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Shiga toxin-producing Escherichia coli (STEC) is the fiercest pathotype among all diarrheic E. coli. 

STEC O157:H7 has been a predominant serotype for STEC in the United States. However, an increasing 

number of cases of infections by STEC other than O157 have been reported in recent years. Shiga toxin 

(Stx) is the most important virulence factor of STEC and is encoded by stx, which is introduced into 

STEC genome by bacteriophages through gene transduction. A detailed understanding about Stx 

bacteriophages is necessary to reveal the emergence and pathogenicity of STEC. The very unstable 

genomes of Stx bacteriophages result in a dynamic phenotypic versatility including virulence, host cell 

repertoire and tolerance to adversities. Sequencing technology enables us to generate genomic sequence 

data of bacteriophages at an affordable cost. The project aimed at obtaining genomic DNA sequences of 

Stx bacteriophages of non-O157 STEC isolates of diverse serotypes. Thirteen bacteriophages were 

successfully induced from 83 STEC isolates of serotypes O74, O111, O121, O130, O163, O179 and 

O183. The bacteriophage DNA samples were collected and sequenced using MiSeq Desktop Sequencer 

(Illumina®, Inc). Automatically assembled sequences were manually compared to E. coli genome 

sequence available from NCBI (NC_000913.3) to verify the reliability of the sequencing results. Nine 

verified bacteriophage sequences were aligned to two Stx bacteriophage genomes of NCBI 

(NC_000924.1 and NC_018846.1) and visible alignment results were obtained. A phylogenetic 

relationship of the nine phages and the two reference sequences was constructed and gene profiles of each 

sample sequences were identified. The comparative analysis indicated that recombination events occurred 

in probacteriophages showed traces. Similarity of bacteriophage genomes correlated to the serotypes of



host bacteria based on the comparison of phylogenetic tree and STEC serotypes. Gene identification 

results showed that nucleotide variance does not show region specificity, silent mutations are frequent in 

housekeeping genes and virulence genes are conservative among phage samples.
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CHAPTER 1 Introduction 

1. Microbiology of Shiga toxin-producing Escherichia coli (STEC) 

STEC were first isolated among pathogenic E. coli that showed toxicity on Vero cells in 1977 [1]. 

They were identified as foodborne pathogens when E. coli O157:H7 caused two outbreaks associated 

with ground beef in 1982. The main transmission route of STEC is through contaminated food and water, 

especially through not thoroughly cooked beef and unpasteurized milk. Ruminants are the natural carriers 

of STEC, among which cattle are the most important carrier. Although animal carriers do not show 

syndromes due to the lacking of Shiga toxin receptor, they are potential sources for human infections [2].. 

One study showed that arthropod could also serve as carriers   in transmitting STEC [3]. In addition, 

STEC infections can occur through direct contact with animals and among people.  Such transmissions 

have been reported at hospitals, nursing homess and daycare centers [4]. 

1.1. The Epidemiologic Patterns of Different STEC Serotypes 

The most important single serotype of STEC is O157:H7 [5]. E. coli O157:H7 is extremely 

virulent and widely spread [6]. Outbreaks caused by O157:H7 have occurred worldwide in the past 30 

years. The control and treatment of E. coli O157 infections has been and will continue to be challenging is 

in years to come [6]. 

Non-O157 STEC is capturing more and more attentions due to the rising foodborne poisoning 

cases. Currently, more than 200 serotypes of STEC other than O157 have been verified to cause human 

diseases [7]. The infection rate increased by 60.5% from 2002 to 2005 based on the investigating results 

over 35 countries [9]. The increase of O157 STEC infecting rate was 13% by comparison [8]. An 

O104:H4 STEC outbreak that spread over half Europe and North America and caused over 50 mortalities 

was the most destructive non-O157 outbreak ever [4].  

The non-O157 STEC serotypes show geographical variance. In North America, the common non-

O157 STEC serotypes contain O26, O45, O103, O111 and O121 [9]. While in Europe O45, O111 and 
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O121 STEC are rarely recorded; O103, O145 and O157: H- STEC are the other two common serotypes 

that are highly concerned in the Europe [10]. The dynamic patterns of the non-O157 STEC imply a future 

research direction in public health and food safety areas. 

1.2. Virulence Factors and Pathogenicity of STEC 

 The pathogenicity of STEC is mainly expressed through relevant virulence factors. The principal 

factor is Shiga toxin (Stx) that is encoded by stx [11]. The pathogenicity of the STEC does not entirely 

rely on the activity of stx. . Other virulence factors are also involved. Important relevant factors include 

intinmin that is encoded by the eae located at chromosomal LEE pathogenicity island; fimbriae, 

membrane proteins, and lipopolysaccharides (LPS) which affect the adherence; and EHEC-hemolysin that 

is encoded by genes on pathogenic plasmid pO157 [5].  

1.2.1. Shiga Toxin 

Stx belongs to one of the most virulent toxins to humans [12]. By combining to endothelial cells 

at specific binding sites, Stx can present strong cytotoxicity, enterotoxicity, and neurotoxicity depending 

on the certain cells that being combined [13]. Consequently, multiple clinical conditions may occur and 

severe syndromes may happen. Current researches about the virulence factors mainly focus on the Stx. 

The Stx is a kind of compound toxin which is assembled by A and B subunits. The B subunit is a 

pentamer that serve as adhesive to bind to the galactose-(alpha 1-4)-galactose on the 

globotriaosylceramide (Gb3) receptors [14]. The binding initiates the endocytosis which allows the Stx to 

enter the host cell. The A subunit, which is the virulent unit, is then activated as RNA N-glycosidase to 

break the N-glycosidic bond of the 4324 adenine residue from the 5’ ends on the 28S rRNA. The remove 

of the adenine nucleobase results in the disassembly of the 60S ribosome and the halt of protein synthesis 

[15].  

The Stx family can be divided into 2 groups, Stx1 and Stx2. Immunologic cross reaction between 

the 2 groups is not detected and the STEC may contain either Stx1, Stx2 or both. Previous discoveries 
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have identified the possibility that one strain may carry 1 type of stx1 and 2 types of stx2 at the same time 

[16]. Although the 2 Stx groups do not share same antigenicity, the molecular structures, receptor 

structures and function mechanisms of them are highly similar. All stx locates in the probacteriophage 

genome and is able to spread among bacteria through transduction. Strains only carrying stx2 have been 

proven to be more virulent than strains carrying both stx1 and stx2 or the stx1-carrying strains. According 

to the research focusing on the difference of cytotoxicity, the median lethal dose (LD50) of Stx2 on the 

microvascular endothelial cells of human glomerulus is 1/400 of the LD50 of Stx1, which indicates that 

the research on Stx2 is more significant for clinical practices [17]. Another research shown a significant 

association between stx2 and the severity of diseases based on the unvariate analysis and multivariate 

logestic regression analysis of 237 STEC isolates [18]. The statistical conclusion may be attributed to the 

higher transcription level of stx2 in vivo and the differences of binding sites on cell surface [18]. 

1.2.2. Adherence Factors 

Adhering to gastrointestinal mucosa is the premise that STEC can show pathogenicity. The 

adherence is accomplished mainly through intimin that is encoded by eae with the assistance from other 

surface components and physical structures of bacteria surface, especially fimbriae and flagella. 

1.2.2.1. Intimin 

Intimin is a 95kDa outer membrane protein encoded by the eae that is located in the Locus of 

Enterocyte Effacement (LEE). The binding of intimin to translocated intimin receptor (Tir) will initiate 

cellular signal transduction to reorganize the cytoskeleton and sequentially form specific lesions on cells. 

Consequently, bacteria are able to adhere to the gastrointestinal epithelium [19]. Both eae and stx2 are 

widely detected in STEC strains; almost all STEC isolates from patients carry eae. The necessity of eae 

on pathogenicity is strengthened by the fact that the eae- O157:H7 mutant cannot adhere to epithelial cells 

unless the plasmids carrying normal eae are inducted [20]. Intimin is proved to be an essential factor 

which is involved in causing HUS, even the exact mechanism needs more detailed research [21]. 
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1.2.2.2. Fimbriae 

Fimbriae are important to the adhesion of bacteria on the gastrointestinal epithelium. F18 

fimbriae are identified as one of the major virulence factors that cause edema disease in weaned pigs. 

STECs that are responsible to edema disease adhere to gastrointestinal epithelium more intensely than 

general strains due to the contribution of F18 fimbriae variants [22]. A research revealed that the 

sensitivity of weaned pigs to STEC is significantly related to existence of F18 fimbriae receptor on 

gastrointestinal epithelium [23]. 

1.2.2.3. Outer Membrane Protein 

A research on outer membrane protein A (OmpA) of E. coli O157:H7 revealed that OmpA is 

responsible of the initiation of cytokine production by dendritic cells (DCs) as well as the migration of 

DCs toward infected tissues. Thus, OmpA is an important stimulator of immune response induced by 

STEC O157:H7 [24]. Outer membrane protein of STEC is responsible for the binding of bacterium to 

certain cells.  Research revealed that the binding between STEC O157:H7 to HEp-2 cell is inhibited by 

specific outer membrane protein, while the adhesion of STEC O157:H7 to Henle407 cell is mediated by 

outer membrane protein [25]. The function of controlling adhesion makes outer membrane protein an 

important pathogenic factor. 

1.2.2.4. Lipopolysaccharide (LPS) 

The research of the function of LPS on STEC adhesion is still unclear. Paton indicated that the O 

antigen on LPS increased adherence of STEC O113 and O157 to HEp-2 and Henle 407 cells in vitro [26]. 

In contrast, another research indicated that the adherence of LPS- mutants to HEp-2 cells were 

significantly enhanced, which implied that polysaccharide side chains are not required for attaching and 

effacing [28].  

1.2.2.5. Enterohemorrhagic E. coli (EHEC) Hemolysin 
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EHEC hemolysin is the most important virulence factor encoded by pO157 plasmid. The 

vulnerable targets of hemolysin includes lymphocytes, granulocytes and erythrocytes. Hemolysin forms 

pores on the membrane of target cells leading to cell death. EHEC hemolysin is the specific toxin 

produced by STEC [30]. Detailed function of EHEC hemolysin is the induction of interleukin-1beta (IL-

1beta) to mediate the expression of Gb3 receptor, which results in elevating erythrocyte lysis [30].  

1.3. Differences between STEC Serotypes 

The first identified STEC outbreak caused by E. coli O157:H7 in 1982, USA. The result of 

sample investigation on isolates recorded since 1980s shown that this pathogen was an unusual newcomer 

during that time. In the following decade, E. coli O157:H7 caused outbreaks in UK, Europe continent, 

Africa and New Zealand sequentially and became a common pathogen detected from meat, produce and 

water resource [31]. The O157:H7 STEC got reputation soon because of the ability to cause outbreaks 

and Humolytic Uremic Syndrome (HUS). The violent virulence of O157:H7 STEC arises concern that 

non-O157 serotypes have the potential to infect human beings either. Until now, about 150 non-O157 

serotypes have been confirmed to be associated with sporadic and epidemic infections that caused watery 

diarrhea, bloody diarrhea and even HUS and death [32].  

The term STEC indicates the E. coli which contains at least 1 Shiga toxin gene that encodes 

products responsible to HUS in the bacterial genome. Although some non-O157 STEC cause symptoms 

similar to O157:H7 STEC, other non-O157 STEC have been confirmed unable to cause HUS, outbreaks 

even clinical manifestations [33]. The pathogenic diversity obscures the identification of high-risk STECs 

from patients, animal samples, food products and environment. The clinical spectrum of non-O157 STEC 

infection is still an unclear problem. The current molecular genetics methods cannot reliably identify the 

risk level of non-O157 STEC. Although a trustworthy identification method will be significant for public 

health, the research gets little meaningful improvement after the world health organization assigned the 

repaid identification of virulent non-O157 STEC as a public health priority 16 years ago [34]. 
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1.4. Virulence of non-O157 STEC 

The sequencing result of 3 non-O157 STEC serotypes, the O26, O111 and O103 serotypes, 

prompted the revival of the notion of parallel evolution. The 3 above serotypes are emerging agents of 

outbreak and HUS in many countries. These 3 serotypes individually acquired mobile genetic elements of 

mobile genetic elements in a similar way discovered in E. coli O157:H7 that underwent several genetic 

steps during evolutionary pathway. Although the exact track of getting exogenous genes is unknown, the 

lambdoid probacteriophages and related integrative elements involved in the evolution were identified in 

the research of E. coli O157:H7 regardless of the fact that the 3 non-O157 serotypes separately 

established functional T3SS [35]. In the process of emerging Stx virulence, about 30 T3SS effectors were 

acquired. The most interesting part is the horizontally acquired non-LEE-encoded nle genes since the 

maintenance of this gene in the genome is related to the selective forces that the bacterium suffers [35]. 

Researches revealed that unrelated effectors may work cooperatively to result in a desired effect 

on the host cell or may oppose effects induced by other effectors [37]. In addition, the interaction of 

different effectors follows a hierarchical order. The end of the delivery pathway of effectors is the intimin 

receptor, Tir, which is necessary for successful secretion of T3SS products [38]. Moreover, since the 

encoded virulent material would be meaningless when secretion system is malfunctioned, an assumption 

is that the selective force will drive the acquisition of effector genes of similar functions to replace the 

useless secretion machinery. Until now, no decisive results can prove a hierarchy of achieving effectors 

and the maintenance of T3SS effectors under neutral pressure. The questions about the origin of emerging 

non-O157 STEC, the effect of evolutionary direction and whether the evolutionary direction relies on 

specific environmental and animal reservoirs require more genetic information [37]. 

2. Overview of Shiga toxin bacteriophage 

Bacteriophages are virus that infect and replicate within a bacterium. Traditionally, a main 

attention has been paid to virus infect either animal or plant. However, bacteriophages are showing an 
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emerging significance in public health, veterinary medicine and agronomy with the improvement of 

molecular biology and virology. Stx bacteriophages, the stx carrier of Shiga toxin-producing Escherichia 

coli (STEC), is one of the most famous and learned bacteriophage [40]. The high pathogenicity of STEC 

motivates the investigation of Stx bacteriophages since STEC outbreaks appeared. The first isolated Stx 

bacteriophages include Stx1 bacteriophage H19B from STEC O26:H11 H19 and Stx2 bacteriophage 

933W from STEC O157:H7 933W [41]. All isolated Stx bacteriophages contain double-strand DNA 

genome and are similar to lambdoid bacteriophage morphologically. Currently, a complete whole genome 

sequence has been completed on Stx bacteriophage 933W, VT2-sakai, H19B and VT1-sakai [44]. 

2.1. Life Cycle of Bacteriophages 

Bacteriophages may enter either a lytic cycle or a lysogenic cycle after contacting to a bacterium. 

Through exploiting bacterial nutrition and energy, a lytic cycle results in the death of the infected bacteria 

and the release of numerous offspring bacteriophages. In contrast, a lysogenic bacteriophage will either 

integrates the bacteriophage gene into the bacterial genome or maintain bacteriophage gene inside the 

bacterium as a plasmid. The lysogenic bacteriophage gene will synchronize with the life cycle of the host 

bacterium. The actions of the bacteriophage gene are simultaneous to the bacterial genetic materials 

without causing disruption of the host bacterium. A bacteriophage gene that being integrated into 

bacterial genome is a probacteriophage [48]. Therefore, lysogenic bacteriophages introduce exogenous 

DNA fragments into bacteria and results in a change in the pathogenicity and phenotype if the integrated 

genes were related to virulence factors. The genetic diversity and pathogenic variation caused by the 

interaction between Stx bacteriophage and bacteria are agreed to be the ultimate source of STEC variation 

[49]. 

2.2. Bacteriophage Taxonomy 

The classification of virus is based on the nucleic acid types, host reservoir, morphological and 

physiological patterns. Currently, seven orders, 96 families, 22 subfamilies, 420 genera and 2618 species 



- 8 - 
 

of viruses have been categorized by the International Committee on Taxonomy of Viruses (ICTV) [50]. 

Bacteriophages belong to either Caudovirales or Nidovirales in the order level. All discovered Stx 

bacteriophages belong to Caudovirales.  

2.3. Stx Bacteriophage Morphology 

Caudovirales can be divided into three genus: Myociridae, Podoviridae and Siphoviridae [50]. 

Caudovirales species may infect either bacteria or archaea. Caudovirales species contain linear dsDNA 

range from 18kb to 500kb. A virus particle is assembled by a protein envelope head containing linear ds 

DNA and tail fibers which recognize specific binding receptors on the surface of sensitive bacteria. Once 

tail fibers attach to receptors of bacteria surface, the bottom of bacteriophage head will bind reversibly to 

bacteria, and bacteriophage genetic material will be injected through bacterial membrane. The diameter of 

a typical Caudovirale head ranges from 45 to 170nm, with a molecular weight ranges from 20 ×106 to 

600×106. The types of structural protein components of different Caudovirales species range from 7 to 

49. The survival pH for most Caudovirales species ranges from 5 to 9. Caudovirales species have diverse 

heat sensitivity, most species can be inactivated by heating from 55 °C to 75 °C within 30 minutes. Many 

Caudovirales species are resistant to ultraviolet light and chloroform [51]. 

All genus under Caudovirales contain Stx bacteriophage species. Stx bacteriophages show diverse 

shapes and forms. Stx1 bacteriophage ΦH19 was descripted being assembled by a head of 117nm length 

and 67nm width and tails of 117nm length and 12nm width. Stx1 bacteriophage Φ30480 has a head of 

74nm length and width plus short tails of 26nm in length. A bacteriophage induced from STEC O26 

shown irregular icosahedral head and long tails, while bacteriophages from either STEC O157 or STEC 

O29 have regular icosahedral head and short tails [52]. The most learned Stx bacteriophage 933W 

contains a regular icosahedral head of about 70nm length, short contractile tails of 27nm in length and 

13nm in width [53].  
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Stx bacteriophages show diverse forms. Either regular or irregular icosahedronic head of the 

bacteriophage have been observed under electron microscope. The tails of Stx bacteriophages also show 

diversity. Identified Stx bacteriophages may be categorized into Siphoviridae (regular length, non-

contractile tail), Myoviridae (regular length, contractile tail) or Podoviridae (short, non-contractile tail) 

[50]. Bacteriophages with dissimilar morphologic patterns also differ in genotype and genome sizes [54]. 

The diversity of Stx bacteriophage impedes the understanding of STEC evolution. 

2.4. Genome structure and regulation of gene expression 

2.4.1. Stx Bacteriophage Genome 

The first Stx bacteriophage genome sequence was on Stx2 bacteriophage 933W in 1999 [44]. 

After that, Stx bacteriophages isolated from STEC O26, O29 and O157 were sequenced. The genome size 

of Stx bacteriophages ranges from 47kb to 70kb [53]. As a member of lambdoid bacteriophage family, 

Stx bacteriophage show a close genomic structure to other lambdoid bacteriophages. Stx bacteriophages 

and lambdoid bacteriophages share homologous cI, cro, cII, O, P and ren. The variances mainly happen 

in late genes and telomerase gene [56]. A probacteriophage genetic map of Stx2 bacteriophage Φ361 and 

lambdoid bacteriophage shows the remarkable similarity between the genome structures. stx locates 

downstream of the Q and upstream of the lysis genes S and R. The counterparts of stx are late genes in 

lambdoid genome [50]. 

 

Figure 1.1. Genomic Structure of Stx Bacteriophage 
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2.4.2. Regulation of Gene Expression in Stx Bacteriophage 

Transcription of Stx bacteriophages can be divided into three periods: early, medium and late 

period. After bacteriophage genome is injected into bacterial host, early transcription is immediately 

initiated by promoter PL and PR and direct to left and right, respectively. One transcript of left side 

transcription is an antirepressor N protein. N protein represses terminators of early transcription and 

enables the initiation of medium transcription to synthesize cII and cIII products. The productivity of CII 

protein directly decide which cycle the bacteriophage will enter. High concentration of CII motivates 

bacteriophage DNA to integrate into bacterial genome and represses lysis as well. The activation of stx 

depends on the encoding of antirepressor Q protein, which activates the transcription of late genes by 

helping RNA polymerase to go through late transcription terminator. The expression of late genes 

initiates a lytic cycle and results in the proliferation of offspring lytic bacteriophages and the destruction 

of bacterial membrane [49]. Shiga toxin encoded in this period will enter environment after cell lysis 

without a specific secretion mechanism [29]. However, the evolutionary force drives virulence gene to 

associate with Q gene is not clarified. 

2.5. Stx Bacteriophage Evolution 

stx of STEC isolates mainly derive from Stx probacteriophages of Stx probacteriophage-like 

elements. Although the time and reason that Stx probacteriophage-like elements lost complete genetic 

structure are unclear, these fragments fail to enter lytic cycle [37]. On the other hand, complete Stx 

probacteriophages may switch to lytic bacteriophages under certain conditions and release individual viral 

particles [38]. Multiple genetic recombination events may lead to the coexistence of multiple Stx 

probacteriophages and Stx probacteriophage-like elements in one bacterial genome. Recombination 

events destruct the completion of probacteriophage genes or mediate the emergence of chimera 

probacteriophage from multiple genetic sources [57]. The complete genome sequence on isolated Stx 

bacteriophages revealed the occurrence of assembly between different Stx bacteriophages. Three genes of 

the Stx2 bacteriophage Ф Min27 isolated from STEC O157:H7 was identified as homologous to SFV 
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bacteriophage from Shigella dysenteriae Sf8401 [58]. Although most Stx probacteriophage will 

immunize the host bacterium from being infected by other homologous bacteriophages, some Stx 

bacteriophages lack this characteristic [59]. The possible explanations include the variance of immune 

region on Stx probacteriophage genome and the existence of antirepressor similar to bacteriophage P22 

[60]. Even an antirepressor ant homologous to bacteriophage P22 has been discovered in Stx 

bacteriophage 933W, VT2-a probacteriophage of Sakai O157:H7, NP_049506 and NP_050545, the 

expression and protein activity of the ant homologue are not clearly studied yet [61]. 

Heterology of Stx bacteriophage genomes has been discovered and some hypothetical evolution 

mechanisms have been presented. When Herold treated STEC O157:H7 EDL933 with norfloxacin to 

activate the expression of late genes of Stx probacteriophage BP933, another Stx probacteriophage 

CP933V-like element and a non-Stx probacteriophage were activated simultaneously [62]. The concurrent 

induction of multiple probacteriophages or probacteriophage-like elements is a prerequisite of the 

assembly of chimera lytic bacteriophage. The newly assembled Stx bacteriophage may be covered in 

heterologous protein envelope with heterologous tail fibers [44]. An enlarged host repertoire will be 

available since the attachment between lytic bacteriophages and host bacteria due to the recognition of 

bacteriophage tail fiber to specific receptor on bacterial membrane. A successful infection into a novel 

bacterium allows a Stx bacteriophage to face diverse probacteriophages regularly existing in the host 

genome. A following recombination will result in highly dynamic variation. The compatibility between 

heterologous genetic materials makes a rapid variation possible in Stx bacteriophage evolution [37].  

2.6. stx-involved Interactions 

A possible source of the virulence of pathogens is external mobile genetic elements such as 

probacteriophage, transposons, plasmids and genomic islands. The encoding products of pathogenicity 

island (PAI) is a class of genomic islands that are related to host colonization and diseases. A flexible 

gene pool in the PAI is involved in evolution and virulence potential as well as the genetic signature of 

new and emerging pathogens [63]. In STEC, locus of enterocyte effacement (LEE) is a kind of 
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chromosomal PAI that encodes type III secretion system (T3SS), which is then involved in the attaching 

and effacing lesion. T3SS is especially a key genetic determinant for successful colonization and 

persistence of the microorganism inside animal reservoirs as well as a critical virulence factor after 

human beings are infected through zoonotic transmission [65]. Since the natural hosts of STEC are 

ruminant animals, a plausible process is that the origin of STEC type III secretion was not highly 

pathogenic, the current virulent T3SS is the upshot according to variant ecological backgrounds. The 

evolutionary pathway was described as “coincidental evolution” that indicates the presence of virulent 

factors came from purposes other than virulence [37].  The result of genetic screen indicates that the 

substrate of T3SS – the effectors – are responsible to the persistence of both O157 and non-O157 STEC 

in cattle. In addition, the significance of some effector molecules in colonization, transmission and 

virulence have been characterized, which reveals the relationship between survival in animals and human 

virulence of T3SS substrates [66].  Furthermore, the research suggests that the type III secrete-competent 

strains in animal population may potentially be high-virulent strains for human beings following zoonotic, 

foodborne and environmental transmission and therefore of great public health significance [37]. 

The mobile genetic elements in the genome sequence of O157:H7 STEC are not limited in LEE 

PAI. Many of O-islands (OI) which were considered as lineage specific segments that exist in O157 but 

not in K-12. A main source of OI is bacteriophage that integrated into bacterial chromosome after virus 

transduction. These elements immediate colonization and infection after invading human beings. A part 

of individual genes in OI have been confirmed to be related to epidemic potential and disease severity 

caused by non-O157 STEC [67]. But until now, the exact function of mobile genetic elements to STEC is 

still not clear and the thorough identification on non-O157 virulence determinants have not been done yet 

[37]. 

2.7. Pathogenic functions of Stx bacteriophage 

Stx bacteriophages exist under many conditions such as river, sewage and soil [68]. The source of 

the environmental Stx bacteriophages may be feces containing STEC or Stx bacteriophages. Stx 
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bacteriophages are more stable than bacteria of the same sample under normal conditions and are more 

resistant to sterilizer and high pressure than bacteria [68]. The infecting ability of Stx bacteriophages 

remains stable too. The stability of Stx bacteriophages partly causes stx-containing bacteria ubiquitous. 

Some gentle hygienic protocols may be invalid to inactivate Stx bacteriophages [69]. The emergence of 

Shiga toxin-producing bacteria may also be available if Stx bacteriophage is consumed and infected by 

gastrointestinal bacteria [70].  

2.8. Induction of Stx Bacteriophage 

Low level of certain antibiotics may induce stx-containing bacteria to release Stx bacteriophages 

and secret Shiga toxin [71]. Effective inductors include trimethoprim (TMP) and ciprofloxacin [72]. 

Mitomycin C is widely used in Stx bacteriophage researches and other antibiotics, such as olaquindox and 

carbadox have been reported to trigger the release of Stx bacteriophage and Shiga toxin secretion [72]. In 

addition, Stx bacteriophage can also be induced by norepinephrine, hydrogen peroxide and neutrophil, etc 

[74]. The promotion of bacteriophage induction motives a warier antibiotic treatment for both patients 

and domestic animals. An elevated HUS incidence has been reported in STEC infected children who 

underwent antibiotics treatment [77]. However, a consensus about the application of antibiotics has not 

been set yet. 

3. DNA Sequencing Technology 

Sequencing technology enables researchers to obtain genetic materials of species rapidly and 

exactly, which are critical in revealing physiological mechanisms, molecular interactions and 

phylogenetic evolution. 

The classical Sanger sequencing was developed in 1977. Sanger sequencing is based on chain-

terminating dideoxynucleotides (ddNTP) to synthesize DNA fragments of random lengths during in vitro 

DNA replication. When ddNTP is involved in the replication of DNA strand, a lack of 2’-OH and 3’-OH 

fails the formation of phosphodiester bond and therefore to terminate DNA elongation. Radionuclide-
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labeled ddNTPs which are detectable using autoradiograph can reflect nucleobase type of certain 

positions according to electrophoresis map [78].  

An improvement based on Sanger sequencing in the 1980s was to replace radionuclide labels 

with fluorescent labels and a following automatic sequencer developed [79]. Other sequencing theory 

developed in 1990s include pytosequencing, sequencing by ligation (SBL), and sequencing by 

hybridization (SBH), etc [80]. These technologies became the basis of next generation sequencing (NGS) 

technology. 

Although classical sequencing technology enabled the sequencing from virus genes to human 

genome map draft, the complication and cost blocked its wide utilization. In the first decade of 21st 

century, the development of 454 sequencing from Roche, Solexa sequencing from Illumina and SOLiD 

sequencing from ABI marked the emergence of NGS technology [83]. Comparing to Sanger sequencing 

which cost 3 billion dollars and three years to complete human genome project, SOLiD may complete 

sequencing human individual genome within one week [83]. Since NGS technology saves time through 

shortening target fragments being sequenced, it is proper to re-sequence known genomes. Classical 

sequencing technology is still needed when sequencing completely new genomes [84]. 

This project used MiSeq sequencer (Illumina) based on Solexa sequencing technology, which is 

the most commonly used technology in prokaryotic sequencing.  

1) DNA library establishment 

DNA sample is fragmentized into short fragments range from 200bp -500bp. Overhangs 

are added to the ends of each fragment to establish ssDNA library. 

2) Attachment 

A flow cell which contains 8 channels on the surface. Each channel contains fixed 

overhangs that may bind to overhangs added on each DNA fragments. Thus DNA fragments 

will attach to the flow cell in a bridge-like form. 
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3) Bridge Amplification 

PCR reaction system will be worked on the flow cell. PCR polymerase recognizes 

overhangs to initiate DNA replication and amplify the ssDNA fragments to dsDNA. 

4) Denature and Amplification Cycles 

The amplified dsDNAs are denatured to ssDNAs and re-amplified repeatedly. Same 

ssDNAs will be amplified and generate clusters which contain 500 to 1000 clones. 

5) Sequencing 

Solexa sequencing applies Sequencing by Synthesis (SBS) technology. The fluorescent 

labeled dNTPs used in reaction system are3’-OH modified to terminate following elongation. 

After synthesis is over, the labeled dNTP will be recorded. Then the fluorescent label and the 

3’-OH modification will be cleaved chemically to enable further sequencing reaction.  

An improved paired-end sequencing method was developed in 2009, where two ends of 

each DNA fragment in the DNA library are modified with overhangs [85]. The template of first 

sequencing cycle will be washed off after first sequencing. Paired-end module will lead the 

complement chain to fix at the identical position to generate template cluster for a second SBS 

cycle [85]. 

 The reading length of paired-end sequencing method arrives at 2×75bp. Each cycle of 

Solexa sequencing will result in 20.5 Gb to 25 Gb information within 10 days. Currently, the 

error rate of Solexa technology is about 1% to 1.5% due to nucleotide substitution [86]. But 

Solexa can measure the length of homopolymer perfectly since only one dNTP is added in each 

synthesis cycle. 

 

Study Objectives 

1. To obtain non-O157 Stx bacteriophage genome sequences. 

2. To explore the genomic variance of Stx bacteriophage samples. 

3. To study the biological functions of Stx bacteriophage genes. 
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CHAPTER 2 Materials and Methods 

1. Description of the non-O157 STEC isolates 

83 non-O157 STEC isolates were granted from Dr. T.G. Nagaraja of Kansas State University 

(KSU), plus 3 non-O157 STEC isolates were granted from National Institute for Health and Welfare, 

Finland (THL). The 86 non-O157 STEC isolates can be categorized into 24 groups according to O- 

serotypes (O6, O8, O15, O22, O38, O39, O74, O84, O88, O91, O96, O111, O113, O116, O117, O121, 

O130, O141, O145, O146, O153, O163, O171, O172, O179 and O183). 81 isolates were collected in 

1999 from Kansas (all came from KSU), in which contains 2 human clinical strains and 79 strains from 

either cattle feces or water sample. The other 2 isolates of KSU were collected in 2013 from cattle 

samples in Nebraska. The 3 THL isolates were isolated in 2008 from cattle samples in Burkina Faso. stx2 

were detected from all 86 isolates; 64 isolates contain stx1 while 22 isolates are not.  

2. Bacteriophage Genome Collection 

2.1. Bacteriophage Induction 

Non-O157 STEC isolates were picked up by sterilized cotton tips and were streaked on LB agar 

(Fisher, Pittsburg, PA) plate. The plates were incubated overnight at 35℃ in the incubator.  Single colony 

was selected and inoculated in 30mL LB broth (Fisher, Pittsburg, PA). Measure the optical density 

(OD600) of the bacterial solution hourly after incubating the solution at 37℃ with shaking at 150 rpm. 

Adding mitomycin C solution to a final concentration of 0.5µg/mL when OD600 reaches 0.3. The 

solution is then incubated under the same condition overnight. After centrifuge the solution at 10,000 × g 

for 30 minutes at 4℃, supernatant is then passed through sterilized 0.22µm membrane filter to receive the 

mix of bacteriophages. 

2.2. Bacteriophage Stock Preparation 
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Prepare LBM broth by adding 20% maltose solution (w/v) into autoclaved LB broth to a final 

concentration of 0.5% (v/v). The maltose solution was filtered through 0.22µm membrane filter before 

using. Commercial E. coli K-12 strain (Strain PTA-7555, ATCC, Manassas, VA) is recovered from 

frozen tube by incubating in 30mL LB broth overnight at 37℃ with shaking at 150 rpm. 1mL K-12 

solution is centrifuged at 5000 × g for 5 minutes, discard supernatant and resuspend the pellet with 100µL 

LBM broth. 100µL bacteriophage mixture is mixed with the K-12 resuspension then incubated for 20 

minutes at 37℃ with shaking at 150 rpm. LB top agar was prepared beforehand by mixing granulated 

agar to LB broth to a final concentration of 0.7% (w/v). Preheat the LB top agar and 0.1M calcium 

chloride solution to 47℃ in the waterbath during incubating the bacteriophage and K-12 mixture, add 

1.5mL molten LB top agar and 1.5 mL calcium chloride solution together into the mixture then 

immediately pour on the labeled LB agar plate. Gently swirl the plate to distribute the top agar and then 

put the plate in room temperature for 30 minutes for top agar solidification. Invert the double-layer agar 

(DLA) plate and incubate the plate at 35℃ for at least 16 hours. Check for clear circular bacteriophage 

plaques after 16 hour incubation, some bacteriophage samples need extended incubation period to allow 

plaque formation.  

Prepare SM buffer with gelatin for bacteriophage resuspension. To prepare 1 liter of SM buffer 

with gelatin, dissolve the 5.8g NaCl and 2g MgSO4·7H2O in 800 ml of H2O; add the 50mL Tris-Cl and 

5mL 2% (w/v) gelatin, then adjust the volume to 1 liter with H2O. Sterilize the buffer by autoclaving for 

20 minutes at 15 psi (1.05 kg/cm2) on liquid cycle. Allow the plaques to grow until the diameter reaches 

about 3mm. Add 5mL SM buffer in the DLA plate. Shake the plates at 80 rpm at room temperature. 

Transfer the SM buffer containing bacteriophage particles into a 15mL centrifuge tube, add 5µL 

chloroform then store the bacteriophage lysate in 4℃ refrigerator. 

2.3. Bacteriophage Genome Extraction 
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Genome extraction was done with Bacteriophage DNA Isolation Kit (Norgen Biotek, Thorold, 

Ontario, Canada). Transfer 1mL of bacteriophage lysate into a 1.5mL microtube. Bacterial host DNA was 

digested by adding 10µL RNA-free DNase I (Norgen Biotek, Thorold, Ontario, Canada) to the microtube 

and incubate for 15 minutes at room temperature. DNase I was inactivated by heating up to 75℃ for 5 

minutes. 500µL Lysis Buffer B of the DNA Isolation Kit was added in the reaction system with the 

following 10 seconds vortex. The system was then incubated at 65℃ for 15 minutes. 320µL isopropanol 

(molecular biology grade, Fisher, Pittsburg, PA) was added after the incubation. Assemble a spin column 

(Norgen Biotek, Thorold, Ontario, Canada) to a 1.5mL microtube, transfer 650µL suspension from the 

reaction system then centrifuge at 6,000 × g for 1 minute. Flowthrough was discarded and repeat the 

centrifuge until the all solution of the reaction system went through the column. Wash the column by 

adding 400µL Washing Solution A (Norgen Biotek, Thorold, Ontario, Canada) in the column to 

centrifuge at 6,000 × g for 1 minute, discard the flowthrough then repeat washing for another 2 times. 

Replace the collection tube with another 1.5mL microtube for DNA collection. 75µL Elusion Buffer B 

was added in the column then centrifuge at 6,000 × g for 1 minute. Flowthrough was collected as 

bacteriophage DNA sample. DNA concentration was measured immediately after DNA samples were 

collected.  

Qubit® 2.0 Fluorometer System was applied to measure DNA concentration. Qubit® working 

solution was prepared by diluting Qubit® dsDNA HS Reagent 1:200 in Qubit® dsDNA HS Buffer. Mixing 

190µL Qubit® working solution with 10µL DNA sample thoroughly by vortexing for 2-3 seconds. The 

DNA sample tubes were inserted into Qubit® 2.0 Fluorometer and the concentration was measured with 

the dsDNA High Sensitivity option. DNA samples with a concentration higher than 5ng/µL were stored 

in -20℃ freezer for PCR confirmation and DNA sequencing.  

For DNA samples with low concentration, bacteriophage lysate was amplified in LB broth and 

collected through polyethylene glycol precipitation.  Infect bacteriophage to K-12 suspension following 

the procedures described above. The mixture of bacteriophage and bacteria was transferred into 35mL 
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sterilized LB broth to incubate overnight at 37℃ with shaking at 150 rpm. Terminate the incubation if the 

solution was clear and cell precipitate visible at the bottom of the container, or incubation was extended if 

opaque solution was received. Solution went through sterilized 0.22µm membrane filter to remove 

bacterial residues. 700µL chloroform was added in the solution then incubate for 30 minutes at room 

temperature with shaking at 150 rpm. Polyethylene glycol 8000 (PEG8000) was added in the solution to 

reach a final concentration of 10% (w/v). Shake the solution at room temperature at 250 rpm until 

PEG8000 was completely dissolved. NaCl (Analytical grade, Fisher, Pittsburg, PA) was added in the 

solution to reach a final concentration of 1M, then swirl the container until salt dissolves. Store the 

solution on ice for at least 1 hour. Centrifuge the solution at 10,000 × g for 10 minutes at 4℃. Discard the 

supernatant, resuspend the pellet with 1.5mL SM buffer and transfer the resuspension to a 2mL 

microtube. DNase I (Invitrogen Cat. No. 18068015) was added in the resuspension to reach a final 

concentration of 1µg/mL then incubate at 35℃ for 30 minutes. DNase I was inactivated by adding 25mM 

EDTA solution to a final concentration of 1µL/mL then heated to 65℃ for 10 minutes. The amplified 

bacteriophage stock was extracted by Bacteriophage DNA Isolation Kit again to receive an acceptable 

DNA concentration. 

3. Bacteriophage Genome Confirmation 

All genomic DNA samples were confirmed through PCR test. Two pairs of primers were applied 

to detect the existence of stx2 and stx2-flanking fragment in the harvested DNA samples. The PCR 

reaction system were prepared with GoTaq® DNA Polymerase Kit (Promega, Madison, WI). The reaction 

system for each pair of primers was identical, containing 2.5µL 5× Green GoTaq® Flexi Buffer, 7µL 

MgCl2 Solution (25mM), 2µL PCR Nucleotide Mix (10mM), 1.5µL primer solution (upstream primer 

1µM, downstream primer 1µM), 0.25µL GoTaq® Hot Start Polymerase, 2.5µL template DNA and 9.25µL 

Nuclease-Free Water. The thermocycle program included an initial denaturation at 94℃ for 10 minutes, 

followed by 30 cycles of denaturation (94℃ for 30 seconds), annealing (55℃ for 60 seconds) and 

extension (72℃ for 90 seconds), ending with a final extension at 72℃ for 10 minutes.  
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Primer Name Primer Sequence Specificity Product Size Reference 

stx2-F 5'-CCATGACAACGGACAGCAGTT-3' stx2 779 

V. Gannon et 

al. 1992 

stx2-R 5'-CCTGTCAACTGAGCAGCACTTTG-3' 

422 5'-CATGAAGAAGATGTTTATGGCG-3' stx-flanking region 311 

A. Unkmeir et 

al. 2000 

457 5'-CACCCCGTTCTCATCCGTCATG-3' 

Table 2.1 Oligonucleotide Primers used for PCR Tests 

The existence of target genes was tested through agarose gel electrophoresis. Prepare 1×TAE 

buffer by diluting commercial 10×TAE buffer by ultrapure water. Agarose gel was prepared by mixing 

1% of agarose into 1×TAE buffer (w/v). The agarose suspension was heated in microwave oven using 

max level for 2 minutes until agarose was dissolved. The suspension was left at room temperature for 10 

minutes until the suspension temperature dropped to about 50℃ (the flask touchable by hands). Adding 

2µL ethidium bromide (EtBr) into 100mL suspension. The suspension was poured in the gel casting tray, 

place the comb into the tray then wait until the gel solidified. The comb was removed and the gel was 

transferred into electrophoresis chamber then pour 1×TAE buffer into the chamber to submerge the gel. 

20µL of each DNA sample was transferred to separate wells in the agarose gel, plus 10µL DNA ladder 

standard in one well of each row. The agarose gel with DNA samples loaded was placed in electric field 

of 100 volts for 30 minutes. The gel was then moved to UV camera to verify the existence of the target 

genes through looking for DNA bands of certain size. 

4. Bacteriophage Genome Sequencing 

The verified bacteriophage genomes were normalized to 0.2ng/µL by diluting the genome with 

ultrapure water. Nextera XT Sample Prep Kit (Illumina, San Diego, CA) was used to make bacteriophage 

genome library. Each sample was mixed with 10µL TD buffer and 5µL ATM in separate wells of a 96-

well plate. The samples were heated at 55℃ for 5 minutes, then held at 10℃ for DNA tagmentation 
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reacction. 5µL NT buffer was added to each well as the samples dropped to 10℃ then the plate was 

placed at room temperature for tagmentation halting.  

Fifteen microliters NPM was added to each well, as well as 5µL i5 index and 5µL i7 index. The 

tagmentated DNA samples were amplified by PCR reaction. Thermocycling protocol included an initial 

denaturation at 72℃ for 3 minutes followed by 95℃ for 30 seconds, 12 cycles of denaturation (95℃ for 

10 seconds), annealing (55℃ for 30 seconds) and elongation (72℃ for 30 seconds), the final elongation 

step was 72℃ for 5 minutes.  

AMPure XP beads were applied to extract PCR products from the PCR reaction system. 25µL 

beads were added in each well, then the 96-well plate was shook at 1800 rpm for 2 minutes. The plate was 

left at room temperature for 5 minutes to enable beads attaching to DNA products. The 96-well plate was 

placed on a magnetic stand for 2 minutes until beads were completely attracted by magnet. Supernatant 

was discarded, then 200µL 80% ethanol was added to wash the beads. After shaking at 1800 rpm for 2 

minutes, the plate was placed on the magnetic stand and supernatant was discarded. The ethanol wash 

needs to be done for 2 times in total. After the beads were washed, the pellet was air dried on the 

magnetic stand for 15 minutes to guarantee a complete evaporation of ethanol. The plate was removed 

from the magnetic stand and 52.5µL RSB was added to each well. The plate was shook at 1800 rpm for 2 

minutes then left at room temperature for 2 minutes to enable RSB attaching to DNA products. The plate 

was placed on the magnetic stand for 2 minutes, 45µL of supernatant from each well was transferred to 

another 96-well plate to complete PCR product clean up. 

Twenty microliters of cleaned PCR product was mixed with 45.83µL LNA1 and 8.33µL LNB1. 

45µL of the mixture was transferred to another 96-well plate. The plate was shook at 1800 rpm for 30 

minutes. The plate was then placed on a magnetic stand and the supernatant was discarded after beads 

were completed attracted by the magnet. The pellet was washed by LNW1 for 2 times: 45µL of LNW1 

was added in each well and the plate was shook at 1800 rpm for 5 minutes. The plate was placed on the 
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magnetic stand and the supernatant was discarded after beads were completed attracted by the magnet. 

After the second washing was over, 30µL 0.1N NaOH solution was added in each well, the beads were 

resuspended by shaking at 1800 rpm for 5 minutes. After placing the plate on the magnetic stand until the 

supernatant became clear, 30µL supernatant was transferred to another plate and 30µL LNS1 was mixed 

with supernatant to complete PCR product normalization. 

Thirty microliters normalized PCR product of each sample was mixed together in a reagent 

reservoir. 24µL of the pooled sample was added to a 1.5mL microtube containing 576µL HT1 buffer. The 

solution was mixed by vortexing for 2 to 3 seconds. The tube was heated at 96℃ for exactly 2 minutes, 

then the tube was immediately transferred to ice-water bath for 5 minutes to complete the library 

preparation. The library was loaded in a MiSeq 500 V2 reagent cartridge. The cartridge and a flow cell 

were loaded in the MiSeq sequencer. Nextera XT option was selected in the MiSeq sequencing. 

5. Data Analysis 

The automatic results of MiSeq sequencer were FASTQ format. The data was evaluated, 

assembled and converted to FASTA format by CLC Genomics Workbench. After original data was 

imported in the software, the data was trimmed by using quality score threshold of 0.001 to exclude poor-

quality sequences. Trimmed data was assembled by de novo sequencing with contig length of 300. The 

program generated FASTA files and annotation report as well. 

Original FASTA sequences contained bacteriophage contigs and E. coli K-12 contigs as well. 

Bacterial contigs were recognized by aligning FASTA files to E. coli K-12 chromosomal genome 

(Escherichia coli strain K-12 substrain MG1655, Reference sequence: NC_000913.3) available from 

National Center for Biotechnology Information (NCBI) using local BLAST 2.2.24. Blast-nucleotide 

(Blastn) was chose to align each sequence with NC_000913.3. Sequences were set as queries and 

NC_000913.3 as target. Non-default parameters included modified E-value threshold of 0.001 and 

percent identity of 80%. Matched contigs were deleted from the sequence. A reverse alignment was 
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performed by using NC_000913.3 as query and sequences as targets, matched contigs of the targets were 

deleted. The remaining contigs were globally aligned to NC_000913.3 by Mauve 2.4.0 to receive a visible 

alignment result. The highly matched contigs were also deleted. The remaining contigs were aligned to 2 

Stx bacteriophage genomes from NCBI (Enterobacteria bacteriophage 933W, Reference sequence: 

NC_000924.1; Escherichia bacteriophage P13374, Reference sequence: NC_018846.1). Blastn was chose 

to align by using sequences as queries and Stx bacteriophage genomes as targets using the parameter 

described above, highly-matched contigs were reserved. Poorly-matched contigs were aligned to 

Escherichia nucleotide collection using online BLAST with an E-value threshold of 0.01. The contigs 

without a clear source were saved into the sequences to complete bacteriophage genome clean up. 

Cleaned bacteriophage genomes were globally aligned to the 2 reference Stx bacteriophage genomes by 

Mauve 2.4.0 to receive a visible alignment result. 

Multiple alignment of sample bacteriophage genomes and 2 reference genomes (NC_000924.1 

and NC_018846.1) was performed by ClustalW. After all columns containing gaps were deleted, the 

remaining alignment result was saved to construct phylogenetic tree using maximum likelihood algorithm 

by Molecular Evolutionary Genetics Analysis 6.0 (MEGA6.0).  

Local Blast was applied to confirm the existence of genes in sample bacteriophage genomes. 

Nucleotide sequence of genes from NC_000924.1 and NC_018846.1 were set as queries to align to 

sample bacteriophage genomes by Blastn with E-value threshold of 0.001 and percent identity of 90%. 

Sample bacteriophage genomes were translated to protein sequences by MEGA6.0. The protein sequences 

of genes from NC_000924.1 and NC_018846.1 were set as queries to align to sample bacteriophage 

genomes by Blast-protein (Blastp) with E-value threshold of 0.001 and percent identity of 90%.  
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CHAPTER 3 Results 

1. Induction of STEC Isolates 

13 STEC isolates were tested to be inducible. The total induction rate was 15.66%. All 3 THL isolates 

were inducible. The induction rate of KSU isolates was 12.05%. Inducible isolates included 7 O- 

serotypes: O74, O111, O121, O130, O163, O179 and O183. 6 inducible isolates are O111 serotypes and 2 

are O163 serotypes. Statistical analysis included the induction rate according to serotypes and origins. 

 

Isolate ID Serotype Origin Location Isolating Time stx1 stx2 

KSU1234-1 O111 Cattle Kansas, USA 1999 + + 

KSU7740-2 O163 Water-creek Kansas, USA 1999 + + 

KSU7756-1 O111 Cattle Kansas, USA 1999 + + 

KSU7766-1 O111 Water-pond Kansas, USA 1999 + + 

KSU8266-1 O111 Cattle Kansas, USA 1999 + + 

KSU9042-1 O111 Water-pond Kansas, USA 1999 - + 

KSU13802-1 O163 Cattle Kansas, USA 1999 + + 

KDHE8 O111 Human Kansas, USA 1999 + + 

KDHE31 O121 Human Kansas, USA 1999 + + 

KDHE37 O130 Human Kansas, USA 1999 - + 

FE95381 O74 Bovine intestine Burkina Faso 11/11/2008 + + 

FE95383 O179 Bovine intestine Burkina Faso 10/30/2008 + + 

FE95610 O183 Beef meat Burkina Faso 12/16/2008 + + 

 Table 3.1. Summary of Inducible non-O157 STEC Isolates 
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Figure 3.1. Induction rate of STEC isolates of different serotypes. Blue bars: Number of STEC isolates of 

certain serotypes. Orange bars: Number of inducible isolates of certain serotypes. Grey bars: Induction 

rate. Rates of each serotype from left to right are 25% (1 out of 4), 27.3 (6/22), 33.3% (1/3), 25% (1/4), 

66.7% (2/3) 100% (1/1), and 100% (1/1), respectively. Serotypes without any inducible strains are not 

shown in the figure. 

 

 

Figure 3.2. Induction rate of STEC isolates of different origins. All clinical strains were inducible, the 

induction rates of animal strains and environmental strains were 16.0% and 8.3%, respectively. 
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2. Bacteriophage Genome Extraction 

Bacteriophage samples were successfully collected from all inducible STEC isolates. Genomes were 

tested by PCR reaction after being extracted from bacteriophage samples. Existence of stx gene and was 

confirmed in all 13 bacteriophage sample genomes. stx-flanking fragment was not detected from the 

bacteriophage sample came from STEC isolate KDHE37, and the other 12 sample genomes all contain 

the fragment.  

Figure 3.3. The electrophoresis result of PCR reaction targeting at stx. Line 1: 100bp DNA ladder 

standard; Line 2 and 3: STEC chromosome as positive controls (STEC O157:H7 strain and STEC O26 

strain); Line 4: Bacteriophage of KSU 1234-1; Line 5: Bacteriophage of KSU 7740-2; Line 6: 

Bacteriophage of KSU 7756-1; Line 7: Bacteriophage of KSU 7766-1; Line 8: Bacteriophage of KSU 

8266-1; Line 9: Bacteriophage of KSU 9042-1; Line 10: Bacteriophage of KSU 13802-1; Line 11: 

Bacteriophage of KDHE 8; Line 12: Bacteriophage of KDHE 31; Line 13: Bacteriophage of KDHE 37; 

Line 14: Bacteriophage of FE95381; Line 15: Bacteriophage of FE95383; Line 16: Bacteriophage of FE 

95610. 
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Figure 3.4. The electrophoresis result of PCR reaction targeting at stx-flanking fragment. From line 1 to 

line 19 are: 100bp DNA ladder standard, negative control (PCR reaction system without DNA template), 

negative control (E. coli K-12 chromosome), positive control (STEC O157:H7 chromosome), positive 

control (STEC O26 chromosome), positive control (STEC O45 chromosome), bacteriophage of KSU 

1234-1, bacteriophage of KSU 7740-2, bacteriophage of KSU 7756-1, bacteriophage of KSU 7766-1. 

bacteriophage of KSU 8266-1, bacteriophage of KSU 9042-1, bacteriophage of KSU 13802-1, 

bacteriophage of KDHE 8, bacteriophage of KDHE 31, bacteriophage of KDHE 37, bacteriophage of 

FE95381, bacteriophage of FE95383 and bacteriophage of FE 95610, respectively. 

 

3. DNA Cleaning Result 

Nine bacteriophage sample genomes were acquired after deleting contigs recognized as K-12 

chromosomal fragments. The other 4 genomes only contained bacterial sequences and entire genomes 

were deleted after cleaning protocol. 
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Isolate ID Serotype Origin Location Isolating Time stx1 stx2 

KSU1234-1 O111 Cattle Kansas, USA 1999 + + 

KSU7740-2 O163 Water-creek Kansas, USA 1999 + + 

KSU7756-1 O111 Water-pond Kansas, USA 1999 + + 

KSU7766-1 O111 Water-pond Kansas, USA 1999 + + 

KSU8266-1 O111 Cattle Kansas, USA 1999 + + 

KSU9042-1 O111 Water-pond Kansas, USA 1999 - + 

KSU13802-1 O163 Cattle Kansas, USA 1999 + + 

KDHE37 O130 Human Kansas, USA 1999 - + 

FE95381 O74 Bovine intestine Burkina Faso 11/11/2008 + + 

Table3.2. Summary of non-O157 STEC Isolates with Reliable Bacteriophage Genome Sequences  

 

4. Global Alignment 

Cleaned bacteriophage sample genomes were aligned to 2 reference genomes, NC_000924.1 and 

NC_018846.1, by Mauve 2.4.0. NC_000924.1 is the genome sequence of bacteriophage 933W, which 

was induced from STEC O157:H7. The sequence was acquired in 1999, which was the first sequenced 

Stx bacteriophage genome. NC_018846.1 is the genome sequence of bacteriophage p13374, which was 

induced from STEC O104:H4 that caused the 2011 Germany E. coli O104:H4 outbreak. The visible 

alignment results shown the difference of similarity when a sample genome aligned to traditional 

bacteriophage genome against to a novel Stx bacteriophages. 
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Figure 3.5. Global Alignment between Bacteriophage Genome Came from STEC KSU 1234-1 to Bacteriophage 933W. 

 

Figure 3.6. Global Alignment between Bacteriophage Genome Came from STEC KSU 1234-1 to Bacteriophage p13374. 
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Figure 3.7. Global Alignment between Bacteriophage Genome Came from STEC KSU 7740-2 to Bacteriophage 933W. 

 

Figure 3.8. Global Alignment between Bacteriophage Genome Came from STEC KSU 7740-2 to Bacteriophage p13374. 
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Figure 3.9. Global Alignment between Bacteriophage Genome Came from STEC KSU 7756-1 to Bacteriophage 933W. 

 

Figure 3.10. Global Alignment between Bacteriophage Genome Came from STEC KSU 7756-1 to Bacteriophage p13374. 
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Figure 3.11. Global Alignment between Bacteriophage Genome Came from STEC KSU 7766-1 to Bacteriophage 933W. 

 

Figure 3.12. Global Alignment between Bacteriophage Genome Came from STEC KSU 7766-1 to Bacteriophage p13374. 
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Figure 3.13. Global Alignment between Bacteriophage Genome Came from STEC KSU 8266-1 to Bacteriophage 933W. 

 

Figure 3.14. Global Alignment between Bacteriophage Genome Came from STEC KSU 8266-1 to Bacteriophage p13374. 
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Figure 3.15. Global Alignment between Bacteriophage Genome Came from STEC KSU 9042-1 to Bacteriophage 933W. 

 

Figure 3.16. Global Alignment between Bacteriophage Genome Came from STEC KSU 9042-1 to Bacteriophage p13374. 
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Figure 3.17. Global Alignment between Bacteriophage Genome Came from STEC KSU 13802-1 to Bacteriophage 933W. 

 

Figure 3.18. Global Alignment between Bacteriophage Genome Came from STEC KSU 13802-1 to Bacteriophage p13374. 
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Figure 3.19. Global Alignment between Bacteriophage Genome Came from STEC KDHE 37 to Bacteriophage 933W. 

 

Figure 3.20. Global Alignment between Bacteriophage Genome Came from STEC KDHE 37 to Bacteriophage p13374. 



- 37 - 
 

 

Figure 3.21. Global Alignment between Bacteriophage Genome Came from STEC FE 95381 to Bacteriophage 933W. 

 

Figure 3.22. Global Alignment between Bacteriophage Genome Came from STEC FE 95381 to Bacteriophage p13374.
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5. Phylogenetic Relationship 

Phylogenetic tree was constructed using maximum likelihood algorithm. 9 sample genomes and the 2 

reference genomes were grouped into 2 branches. The traditional bacteriophage reference was clustered 

with 6 sample genomes, which including 5 sample genomes from the O111 STEC isolates and the other 

one from O130; the novel bacteriophage reference was grouped with 3 strains, including all sample 

genomes from the O130 STEC isolates and another from O74. 

 

 Figure 3.23. Phylogenetic Tree of Sample Genomes and 2 Reference Genomes. 

 

6. Gene Annotation 

Genes of sample genomes were identified by aligning to the genes of reference genomes. The existence of 

genes of each sample genome was summarized. Both nucleotide sequences and translated-protein 

sequences were compared.
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Figure 3.24. Existence rate of genes from reference genomes in the bacteriophage genome samples. Blue bars: results based on nucleotide 

sequence comparison. Orange bars: results based on protein sequence comparison. 
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CHAPTER 4 Discussion 

1. Reasons of Low Induction Rate 

Bacteriophage induction is the primary part of the project. Although 86 STEC strains were 

collected, only 13 bacteriophage samples were successfully induced. Various inducing methods have been 

tried including an increased mitomycin C concentration, elongated incubating time and ultraviolet 

irradiation was used as an alternative method to induce bacteriophages. All these methods turned out 

failed to induce bacteriophages out of the STEC strains. By analyzing the background of STEC strains, 

strains isolated of different origins shown difference in induction rate.  

According to Figure 2, all these clinical strains were successfully induced. In contrast, the 

induction rate of STEC from other sources were significantly lower than clinical strains. Currently, the 

most efficient method to identify STEC strains is to detect the existence of stx in the bacterial genome. 

However, PCR test is unable to confirm if the stx is a latent gene or a piece of DNA residue. Ideally, the 

stx will be activated when the host bacterium lives in an adverse condition. The expression of stx begins 

after the linear probacteriophage exits from bacterial chromosome and form a circular DNA. Failure to re-

form the circular DNA will not activate the expression of stx. Hence, the produce of Shiga toxin is the 

sequential events happened after the probacteriophage is induced to enter lytic cycle. However, a 

probacteriophage can hardly maintain genome originality because of the attack from bacterial DNA repair 

system and recombination events with other similar bacteriophage DNA. Any mutation occurred in genes 

responsible for the separation from bacterial genome or the formation from linear to circular DNA will 

inactivate all activities of the bacteriophage, which can be considered as caused the bacteriophage to die. 

Since the mutation happens randomly, a positive stx PCR test is not enough to confirm the activity of the 

Stx bacteriophage. The housekeeping genes of the bacteriophage may have been mutated and the stx thus 

became a useless DNA residue too. 



- 41 - 
 

The mutation of Stx bacteriophage may attribute to the low induction rate of the project. 

Although all strains carry stx, only clinical strains had proved the activity of the Stx bacteriophage it 

carried through the virulence it shown in patients. The mitomycin C treatment used in the project helped 

to select STEC containing functional Stx probacteriophage. For other STEC strains, the existence of stx 

indicates that they were infected by Stx bacteriophage and those no longer functional bacteriophages will 

not be a latent threat to them anymore. Although those Stx bacteriophage are unable to be induced, 

sequencing on those malfunctioned probacteriophages will still be valuable. These sequences will show 

the information about housekeeping genes of Stx bacteriophages, which are even more critical to 

bacteriophages than virulence genes. In this case, the knowledge on these housekeeping genes maybe 

more useful in the regulation and control of Stx bacteriophages than focusing on virulence genes. 

The induction rate of recently isolated STEC strains is higher than the old strains. Commonly, 

STEC strains are stored at -80℃, which can be considered as an extreme condition for both bacteria and 

the co-existing probacteriophages. Although low temperature significantly inhibits the metabolisms, 

activities related to stress reactions are able to be activated when the storage time is long enough. Most 

strains in the study were isolated more than 15 years ago (Isolated in 1998). The long-term low 

temperature stress may have resulted in abnormal genetic activities that result in noninducible 

probacteriophages. 

The relationship between serotypes and induction rate is weak according to the results. One 

deficiency in the study is that the number of certain serotypes is too low to show statistical significance. 

Although the study included 24 serotypes, all serotypes had less than 4 strains except STEC O111 which 

had 22 strains. On the other hand, genes involved in probacteriophage recovery are located in early gene 

zone, which are conservative due to their importance in controlling essential activities. Serotypes of 

STEC cells indicate divert protein profiles on cell membrane, which may related to the attachment and 

infection of bacteriophage particles but not a strong factor that affect the maintenance and recovery of 

probacteriophages inside the bacterial chromosome. 
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2. Acquisition of Bacteriophage Genomes 

Although PCR results indicated a reliable genome extraction of inducible bacteriophage samples, 

the contamination of E. coli K-12 chromosome inside the bacteriophage genomes greatly impeded the 

quality of the sequencing results. Original data ranges from 2.7 Mbp to 4.8Mbp, which is much larger 

than Stx bacteriophage genome size (60 – 80 Kbp). Although the quality of sequencing was acceptable, 

the coverage of sequencing reads was not high enough to separate the bacteriophage from the bacterial 

genomes. A mixed profile of contigs can only be separated by comparing each contigs to the whole 

bacterial genome rather than assembly which is basically an inter-contig comparison process. 

By comparing raw data to E. coli K-12 sequence, the average of genome size dropped from 3.6 

Mbp to 750 Kbp. However, 4 bacteriophage sample genomes were found that all contigs belong to K-12 

sequences. The result inferred that these genome samples only contain a very low proportion of 

bacteriophage genome among the bacterial genomes. In addition, these 4 bacteriophage samples were 

collected through broth incubation, in which bacterial DNA was supposed to be digested by adding 

DNase I. Since a large amount of bacteria was lysed during bacteriophage incubation, the bacterial 

genome concentration in the final product maybe too high to be completely digested by DNase. The other 

samples that were extracted from plaques contained a higher proportion of bacteriophage particles, thus 

the bacteriophage genomes were read during sequencing. Even though, the bacterial genomes were still 

involved in the sequencing results. 

The contamination of host cells may be a strong obstacle for bacteriophage sequencing. Pure 

bacteriophage stocks can hardly be acquired because bacteria cannot be treated as vulnerable victims to 

bacteriophages in community level. Due to short life cycle, bacteria are able to make prompt responses to 

generate bacteriophage-resistant individuals. Therefore the resistant mutants are not discriminable from 

bacteriophage particles when collecting bacteriophages. In this study, extended incubation of clear broth 

containing bacteriophages and bacteria mixture sometimes resulted in an opaque solution when 
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amplifying bacteriophages using broth. This is a visible result that bacteriophages – as an evolutionary 

force – directed the prevalence of bacteriophage resistant phenotype within several life cycles.  

Since a significant large amount of contigs contained both bacterial and bacteriophage sequence 

fragments, only very strict comparing threshold can be applied when comparing to L-12 chromosome to 

avoid the potential deletion of bacteriophage contigs. The side effect of this strategy was the remaining of 

some non-bacteriophage origin contigs in the genome, which requires the comparison of remaining 

contigs to available Stx bacteriophage genomes. Two main factors are responsible for the combination of 

bacteriophage and bacteria fragments into one contig. First, contig assembly based on reference genomes 

strongly relies on the quality of previous sequenced data. Failed to distinguish extrinsic DNA fragments 

from a genome is not uncommon in gene annotation. These errors possibly lead to incorrect assembly of 

newly sequenced data. Another possible factor is the high frequency of gene recombination events 

between probacteriophages and their host chromosome. Bacteriophage genome carrying bacteria DNA 

fragments tends to be assembled together and clustered to other bacterial fragments due to the high 

reliability of bacteria sequences. 

Cleaned genomes contain 4 – 6 contigs, genome size ranges from 60 Kbp to 70 Kbp. Some 

deleted contigs also contain fragments that are highly matched to Stx bacteriophages. However, the 

contigs are not reserved if the length of match is shorter than 500 bp since the sequencing kit used in the 

study generates reads of 500 bp. Shorter matches indicate a linkage to fragments of non-bacteriophage 

origins. The deletion of these domains may affect the quality of genomic analysis in a limited range. 

However, if these contigs were reserved, the prevalence of non-bacteriophage fragments would be even 

more turbulent due to the small genome size of bacteriophages. 

3. Bacteriophage Genome Analysis 

The global alignment results indicate that 7 bacteriophage sample genomes contain at least one 

complementary region inside the genome. These regions are evidences of gene recombination events due 
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to high similarity. 8 of the 9 bacteriophage genomes were from STEC strains isolated in 1998, which was 

very close the time that bacteriophage 933W was sequenced. But the alignment results still show 

divergence especially in the region of 9000 bp to 12000 bp, which is the region of immediate early genes. 

The region also includes cI, which is the only activating gene after the bacteriophage inserts into bacterial 

chromosome. The failure of cI expression will disturb the maintenance of probacteriophage and result in 

recovery of probacteriophage. In this study, cI may be affected by mitomycin C, which disturbs 

nucleotide activities and hence induces the variance of the gene to activate the conversion of life cycle.  

Another divert region according to the alignment results is the late gene region. Gene variation, 

gene recombination and gene loss events can be recognized in this region. Late gene region encodes 

secondary metabolites including toxins, proteins that compose outer envelope and tails. A 

probacteriophage is tolerant to variations occurred in this region since these genes are temporarily silent. 

Even bacteriophage in lytic cycle can tolerate mutations and combinations of late gene regions since 

essential regulations will not be affected.  

In this study, genomes are divided into two groups. All 5 bacteriophage sample genomes came 

from STEC O111 serotypes are clustered together with bacteriophage 933W sequence, while the 2 

bacteriophage sample genomes came from STEC O163 serotypes are grouped to bacteriophage p13374. 

Bacteriophage infection starts with the recognition between bacteriophage tail proteins to specific 

receptors on cell surface. Serotypes that link to cell surface antigens indicate a variety of surface proteins 

can only be attached by tails of certain bacteriophage variants. Thus a link between the serotypes of STEC 

hosts and the phylogenetic relationship is constructed.  

The phylogenetic tree also reflects that the 2 references used in this study are divert. Although 

bacteriophage p13374 was isolated from a very violent STEC strain, the pathogenicity of STEC is not 

solely rely on the expression of Shiga toxin. The efficiency of bacteriophage p13374 in producing Shiga 

toxin possibly differs from bacteriophage 933W since the upstream fragments of stx are not identical. 
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However, over-produced Shiga toxin also reduces microbial load, the final pathogenic efficiency is 

unknown by just focusing on Shiga toxin. 

Significant differences are shown in gene identification results using nucleotide and protein 

sequences. Protein sequences are more conservative than nucleotide sequences, which indicates a large 

amount of silent mutation events and replacement of similar segment events. This condition is especially 

significant for essential regulation genes including delayed early genes cI and cII that determine the life 

cycle of bacteriophage particles, as well as O and P which activate DNA replication after 

probacteriophage recovers from lysogeny.  

Although the original information of STEC isolates shows that some isolates contain stx1, the 

sequences indicate that none of them contain a complete stx1. According to previous studies, the 

coexistence of stx1 and stx2 was detected, while was not a prevalent condition. Because of the similarity 

of these 2 genes, they need to compete with each other for the specific locus as well as related regulation 

elements. Based on this study, stx1 tends to loss from the genome due to the fact that all 5 stx1-containing 

bacteriophage samples only reserve stx1a. Another possible condition is that the pore formed by Shiga 

toxin 2 subunit B complex is compatible to the entrance of both Shiga toxin 1 subunit A and Shiga toxin 2 

subunit A. Thus the loss of stx1b benefits the bacteriophage due to the relieved gene load.  
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CHAPTER 5 Conclusion 

Although the definition of Shiga toxin-producing Escherichia coli is the existence of stx, the 

identification of stx from microorganisms only indicates the potential of producing Shiga toxin. A small 

portion of STECs from animal and environment origins remain the ability to recover Stx 

probacteriophage to encode stx. The long term latency of Stx probacteriophages inside a host 

chromosome gives sufficient chances for genetic variation events to occur. Many mutations result in the 

inactivation of bacteriophages, some variations are directed by evolutionary stresses such as the 

interaction with host. Mutation frequency of housekeeping genes does not differ to other genes 

significantly, the rate of silent mutation of housekeeping genes is higher than late genes and protein-

encoding genes. stx1 and stx2 locate in the same locus inside Stx bacteriophage genome, and the 

coexistence of the 2 virulent genes is not a stable condition and stx1 tends to loss. 

Although sequencing technology is increasingly powerful, bacteriophage genome sequencing has 

its own obstacles including the low purity of bacteriophage particle sources, the limited database of 

reference bacteriophage genomes and the negligence of correct annotating genes in previous microbial 

genomes. Stx bacteriophage genomes are not well studied and the sequences acquired in this study can be 

analyzed in further research when a larger sample size becomes available. 
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