase. The pitch-angle operator reaches this while for the collision frequency

that we are using for this case the damping of the growth of φ doesn’t seem to be

stronger than in the other two cases.

To be able to interpret the results and their differences we are investigating

how the weight distribution in velocity space differ for the three different collisional

terms in the simulation. In Fig. (5.13) we plot for one point in physical space the

value of the average weights that we find on the energy, pitch-angle grid at different

times during the collisionless non-linear simulation. In Fig. (5.14)-(5.16) we show

how for the three cases with collisions the weight distribution which is proportional

to the perturbed distribution function develops over time under the influence of the

different collisional terms in the code.

The first observation that we are making is that there is a remarkable differ-

ence for the linear and non-linear part of the simulation. We see that during the
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linear phase of all four cases the dominant structures in velocity space have large

spatial scales. Those scales in velocity space are broken up into smaller scales dur-

ing the nonlinear phase of the simulation. For the run with the Krook operator

as well as for the run that includes the coarse-graining operation those small scale

structures look very similar to the ones in the collisionless case. But both artificial

collision operators succeed in reducing the overall amplitude of the structures in

velocity space. For the run that includes pitch-angle scattering we see that during

the non-linear phase the structures in velocity space for small values of energy E

are not present. This is a desired effect from the collision operator. As we showed

in Fig. (5.3) pitch-angle collisions smooths out structure in velocity space within

one energy band. Since the collisionality drops as the value of energy increases (see

Eq. (5.7)) the smoothing due to pitch-angle scattering is strongest for small en-

ergy values. In Fig. (5.16) we see that the pitch-angle operator indeed smooths out

structures in velocity space most efficiently for the low energy values. When we are

evaluating integrals in the code we need to know the perturbed distribution function

δf which is defined as the product of the Maxwllian F0 times the distribution for

the weights. So the smoothening of the velocity space due to pitch-angle collisions

is there strongest where the values for δf are largest.

We also show snapshots of the time evolution of the electrostatic profile in the

x, y-direction in the code for the collisionless case as well as for the three different

cases with collisions. These plots show the linear instability that grows the kx =

0, ky = 1 mode. At times later than t = 25 [a/vT ] the code becomes nonlinear and

96



we observe the formation of eddies. Besides an overall damping of the profile in

the three collisional cases the results look fairly similar in all four cases. But the

simulation with pitch-angle collisions show a profile for φ that is smoother than the

ones for the other simulations. That the collision operator does not just smooth

the velocity-depend part of the distribution function but that the smoothing of the

velocity dependence feeds back onto the spatial dependence of the profiles is an

expected result. The fact that the pitch-angle collision operator is the only one of

the three operators is another reason that makes it seem better suited for being the

operator to include in a particle code.
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Figure 5.10: Results from Fig. (5.6) compared to the same run with either pitch-

angle collision, coarse-graining or the Krook operator included in the code. The

linear growth rate is slightly reduced in the collisional cases compared to the colli-

sionless result
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Figure 5.14: Velocity space dependence of particle weight distribution for ITG -

simulation with Krook operator (ν = 0.0055).
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Figure 5.15: Velocity space dependence of particle weight distribution for ITG -

simulation with coarse-graining operator (δ = 0.003; ∆T = 0.5)
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Figure 5.16: Velocity space dependence of particle weight distribution ITG - simu-
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Figure 5.17: Series of snapshots showing the time evolution of the x, y-profile of φ

for a nonlinear collisionless ITG-driven turbulence simulation with GSP.
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Figure 5.18: Series of snapshots showing the time evolution of the x, y-profile of φ

for a nonlinear ITG-driven turbulence simulation with GSP that included the Krook

operator.

106



a) t = 0
[

a

vT

]

e) t = 45
[

a

vT

]

c) t = 25
[

a

vT

]

b) t = 15
[

a

vT

]

c) t = 35
[

a

vT

]

f) t = 60
[

a

vT

]

x y

x

x

x

x

x

y

y y

y

y

φ

φ

φ φ

φ

φ

Figure 5.19: Series of snapshots showing the time evolution of the x, y-profile of φ

for a nonlinear ITG-driven turbulence simulation with GSP that includes coarse-

graining
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Figure 5.20: Series of snapshots showing the time evolution of the x, y-profile of

φ for a nonlinear ITG-driven turbulence simulation with GSP that includes the

pitch-angle scattering operator
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Chapter 6

Z-pinch

In this chapter we are no longer studying a slab geometry, but instead move

to a closed-field-line geometry. We are going explain the changes to the gyrokinetic

equation based on moving from a slab to the Z-pinch configuration and also will

explain how we implemented those changes to the code. The motivation for studying

the Z-pinch problem comes from the work done by Ricci et al. [54] who studied the

small-scale entropy modes in the Z-pinch in a low-β parameter regime. The regime

they were investigating was stable to the ideal interchange mode. They were able

to find variations in the particle and heat flux as a function of plasma collisionality

and the density gradient. The instability they observed is called the entropy mode.

Since the regime in which they were making those observations was unstable for

large values of kρi it poses a challenge to the standard δf -particle codes, since those

codes are restricted to kρi values of order one or smaller. In addition those codes

lack a physical collision operator and would struggle to run for long periods of time.

Since Gsp includes a pitch-angle scattering operator and in addition uses a novel

scheme to explicitly evaluate the first order Bessel functions for calculating gyro-
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averages it captures all the physics that are needed to benchmark the results that

Ricci et al. found using the continuum code gs2 .

6.1 Particle drifts in the Z-pinch

Before we go into the details of the Z-pinch geometry we explain briefly how

to derive drift velocities for plasmas that are moving under the influence of a strong,

curved background magnetic field.

We are looking at a particle that is gyrating around a magnetic background

field which is pointing in the ẑ-direction. If the particle is exposed to an additional

force that is perpendicular to the magnetic field the motion of the particle will be

a spiral in the (x, y)-plane, see Fig. (6.1). To explain this we recall that the gyro-

radius is given by ρs = v⊥
Ωs

and therefore acceleration of the particle leads to a larger

gyration radius. The acceleration that is due to the additional force F⊥ leads to a

Lorentz force that is perpendicular to the the particle drift velocity.

We can easily determine the drift velocity by averaging the acceleration over

several gyration periods and see that the net acceleration must be zero. So we end

up with the following equation,

0 = F⊥ +
qs
c

vD ×B0. (6.1)

From this expression we find vD by taking the cross product of Eq.(6.1) with

B0,

vD =
c

qs

F⊥ ×B0

B2
0

. (6.2)
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vD

B0

F⊥

Figure 6.1: Drift of a positive charged ion with a strong background magnetic field

and a force perpendicular to the direction of the magnetic field.

6.1.1 ∇B0 - Drift

For studying the Z-pinch we no longer assume that the background magnetic

field is homogenous. Instead we allow a dependence of the field strength on the y-

position, B0 = B0(y). We then Taylor expand the magnetic field around the guiding

center position

B = B0 + (r · ∇)B0

and split the particle velocity into a background part v⊥ and perturbed part vD.

The perturbed part describes the drift associated with the gradient in the magnetic

field ( v = v⊥+vD). B0 is measured at the guiding center position and r is measured

from the guiding center position. By splitting the acceleration of the particle in first

and second order terms we get the following two expressions:

d

dt
v⊥ =

qs
msc

v⊥ ×B0 gyromotion, (6.3)

d

dt
vD =

qs
msc

(vD ×B0 + v⊥ × (r · ∇) B0) . (6.4)
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In order to determine the steady drift velocity v1 we average Eq.(6.4) over one

gyration period which makes the LHS vanish and we are left with:

< vD ×B0 >R = < v⊥ × (r · ∇)B0 >R (6.5)

⇒ vD =
1

B2
0

< (v⊥ × (r · ∇)B0)×B0 >R . (6.6)

Using the following identities and definitions we can solve for vD in a straight-

forward manner:

r =
(
−v⊥

Ω s
cos(Ωst),

v⊥
Ωs

sin(Ωst), 0
)

(6.7)

v⊥ = (v⊥ sin(Ωst), v⊥ cos(Ωst), 0) (6.8)

(r · ∇) B0 = y
∂B0

∂y
ẑ (6.9)

< sin2(Ωst) >R =
1

2
(6.10)

and find:

vD =
v2
⊥

2B2
0Ωs

(B0 ×∇B0) . (6.11)

Since Ωs depends on the charge of the species s the∇-B-Drift is in opposite directions

for electrons and ions.

6.1.2 Curvature Drift

We are now going to look at a toroidal geometry. The magnetic field lines are

no longer straight in the ẑ-direction. Instead the field lines bend to form a ring.

When simulating a flux tube in our code the geometry becomes a torus. In Fig.(6.2)

we show the transformation of coordinate systems from the slab geometry that is
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using a Cartesian coordinate system to the cylindrical coordinate system of the Z-

pinch. The background magnetic field is now pointing in the negative φ̂-direction.

(B̂0 = −φ̂).

Rcφ̂
r̂

B̂ 0
=

ẑ

ŷ

x̂

ẑ

ẑ

x̂
ŷ
ẑ φ̂

ẑ
r̂

B̂0 = −φ̂

Figure 6.2: Sketch of the change of coordinate system from slab to cylindrical for

the Z-pinch problem.

In the code we do not need to implement a complete new coordinate system. As

pointed out with the dashed arrows in Fig. (6.2) the old x̂-direction now represents

the radial direction, the old ŷ-direction describes the ẑ-direction in the cylindrical

geometry of the Z-pinch and the ẑ-direction becomes the new φ̂-direction. So in the

code we are still using x, y and z. They now just represent a different coordinate

system. We do not need to make an additional changes to the code.

The motion of a particle is still described by a gyration around the field lines
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while the particle streams down that field. The particle follows the field lines since

the motion perpendicular to the field lines is resisted. But now that we added

curvature to the problem the particle will be exposed to a centripetal force while

following the field lines. The centripetal force, Fc, points in the −r̂-direction. The

force is given by:

Fc = −
msv

2
‖

Rc

r̂. (6.12)

Fc

v‖B̂0

vD for e+

vD for e−

Rc

Figure 6.3: Sketch of the centripetal force felt by particles that are streaming along

the background magnetic field. This force leads to a curvature drift that is pointing

in opposite directions for electrons and ions

Since this force is perpendicular to the magnetic field we can plug it into

Eq.(6.2) to find the following drift velocity associated with the curvature of the
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magnetic field:

vd =
v2
‖

ΩsRc

(
r̂× B̂0

)
. (6.13)

For a cylindrically symmetric vacuum magnetic field the gradient of B0 turns

out to be ∇B0 = −B0

Rc
r̂ [49]. Therefore we can add the curvature drift and the

∇−B-drift to find the total drift:

vtotd =
2v2
‖ + v2

⊥

2ΩsRc

(
r̂× B̂0

)
. (6.14)

6.1.3 Gyrokinetics equation with curvature and the new

characteristics

When we add curvature to the problem and make the magnetic background

field non-uniform we have to update the gyrokinetic equation accordingly. In Chap-

ter 2, we introduced the electrostatic gyrokinetic equation and showed how to deter-

mine the characteristics and the time evolution for this system. In the gyrokinetic

Eq.(1.18) only the term dR/dt that was defined in Eq.(1.20) will have to be change

when going from the slab to the Z-pinch configuration. To Eq.(1.20) we just need

to add the new drift velocity vtotD that was defined in Eq.(6.14).

The gyrokinetic equation for the Z-pinch can be written for the non-Boltzmann

part h of the perturbed distribution function δf as [3]:

∂h

∂t
+
(
v‖B0+ < vE×B >R +vtotD

)
· ∇h =

< C(h) >R +
qF0

T

∂ < φ >R

∂t
− < vE×B >R ·∇

(
F0 −

qφ

T
F0

)
. (6.15)
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To find the new characteristics for the system that is described by this equation

and to have a new equation that characterizes how the particle weights will behave

over time we need to go through the same exercise as in chapter 2. First we write

Eq. (6.15) in terms of δf = h− qφ
T
F0 and recall that < h >R= h. We then find:

∂

∂t
< δf >R +

(
v‖B0+ < vE×B >R +vtotD

)
· ∇ < δf >R=< C(h) >R −

< vE×B >R ·F0 − v‖
qF0

T

(
B̂0 · ∇ < φ >R

)
− vtotd · ∇

(
q < φ >R

T
F0

)
(6.16)

So using the same technique as introduced in section 2.1 we find the charac-

teristics for this system to be:

d

dt
R‖ = v‖ (6.17)

d

dt
R⊥ = < vE×B >R +vtotd (6.18)

Along those characteristics the perturbed distribution function δf is defined

by the following ODE:

d

dt
δf = (6.19)

− < vE×B >R ·∇F0 − v‖
qF0

T
B̂0 · ∇ < φ >R −vtotd · ∇

(
q < φ >R

T
F0

)
.(6.20)

This leads to an expression for the time dependence of the particle weights.

Since the drift velocities are perpendicular to the gradient of F0 the term vtotD ·∇F0 =

0 in Eq. (6.19). Since the drift velocities point in the φ̂-direction we are left with

the following expression for the time evolution of the particle weights:

d

dt
wi = −

(
< vE×B >R ·̂r

(
− 1

Ln
+

3

2LT
− v2

2LTv2
T

)
+
qv‖
T

B̂0 · < E >R

)

+
q

T

2v2
‖ + v2

⊥

2ΩRc

ẑ · < E >R . (6.21)
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There are two main differences between the slab problem and the Z-pinch

configuration. The first distinction is that the Z-pinch is actually periodic along the

magnetic field lines. In the slab we needed to introduce artificially periodic boundary

conditions in the z-direction of the code. We then needed to show that we simulate

a domain that is several correlation lengths long in z. This was necessary in order

to ensure that one end of the box is sufficiently decorrelated from the other end to

obviate artificially constraining correlation effects. The second difference is that the

magnetic field lines are now curved into circles. The ẑ-direction in the slab becomes

the φ̂-direction in the cylindrical coordinate system for the Z-pinch. Therefore the

field lines are curved around the ẑ-axis in the cylindrical coordinate system. The

radius of the curvature is given by Rc. The x̂-direction in the slab becomes the

r̂-direction in the cylindrical system. In addition, the magnetic field strength is no

longer assumed to be spatial homogeneous but it has a profile that depends on the

radial position, B = B0(r)φ̂. In the slab-geometry the gradient of B0 points in the

negative x-direction. When we transform the slab into the cylindrical system we

have a freedom on whether the magnetic field will be pointing in the positive or

negative φ̂-direction.

Now we need to look at Poisson’ s equation and update it so that we are solving

the right system for the Z-pinch. Since the direction of the drift velocities in the

Z-pinch depends on the sign of the charge we need to add electrons as simulation

particles to the code. Before, when we were studying the slab configuration, it was

sufficient to assume that the electrons are adiabatic and we used the Boltzmann

description for their density profile. This assumption was important for the way how
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we solved Poisson’s equation in chapter 2. Note that adding electrons as simulation

particles to the code doubles the number of particles in the code and roughly slows

down the code by 50%.

So far by treating the electrons as adiabatic we did not need to solve for

the perturbed electron distribution function δfe but instead assumed the solution

δfe = qeF0

Te
φ. Making the electrons a species that we simulate explicitly in the

code we have to perform the same steps that we have been doing for the ions

when the used the Boltzmann assumption for the electrons. We need to advance

the electron positions over time along their characteristics and update the electron

particle weights over time.

The only part that we need to change in the algorithm of the code besides

adding the electrons is in the way how we determine φ. As before when we ascer-

tained φ we start with Poisson’s Equation:

∇2φ = − 1

ε0
(qini + qene) (6.22)

and assume quasineutrality. When writing the electron and ion charges as

qs = |e|Zs we end up with the following equation that we need to solve for φ.

Zi = −Zene ⇔ (6.23)

Zi

∫ 〈(
< δfi >R +

Zi|e|
Ti

F0i (< φ >R)

)〉
R

d3v = (6.24)

−Ze
∫ 〈(

< δfe >R +
Ze|e|
Te

F0e (< φ >R)

)〉
R

d3v ⇔ (6.25)

Zi

∫
J0(k⊥ρi) < δfi >R d3v +

Z2
i

Ti
n0i

(
Γ0(k2

⊥ρ
2
i )− 1

)
φ = (6.26)

−Ze
∫
J0(k⊥ρe) < δfe >R d3v +

Z2
e

Te
n0e

(
Γ0(k2

⊥ρ
2
e)− 1

)
φ ⇔ (6.27)
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φ =

∫
(ZiJ0(k⊥ρi) < δfi >R +ZeJ0(k⊥ρe) < δfe >R) d3v
Z2
e |e|
Te
n0e (1− Γ0(k2

⊥ρ
2
e)) +

Z2
i |e|
Ti
n0i (1− Γ0(k2

⊥ρ
2
i ))

. (6.28)

So for the Z-pinch version of the code we got the following system of equation

that we need to solve.

The characteristics are:

• d
dt
xs =< vE×B >Rs ·x̂ = − ∂

∂y
< φ >Rs

c
B

• d
dt
ys =< vE×B >Rs ·ŷ + vtotDs = ∂

∂x
< φ >Rs

c
B
−

v2‖+
1
2
v2⊥

ΩsRc

• d
dt
zs = v‖.

The time evolution of the particle weights goes like

d

dt
wis = − ∂

∂y
< φ >Rs

c

B

[
− 1

Lns
+

3

2LTs
− v2

2LTsv
2
Ts

+
Zs|e|B
cTs

v2
‖ + 1

2
v2
⊥

ΩsRc

]
+

+
Zs|e|v‖
Ts

∂

∂z
< φ >Rs .

and Poisson’s equation is

φ =

∑
s

∫
ZsJ0(k⊥ρs) < δfs >Rs∑

s
Z2
s |e|
Ts
n0s(1− Γ0(k2

⊥ρ
2
s))

.

Notice that we wrote the the system of equation here for an arbitrary number

of particle species. Indeed we also allow in the code for more than two species.

For example it might be of interest to study a plasma that consists of several ion

species or one is concerned about how impurities in the plasma are going to affect

the plasma dynamics. By simply specifying the number of species and their physical

properties (mass, temperature, density, charge, gradient length scales) in the input

file to the code it is possible to run Gsp with more than two species.
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Before we can implement the set of equations that we gave above into the code

we need to normalize the equations. But here this is rather straightforward since

we already went through this task for the slab geometry version of the code and we

have just two new terms that we need to normalize. For all the other terms we can

use the normalization that we used before for the slab case.

The new terms are:

d

dt
ys = (. . .) +

v2
‖ + 1

2
v2
⊥

ΩsRc

⇔ y1
s = y0

s + (. . .) + ∆t
v2
‖ + 1

2
v2
⊥

ΩsRc

(6.29)

d

dt
wis = (. . .) +

∂

∂y
< φ >Rs

c

B

Zs|e|
Ts

v2
‖ + 1

2
v2
⊥

ΩsRc

⇔ w1
is = w0

is + (. . .) + ∆t
∂

∂y
< φ >Rs

c

B

Zs|e|
Ts

v2
‖ + 1

2
v2
⊥

ΩsRc

(6.30)

Using the definitions for normalized quantities in the code given in Appendix

B we get for Eq. (6.29) :

y1
sN

= y0
sN

+ (. . .) +
1

ρref
∆tN

a

vTref

v2
‖N + 1

2
v2
⊥N

RcN

v2
Ts

aΩs

= y0
sN

+ (. . .) + ∆tN
v2
‖N + 1

2
v2
⊥N

RcN

v2
TsΩref

v2
Tref

Ωs

= y0
sN

+ (. . .) + ∆tN
v2
‖N + 1

2
v2
⊥N

RcN

TsN
ZsN

(6.31)

and for Eq. (6.30) :

w1
isN

= w0
isN

+ (. . .) +

a2

ρrefvTref
∆tN

1

ρref

∂

∂yN
< φN >Rs

Trefρref
Zref |e|a

Zs|e|
Ts

v2
‖N + 1

2
v2
⊥N

ΩsRcN

v2
Ts

a
=

= ∆tN
∂

∂yN
< φN >Rs

v2
‖N + 1

2
v2
⊥

RcN

(6.32)

So we are left with a normalized set of five equations that we are solving in the

code. The numerical scheme does not need to be change from the slab configuration
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that we discussed before. So the flow-chart in Fig. (5.1) that describes the numerical

scheme can also be applied to the Z-pinch problem.

6.2 Entropy mode

When we study the small-scale turbulence in the closed-field-line geometry of

the Z-pinch we consider the regime of plasmas with β � 1, in which the dominant

instabilities have an electrostatic character and have k‖ = 0 [59]. Since the insta-

bilities have no dependence in the k⊥-direction we can run the code with only two

spatial dimensions that are both perpendicular to the magnetic field. The dominant

instabilities in the Z-pinch problem are driven by a combination of the pressure gra-

dient and the magnetic curvature. Previous studies of this system [29, 38, 39, 59, 60]

identified two distinct linear modes that can go unstable. The ideal magnetohydro-

dynamic (MHD) interchange mode and the non-MHD entropy mode.

At large pressure gradients the fastest growing mode is the interchange mode

with a growth rate of

γ2 =
c2
s

2Rc
Lp
− 7

(6.33)

with the sound speed: cs ≡
√
Te + Ti
mi

and the pressure gradient scale length: Lp ≡ −
p0

d
dr
p0

.

At weaker gradients (Lp >
2
7
Rc) the interchange mode is stabilized and the

only unstable mode left is the entropy mode. This mode leads to perturbations in
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both the temperature and the density but does leave the plasma pressure unchanged

and therefore changes the specific entropy of the plasma. The entropy mode has

been studied numerically by Hassam and Lee [29] using a fluid model and more

recently by Kesner [38, 39] and Simakov [59, 60] with gyrokinetic models under the

assumption of k⊥ρi � 1. These gyrokinetic studies found for plasmas with equal

ion and electron temperature that the entropy mode growth rate increases linearly

in k. Consequently, the strongest growing mode lies outside the regime that could

be addressed with their model that was restricted to low values of k⊥ρi.

Ricci et al. studied the entropy mode using a gyrokinetic model for a collision-

less plasma with Te = Ti and found that the entropy mode is unstable for density

gradients that fulfill the relationship: 2
7
< Ln/Rc <

π
4
.

6.3 Linear results

Ricci et al. [54] were the first to numerically explore the entropy mode in

the regime kρi ∼ 1, for which it is most unstable. They used the continuum code

Gs2 [24, 40] to solve the nonlinear gyrokinetic equation for both ions and electrons.

Fig. (6.4) shows the growth rates for the entropy mode as a function of k⊥ρi that

they found analytically for Ti = Te, ν = 0, and with no temperature gradient in the

system. We see that there are two regimes for the entropy mode. Smaller density

gradients (larger values for Ln) lead to weakly unstable modes that are just growing

at small values of k⊥ρi. Large density gradients are unstable for a wide range of

values of k⊥ρi values which includes values well above one.
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Figure 6.4: γ vs kρs for (bottom to top): Ln/Rc = 1.25 (blue), Ln/Rc =

1(red), Ln/Rc = 0.8 (black), Ln/Rc = 0.67 (green), and Ln/Rc = 0.5 (magenta).

(reprinted from Ref. [54])

For the high kρi modes the new FLR algorithm that we introduced in Gsp

and described in Chapter 2 becomes important. We compare our novel scheme

to evaluate the Bessel function J0 explicitly in the code to the 4-point-averaging

scheme. We find that in order to have Gsp agree within a few percent with results

from Gs2 we need to use the new FLR algorithm.

We ran Gsp with the 4-point averaging scheme and with the new FLR

algorithm and compared this to results we obtained from Gsp . We did this for

two of the cases that are shown in Fig. (6.4). One with strong density gradients so

123



- growth rate Case 1 growth rate Case 2

Gs2 γ = 0.46 γ = 0.055

Gsp full J0 γ = 0.465 γ = 0.05

Gsp 4-point-averaging γ = 0.0 γ = 0.048

Table 6.1: Growth rates for two different cases of the entropy mode. Comparison

of results from GSP and the continuum code GS2. We show that in the case that

high k⊥ρi modes are most unstable our novel FLR scheme is needed to have good

agreement with the continuum code.

that the high k⊥ρi modes are unstable and one with weak density gradients, so that

low k⊥ρi modes are most unstable. They two cases are:

• Case 1 : R/Ln = 2, Ti = Te, ν = 0.0, calculated mode: k⊥ρi = 4

• Case 2 : R/Ln = 1, Ti = Te, ν = 0.0, calculated mode : k⊥ρi = 0.5

The growth rates that we find for the different for Gs2 and for Gsp with

and without the novel FLR algorithm are presented in Table 6.1. We see that for

case 1 with strong gradients and k⊥ρi = 4 the 4-point-averaging scheme fails to

reproduce the instability while when we ran Gsp with the new FLR algorithm we

agreed with Gs2 on the growth rate within 10%.
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6.4 Nonlinear results

In the previous section we showed the importance of the new gyro-averaging

scheme for finding the right linear growth rates for unstable modes with values of

k⊥ρi > 1. In this section we are going to investigate the importance of collisions on

controlling the weight growth which is important to reduce the noise influence on

the measurements of physical quantities in the code.

6.4.1 Weakly driven nonlinear entropy mode

We run Gsp again for the settings of Case 2 that we described above. As

we showed before we find with Gsp the right answer for the linear growth rate.

But this time we run the code nonlinearly and run it long enough to reach the fully

non-linear regime. The box size was chosen to match Ricci, et al. In each of the

perpendicular directions, 32 grid points were used. The time step was in the range of

0.05 to 0.15 R/vt. We compare the same run with different number of particles. One

run used 4 million particles per species and the other run 20 million. In Fig. (??)

we show that both runs have a very similar behavior for the exponential growth

during the linear growth period of the run. The sum of the squared weights grows

at the same rate during that phase for both runs. But the results start to differ a

lot when the runs reach the nonlinear phase. For the run with 4 million particles

we see that the weight growth becomes catastrophic in the nonlinear phase. We

are therefore unable to resolve this run with 4 million particles and the results from

this run cannot be trusted. It is likely that this problem represents an interaction
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between too few particles and too large of a time step.

Figure 6.5: Comparison for weight growth for two identical nonlinear weakly driven

entropy mode runs with different numbers of particles.

The weight growth for the run with 20 million particles behaves radically

different than for the run with 4 million particles when the run enters the nonlinear

phase. The squared weights stop growing exponentially and instead we observe a

slow algebraic rise. The value of the squared particle weights is reduced by several

orders of magnitude at late times of the simulation for the run with 20 million
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particles compared to the run with 4 million particles. To understand the origin of

this huge difference we look at the particle fluxes for for the two runs.

Figure 6.6: Particle flux versus time for two nonlinear entropy mode calculations

with GSP with different particle numbers. On the left the particle flux for the run

that uses 4 million particles shows a catastrophic behavior when the run becomes

fully nonlinear. On the right for the run that uses 20 million particles the particle

flux reaches a steady state that is compared to results from GS2. The dashed

horizontal lines show the amount of particle flux Ricci et al. found using GS2 with

(green line) and without collisions (red line).

The particle flux for the case that uses 4 million particles shows the catas-

trophic behavior that we already observed for the particle weights. The results for

this run are shown on the left of Fig. (6.6). The flux is 3 orders of magnitude larger

than in the case that uses more particles and doesn’t reach a steady state. On the

127



right hand side of Fig. (6.6) we show the particle flux versus time for the run that

uses 20 million particles per species and compare the results with the results from

Ricci et al. [54]. The level of particle flux that we obtain with Gsp when using

a number of particles that is sufficient is for the collisional case in good agreement

with the answers that Ricci et al. found using a continuum code.

We conclude that it is possible in some cases to get reasonable behavior if one

uses enough particles, even without employing a collision operator. In the present

case, the turbulent flux is very small, so that the growth of the weights is slow.

6.4.2 Strongly driven nonlinear entropy mode

In the last section we argued that by increasing the number of particles in

the simulation we could overcome resolution issues and find answers for the parti-

cle fluxes that were in agreement with results found using continuum codes. But

increasing the number of particles in the simulation is neither always a suitable

solution nor does it overcome velocity space filamentation at late times of the sim-

ulation. While increasing the number of particles reduces the initial level of noise

in the simulation a linear growth in the sum of the squared particle weights during

the nonlinear phase will reduce the accuracy and eventually also a run that uses an

enormous amount of particles will no longer we resolved.

Here we are comparing two runs with different number of particles. One run

uses 1.6 billion particles per species and models a strongly driven entropy mode

without collisions while the other run uses 3 million particles per species and has
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the pitch-angle collision term turned on. In Fig. (6.7) we compare the behavior of

the sum of the squared weights over time for both runs on a log and linear scale.

The remarkable finding is that though the collisionless run uses ∼ 500 times more

particles than the run with pitch-angle collisions it has a stronger weight growth in

the nonlinear part of the simulation and ends up having a larger overall value for the

sum of the squared weights. So the numerical expense of adding all that particles

for the collisionless run was not necessary. With the pitch-angle collision operator

the weight growth can be reduced within a calculation that is numerically a lot less

expensive.

In Fig. (6.8) we investigate the particle fluxes for those two runs we see that

they are initially fairly similar. On the left hand side of Fig. (6.8) we compare

the particle fluxes of the collisionless and collisional run. We see that vary on the

same time scale around a constant level. For late times the collisionless run the

amplitude for the variation of the particle flux keeps increasing and it gets harder

to estimate a value for the heat flux. We do not observe the same increase for the

variation of the particle flux for the collisionless run. On the right hand side we

compare the particle flux of the collisionless run to the particle flux that was found

for the identical system using Gs2 . The level around which the particle flux of the

collisional run fluctuates is comparable to the finding with Gs2 (red horizontal line

on RHS of Fig. (6.8). For future work it would be interesting to study the strong

time variation of the particle flux that we are observing in Gsp for this run.

Looking at the weight growth for the run that uses the pitch-angle collision

operator we see that though the weight growth is reduced by a substantial amount,
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Figure 6.7: Sum of squared weights versus time for two nonlinear entropy mode

calculations with GSP. The blue curve shows the results for a run that uses 1.6

billion particles per species and is collisionless while the red curve is for the identical

run with particle number reduced to 3 million per species and pitch-angle collisions

added. The weight growth for the run that includes pitch-angle collisions is in the

nonlinear phase of the simulation a lot slower compared to the collisionless simulation

although the coliisionless simulation uses ∼ 500 times more particles.

it does not stop entirely. To understand why the weights keep on growing when

we include the pitch-angle collisions we visualize the weight distribution in velocity

space for this run. In Fig. (6.9) we show snapshots of the weight distribution at

different instances late in the calculation well within the nonlinear phase.

We observe that the main dependence of the weight distribution is in energy

and not in pitch-angle. That is expected since we showed before in Fig. (5.3) that
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Figure 6.8: Particle fluxes for the two nonlinear entropy mode calculations from

Fig. (6.7). On the RHS we compare the results from the run that includes collisions

to collisional results from GS2 (red horizontal line).

the pitch-angle collision operator in Gsp smooths structures that are pitch-angle

dependent efficiently. For future work we think it is important to include an energy-

diffusion term to the collision operator to also smooth structures in velocity space

that are energy dependent.
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Figure 6.9: Time-series that shows the velocity-space dependence of an entropy

mode simulation that uses the pitch-angle scattering operator. At late times in the

calculation the structure in velocity space is predominant energy dependent.
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Chapter 7

Conclusions

For the research that was conducted as part of this thesis we developed a new

particle in cell code that solves the electrostatic version of the gyrokinetic equation.

The code has the option of including several particle species and can solve a slab or

Z-pinch configuration.

The goal for the new code was to address two challenges that standard particle

codes have to deal with:

• Spatial resolution at scales k⊥ρi > 1 that cannot be resolved by the 4-point

averaging scheme for evaluating gyro-averages.

• Resolution at late times in the nonlinear phase of the simulation that is chal-

lenged by growth of the variance of the weights.

As we showed in this thesis we successful addressed those two points in Gsp .

With the novel algorithm to solve the Bessel function J0(k⊥ρi) explicitly in this code

we were able to obtain the right linear growth rates for the entropy mode, even for

kperpρi = 4. The 4-point averaging scheme failed to find any linear growth for this

case. For the nonlinear regime of the entropy mode we showed the importance of the
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collision operator to limit the growth of the weights. The major numerical expense

for a particle code to be able to incorporate a collision operator is that the number

of simulation particles must be sufficient to resolve velocity space initially so that

we can operate with the collision operator on the perturbed distribution function.

But once the amount of particles is made large enough to resolve velocity space the

collision operator will limit the amount of weight growth during the nonlinear phase

of the simulation and therefore the accuracy of the calculation won’t be challenged

at late times of the simulation. So while the collision operator requires upfront

more particles and therefore makes the simulation numerically more expensive it

will solve the problem of resolution at late times. This would have been addressed

in a conventional code by adding more particles to the simulation and therefore

guaranteeing that the code will not be dominated by noise before the code reaches

a steady state.

Our results show that if one decides to resolve velocity space adequately with

Lagrangian PIC algorithms, the expense as a function of simulated spatial domain

size at fixed resolution rises considerably. Nevertheless, with the higher resolution

that comes with this decision, it is clear that the growing weight problem can be

directly solved. It is also possible to describe fluctuations with wavelengths con-

siderably shorter than the thermal gyroradius with this improved velocity-space

resolution.

For future work, it is important to perform more benchmarks, with both Eu-

lerian and Lagrangian codes. It would be useful to determine the optimal number

of velocity-space bins for a range of turbulent problems, and also to determine the
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number of particles per 5-D bin required to resolve h(x, y, z, E, ξ) adequately. With

these findings in hand, it would be possible to compare the efficiency of Eulerian

and Lagrangian schemes at fixed accuracy.

It is clear from the results presented in this thesis that while the pitch-

angle scattering operator provides physically-motivated smoothing of the distribu-

tion function as a function of pitch angle, there is structure formation in h(E) which

also tends to progress to the smallest resolved scales in energy. Extension of the

basic ideas presented here to include energy diffusion in the collision operator is

desirable.

Finally, it would be useful to determine whether the efficiency of the algo-

rithms presented here remains high with more physics included, such as magnetic

shear, magnetic fluctuations, and magnetic trapping. GSP moves 640 million guid-

ing centers 1 full time step in 1 wall-clock second on 4096 Cray XT-4 cores (on the

jaguar supercomputer at ORNL) currently, but it may well be the case that the

performance is degraded as the physics model is broadened. Magnetic trapping, for

example, leads to time evolution of v‖ and v⊥, which could affect performance.
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Appendix A

Plasma Parameters

TABLE 2

Definition of parameters

Plasma Parameter Definition

s(= e, i) Species (=electron,ion)

qs Particle charge

n0s Number density

Ts Temperature

ms Particle mass

B0 Background magnetic field strength

vTs ≡
√

Ts
ms

Thermal velocity

λDs ≡
√

Ts
4πn0sqs

Electron Debye Length

Ω0s ≡ qsB0

msc
Equilibrium cyclotron frequency

ρs ≡ vTs
Ωs

Larmor radius
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Appendix B

Normalization

TABLE 3

Definition of normalized quantities in GSP

qsN = Zs|e|
Zref |e|

= Zs
Zref

Particle charge

n0sN
= n0s

n0ref
Number density

TsN = Ts
Tref

Temperature

msN = ms
mref

Particle mass

tN = t
vTref
a

time

φN =
Zref |e|a
Trefρref

φ electrostatic potential

xN = x
ρref

; yN = y
ρref

perpendicular direction

zN = z
a

parallel direction

RcN = Rc
a

Curvature

LTsN = LTs
a

; LnsN = Lns
a

gradient scale length

wsN = ws
a

ρref
particle weight

δfsN = a
n0ref

ρref
δfs perturbed distribution function

νsN ≡ Aνs
vTref

collisionality
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Appendix C

Input file for GSP

2-dimensional Z-pinch for strongly driven entropy mode (Ln = 0.5).

&grid par

Ncell = 500

Nx=32

Ny=32

Nz=1

Nvperp=31

Lx=123.66

Ly=123.66

Lz=6.28

dvperp = 0.125

delta t = 0.05

nstep= 2000

/

&dia par

diagnostics on = F

phi diagnostics on = F
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energy diagnostics on = F

spectrum diagnostics on = T

spectrum write = 100

/

&dia new par

diagnostics new on = T

diagnostics 1 on = F

diagnostics 2 on = F

diagnostics 3 on = T

diagnostics 4 on = T

nwrite = 10

/

&init par

factor delta = 0.1

num species = 2

Rinv = 1.

temperature 1 = 1.

temperature 2 = 1.

mass 1 = 1.

mass 2 = 5.4e-4

density 1 = 1.

density 2 = 1.

charge 1 = 1.
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charge 2 = -1.

Ln 1 = 0.5

Ln 2 = 0.5

LT 1 = 1.e8

LT 2 = 1.e8

nonlinear on = T

time growth off = 10000.

nonlinear phase = 1809000.

save for restart = T

init restart = F

curvature on = T

/

&dia traj

diagnostics traj on =.FALSE.

Ndisp = 1000

Nvbin = 50

traj dia step = 50

/

&collision par

dE = 0.5

N Chi = 4

collision on = F

gamma = 0.0
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time collision on = 0.

collision time = 1

pitch angle collision on = F

nu coll 1 = 0.

nu coll 2 = 0.

/

&vel dia par

v dia x = 4

v dia y = 4

v dia z = 4

velocity space diagnostics time = 10

velocity space diagnostics on = F

/
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Appendix D

Parallelization of GSP

Gsp is designed to run efficiently on large parallel clusters. Our parallelization

scheme is optimized for large number of particles relative to the three-dimensional

spatial grid. Therefore each processor runs a copy of the code with the entire

grid using an equal fraction of the total numbers of particles. Before we conduct

operations on quantities that are defined on the grid we must reduce those quantities

so that the information from all processors and therefore from all simulation particles

contributes.

In Fig. (D.1)-(D.2) we show tests for strong and weak scaling of Gsp . For

weak scaling we increase the problem size at the same rate as the number of proces-

sors. Perfect weak scaling would therefore mean that the runtime stays fixed for all

runs. We see in Fig. (D.1) that Gsp looses about 5 % on performance compared

to perfect weak scaling.

To test strong scaling we increase the number of processors while keeping the

problem size fixed. For perfect strong scaling the runtime multiplied by the number

of processors and normalized to the runtime for one processor is a constant. For

Gsp we are off by 8% compared to strong scaling when we go from one to 32

processors.
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Figure D.1: Weak scaling for GSP. Going from one to 4096 processors we loose ∼ 5%

on performance
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Figure D.2: Strong scaling for GSP. Going from one to 32 processors we loose ∼ 8%

on performance compared to perfect strong scaling.
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