Planning in Uncertain, Unpredictable, or
Changing Environments

by J. Hendler

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-45

Planning in Uncertain, Unpredictable, or
Changing Environments

(Working Notes of the 1990 AAAI Spring Symposium)

Edited by:
James Hendler
Systems Research Center
University of Maryland

Abstract:

This report is a compendium of the extended abstracts submitted
by participants at the 1990 AAAI Spring Symposium entitled Planning
in Uncertain, Unpredictable or Changing environments. The papers
concentrate on extending planning systems and/or intelligent agent
architectures for use in dynamic domains. Three main themes
include: the integration of planning and machine learning, the use of
probabilistic and decision-theoretic information during planning, and
the integration of planning with reaction.

Authors of the individual papers retain their copyrights.
Any reprinting or duplication of these papers requires
the permission of the article authors.

Working Notes

AAAI
Spring Symposium Series

Symposium:
Planning in Uncertain, Unpredictable, or Changing Environments

Program Committee:

James Hendler, University of Maryland, Chair
Thomas Dean, Brown University
Charles Schmidt, Rutgers University
Alberto Segre, Cornell University

TABLE OF CONTENTS

Computation and situated action
Philip E. Agre
Organizing memory for probabilistic search control
John A. Allen
Planning and Understanding: revisited
Richard Alterman and Roland Zito-wolf
Learning approximation-based uncertainty-tolerant plans
Scott W. Bennett
Controlling decision-theoretic inference
Mark Boddy and Keiji Kanazawa
Integrating planning and Reaction: A preliminary report
John Bresina and Mark Drummond
Towards intelligent real-time cooperative systems
Edmund H. Durfee
Incremental Approximate Planning: Abductive Default Reasoning
Charles Elkan
Integrating Planning and Acting in a Case-based framework
Kristian J. Hammond and Tim Converse
Controlling Inference in Planning Systems: Who, What, When,
Where, Why and How
Steve Hanks
Decision-theoretic planning in BPS
Othar Hannson, Andrew Mayer, and Stuart Russell
Dynamic control planning in intelligent agents
Barbara Hayes-Roth
Abstraction and Reaction
James A. Hendler
Integrating adaptation with planning to improve behavior in
unpredictable environments
Adele E. Howe
Partial Planning with Incomplete Information
Jane Yung-jen Hsu
A framework for replanning in Hierarchical Nonlinear Planning
Subbarao Kambhampati
Real-time search for dynamic planning
Richard E. Korf
The role of meta-reasoning in dynamic environments
Daniel R. Kuokka
Integrating Planning and Execution in SOAR
John E. Laird
Autonomous prediction and reaction with dynamic deadlines
Richard Levinson
Task planning using a formal model for Reactive Robot Plans
D. M. Lyons, R. N. Pelavin, A. J. Hendriks, and B.P. Benjamin
Reactive planning using a situation space
Stacy C. Marsella and Charles F. Schmidt
A logic for a non-monotonic theory of planning
Leora Morgenstern
Introducing the tileworld: Experimentally Evaluating Agent Architectures
Martha E. Pollack and Marc Ringuette
Planning emergency response
B.D. Pomeroy, W. E. Cheatham, and D. E. Gaucas
Plan Fields and real-world uncertainty
Neil C. Rowe
The dimensions of knowledge-based control systems and the
significance of metalevels
Marcel Schoppers and Ted Linden
Robust behavior with limited resources
Reid Simmons
Subjective ontologies
Devika Subramanian and John Woodfill
First results with Dyna
Richard E. Sutton
Abstraction planning in real-time
Richard Washington and Barbara Hayes-Roth
The STRIPS assumption for planning with uncertainty
Michael P. Wellman
Planning, Replanning and learning with an abstraction hierarchy
Hua Yang, Douglas Fisher, and Hubertus Franke

Computation and Situated Activity

Philip E. Agre
Department of Computer Science
University of Chicago
1100 East 58th Street
Chicago, Illinois 60637

For the last five years, my work has been aimed to-
ward a computational understanding of the situated ac-
tivity of embodied agents, human and otherwise [Agre
in preparation). I have explored the idea that the orga-
nization of purposive activity is an emergent property
of interactions between sensible agents and an orderly
world. In doing so, I have worked to provide an alter-
native to the idea that activity is organized through the
execution of plans. The alternative view might not be
the most useful in all environments, but it does have a
clear appeal in environments that are uncertain, unpre-
dictable, or changing. The challenge is to bring some
technical substance to the notion of the emergent or-
ganization of activity. To this end, this paper briefly
describes a series of projects.

1. First I will review the ideas about routine activity
that lie behind the running argument system.

2. Building on my experience with this system, I then
summarize the ideas about embodiment, indexicality,
and perception that lie behind the Pengi system.

3. The third section then discusses a project currently
under way to investigate empirically the evolution of
routine forms of activity.

4. The final section discusses some of the motivations
behind a new project that seeks a deeper compu-
tational understanding of the culturally organized
worlds within which the situated activity of both peo-
ple and computers occurs.

Each of these projects has developed from the earlier
ones by interpreting the lessons of engineering experi-
ence with the help of ideas and conceptual frameworks
from social theory. Our social environment is uncertain,
unpredictable, and changing, but nonetheless it orderly
in a way that permits our interactions with it to be co-
herently organized.

Running arguments

The agents constructed with classical planning tech-
niques organized their activity through the construc-

tion and execution of plans. If something went wrong,
as detected by the failure of a monitored precondition
of a plan step, local repairs could be initiated or con-
trol could be returned to the plan-construction device.
This approach was first described by Miller, Galanter,
and Pribram [1960] and was first implemented in Strips
[Fikes, Hart, and Nilsson 1972]. Classical planning
works best in domains with two properties:

1. It is computationally and epistemologically tractable
to construct plans whose execution is unlikely to en-
counter too much trouble.

2. An executive can readily make rational decisions
about whether to continue executing the current plan.

Some real-world domains are like this. I hypothesize
that others, like the world of everyday life, are not. The
notion of a running argument was an attempt to formu-
late a different model of action [Agre 1985, in prepara-
tion]. Whereas a system based on plan execution only
makes periodic decisions about action, an agent engaged
in a running argument continually redecides what to do
next. Deciding what to do can be computationally ex-
pensive, so that designing an architecture to support
continual redecision is a challenge. The running argu-
ment system addresses this challenge by conjoining a
fairly conventional rule language, a simplified version
of Amord [de Kleer et al 1977], with an optimized and
stripped-down dependency system [Doyle 1979)].

The running argument system closes a tight loop with
its (simulated) environment. On each tick of the clock,
perceptions are entered into the system’s database, the
rules run, and the chosen actions are retrieved from the
database. The system supports the fiction that the en-
tire rule base has forward-chained to exhaustion on ev-
ery tick of the clock. In reality, the complex rule-firing
process must only be applied to those rules which have
not run before. Each rule-firing causes a new patch
to be added to the system’s dependency network, thus
permitting future such firings to occur very efficiently
through a simple, highly parallel token-passing scheme
that might be likened to the operation of a combina-

tional logic circuit. Nilsson [1989] has investigated the
formal properties of this kind of scheme in more detail.

This kind of system makes a strong assumption about
the kind of activity in which it is to participate. Specif-
ically, it requires that this activity be mostly routine, so
that almost all of what an agent is doing at any given
time is something it has done before. If the agent learns,
it will be principally through the incremental evolution
of relatively settled forms of activity, with a lesser role
assigned to substantial innovations based on extensive
simulations of possible future courses of action. In a
domain in which activity is mostly routine, the running
argument system will settle down to a style of processing
in which the dependency network does most of the work,
supplemented by a background level of rule-firing that
can be sustained without unreasonably complicated or
expensive machinery.

Deictic representation and visual
routines

The running argument system has two major shortcoms-
mgs. First, since it followed technical convention in
giving constant symbols (A, JOHN, BLOCK23) a cen-
tral place in its representation scheme, the dependency
records did not generalize away from the particulars of a
given scene. Second, since it also followed convention in
assuming that its vision system could maintain an up-
to-date set of world-model propositions in its database,
it had no real theory of the connection between percep-
tion, reasoning, and action.

The solution to these problems started from a
fuller awareness of the architectural consequences of an
agent’s having a body and the situated character of
its practical reasoning [Rosenschein and Kaelbling 1986,
Smith 1986]. In its practical activities, an agent is al-
ways involved with particular other entities, and it un-
derstands these entities in terms their relation to the
activity itself. This is the intuition behind deictic rep-
resentation [Agre in preparation], which displaces con-
stant symbols from their central role and replaces them
with the interactional notion of entities, such as the-
keyboard-on-which-I-am-typing. Deictic representation
provides a novel theory of abstraction from situation
particulars, one based not on variables but on what Bar-
wise and Perry [1983] have called the “efficiency” of in-
dexical representations: their ability to refer to different
relevant individuals in different situations.

Deictic representation is an interactional notion in
that a deictic entity is not a model in an agent’s head but
rather a sustained pattern of interaction with something
in the world. In building an architecture to support this
1dea, one must co-design the central system (which sub-
serves the reasoning narrowly construed) and the pe-
ripheral systems (which subsgerve perception and motor
control), guaranteeing that they can enter into complex
but orderly forms of interaction amongst themselves and
with the outside world. What is required is an account

of visual processing in which perception is not entirely
mediated by a world model but instead participates in
a more active engagement with the environment [Bal-
lard 1989, Horswill 1988]. An account of visual-system
architecture that is suggestive in this regard is Ullman’s
[1984] concept of visual routines, according to which the
visual system supplies a repertoire of visual operations
that the central system can apply to focalized regions of
the visual image.

David Chapman and I designed the Pengi system
[Agre and Chapman 1987] to illustrate these ideas.
Pengi combines a central system made of combinational
logic and a visual system based loosely on Ullman’s ideas
(all in simulation) to engage in a continual, flexible in-
teraction with a video game called Pengo. (See [Agre in
preparation] for more details.) Starting from an initial,
coarse understanding of the dynamics of Pengo-playing,
we built Pengi through a process of iterative refinement,
using our observations of the system’s interactions with
the game to direct the search for deepened understand-
ings of the game’s dynamics and then revising our ideas
about the appropriate set of entities and reasoning pro-
cesses accordingly.

Our design process was guided in part by a collection
of scenarios describing typical courses of interaction be-
tween a player and the game. In practice, though, it
is unusual for the system to participate in one of these
scenarios straight through without interruptions, inter-
polations, repetitions, rearrangements, or the like. In no
useful sense, then, could Pengi be said to be executing
plans that we wrote for it. The process of wiring up cen-
tral systems for agents such as Pengi is rather involved
but with a good debugging environment it is compara-
ble in difficulty to any other kind of programming. In
the particular domain of video games, most of the dif-
ficulty comes from the heavy requirement for rapid and
artfully organized scanning of the game board.

The aim of Pengi was to demonstrate a way in which
complex, orderly, goal-directed forms of activity can
arigse as emergent properties of the interaction between
a sensible agent and its familiar environment. In par-
ticular, we intended Pengi to illustrate the point that
careful attention to the orderly properties of improvised
activity can lead to simpler architectures. Some con-
fusion has arisen on the pomnt, though, so for the sake
of subsequent discussions let us take a moment here to
clarify what these themes do and do not mean in the
context of Pengi.

1. Although Pengi does not employ any sort of symbolic
representations, the point is not to deny the existence
of natural language and other semiotic phenomena
but simply to refuse a central role in practical reason-
ing to an account of naming and abstraction based on
variables and constants (as in first-order logic).

2. Although Pengi does not make or use plans, the point

1s not a rejection of every possible concept of plans.

g

In [Agre and Chapman in press] we sketch an alterna-
tive theory of plans that ascribes different properties
to them and gives them a smaller role than in the
classical planning view.

3. Although Pengi does not employ central system state,

the point is not a rejection of state as such but rather
a search {or alternatives to world models, understood
as internal symbolic structures which stand in a sys-
tematic, objective correspondence to states of affairs
in the world.

4. Although Pengi uses combinational logic to decide

upon its actions, the point is not to assert the suf-
ficiency of combinational logic for all problems but
rather to stress the possibility of greatly reducing the
complexity of an agent’s machinery through careful
consideration of the nature of its intended patterns of
interaction with its world.

5. Although Pengi’s combinational logic can be con-

strued as a kind of “table lookup” mapping from
“situations” to “actions” [Ginsberg 1989], this way of
looking at Pengi’s machinery both neglects the com-
plex visual processing that mediates between Pengi
and its environment and overlooks the central point
of the exercise by presupposing, contrary to our inten-
tion, that rationality inheres in single isolated actions
rather than in time-extended emergent patterns of in-
teraction. (In any event, as Mel [1989] among others
points out, table lookup schemes have an important
place in motor learning and one should not write them
off too quickly.)

6. Although Pengi employs a fixed circuit to play Pengo,

the point is not to assert the sufficiency of fixed cir-
cuits for all tasks. Nor do we mean to imply that any
program could synthesize such circuits all of a piece.
We believe that circuits such as Pengi’s could arise
through a continual incremental evolution during the
course of a system’s interactions with its environment.
The running arguments work offered a sense of how
this might occur.

We have offered Pengi as a provisional illustration of a
view of situated agency that locates the important prop-
erties of a device not in its machinery but in its orderly
patterns of interaction with the world. The engineered
artifact is not the device itself, removed from its typical
seltings in its particular world, but rather these emer-
gent patterns of interaction themselves. The challenge
we have set ourselves is not to build devices that can en-
gage in increasingly complex forms of abstract, detached
reasoning, but rather to build devices that can engage
in increasingly complex forms of concrete, situated ac-
tivity. This alternative focus requires a redefinition and
rethinking of many of the field’s central questions, a
process that I hope can lead to a renewed awareness of
the assumptions underlying various approaches to these
questions.

Routine evolution

To get a fuller sense of how routine forms of activity
might evolve in the course of everyday life, Jefl Shrager
and I are, as part of an ongoing project, analyzing
a videotape of an experimental subject performing a
highly routine photocopying task which required mak-
ing three copies of a seventeen-page-long article from
a bound book. (In accord with accepted experimental
procedures, the subject was taped secretly and then de-
briefed and offered the opportunity to have the tape
erased.) We plan to present this material fully in a
forthcoming article. My purpose here is only to sketch
its possible significance for computational research on
action.

Even though in a general sense she does roughly the
same things to copy each page of the article, the com-
plexity of the subject’s performance appears incompati-
ble with the hypothesis that she might have been repeat-
edly executing a fixed plan. Instead, her relationship to
the machine involves a very dense system of continual
fine adjustments whose details and extents and combi-
nations vary from page to page within a generally fixed
repertoire. The organized character of the activity ap-
pears not predetermined but rather an emergent prop-
erty of an unfolding pattern of interaction [Lave 1988].

We can, though, observe some definite trends in the
course of the task. She anticipates events (such as the
final flash of the copier) with successively greater accu-
racy, she omits (by increments) operations that prove
not to be entirely necessary (such as closing the copier’s
cover for each copy), and she finds things to do with the
dead times that regularly occur when waiting for various
events (again, such as the copier’s flashing). These mod-
ifications arise not through revolutionary reinventions of
her routine but rather through discrete mutations that
appear and then, with subsequent iterations, work their
way into the fabric of the routine.

We have begun tracking each of these various observed
mutations, attempting to understand their origins and
dynamics. Our hypothesis is that the mutations arise
through the transfer of simple observations or explana-
tions (so that they might be viewed as restricted cases
of explanation-based learning) that correspond to small,
readily recognizable aspects of the ongoing situation. In
a subsequent phase of this research, we hope to match
the dynamics of this kind of routine evolution to the
forms of machinery that can support it. We believe that
our time spent understanding these dynamics will lead
us to machinery that, like Pengi’s, i1s simple and elegant
and well-sulted for the task of that kind of learning.

Computation as culture

Throughout this researcly, the leading principle has been
that the organization of purposive activity is an emer-
gent property of interactions between sensible agents
and orderly worlds. In keeping with computational the-
ory’s traditional focus on internal states of individual

agents, it has remained obscure what it is about the
world that facilitates these organized forms of interac-
tion. Answers to this question will no doubt vary to
some extent across species of organisms and robots. In-
sects (organic or robotic) such as described by Brooks
[1986], for example, live in an evolutionarily constituted
“niche” in a particular ecosystem. It would be of great
interest to understand what these niches consist in and
how one might design creatures to inhabit them.
Though my own interest is in the organization of hu-
man activities, the issues that arise in the course of
computational study of organized activity are equally
relevant to the engineering of autonomous agents and
the like. In work that s just beginning, 1 have trying
to derive computational ideas about the organization of
situated activity from ideas available in social theory,
that 1s, in anthropology, sociology, and developmental
social psychology. These fields are unanimous in in-
sisting that the world that human beings inhabit is, in
various senses, a soctel world. This means three things:

1. We all live in a densely structured field of human in-
stitutions and relationships, with all their local con-
straints and customs and rituals and other conven-
tional interactional forms.

2. Much of the lived environment is the product of
human construction; most of the rest is subject to
human domestication, regulation, surveillance, and
technical ordering.

3. Our understandings of and actions within the world
are mediated by a very large network of culturally
organized practices and categories with which we be-
come competent as part of our induction into our so-
cieties.

Given these properties of the social world, an impor-

tant challenge for computational research is to under-

stand what it would mean for an artifact, such as an
autonomous robotic agent, to participate in such a world

[Gasser 1986].

Social theory has produced a number of ways of
understanding the social world. Among those that
are of immediate relevance to the issues at hand, I
have been influenced principally by two, ethnomethodol-
ogy and practice theory. Ethnomethodology [Garfinkel
1967, Heritage 1984, Sacks 1964-72] focuses on the intri-
cate and seemingly highly improvised methods through
which people, in their organized face-to-face interac-
tions, “construct” the social world. Practice theory
[Bouardieu 1977, Ortner 1984] focuses on the ways in
which the habits and built forms of a culture aid in
producing and reproducing its social structures. Such-
man [1987] has outlined some of the relevance of eth-
nomethodology to computational theory. Lave [1988]
has done the same for practice theory.

That action can only be effectively organized in an
orderly world is well demonstrated by the capacities
and limitations of classical planning techniques. Since

these techniques are very sensitive to uncertainty, un-
predictability, and change, they will work best in highly
regulated environments, such as factory floors, in which
possibilities are limited and the planner can be protected
from unexpected changes. It is highly likely that clas-
sical planning techniques can find profitable application
in such an environment {Wilkins 1989].

As a “world,” the factory floor exhibits a particular
kind of orderliness that facilitates certain ways of orga-
nizing an agent’s activity. Other worlds, though, possess
other kinds of orderliness. In a face-to-face conversation,
for example, each party’s actions must continually de-
pend on what the other party is doing, if only to nod
approval, say “uh-huh,” and coordinate adjustments in
posture [Goodwin 1981]. As a result, every conversation
1s a joint improvisation of formidable complexity.

The orderliness of the “world” of conversational in-
teraction, then, is to a considerable extent a contingent
product of the speakers’ joint efforts. In interacting
with other people, we start from an assumption that we
share a common understanding of the world and of the
currently ongoing sitnation [Heidegger 1961]. The full
complexity of this shared background comes to bear on
the details of our interactions in a massive and remark-
ably detailed way. This is another kind of orderliness in
our activilies, a source of both guidance and constraint
throughout our everyday interactions.

Ideas about the dynamics of conversational interac-
tion can lead to effective computational models. In
current work, Chapman [1990] is applying the technol-
ogy of Pengi in investigating the contribution of shared
understandings of an ongoing activity’s context to the
interpretation of simple instructions. As a computa-
tional matter, this process can be remarkably efficient
under the assumption that speaker and hearer share de-
ictic representations of the shared situation. Suitably
extended, 1t may also be able to capture some of the
important dynamics of routine collaborative activities.

Computational research has much to gain from so-
cial theory. The idea that the organization of activity
is a product of situated improvisation, for example, is
central to ethnomethodology and contributed to early
attempts to formulate alternatives to the view of plans
employed in classical planning. But now a further point
is that many of the salient features of the world par-
ticipate in a cultural order. The cultural ordering of
the world provides, among many other things, support
for cognition [Hutchins 1987, Norman 1988]. As mem-
bers of a culture, our ways of understanding the world
are geared to the kind of world our culture organizes.
Likewise, our ways of acting in the world are geared to
reproducing the kind of world that we can understand.
One might thus hope that inquiry into the social world
can provide insight into the close interrelationships be-
tween the forms of human cognition and the forms of
the human environment.

Bibliography

[Agre 1985] Philip E. Agre, Routines, Al Memo 828,
MIT Artificial Intelligence Laboratory, 1985.

[Agre and Chapman 1987] Philip E. Agre and David
Chapman, Pengi: An implementation of a theory of
activity, Proceedings of the Sizth National Confer-
ence on Artificial Intelligence, Seattle, 1987, pages
196-201.

[Agre and Chapman in press] Philip E. Agre and David
Chapman, What are plans for?, in Pattie Maes, ed.,
New Architectures for Autonomous Agents: Task-
level Decomposition and Emergenl Funclionality,
MIT Press, in press.

[Agre in preparation] Philip E. Agre, The Dynamic
Structure of Everyday Life, Cambridge University
Press, in preparation.

[Ballard 1989] Dana H. Ballard, Reference frames for
animate vision, Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence,
Detroit, MI, 1989, 1635-1641.

[Barwise and Perry 1983] Jon Barwise and John Perry,
Sttuations and Attitudes, MIT Press, 1983.

[Bourdieu 1977] Pierre Bourdieu, Outline of a Theory
of Practice, Cambridge University Press, 1977.
[Brooks 1986] Rodney A. Brooks, A robust layered con-
trol system for a mobile robot, IEEE Journal of
Robotics and Automation 2(1), 1986, pages 14-23.

[Chapman 1990] David Chapman, Instruction Use in
Sttuatled Activity, Technical Report 1204, MIT Ar-
tificial Intelligence Laboratory, 1990.

[de Kleer el al 1977] Johan de Kleer, Jon Doyle, Guy
L. Steele, Jr., and Gerald Jay Sussman, Explicit
control of reasoning, Proceedings of the ACM Sym-
posium on Artificial Intelligence and Programming
Languages, Rochester, New York, 1977.

[Doyle 1979] Jon Doyle, A truth maintenance system,
Artificial Intelligence 12(3), 1979, pages 231-272.

[Fikes, Hart, and Nilsson 1972] Richard E. Fikes, Peter
E. Hart, and Nils J. Nilsson, Learning and execut-
mg generalized robot plans, Artificial Intelligence
3(4), 1972, pages 251-288.

[Garfinkel 1984]) Harold Garfinkel, Studies in Eth-
nomethodology, Polity Press, 1984. Originally pub-
lished in 1967.

[Gasser 1986] Les Gasser, The integration of comput-
ing and routine work, ACM;M Transactions on Office
Information Systems 4(3), 1986, pages 205-225.

[Ginsberg 1989] Matthew Ginsberg, Universal plans:
An (almost) universally bad idea, Al Magazine
10(4), 1989, pages 40-44.

[Goodwin 1981] Charles Goodwin, Conversational
Organization: Inleraclion Between Speakers and
Hearers, Academic Press, 1981.

[Heidegger 1961] Martin Heidegger, Being and Time,
translated by John Macquarrie and Edward Robin-
son, Harper and Row, 1961. Originally published
in German in 1927,

[Heritage 1984] John Heritage, Garfinkel and Eth-
nomethodology, Polity Press, 1984.

[Horswill 1988] Ian D. Horswill, Reactive Navigation
for Mobile Robots, Master’s thesis, MIT Depart-
ment of Electical Engineering and Computer Sci-
ence, 1988.

[Hutchins 1987) Edwin Hutchins, Mediation and au-
tomatization, ICS Report 8704, Institute for Cogni-
tive Science, University of California at San Diego,
1987.

[Lave 1988] Jean Lave, Cognition in Practice: Mind,
Mathematics, and Cullure in Everyday Life, Cam-
bridge University Press, 1988.

[Mel 1989] Bartlett W. Mel, MURPHY: A neurally-
inspired connectionist approach to learning and
performance in vision-based robot motion planning,
Technical Report CCSR-89-17A, Center for Com-
plex Systems Research, University of Illinois, 1989.

[Miller, Galanter, and Pribram 1960] George A. Miller,
Eugene Galanter, and Karl H. Pribram, Plans and
the Structure of Behavior, Henry Holt and Com-
pany, 1960.

[Nilsson 1989] Nils J. Nilsson, Action networks,
Proceedings from ithe Rochester Planning Work-
shop: From Formal Systems to Practical Systems,
Rochester, New York, 1989.

[Norman 1988] Donald A. Norman, The Psychology of
Everyday Things, Basic Books, 1988.

[Ortner 1984] Sherry B. Ortner, Theory in anthropol-
ogy since the sixties, Comparative Studies in Soci-
ety and History, 26(1), pages 126-166, 1984.

[Rosenschein and Kaelbling 1986] Stanley J. Rosen-
schein and Leslie Pack Kaelbling, The synthesis of
digital machines with provable epistemic proper-
ties, in Joseph Halpern, ed, Proceedings of the Con-
ference on Theorelical Aspecls of Reasoning About
Knowledge, Monterey, CA, 1986.

[Sacks 1964-72] Harvey Sacks, Unpublished transcribed
lectures, University of California, Irvine, 1964-72.
Transcribed and indexed by Gail Jefferson.

[Smith 1986} Brian Cantwell Smith, The correspon-
dence continuum, Proceedings of the Sixth Cana-
dian AI Conference, Montreal, 1986.

[Suchman 1987] Lucy Suchman, Plans and Situaled Ac-
tion, Cambridge University Press, 1987.

[Ullman 1984] Shimon Ullman, Visual routines, Cogni-
tion 18, 1984, pages 97-159.

[Wilkins 1989] David E. Wilkins, Can Al planners solve
practical problems?, Technical Report 468, SRI In-
ternational Artifical Intelligence Center. 1989.

Organizing Memory for Probabilistic Search Control

John A. Allen
Sterling Federal Systems
AT Research Branch, Mail Stop: 244-17
NASA Ames Research Center
Moffett Field, CA 94035

Allen@ptolemy.arc.nasa.gov

Abstract

Planning researchers spend much of their effort
trying to reduce the amount of search required
to solve problems in their domain. One pos-
sible solution is to use machine learning tech-
niques to learn the domain-dependent informa-
tion that would allow for efficient search. This
paper describes DADALUS an implemented
system that uses an incremental conceptual
clustering algorithm to learn search control.
We suggest modifications that would allow
DEDALUS to work in uncertain, unpredictable,
or changing domains.

1 Introduction

In the general case, planning has been demonstrated to
be intractable (Chapman, 1987); no single planning al-
gorithm is capable of performing in a reasonable amount
of time on all given problems in all given domains. This
intractability is exacerbated when the domain being rea-
soned about is uncertain, unpredictable, or changes due
to events caused by actions other than those made by the
agent. Several techniques, such as hierarchical planning
(Sacerdoti, 1974), have been introduced in an attempt
to reduce the combinatorial search that plagues plan-
ning problems. Although useful, these techniques often
require the implementer to introduce domain-dependent
information, and acquiring such information is difficult.

A more recent approach is for the system to use ma-
chine learning algorithms in hopes of having the system
learn the domain-dependent information itself. This can
cut down the search, as well as obviating the problem
of obtaining the information by hand. Researchers in
machine learning have focused primarily on three meth-
ods for reducing search in planning. The first is to cre-
ate macro-operators (Fikes, Hart & Nilsson, 1971; Iba,
1989) which give access to nodes in the search tree with
a single operator application that previously required
two or more operator applications. This method tries
to reduce the search complexity from h? (where & is the
height of the search tree and b is the average branching

factor) into 1° in the ideal case. The second is to ac-
quire useful intermediate goals (Ruby & Kibler, 1989),
breaking up the search into a series of n short plan-
ning problems, which reduces the search complexity to
S 1(%)®. The third method is to learn search-control
knowledge (Laird et al., 1986; Minton, 1988; Allen &
Langley, 1989), which reduces search by pursuing the
correct path at each choice point. This method changes
the computational complexity from A? to Al.

In this paper we present an approach to planning,
implemented as the program DA&DALUS, which uses an
inductive learning technique to acquire search-control
knowledge. D&EDALUS currently makes use of a sim-
ple variant of means-ends analysis to construct plans.
The resulting plans are then broken up and incorporated
into a probabilistic concept hierarchy, indexing them by
the differences they reduce and the states to which they
can be applied. Upon encountering a previously unseen
problem, it retrieves a relevant plan segment and uses
it to select operators for the new task. In the following
sections, we discuss DEDALUS’ representation, its plan-
ning and learning components, preliminary results, and
future work.

2 Representation and Planning in
DEDALUS

DADALUS acts on data structures of three types: states,
problems, and operators. In general, a stafe consists
of some description of the world, possibly including the
internal state of the agent. In the current system, we use
a simple STRiIPs-like state representation (Fikes, Hart
& Nilsson, 1971), with each state described as a set of
objects and symbolic relations that hold among them.

A problem consists of an initial state and a desired
state the agent wants to achieve. Each state may contain
only partial descriptions of the world. One can also
describe a problem in terms of the differences hetween
the initial and desired state.

Most work on planning assumes that domain-
operators have known preconditions and eflects, and
that they should be reasonably efficient (i.e. require
no search to apply); DEDALUS is no different. In the

[N AR S —

current system, operators are STRIPS-like, having pre-
conditions, add-lists, and delete-lists. However, from
this information one can derive a set of differences that
exist between states before and after application, giving
a description similar to that used for problems.

The performance system of DEDALUS is a goal-
oriented planner that draws heavily from the means-
ends analysis used in GPS (Newell, Shaw, & Simon,
1960) and STR1PS (Fikes et al., 1971). The planner takes
as input a problem represented as an initial state, I, and
a description of the goal state, G. The goal state need
not be completely defined and usually specifies a class
of acceptable goal states. Having received this input,
DEDALUS computes the differences, D, between I and
G. The set of differences is used to encode the current
goals the system needs to achieve, and, with the initial
state, is used to retrieve both an operator and a partial
set of bindings (described in section 3). Next the plan-
ner will attempt to apply the operator to the current
problem. If the preconditions of the operator are not
met, the planner recursively calls itself, passing I as the
initial state and the preconditions of the operator as the
goal state. However, if the preconditions are matched,
the operator is applied to I, generating a new state .
The planner then recursively calls itself, passing N as
the initial state and G as the goal state. The base case
of recursion occurs when I satisfies all the requirements
of G.

One major difference of our strategy from earlier
methods is that it places an ordering on operators,
rather than dividing them into relevant and irrelevant
sets. One result is that it prefers operators that reduce
multiple differences in the current problem, which makes
it more selective than traditional techniques. More im-
portant, although D&DALUS prefers operators that re-
duce problem differences, it is not restricted to this set.
If none of the ‘relevant’ operators are successful, it falls
back on operators that match none of the current dif-
ferences. This gives it the potential to break out of
impasses that can occur on ‘trick problems’.

The planning system produces a derivational {race
(Carbonell, 1986) that stores the reasons for each step
in the operator sequence. This trace consists of a bi-
nary tree of problems and subproblems, with the orig-
inal task as the top node and with trivial (one-step)
subproblems as the terminal nodes. Each node (prob-
lem) in the derivational trace is described by differences
between its initial and final state, by the initial state,
and by the instantiated operator that was selected to
solve the problem. It is the derivational trace that is
analvzed by the learning mechanism to improve future
performance.

3 Memory and Learning in DAEDALUS

The organization of memory and learning mechanism is
based on Fisher’s COBWEB (1986). In this section, we
start out with a basic description of COBWEB, describe

our additions to the basic mechanism, and relate how
the memory influences the planning system.

3.1 A Review of CoBwEB

COBWEB represents each instance as a set of nominal
attribute-value pairs, and it summarizes these instances
in a hierarchy of probabilistic concepts (Smith & Medin,
1981). [Each concept Cj is described as a set of at-
tributes A; and their possible values V;;, along with the
conditional probability P(A; = V};|C}) that a value will
occur in an instance of a concept. The system also stores
the overall probability of each concept, P(Cy). COBWERB
uses this information in its evaluation function - cate-
gory ulility (Gluck & Corter, 1985) — which favors high
intra-class similarity and high inter-class differences.
CoBWEB integrates classification and learning, sort-
ing each instance through its concept hierarchy and si-
multaneously updating memory. Upon encountering a
new instance I, the system incorporates it into the root
of the existing hierarchy and then recursively compares
the instance with each new partition as it descends the
tree. At a node N, it considers incorporating the in-
stance into each child of N, as well as creating a new
singleton class, and evaluates each resulting partition
with category utility. If the evaluation function prefers
adding the instance to an existing concept, COBWEB
modifies the concept’s probability and the conditional
probabilities for its attribute values and then recurses
to the children of that concept. If the system decides to
place the instance into a new class, it creates a new child
of the current parent node, and the classification process
halts. CoBWEB also incorporates two bidirectional op-
erators, splitting (which destroys an existing class) and
merging (which creates a new class out of two existing
classes), to mitigate sensitivities to instance orderings.

3.2 Organization and Retrieval in DEDALUS

In D&EDALUS, the nodes in the concept hierarchy consist
of two parts: predicates and operators. The predicates
of the node correspond to the attributes of a COBWEB
hierarchy. They are made up of the same predicates the
planner uses to describe the states and the differences.
Each predicate has two values associated with it, present
or absent. The value present refers to the number of situ-
ations that have passed through that node which exhibit
that predicate. Conversely, absent refers to the number
of situations that have passed through that node which
do not exhibit that predicate. Note that the negation
of a predicate is not the same as its absence, negated
predicates are needed to describe the preconditions of
some operators, and consequently will have present and
absent probabilities associated with it as well. The oper-
ators of a node correspond to the domain-operators; the
arguments of which correspond to the pattern-matching
variables found in the node’s predicates.

Initially, the DEDALUS is given a hierarchy, like the
one depicted in figure 1, which contains the domain op-
erators with the differences they reduce and a partial

N1 P(N1) = 1.0

P(p=ViN1}

Predicates

Present Absent

(holding ?block3)

(on ?blockl ?block2)
{ontable ?blockl)

(*not* (holding ?blockl))

(*not* (on ?blockS ?blocké))
(*not* (ontable ?block5})

COOoOOO
NN NN UL
v
OO0
=t
WL wnin

| = —

Operators

Counts

{pickup ?block5)
(unstack ?block5 ?block6)
(putdown ?blockl}
(stack ?blockl ?block2)

I

N2
P = 0.
(N2) 0.25 P (p=V|N2)
Predicates Present Absent
{*not* {ontable ?block9)) 1.0 0.0
(holding ?block8) 1.0 0.0
e
Operators Counts
{pickup ?block9) 1
N3 =
P(N3) 0.25 P (p=VIN3)
Predicates Present Absent
{*not* {(on ?blockS5 %blocké)} 1.0 0.0
(holding ?block5) 1.0 0.0
Operators Counts
{unstack ?block5 ?blocké) 1

P(N5) =
(NS} 0.25 P (pv [N5)

Predicates Present Absent

{(*not* (holding ?block4)) 1.0 0.0
(ontable ?block4) 1.0 0.0
Operators Counts

{putdown 2?block4) 1

N4
P (N4 =
(N4) 0.25 B (p=v{Nd)

Present Absent

Predicares

(*not* (holding 2?blockl}) 1.0 0.0

{on ?blockl ?block2) 1.0 c.0
Operators Counts

{(stack ?blockl ?block2) 1

Figure 1: Initial hierarchy containing four operators

state description representing the class of states to which
they can be applied (e.g., the operator’s preconditions)®.
The memory system builds a hierarchy in which each of
the terminal nodes contains the name of an operator, its
preconditions, and its differences. The internal nodes
correspond to classes of operators that have some over-
lap in their differences, preconditions, or both. The end
result is something that plays a role similar to that of a
difference table (Newell et al., 1960).

When D#EDALUS is running, the planning system
passes the memory system initial state I and differences
D. The memory system takes these two inputs and com-
bines them, forming a structure called a situation. The
concept hierarchy is then used to determine which class
of operator is most applicable to the current situation.
In other words, it tries to find the node in the hierarchy
whose predicates have the greatest amount of overlap

'For simplicity of presentation, we have shown only
the differences each operator reduces and excluded the
preconditions.

with the situation. The memory system uses category
utility to determine the most applicable operator, but it
does not change the concept hierarchy in any way — no
learning occurs at this stage of the process.

Once a node is found, the memory returns the oper-
ator associated with that node and the binding gener-
ated by matching the situation with the predicates of
the node. If the node selected happens to be an internal
node, the most frequent operator found in that class is
returned, else it is just the operator associated with the
node.

Since the planner may backtrack and ask the memory
system for a different operator instance, the process of
incorporating situations into nodes excludes those incor-
poration which would give rise to an operator instanti-
ation that the planner has already rejected. It is in this
way that the memory system imparts an ordering on
operator instances that includes not only operators rel-
evant to the current differences, but also those that have
no apparent relation to the current differences.

3.3 Storing Successful Plans

Section 2 mentioned that the planner returns its plans in
a structure called a derivational trace, which records the
operators, the situations, and the sub-problems gener-
ated by each operator. The learning system uses this ex-
ample of a successful plan to improve the accuracy of op-
erator prediction. The derivational trace is first broken
up into its situation/operator pairs. Each of these pairs
is then reclassified and incorporated into the concept hi-
erarchy, and the hierarchy is updated and modified by
this incorporation process. The situation/operator pairs
are used to reinforce existing classes, as well as creat-
ing new operator classes. The reinforced classes reflect
those situations where the hierarchy correctly predicted
the right operator. The new operator classes reflect the
correct choice in those situations where the planner, in
creating the plan, had made and error and had to back-
track. The hierarchy has an encoding of the correct
operator application. This is how the DEDALUS learns
search control knowledge.

In most planning systems, the order in which the
the system resolves the goals of a problem have signif-
icant effect on the amount of search performed. Non-
linear planning was developed to address this problem.
D#&DpALUS has the unusual property of being a linear
planner that is unaffected by goal ordering. If DEDALUS
is presented with such a problem, it will solve it only af-
ter extensive search. Once it has solved the problem, it
will not have trouble with it again, even if the goals are
presented in a different order or the correct operator has
no relation to any of the goals. This is a direct result of
the learning system used.

4 Preliminary Results

We have carried an initial experiment to evaluate
DaDpALUS learning. Figures 2 and 3 present results av-
eraged over 5 trials, each trial containing 10 problems.
The problems come from the blocks-world domain and
consist of a number of blocks in a randomly determined
initial state, with one or two randomly chosen conditions
in the goal state. The problems are filtered to insure
that the initial state does not satisfy the goal condi-
tions. At the start of each learning trial, DEDALUS is
presented with the concept hierarchy presented in fig-
ure 1. The system incorporates the derivational trace of
the solution of each problem into the concept hierarchy
before solving the next problem.

The independent variable of both graphs tell the num-
ber of problems solved, which is a rough measure on the
amount of information D&EDALUS has had to learn. The
dependent variable is a ratio of the number of nodes in
the returned solution path, over the number of nodes
searched in finding the solution. The best value for this
ratio is 1.0 — the case in which the correct path was
taken at each choice point in the search tree. The worst
value 1s an asymptotic approach to 0 — the case in which
the least correct path was taken at each choice point in

P

a

tl'O /
h.9

s /

v 7

S'.6

S.5

2 4

a .3

T

¢ 2

h .1

1 2 3 4 5 6 7 8 9 10

Problems solved

Figure 2: Learning 2-block problems

P
a
t1.0
h -9
8
v 7
S. .6
S .5
2 4
a .3
.2 \
h .1

1 2 3 4 5 6 7 8 9 10
Problems solved

Figure 3: Learning 3-block problems

the search tree.

Figure 2 shows DEDALUS’ performance on two-block
problems. Here, DEDALUS quickly learns most of the
knowledge necessary to solve most of the problems pre-
sented. The dip at problem 8 was caused by an outlier,
with the other values hovering between .9 and 1.0.

Figure 3 graphs DEDALUS’s performance on three-
block problems. D&EDALUS had considerably more trou-
ble learning these problems. We believe this is due to
a combination of factors. First, the planner we have
implemented is not very efficient, and will return sub-
optimal plans even in the three-blocks scenario. The
system incorporates these non-optimal plans which ef-
fects the performance on later problems. The hierarchy
is particularly vulnerable to this type of problera early
on. However, the control structure of the memory hier-
archy should allow it recover after seeing future exam-
ples. Another option, one used by Minton (1988), is to
train DEDALUS on easy problems first, and once it has
mastered the simple problems, train it on progressively
harder problems.

DEDALUS’ current implementation also suffers from
one aspect of the utility problem (Minton, 1988). Since

the system organizes its knowledge in a hierarchy, the
amount of Jearned information it must search should be
proportional its log of situations stored. However, the
new knowledge does require matching to be accessed,
and it is this added match time that is slowing D&EDALUS
down. We are currently looking into strategies to mini-
mize the match required.

5 Future Work

We intend to use DEDALUS as the controlling system
of an autonomous agent, but to realize this goal we
must first address several issues. Currently, DEDALUS
merely plans, lacking any mechanism for executing its
plans. To have the system create a plan and then send
it to an executor seems somewhat unsatisfying — an in-
terleaving of the two seems preferable, and means-ends
analysis seems particularly amenable to an interleaving
approach. Whenever DEDALUS has an operator whose
preconditions are met, it would apply it in the external
world, and would sit and plan if it had to satisfy the
preconditions of some operator. Since the system cre-
ates differences with each invocation of the algorithm, it
should be able to correct its own plans — if an applied
operator affects the world in an unpredicted manner or
if some external event should change the world. The sys-
tem would query the world to get its information about
the new state, and not depend on the effects of the op-
erator on the internal representation.

In addition, the probabilistic nature of the memory
structure should be advantagious in unpredictable do-
mains. For example, suppose that a in an unpredictable
domain, operator A reduces a particular difference D
70% of the time, and operator B reduces D 30% of the
time. The learning mechanism would be able to learn
that A was the better guess for reducing D and mod-
ify its predictions accordingly. The planner would then
receive the optimal ordering of A and B. Furthermore,
if the relative effectiveness of A and B at reducing D
should change, the concept hierarchy would change to
reflect this, and once again provide the optimal ordering
of A and B.

References

Allen, 1. A., & Langley, P. (1989). Using concept hier-
archies to organize plan knowledge. Proceedings of
the sizth internalional workshop on machine learn-
ing (pp. 229-231). Morgan Kaufmann: Ithaca, NY.

Carbonell, J. G. (1986). Derivational analogy: A the-
ory of reconstructive problem solving and expertise
acquisition. In R. S. Michalski, J. G. Carbonell, &
T. M. Mitchell (Eds.), Machine learning: An artifi-
cial intelligence approach (Vol. 2). Los Altos, CA:
Morgan Kaufmann.

Chapman, D. (1987). Planning for conjunctive goals.
Artificial Intelligence, 32, 333-377.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1971).
STRIPS: A new approach to the application of the-

orem proving to problem solving. Artificial Intelli-
gence, 2, 189-208.

Fisher, D. H. (1987). Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning, 2,
139-172.

Gluck, M., & Corter, J. (1985). Information, uncer-
tainty and the utility of categories. Proceedings
of the Seventh Annual Conference of the Cogni-
tive Science Society (pp. 283-287). Irvine, CA:
Lawrence Erlbaum.

Iba, G. A. (1989). A heuristic approach to the discovery
of macro-operators. Machine Learning, 3, 285-318.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986).
Chunking in SOAR: The anatomy of a general
learning mechanism. Machine Learning, 1, 11-46.

Minton, S. (1988). Quantitative results concerning
the utility of explanation-based learning. Sev-
enth National Conference on Artificial Intelligence
(pp. 564-569). Morgan Kaufmann: St. Paul, MN.

Newell, A., Shaw, J. C., & Simon, H. A., (1960). A
variety of intelligent learning in a general problem
solver. In Yovits & Cameron (Eds.), Self organizing
systems. Pergamon Press: New York.

Ruby, D., & Kibler, D. (1989). Learning to plan in
complex domains. Proceedings or the sizth inter-
national workshop on machine learning (pp. 180~
182). Morgan Kaufmann: Ithaca, NY.

Sacerdoti, E. D. (1974) Planning in a Hierarchy of Ab-
straction Spaces. Artificial Intelligence, & 115-135.

Smith, E., & Medin, D. (1981). Categories and concepls.
Cambridge, MA: Harvard University Press.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
10-43.

Planning and Understanding: Revisited*!

Richard Alterman
Roland Zito-Wolf
Computer Science Department
Brandeis University

Introduction

Much recent planning research has been motivated by
the recognition that planners that rely on the traditional
assumptions of complete knowledge and certainty of pre-
diction do not scale up to significantly large or complex
domains. This is due to the complexity of the compu-
tation (Chapman 1987), the unboundedness of poten-
tially relevant world knowledge, and the problems of
unanticipatable events. Broadly, there have been two
approaches to these issues:

1. Re-planning or partial planning. Planning and act-
ing can be interleaved (McDermott 1978). The plan
may be partially or completely elaborated before exe-
cution begins. Planning may be resumed under a va-
riety of guises: plan elaboration (Georgeff & Lansky
1987, Firby 1987), plan refitting and adaptation (Al-
terman 88, Kambhampati & Hendler 1989), plan re-
pair (Wilkins 1988, Hammond 1987, Simmons 1987),
experimentation (Shrager 1987), or opportunistic ac-
tion (Hammond 1989, Birnbaum 1986, Hayes-Roth &
Hayes-Roth 1979).

2. Reactivity. Knowledge can be organized so that plan-
ning 1s not required; sufficient information will be
available at run time to select the appropriate ac-
tion. Agre and Chapman (1987, Agre 1988) develop a
theory of situated activity which exploits regularities
in the agent’s interaction with the world. Schoppers
(1987) converts the plan into a universal plan — a set of
situation-action rules — that covers the (anticipatable)
contingencies. Brooks (1986) and Kaebling (1986)
have demonstrated systems that implement complex
behavior using simple reactive machinery.

While these approaches remove the artificial separa-
tion of planning from acting, there are other factors that

* Planning and Understanding: Wilensky, 1983.

TThis work was supported in part by the Defense Ad-
vanced Research Projects Agency, administered by the
U.S. Air Force Office of Scientific Research under contract
#F49620-88-C-0058.

play a critical role in building a mechanism that is re-
active and can deal with uncertainty. In this paper we
argue that understanding plays a crucial role in dealing
with uncertainty and, in some planning domains, is the
primary source of improvisation.

The role of understanding

The tradition in symbolic Al is to treat understanding as
a problem of representation. A program is said to have
‘understood’ an input, whether it be experiential, per-
ceptual, or textual, to the degree to which it can reason
about that representation/understanding. Two proper-
ties of understanding/representation that are of interest
here are correspondence and coherence. Correspondence
means that there must be mappings from concepts in se-
mantic memory to the input stream. Cohierence means
that the program assigns internally consistent chunks of
semantic memory to sets of correspondences. In this pa-
per we treat ‘interpretation’ as a species of understand-
ing, in which understanding is framed from a particular
vantage point.

Previous work on the relationship between planning
and understanding has emphasized the following:

Shared Knowledge Wilensky argued that planning
and understanding share knowledge (Wilensky 1983).
This includes not only first-order knowledge of par-
ticular plans, or a hierarchy of plans, but also second-
order knowledge about the planning process itself.
His focus was on the development of various kinds
of ‘meta-goals’ and ‘meta-plans’; from this work be-
gan to emerge a cognitive model of the planner as a
rational agent.

Framing and Elaborating the Problem
In domains of subjective planning the understanding
frames or elaborates the planning process (e.g. ME-
DIATOR: Kolodner & Simpson 1989; HYPO: Ashley
& Rissland 1987; POLITICS: Carbonell 1981). For
example, HYPO, given a case description, posts sev-
eral interpretations (elaborations) of the case, from
which it builds an argument. The cases that I[YTO

retrieves gives it a framework for deciding what are
the important legal facets of the new case. The elab-
oration that comes from understanding the situation
can also be a source of improvisation: I am walking
down the street in front of the liquor store on Main
Street. I see a pedestrian hit by a car and interpret
the liquor store as a place that has a telephone from
which an ambulance can be called.

Plan Recognition The recognition of the plans of
other agents is a form of understanding. Plan recog-
nition techniques have been developed in the context
of discourse (e.g. Mayfield 1989, Allen 1983), text un-
derstanding (e.g., Wilensky 1978), and user modeling
(e.g. Genesereth 1982).

QOur position is that in some cases understanding not
only supports the planning process, but drives it.

A planner ‘plans by understanding’ if its ac-
tions, during the period of engagement, are driven
by the assignment of coherent meanings to the ele-
ments of the situation.

Under certain circumstances the planner can assume
that the situation will be understandable — because
1t has been designed to be so — and can therefore use
its understanding as the source of improvisation. Ex-
amples of problems wlere these circumstances arise are
in various commonsense planning situations (e.g. rid-
ing public transportation) or in the usage of mechanical
devices (e.g. setting the time on a new VCR).
Planning as situation understanding is a workable
strategy of improvisation under circumstances where a
large community of agents, who share a set of concepts,
must communicate procedures to one another through
situations or artifacts. In these kinds of situations, the
agent can reasonably assume that the procedure to be
detected was designed to be accessible , i.e., it is struc-
tured to minimize the conscious mental processing in-
volved in performing it (Norman 1988, pp. 124-127).
The criteria of ‘understandability’ also acknowledges
the fact that most designs do not arise de novo, but
are derived from the designer’s own library of known
procedures. For example, in the last ten years large
numbers of videotape-rental stores have opened, with
varying procedures for tape storage, display, checkout,
return, and theft control. These procedures presumably
arose from an interpretation of the store from the per-
spective of other, already worked out, procedures such
as checking out a book from a library. These proce-
dures have gradually been modified over time: tapes
are stored differently, membership alternatives change,
and so forth. Yet whenever I go to a VCR store that
uses unfamiliar procedures 1 can understand and act in
this situation because those procedures were ultimately

derived from other procedures that are shared in the
culture.

FLOABN and Instructions

FLOABN (For Lack Of A Better Name) is an imple-
mentation in progress of a commonsense planner that
reasons about the usage of mechanical devices by con-
structing an interpretation. When action and interpre-
tation break down, FLOABN reads instructions. The
current domain of FLOABN is to learn to use a series
of telephone devices, gradually building up its memory
of procedures after each encounter. We are also using
FLOABN to explore the domain of time setting devices.
Some examples of problems that FLOABN works on are
making a telephone call from a phone on an airplane and
figuring out how to set the time on a VCR.
Some central features of FLOABN are:

memory FLOABN includes both semantic and case
memory. For the telephone domain, its case mem-
ory contains routines for using telephones in differing
contexts (at home, at work, pay phone). Semantic
memory includes generalizations over these routines,
the steps of the routines, and ways of chunking the
steps. It also includes generalizations over the device
and its components.

operational level Rather than working from an ab-
stract level and refining, the planner starts with
a concrete routine as its ‘reference point’ (Lakoff
1987, Rosch 1981) and backs away from the details
only when the situation merits, i.e., FLOABN 1s a
case-based planner (Hammond 1986, Alterman 1986,
Kolodner, Simpson & Sycara-Cyranski 1985, Car-
bonell 1983).

correspondence and coherence
Planning and adaptation are guided by the twin con-
straints of correspondence and coherence. FLOABN
draws on two earlier models of correspondence and
coherence: NEXUS (Alterman 1989), which used a
spreading activation-like mechanism to determine co-
herency, and PLEXUS (Alterman 1988), which used
a case as an anchor to guide the construction of co-
herent correspondences in the service of adaptation.

engagement By delaying situation matching until ac-
tual engagement, FLOABN has access to features
that could not have been anticipated and a richer sit-
uation matrix to drive interpretation.

The heart of the system is the adaptive planner (Al-
terman 1988). The adaptive planner works by retrieving
from its memory of plans a routine that seems to match
the situation-at-hand. It then adapts that plan (impro-
vises) during the period of engagement, as a function of
the interpretation it constructs of the situation. When
adaptation fails, FLOABN falls back on instructions. In
the domain of mechanical devices, some form of instruc-
tions are usually available. They may be printed on the
device (as on a pay phone) or collected separately (as in
an instruction manual)

Instructions are difficult to understand in the abstract
because they are schematic. Qutside of a context of

use, the planner can grasp only the general sense of
what the instructions mean and the operations they
depict. Therefore FLOABN does not plan primarily
from the instructions (it might skim them) but first en-
gages in the activity. When a situation arises to which
it can not adapt, FLOABN refers to the instructions.
(This is in accordance with human instruction usage
(LeFevre and Dixon 1986).) The situation of difficulty
provides a context, a backdrop, against which the in-
structions can be made concrete. FLOABN’s under-
standing/representation provides the detail necessary
to operationalize (Mostow 1981) the instructions. For
FLOABN, operationalization occurs as a result of an
interpretive process.

For example, FLOABN, in a simulated situation, at-
tempts to make a telephone call from an airplane for the
first time. FLOABN initially interprets the situation
from the context of its pay-phone routine and during
the course of action it gradually adapts that interpre-
tation, maintaining correspondence and coherence, as it
works way through the situation. When FLOABN gets
to the step INSERT-COIN in its pay-telephone routine,
and it can find no coin slot in the airplane telephone,
it forms a request for an instruction related to the con-
cept of ‘payment’. An instruction is found: Insert credit
card face up with card name to the right. This instruc-
tion contains three kinds of information. One relates the
instruction to the planner’s ongoing understanding (the
reference to credit card), a second selects a procedure as-
sociated with cards (insert), and the third qualifies the
action (face up with card name to the right). In this
case, FLOABN attaches the first statement to its ongo-
ing understanding, because credit card is coherent with
payment, and determines that payment is to be made
with a credit card. The action INSERT 1s attached to
actions associated with credit cards, and the procedure
of insertion of cards is qualified, in this context, accord-
ing to constraints provided by the instruction.

After a planning episode, a learner, from the frame-
work of a given interpretation, can explain the episode,
and hence acquire a new procedure (e.g. EGGS, Mooney
1988). In the case of FLOABN, after a successful plan-
ning episode, the interpretation that FLOABN con-
structed is used to generalize the base plan. Adapta-
tions are incorporated into memory by annotating the
old plan with discrimination points which indicate as-
pects of the plan about which run-time decisions must
be made. Various concepts associated with the plan may
be generalized as well. For example, having successfully
interpreted a touch-tone phone as a dial-phone, with a
keyboard replacing the rotary dial, FLOABN general-
1zes its existing telephone-object category into a con-
junctive category encompassing both device types, and
chunks the subprocedures associated with the two dif-
ferent device features (touch-tone and rotary dial).

Discussion

Suchman suggests the following example of a situated
activity (Suchman 1987, p. 52):

So, for example, in planning to run a series of
rapids in a canoe, one is very likely to sit for a while
above the falls and plan one’s descent.

Her claim is that however detailed the plan is it falls
short of the various contingencies that arise as you nav-
igate through the rapids. The planning you did at the
outset provided orientation but the bulk of the activity
was composed of reactive embodied skills.

An extreme position might argue that situated ac-
tivities are entirely reactive, and that any planning or
understanding that seemed to be associated with the
activity was actually post hoc. The idea is that what
from the vantage point of the actor is a sequence of sit-
uated reactions, could be interpreted by an observer or
in retrospect as being planned.

The understanding process seems to be keyed to those
situations where reactivity breaks down and other forms
of improvisation become needed. For commonsense do-
mains, such as the usage of mechanical devices, ‘un-
derstanding’ is an important mode of improvisation if
reaction breaks down. When routine proves insufficient,
one tries to improvise by understanding the situation,
looking for new sources of guidance.

We take the prevalence of instructions as one piece
of evidence that in many cases understanding occurs
before action (and is not merely imposed post hoc).
Most instructions (written or verbal) omit an enormous
amount of presumably shared detail, but since the plan-
ner shares general background and an understanding of
the situation up to that point, it can fill them in itself.
To do so, to operationalize the instructions, the corre-
spondence between the situation and instructions needs
to be elaborated: the situation needs to be understood
in terms of the instructions before performance can re-
surme.

References
[1] Philip E. Agre. The dynamic structure of everyday life.
Technical Report TR 1085, MIT Artificial Intelligence
Laboratory, 1988.

[2] Philip E. Agre and Davidd Chapman. Pengi: An im-
plementation of a theory of activity. In Proceedings of
AAAI-87, pages 268-272, 1987.

[3] James Allen. Recognizing intentions from natural lan-
guage utterances. In Michael Brady and Robert C.
Berwick, editors, Computational Models of Discourse,
pages 107-166. MIT Press, 1983.

[4] Richard Alterman. An adaptive planner. In Proceedings
of AAAI-86, pages 65-69, 1986.

[5] Richard Alterman. Adaptive planning. Cognitive Sci-
ence Journal, 12:393-421, 1988.

[6] Richard Alterman. Event concept coherence. In David
Waltz, editor, Advances in Natural Language Process-
ing, pages 57-87. Lawerence Erlbaum Associates, 1989.

{7] Kenneth D. Ashley and Edwina L. Rissland. Com-

(8]

11]
[12)

(13]

[14]

[20]

(21]

pare and contrast, a test of expertise. In Proceedings of
the Sizth National Conference on Artificial Intelligence,
pages 273-278, 1987.

Lawrence Birnbaum. Integrated processes in planning
and understanding. Technical Report CSD/RR 489,
Yale University, 1986.

Rodney A. Brooks. A robust layered control system for
a mobile robot. Technical Report AI Memo 864, MIT
Artificial Intelligence Laboratory, 1985.

Jaime G. Carbonell. Counterplanning: A strategy-
based model of adversary planning in real-world situ-
ations. Artificial Intelligence, 16:295-329, 1981.

Jamie Carbonell. Derivational analogy and its role in
problem solving. In Proceedings of AAAI-83, 1983.

D. Chapman. Planning for conjunctive goals. Artificial
Intelligence, 32:333-377, 1987.

R. James Firby. An investigation into reactive planning
in complex domains. In Proceedings of AAAI-87, pages
202-206, 1987.

Michael R. Genesereth. The role of plans in intelligent
teaching systems. In D. Sleeman and J. S. Brown, edi-
tors, Intelligent Tutoring Systems, pages 137-155. Aca-
demic Press, 1982.

Kristian J. Hammond. Chef: A model of case-based
planning. In Proceedings of AAAI-86, pages 267-271,
1986.

Kristian J. Hammond. Explaining and repairing plans
that fail. In Proceedings of IJCAI-87, pages 109-114,
1987.

Kristian J. Hammond. Opportunistic memory. In Pro-
ceedings of IJCAI-89, pages 504-510, 1989.

B. Hayes-Roth and F. Hayes-Roth. A cognitive model
of planning. Cognitive Science, pages 275-310, 1979.

L. P. Kaelbling. An architecture for intelligent reac-
tive systems. In Reasoning About Actions and Plans:
Proceedings of the 1986 Conference. Morgan Kaufmann,
Los Altos, California, 1987.

Subbarao Kambhampati and James A. Hendler. Con-
trol of refitting furing plan reuse. In Proceedings of
1JCAI-89, pages 943-948, 1989.

Janet Kolodner, R. Simpson, and K. Sycara-Cyranski.
A process model of case-based reasoning in problem
solving. In Proceedings of IJCAI-85, pages 284-290,
1985.

Janet L. Kolodner and Robert L. Simpson. The MEDI-
ATOR: Analysis of an early case-based problem solver.

Cognitive Science, 13:507-549, 1989.

George Lakoff. Women, Fire, and Dangerous Things.
University of Chicago Press, 1987.

Jo-Anne LeFevre and Peter Dixon. Do written in-
structions need examples? Cognition and Instruction,
3(1):1—30, 1986.

James Mayfield. Goal analysis: Plan recognition in dia-
logue systems. Technical Report UCB 89/521, Univer-
sity of California at Berkeley, 1989.

(26]

(27]

(28]

[29]

(30]

[38]

Drew McDermott. Planning and acting. Cognitive Sci-
ence, 2:71-109, 1978.

Raymond Mooney. A general explanation-based learn-
ing mechanism and its application to narrative under-
standing. Technical Report Technical Report AITRSS-
66, University of Texas at Austin, 1988.

David Jack Mostow. Machine transformation of advice
into heuristic search procedure. In Ryszard Michalski,
J. Carbonell, and T. Mitchell, editors, Machine Learn-
ing, Volume 1, pages 367—403. Tioga Publishing Com-
pany, 1983.

Donald A. Norman. The Psychology of Fveryday
Things. Basic Books, 1988.

Michael P.Georgeff and Amy K. Lansky. Reactive rea-
soning and planning. In Proceedings of AAAI-87, pages
677-682, 1987.

E. Rosch. Prototype classification and logical classifica-
tion: The two systems. Paper presented at a meeting
of the Jean Piaget Sciety, Philadelphia, 1981.

M. J. Schoppers. Universal plans for reactive robots in
unpredictable environments. In Proceedings of IJCAI-
87, pages 1039-1046, 1987.

Jeft Shrager. Theory change via view application in
instructionless learning. Machine Learning, 2:247-276,
1987.

Reid Simmons and Randall Davis. Generate, test and
debug: Comnbining associational rules and causal mod-
els. In Proceedings of IJCAI-87, pages 1071-1078, 1987.

Lucy A. Suchman. Plans and Situated Actions. Cam-
bridge University Press, 1987.

Robert Wilensky. Understanding goal-based stories.
PhD thesis, Yale University, 1978.

Robert Wilensky.
Addison-Wesley, 1983.
David E. Wilkins. Practical Planning: FEztending the

Classical AI Planning Paradigm. Morgan Kaufmann,
1988.

Planning and Understanding.

Learning Approximation—based Uncertainty—tolerant Plans

Scott W. Bennett

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign
405 North Mathews Avenue, Urbana, IL 61801
Internet: bennett@rtd2.cs.uiuc.edu

1. Introduction

Most learning and planning systems to date have functioned
in isolation from the real world. They work with a simplified
representation for the world, usually measuring success by the
ability to efficiently produce plans which function well under
the assumptions of that representation. This work has pro-
duced many invaluable techniques for use in learning and
planning. However, one component missing from most of
these systems is a mechanism for reconciling their perform-
ance in the simplified world with the real world. Any model
. of real-world behavior will necessarily have discrepancies
. with how the real world actually behaves.

Explanation—based learning has shown promise in robotics.
InSegre’s ARMS system, knowledge about the control of aro-
botic manipulator in conjunction with geometric object
knowledge permitted learning assembly plans from observa-
tion [Segre87]. Explanation-based learning permits general
plans to be learned from a single example [DelJong86,
Mitchell86]. In robotics, a sequence of robot conirol primi-
tives is used as the example. Attempting to use ARMS tocon-
trol a real robotic manipulator often resulted in failures due to
discrepancies with the real world. This highlighted the need
for a mechanism which can adapt a system’s model of the
world to the real-world environment.

We are currently developing a system called GRASPER to
illustrate the use of explanation—-based leaming in the real
world [Bennett89a]. It seeks to learn and execute real-world
plans tractably in the presence of uncertainty. The system is
being tested in a robotic grasping domain where it can act on
the world through control of a robotic manipulator and can ac-
quire data with a visual system and position and force sensors
associated with the manipulator. We are testing system per-
formance at grasping relatively flat pieces from a puzzle for
young children. Grasping complex shapes such as these is a
difficult ongoing robotics research area and provides an ideal
testbed for our learning algorithms. The system employs ex-
plicit approximations in the domain theory. Itis the tuning of
these approximations with experience which is the key to the
system. This paper focuses on how approximate rules are
tuned over time to increase the uncertainty tolerance of
learned plans. First, our approximation terminology is intro-
duced. The approximation tuning algorithin is presented next.
The algorithm is then employed on a robotics grasping exam-
ple.

2. Approximations

An approximation has two important defining features:
Assumability

An approximation must make some statement about the
world based not on logical proof but on conjecture.
Tunabiliry

The approximation must provide a method by which it
can be tuned as the system acquires new knowledge and/
or its goals change. The tuning method should allow ad-
justment of continuous parameters of the approximation
to decrease its error with respect 1o the true world situa-
tion. The tuning method may accept as input new knowl-
edge (obtained from sensor readings) which facilitate this
adjustment.
Assumability gives an approximation its efficiency and tracta-
bility advantage. This provides a justification that further rea-
soning need not be done. Tunability indicates that our use of
the termapproximation requires that they be a function of con-
tinuously tunable parameters. By making approximations ex-
plicit, rather than implicit as in many Al systems, failures re-
sulting from the approximations can be traced back to the
inadequate approximations. In much of the work on approxi-
mation, the focus is on how to make the approximations ini-
tially. This is an important issue in using approximations to
improve the efficiency of one’s knowledge. Butin using ap-
proximations to dcal with real-world uncertainties, the goal is
to improve the uncertainty tolerance of onc’s knowledge. The
unfortunate reality is that everything a system senses fromthe
outside world is in some sense approximate already. To put
this in perspective, in the following two subsections, we dis-
cuss and distinguish between dara approximations and rule
approximations.

2.1. Data Approximations

Data approximations involve representations for measures
sensed from the real world. The raw sensor readings obtained
by the system are external approximations. That is, they can
only be tuned through interaction with the world. If a range
sensor returned the distance to an object, that distance would
be externally approximate. However, one could imagine per-
forming some further actions in the world, such as using tactile
sensors to feel first contact with the object, so as to tune that
initial approximation for distance to the object. In contrast, an
internal approximation can be tuned by the system’s own rea-

soning alone without acting on the world. A common type of
internal data approximation employed by our system is 10 re-
duce the complexity of visually sensed 2-D object contours.
Such contours involve hundreds of points and make it difficult
and slow to devise grasping points. The internal data approxi-
mation currently employed reduces the contour t0 a n—-gon
with n much less than the number of sensed contour points.

Data approximations, both external and internal, are cur-
rently pre-selected for the domain. The tuning of such ap-
proximations from their initial values is the key problem here.
QOur use of internal data approximations is for efficiency not
uncertainty tolerance.

2.2. Rule Approximations

Rule approximations are employed when the system plans
how it can act on the world to achieve some goal. They affect
the way the system interacts with the world. Consequently,
these approximations are useful for building uncertainty toler-
ance into aplan. They are always internal approximations, ca-
pable of being controlled by the system. Approximation tech-
niques, such as those in use by Keller [Keller87], which drop
rule preconditions, are like our rule approximations but in a
discrete, notacontinuous, sense. Theirapproach toimproving
efficiency of rules through approximations is complementary
to ours as both efficiency and uncertainty tolerance are impor-
tant aspects of a system’s real-world performance.!

This paper focuses on rule approximations for the purpose
ofimproving the uncertainty tolerance of a plan. Here, therule
approximations involve a choice for continuous parameters
whose adaptability to the environment is desired. The initial
approximate rules include a declaration of these continuous
approximate quantities as well as a set of predicates (anteced-
ents to the approximate rules) which calculate the initial val-
ues. These approximate rules are pre—defined as part of the
domainknowledge. We present an algorithm for recognizing
which approximations, among the declared rule approxima-
tions, to tune on failure and how to tune them.

3. A General Tuning Algorithm

Since rule approximations involve a selection of values for
various continuous parameters, what is needed is a way of rea-
soning about how quantities influence each other within an ex-
planation-based rule. The major innovation in our tuning al-
gorithm is conversion of the quantitative portion of an EBL
rule into a qualitative model of quantity influences. Qualita-
tive tuning explanations can then be produced from the quali-
tative model as 10 how to increase the probability of success
of acertain predicate, given itsexplanation, through modifica-
tion of tunable quantities from the rule approximations.

Step 1 . Produce the failing explanation for which a rem-
edy is sought

In the real-world version of the GRASPER system, moni-
tored actions executed as part of the plan have explanations as-
sociated with them as to why their expectations should hold.
Therefore, at the time of an expectation failure, it is that expla-
nation which is the starting point for approximation tuning.
However, we seek to reduce this explanation further by elimi-
nating those aspects which didn’t specifically relate to the ob-
served failure. Forexample, amonitored move command may
justify its expectation to sense no external forces during the
move by an explanation which guarantees there will be no col-

1. For a model of real-world plan operationality sec [Bennett89b].

lisions with ncarby objects. Should a failure occur, indicating
that the no—collision explanation must have some error in it,
we would reduce it to the no—collision explanation dealing
with the object most likely 1o have collided with the gripper.
In this way, the complexity of the tuning explanation is re-
duced. It would be inefficient to entertain other possible ap-
proximation tunings to prevent collisions with the other ob-
jects when they likely didn’: cause the observed failure.

Step 2. Establish the existing qualitative relationships

between quantities in the failing explanation

To make analysis of the failing explanation more straight—
forward, we form the general rule from the failing explanation
using the EGGS algorithm [Mooney86]. This rule is guaran-
teed to express all the same relationships between variable
quantities as were expressed in the original failed explanation.
In order to reason about the influences of the adjustrnent of
various quantities on the probability of success of the failed
explanation, the possible relationships between quantities in
the rule need to be asserted. All rule antecedents and conse-
quents which deal with quantities are asserted as qualitative
relations. These declarations in combination with qualitative
predicate definitions, given in a set of domain independent
qualitative rules, yield a set of qualitative proportionalities.
For example, suppose the predicate (dif 7a27 ?b32 7cl15)
were an antecedent to the rule being analyzed. This would be
asserted as the qualitative relation (grelation (dif a27 b32
¢15}). Thatis, the general variables ?a27, ?2b32, and ?¢15 will
be treated as quantities. One of the several qualitative defini-
tion rules for dif, the system’s subtraction predicate, is shown
below. This qualitative definition rule can be used to show

(rule :form

(Q+ 7 7ql)

:ants

(qrelation (dif 7ql 7q2 r))
(Q+ cl5 a27), thatthe magnitude of the quantity a27 has a di-
rect positive influence on ¢15, the result of the subtraction op-
eration. A set of these rules for each predicate employed by
the system provides a mechanism for establishing relations
between quantities in an explanation.

Often the system will not be able to conclude all the neces-
sary qualitative proportionalities purely from qualitative
predicate definitions. For example, it may not be possible to
establish that a certainty quantity is greater than another one
in general in the rule. This relationshipmay be needed to show
a qualitative proportionality which has a bearing on the ability
to produce a tuning explanation. In these cases, the specific
binding list for the original explanation is consulted and if the
relationship holds there, it is asserted as a qualitative relation
between the two quantities.

Among the quantities identified in the rule are two special
types: daia approximate quantities which are part of data ap-
proximations and runable guaniities whichcome fromrule ap-
proximations. Both types of special quantities are identified
through use of domain specific approximation declarations.
Data approximate quantities arcnot controllable by the system
as are the tunable quantities. They represent various measured
values about which there exists a certain amount of
uncertainty.

Step 3 . Produce an explanation for how to positively in-
fluence the probability of success of the root
predicate to the failing explanation

Quantitative predicates employed by the system have one of
two basic intents. Either they are calculation predicates,
whose purpose is to compute some value (e.g. the dif function
discussed earlier), or they are fest predicates, which are de-
signed to fail for certain sets of inputs (e.g. the less—than func-
tion). There is no way to vary the probability of success of a
calculation predicate since they always succeed. A test predi-
cate’s probability of success, is sensitive to the probability dis-
tribution of its argument quantities. In the diagram below, the

St gt o

less—than test on the right has a higher probability of succeed-
ing given the illustrated probability distributions for its argu-
ments. While probability distributions are difficult to define
and work with, there 1s a much simpler qualitative view of the
probability distribution: probability density decreases as one

decreasin, decreasing
central }/ \\
value o ::Zé I N

moves either higher orlower away from the central value. The
general definition for a data approximation embodies this
principle. The measured quantity is taken to be the central val-
ue. Some distribution is present because of the uncertainty in-
volved. Without knowing any details about the distribution,
the definition for a data approximation states that the probabil-
ity of encountering the actual value for the measured quantity
decreases as we get farther from the measured approximate
value. One of the rules regarding data approximate quantities
is shown below.
(rule :form

(PQ- (< est ?1oc) Ttest)

:ants

(data—approx—quantity loc2)

(IQ+ ?loc Noc2))
This translates to:

ifa less—than is being performed between ?1est and a
quantity ?loc which is indirectly or directly qualita-
tively proportional o a data approximate quantity, the
probability of the less—than succeeding is inversely
proportional 10 the magnitude of the ?1est quantity

Rules like this effectively translate goals to increase the proba-
bility of success of a predicate into goals to increase or de-
crease quantities.
In general, an explanation for positively influencing the
probability of a predicate proceeds so as to:
1) relate the probability of the failing predicate to that of
a test predicate involving approximate quantities
2) use the definition of a data approximation to relate the
probability of success of a test predicate with the mag-
nitude of a tunable quantity
To guarantee that the probability of the failing predicate will
increase, all the test predicates in the rule antecedents must be
examined. At least one must show an increasing probability
of success and the others must be non—decreasing.

Step 4 . Use the quantity tunings required by the tuning

explanation of step 3 tomodify the necessary
approximate rules

The tuning expianation serves to identify the quantities to be
tuned and suggests the direction. Itdoes not, however, specify

' the new value that the tunable quantity should take on. The ru-
! le—approximation gives calculable upper andlower bounds on

the values of the tunable quantity. The approach currently tak-
enis to tune to the extreme in the absence of other information
about tuning that quantity in that rule approximation. If the
tuning explanation suggests that a value be increased, itis in-
creased to its maximum value. Once a quantity in a rule ap-
proximation has been tuned once, constraints associated with
the rule approximation begin to be posted. These constraints
serve to identify tuning tradeoffs. A tuning constraint tellsthe
direction in which the tunable guantity should be tuned, gives
the specific numeric value from which the tuning was to take
place, and provides a setof predicates which calculate that val-
ue in general. Consider the rule approximation illustrated in
Figure 1 which seeks to determine the maximum angle by
which two contact surfaces of a piece may deviate before slip-
ping occurs. The initial approximate rule led to the object slip-

Gripper

Fingers

L)
Sliding Failure 1~

Motivates Tuning Piece 1-3

Initial
Approximat
Rule —_ .(?.).L_ I
Angular Dcvxation of
Contact Faces
(rule :form

(safe—angular—contact—face—deviation 7object 7a)
:ants

(max—angular—face—deviation ?object 7a))

Figure 1. A Rule Approximation for Maximum Contact
Face Deviation
ping out of grasp as force was applied by the gripper. The first
time the approximate quantity, ?a in this case, is tuned a de-
crease would be suggested by the tuning explanation. The de-
crease would be from the numeric value returned by the predi-
cate max—angular-face—deviarion. The direction, numeric
value, and predicate are saved as constraints on future tuning
of the approximation. In this case, the initially approximate
rule states that any two faces are acceptable for the grasp by
allowing the two faces chosen to deviate by as much as the two
faces which deviate most. On the first failure diagnosed as a
slipping failure, the suggest tuning would be to the other ex-
treme: choosing the two faces which deviate the least. This
fixes the immediate problem but will likely require further
tuning as it over-constrains other important propertics of the
erasp such as distance to center of gravity. That is, a possible
tuning of another approximation may require the re—tuning of
this approximation. Thisis triggered by the presence of inter—
approximation constraints. Distance 1o center of gravity and
face angle are so constrained through choice of contact faces.

This phase of approximation tuning continually constrains
the tunable values. Tradeoffs are currently settled using equal
weights for the various constraints. A set of successive con-
straints for an approximation appear graphically as shown in
Figure 2 forarule approximation whose tunable quantity is the
proper opening width of a gripper for grasping.

The constraining phase of approximation tuning may even-
tually arrive at a set of constraints which it is not possible to
resolve (e.g. anincreasing constraint at a higher numeric value
than a decreasing constraint) or it may be determined that the
quality of plan is being undermined by repeated constraints
(c.g. objects tend to be very close together so that continually
tuning the opening width won’tpay off). The former can casi-

Tuning 1 1 2

D *r—————— O-———»

Tuning 2 1 3 2
3T o r———O—— @ ———»

miqimum maximum
gripper gripper

opening width opening width
Failures:

1 = open exactly and stub Key

® Failure,
Decrease = Better

o~ Failure,

Increase = Better

2 = open max and hit
other object

O Chosen Tuned Value

Figure 2. Managing Tradeoffs During the
Constraining Phase

ly be detected. The latter can be handled by choosing a limit
for how constrained a tunable quantity is allowed to getand/or
how fragmented the range of possible values is becoming.
Once the limit for constraining a tunable quantity, within a
single approximate rule, has been reached, multiple approxi-
mate rules are formed. The original rule will be splitinto two
rules distinguished on the context of the failure. For this pur-
pose, the failing explanation is converted into a series of pre-
conditions for a new approximate rule. The set of precondi-
tions for the new approximate rule capture the same reasoning
which inferred which specific failure had occurred. There-
fore, having formed the new approximate rule, the tuning for
the failure at hand is the initial tuning for this new rule and is
subject to no past intra—approximation tuning constraints.

4. An Example Illustrating Use of the
Algorithm

Figure 3 shows the raw contour information acquired by the

10-segment approximations
to object ;ontours

Q,,%

OQ%

grasping target for
the example is shaded)

. 35

ob jecf]@
(/j AN

original object
contours
(limited here by
printer resolution)
Figure 3. Initial View of Work Space and Initial In-
ternal Data Approximations
system on the left and the initial internal data approximations
for the contours on the right. The shaded object has been se-
lecled as the target of the grasp for this example. The system
then constructs an explanation for how to achieve the goal
(grasp gripperl object148). The explanation is then general-
ized (using the EGGS algorithm) and packaged into a rule for

accomplishing the goal. The rule includes an operator se-
quence which is a declaratively specified set of monitored ac-
tions. A monitored action monitors various expected sensor
values and also includes an explanation justifying those ex-
pected sensor values. To illustrate the rule approximation tun-
ing algorithm we will be analyzing a common initial failure of
the first approximate plan. The initial approximate rule below
involves how widely to open the gripper. This rule indicates
(rule :form
(determine—opening—amount ?gripper 7object
7angle 7chosen—width)
:ants
(max-radius—at-orientation 7object ?angle ?radius)
(prod ?radius 2 ?chosen-width))
the gripper should be opened enough to surround the per-
ceived width of the object. After the gripper has moved above
the object’s geometric center, the fingers are opened to the des-
ignated width. The gripper is then moved down to surround
the object. The monitored move of the gripper expects to feel
no forces until the table is reached because in the approximate
model of the world there would be no collision between the
gripper and any otherobjects. However, acommon initial fail-
ure is stubbing one or both of the fingers on the edge of the ob-
ject. This shows up as an expectation violation and iriggers
approximation tuning. The expectations were that there
would be no gripper collisions with other objects during the
downmove. Instep 1 of the algorithm, the explanation for this
expectation is reduced to the one shown in Figure 4 which in-
(NO-GRIPPER-COLLISION-OBJECT GRIPPER1 FINGER]1
263 180 0 40 OBIECT148)
(LEFT-FINGER~-OF GRIPPER1 FINGERT1)
(NON-INTERSECTING-GRIPPER-FINGER-OBJECT
GRIPPER1 FINGER1 263 180 0 40 OBJECT148)
Subproof for translating finger o appropriate opening
width (6 facts, 8 built-ins)
Subproof for counter—rotating object center for clipping
against finger (8 built—ins)
Subproof for calculating extents and checking for
overlap (7 built—ins)
(RIGHT-FINGER-OF GRIPPER1 FINGER2)
(NON-INTERSECTING-GRIPPER-FINGER~OBJEC
GRIPPER1 FINGER2 263 180 0 40 OBJECT148)
Subproof for translating finger to appropriate opening
width (6 facts, 8 built—ins)
SHARED Subproof for counter-rotating object center
Jor clipping against finger (8 built-ins)
Subproof for calculating extents and checking for
overlap (7 built—ins)

Figure 4. Explanation Specific to Failure

dicates that no collision should have occurred between the
gripper and object148. This is rated as the most plausible fail-
ure among the possibie collision failures. This is because the
test predicates employed by this explanation, inequality tests
which perform the final geometric collision checks between
the data approximate gripper and object, are most likely to
have failed. This is because object148 was the closest one to
the gripper fingers causing the two quantities in the inequality
to be very close in value.

Next, the failure explanation is generalized into an EBL rule
and qualitative relations are asserted for the antecedents. Tun-
able quantities from rule approximations as well as data—ap-
proximate quantities arc also identified. Then, anexplanation

(PS-INC NGC)

(P+ NGC (<= MAX2575 MIN1572))
(ANTECEDENT-OF NGC (<= MAX2575 MIN1572))

(PQ+ (<= MAX2575 MIN1572) MIN1572)

(APPROX-QUANTITY OBX473)

(QRELATION (POSITION OBJECT467 OBX473 OBY474))

all quantities are named using
variable names from the general
(PS-INC (<= MAX2575 MIN1572)) rule

(INCREASE MIN1572)

(IQ+ MAX2575 OBX473)

(TUNABLE WIDTH466)
(IQ+ MIN1572 WIDTH466)

(DATA-APPROXIMATION (POSITION OBJECT467 OBX473 OBY474) OBX473)

e e s s (e — —— — — — —— Y — —— f— — f— —— — T— it T . (o oo

I
| Where NGC represents the failing predicate:

Figure 5. A Qualitative Tuning Explanation

is produced for how to increase the probability of success that
no gripper collision will occur with the target object. Figure
5 shows the qualitatve explanation for how opening the grip-
per (increasing the opening—width tunable quantity) positive-
ly influences the probability that there will be no collision be-
tween the first gripper finger and the object. Table 1 givesthe
(PS-INC ?pred)
the probability of success of ?pred is influenced positively
(P+ 7predl ?pred2)
the probability of success of ?pred2 influences the
probability of success of ?predl positively
{ANTECEDENT-OF ?pred1 ?pred2)
?pred? is an antecedent of ?predl in the rule being analyzed
(PQ+ 7pred 7quant)
the magnitude of the quantity ?quant influences the
probability of success of ?pred positively
(INCREASE ?quant)
the magnitude of the quantity ?quant is influenced positively
(APPROX-QUANTITY ?quant)
’qant is an approximate quantity from a data approximation
(not controllable by the system)
(1Q+ 7q1 72q2)
the magnitude of quantity ?q2 indirectly influences the
magnitude of quantity ?ql positively
(TUNABLE “quant)
the magnitude of quantity ?quant is a tunable quantity
Jfrom a rule approximation (controllable by the system)
Table 1. Predicates Employed in the Tuning
Explanation of Figure 5

semantics for the predicates employed in the explanation. The
topmost left-hand subtree establishes that the probability of
the <= test predicate can influence the probability of the no—
gripper—collision goal because itis an antecedent of the rule.
The right-hand subtree establishes that the probability of the
<= can be positively influenced through an increase in the
opening width. The IQ+ predicate is a built—in predicate for
establishing transitive relations between quantities. It con-
sults the body of qualitative proportionalities which hold in
the current situation. There is a similar supporting explanation
for the other finger, which moves oppositely while opening.
Together, the two subproofs cover all the test predicates
employed in the original explanation and thus guarantee that

~opening the gripper wider decreases the chance of this failure
(with the target object) happening in the future.

5. Conclusion

Any system which hopes to manage a model of the world in
conjunction with actions and values sensed in the real world
has to have some approximation mechanism. The character-
ization of data and rule approximations provides a good
framework from which to explore how to manage approxima-
tions. Tunable approximate quantities are sufficiently power-
ful to introduce uncertainty tolerance into plans in an on~de-
mand manner. The approximation tuning method presented
offers a general way of discovering the relationships between
the tunable approximate quantities, data approximate quanti-
ties measured from the world, and ultimately the probability
of success of a goal.

6. Acknowledgements

I would like to thank my advisor, Gerald DeJong, for his
many helpful discussions and insightful comments. This re-
search was supported by the Offtce of Naval Research under
grant ONR N00014-86-K-0305.

7. References

[Bennett89a] S.W.Bennett, “Learning Approximate Plans for Use
in the Real World,” Proceedings of the Sixth International Confer-
ence on Machine Learning, Ithaca, NY, June 1989, pp. 224-228.
[Bennett89b] S. W. Bennett, “Learning Uncertainty Tolerant Plans
Through Approximation in Complex Domains,” M.S. Thesis, ECE,
University of Illinois, Urbana, Il., January 1989.

[DeJong86] G.F.DeJongand R.J. Mooney, “Explanation-Based
Learning: An Alternative View,” Machine Learning I, 2 (April
1986), pp. 145-176.

{Keller87] R. M. Keller, “The Role of Explicit Contextual
Knowledge in Learning Concepts to Improve Performance,” Ph.D.
Thesis, Department of Computer Science, Rutgers University, New
Brunswick, NJ, January 1987.

[Mitchell86] T.M. Mitchell, R. Keller and S. Kedar~Cabelli, “Ex-
planation-Based Generalization: A Unifying View,” Machine
Learning 1, 1 (January 1986), pp. 47-80.

[Mooney86] R.J.Mooneyand S. W. Bennett, “A Domain Indepen-
dent Explanation-Based Generalizer,” Proceedings of the National
Conference on Artificial Intelligence, Philadelphia, PA, August
1986, pp. 551-555.

[Segre87] A. M. Segre, “Explanation—Based Learning of Gen-
eralized Robot Assembly Tasks,” Ph.D. Thesis, Department of Elec-
trical and Computer Engineering, University of Illinois, Urbana, IL,
January 1987.

Controlling Decision-Theoretic Inference

Mark Boddy and Keiji Kanazawa™

Department of Computer Science
Brown University
Box 1910,
Providence, R1 02912

1 Introduction

We are interested in the development of frame-
works [or decision-making under uncertainty in time-
eritical situations. In the past. we have separately
investigated (1) deliberation scheduling [Boddy and
Dean. 1989, in which decision-making computation
is scheduled explicitly to make use of the time avail-
able. and (it) probabilistic planning [Kanazawa and
Dean, 1989, Dean and Kanazawa, 1987]: the applica-
tion of normative probabilistic and decision-theoretic
reasoning to planning. In this paper, we explore
the applicability of deliberation-scheduling methods
to probabilistic and decision-theoretic reasoning. Iy
time-critical sitiations, it ay not be feasible to per-
form probabilistic inference using conventional tech-
niques or algorithms. In order Lo address such probh-

lemns, we analyze the tradeoll between the time cost of

constructing and solving probicm models and the ex-
pected utility of the decisions made using those mod-
els. In order to rate the success of this approach. we

determine the expected gain in utility over the use of

conventional mothods.

This work addresses the problem of planning under
uncertainty i two distinet ways. First, object-level
uncertainty in the world is directly addressed by the
model of decision making that we adopt: influence di-
agrams [Howard and Matheson. 1984]. Second, using
deliberation-scheduling methods allows ns to reason
explicitly about uncertainty in the perforutance ol the
decision procedures we employ. and o the range of
problems that onr system st contend with,

*This work was supported in part by an IBM Graduate Felo
lowship. and by the National Science Foundation under grant
IR1-86126:44 and by the Advanced Rescarch Projects Agency
of the Department of Defense and was monttored by the Air
Foree Oflice of Scientilic Research under Contract No. 17496G20-
83-C-0132,

2 Specifics

Suppose that we have a system Taced with the prob-
letr of making a decision, where that decision will he
of no utility at all if it is not available In the next /
tiime units. H the system uses a fixed-Lime decision
procedure taking, say, s time units to run. then flor
1 < s the answer will not be available in time, while
for t >> s the system will have used much less thne
that wag available. and may not make a very good
decision. We use a decision procedure that can be Lai-
lored to use the time available. 'This is not aw anylime
algorithm as defined in [Dean and Boddy, 1988]. Onee
the customized decision procedure is constructed, we
must still wait a fixed period of time {or an answer, In
Section 3, we discuss the construction of an anviime
decision procedure for cases where the thme available
is known only approximately.

The algorithm we have developed involves itera-
tively constructing a partial influence diagram by
adding arcs {and nodes il needed), such that the re-
sulting influence diagrauns are all subsets of the full
decision model for the class of problems that the sys-
tem can address.! By compiling expectations on the
length of tine needed to solve these partial decision
models (influence diagramms), we can make use of the
time available by continuing to construct larger in-
fluence diagrams as long az (he prohability of their
evaluation completing in the remaining time remains
sufliciently high (see helow).

Partial influence diagrams are huilt according to
the procedure iu Figure . The parameter oo cho-
sen to miaximize the expected utility of the answer
returned. Given 1 = time to evalnale a given di-

IThis is distinet from Breese's approach [Breese, 1987] in
that we do not start with a large database and construet the
appropriate decision model. The probiem we handle is smaller:
we already have the decision maodel, and the question is how
Lest to employ it in the time avatlable.

Procedure Build. diagram(n)
fori = 1 ton

begin
Choose an arc
Add it to the current diagram.
Add the node at the tail of the
arc, 1if needed.

end

Figure 1: Building partial influence diagrams

agram, tc = the time required to add one arc, and
11 = the utility of the answer returned, the expected
utility £(s) is calculated as follows:

E(p) =p(ty <t —nx*te)* E(uy)

We assume that {; and p; are conditionally indepen-
dent, given n. Constructing the required distributions
for t; and y; is a straightforward exercise in statisti-
cal inference.

The procedure Build_diagram may not be a sim-
ple one; “choosing an arc” could be a very compli-
cated procedure. The order in which arcs should be
added so as to maximize the quality of the decisions
returned by the resulting diagrams is dependent on
the evidence available. Unfortunately, constructing
an optimal partial diagram of a given size will require
either compiling a table of arcs to add given a partic-
ular configuration of evidence, or doing the sensitivity
analysis as the arcs are constructed. The former re-
quires an exponential amount of memory, while the
latter requires repeatedly solving partial influence di-
agrams on-line. For now, we add arcs in a fixed order.
This order can be set to maximize the expected util-
ity of the decisions made, given expectations on the
evidence and amount of time available over the situ-
ations encountered by the agent.

We evaluate the influence diagrams constructed by
Build_diagram using the cligue junction iree algo-
rithm [Jensen et al., 1989]. The expected time re-
quired to evaluate influence diagrams is small, and is
polynomial in the size of the diagram and exponential
in the size of the largest clique.

So the overall algorithm we use is

1. Run Build_diagram, choosing n as described
above.

2. Evaluate the resulting influence diagram.

We can compare this algorithm and a fixed-time al-
gorithm by calculating the expected utility of each

over the distribution of problem instances. We as-
sume that n and the type of evidence available are
independent.

For the fixed-time algorithm:

E(/J'jixed) =]')(771 < TI) * E(Hl)

where ;1 1s the expected utility of the answer exclu-
sive of the cost of being late.
For our algorithm:

E(p)=plt1 <t—mnxtc)* E(j)

as defined above. So the expected benefit to being
able to tailor decision-theoretic inference in this way
is E(E(p) — E(ptgizea)), calculated over the distribu-
tion of values for n.

3 Discussion

The algorithm developed in Section 2 is not an any-
time algorithm. If n 1s known and the variance on how
long it takes to evaluate a partial diagram is small
(or the time itself is small), it is possible to tailor an
algorithm in this way, and not expect to lose much
utility to either being late or wasting large amounts
of time. If n 1s not known, or the time needed to
evaluate a diagram cannot be closely predicted. than
an anytime algorithm would be more useful. Such
an algorithm might consist of using Cooper’s meth-
ods to construct a partial belief net corresponding to
a partial influence diagram [Cooper, 1988], and then
using any of several approximation algorthms on the
belief net, e.g., [Horvitz et al., 1989, Cooper, 1984,
Henrion, 1986)].

The algorithms and calculations in Section 2 pro-
vide a basis for addressing a wide range of other prob-
lems. The expectations we compile regarding the
quality of the decisions made by a partial model can
be used to schedule computation on several compet-
ing problems, much in the style of the fzme-dependent
planning discussed in [Dean and Boddy, 1988]. In this
case, “observations” corresponding to the avatlability
of evidence mark the beginming of the time over which
computation on a particular problem can proceed.

As another example, suppose we liave a system,
again faced with a decision problem, but in this case
required to solve the same problem repeatedly, where
some observations may change from instance vo in-
stance. Shachter [Shachter, 1986] defines an algo-
rithm for “absorbing” chance and decision nodes in
an influence diagram. Preprocessing the influence di-
agram by absorbing chance nodes for which we do

not expect new information may be useful-—the cost
of this reduction can be amortized over the number of
times the reduced diagram is used. The tradeoff we
are concerned with in this case 1s: should we spend
time further reducing the current diagram, update
the diagram to reflect recent observations (which may
require undoing some or all of the reduction we’ve
done), or just keep using the current diagram?

The reduced diagram may still contain chance
nodes for which observations can be made—some fea-
tures of the problem may change too rapidly for it
ever to be a good idea to remove the corresponding
chance nodes from the diagram. So there is a more
complex tradeoff involved: a smaller diagram is easier
to solve, but may need to be re-computed more often
(keeping the old diagram as new observations arrive
may mean making sub-optimal decisions).

To decide how best to spend our time, we need to
calculate the expected cost due to using outdated in-
formation, and the expected cost of the delay required
to solve a given diagram. We also need expectations
for the time required to reduce a diagram (per node
removed, or per time-unit decrease in expected time
to solve it), and for the time required to solve a given
diagram. The expected time required to solve a dia-
gram could be conditioned upon arbitrary features of
the individual diagram, but an easy starting point is
to condition only on the diagram’s size.

4 Conclusion

This abstract presents our preliminary investigation
of a new approach to controlling probabilistic and
decision-theoretic inference in time-critical situations.
Initial experimentation has been encouraging. Exist-
ing techniques for manipulating and evaluating influ-
ence diagrams can be adopted or adapted without
much effort, allowing us to build on previous work.
These initial explorations seem to indicate that this
is a promising area for additional work. Planned ex-
tensions include adding more complex models for time
cost, better methods for constructing partial influence
diagrams, and further use of expectations on the sys-
tem’s performance for controlling inference.

References

[Boddy and Dean, 1989] Mark Boddy and Thomas
Dean. Solving time-dependent planning problems.
In IJCAIS9, 1089.

[Breese, 1987] John S. Breese. Knowledge represen-
tation and inference in intelligent decision systems.
Technical Report 2, Rockwell International Science
Center, 1987.

[Cooper, 1984] Gregory F. Cooper. NESTOR: A
computer-based medical diagnostic aid that inte-
grates causal and probabilistic knowledge. PhID the-
sis, Stanford University, November 1984.

[Cooper, 1988] Gregory F. Cooper. A method for us-
ing belief networks as influence diagrams. In Pro-
ceedings of the 1988 Workshop on Unccrlamty iu
Artificial Intelligence, pages 55-63, 1988.

[Dean and Boddy, 1988] Thomas Dean and Mark
Boddy. An analysis of time-dependent planning. In
Proceedings AAAI-8& pages 49-54. AAAT, 1988,

[Dean and Kanazawa, 1987] Thomas Dean and Keiji
Kanazawa. Persistence and probabilistic inference.
Technical Report CS-87-23, Brown University De-
partment of Computer Science, 1987.

[Henrion, 1986] M. Henrion. Propagating uncer-
tainty by logic sampling in bayes’ networks. In Pro-
ceedings of the Second Workshop on Uncertainty
Artificial Intelligence, 1986.

[Horvitz et al., 1989) Eric J. Horvitz, Gregory I,
Cooper, and David E. Heckerman. Reflection and
action under scarce resources: Theoretical princi-
ples and empirical study. In Proceedings 1JCAT-89,
Detroit, Michigan, 1989.

[Howard and Matheson, 1984] Ron A. Howard and
James E. Matheson. Influence diagrams. In Ron A.
Howard and James E. Matheson, ecditors, 7he
Principles and Applications of Decision Analysis.
Strategic Decisions Group, Menlo Park, CA 94025,
1984.

[Jensen et al., 1989] Finn V. Jensen, Steflen L. Lau-
ritzen, and Kristian G. Olesen. Bayesian updat-
ing n recursive graphical models by local compu-
tations. R- 89-15, Institute for Electronic Systems,
Aalborg University, Aalborg, Denmark, 1989.

[Kanazawa and Dean, 1989]
Keiji Kanazawa and Thomas Dean. A model for
projection and action. In Proceedings [JCAL-89,
Detroit, Michigan, 1989.

[Shachter, 1986] Ross D. Shachter. Evaluating influ-
ence diagrams. Operalions Research, 34(6):871-
882, November/December 1986.

Integrating Planning and Reaction
A Preliminary Report

John Bresina and Mark Drummond*
Sterling Federal Systems
NASA Ames Research Center
Mail Stop: 244-17
Moftett Field, CA 94035

Abstract

This paper is a preliminary report on the En-
tropy Reduction Engine architecture for in-
tegrating planning, scheduling, and control.
The architecture is motivated through a NASA
mission scenario and a brief list of design
goals. The main body of the paper presents
an overview of the Entropy Reduction Engine
architecture by describing its major compo-
nents, their interactions, and the way in which
these interacting components satisfy the design
goals.

1 Motivation

NASA has plans to send a rover to Mars sometime this
decade. Let’s consider two extreme design scenarios for
such a mission.

In the first scenario, let’s assume that in advance of
the rover’s deployment, all relevant facts are known by
the design team; for example, soil surface characteris-
tics, surface topography, and location of all areas which
could be hazardous to the rover. With all this fore-
knowledge, the designers can specify desired rover be-
havior for all situations the rover will encounter. The
designers can produce a control system which enables
the rover to achieve all scientific goals under Martian
operating conditions.

Now consider a second scenario in which the design
team has limited foreknowledge of the relevant facts
needed to produce a rover control system. In this case,
the rover must be capable of performing, on Mars, some
of the activities that the designers could not complete
due to lack of knowledge. For example, since the pos-
sible situations and goals will be unknown to the de-
signers, the rover must be capable of determining, at
runtime, a response appropriate to a novel situation-
goal pair. This determination may involve synthesizing
a complex behavior and evaluating it before acting.

 *This work has been partially supported by the Air Force
Office of Scientific Research, Artificial Intelligence Research
Program.

These two scenarios vary only in the amount of fore-
knowledge possed by the rover designers. Most realistic
mission scenarios will fall somewhere between these two
- some parameters will be known in advance, and it will
be necessary to determine some others at runtime. In
any scenario there is a role for automated tools that
reason about goals, that select actions relevant to those
goals, that schedule selected actions, and that do tem-
poral projection to determine possible consequences of
behaviors. These tools can be useful as knowledge com-
pilers in advance or as reactive systems at run time, or
both to some degree, depending on the designers’ fore-
knowledge and other mission constraints. Our research
goal is to analyze, implement, and integrate such tools.
The Entropy Reduction Engine (ERE) architecture is
our developing body of theory in this endeavor.

2 Design Goals

The primary design goal for ERE has been to integrate
planning (goal reasoning and action selection}, schedul-
ing (action sequencing and resource allocation), and con-
trol (monitoring of and adapting to a dynamic environ-
ment). This overall goal can be decomposed into the
following design subgoals.

Manage goals with temporal extent. Standard
planning goals of simple conjunctive achievement are not
particularly useful in realistic situations. We want to be
able to express behavioral constraints of maintenance
and prevention over intervals of time.

Schedule actions in terms of metric time and
metric resources. Most realistic applications for tools
which manage time and actions involve a significant
scheduling component. Planning and scheduling must
be functionally integrated.

Synthesize plans. Scheduling a predetermined set
of actions is not enough — many applications require that
the set of actions be selected automatically.

Act without plans. It is not always possible to
produce a plan for a problem in the time available. Un-
planned action must be possible.

Manage disjunctive plans. The system must be
able to represent and synthesize disjunctive plans. A

disjunctive plan is more robust; that is, it increases the
likelthood of successful execution.

Reason about parallel actions. Parallelism is rife
in realistic applications. Both possible and necessary
parallelism must be handled in terms of representation
and temporal projection capability.

Analyze plan execution as a control theory
problem. A reaction plan can be viewed as a specifica-
tion of how to react to a set of situation-goal pairs. Ver-
sions of this idea can be found in modern discrete event
control theory (Ramadge and Wonham, 1989). These
ideas from Al and control theory must be integrated
and extended.

Encode problem solving strategies when avail-
able. Problem solving strategies for a domain or set of
problems are often known by domain experts. We want
to capture and exploit such expert knowledge so as to
make search more efficient when possible.

Plan while things are changing. The world will
often change while planning is going on. The plan for-
mation process must be able to deal with changing sit-
uations.

Plan synthesis must have anytime, incremen-
tal characteritics. It should be possible to stop a plan
synthesis algorithm at any time during its execution and
expect useful results. One should also expect the “qual-
ity” of the results to improve continuously as a function
of time. (Refer to Dean and Boddy, 1988 for more de-
tails.)

3 ERE Architecture Overview

This section gives a guided tour of our architecture and
explains how it addresses each of the previous section’s
design goals. The ERE architecture includes the follow-
ing components.

1. The reactor produces reactive behavior in the envi-
ronment.

2. The projectorexplores possible futures and provides
advice about appropriate behaviors to the reactor.

3. The reductor reasons about behavioral constraints
and provides search control advice to the projector.

This architecture is organized around the Principle of
Independent Ability, which is as follows: each component
must have the basic ability to perform its assigned task.
In no way does independent ability guarantee good per-
formance; in fact, a component in isolation will typically
exhibit poor performance and will improve only through
interactions with other components.

For a concrete example consider the reactor and pro-
Jjector components. The reactor is able, in principle, to
realize all the behaviors that are possible in a given do-
main. However, without any advice, the reactor is my-
opic — it does not know the future consequences of its
behavior nor does it know whether its behavior will sat-
isfy the given behavioral constraints. The performance
level of the reactor is increased through interactions with

the projector. The projector considers consequences of
the various possible behaviors and advises the reactor
on which particular behavior best satisfies the given be-
havioral constraints.

The reductor-projector interface is similar. Forward
chronological search performed by the projector is in-
herently myopic; the projector does not have a “global
picture” of the search space and as a result does not
know which behaviors to project and which others to
ignore. Of course projection can be done — it is just
not very efficient. The projector aspires to efficiency
by accepting search control guidance from the reductor.
The reductor uses domain-specific planning expertise to
recursively decompose the given problem into a conjunc-
tion of simpler (and more localized) subproblems. The
conjunction represents a strategy for solving the over-
all problem and is used to provide global advice to the
projector.

In both the projector-reactor and reductor-projector
interactions, the input from one component simply
serves to control an existing ability and does not serve to
define that ability. This approach differs from that taken
in classical “plan execution systems”. A traditional plan
executor (Wilkins, 1984) has nothing to do if it has no
plan. In contrast, our reactor can always do something:
the existence of a “plan” simply serves to increase the
goal-achieving properties of the reactor. Similarly, the
projector can consider possible futures without reference
to some developing plan — search guidance from the re-
ductor serves to control the projection when such advice
is available, but such advice is not strictly necessary.

The principle of independent ability fits cleanly with
the idea of an anytime algorithm. By decoupling the sys-
tem into reduction, projection, and reaction, the ERE
architecture can exploit each component’s anytime char-
acteristics. For example, the projector can give guidance
to the reactor once it has found a single behavior satis-
fying the given constraints, and can incrementally aug-
ment this guidance with descriptions of other satisfac-
tory behaviors as these are discovered in the projection.

The reductor has similar anytime characteristics. Ini-
tially, all behaviors which do not necessarily violate the
overall behavioral constraint are allowed according to
the reductor’s first-cut problem solving strategy. Suc-
cessive applications of reduction operators serve to refine
the problem solving strategy providing search guidance
that grows increasingly detailed and accurate over time,
thus restricting the projector to ever fewer of the myriad
possible behaviors.

The following three sections explain, in more detail,
the functions of the ERE components and the nature of
their decoupled anytime interaction.

3.1 The Reactor

The reactor accepts a specification of the environment’s
dynamics represented as a plan net (Drummond, 1985,
1986). A plan net defines the events that are possible in

the environment in terms of each event’s preconditions

and situation-dependent effects. Each event is repre-
sented by a single operator in the plan net. From the
point of view of the reactor, a plan net can be charac-
terized by a set of operators and the two functions given
below, where S is the domain’s set of possible situations,
O is the set of plan net operators, and II(O) denotes the
power set of O (note that this is a slight simplification
of the full formalism explained in Drummond, 1989).

e ezecutancy : O — {true, false}
e enabled : S — H(II{0))

The function executancy distinguishes between ex-
ternal events and agent-based actions. That is,
executancy(o) indicates whether the reactor has con-
trol over the execution of the action denoted by operator
o or whether o denotes an event whose occurrence is de-
termined by the environment.

The function enabled(s) returns a set of operator
sets in the plan net, where each of the operator sets
returned can be performed in parallelin situation s. The
reactor is only concerned with those operators that are
enabled according to its current “world model”. It needs
to find a set of operators enabled in its world model
for which it has executancy. The reactor interprets the
plan net as a nondeterministic program, choosing and
executing possible actions in an undefined order.

Control over the execution process is achieved by the
use of Situated Control Rules, or SCRs (Drummond,
1989). An SCR is an if-then rule, where the antecedent
refers to elements of the reactor’s current world model
and the current behavioral constraint, and where the
consequent contains a set of possible operator sets to
execute. Essentially, the consequent of an SCR for a
situation s and behavioral constraint B contains those
operator sets whose execution defines a prefix to a be-
havior which satisfies B. This means that the SCR’s
consequent is a subset of enabled(s), since the op-
erators that satisfy posted behavioral constraints will
include some (but typically not all) of those operators
that are enabled in s. The synthesis of these SCRs is
discussed in more detail in Drummond (1989), and the
next section provides a brief overview of the process.

The reactor always checks to see if any SCRs exist
that are appropriate to the current situation and given
behavioral constraints. If so, the SCRs’ advice about
what to do next is heeded. If there are no appropri-
ate SCRs, unplanned execution is still possible. With-
out reference to the SCR input from the projector, the
reactor simply selects and attempts to execute any en-
abled operator in the plan net. The results of such non-
deterministic execution are (of course) unpredictable.

For the fully autonomous extreme of the rover ex-
ample considered in section 1, the plan net given to
the reactor would contain a specification of all actions
the rover could perform, as well as all relevant exter-
nal events which could affect the success of the rover’s
mission. For instance, an action for the rover could be
aim-laser-range-finder, and an external event could

be rock-slips-from-gripper. A background set of
SCRs would be provided to give the rover essential reac-
tions to situations demanding immediate response {e.g.,
those needed for self-preservation). Other SCRs can be
synthesized dynamically by the projector.

3.2 The Projector

The projection process considers the effects of events
under the system’s control and external events caused
by the environment or other agents (c¢f Dean and Mc-
Dermott, 1987). Projection is simply a search through
the space of possible event sequences. A projection path
represents a possible behavior. Considering all possible
future behaviors is typically impossible.

The projector needs to view the plan net as a causal
theory and so requires the following extra function which
describes the effects of a set of operators o in a situation
8. The function is defined Vo C O,s € S.
ses if 0 € enabled(s)
undefined otherwise

Projection associates a duration with each set of op-
erators applied and uses this to calculate a time stamp
for each new situation. Currently, operator durations
are integers and can be a function of the situation in
which the operators are applied; situation time stamps
are also integers.

Behavioral constraints are conjunctions and disjunc-
tions of the following two forms.

apply(o, 5) = {

o (maintaingty ts) is true of a projection path iff wif
¢ is true from time point ¢; through time point t,
in the path.

o (prevent ¢ t1ts) is true of a projection path iff wif
¢ is false from time point ¢; through time point ¢,
in the path.

A wif is a conjunction or disjunction of grounded pred-
icates. Time points refer to situational time stamps and
can be integers or variables; the domain of each variable
is the integers. Arithmetic constraints on time point
variables are allowed in the language. This language
might appear quite simple but it allows us to express
behavioral constraints that are more complicated than
most planning systems can handle.

For example, the language allows the following;:

(and (maintain (memory 3 6) 1 5)

(prevent (battery low) 2 7)
(maintain (image taken) 7t 7t))

where (memory 3 6) indicates in our rover domain that
the amount of memory available is between three and six
megabytes, (battery low) indicates the battery’s sta-
tus, and (image taken) is true when a picture from the
rover’s camera has been taken. This constraint requires
that the first predicate be true from time 1 through time
5 and that the second predicate be true from time 2
through time 7. The third conjunct in the constraint
corresponds to a traditional goal of achievement, where
the predicate must be true at an arbitrary but single
point in time, here indicated by the variable ?t.

Our approach calls for two phases of temporal projec-
tion. First, we find a single projection path that satisfies
all given constraints. The search method used is based
on likelihood (how probable is a candidate partial path;
cf Hanks, 1990) and utility (how well does a candidate
partial path satisfy the given constraints). The projec-
tion path is compiled into SCRs, giving the reactor a
single correct behavior. The result of this first phase
is somewhat like a triangle table (Nilsson, 1984) insofar
as the reactor has information regarding what to do for
any situation in a defined sequence. Our second phase of
operation attempts to make this first solution more ro-
bust by strengthening probabilistically “weak” sections
of the behavior. This two-phase approach gives the SCR
synthesis anytime characteristics; details are explained
by Drummond and Bresina (1990).

For a projection example let’s look to our ongoing
Mars rover scenario. There are limited resources on
board, and given goals will often compete for these re-
sources (e.g., the goals of obtaining a sample and of en-
suring rover safety). Provided that an appropriate plan
net and behavioral constraints are given to the on-board
executive system, competing possible behaviors can be
considered in terms of their likelihood and the degree
to which each satisfies the given constraints. Projection
will produce appropriate SCRs to be used by the reactor
when the relevant situations arise.

The initial behavioral constraints will rarely pro-
vide enough control over the temporal projection search
due to their scope: behavioral constraints are typically
global, and temporal projection, while it eventually con-
structs a behavior with this global scope, does so in-
crementally through a series of single operator applica-
tions. Our problem of search control in this context is
not new. All “goal-oriented” systems require a mecha-
nism that can translate a computationally non-effective
goal into a computationally effective means for control-
ling the search for a solution which satisfies the goal.

We expect the reductor to translate “global non-
eflective” behavioral constraints into ones that are “lo-
cal” and “computationally-effective” to control tempo-
ral projection. The basic idea behind this translation
process is the topic of the next section.

3.3 The Reductor

Standard problem reduction operates by applying non-
terminal reduction rules to recursively decompose prob-
lems (situation-goal pairs) into conjunctions of “sim-
pler” subproblems until “primitive” problems are rec-
ognized by terminal reduction rules which return their
“obvious” solutions (Nilsson, 1971). A complete reduc-
tion trace is represented as an And tree whose root node
represents the initial problem and whose leaves represent
solved subproblems. The trace of a search through the
reduction space is represented as an And/Or graph.
The ERE reductor is based on the REAPPR system
(Bresina, 1988; Bresina, et al., 1987) which extends this
standard approach in a number of ways. REAPPR en-

ables the encoding and effective utilization of domain
specific and problem specific planning expertise. In or-
der to fulfill its role in the ERE architecture, REAPPR
is undergoing customizations and extensions.

In the ERE context, a problem is a pair consisting
of a situation and a behavioral constraint. Nonterminal
reductions can decompose a behavioral constraint based
on its logical structure, its temporal extent, the logical
structure of its formulae, or the semantics associated
with the formulae’s predicates.

For instance, in terms of the fully autonomous rover
scenario, if a behavioral constraint requires that the dis-
tance to a nearby rock be precisely determined, then
there might be two reductions giving more detailed be-
havioral constraints regarding how exactly this might
be achieved. One reduction might specify that two vis-
ible light cameras should be used in conjunction with
a calculation of binocular disparity; the other reduction
might specify that the laser range finder should be used.
The two alternative strategies have different costs and
the reductions will indicate the situations under which
each is appropriate.

The semantics of a nonterminal reduction is that satis-
fying the conjunction of behavioral constraints specified
in the decomposition implies satisfaction of the original
behavioral constraint. Furthermore, a nonterminal re-
duction represents the heuristic advice that satisfying
the conjunctive subproblems is a good strategy for satis-
fying the original problem. By induction, given a par-
tial reduction And tree, the set of leaf nodes represents
a conjunction of subproblems whose satisfaction implies
the satisfaction of the root node problem.

In accord with the standard approach, a terminal re-
duction applicable to a subproblem would return an ac-
tion which is enabled in the subproblem’s situation and
satisfies the subproblem’s behavioral constraints. An-
other use of terminal reductions is suggested by the fol-
lowing observation. Once a robust solution for a sub-
problem has been found by the projector and compiled
into a set of SCRs, the projector no longer needs guid-
ance from the reductor on solving subsequent occur-
rences of that particular subproblem. Hence, terminal
reductions can be formed to recognize subproblems cov-
ered by existing SCRs, so the reductor will not waste
time reasoning about them.

As the tree grows, the leaf subproblems become sim-
pler and more localized; furthermore, they represent an
increasingly accurate strategy for satisfying the initial
problem. Hence, over time, the conjunctive set of leaf
subproblems makes it increasingly easy to estimate the
quality of a partial behavior in the projection and to
estimate the likelihood that it can be extended to sat-
isfy the overall constraints. The limit of this advice is a
complete specification of all behaviors which satisfy the
overall constraints. This limit is approached as more
terminal reductions are applied.

4 Conclusion

We have implemented a temporal projection system
based on the ideas outlined in this paper and have begun
experiments in a domain loosely based around our au-
tonomous Mars Rover scenario. This domain, The Reac-
tive TileWorld, involves uncontrollable external events
and the need to act before planning is complete. Behav-
ioral constraints in the Reactive TileWorld are complex,
typically involving the maintenance of conjunctions of
predicates over intervals of time. We have implemented
a subset of the goal language defined in this paper; in
our language subset, if a variable is used to refer to
the time points in a maintain or prevent statement,
the same variable must be used for both the start point
and end point. We have implemented the SCR compila-
tion code defined in a previous paper (Drummond, 1989)
and are currently developing a set of Reactive TileWorld
benchmark experiments. The REAPPR system is being
integrated with our temporal projection code.

How does our evolving architecture measure up in
terms of our declared design goals? The architecture al-
lows us to schedule actions in terms of metric time and
metric resources by considering the situation-dependent
effects of actions during projection. It also allows for
synthesizing plans by selecting actions, for acting with-
out plans, and for the management of disjunctive plans.
The ERE architecture also supports reasoning about
parallel actions in temporal projection. The reduc-
tor makes it possible to encode domain- and problem-
specific strategies when such knowledge is available. All
the components of our architecture have incremental,
anytime properties. And what of our goal to plan while
things are changing? We’re working towards that by
developing notions of situational coverage and overall
system robustness in an effort to connect our work with
modern discrete event control theory. Results will be re-

ported in a forthcoming paper (Drummond and Bresina,
1990).

Acknowledgements

Thanks to other members of the ERE group for techni-
cal inspiration and for help with the implementation —
Nancy Sliwa, Rich Levinson, and Andy Philips. Thanks
also to Amy Lansky, Smadar Kedar, John Allen, and
Ann Reid for helping with the paper and its produc-
tion.

References

[1] Bresina, J. 1988. REAPPR - An Expert System
Shell for Planning. Technical report LCSR-TR-119,
LCSR, Rutgers University, February.

[2] Bresina, J., Marsella, S., and Schmidt, C. 1987 Pre-
dicting Subproblem Interactions. Rept. LCSR-TR-
92, LCSR, Rutgers University, February.

(3] Bresina, J., Marsella, S., and Schmidt, C. 1986.
REAPPR - Improving Planning Efficiency via Ex-
pertise and Reformulation. Rept. LCSR-TR-82,
LCSR, Rutgers University, June.

[4] Dean, T., and Boddy, M. 1988. An Analysis of
Time-Dependent Planning. In proc. of AAAI-88.
pp. 49-54.

[5] Dean, T., and McDermott, D. 1987. Temporal
Database Management. Al Journal, Vol. 32(1). pp.
1-55.

[6] Drummond, M. 1989. Situated Control Rules. Pro-
ceedings of Conference on Principles of Knowledge
Representaiion and Reasoning, Toronto, Canada.

[7] Drummond, M. 1986. A Representation of Action
and Belief for Automatic Planning Systems. Rea-
soning About Actions and Plans, M. Georgeff and
A. Lansky, Eds., Morgan Kauffman. pp. 189-211.

[AS] Drummond, M. 1985. Refining and Extending the
Procedural Net. Proceedings of the 9th Interna-

tional Joint Conference on Artificial Intelligence,
Los Angeles, CA.

[8] Drummond, M., and Bresina, J. 1990. An anytime
temporal projection algorithm for maximizing ex-
pected run-time robustness. (In preparation.)

[10] Hanks, S. 1990. Projecting Plans for Uncer-
tain Worlds. Yale University, CS Department,
YALE/CSD/RR#756.

[11] Ramadge, P.J.G., and Wonham, W.M. 1989. The
Control of Discrete Event Systems. Proceedings of
the IEEE. Vol. 77, No. 1 (January). pp. §1-98.

[12] Nilsson, N. 1971. Problem Solving Methods in Ar-
tificial Intelligence. McGraw Hill, N.Y.

[13] Nilsson, N. (ed). 1984. Shakey the Robot. Technical
Note 323, Stanford Research Institute.
[14] Wilkins, D. 1984. Domain Independent Planning:

Representation and Plan Generation. Artificial In-
telligence, Vol. 22, pages 269-301.

Towards Intelligent Real-Time Cooperative Systems

Edmund H. Durfee
Department of Electrical Engineering and Computer Science
University of Michigan

Introduction

In dynamically changing worlds, intelligent decision-
making cannot be divorced from time: The best decision
can lead to disaster if the world has changed substan-
tially by the time the decision is enacted. For example,
if I see no cars coming, I might decide to cross the street.
Although this is a correct decision given the initial situ-
ation, if I spend too much time making this decision or
putting it into action, I might still get hit.

We are exploring issues in timely decisionmaking, or,
more generally, real-time Al. By real-time, we mean that
a system must carry out its actions before the environ-
ment has a chance to change substantially. Put another
way, a system must act on its environment more quickly
than its environment can unpredictably act on it. If
we can measure the expected (or minimum) amount of
time that the environment needs to change substantially,
then we can place hard real-time deadlines on a system
[Stankovic and Ramamritham, 1987].

Guaranteed real-time performance demands that the
behavior of the system, or at least its worst-case behav-
ior, 1s predictable. Intelligence, on the other hand, de-
mands some degree of unpredictability—of creativity—
without which the system’s behavior appears mechan-
ical and unintelligent. Real-time Al systems are com-
plicated, in part, because they must combine these dia-
metrically opposed perspectives.

Many problems, including real-time perception, tem-
poral and commonsense reasoning, planning, execution,
recovery, communication, and synchronization, must be
solved before we know how to build real-time intelligent
systems. Qur current emphasis is on studying issues
in real-time planning, execution, and communication in
the context of simulated and actual robots in a shared
workspace. Specifically, we are concerned with develop-
ing interacting real-time and Al subsystems, and with
investigating the practicality of using communication to
synchronize robot actions.

Motivation
Real-Time Al

Research in real-time Al has taken several directions.
One direction has been to engineer Al systems to meet
real-time needs [Laffey el al, 1988]. Typically, this
means simplifying a system’s knowledge-base and in-
ference mechanism so that the system will respond to
all expected inputs within some maximum time. Unfor-
tunately, while these systems might retain some of the
languages and algorithms of Al, whatever intelligence
they began with has been engineered out in order to
guarantee predictable real-time responses.

Another direction has been to develop Al systems
that use iterative improvement algorithms, so that at
any given time the system can return some approxima-
tion of the desired response [Dean and Boddy, 1988,
Horvitz, 1987]). Systems that use this approach attain
goals within real-time, but this approach is limited to
applications that admit to successive-refinement algo-
rithms. In many applications, successfully meeting time
constraints might mean that the system generates a use-
ful but unexpected result, rather than an approximation
of the expected result. For example, when navigating a
vehicle through a congested area, an approximation such
as “turn 90 degrees, plus or minus 45 degrees” might
lead to disaster, while a completely different response
such as “honk your horn and slam on the brakes” might
be better.

Both of these directions have viewed real-time Al as
embedding an Al system within a real-time system. As
part of the real-time processing, any Al reasoning must
also return a response within a deadline. This view can
be contrasted with the view in which real-time (reactive)
capabilities are embedded within an Al system. For ex-
ample, Cohen [Cohen et al., 1989] describes an Al archi-
tecture which includes a real-time component to detect
and respond to time-critical situations. A more unified
approach, such as Soar [Laird el al., 1987)], encodes re-
active knowledge just like any other knowledge, with
the stipulation that, when it is applicable, the reactive

knowledge should take priority.

A third view is possible, in which neither the real-time
component nor the Al component is embedded in the
other. Running concurrently, the real-time and Al sub-
systems exchange appropriate information so that each
can acceptably perform its own functions. In a sense,
each subsystem is an individual with its own goals and
restrictions on behavior; the challenge is to get the indi-
viduals to cooperate so that real-time intelligent behav-
ior emerges. Building systems from “cooperating ex-
perts” has been an active area of research [Durfee et
al., 1989, Smith and Broadwell, 1987], but cooperation
between such diverse systems as a “planner” and “real-
time executor” will require substantial improvements in
technology.

Planning

An approach to planning can be purely strategic (plan-
ning an entire sequence of actions to achieve a goal
by assuming that the world is completely certain and
closed), purely reactive (planning only the next action
because the world is assumed to be extremely uncer-
tain and unpredictably changing), or somewhere in be-
tween. Toward the strategic end of this continuum are
approaches such as contingency planning [Drummond et
al., 1987] and constraint-based planning [Stefik, 1981],
while toward the reactive end are systems that invoke
short partial plans in response to current circumstances
and goals. We have studied a type of planning that falls
somewhere in the middle of the continuum, called incre-
mental planning, which sketches out an entire strategic
plan at an abstract level, and reactively details specific
actions for the plan as it pursues the plan [Durfee and
Lesser, 1986].

Incremental planning has been used to control the
problem-solving behavior of a blackboard system, and
was extended to permit time-constrained problem solv-
ing [Durfee and Lesser, 1988]. It does this by providing
the blackboard architecture with the ability to make
rough predictions about the time needed to generate
a solution, and then to replace planned applications
of time-consuming knowledge sources (or sequences of
knowledge sources) with less costly knowledge sources
or none at all. A solution could thus be found more
quickly to meet time constraints, but it would be less
complete, less precise, less certain, or some combination
of these, depending on how the planned sequence was
modified. In the original work, the system was given
fixed preferences for how to modify sequences, although
in subsequent research [Lesser et al., 1988] we proposed
criteria for evaluating alternative preferences so that the
system could dynamically decide on effective modifica-
tions of its plans.

The mechanisms for planning and prediction we de-
veloped were very effective in a blackboard system for
solving interpretation problems, because interpretation
problems often call for similar sequences of actions to

be applied to numerous pieces of data. The system
could store information about past problem-solving ex-
perience, and exploit the repetitious nature of the task
by using these experiences to predict the time needs for
processing similar data in the future. Our technique
therefore depends on predictions; these predictions can
be inaccurate, but lower accuracy leads to poorer real-
time performance, either in the form of missed dead-
lines or failure to use all of the actual available time.
Therefore, although our technique can be generalized to
time-constrained problem solving in systems other than
blackboard-based systems, it is most effective only in
reasonably predictable problem-solving domains.

Communication

Most multi-agent planning research has concentrated
on conflict avoidance [Cammarata et al, 1983, Corkill,
1979, Georgeff, 1983]. Conflicts arise when diflerent
agents need access to a non-sharable resource, such as
agents that use the same doorway to move between two
rooms. As in single-agent planning [Sacerdoti, 1975,
Waldinger, 1977}, the approach is to identify conflicts
between subgoals, and enforce an ordering on inter-
acting subgoals to avoid the conflicts. In multi-agent
planning, this means that before an agent can begin
pursuing one subgoal, it might have to wait until the
agents pursuing potentially interacting subgoals have
finished. While non-interacting subgoals can be car-
ried out in parallel without synchronization between the
agents, synchronization is needed during eritical regions
in plans where lack of synchronization can lead to con-
flict.

If agents are working in completely predictable en-
vironments, the steps in the multi-agent plan could be
tied to specific start and end times that would enforce
the constraints between subgoals. In practice, however,
the time agents need to achieve subgoals is not precisely
predictable, so synchronization is achieved through com-
munication. Thus, when an agent has achieved a sub-
goal, it can alert another agent that is waiting to work
on an interacting subgoal that it is now safe to begin.

Delays and errors in communicating messages in this
model can lead to cases where the multi-agent perfor-
mance is degraded, such as when agents sit idle because
they are waiting for messages. In the worst case, a lost
message could lead to the discontinuation of the multi-
agent plan. Although this model guarantees that agents
will not engage in conflicting actions during critical re-
gions, it cannot guarantee the timely performance of the
entire multi-agent plan, or even that the plan will indeed
be completed at all.

Moreover, this simple model of communicated mes-
sages as “eventually” arriving cannot be used for syn-
chronizing actions that must occur simultaneously. The
different actions of multiple agents might need to all be-
gin within a small window of time, such as when a tight
formation of vehicles must change direction or when two

robots that are supporting a long object must move
to a new location. Synchronization messages between
the agents must be exchanged reliably and within some
maximum window of time for the agents to succeed.
While much research in communication and coordina-
tion between intelligent agents has assumed that such
communication capabilities exist and can be incorpo-
rated into Al systems, the validity of this assumption
has not received sufficient attention.

Negotiation

Deadlines have reasons. We often think of deadlines
caused by the physical world. For example, if our robot
is to avoid colliding with a wall, or is to recognize and
return a ping-pong ball, or is to surround and extinguish
a forest fire, then it must react within some time bounds.
Physics and acts of nature are uncompromising.

Many of the deadlines that an intelligent system faces,
however, are social in nature. For example, deadlines
for submitting a paper, for building a house, or for sup-
plying a product are often negotiable. A technique for
meeting real-time constraints that we often use is to
change the constraints—ask for extensions, renegotiate
a contract, add in a little extra time. When planning
a meeting with a friend across town, for example, we
would negotiate a time to meet that would minimize the
likelihood of difficult-to-meet deadlines. If I'm worried
about traffic delays, then instead of agreeing to meet in
15 minutes and forcing myself to meet that deadline by
driving dangerously, I'd instead try to arrange the meet-
ing an hour from now so I can take my time. Although
some deadlines are carved in stone, we should not ignore
techniques for reasoning about how to change, as well
as meet, deadlines.

Current Research Directions

QOur current research in planning and coordination in
dynamic environments combines ideas from real-time
computing, intelligent planning, real-time communica-
tion, and distributed Al. We are attempting to integrate
these ideas in order to build simulated and (eventually)
actual intelligent robots that can achieve their goals in
the face of time constraints that are brought on both
by the physical world and by the need to interact with
each other.

Real-Time Planning and Acting

One direction of our research is to use real-time schedul-
ing techniques in conjunction with Al techniques to
develop intelligent real-time robotic systems. In this
work, a sophisticated Al planning system uses hierar-
- chical goal decomposition, incremental planning, tem-
poral reasoning, and goal interaction knowledge to plan
actions that further all of a robot’s goals, including its
goals to avoid collisions and avoid running out of power.
The planner sketches out an entire temporal plan at an
abstract level, and details low-level actions for that plan

as they are needed. As it generates low-level actions, it
makes worst-case predictions as to their time needs and,
if they are periodic, their frequency.

For example, let us say that our robot has picked up
an object and now has a goal to carry it across the
room. To achieve this goal successfully, it must avoid
obstacles in its path and make sure it does not drop the
object. Thus, along with executing an action to move
in a particular direction, it might also need to execute
periodic actions to look ahead for potential obstacles,
check its gripper to make sure the object is still held, and
look for a landmark indicating that it has arrived at its
desired destination. Each of these periodic actions has a
worst-case time requirement, as well as the frequency of
the action. Can the robot guarantee that it can achieve
all of these objectives?

The requested actions are passed to the real-time sys-
tem’s scheduler. The scheduler uses the information to
decide whether all of these actions can be done together.
If not, the scheduler informs the planner of this fact
and the planner needs to scale back its expectations: It
might move more slowly (reducing the frequency of some
actions) or might entirely forget some actions (it might
not recheck the gripper until it arrives at its destina-
tion). Thus, the intelligent system (planner) must coop-
erate with the real-time system’s scheduler to guarantee
performance of the most important actions (generally,
the actions that will maintain the robot in a safe state).
As the robot embarks on achieving new goals, the plan-
ner interacts with the real-time system to schedule the
crucial actions for the new goals. Of course, the plan-
ner can also request actions that cannot be guaranteed,
such that the real-time system will do them “f there
is time.” By appropriately ranking goals, deciding on
actions, and guaranteeing the most important actions,
the combined systems can ensure some minimum per-
formance (collisions will be avoided) and can attempt
to achieve other less critical but desirable goals (such
as delivering parts to workstations). Note that this ap-
proach does not embed either system in the other; it
allows them run concurrently and to cooperate.

Real-Time Communication

A second direction that we are exploring involves real-
time communication between interacting robots. When
multiple agents need to communicate in order to syn-
chronize their actions, they need knowledge about
the underlying communication mechanisms, such as
whether messages will ever be lost and how long commu-
nication takes in the worst {or average) case. To ensure
timely communication, we might need to adopt a port-
based communication architecture [Shin and Epstein,
1987], allowing different priority channels. In dynam-
ically changing environments, where agents come and
go over time, reasoning about messaging capabilities,
needs, and priorities will be a complex problem.

As a simple example of the types of tasks we are con-

cerned with, consider several mobile robots that are fol-
lowing each other in a line. If the robot in the front dis-
covers that it must stop as soon as possible, what should
it do? It could stop immediately and, at the same time,
send messages to the robot behind it to halt. But if
the message takes too long to arrive and process, the
robot behind might crash into the leader. The robot
behind also must ensure that the robot following it will
not crash into it. To avoid a chain reaction of rear-
end collisions, therefore, a robot that is being followed
must decide how quickly the following robot can stop,
and a crucial aspect of this decision is using knowledge
about the communication channels. If we are to guaran-
tee real-time responsiveness in dynamic domains, then
the capabilities and the use of communication channels
must be appropriate.

Real-Time Coordination

The last direction that we are exploring is the role that
reasoning about coordination plays in real-time Al. Al-
though many deadlines an agent faces are based on as-
pects of the physical world that are beyond the agent’s
control, other deadlines are based on coordination de-
cisions with other agents. For example, if two robots
have arranged to pass a part from one to the other at a
specific time and place, they have imposed deadlines on
themselves for this rendezvous. If one robot is slowed
by some unanticipated obstacles, it could try alterna-
tive means of meeting the deadline (such as increasing
its speed) but this might have drawbacks (such as in-
creasing the chances that it will be unable to avoid a
collision). The robot could instead attempt to modify
the deadline; it could ask for an extension.

We believe that reasoning about the timing of inter-
actions between intelligent systems is a key aspect of
intelligent behavior in dynamic domains. Our expecta-
tion is that real-time Al and distributed Al have many
connections between them, and that studying these con-
nections will lead to important insights and progress in

both fields.

Conclusion

In conclusion, we are studying several issues in real-time
Al, attempting to combine ideas from both the real-
time computing and Al fields. Qur strategy is to couple
separate real-time and Al components using a shared
protocol, rather than embedding one component inside
the other. In time, we hope that our increased under-
standing of the relationships between the components
will allow us to more fully integrate them into a unified
real-time Al system.

To evaluate this work, we are implementing our ideas
in a real, physical system composed of several robots.
However, we are also using a flexible testbed for sim-
ulating multi-agent domains [Durfee and Montgomery,
1989]. Our testbed allows us to simulate different
constraints on the actions of and interactions between

agents, so that we can more fully evaluate alternative
mechanisms for coordinating the different agents. We
would like to explore the possibility of extending this
testbed for use in simulating real-time domains.

Acknowledgements. Many of the ideas in this paper
arose out of discussions with Professor Kang G. Shin,
David J. Musliner, and Tom Tsukada. Dave Musliner
and Terry Weymouth supplied useful comments on this

paper.

References

[Cammarata et al., 1983] Stephanie Cammarata,
David McArthur, and Randall Steeb. Strategies of co-
operation in distributed problem solving. In Proceedings
of the Eighth International Joint Conference on Artificial
Intelligence, pages 767-770, Karlsruhe, Federal Republic
of Germany, August 1983. (Also published in Readings
in Distributed Artificial Intelligence, Alan H. Bond and
Les Gasser, editors, pages 102-105, Morgan Kaufmann,
1988.).

[Cohen et al., 1989] Paul R. Cohen, Michael L. Greenberg,
David M. Hart, and Adele E. Howe. Trial by fire: Under-
standing the design requirements for agents in complex
environments. Al Magazine, 10(3):32-48, Fall 1989.

[Corkill, 1979] Daniel D. Corkill. Hierarchical planning in
a distributed environment. In Proceedings of the Sixzth
International Joint Conference on Artificial Intelligence,
pages 168-175, Cambridge, Massachusetts, August 1979.
(An extended version was published as Technical Re-
port 79-13, Department of Computer and Information
Science, University of Massachusetts, Amherst, Mas-
sachusetts 01003, February 1979.).

[Dean and Boddy, 1988] Thomas Dean and Mark Boddy.
An analysis of time-dependent planning. In Proceedings
of the National Conference on Artificial Intelligence, pages
49-54, St. Paul, Minnesota, August 1988.

[Drummond et al., 1987] Mark Drummond, Ken Currie,
and Austin Tate. Contingent plan structures for space-
craft. In Proceedings of the Space Telerobotics Workshop,
January 1987.

[Durfee and Lesser, 1986] Edmund H. Durfee and Victer R.
Lesser. Incremental planning to control a blackboard-
based problem solver. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 58-64, Philadel-
phia, Pennsylvania, August 1986.

[Durfee and Lesser, 1988] Edmund H. Durfee and Vic-
tor R. Lesser. Incremental planning to control a time-
constrained, blackboard-based problem solver. IEEE

Transactions on Aerospace and FElectronics Systems,
24(5):647-662, September 1988.

[Durfee and Montgomery, 1989] Edmund H. Durfee and
Thomas A. Montgomery. MICE: A flexible testbed for in-
telligent coordination experiments. In Proceedings of the
1989 Distributed AI Workshop, pages 25-40, September
1989.

[Durfee et al., 1989] Edmund H. Durfee, Victor R. Lesser,
and Daniel D. Corkill. Trends in cooperative distributed

problem solving. IEEE Transactions on Knowledge and
Data Engineering, 1(1):63-83, March 1989.

[Georgefl, 1983] Michael Georgeff. Communication and in-
teraction in multi-agent planning. In Proceedings of the
National Conference on Artificial Intelligence, pages 125—
129, Washington, D.C., August 1983. (Also published
in Readings in Distributed Artificial Intelligence, Alan H.
Bond and Les Gasser, editors, pages 200-204, Morgan
Kaufmann, 1988.).

[Horvitz, 1987] Eric J. Horvitz. Reasoning about beliefs and
actions under computational resource constraints. In Pro-
ceedings of the 1987 Workshop on Uncertainty in Artificial
Intelligence, 1987.

[Laffey et al., 1988] Thomas J. Laffey, Preston A. Cox,
James L. Schmidt, Simon M. Kao, and Jackson Y.
Read. Real-time knowledge-based systems. Al Magazine,
9(1):27-45, Spring 1988.

[Laird et al., 1987] John E. Laird, Allen Newell, and Paul S.

Rosenbloom. SOAR: An architecture for general intelli-
gence. Artificial Intelligence, pages 1-64, 1987.

[Lesser et al., 1988] Victor R. Lesser, Jasmina Pavlin, and
Edmund H. Durfee. Approximate processing in real-time
problem solving. Al Magazine, 9(1):49-61, Spring 1988.

[Sacerdoti, 1975] Earl D. Sacerdoti. The nonlinear nature
of plans. In Proceedings of the Fourth International Joint
Conference on Artificial Intelligence, pages 206-214, Cam-
bridge, Massachusetts, August 1975.

[Shin and Epstein, 1987] Kang G. Shin and Mark E. Ep-
stein. Intertask communications in an integrated multi-
robot system. IEEE Journal of Robotics and Automation,
RA3(2):90-100, April 1987.

[Smith and Broadwell, 1987] David Smith and
Martin Broadwell. Plan coordination in support of expert
systems. In Proceedings of the DARPA Knowledge-based
Planning Workshop, Austin, Texas, December 1987.

[Stankovic and Ramamritham, 1987] J. Stankovic and
K. Ramamritham. Tutorial on Hard Real-Time Systems.
IEEE Computer Society Press, 1987.

[Stefik, 1981] Mark Stefik. Planning with constraints
(MOLGEN: Part 1). Artificial Intelligence, 16:111-140,
1981.

[Waldinger, 1977] Richard Waldinger. Achieving several
goals simultaneously. In Machine Intelligence 8, pages
94-136, 1977.

Incremental, Approrimate Planning:
Abductive Default Reasoning

Charles Elkan
Department of Computer Science
University of Toronto*

ABSTRACT: This paper presents an abductive strat-
egy for discovering and revising plausible plans. Can-
didate plans are found quickly by allowing them to de-
pend on unproved assumptions. The formalism used for
specifying planning problems makes explicit which an-
tecedents of rules have the status of default conditions,
and they are the only ones that may be left unproved, so
only plausible plans are produced. Candidate plans are
refined incrementally by trying to justify the assump-
tions on which they depend. The new planning strat-
egy has been implemented, and the first experimental
results are encouraging.

1 Introduction

Because of uncertainty and because of the need to re-
spond rapidly to events, the traditional view of planning
(deriving from STRIPS [Fikes et al., 1972] and culminat-
ing in TWEAK [Chapman, 1987]) must be revised dras-
tically. That much is conventional wisdom nowadays.
One point of view is that planning should be replaced
by some form of improvisation [Brooks, 1987]. However
improvising agents are doomed to choose actions whose
optimality is only local. In many domains, goals can
only be achieved by forecasting the consequences of ac-
tions, and choosing ones whose role in achieving a goal
is indirect. Thus traditional planners must be improved,
not discarded.

This paper addresses the issue of how to design a plan-
ner that is incremental and approximate. An approxi-
mate planner is one that can find a plausible candidate
plan quickly. An incremental planner is one that can
revise its preliminary plan if necessary, when allowed
more time.

*For correspondence: Department of Computer Science, Uni-
versity of Toronto, Toronto M5S 1A4, Canada, (416) 978-7797,
cpe@ai.toronto.edu.

It is not clear how existing planning strategies can be
made approximate and incremental. We therefore first
outline a strategy for finding guaranteed plans using a
new formalism for describing planning problerns, and
then show how to extend this guaranteed strategy to
make it approximate and incremental.

Our approach draws inspiration from work on abduc-
tive reasoning. A plan is an explanation of how a goal
is achievable: a sequence of actions along with a proof
that the sequence achieves the goal. An explanation is
abductive (as opposed to purely deductive) if it depends
on assumptions that are not known to be justified. We
find approximate plans by allowing their proofs of cor-
rectness to depend on unproved assumptions. Our plan-
ner is incremental because, given more time, it refines
and if necessary changes a candidate plan by trying to
Jjustify the assumptions on which the plan depends.

The critical issue in abductive reasoning is to find
plausible explanations. Our planning calculus uses
a nonmonotonic logic that makes explicit which an-
tecedents of rules have the epistemological status of
default conditions. The distinguishing property of a
default condition is that it may plausibly be assumed.
These antecedents are those that are allowed to be left
unjustified in an approximate plan. Concretely, every
default condition in the planning calculus expresses ei-
ther a claim that an achieved property of the world
persists in time, or that an unwanted property is not
achieved. Thus the approximate planning strategy only
proposes reasonable candidate plans.

Sections 2 and 3 below present the formalism for spec-
ifying planning problems and the strategy for finding
guaranteed plans. In Section 4 the strategy is extended
to become approximate and incremental. Section 5 con-
tains experimental results, and finally Section 6 dis-
cusses related and future work.

2 The planning formalism

Different formal frameworks for stating planning prob-
lems vary widely in the complexity of the problems they
can express. Using modal logics or reification, one can
reason about multiple agents, about the temporal prop-
erties of actions, and about what agents know [Moore,
1985; Konolige, 1986; Cohen and Levesque, to appear in
1990). On the other hand, the simplest planning prob-
lems can be solved by augmented finite state machines
[Brooks et al., 1988}, whose behaviour can be specified
in a propositional logic. The planning problems consid-
ered here are intermediate in complexity. They cannot
be solved by an agent reacting immediately to its envi-
ronment, because they require maintaining an internal
theory of the world, in order to project the indirect con-
sequences of actions. On the other hand, they involve
a single agent, and they do not require reasoning about
knowledge or time.

Our nonmonotonic first-order logic for specifying
this type of planning problem is called the PERFLOG
calculus.? The formal aspects of the calculus will be
discussed elsewhere; for the purposes of this paper PER-
FLOG axioms can be understood intuitively as logic pro-
gram rules, and we shall just use the Yale shooting prob-
lem [Hanks and McDermott, 1986] to introduce the cal-
culus by example.

Two “laws of nature” are central. In the following
rules, think of S as denoting a state of the world, of A as
denoting an action, and of do(S, 4) as denoting the state
resulting from performing the action A in the initial
state S. Finally, think of P as denoting a contingent
property that holds in certain states of the world: a
fluent.

causes(A, S, P) — holds(P,do(S, 4)) (1)
holds(P,S) A — cancels(A, S, P)
— holds(P,do(S, A)). (2)

Rule (1) captures the commonsense notion of causation,
and rule (2) expresses the commonsense “law of inertia”:
a fluent P holds after an action A if it holds before the
action, and the action does not cancel the fluent. Note
that since in addition to A, one argument of causes
and of cancels is S, the results of an action (that is, the
fluents it causes and cancels) may depend on the state
in which the action is performed, and not just on which
action it is.

!PERFLOG is an abbreviation for “performance-oriented perfect
model logic”: the formal meaning of a set of PERFLOG axioms is
its perfect model as defined in [Przymusinski, 1987].

Given rules (1) and (2), a particular planning domain
is specified by writing axioms that mention the actions
and fluents of the domain, and say which actions cause
or cancel which fluents. In the world of the Yale shoot-
ing problem, there are three fluents, loaded, alive, and
dead, and three actions, load, wait, and shoot. The re-
lationships of these fluents and actions are specified by
the following axioms:

causes(S, load, loaded) (3)

holds(loaded, S) — causes(shoot, S,dead) (4)
holds(loaded, S) — cancels(shoot, S, alive) (5)
holds(loaded, S) — cancels(shoot, S,loaded). (6)

The initial state of the world sg is specified by saying
which fluents are true in it:

holds(alive, so). (7

According to the nonmonotonic semantics of PERFLOG
collections of rules,

holds(dead, do(do(do(sg, load), wait), shoot))

is entailed by rules (1)-(7). The Yale shooting problem
is thus solved.

3 Finding guaranteed plans

The previous section showed how to state the relation-
ships between the actions and fluents of a planning do-
main as a PERFLOG set of axioms. This section describes
a strategy for inventing plans using such a set of axioms;
the next section extends the strategy to be approximate
and incremental.

A PERFLOG set of axioms is a set of general logic
program clauses, and the strategy presented here is in
fact a general procedure for answering queries against a
logic program.

Iterative deepening. The standard PROLOG query-
answering strategy is depth-first exploration of the
space of potential proofs of the query posed by the user.
Depth-first search can be implemented many times more
efficiently than other exploration patterns, but it is li-
able to get lost on infinite paths. Infinite paths can be
cut off by imposing a depth bound. The idea of itera-
tive deepening is to repeatedly explore the search space
depth-first, each time with an increased depth bound
[Stickel and Tyson, 1985].

Iterative deepening algorithms differ in how the depth
of a node is defined. One depth measure that pecforms
well, called conspiracy depth, is presented in [Elkan,

1989). Informally, this measure says that a subgoal is
unpromising if its truth is only useful in the event that
many other subgoals are also true.

Negation-as-failure. Given a negated goal, the
negation-as-failure idea is to attempt to prove the un-
negated version of the goal. If this attempt succeeds, the
negated goal is taken as false; otherwise, the negated
goal is taken as true. Negation-as-failure is combined
with iterative deepening by limiting the search for a
proof of each un-negated notional subgoal. If this search
terminates without finding a proof, then the original
negated subgoal is taken as true. If a proof of the
notional subgoal is found, then the negated subgoal is
taken as false. If exploration of the possible proofs of the
notional subgoal is cut off by the current depth bound,
it remains unknown whether or not the notional subgoal
is provable, so for soundness the actual negated subgoal
raust be taken as false.

Negation-as-failure is only correct on ground negated
subgoals, so when a negated subgoal is encountered, it
is postponed until finding answers for other subgoals
makes it become ground. This process is called freez-
ing [Naish, 1986]. If postponement is not sufficient to
ground a negated subgoal, then an auxiliary subgoal is
introduced to generate potential answers. This process
is called constructive negation [Foo et al., 1988].

The performance of the planning strategy just de-
scribed could be improved significantly, notably by
caching subgoals once they are proved or disproved
[Elkan, 1989]. Nevertheless it is already quite usable.

4 Finding plausible plans

This section describes modifications to the strategy of
the previous section that make it approximate and in-
cremental. In the same way that the guaranteed plan-
ning strategy is in fact a general query-answering proce-
dure, the incremental planning strategy is really a gen-
eral procedure for forming and revising plausible expla-
nations using a default theory.

Any planning strategy that produces plans relying on
unproved assumptions is ipso facto unsound, but by its
incremental nature the strategy below tends to sound-
ness: with more time, candidate plans are either proved
to be valid, or changed.

Approzimation. The idea behind finding approximate
plans is simple: an explanation is approximate if it de-
pends on unproved assumptions. Strategies for forming
approximate explanations can be distinguished accord-
ing to the class of approximate explanations that each

may generate. One way to define a class of approximate
explanations is to fix a certain class of subgoals as the
only ones that may be taken as assumptions. Looking
at the PERFLOG formalism, there i1s an obvious choice
of what subgoals to allow to be assumptions. Negated
subgoals have the epistemological status of default, con-
ditions: the nonmonotonic semantics makes them true
unless they are forced to be false. It is reasonable to
assume that a default condition is true unless it it is
provably false.

There is a second, procedural, reason to allow negated
subgoals to be assumed, but not positive subgoals.
Without constructive negation, negated subgoals can
only be answered true or false. Negation-as-failure never
provides an answer substitution for a negated subgoal.
Therefore unproved negated subgoals in an explanation
never leave “holes” in the answer substitution induced
by the explanation. Concretely, a plan whose correct-
ness proof depends on unproved default conditions will
never change because those defaults are proved to hold.

Incrementality. An approximate explanation can be
refined by trying to prove the assumptions it depends
on. If an assumption is proved, the explanation thereby
becomes “less approximate”. As just mentioned, prov-
ing an assumption never causes a plan to change. On
the other hand, if an assumption is disproved, the ap-
proximate plan is thereby revealed to be invalid, and it
1s necessary to search for a different plan.

Here are the details of the modifications made to
the planning strategy of the previous section. When
a negated subgoal becomes ground, the proof of its no-
tional positive counterpart is attempted. If this attempt
succeeds or fails within the current depth bound, the
negated subgoal is taken as false or true, respectively,
as before. However, if the depth bound is reached dur-
ing the attempted proof, then the negated subgoal is
given the status of an assumption.

Initially any negated subgoal is allowed to be as-
sumed. Each iteration of iterative deepening takes place
with an increased depth bound. For each particular
(solvable) planning problem, there is a certain minimum
depth bound at which one or more approximate plans
can first be found. Each of these first approximate plans
depends on a certain set of assumptions. In later iter-
ations, only subsets of these sets are allowed to be as-
sumed. This restriction has the effect of concentrating
attention on either refining the already discovered ap-
proximate plans, or finding new approximate plans that
depend on fewer assumptions.

5 Experimental results

Implementing the planning strategies described above is
straightforward, because the PERFLOG calculus is based
on definite clauses. In general, it is insufficiently real-
ized how efficiently logics based on definite clauses, both
monotonic and nonmonotonic, can be implemented.
The state of the art in PROLOG implementation is about
nine RISC cycles per logical inference [Mills, 1989]. Any
PERFLOG theory could be compiled into a specialized
incremental planner running at a comparable speed.

The experiment reported here uses a classical plan-
ning domain: a lion and a Christian in a stadium. The
goal is for the lion to eat the Christian. Initially the
lion is in its cage with its trainer, and the Christian is
in the arena. The lion can jump from the cage into the
arena only if it has eaten the trainer. The lion eats a
person by pouncing, but it cannot pounce while it is al-
ready eating. The following PERFLOG theory describes
this domain formally.

»
% rules for how the world evolves

holds(P,do(S,A)) :-
causes(4,S,P).
holds(P,do(S,A)) :-
holds(P,S), not(cancels(4,S,P)).

A
% the effects of actions

causes (pounce(lion,X),S,eats(lion,X)) :-
can(S,pounce(lion,X)).
can(pounce(X,Y),S) :-
holds(in(X,L),S), holds(in(Y,L),S),
not(call(X = Y)),
not(Z,holds(eats (X,Z),S)).
causes (jump(X),S,in(X,arena)) :-
can(jump(X),8), holds(in(X,cage),S).
can(jump(lion),S) :-
holds(eats(lion,trainer),S).
cancels(drop(X,Y),S,eats(X,Y)) :~
can(drop(X,Y),8S).
can(drop(X,Y),S) :-
holds(eats(X,Y),S).
holds (in(X,H),S) :-
holds(eats(lion,X),S), holds(in(lion,H),S).

%
% the initial state of the world

holds (in{christian,arena),s0).
holds(in{1lion,cage),s0).
holds(in(trainer,cage),s0).

Using the guaranteed planning strategy of Section 3, the
query holds(eats(lion,christian),P)? is first solved
with conspiracy depth bound 19, in 4.75 seconds.? The
plan found is

P = do(do(do(do(s0,pounce(lion,trainer)),
jump(lion)),
drop(lion,trainer)),
pounce(lion,christian)).

Using the approximate planning strategy of Section 4,
the same query is solvable in 0.17 seconds, with conspir-
acy depth bound 17. The candidate plan found is

P = do(do(do(s0,pounce(lion,trainer)),
jump(liom)),
pounce(lion,christian)).

This plan depends on the assumption that no 7 exists
such that

holds(eats(lion,Z),do(do(s0,pounce(lion,trainer)),
jump(lion))).

Although the assumption is false and the plan is not cor-
rect, it is plausible. Note also that the first two actions
it prescribes are the same as those of the correct plan:
the approximate plan is an excellent guide to immediate
action.

6 Discussion

The work reported here ties together ideas from a num-
ber of different research areas.

Approrimate planning. From a knowledge-level point
of view, the strategy for finding plausible plans is search-
ing in an abstraction space where the available actions
are the same as in the base space, but they are stripped
of their difficult-to-check preconditions. Compared to
other abstraction spaces [Knoblock, 1989], this space
has the advantage that the execution of a plan invented
using it can be initiated without further elaboration, if
immediate action is necessary.

Incremental planning. An incremental approximate
planner is an “anytime algorithm” for planning in the
sense of [Dean and Boddy, 1988]. Anytime planning al-
gorithms have been proposed before, but not for prob-
lems of the traditional type treated in this paper. For
example, the real-time route planner of [Korf, 1987] is
a heuristic graph search algorithm, and the route im-
provement algorithm of [Boddy and Dean, 1989] relies
on an initial plan that is guaranteed to be correct.

2 All times are for an implementation in CProlog, ruaning on
a Silicon Graphics machine rated at 20 MIPs.

Abductive reasoning. Abduction mechanisms have
been investigated a great deal for the task of plan recog-
nition, not so much for the task of inventing plans, and
not at all for the task of inventing plausible plans. These
three different tasks lead to different choices of what
facts may be assumed. In the work of [Shanahan, 1989)
for example, properties of the initial state of the world
may be assumed. In our work, the facts that may be
assumed say either that an established property of the
world persists, or that an unestablished property does
not hold.

Directions for future work. One important problem
is to quantify how an approximate plan is improved by
allowing more time for its refinement. Another problem
is to find a planning strategy that is focused as well as
approximate and incremental. A focused strategy would
be one that concentrated preferentially on finding the
first step in a plan—what to do nezt.

References

[Boddy and Dean, 1989] Mark Boddy and Thomas Dean.
Solving time-dependent planning problems. In Proceed-
ings of the Eleventh International Joint Conference on
Artificial Intelligence, pages 979-984, August 1989.

[Brooks et al., 1988] Rodney A. Brooks, Jonathan H. Con-
nell, and Peter Ning. Herbert: A second generation mobile
robot. MIT Al Memo 1016, January 1988.

[Brooks, 1987] Rodney A. Brooks. Planning is just a way of
avoiding figuring out what to do next. Technical Report
303, Artificial Intelligence Laboratory, MIT, September
1987.

{Chapman, 1987] David Chapman. Planning for conjunctive
goals. Artificial Intelligence, 32:333-377, 1987.

[Cohen and Levesque, to appear in 1990] Philip R. Cohen
and Hector J. Levesque. Intention is choice with com-
mitment. Artificial Intelligence, to appear in 1990.

[Dean and Boddy, 1988] Thomas Dean and Mark Boddy.
An analysis of time-dependent planning. In Proceedings of
the National Conference on Artificial Intelligence, pages
49-54, August 1988.

[Elkan, 1989] Charles Elkan. Conspiracy numbers and
caching for searching and/or trees and theorem-proving.
In Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, pages 341-346, August
1989.

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. Learning and executing generalized robot
plans. Artificial Intelligence, 3:251-288, 1972,

[Foo et al., 1988] Norman Y. Foo, Anand S. Rao, Andrew
Taylor, and Adrian Walker. Deduced relevant types and

constructive negation. In Kenneth Bowen and Robert
Kowalski, editors, Fifth International Conference and
Symposium on Logic Programming, volume 1, pages 126~
139, Seattle, Washington, August 1988. MIT Press.

{Hanks and McDermott, 1986] Steve Hanks and Drew Mc-
Dermott. Default reasoning, nonmonotonic logics, and the
frame problem. In Proceedings of the National Conference
on Artificial Intelligence, pages 328-333, August 1986.

[Knoblock, 1989] Craig A. Knoblock. Learning hierarchies
of abstraction spaces. In Proceedings of the Sizth Inter-
national Workshop on Machine Learning, pages 241-245.
Morgan Kaufmann Publishers, Inc., 1989.

[Konolige, 1986] Kurt Konolige. A Deduction Model of Be-
lief. Pitman, 1986.

[Korf, 1987] Richard E. Korf. Real-time path planning. In
Proceedings of the DARPA Knowledge-Based Planning
Workshop, 1987.

[Mills, 1989] Jonathan W. Mills. A pipelined architecture
for logic programming with a complex but single-cycle
instruction set. In Proceedings of the IEEE First Interna-
tional Tools for AI Workshop, September 1989.

[Moore, 1985} Robert C. Moore. A4 Formal Theory of
Knowledge and Action. Ablex, 1985.

[Naish, 1986] Lee Naish. Negation and Control in PRO-
LOG. Number 238 in Lecture Notes in Computer Science.
Springer Verlag, 1986.

[Przymusiniski, 1987] Teodor C. Przymusiiski. On the
declarative semantics of stratified deductive databases
and logic programs. In Jack Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages
193-216, Los Altos, California, 1987. Morgan Kaufmann
Publishers, Inc.

[Shanahan, 1989] Murray Shanahan. Prediction is deduc-
tion but explanation is abduction. In Proceedings of the
Eleventh International Joint Conference on Artificial In-
telligence, pages 1055-1060, 1989.

[Stickel and Tyson, 1985] Mark E. Stickel and W. M.
Tyson. An analysis of consecutively bounded depth-first
search with applications in automated deduction. In Pro-
ceedings of the Ninth International Joint Conference on
Artificial Intelligence, pages 1073-1075, August 1985.

Integrating Planning and Acting in a Case-Based
Framework.

Kristian J. Hammond

The University of Chicago
Department of Computer Science
Artificial Intelligence Laboratory
1100 East 58th Street

Chicago, IL 60637

Planning as understanding

Research in planning has recently made a dramatic
change in course. Planning researchers have begun to
acknowledge that the world is too complex and uncer-
tain to allow a planner to exhaustively plan for a set of
goals prior to execution (Chapman, 1985). More and
more, the study of planning is being cast as the broader
study of planning, action and understanding (Agre and
Chapman, 1987, and Alterman, 1986). The particular
cast of this relationship that we have been studyingis a
view of planning as embedded within an understanding
system connected to the environment. The power of this
approach lies in the fact that it allows us to view the
planner’s environment, plan selections, decisions, con-
flicts and actions through the single eye of situation as-
sessment and response. Because of our further commit-
ment to the use of episodic memory as the vehicle for
understanding, it also provides us with a powerful lever
on the problem of learning from both planning and ex-
ecution. In this paper, we draw an outline of our model
of this relationship between planning and action, which
we refer to as agency.

Memory and Agency

Our model of planning and understanding rises out of
three basic pieces of work: Schank’s structural model
of memory organization (Schank, 1982}, our own work
in case-based planning and dependency directed re-
pair (Hammond, 1989), and the work of Martin and
Riesbeck in Direct Memory Access Parsing (Martin
1989). Our model has been articulated in two pro-
grams, TRUCKER and RUNNER, (Hammond, Marks
and Converse, 1988 and Hammond, 1989).

The model was first developed to deal with the prob-
lem of recognizing execution-time opportunity in the
context of a resource-bound agent that is forced to sus-
pend planning in order to attend to execution (Ham-
mond, 1989). The goal of this model was to capture the
ability of an agent to suspend goals, yet still recognize
execution-time opportunities to satisfy them.

Tim Converse

The University of Chicago
Department of Computer Science
Artificial Intelligence Laboratory
1100 East 58th Street

Chicago, IL 60637

To accomplish this goal, we use a single set of memory
structures both to store suspended goals and to under-
stand the agent’s circumstances in the world. In re-
sponse to a blocked goal, an agent’s first step is to do
a planning-time analysis of the conditions that would
favor the satisfaction of the goal and then suspend the
goal in memory, indexed by a description of those condi-
tions. For example, a goal to buy eggs that was blocked
during planning would be placed in memory associated
with the condition of the agent being at a grocery store.

During execution, the agent performs an ongoing
“parse” of the world in order to recognize conditions
for action execution. Following DMAP (Martin, 1989),
this parse takes the form of passing markers through an
already existing episodic memory. Because suspended
goals are indexed in the same memory as is used for
understanding, they are activated when the conditions
that favor their execution are recognized. Once active,
the goals are then reevaluated in terms of the new con-
ditions. Either they fit into the current flow of execution
or they are again suspended.

Because the agent’s recognition of opportunities de-
pends on the nature of its episodic memory structures,
we called the initial model opporiunisiic memory. As we
have turned to the broader issues of integrating planuing
and action we refer to our work as the study of agency.

Initial Results

Our initial implementation of this model, TRUCKER,
exhibited exactly the behavior we wanted. A combined
scheduling planner and executive, TRUCKER was able
to suspend blocked goals and then recognize later op-
portunities to satisfy them. It also learned plans for
goal combinations that it determined would occur again.
The recognition of opportunity and the resulting learn-
ing of specific optimizations rose naturally out of the
agent’s ongoing understanding of its environment.

Our model of planning is case-based and, as such,
both TRUCKER and now RUNNER plan by recalling
existing plans that are indexed by a set of currently

active goals. Our initial model of this indexing (Ham-
mond, 1986) was based on the notion that a planner
could amortize its planning efforts by caching plans in
memmory under descriptions of the goals that they satis-
fied and the problems (in the sense of interactions be-
tween steps of a plan) that they avoided. In TRUCKER,
we worked on the idea that this caching and later re-
trieval could itself be cast as a problem of characterizing
the situations in the world under which a plan could be
run and then treat retrieval as a process of recognition,
similar to that used in the understanding of the world.
The result of this was that plans were cached in the same
memory organization used to suspend blocked goals and
to understand the changing states of the world.

On examining the work on TRUCKER and RUNNER
we realized that while we had been trying to solve the
specific problem of recognizing execution-time opportu-
nity we had actually built a more general mechanism to
control planning and action. That is, in order to pro-
duce our planners and the desired execution-time op-
portunism, we had to built a general model of planning
and action that was based on embedding the knowledge
of plans and goals, as well as the control of action itself,
in a memory-based understanding system.

A model of Agency

Our process model is based on Martin’s DMAP under-
stander as well as its antecedent, Schank’s Dynamic
Memory. DMAP uses a memory organization defined
by part/whole and abstraction relationships. Activa-
tions from environmentally supplied features are passed
up through abstraction links and predictions are passed
down through the parts of partially active concepts.
When activations meet existing predictions, the node on
which they meet is itself active. When all of the parts
of a concept are activated, it is also activated. Sub-
Ject to some constraints, when a concept has only some
of its parts active, it sends predictions down its other
parts. Unlike the initial versions of DMAP, RUNNER
is not confined to concepts that are built out of linear
sequences of {eatures.

To accommodate action, we have added the notion
of PERMISSIONS. PERMISSIONS are handed down the
parts of plans to their actions. The only actions that
can be executed are those that are PERMITTED by the
activation of existing plans. Following McDermott (Mc-
Dermott, 1978), we have also added the notion of PoLI-
CIES. POLICIES are statements of the ongoing goals of
the agent. The only goals that are pursued are those
generated out of the interaction between POLICIES and
environmental features.

Most of the processing takes the form of recogniz-
ing circumstances in the external world as well as the
policies, goals and plans of the agent. The recognition
is then translated into action through the mediation of
PERMISSIONS that are passed to physical as well as men-
tal actions.

Roughly speaking, the activation of goals, plans and
actions are as follows:

e Goals are generated through the interaction between
existing policies and environmental features.

For example, in RUNNER, the specific goal to HAVE
COFFEE is generated when the systen recognizes that
it is morning. The goal itself rises out of the recog-
nition of this state of affairs in combination with the
fact that there is a policy in place to have coffee at
certain times of the day.

e Most plans are generated out of existing ones. These

are activated through the presence of new goals and
environmental features. No new structure 1s created.
Existing structures are simply activated.
Any new MAKE-COFFEE plan is simply the activation
of the sequence of actions associated with the exist-
ing MAKE-COFFEE plan in memory. It is recalled by
RUNNER when the HAVE-COFFEE goal is active and
the system recognizes that it 1s at home.

e Actions are permitted by plans and are associated

with the descriptions of the world states appropri-
ate to their performance. Once a set of features has
an action associated with it, that set of features (in
conjunct rather than as individual elements) is now
predicted and can be recognized.
The action of filling the coffee pot is permitted when
the MAKE-COFFEE plan is active and is associated
with the features of the pot being empty and the agent
being near the pot. This means not only that the fea-
tures are now predicted but also that their recognition
will trigger the action.

e Actions are specialized by features in the environment
and by internal states of the system. As with Firby’s
RAPs (Firby, 1989), particular states of the world
determine particular methods for each general action.
For example, the specifics of a GRASP would be de-
termined by information taken from the world about
the size, shape and location of the object being
grasped.

e Action level conflicts are recognized and mediated us-

ing the same mechanism that recognizes information
about the current state of the world.
When two actions are active (such as those associated
with filling the pot and filling the filter) this state
of affairs is recognized as an instance of two actions
being active, both requiring the full attention of the
agent. This in turn activates a mediation action that
selects one of the actions as the one to perform. Dur-
ing the initial phases of learning a plan, this can in
turn be translated into a specialized recognition rule
that will in fact always determine the ordering of the
specific actions.

e Finally, suspended goals are also associated with the
descriptions of the world states appropriate to their
enablement.

For example, a new goal HAVE-ORANGE-JUICE, if
blecked, can be placed in memory, associated with
the conjunct of features that will allow its satisfac-
tion, such as being at a store, having money and so
forth. Once put into memory, this conjunct of features
becomes one of the set that can now be recognized by
the agent.

Along with these basic concepts, we are also explor-
ing the issues involved with the recognition of situations
that suggest particular plan modifications and interleav-
ing as well as different failure types.

A framework for the study of agency

In no sense do we see this model as a solution to the
problems of planning and action. Instead, we see this as
a framework in which to discuss the issues and construct
content theories of the knowledge required of an agent in
a changing world. We suggest, however, that there are
certain aspects of this model that will greatly facilitate
work on these issues. These include:

1. A unified representation of goals, plans, actions and
conflict resolution strategies.

2. A natural framework for learning through specializa-
tion of general techniques.

3. A fully declarative representation that allows for
meta-reasoning about the planner’s own knowledge
base.

4. A simple marker-passing scheme for recognition that
is domain — and task -— neutral.

5. The flexible execution of plans in the face of a chang-
ing environment.

Further, we find that the basic metaphor of action as
permission and recognition, and planning as the con-
struction of descriptions that an agent must now try
to recognize as a precursor to action, fits our intuitions
about agency in general. Under this metaphor, we can
view research into agency as the exploration of the sit-
uations in the world that are valuable for an agent to
recognize and respond to. In particular, we have exam-
ined and continue to explore content theories of:

e The conflicts between actions that rise out of resource
and time restrictions as well as direct state conflicts
and the strategies for resolving them.

e The types of physical failures that block execution
and their repairs.

o The types of knowledge-state problems that block
planning and their repairs.

® The circumstances that actually give rise to goals in
the presence of existing policies.

e The possible ways in which existing plans can be
merged into single sequences and the circumstances
under which they can be applied.

e The types of reasoning errors that an agent can niake
and their repairs.

e The trade-offs that an agent has to make in dealing
with its own limits.

s And the different ways in which a goal can be blocked
and the resulting locations in memory where it should
be placed.

Our goal is a content theory of agency. The architec-
ture we suggest is simply the vessel for that content.

RUNNER

Most of our activity in studying this architecture has
been within the context of the RUNNER system. The
RUNNER project is aimed at modeling the full spectrum
of activity associated with an agent——goal generation,
plan activation and modification, action execution, and
resolution of plan and goal conflict—not just the more
traditional aspect of plan generation alone.

RUNNER’s world

The agent in RUNNER currently resides in a simulated
kitchen, and is concerned with the pursuit of such goals
as simulated breakfast and coffee. Such commonplace
goals and tasks interest us in part because they are
repetitive and have many mutual interactions, both neg-
ative and positive. We are interested in how plans for
recurring conjuncts of goals may be learned and refined,
as part of view of domain expertise as knowledge of
highly specific and well-tuned plans for the particular
goal conjuncts that tend to co-occur in the domain [9].
We are also interested in the issue of how these plans
can be used in the guidance of action.

Knowledge Representation in RUNNER

The knowledge and memory of the agent is captured
in the conjunction of three types of semantic nets, rep-
resenting knowledge of goals, plans and states. Nodes
in these networks are linked by abstraction and pack-
aging links, as in DMAP. In addition, there is a spe-
cial SUSPEND link, which connects suspended goals to
state descriptions that may indicate opportunities for
their satisfaction. In addition to being passed to ab-
stractions of activated concepts, activation markers arc
always passed along SUSPEND links.

Currently the state and goal portions of the mem-
ory only employ activation markers, and are activated if
they receive such a marker. The plan portion of memory
employs two marker types, activation and permission,
the latter of which plays a role analogous to prediction
markers in DMAP. Activation markers are passed up ab-
straction links and as a result of the completion of con-
cept sequences (below); permission markers are passed
downward from activated plans to their subplans and
actions. Plans and actions are not fully activated until
both activation markers and permission markers have
been received.

In general, the only other way in which these nets are
interconnected is via concept sequences. A node may
be activated if all of the nodes in one of its concept
sequences is activated — a concept sequence for a given
node can contain nodes from any of the parts of memory.

Concept sequences need some restrictions if they are
not to represent the ability to stipulate that any node
is activated by any other desired set of nodes. We want
such a restriction, but at the level of a content theory of
the important types of interactions of knowledge. Here
is a partial taxonomy of the types of concept sequences
we want to allow:

e Activation of a goal node can activate a node repre-
senting a default plan.

e Activation of a plan node and some set of state nodes
can activate a further specialization of the plan.

¢ Activation of a goal node and some set of state nodes
can activate a further specialization of the goal.

o Activation of any state node that has a SUSPEND
link will activate the associated goal.

An Example: Making Coffee

The above discussion of representation makes more
sense in the context of an example, currently imple-
mented in RUNNER, of how a particular action is sug-
gested due to conjunction of plan activation and envi-
ronmental input.

One of the objects in RUNNER’s simulated kitchen is a
coffee maker. Our agent starts off with a plan for making
coffee that makes use of coffee-maker. This plan involves
a number of subsidiary steps, some of which need not
be ordered with respect to each other. Among the steps
that are explicitly represented in the plan are: fetching
unground beans from the refrigerator, putting the beans
in the grinder, grinding the beans, moving a filter from
a box of filters to the coffee maker, filling the coffee
maker with water from the faucet, moving the ground
beans from the grinder to the coffee maker, and turning
the coffee maker on.

The subplans of the coffee plan are associated with
that plan via packaging links. In this implemented ex-
ample, the agent starts out with a node activated which
represents knowledge that it is morning. This in turn is
sufficient to activate the goal to have coffee (this is as
close as the program comes to a theory of addiction).
This goal in turn activates a generic plan to have cof-
fee. This turns out to be nothing but an abstraction of
several plans to acquire coffee, only one of which is the
plan relevant to our kitchen.

“Visual” input, in terms of atomic descriptions of rec-
ognizable objects and their proximities, is passed to
memory. For example, the agent “sees” the following
visual types:

a stove, countertop, a white wall,

a glass, a box of filters

Among sets of possible visually recognized objecis
are concept sequences sufficient for recognition that the
agent is in the kitchen. The recognition of the stove and
the countertop completes one of these sequences. The
“kitchen” node in turn passes activation markers to its
abstractions, activating the node corresponding to the
agent being at home.

MEMORY:
sending activation marker to [walll
Activating concept: [wall]
sending activation marker to [filter-box]
Activating concept: [filter-box]
sending activation marker to [countertop]
Activating concept: [countertop]
concept sequence ([#*% wall *x]
, [** countertop **])
for node [in-kitchen] completed.
sending activation marker to [in-kitchen]
Activating concept: [in-kitchen]
sending activation marker to [at-home]
Activating concept: [at-home]

The activation of this node in conjunction with the
activation of the generic coffee goal completes the con-
cept sequence necessary for the goal for making coffee
at home, which in turn activates the default plan for
that goal. In this way a specialized plan is chosen in
response to a conjunction of a recognized state and a
more generic goal.

Concept sequence ([#* GOAL: drink-coffee *x]
[** at-home *x])
for node [GOAL: drink-coffee-at-home] completed.
sending activation marker to
[GOAL: drink-coffee-at-home]
Activating concept: [GOAL: drink-coffee-at-homel
Asserting new goal:
[** GOAL: drink-coffee-at~home **]
sending activation marker to
[PLAN: make-coffee-at-home-plan]
Node [PLAN: make-coffee-at-home-plan]
has both permission & activation:
((MARKER [#* GOAL: drink-coffee-at-home **]))
(TOP-LEVEL-PLAN)
Activating
concept: [PLAN: make-coffee-at-home-plan]

Activation of the coflee-plan sends permission mark-
ers to its steps, including the step of moving the filter.
Now that the action has been both permitted and acti-
vated, 1t is suggested.

Asserting new plan --
[** PLAN: make-coffee-at-home-plan #x]
Sending permissions to steps of plan
Sending permission markers from
[*+ PLAN: make-coffee-at-home-plan #x]
to steps
Sending permission marker to [PLAN: end-of-plan]
Sending permission marker to [PLAN: move-5]

Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:
Sending permission marker to [PLAN:

close-1]
turn-on-2]
move-4]
turn-on-1]
move-3]
move-2]
£il11-1]
open-1}
move-1]

The activation of the other object concepts in turn
have sent activation markers to the actions that contain
them In their concept sequences. Among these is the
plan step for taking a filter from the box and installing
it in the coffee maker. This action is not suggested until
it has received a permission marker from its parent plan.

Concept sequence
([** PLAN: make-coffee-at-home-plan **]
[#* filter-box *x])
for node [PLAN: move-2] completed.
sending activation marker to [PLAN: move-2]
Node [PLAN: move-2]
has both permission & activation:
((MARKER
([** PLAN: make-coffee-at-home-plan **]
[** filter-box *x])))
((MARKER
([** PLAN: make-coffee-at-home-plan **])))
hctivating concept: [PLAN: move-2]
hsserting new plan -- [*x PLAN: move-2 **]

Though in its preliminary stages, the overall idea in
RUNNER is that the processing of the visual types, goals,
plans, and actions themselves is done within the confines
of a single architecture reflecting the multiple hierarchies
of an episodic memory.

Conclusion

We’ve presented a sketch of an architecture for memory
that we believe will be of use in exploring various issues
of opportunism and flexible plan use. We do not view
the architecture as a solution to the problems of inter-
est, but instead as a framework that may be useful in
exploring content theories of plan types, action sugges-
tion and arbitration. As we said before, our goal is a
content theory of agency. The architecture we suggest
is simply the vessel for that content.

References

[1] Phil Agre and David Chapman. Pengi: An imple-
mentation of a theory of activity. In Proceedings
of the Sizth Annual Conference on Artificial Intel-
ligence, pages 268-72. AAAT [2], 1987.

[2] American Association for Artificial Intelligence.
Proceedings of the Sizth Annual Conference on Ar-
tificial Intelligence, Seattle, Washington, July 1987.
Morgan Kaufmann.

[3] American Association for Artificial Intelligence.
Proceedings of the Seventh Annual Conference on

[7]

[10)

[13)

[14]

Artificial Intelligence, Saint Paul, Minnesota, Au-
gust 1988. Morgan Kaufmann.

David Chapman. Nonlinear planning: A rigorous
reconstruction. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence,
pages 1022-24. IJCAI [11], 1985.

R. J. Firby. Adaptive execution in complex dy-
namic worlds. Research Report 672, Yale Univer-
sity Computer Science Department, 1989.

Kristian Hammond. Case-Based Planning: View-
ing Planning as a Memory Task, volume 1 of Per-
spectives in Artificial Intelligence. Academic Press,
1989.

Kristian Hammond. Opportunistic memory. In
Proceedings of the FEleventh International Joint
Conference on Artificial Intelligence. IJJCAI [10],
1989.

Kristian Hammond. Explaining and repairing plans
that fail. Artifical Intelligence Journal, In Press.

Kristian Hammond, Tim Converse, and Mitchell
Marks. Learning from opportunities: Storing and
reusing execution-time optimizations. In Proceed-
ings of the Seventh Annual Conference on Artificial
Intelligence, pages 536-40. AAAT [3], 1988.

International Joint Conferences on Artificial Intel-
ligence, Inc. Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence,
Detroit, Michigan, August 1989. Morgan Kauf-
mann.

Aravind Joshi, editor. Proceedings of the Ninth In-
ternational Joint Conference on Artificial Intelli-
gence, Los Angeles, California, August 1985. In-
ternational Joint Conferences on Artificial Intelli-
gence, Inc., Morgan Kaufmann.

Charles E. Martin. Direct Memory Access Parsing.
PhD thesis, Yale University Department of Com-
puter Science, 1989.

D. McDermott.
Science, 2, 1978.
Roger C. Schank. Dynamic Memory: A Theory of

Reminding and Learning in Compulers and People.
Cambridge University Press, 1982.

Planning and acting. Cognitive

Controlling Inference in Planning Systems:
Who, What, When, Why, and How

Steve Hanks*
Department of Computer Science and Engineering
University of Washington, FR-35
Seattle, WA 98195
hanks@cs.washington.edu

Abstract

Various proposals have been advanced over the
past few years as to how decision analysis might
be profitably applied to the problem of plan-
ning. Both the problem of choosing an appro-
priate plan and the related problem of choos-
ing whether to plan or whether to act seem
amenable to decision-analytic techniques. In
this paper I explore several of these proposals
and show how they differ in the simplifying as-
sumptions they make either about the planning
domain or about the sort of solution that deci-
sion analysis can be expected to deliver.

I conclude that none of the domain-simplifying
assumptions proposed are appropriate for plan-
ning problems characterized by (1) a rich set
of planning operators and (2) significant sub-
goal interactions, and go on to suggest that the
proper place to apply decision analysis is not
to the selection of plans but to the comparison
of alternatives.

1 Introduction and disclaimers

This paper began as a panel presentation at the 1990
Spring Symposium on Planning in Uncertain Domains.
The panel’s title was “Controlling Inference.” The
panel’s membership, however,! indicated a more spe-
cific agenda: each of us has explored an aspect of us-
ing decision analysis as a technique for making planning
decisicns. The question, then, becomes how a decision-
analytic approach might help us to control inference in
planning—in particular how it might allow us to limit
“deliberative” or “lookahead” planning in some princi-
pled way.

My purpose is therefore to examine the use of decision-
analytic methods as applied to controlling planning in-
ference, and I will especially attend to approaches sug-
gested by the other panel members. I am thus concerned
with the following questions:

1. what inferences are we making as we plan,

*This research was supported in part by NSF grant CCR~
8619663.

!The panel consisted of Tom Dean, Eric Horvitz, Andrew
Mayer, Mike Weilman and L

2. what inferences are we controlling,
3. how are we doing so,

4. what compromises are we making in the interest of
tractability,

5. are those the ones we should be making?

Several disclaimers need be advanced here to protect
my credibility as well as friendships with various panel
members. The first i1s that the nature of my presenta-
tion, and hence of this paper, was to stimulate discus-
sion rather than to engage in deep analysis. The char-
acterization of work will necessarily be brief and thus
will oversimplify to some extent. Furthermore, I will be
talking about work that was published some time ago
(though mostly within the last couple of years), so the
conclusions I draw may not reflect the way the authors
are currently thinking about the problem. In fact several
panel members later noted that their current work was
addressing the sorts of concerns I raise below.

Finally, my view of the problem seems to be quite
different from that of the other panel members: my
background is in classical Al planning programs and
paradigms, and I look at decision analysis as a tech-
nique we might use to help solve those problems. Others
on the panel come to the problem through training in
decision analysis—they view planning as a problem to
which their t~chnique may be applied. I think the dif-
ference in backgrounds and approaches explains much of
the diversity in the positions 1 will be discussing below.

2 The planning problem

Since we are examining methods for controiling planning
inference, a good place to start is by reflecting for a
moment on the sorts of inferences we’re supposed to be
making (and thus controlling). In other words, we should
try to define what we mean by planning in the first place.
An obvious first cut might be

Given Z, my best course of future action is P,

where Z is some set of information or evidence and P is
a course of action or plan. Z might consist, for example,
of sensory observations, of some model of the external
world, of some current goals and plans to achieve those
goals, and probably some characterization of our internal

state of information about the state of our computation.
We will talk more about this information state later on.

Plan P is what we used to call a series of “primitive
actions,” but now we realize that there is probably no
such thing as truly primitive actions, or if there are, they
describe the agent at such a low level, and there are so
many, that we’d never be able to plan effectively using
them. Instead we will call P a set of “instructions” to
an execution system of some sort (I'm using the RAP
system of [Firby 1989] as a model). We don’t know ex-
actly what these “Instructions” will look like, but they
will tend to be fairly vague and highly dependent on
the execution-time context, and thus more difficult to
project.

Of course this definition is entirely too vague in that
it leaves open, in addition to the definition of 7 and
P, a definition of “best.” As such, most any sort of
decision problem can {and probably has been at some
point) been characterized as planning. The question is
how researchers in Al have characterized the problem.

Basically the two main assumptions have concerned
the set of operators or instructions:

1. the set of operators is fized,
2. the set of operators is rich.

The first just means that the planner has to work with
a prespecified set of instructions. Its task is to string
these instructions together, but not to synthesize new
instructions. The first characterizes planning whereas
the second characterizes design.

The second assumption is both more vague and more
important to our analysis. It implies that the robot has
a variety of skills at its disposal, and hence it will be
able to solve most tasks in a number of different ways.
This assumption is what sets a planning problem apart
from a scheduling or routing problem. The latter in-
volves knowing ahead of time exactly the operators to
be applied and deciding on an order whereas the for-
mer involves selecting operators appropriately as well as
determining their order.

Next we might wonder what makes planning difficult.
What problems have researchers in automated planning
focused on?

The second property of the planning problem suggests
a one such issue: of appropriate operators or sequences
thereof (sometimes called “strategies” or “methods”).
Although the blocks-world domains were simple enough
so that this problem was ignored, it has been recognized
as one that must eventually be confronted, and we see
progress on this front in more recent efforts, e.g. [Ham-
mond 1986].

The problem that has received most attention in the
planning literature is that of subgoal interaction. The
problem arises in planning to satisfy conjunctive goals:
if we are trying to achieve both P and Q it generally
will not work to find a solution to P, independently find
a solution to Q, and combine them in a naive manner
(by concatenating the two solutions for example). The
whole notion of nonlinear planning, now more or less a
standard in the community, grew out of this realization.

Thus the two issues most central to planning (as we
have come to view the problem) are those of method

selection and of subproblem combination. Those are the
inferences we have to make in order to choose a “best”
plan P for our state of information 7.

We must finally note how poorly understood is the
process of planning. [Chapman 1987] points out that
the problem is intractable in the worst case, even under
the horrifying assumptions that characterize the micro-
world planners. Implemented planning programs such
as SIPE [Wilkins 1988] and FORBIN [Dean et al. 1987)
are too slow for a real-time agent, even given their simple
models of the world. Attempts to speed up the planning
process, like case-based or transformational algorithms
([Hammond 1986] and [Simmons 1988] respectively) rely
on various ad hoc techniques, which will certainly turn
out to be useful tools for building systems, but do not
constitute a general solution to the problem (if indeed
there is one).

3 Controlling planning inference

Now that we have some characterization of the inferences
we’d like to make, we should move to the problem of
controlling those inferences. In other words, when is our
7T sufficient to ensure that our P is good enough? Various
techniques—gathering additional information about the
world, generating more alternatives, reasoning in more
detail about the effects of alternatives—might lead us
to discover a P’ that turns out to be preferable to the
current plan P, or might cause us to prefer an alternative
that earlier we passed over.

The general problem we face is whether to spend ad-
ditional time deliberating (performing more information
gathering or inference) on the hope that we can find a
better P’. We balance this hope against the cost associ-
ated with deliberation—that deliberation uses resources
that could be put to better use elsewhere. Time 1s gen-
erally the resource in question, and to the extent that
deliberation and action are mutually exclusive we must
consider the opportunity cost of deliberation: if we wait
too long to commit to plan P we may fail to realize its
benefit, and if we deliberate too long instead of acting (or
at least paying attention to our surroundings) we may be
inviting catastrophe. We can thus pose the plan versus
deliberate problem as a decision problem: spend a unit
of time in deliberation if the expected marginal benefit
of thinking exceeds the expected marginal cost of failing
to act. And in fact each member of the panel has pro-
posed applying this paradigm to the planning problem,
in some form or to some extent.

But given our discussion of planning above it should
be very clear that we cannot, in general, get a precise
characterization of this tradeoff. We have no general-
purpose planning algorithm at this point, so computing
its “time derivative” would be guesswork at best. Com-
puting the opportunity cost associated with failure to act
involves sophisticated reasoning about the hypothetical
unfolding of events and about the agent’s capabilities.
Finally we face a potential regress of decision problems:
making the deliberate/act decision itself takes time, and
a nontrivial amount of time at that, which must also be
taken into account.

Clearly any proposal involving the mediation of delib-

eraticn and action must make some serious compromises.
The question is, what compromises have researchers pro-
posed (either explicitly or implicitly) and are these ap-
propriate for our characterization of the Al planning
problem? I will discuss this question by examining the
propesals advanced by the panel members. Their ap-
proaches tend to divide into two groups. The first I will
characterize with the slogan “redefine the problem so a
solution becomes available,” and into that group I will
place Dean and Boddy [1989], Horvitz and his group
[Horvitz et al. 1989] and Mayer and his group [Hansson
et al. 1990]. The second group, “restrict the notion of a
solution until it can be applied to the problem,” includes
Wellman [1988] and myself [Hanks 1990].

4 Redefining the problem

Here will attempt a quick review of the research efforts
whose success may depend, to some extent, on somehow
limiting the scope of the planning problem.

4.1 Anmnytime algorithms

Perhaps the best-known work in the area of controlling
plan execution through decision-theoretic analysis is the
research into “anytime algorithms,” appearing in [Dean
and Boddy 1988] and [Boddy and Dean 1989]. Anytime
algorithms have three important properties:

1. they can be interrupted at any time and will pro-
duce some solution to the problem,

2. given more time they will tend to produce better
solufions,

3. whoever is using the anytime algorithm has some
explicit characterization of the tradeoff between the
algorithm’s performance (that is, quality of solu-
tion) and the amount of time the algorithm is given
to compute the solution.

The third item is, of course, exactly the information
we need in order to do the expected-utility analysis—
deciding whether to plan or whether to act. So we can
solve the inference-control problem if we can couch the
problem as an anytime algorithm and if we have a good
characterization of the opportunity cost associated with
delaying action.

The question then arises as to what sorts of problems
might be amenable to “anytime analysis.” Boddy and
Dean give several examples, mostly having the flavor of
more-or-less-traditional optimization problems like ve-
hicle routing, scheduling, and so forth. Now these
sorts of problems are certainly components of a plan-
ning problem—they unquestionably arise in the process
of planning. The question is whether they in and of
themselves cover the space of planning problems. T argue
that they do not, mainly because they fail to address the
problem of operator or method selection, which I noted
above was central to the problem of planning.

Boddy and Dean [1989] recognize this shortcoming, of
course, and propose an architecture that involves break-
ing down the planning problem into many “anytime”
problems, then introducing a control structure that op-
timally allocates time to each one and coordinates their

results. The problem with this approach is that it lets
the planning problem “in the back door,” as it were, as
the need to manage the interactions among solutions to
the subproblems. As I mentioned above, years of plan-
ning research has taught us that subproblem interaction
is a crucial part of the planning process. It’s hard to
imagine why this problem is not going to re-emerge as
we try to coordinate the outputs of anytime algorithms.

And if that’s the case—if in composing the outputs of
anytime algorithms we lose that crisp characterization
of the time-versus-performance tradeoff—it’s not clear
what is left of the theory, apart from the insight that
planning algorithms should be flexible enough to real-
1ze such a tradeoff. We’re left, in effect with the first
“anytime property,” but it remains to be demonstrated
whether the second and third can be revived, and thus
to what extent the “anytime architecture” represents a
solution to the deliberation/action tradeoff.

4.2 Decision-making in high-stakes domains

Moving now to the work of Horvitz and his group at
Stanford, presented for example in [Horvitz 1988] and
[Horvitz et al. 1989], 1 should note that it’s perhaps
unfair to accuse this effort of “redefining the problem,”
since I don’t think the Stanford group ever claimed to
be doing planning in the same style as Dean or Boddy
or I claim to be doing.

Horvitz’s group is working on a class of problems they
call “high stakes decision problems,” exemplars of which
are found in the domain of medical decision making.
These problems are quite different from those faced by,
say, an errand-running robot. First of all, the problems
tend to be more complex, as the system being studied
is usually the human body. Second, the problems tend
to be more static: the decision options are known ahead
of time, and it’s less crucial to have an explicit model
of time and change like those that have characterized
recent “temporal” planners. Finally, as the name, im-
plies, the stakes are higher. If our robot buys ice cream
first and upon returning home finds it’s melted (because
it had always executed this plan in winter before and
had neglected to take the ambient temperature into ac-
count), we're likely to say “live and learn.” Contrast
this with a medical treatment plan and neglecting inter-
actions among drugs.

So Horvitz has much more of an incentive to get
things right (or better) than we do. Computing the
tradeoff between marginal improvement of solution qual-
ity versus inference time then becomes much more of
an issue, simply because incremental improvements are
themselves much more important, We want our errand-
running robot to avoid disasters (running down people)
and demonstrably stupid behavior (making ten separate
trips to the same store), but if it takes a slightly subop-
timal route we really don’t care.

But Horvitz is working on a somewhat more struc-
tured problem as well. That problem (see, for example
[Horvitz et al. 1989]) is that of doing the expected-utility
analysis on an tnfluence diagrem that is provided as an
input. An influence diagram is a graph in which some
nodes represent propositions (states of the system), some

nodes represent decisions (things the agent can do to
change the state of the system), and whose arcs repre-
sent and quantify the influences among propositions and
between decisions and propositions.

Since the graph contains a node for each possible de-
cision, all the decision options (possible plans) are coded
into the problem statement itself. This option is simply
not feasible, in general, for those of us doing “traditional
Al planning.” We are at least as concerned with the
problem of structuring the problem (by which I again
mean selecting from a rich set of methods) as we are
with ultimately solving the problem. Now it may be the
case that after we do the structuring we will want to un-
dertake an analysis like Horvitz does, but personally I
doubt it, for reasons I will discuss below.

4.3 The Bayesian problem solver

The research proposal of [Hansson ef al. 1990] is hard to
evaluate: since the effort is in its early stages the authors
present no empirical results, thus they may not have had
to make compromises in the interest of efficiency.

The general idea is to view the planning problem as
a state-space search where nodes represent states of the
world and arcs represent the hypothetical execution of a
plan, where the plan may be expressed at various levels
of abstraction. The search frontier is expanded by com-
mitting to actions or otherwise refining the plan. And
the decision problem, of course, is that of action selec-
tion: which action should next be tried, or, equivalently,
how should the search frontier be expanded. To con-
trol search they associate with each arc a heuristic cost
function—actually a probability distribution over the
amount it will cost to move the system from the source
state (node) to the destination or goal state (node). The
planner can refine a plan or gather information, both of
which will tend to lower the distribution’s variance.

One question that arises is whether this notion of se-
lecting planning strategies according to the cost distri-
butions will be effective in mediating the selection of
actions. It will be effective to the extent that (1) the
distributions associated with alternative choices suggest
a clear choice (which will tend to be the case only if their
variances are low) and (2) the cost distributions can be
calculated quickly. It is not clear at this point why either
(1) the planning problem will not re-appear in the prob-
lem of computing cost distributions or (2) the cost dis-
tributions will be so crude that they will not effectively
limit the search. The “Bayesian Problem Solver” archi-
tecture has been tried on traditional search domains like
the eight-puzzle; the question is whether it will scale up
to the rich set of actions we (would like to) associate with
planning problems. Another question is whether the ar-
chitecture’s state-space orientation can be extended to
temporally rich domains (e.g. actions that take time,
deadlines) which tend to exacerbate the action-selection
problem.

5 Lowering expectations

Now let’s move to the “lowered expectations” camp,
members of which tend to look for ways to apply de-
cision analysis in a more modest fashion, for example by

applying numeric methods to some subproblem in con-
junction with other symbolic problem-solving methods.

5.1 SUDO-planner

A good example of this approach is Wellman’s [1988]
SUDO-planner. This program looks not to choose the
optimal plan, but instead to look for and eliminate
classes of dominaied plans. This approach can be viewed
as the probabilistic analogue of pruning infeasible plans.
Focusing on dominance relationships allows not only for
faster computation, but also for a restricted qualitative
language (qualitative probabilistic networks) that may
be more plausibly assessed.

5.2 Probabilistic projection

My work [Hanks 1990] applies decision theory not to
the process of generating alternative plans, but rather
to the more focused tasks of debugging a proposed plan,
comparing alternative plans, and discovering what in-
formation would have to be gathered in order to con-
vince the planner that a plan is reasonable or preferable
to another. In other words, a planner is responsible for
generating alternatives, but then probabilistic projection
allows it to compare, refine, or modify the alternatives
according to decision-theoretic criteria.

The general task I've undertaken is to maintain the
planner’s world model, which consists of a network of
temporally scoped, interconnected, probabilistic beliefs,
representing what the agent believes to be true at various
times, past present and future. A planner asks questions
about the world model, and answers are returned as be-
liefs, which are then used to select plans, to debug them,
and to compare alternatives.

The basic architecture, which is due to Jim Firby and
myself,®> consists of three main modules: the execution
system, the planner, and the projector or world-model
manager. See Figure 1.

The execution system is described in [Firby 1989]. It
executes instructions down to the sensor/eflector level,
and is “reactive” in the sense that it has an analogue
to the first “anytime” property: the planner can provide
it with instructions expressed at essentially any level of
abstraction, and the execution system will do something
with them. What it does, however, may be shortsighted
in that the execution system does no lookahead and only
a very limited form of action selection. More important,
however, is that the execution system is controlled by
the (symbolic) instruction library, which can be exam-
ined by the planner and projector. Thus the reactive
system’s performance can be modeled and biased by the
“deliberative” modules of the system. This is a major
difference between our architecture and other “reactive
planners,” whose behavior tends to be quite opaque.

The planner, which has not been implernented at this
writing, is responsible for generating some small number
of plan alternatives. It can use any combination of tradi-
tional planning techniques, for example retrieving cases
from memory, applying optimizing or repairing trans-
formations, or constructing plan fragments from more
primitive instructions.

2See [Firby 1989] as well.

To do so the planner will have to ask questions about
the expected effects of executing a plan. It does so by
posting queries to the world-model manager (projector),
which returns answers in the form of beliefs as described
above. The planner bases planning decisions (e.g. to
commit to one course of action over another) on these
beliefs.

The projector’s job is to compute the probability that
a proposition will be true at some (future) point in time.
Its computation is driven by the planner’s queries, which
are of the form “is the probability that proposition ¢
will be true at time t greater than threshold value 77”
These queries will typically involve questions about a
plan’s effectiveness in achieving the goal, or about how
efficiently it does so. The point is that the projector
does only the inference necessary to answer the query,
which is to say only the inference the planner needs in
order to make decisions like choosing a plan, selecting
a transformation, or committing to one alternative over
another.

Note that the query determines not only what aspects
of a plan’s execution are important, but also (through
the threshold) how important the answer is. More re-
strictive thresholds will tend to take more inferential
work to verify.

Prcjection can also point out what important facts the
planner doesn’t know, those that prevent it from knowing
which alternative is preferable. These results can indi-
cate to the planner the need for information-gathering
actions.

Projection and planning are thus interleaved and iter-
ative. The planner suggests several vague alternatives,
but the projector can only give vague answers to queries,
which will not lead the planner to favor one alternative
over another. The planner can then transform a plan
by refining it (then asking more questions) or it can im-
prove its state of information by scheduling appropriate
sensing actions which eventually show up in the world
model and are reflected in subsequent projections.

The projector is also responsible for maintaining the
integrity of the information it passes back to the planner:
if subsequent information (sensory observations or new
plans) invalidates a particular prediction the projector
will notice and notify the planner, allowing it to re-plan
if necessary.

So the way we control inference is extremely simple:
we require the planner to ask very focused questions,
and we do only the inference necessary to answer them.
Note that we do no “inferential performance versus infer-
ential time” tradeoff—neither the planner nor the pro-
Jector have the “anytime” property. On the other hand,
incremental queries to the projector tend to be extremely
fast, so 1t’s not clear that such an analysis would be fruit-
ful anyway.

6 Concluslons

So my conclusions are the following: it’s pointless to ap-
ply decision analysis to the general planning problem.
We have no good characterization of the performance of
actlon-selection strategies, nor do we have a good way of
computing the opportunity cost of failing to act. Even if

we understood these computations they could not pos-
sibly be effected quickly enough to do us any good.

So we have to decide which were going to give up,
planning or decision theory. Most have taken the option
of giving up planning, at least as I view the problem.
Personally I'm all for giving up full-blown decision anal-
ysis. I find that the methodology has nothing to offer re-
garding the problem of operator selection. What it does
offer, however, is a rigorous and focused way of compar-
tng alternative courses of action. And the way it does
so, by dictating acceptable probability/utility tradeoffs,
proves quite valuable in limiting the time spent in “plan-
ful deliberation.”

References

[Boddy and Dean 1989] Mark Boddy and Thomas
Dean. Solving time-dependent planning problems. In
Proceedings IJCAI AAAI August 1989.

[Chapman 1987] David Chapman. Planning for con-
Junctive goals. Artificial Intelligence, 32(3):333-378,
1987.

[Dean and Boddy 1988] Thomas Dean and Mark
Boddy. An analysis of time-dependent planning. In
Proceedings AAAI pages 49-54, 1988.

[Dean et al. 1987] Thomas Dean, R. James Firby, and
David Miller. The FORBIN paper. Technical Report
550, Yale University, Department of Computer Sci-
ence, July 1987,

[Firby 1989] R. James Firby. Adaptive execution in
complex dynamic worlds. Technical Report 672, Yale
University, Department of Computer Science, January
1989,

[Hammond 1986] Kristian Hammond. Case-based plan-
ning: An integrated theory of planning, learning, and
memory. Technical Report 488, Yale University, De-
partment of Computer Science, October 1986.

[Hanks 1990] Steven Hanks. Projecting plans for uncer-
tain worlds. Technical Report 756, Yale University,
Department of Computer Science, January 1990.

[Hansson et al. 1990] Othar Hansson, Andrew Mayer,
and Stuart Russell. Decision-theoretic planning in
BPS, 1990. This volume.

[Horvitz et al. 1989] Eric J. Horvitz, Gre-
gory F. Cooper, and David E. Heckerman. Reflection
and action under scarce resources: Theoretical princi-
ples and empirical study. In Proceedings IJCAI, pages
1121-1127, 1989.

[Horvitz 1988] Eric J. Horvitz. Reasoning under vary-
ing and uncertain resource constraints. In Proceedings

AAAIL pages 111-116, 1988.

[Simmons 1988] Reid G. Simmons. Combining associ-
ational and causal reasoning to solve interpretation
and planning problems. Technical Report 1048, MIT
Artificial Intelligence Laboratory, September 1988.

[Wellman 1988] Michael P. Wellman. Formulation of
tradeoffs in planning under uncertainty. Technical Re-

port MIT/LCS/TR-427, MIT Laboratory for Com-
puter Science, August 1988.

[Wilkins 1988] David E. Wilkins. Practical Plan-
ning: Extending the Classical AI Planning Paradigm.
Morgan-Kaufmann, 1988.

ransfarmation library)
Transfor n:l : Hypothetica: plans
' Causal
Goals Queries » World del
— Planner mode
2 _ model
Beliefs

Instruction Library

Sensor reports

Instructions

Execution
system

Vo

Effectors Sensors

Figure 1: An architecture for pianning, projection, and execution

Decision-Theoretic Planning in BPS*

Othar Hansson

Andrew Mayer

Stuart Russell

Computer Science Division
University of California
Berkeley, CA 94720

Abstract

The BPS (Bayesian Problem-Solver) project
aims to reconstruct and extend Al meth-
ods using normative decision-making princi-
ples. Earlier research showed that traditional
heuristic search methods could be subsumed
by such a normative approach, implemented
as probabilistic inference on a Bayesian net-
work corresponding to the problem-space.
'This paper sketches an extension of the BPS
approach to planning domains. By admit-
ting abstract states (corresponding to sets of
states in the problem-space) to the problem
description, we show that advanced control
techniques, such as goal-directed search, ab-
straction, and goal reduction, appear in BPS
without requiring explicit encoding. Rather,
they emerge naturally from groups of prim-
itive search control decisions. Problems of
“situatedness” such as expectation violations,
lack of information, and time pressure cause
severe difficulties for logical and search-based
planning frameworks, but seem to require lit-
tle additional structure in our approach.

1 Planning and Action
Selection

McCarthy’s original paper on formal reasoning for Al
systems [6] addressed the question of deciding what an
agent should do nezt. We will refer this as the action
selection problem. In his “implementation example”,
the problem was solved by proving that a certain se-
quence of actions would result in a desirable state, and
should therefore be executed. This method became the
paradigm for planning research. Within this context,
several technical problems have been studied. What
might be called “inference problems” centered around

*This research was made possible by support from
Heuristicrats, the National Aeronautics and Space Admin-
istration, and the National Science Foundation (NSF IRI
8903146)

the representation and use of domain knowledge to con-
struct plans that actually achieved the specified goal.
These problems will not be focused on here. Another
class, “control problems”, involved mechanisms for re-
ducing the complexity of planning search. Goal reduc-
tion, in which solutions to goal conjuncts are found
separately and then stitched together to form com-
plete solutions, has given rise to a large number of
techniques [2] and is the main feature distinguishing
the field of planning from that of heuristic search. An-
other such feature is the widespread use of goal-directed
generation of intermediate state descriptions. Abstrac-
tion [11] works by reducing problem-space size, at the
risk of generating partial solutions that cannot be com-
pleted.

Unfortunately, the collection of methods which has
evolved, while capturing valuable insights, is not the
product of a coherent theory. We will argue that a
Bayesian action selection system can preserve the ad-
vantages of these mechanisms without undue compli-
cation.

Planning, viewed as the identification of action se-
quences leading to goal states, is ouly one way to select
actions. There has been some debate over different ap-
proaches to the action selection problem [1]. Rather
than coming down on one side of the debate or an-
other, we will simply make some observations that are
accepted by all parties.

e Consideration of the consequences of actions (that
is, lookahead) is necessary in some domains.

e Logical planning techniques are not applicable
when only non-deterministic domain theories are
available.

¢ Even in deterministic domains, finding guaranteed
plans can be unreasonably expensive.

e It is often valuable to express preferences among
otherwise correct plans.

We believe it is possible to state and solve the action
selection problem in such a way that these concerns are
addressed.

In the next section, we review the application of the
BPS methodology to the action selection problem in

standard search domains. We then outline the exten-
sions needed to handle planning domains, and illustrate
the ideas with a simple travel planning example.

2 Bayesian Problem-Solving

BPS is a decision-theoretic action selection system:;
that 1is, it chooses actions according to the principle
of maximum expected utility {12]. The initial ver-
sion of BPS was applied to the domain of heuristic
search, with the intent of demonstrating that this class
of problems could be solved by a system which ex-
plictly follows the prescriptive axioms of Bayesian de-
cision theory. This avoids the ad hoc assumption made
in standard game-playing and problem-solving algo-
rithms that the heuristic evaluations of non-terminal
leaf nodes are exact. Instead, BPS treats heuristic
evaluations as probabilistic evidence regarding the true
values of states, thereby casting the search problem as
a standard problem of inference under uncertainty.

As BPS searches, it incrementally constructs a
Bayesian network in which each state in the partially
expanded state-space is represented by a variable node
corresponding to its true cost, together with an evi-
dence node corresponding to the heuristic evaluation
of that state. Because standard evidence propagation
methods {7] can be used to continually update this net-
work as new states are expanded and evaluated during
search, BPS can maintain a belief for each state it has
expanded (a probability distribution over the state’s
possible outcomes conditioned on all heuristic evidence
observed throughout the state-space). Within this rep-
resentation, it is straightforward to compute the ex-
pected utility of an available action.

In addition to heuristic information, BPS can use
local consistency constraints on neighboring variable
nodes and neighboring evidence nodes in order to
achieve a consistent global interpretation of the heuris-
tic evidence. This illustrates a further advantage of the
approach: additional knowledge can be incorporated in
the system to improve performance without changing
the basic inference mechanism.

Experiments on the eight-puzzle problem have
shown this normative decision procedure to outperform
the best known traditional search algorithm: despite
searching only a few hundred states, BPS made correct
decisions as often as the traditional algorithm, which
examined several million states [5].

An additional benefit of the explicit representation of
uncertainty is the possibility of using information-value
theory [8] to control state expansion {3; 9]. The theory
treats computations as actions, selecting among them
according to expected utility — essentially, relevance to
the quality of the final decision. In the face of time
pressure, the expected utility of computation (further
search) can be compared to the cost of delaying action,
in order to limit deliberation to exactly the amount
appropriate to the situation.

3 Applying BPS to
Abstraction Spaces

In the eight-puzzle experiments, the operation of BPS
was limited to a single deliberation phase followed
by selection of the best immediately available action.
Extending the BPS system to perform as a situated
planning agent requires only that we allow the sys-
tem to carry out actions and possibly update its ev-
idence nodes with new sensory information; that we
represent abstract states and possible future actions
in the Bayesian network; and that we encode the de-
pendencies among costs of “plans” at different levels
of abstraction. Having done this, the inference and
selective search components of BPS can be applied di-
rectly to the resulting network. The Bayesian network
makes clear the only purpose in engaging in any search
or planning activity: gathering information to refine
the expected utility estimates of competing available
actions, in order to better discriminate among them.

We use the word “plan” to denote not a particular
sequence of actions, but the information about possi-
ble future actions which is encoded in the Bayesian
network. The word “goal” simply describes an ab-
stract state whose utility is well specified. The con-
straints of the Bayesian network propagate informa-
tion from goals and abstract plans to the immediately
available actions. For simplicity, we will use the word
“distance” when, in fact, multi-attribute utility esti-
mates are being computed. In addition, a simpler
graphical description of the variables and dependencies
in a Bayesian network will suffice for the discussion.
The arcs in the diagrams below correspond to variable
nodes in Bayesian networks, and the dependencies of
the Bayesian network are implicit in the graph struc-
ture.

In what follows, we will first describe some of the
gross changes the network might undergo as delibera-
tion progresses. We will then discuss how the system
selects among its primitive graph operations to produce
these changes.

3.1 Base-Level States

To understand the representation of abstract plans, we
first consider the representation of base-level states and
operators. Figure 1 shows the initial plan network
given to BPS - from state Sy, BPS is to choose to
move to either state S; or state S5. The solid arrows in
the figure correspond to these concrete actions, which
have costs b and ¢ respectively. To maximize expected
utility, the action selection must be informed by some
estimate of the cost of moving from either S; or Sy to
the goal state. These as yet unspecified plans, denoted
by broken arrows, have costs d, e, with uncertainty as
illustrated. Initially, these are simply uninformed prior
estimates.

In contrast to their use in traditional search al-
gorithms, heuristic evaluations are not taken at face
value, but are viewed in the light of the triangle-
inequality constraints between the distances a,b,c,d, e

Figure 2: Acquisition of information by search

in the graph. These constraints, or probabilistic de-
pendencies, allow us to propagate evidence through
the graph. For example, further computation, such
as a heuristic evaluation, that yielded a more precise
estimate of the distance d would indirectly reduce un-
certainty in the distance e.

3.2 Forward and Backward Chaining

We can gather further information about d and e by
searching the base-space and evaluating other states.
For example, in Figure 2, we have forward-chained
from S;, adding an estimate h to the goal state, and
backward-chained from the goal state, adding an es-
timate g to S;. Either of these operations provides
constraining information to reduce our uncertainty in
d and e.

3.3 Abstraction

Heuristic evaluations provide perhaps the simplest ex-
ample of the value of abstraction in problem-solving [4].
An agent is repeatedly faced with the problem of es-
timating the cost of moving from one state (e.g., S1)
to another (e.g., G). If nothing is known about the
distance between this particular pair of states, it may
be useful to classify them provided something is known
about distances between random instances of the two
classes. The dependency between that estimate and
the base-level distance estimate can be expressed di-
rectly in the Bayesian network.

East Bay Peninsula

Office Conference

Figure 3: Acquisition of information by abstraction

Consider, for example, the travel-planning problem
faced by the authors, who must choose an initial ac-
tion from their office in Berkeley, in an attempt to
reach the location of this conference. We may know
nothing per se about the distance from our office to
the conference location, but we may know something
about distance between two arbitrary points in the
abstract classes “Berkeley” and “Stanford”, perhaps
learned through experience (Figure 3). Alternately, we
may know only the distances from each campus to San
Francisco, requiring further elaboration of the abstract
plan to reduce uncertainty in the base-space. Or we
may know only the distances between the even more
general classes “East Bay” and “Peninsula”, requiring
vet another level of abstraction.

BPS views the segments of these abstract plans as
operators in an abstract space. The only distinction
between these abstract operators and those at the base-
level is that the former have less predictable resource
requirements — perhaps even to the point of infeasibil-
ity. However, by elaborating the abstract plans this
uncertainty can be reduced. For example, our utility
function may dictate that we guarantee arrival at the
conference by the time of the first coffee break, but our
cost estimate between the two cities may still be very
uncertain. To help choose between the available direc-
tions at an intersection in Berkeley, we may elaborate
the abstract plan by specializing it, and then choose
(implicitly, in the network calculations) to cross, e.g.,
the most predictable of the three bridges across the bay
between the campuses.

3.4 Information-Value and Control

Within the BPS architecture, abstract plans are rep-
resented simply as states and operators, which are in-
distinguishable from base-level states and operators —
the probabilistic inference and decision-theoretic con-
trol mechanisms see a completely homogeneous graph
of variables and dependencies. Search in the plan net-
work may therefore proceed exactly as within the ear-
lier version of BPS. Uncertainty in the actual cost of an
abstract plan can be represented explicitly, and choices
among, e.g., expanding a base-level node, expanding
an abstract node, abstracting a node or elaborating

09 O

\
,/ \ ” \\ \ /
\ \ 1y /
/,J_\. \ /,.L\ \ \ , / / /
! /
€—1P, Ly-=tee- }-(‘ P, L\ \ \/ p !
\ ’ N L J
_‘« \ Y \(v)
N \ ~ N / A /
\ \ VAR, \ /
\ \ /7 7 \‘\ \
\ / n P’ B A A !
\ \ 7 ’,’ \\\ /I 5 \ /
oy J T \ A/

possess(Agent, Permit)
loc(Agent, Berkeley)
loc(Agent, Stan ford)
loc(Agent, z) A loc(Permit,)

=0ty

Figure 4: Resolving Conjunctive Goals

an abstract plan, can be controlled naturally by the
decision-theoretic meta-level. Classical approaches to
planning require committing a priori to a restricted set
of complex control strategies. The decision-theoretic
approach suggests that familiar planning behaviors are
emergent properties of individual search control deci-
sions at a much finer grain.

We have space here to consider only a simple exam-
ple of such emergent behavior. In it, the reduction of a
conjunctive goal occurs, an intermediate abstract state
is generated as a subgoal, and plans for two conjuncts
are ordered to avoid precondition violations. None of
these behaviors need to be programmed explicitly.

Consider the following simple extension to our plan-
ning example. We must get to Stanford for the sym-
posium, but we must remember (i.e., plan) to bring
the parking permit which is in the Berkeley office. We
must, despite our rush to not miss the coffee break, do
enough planning to realize this precondition.

Imagine that our current plan network contains only
the solid-outlined nodes of the diagram in Figure 4. In
other words, we know that we must get from a state in
which we are in Berkeley and do not have the parking
permit, to one in which we are in Stanford with the
parking permit.

The estimated cost of the abstract operator between
these two states would be influenced by the great un-
certainty associated between moving from a more gen-
eral state (—P) in which we do not have a parking
permit to a state {P) in which we do (this could. in
turn, be inherited from an even more general posses-

sion operator).

Assuming that the information-value mechanism
judges that a little planning is worth the cost, we would
probably try to reduce the uncertainty in establishing
possession of the parking permit. One way of doing
so would involve expanding the nodes (—P) and (P),
reflecting the abstract description of a “pick-up” oper-
ator.

A further information-rich planning step would be
to create the link between (=P, L) and (-P, B), Le.,
realizing that the initial state satisfies the precondi-
tions (the example is not complicated much by requir-
ing “subgoaling” to establish the preconditions).

The final step, of specializing (P, L) to (P, B), and
seeing that the cost of moving from (P, B) to (P, S) is
much less than the arc from (—P, B) to (P, S), would
greatly reduce the expected cost of any plan which had
previously “included” the arc from (—P, B) to (P, S).
Consequently, the expected utility of any available ac-
tion that could lead to that plan segment would be
greatly increased by these few steps of planning.

Note that once the “expensive” conjunct (possessing
the permit) has been achieved cheaply by linking it to
the current state, the ordering among the conjuncts
is implicitly achieved. Note also that it is the possi-
bly high expense of achieving two conjuncts that spurs
planning to decide on their ordering. Two conjuncts
which are cheap need not trigger any planning — if we
simply required a pen rather than a parking permit at
the conference, we should not bother to plan to acquire
one before leaving.

4 Conclusions and Further
Work

There seem to be four potential contributions of this
approach:

1. Decision-theoretic action selection allows the plan-
ning system to deal with uncertainty and conflict-
ing goals via the mechanisms of probability and
utility.

2. Abstract states and goals are represented as nodes
in a belief network, just like ordinary states; this
allows a uniform planning mechanism with the
possibility for arbitrary mixtures of forward and
backward reasoning, island-driving, means-ends
analysis and so on.

3. Standard information-value calculations can gen-
erate these behaviors automatically, and can pro-
vide appropriate tailoring of reasoning effort to the
situation.

4. A situated Bayesian planner can easily adapt to
new information that may violate its ‘expecta-
tions’ or create new opportunities.

We can view the Bayesian network that a BPS plan-
ner develops as a partial, abstract model of its future
environment and intentions. The amount of detail

and scope of the model varies according to the situ-
ation, and is governed by information-value calcula-
tions; there will usually be concrete detail regarding
the immediate future. As time passes, BPS “moves
through” its model, extending its horizon and updating
its intentions as evidence is gathered. In the extreme
of unlimited computation time and deterministic do-
main knowledge, BPS will act as a utility-maximizing
planner, since it will initially construct a network cor-
responding to a guaranteed plan, and will then move
along it with no need for recomputation. In the ex-
treme of critical time pressure, information-value cal-
culations will limit lookahead to the amount needed to
produce an informed decision - that is, reactive behav-
ior. BPS will therefore sometimes look like a planner,
but it must be kept in mind that a new best action
is selected at each stage, and the previously-calculated
Bayesian network is always subject to updating.

Some hard problems, common to many systems, still
have to be solved:

e Currently, no probabilistic formalism exists that
will allow us to integrate the system’s domain
knowledge (e.g., the effects of actions) with the
plan representation. Furthermore, we do not ex-
pect to escape from the frame problem, represen-
tation engineering of the abstraction hierarchy, or
interval book-keeping.

e Under time pressure, the system should be able
to fall back on compiled strategies [10]. It is not
clear how to generate and integrate these within
the standard decision system.

e Since information-value theory has never been ap-
plied to such complex decision systems, further
conceptual development is necessary. Myopic for-

mulations [7] in particular may be inadequate in
planning domains.

In summary, decision-theoretic approaches to plan-
ning seem a promising way to satisfy the goals of all
sides of the “planning debate”. Despite the parsimony
of the basic principles, when bounded resources come
into play a rich structure emerges, generated by the
application of those same principles to the selection of
computations.

References

[1] P. Agre and D. Chapman. Pengo: An Implemen-
tation of a Theory of Activity. In Proceedings of
the Sizth National Conference on Ariificial Intel-
ligence, Seattle, 1987.

[2] D. Chapman. Planning for Conjunctive Goals. Ar-
tificial Intelligence, 32:333-377, 1987.

[3] O. Hansson and A. Mayer. Decision-Theoretic
Control of Search in BPS. In Proceedings of the

AAAT Spring Symposium on Limited Ralionality,
Palo Alto, 1989.

[4] O. Hansson and A. Mayer. Subgoal Generation
from Problem Relaxation. In Proceedings of the

AAAI Spring Symposium on Planning and Search,
Palo Alto, 1989.

O. Hansson and A. Mayer. Heuristic Search as
Evidential Reasoning. In Proceedings of the Fifth
AAAI] Workshop on Uncertainly in Al, Windsor,
Ontario, 1989.

J. McCarthy. Programs with Common Sense.
In Readings in Knowledge Represeniation {R. J.
Brachman and H. J. Levesque, eds.), Morgan
Kaufmann, San Mateo, CA, 1985.

J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, San Mateo, CA,
1988.

H. Raiffa and R. Schlaifer. Applied Statistical De-
citston Theory. Harvard University, 1961.

S. J. Russell and E. Wefald. Principles of Metar-
easoning. In Proceedings of the First International
Conference on Principles of Knowledge Represen-
tation and Reasoning, Toronto, 1989.

S. J. Russell. Execution Architectures and Com-
pilation. In Proceedings of the Eleventh Interna-
tional Joint Conference on Ariificial Intelligence,
Detroit, 1989.

E. D. Sacerdoti. Planning in a Hierarchy of Ab-
straction Spaces. Artificial Intelligence, 5:115-
135, 1974.

J. von Neumann and O. Morgenstern. Theory of
Games and Economic Behavior. Princeton Uni-
versity, 1944.

o e e T

Dynamic Control Planning in Intelligent Agents

Barbara Hayes-Roth

Knowledge Systems Laboratory
Stanford University
Palo Alto, Califorrnia 94304

1. Control in Intelligent Agents

Intelligent agents perform multiple interacting
tasks in uncertain, dynamic environments
uncler resource limitations. They have
capabilities for perceiving information from
the environment, performing reasoning tasks
(interpret perceived information, diagnose
exceptional events, predict future events, and
plan actions), and performing actions that
impact on the environment. Performance of a
given task involves execution of many

component operations in some temporal pattern.

Although the agent continuously senses
information from the environment, the
information is noisy, incomplete, and
perishable. Real-time constraints imposed by
dynamic phenomena in the environment limit
the utility of even logically correct actions.

At any point in time, an intelligent agent
theoretically is capable of performing many
different operations involved in various
perception, reasoning, and action tasks. Because
it has limited resources, the agent can perform
only a subset of its potential operations. Thus,
it must perform a control task, determining
which of its potential operations to perform at
each point in time. Control decisions for a given
task determine whether or not the agent
achieves the goal, what resources it consumes,
what side effects it produces, and the apparent
orderliness of its behavior to a human
observer. The agent's method of making control
decisions determines the range of problems it
can solve, the range of problem-solving
strategies it can apply, its flexibility in
adapting to run-time conditions, and its ability
to explain its behavior to a human user.

Even for a single, static task, an agent's
approach to control plays a critical role in its
performance (Garvey87). With multiple tasks
in a dynamic environment, the contro! task is
more challenging. In its efforts to meet global
objectives, the agent must coordinate
interacting tasks, as well as control its
selection and execution of operators within
separate tasks. It must take into account
asynchronously sensed information, balancing
adaptation to new demands and opportunities
with purposeful pursuit of previously
established goals. Finally, the agent must take
into account its own limited computational
resources and real-time constraints on the
utility of its actions imposed by the
environment.

Traditional planning paradigms allow
agents to generate and execute coherent longer-
term courses of action, but do not allow them to
adapt quickly to unanticipated events. They also
pose unrealistic computational demands. More
recently developed reactive paradigms provide
flexibility, but no global coherence. They also
pose unrealistic storage demands. The proposed
approach aims to integrate both capabilities
under a uniform and flexible control
architecture.

2. Our Approach

Our approach to control in intelligent agents
elaborates the concept of dynamic control
planning proposed in (Hayes-Roth and Hayes-
Roth, 1979; Hayes-Roth, 1985). Taking into
account the dynamic environment, the agent
incrementally constructs and modifies explicit
control plans that guide its choice among

e e
et e e

potential operations at each point in time. In
contrast to traditional planning paradigms,
these plans are not precise sequences of
executable operations that the agent faithfully

. performs. Rather they are abstract

characterizations of rough sequences of useful
classes of actions. The agent uses plans to guide
its identification and selection of operations
suggested by perceptual and cognitive events.
Thus, the agent balances purposeful, goal-
directed behavior with adaptation to demands
and opportunities arising from external events.
The agent controls multiple tasks with multiple
task-specific control plans. It coordinates
multiple tasks with global control plans.

We start with an agent architecture
(Hayes-Roth, 1990) comprising several
subsystems. A cognitive subsystem interprets
perceived information, performs all reasoning
tasks, and plans actions. Multiple perception
subsystems sense data from the environment
and preprocess it for use by the cognitive
subsystem. Multiple action subsystems
interpret action programs sent by the cognitive
subsystem and execute them by actuating
effectors. Subsystems operate concurrently and
asynchronously, interacting by passing data
among globally accessible I/O buffers.

Within the cognitive system, reasoning
operations occur in the context of a global
memory, which contains the agent's knowledge,
perceptual inputs, action ouputs, and the
results of all reasoning operations. On each
reasoning cycle, a bounded-time agenda
manager uses recent perceptual events (inputs
from the perceptual subsystem), cognitive
events {(caused by prior reasoning operations),
and the current control plan (discussed below)
to identify the most important potential
reasoning operations (a subset of all possible
reasoning operations). It records them on an
agenda. A scheduler chooses the highest-rated
operation to be executed by an executor,
producing associated changes to the global
memory.

Now we focus on the representation, use,
and generation of control plans. We take
examples from the Guardian system for
monitoring intensive care patients (Hayes-Roth
et al.,, 1989).

A control plan is a temporally organized
pattern of one or more control decisions. Each
decision describes a class of operations the
agent is inclined to perform until some goal is
achieved, along with the importance and
urgency of those operations. The class of
operations may be more or less specific and
different operations may vary in strength of
class membership. Our phrase "is inclined”
signifies a weak form of intention, assuming
feasibility of at least one operation within the
specified class and no preferable alternatives.
(See discussion below.) Goals are expressed as
states of the global memory. Importance is a
measure of the expected value of performing the
specified operations. Urgency is a measure of
how soon the specified operations must be
performed to have their intended effects. All
control plans are recorded in the global
memory.

Figure 1 shows control plans P1-P6é for a
Guardian monitoring episode spanning the time
interval t1-16. Each decision defines a class of
operations in terms of relevant features. Goals
are not shown, but are discussed below. The line
under each decision signifies the interval
during which the decision is active, that is the
interval during which Guardian is inclined to
perform the specified class of operations. The
heaviness of the line signifies the combined
importance and urgency, which we call
criticality, of performing the specified classes
of operations: low, moderate, high. For
example, P4 is a moderately critical decision to
interpret respiratory parameters throughout
the monitoring episode. Note that Figure 1
shows the history of Guardian's control
decisions during t1-t6. Presumably it
generated the decisions incrementally during
11-16, as discussed below. Thus, at any point in
t1-16, Guardian may be assumed to have made
only those decisions shown in Figure 1 to be
active at that point or earlier.

An agent performs multiple tasks, where a
task is the application of some method to an
instance of some problem. A task-specific
control plan embodies the agent's decision to
perform a task and its strategic approach to the
task. For example, P6 is a decision to respond
reactively (performing the fastest appropriate
operations immediately) to the patient's high

PiP (peak inspiratory pressure). The goal (not
shown in Figure 1) is to lower the PIP and
correct the underlying problem. P5 is a
decision to respond more systematically to the
patient's low temperature. The goal is to
identify and correct undesirable consequences of
the low temperature. Presumably, the agent
could respond reactively or systematically to
either problem, but chooses to react to urgent
problems, such as high PIP, and to respond
more systematically when time allows.

PS5 illustrates multi-decision control
plans with temporal organization. It has a
strategic sequence of subordinate decisions:
predict changes in temperature, infer the
. effects of temperature on other variables, plan
* therapeutic actions to correct undesirable
effects, and perform the planned actions. The
infer and plan decisions also have subordinates
(unlabeled lines in Figure 1) that more
precisely control component operations during
corresponding time intervals.

‘ An agent performs multiple tasks
sequentially under a sequence of control plans

or concurrently under concurrent control
plans. Control plans manage task interactions
and sequence operations within tasks. At one
extreme, if tasks are completely independent
and have no particular time constraints, the
agent can order them arbitrarily and perform
each one in turn. On the other hand, if tasks
would benefit from access to one another's
intermediate results or have severe time
constraints, the agent can perform them
concurrently, interleaving their constituent

+ operations so as to enable the needed exchange of
- intermediate results and meet time constraints.

To achieve this higher-level organization, the
agent makes global control decisions that
express preferences for general classes of
operations. They might specify operations that
address particular problem classes or
instances, meet certain resource requirements,
are involved in certain kinds of reasoning
methods, etc.

In Figure 1, P1, P2, and P3 are global
control plans. P1, spanning t1-t6 and
moderately critical, favors operations related
to certain problem classes, in the order: control

P1. Prefer: control, planning1 other

P2. Prefer model-based

>

P3. Preter
|

P4. Intereret reseiratorz Earameters
T

P5. Respond systematically to low temperature

-

quick response to PIP

>

Time

Pred. Infer Plan _P_erform
NS SEmm— —— IR
P6. React to high PIP
.|
>
t1 t2 t4 t5 t6

Figure 1. lllustrative Guardian Control Plans.

planning (discussed below), therapy planning,
other. P2, spanning t1-t6 and less critical,
favors operations involved in model-based
reasoning over other reasoning methods. P3,
spanning t3-t4 and extremely critical, gives
overriding preference to very fast operations
related to the patient's high PIP.

Note that global control plans, like task-
level control plans, refer to intended classes of
operations. They do not transfer control among
tasks or refer to fully-instantiated tasks. Thus,
there is no infinite regression of "meta-levels.”

An agent uses control plans to guide its
behzavior. On each cycle, the agent uses all
active control plans (both task-specific and
global plans), along with recent perceptual and
cognitive events, to identify and rate the most
impertant potential operations. Ratings reflect
the degree to which operations match the
specified classes of operations. Weighting each
rating by the criticality of the control decision,
an cperation's priority is the sum of its
weighted ratings. The agent executes the
highest-priority operation on each cycle.

Suppose that at t3 Guardian has three
potential operations. O1 would reactively
diaghose the patient's high PIP. It would
perfectly match P86 and P3, two extremely
critical contro! decisions, and have a very high
priority. O2 would give a model-based response
to the high PIP. It would perfectly match P2, a
somewhat critical decision, and partially match
P6 and P3 (because it responds to the high PIP,
but is neither reactive nor quick), two
extremely critical decisions, and have a
moderately high priority. O3 would interpret
new data regarding the patient's kidney

. function. It would partially match P4 (because

. interpretats patient data, but not respiratory
- data), a moderately critical decision, and have a
~ low priority. Guardian would execute the

highest-priority operation, O1.

Now we can clarify our concept of an
agent's "inclination" to perform planned classes
of operations. If the agent has a single control
plan, its inclination to perform the planned
operations is equivalent to an intention. The
agent will perform operations within the
specified class--assuming that at least one such

operation is possible and the agent is not
prevented by some external force from
performing it. However, if the agent has
multiple active control plans specifying
different classes of operations, it ordinarily
will not have a potential operation that satisfies
all of them. The agent will perform an operation
that satisfies any one of those control plans only
if no other potential operations have higher
priorities based on other active plans.

Concurrent control plans also lead to task
concurrency. If several plans are of comparable
criticality and there exist potential operations
for all of them, the agent will interleave their
component operations over a sequence of
reasoning cycles. If, on the other hand, one plan
is much more critical than the others, the agent
will consistently prefer operations that match
that plan until its goal is achieved.

For example, we can infer the Guardian's

. behavior during t1-t6 from active control
© plans during successive sub-intervals. During
| t1-t2, P1, P2, and P4 are active. Guardian

would interleave control operations (discussed
below) and model-based reasoning operations to

interpret respiratory parameters. it would not

perform operations related to other tasks,
involving other interpretation methods, or
involving non-respiratory parameters. During

| 12-13, P5 also is active. Along with the above

operations, Guardian would interleave model-
based operations in response to the patient's low
temperature. In the context of this task,

. Guardian would generate and begin to perform

its strategic sequence of subtasks. During t3-
14, the extremely critical P3 and P6 would

~ dominate the other plans. Although the earlier

plans remain active, Guardian effectively would
interrupt them to perform quick reactive
operations in response to the high PIP. During
t4-15, with the crisis resolved, P3 and P6 are
no longer active. Guardian would resume its
interrupted interpretation of respiratory
parameters, model-based response to low
temperature, and control reasoning. During t5-
t6, with the low temperature problem resolved,
only P1, P2, and P4 are active. Guardian would
interpret respiratory parameters and perform
control reasoning.

Generating control plans is one of the

tasks an agent performs. Thus, it performs
control planning operations that generate or

- modify control decisions. As with other tasks,

the agent may apply different methods to control

: planning, such as top-down refinement, schema

instantiation, backward chaining from goals, or
opportunistic planning (Johnson87). For
example, Guardian presumably made decisions
P1 and P2 because they are standard monitoring
policies. It made decisions P5 and P3 and Pé
opportunistically in response to perceptual
events, the patient's low temperature and high
PIP. It made P5's subordinate decisions by
instantiating a general schema for
systematically responding to exceptional data.

Like other reasoning operations, control
planning operations are suggested by perceptual
or cognitive events, rated against active control
plans, and scheduled for execution. This means
that the agent can modify its control plans on
any reasoning cycle. Thus, for example,
Guardian begins the episode in Figure 1 with
three plans, P1, P2, and P4. At various times
during the episode, it introduces and
subsequently deactivates plans P3, P5 (and its
subordinates), and P8, in response to perceived
patient conditions. Guardian always behaves in
accordance with whatever plans are active.

Also like other reasoning operations,
control planning operations are rated against
active control plans and scheduled for execution.
By making certain control decisions, an agent
can modulate its goal-directedness and,
conversely, its responsiveness to the
environment. For example, P1 is a moderately

i critical decision favoring control planning
“operations over all other problem-specific

types of operations. Under P1, Guardian would
be responsive to new events, making new
control decisions to begin, modify, or terminate

i tasks prompily. In particular, it makes

decisions P5 {and its subordinates) and then
decisions P3 and P6 immediately upon

observing the patient's low temperature and

high PIP, respectively. On the other hand,
Guardian's extremely critical decisions P3 and
P6 dominate its behavior, making it
unlikelythat Guardian will perform control
planning or other reasoning operations until the
high PIP problem is solved.

3. Final Remarks

We have proposed an approach for agents
to dynamically plan and control performance of
multiple interacting tasks in dynamic uncertain
environments. Explicit control plans guide the
agent's identification and selection of important
operations. The agent integrates careful
planning of longer-term strategic courses of
action with reactive response to urgent
situations. The agent also parameterizescontrol
activities to determine how persistently it
pursues established goals versus how flexibly it
responds to environmental changes. Ongoing
research aims to evaluate the approach both
formally and empirically.

4. References

Garvey, A., Cornelius, C., and Hayes-Roth, B.
Computational costs and benefits of control
reasoning. Proceedings of the National
Conference on Artificial Intelligence, 1987.

Hayes-Roth, B. A blackboard architecture for
control. Artificial Intelligence, 26:251-321,
1985.

Hayes-Roth, B., Washington, R., Hewett, R.,
Hewett, M., and Seiver, A., Intelligent real-
time monitoring and control. Proceedings of the

Eleventh International Join nferen n
Artificial _Intelligence, 1988.

Hayes-Roth, B. Architectural foundations for
real-time performance in intelligent agents.
Journa! of Real Time Systems, 1990.

Johnson, M.V., and Hayes-Roth, B. Integrating
diverse reasoning methods in the BB1
blackboard contro! architecture. Progeedings of
the National Conference on Artificial

Intelligence, 1987.

6. Acknowledgements

This work was supported by DARPA and
Boeing. Other members of the Guardian project
are: R. Washington, R. Hewett, D. Ash, A. Vina,
A. Collinot, I. Sim, and A. Seiver. Thanks to Ed
Feigenbaum for sponsoring the work at KSL.

ABSTRACTION AND REACTION

James Hendler

Department of Computer Science

University of Maryland
College Park, Md. 20742
hendler@cs.umd.edu

Any Al planning system, or in fact any planning
tagent, must base its plans on a model of the
5environment in which it functions. This model can
lcorrespond closely to the “real-world,” reasoning
about every action and object in the environment, or
it can abstract away, ignoring entities, making
simplifying assumptions, ignoring the time course of
events, etc. In the past, a critical aspect of planning
research has centered on finding the correct level of
abstraction and developing planning primitives to
enable the agent to cope with a world modeled at that
level. In this brief paper I will attempt to demonstrate
that this approach is fatally flawed — to interact with
a realistic world via perception the agent must be able
to reason across different levels of abstractions and to
have different levels of primitive acts for these
different levels. A real-time scheduling (as opposed to
search; metaphor 1s proposed to handle the
interactions between the levels. As this work is most
‘crucial in rapidly changing dynamic environments, we
describe this work in the context of the DR Real-time
planning model (Hendler, 1989; Sanborn and Hendler,
-1988) which is being extended to use multiple level of
abstractions in planning and reaction.

Planning systems suffer from two connected
problems. The first of these is inefficiency, generating
complete and accurate plans in even simple domains is

~an exponentially hard problem (Chapman, 1986) and
in more complex domains, particularly those involving
-other agents interacting with the planner, it may be
undecidable (Sanborn & Hendler, 1988). The second
limitation, which is again particularly serious in
“multiple agent situations, 1is that the model of
generating followed by executing the plans is too
simplistic. Change in the world occuring during the
running of a plan may render portions of it either
'temporarily or permanently unachievable.
'Appropriately responding to such changes in the

environment requires a reactive component not

“available in most planners.

As a simple example, consider a robot
attempting to cross a street with a traffic flow. The
robot cannot simply wait until a large enough gap
occurs as (a) this may simply never happen, leaving
the robot standing on the curb ad infinitum, or (b)
once the gap appears and the robot starts, one of the
oncoming cars might change speed, direction, etc. and
thus run it over. The robot must be able to react
quickly to change in the environment.

The difficulty in getting current planning
systems to handle dynamic situations is caused by the
reliance of most current planning techniques on some
very strong underlying assumptions:

1) the planner has complete knowledge of the
world relevant to 1ts task,

2) The planner effects change only by executing
primitive plan steps. This change must be
discrete, and the planner must be completely
aware of all effects of its actions.

3) the planner acts alone in the world; there are
no outside forces.

Unfortunately, real-world planning situations
rarely conform to these assumptions. Typically
occuring domains may include continuous change over
time, incomplete specifiability at any point in time,
and change due in part to the actions of other agents.
Thus, the traditional planning paradigm has been
shown to be inadequate in practical situations and
much current research focuses on solutions. (A good
set of papers on such work can be found in the
Proceedings of the DARPA Workshop on Knowledge
based Planning, Austin, 1987.)

Our past research has focused on developing an
architecture for managing observation and action in
dynamic domains (known as “dynamic reaction” (DR),
Sanborn & Hendler, 1988). This model is designed for

dynamic worlds, where change is ongoing regardless of
an agent’s actions — strictly goal-directed methods
“are inadequate. Instead, the planning agent must
constantly observe the world and make predictions
about how events will turn out. Given these
.predictions, the agent coordinates its actions in order
{0 act in harmony with ongoing events in the world.
In this way, the environment dictates an agent’s

possible actions and longer-term goals become
heuristics in determining which these actions is best
pursued.

The DR model has been used to handle the
interactions arising in a rapidly changing simulation
domain in which objects move rapidly through the
simulation under external control. The ‘reacting
agent” must cross this environment without being
impacted, but under the control of a higher level
directional goal. A full description of this work can be
found in (Sanborn and Hendler, 1989).

Recently we have been attempting to extend our
architecture in two directions: we are trying to make
the work more compatible with real robotics and
real-time control systems (cf. Hendler, 1989) and we
are trying to extend the system to interact gracefully
with long term planning models. These two together
goals taken together, however, appear to led to a
contradiction. To handle real sensor data, as in
robotics, we must be able to have an abstraction which
closely matches the external world (this is, in fact, the
same level as the model we have been using in the DR
systern). To interact with a more traditional, higher—
level planner, however, the system needs to abstract
away {rom the actual motions of the vehicles and etc
— If the planning system Is too sensitive to the short
term changes occuring in the world it is unable to
generate long term plans as the obvious combinatoric
explosion rears its ugly head.

Clearly, to deal with this problem we must have
at least two, and we currently believe more, levels of
abstraction of the world. Keeping these levels
consistent with one another, handling the interactions
at cach level in different time scales (for example the
reactor may need to react in milliseconds, while the
planner can take minutes), and propagating the
perceptual information to the appropriate level are the
critical problems we believe must be addressed to
allow planers to integrate ‘‘high-" and “low-level”
knowledge.

Consider the following situation: a path planning
system is to prepare a route over some map — The
system designs a set of points to reach and deadlines
to reach them. Such a system needs not know the
actual location of other objects in the world, it simply
needs to know roughly how difficult different regions
are to traverse. Once the plan starts executing,
however, the situation changes drastically. The
reactive controller needs to know what other objects
are in the perceptual field, what their heading and
directions are, and when they will interact with the
current path. The high level planner generates plans
like “GET-TO POINTA DEADLINE: +24min.” The
reactive controller controls moves like “PROCEED -
LEFT NOW!”

In fact, the path planner itself may have no work
to do during the actual running of the plan (this is a
simplifying assumption used 1in several domain-
dependent planning systems). However, if the world
starts to get complicated, this assumption won’t hold.
Once, due to some reaction, the planner 1s to miss a
deadline, it must replan and decide what route to take.
During this replanning, however, it may not remain
still — the objects which are causing 1t to miss the
deadline may still be around!

The solution to handling such problems, appears
to lie in designing a system which can be reasoning
“simultaneously’ about different levels of the problem.
In the DR model the a “parsed’ version of low-level
perceptual data s supplied directly to low level agents,
called ““monitors” which process it (actually
hierarchically) to check a particular condition (the
direction of a particular car, the speed of some object,
whether any new object has appeared, etc.) When a
monitor discovers that some condition holds, it
updates a global “state—of-the-world” model (used for
providing accurate information if needed by the high
level planner) with a symbolic abstraction of what it
has seen (for example “Speed CAR1 40-60units”).
This information is also reported to higher-level
monitors, which are used to control the low level
actions of the system (this coupling of monitoring and
acting is described in the aforementioned Sanborn &
Hendler, 1988).

The newer part of our system comes in the
design of higher level reactive agents (higher-level
monitors) which compute for violations of required
conditions. Thus, as the lower level reactors change
the direction of movement, this is reported to a higher
level entity which is checking that a deadline can or
cannot be reached. It too updates the state-of-the-
world model, but with higher level information -— the
information is kept at a level of abstraction useful to
the path planner {for example, what previous deadlines
have been met, the current location of the object, and
the projected time to reaching the destination). The
planner is then able to take over, when time permits
and do the appropriate replanning. Just as was the
original plan, this new plan is “compiled” down to
new mcnitoring tasks and the system continues.

The final step in getting this system to work 1s
to use a scheduling metaphor (or, in fact, an actual
scheduler) to allow the planning and reacting agents to
work together as time permits. Low-level monitoring
must occur frequently, but for short periods of time.
How much processing is required depends on the
number of objects which the reactor must take into
account (“the more bullets a-coming, the more
dodging is needed”). The higher level monitors and
the planner itsell require more processing time, but
over longer intervals. Thus, as the time taken by pure
reaction is reduced, the higher levels get more time. In
a “‘safe’” environment, this allows the planner to take
almost complete control. Thus, in a highly reactive
situation (crossing the street) the system is primarily
reactive. In a relatively static world, the system
becomes more like a traditional strategic planner. (See
figure 1).

The interspersed scheduling of reactive and
planning tasks is currently being implemented using
the MARUTI hard real-time scheduling system
developed by the SDAG group at the University of
Md. The coupling of actual sensors to a controller

based on the DR model is being pursued in conjunction
with the Al group of the MITRE Corporation.
Current, plans include integration of these
components into a single system, and an examination
of using this model for more complex planning tasks
where, possibly, more levels of abstraction will be
called for.

an

om-0orre» mI—-

REFERENCES

Chapman, D. Nonlinear Planning: A rigorous reconstruction, 1JCAl-

9. ‘
Proceedings of DARPA workshop on Knowledge—based planning,
Dec. 1987. . .

Hendler, J.A. *Real Time Planning" AAAI Spring Symposium on
Planning and Search, 1989. ‘ o
Sanborn, J. and Hendler, J. Monitoring and Reacting: Pla{mmg. in
dynamic domains International Journal of Al and Engineering,

Volume 3(2), April, 1988. p. 95

4 Planning

{(deadline
cross23

(speed
car1 40)

Reacting

\

FREQUENCY OF SCHEDULING

Figure 1: Planning and reacting

Integrating Adaptation with Planning to Improve

Behavior in Unpredictable Environments

Adele E. Howe

Experimental Knowledge Systems Laboratory
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

As research in planning has progressed from static
well-defined domains to dynamic unpredictable
domains, planning and acting have become more
closely coupled, and adaptability has become in-
creasingly important. Because a planner cannot
predict with certainty the outcome of actions in these
domains, planners must adapt on-going plans in
response to failures. Constructing plan knowledge
bases for these domains is costly and difficult to
perfect; so, a planner should adapt its own model of
how to act, how far ahead to plan, and how often to
assess its progress in response to changing
conditions.

Why is “good” planning not always enough?

Good planning is enough when plans can be pre-
vented from failing. Plans do not fail when they
do not commit to action in the future or when their
operating environments are predictable and
static. They may not fail in domains in which it is
possible to enumerate contingencies. Even the best
laid plans are likely to fail in domains with mul-
tiple agents, resource limitations (particularly
time pressure), unpredictability, and/or complex
dynamics. These domains usually cannot be
characterized by tractable domain models and are
fraught with subtle interactions between the agents
and their environment.

Crisis management domains, such as forest
fire fighting and oil spill containment, exhibit
most of these characteristics. The goal of planners
in these domains is to contain an environmental

process that occupies an increasingly large

geographic area and behaves somewhat unpre-
dictably. The actions available to agents operat-
ing in these domains produce localized, limited
effects, thus requiring the coordination of many
agents over a large area and a large span of time.
The Phoenix project provides just such a domain
in the form of a simulation of forest fires in
Yellowstone National Park (Cohen et al. 1989).
The simulation and basic agent architecture sup-
ported by Phoenix constitute the basis for these
explorations into adaptable planning.

What is adaptable planning?

Because of the complexity and unpredictability of
the environment, plans may not progress as in-
tended and cannot be constructed to include con-
tingencies for all plan-damaging events.The
agent needs to adapt to changing conditions and to
adapt its model of how to act through experience
with its environment. Thus, we can distinguish
two senses of adaptation: responsive and impres-
sionable. A responsive planner responds to envi-
ronmental changes by modifying plans in
progress. An impressionable planner remembers
the results of plan modifications and so adapts
behaviors over extended periods of time.

The two kinds of adaptation increase flexibility
and reduce brittleness in the underlying planner.
The Phoenix planner is a lazy skeletal expansion
planner, designed to delay commitment to precice
actions as long as possible. It generates plans by
searching a plan library of skeletal plans for one
appropriate to the situation. These plans are

expanded into a network of actions, which are
represented along with their resource require-
ments and execution priority on an internal
agenda mechanism, called the timeline. A sched-
uler selects actions from the timeline for execu-
tion and allocates resources (usually processing
time) to them. When executed, these actions may
initiate sensor or effector actions, perform prob-
lem solving actions, or search for subplans to
accomplish the action's objective. Integrating
responsive and impressionable adaptation with
this style of planning should produce an agent
able to act in a changing environment and able to
exploit this experience by modifying its model of
how to act.

Responsive Adaptation

Selecting the best action in a complex domain
often. requires up-to-date information. The two
most common approaches to this requirement are
gituated action and error recovery. In the situated
action approach, planning and acting are tightly
coupled so that decisions about how to act are made
at the time of action (Agre & Chapman 1986).
Rapid response to changing situations is a natural
result of this tight loop. However, this approach
does not naturally support reasoning about
resource allocation and coordination of disparate
activities or agents (Georgeff & Lansky 1987). In
error recovery, situations that indicate failure of
plans in progress trigger mechanisms that
change those plans. Unlike the situated action
approach, in error recovery, adaptation is viewed
as an adjunct to the standard planning process
usually requiring additional mechanisms like
monitoring and replanning (Wilkins 1987).
Many complex domains are characterized by
scarce resources, both physical and temporal.
Each approach, situated action and error recovery,
possesses capabilities desirable for these
domains. Situated action offers immediate
response that is smoothly integrated with normal
agent actions. Error recovery offers a plan struc-
ture that facilitates coordination and control in

support of resource reasoning. Responsive adapta-
tion should offer both capabilities,

Responsive adaptation should change the
intended plan by the minimum required for the
agent to continue acting successfully. Plans pro-
vide the structure for controlling action coordina-
tion, undesirable plan interactions and resource
use. Responsive adaptation should preserve the
expectations of these constraints while still
addressing the changes in the environment. It
should make the changes as quickly as possible
because computation time is itself a resource and
because the environment may have changed
before the response can be determined. Finally,
because responsive adaptation is activated when
exceptional conditions occur, it should provide
broad coverage of possible situations; it is, in
effect, the action of last resort.

An agent detects failure conditions in several
ways. Actions may be unable to execute to comple-
tion, thus signalling a failure. In systems with
multiple control layers (such as Brooks’ subsump-
tion architecture (Brooks 1986)), settings or com-
mands from different layers may conflict.
Potential failures can be detected by monitoring
the progress of actions and plans toward their
objectives. Each of these occurrences provides a
context for the error along with information about
its nature and perhaps its cause.

Responsive adaptation in Phoenix proceeds by
using the context of the failure to search a skeletal
plan library of general recovery plans. These
plans make mostly simple repairs to the structure
of the evolving plan. These repairs are based on
structural manipulations of the plan representa-
tion and can be used in different situations. This
strategy for recovery plans is similar to that of
SIPE (Wilkins 88).The recovery plans vary from
simply re-scheduling the failed action to aborting
the plan in progress and selecting another. Other
plans re-instantiate plan variables or update
information from the environment. These plans
are represented in the same action description
language as the domain specific plans and so are
interpreted by the normal planning mechanisms.

Furthermore, these plans serve a dual purpose:
they are intended to salvage the failed plan and to
guide improvements to the plan knowledge base.

Impressionable Adaptation

Failures occur when the environment changes
unexpectedly and detrimentally. At times, this
occurs because the environment is wildly unpre-
dictable; most often, it is because the plan was not
quite right. Relying on the contents of a static
plan library biases the agent toward repeating the
same plans regardless of whether these actions
are the best for the situation.

Impressionable adaptation changes the agent's

internal model of how to act in response to experi-
ence with failure. Plan failure provides an ideal
opportunity for model refinement for two reasons:
plan failures tell the planner where its knowledge
is inadequate or brittle, and the agent has less to
lose in trying something new. Several systems
have exploited the opportunity of plan failure to
refine the knowledge base. For example, Kristian
Hammond’s CHEF system modifies plans to
anticipate and avoid failures by explaining the
cause of the failure (Hammond 1986). SOAR
learns new rules by chunking the results of
searches triggered by impasses (Laird 1987). Each
relies on a domain model. For CHEF, that model
is a model of relationships between actions and
effects; for SOAR, it is a model of a search space of
operators and their applicabilities.

When the domain model is incomplete or
approximate, impressionable adaptation must
rely on other characteristics of the environment.
In on-going environments in which the potential
cost of acting is not catastrophic, the environment
can be viewed as a laboratory for discovering how
best to act. Changes to the plan library can be
treated as hypotheses about how to act, which are
confirmed or refuted by their later execution.
Successful planning reinforces known behaviors;
unsuccessful planning suggests alternative
behaviors. Thus, inadequacies in the domain
model can be counterbalanced by experience.

Because impressionable adaptation must share
computational and physical resources with
responsive adaptation and other activities in sup-
port of planning, it must opportunistically gather
information or use what was gathered in the ser-
vice of other activities. Adaptation mechanisms
must operate from limited knowledge of the
domain and make use of available temporal and
other resources to minimize competition with other
activities of the system.

Impressionable adaptation in Phoenix is initi-
ated in response to information about the success
of a plan, usually the lack of success. When ini-
tiated, the adaptation mechanisms search for a
skeletal plan that gather evidence and modify the
failed plan. As in responsive adaptation, these
plans rely as much as possible on information
already available. The modifications to suspect
plans are mostly simple changes to monitor par-
ticular conditions or actions for potential failure,
and avoid or recover more easily from failure.
These plans include adding choice points to pre-
vent premature commitment to a course of action,
changing the conditions of plan application,
restricting action selection at choice points, and
adding monitoring. The modified plans are
added to the plan library causing the original plan
to be either replaced or restricted in its applicabil-
ity. By augmenting the plan library, the agent has
the option of alternative actions when later it
encounters the situations that previously led to
plan failure.

Integrating Adaptation into Phoenix

Like planning, adaptation is just one of the many
problem solving activities that an agent performs.
Consequently, it should be subject to the con-
straints of any problem solving activity. For sys-
tems that operate under time pressure, the primary
constraint on problem solving is computation
time. As described earlier, all problem solving
activities in Phoenix are represented uniformly
on the timeline. The cognitive scheduler accesses
this structure in determining processing order

and allocating processing time. Because respon-
sive and impressionable adaptation are repre-
sented as problem solving actions, they can be
included in existing resource reasoning and
activity monitoring,

Adaptation actions are added to the timeline
when failures occur. Failures are recognized
through three mechanisms in Phoenix: execution
errors, reflexes, and envelopes. Execution errors
occur when an action cannot execute to completion
because the state of the world was not right,
required information was not yet available, or, for
some problem solving actions, no solution exists.
Reflexes are a low level control mechanism that
compensate for time delays in planner response to
keep the agent out of catastrophe. When they are
triggered in response to dangerous environ-
mental conditions, they program effectors to
remove or at least reduce the danger. Envelopes
predict impending failure (Hart, Cohen &
Anderson 1990, Powell & Cohen 1990). They per-
form sophisticated monitoring of the plan’s
progress in the world, integrating the efforts of
many agents, to determine whether the plan can
complete within its environmental and resource
limitations. If a plan will be unable to complete
successfully under the present conditions, the per-
formance envelope is violated and an impending
failure is signalled. These mechanisms signal
failures by adding adaptation actions to the time-
line. These actions include information readily
available about the circumstances of the failure.

Adaptation actions on the timeline are treated as
a type of planning action. They rely on the same
planning method--lazy skeletal expansion--and
when executed, search a taxonomy of skeletal
adaptation plans in the plan library to find the
appropriate response to the situation. As a type of
planning action, adaptation may access and use
the same methods as other planning methods and
can be smoothly integrated into the planning pro-
cess. As a timeline action, adaptation actions
have access to the same memory structures and
are subject to the same resource management
techniques as are other timeline actions.

Improving Behavior through Adaptation

Adaptation compensates for inadequacies in
planning. When the environment changes so thai,
on-going plans will fail, responsive adaptation
searches the plan library for an appropriate
response and changes the on-going plan to allow
the agent to continue from the failure. When the
model of how to act in the environment fails,
impressionable adaptation changes the plan
library to avoid or anticipate the problem in the
future. Thus, impressionable adaptation reflects
the experience gained from responsive adaptation
into the plan library to improve planning behav-
ior. Figure 1 shows how the two types of adaptation
influence the plan library and the timeline.
Responsive adaptation modifies the timeline
based on plans found in the plan library.
Impressionable adaptation modifies the plan
library based on information gleaned from the
timeline.

Planning

Responsive adaptation

Plan
Library

~B3 o BBoC = ~<BmM

Impressionable adaptation

Figure 1: Responsive and impressionable
adaptation interact through the timeline and the
plan library.

Integrating responsive and impressionable
adaptation into the Phoenix system forms the core
of my dissertation, as proposed in (Howe 1989). My
hypothesis 1s that when the agent adapts its own

behavior to its environment, its behavior will be
better suited to that environment, and the agent’s
internal model will more accurately reflect the
constraints of that environment. Consequently,
the goal of the project is to understand the relation-
ship between adaptation and the characteristics of
the environment. The internal structures result-
ing from adaptation should evidence the impact of
environment; for example, plans should reflect
the variability and rate of change of the environ-
ment in the number and nature of the decision
points in them. The benefits of additional plan
knowledge should more than compensate for the
computational overhead; in other words, adapta-
tion must have demonstrable utility.

Acknowledgments

This research was supported ONR University
Research Initiative grant N000014-86-K-1764 and
by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the
Air Force Office of Scientific Research under
Contract No. F49620-89-C-00113. The United States
Government is authorized to reproduce and dis-
tribute reprints for governmental purposes
notwithstanding any copyright notation hereon.

References

Philip E. Agre and David Chapman. 1986. Pengi:
An Implementation of a Theory of Activity. In
Proceedings of the Sixth National Conference on
Artificial Intelligence. Seattle, WA.

Rodney A. Brooks. 1986. A Robust Layered
Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation, RA-2(1).

Paul R. Cohen, Michael Greenberg, David M.
Hart, and Adele E. Howe. 1989. Trial by Fire:
Understanding the Design Requirements for

Agents in Complex Environments. Al Magazine,
10(3).

Michael P. Georgeff and Amy L. Lansky. 1986.
Reactive Reasoning and Planning. In

Proceedings of the Sixth National Conference on
Artificial Intelligence. Seattle, WA.

Kristian J. Hammond. 1986. Learning to
Anticipate and Avoid Planning Problems through
the Explanation of Failure. In Proceedings of the
Fifth National Conference on Artificial
Intelligence, Philadelphia, PA.

David M. Hart, Paul R. Cohen and Scott D.
Anderson. 1990. Envelopes as a Vehicle for
Improving Plan Efficiency. submitted to the
Eighth National Conference on Artificial
Intelligence.

Adele E. Howe. 1989. Adapting Planning to
Complex Environments. PhD Dissertation
Proposal, Dept. of Computer and Information
Science, University of Massachusetts.

Gerald M. Powell and Paul R. Cohen.1990.
Operational Planning and Monitoring with
Envelopes, in Proceedings of the IEEE Fifth Al
Systems in Government Conference, Wash., DC.

John E. Laird, Allen Newell, and Paul S.
Rosenbloom. 1987. SOAR: An Architecture for
General Intelligence. Artificial Intelligence
Journal, 33:1-64.

David E. Wilkins. 1988. Practical Planning:
Extending the Classical Al Planning Paradigm.
Morgan-Kaufmann Publishers, Palo Alto, CA.

Partial Planning with Incomplete Information

Jane Yung-jen Hsu
Logic Group, Computer Science Department
Stanford University
Stanford, CA 94305

Abstract

This paper presents a new framework for planning with
incomplete information for agents acting in complex en-
vironments. By modeling the behavior of an agent as a
function from its perceptual histories into actions, our
approach enables the system to maintain a partial plan,
which can be updated incrementally when new infor-
maticn or time becomes available. Our planner uses an
anytime algorithm that always choose the best actions
based on the knowledge and computational resources
utilized so far. The framework of partial planning pro-
vides a nice integration of reactivity and reasoning with
declarative knowledge.

Introduction

Traditional planning systems assume the availability of
complete knowledge at planning time, so that once a
plan is constructed by the planner, it is guaranteed to
be carried out successfully by the plan executor. Unfor-
tunatly, in complex environments, an agent must often
deal with incomplete and changing information. In the
face of such uncertainty, a traditional planner will ei-
ther fail to generate any plan at all, or fail to achieve its
desired goal(s) by executing the generated plan.

There are several sources of incompleteness. First
of all, a planner may not know the exact initial situ-
ation due to its sensory limitations and certain uncon-
trollable randomness in its environment. For example,
suppose that a robot is given a goal to find a piece of
gold somewhere in a maze, and to find its way out with
the gold. Rather than starting from a prespecified cell
in the maze, the robot is carried by a helicopter into the
maze at random. Let’s further assume that the robot
is able to perceive whether the gold is in the current
cell, but it cannot identify in which cell it is positioned
exactly except when it happens to be at the exit. Conse-
quently, the initial state is not completely known to the
robot. The second sort of incompleteness is a result of a
planner’s imperfect knowledge about the preconditions
and effects of its operators. For instance, the robot may

expect itself to be holding the piece of gold after per-
forming a pickup action, while its arm may fail to pick
up the gold because the weight exceeds its capacity, or
some other agent may have taken the gold away in the
mean time.

It is desirable for an agent to be able to function rea-
sonably well in the world despite the lack of a complete
{(and correct) plan at the beginning. One possible so-
lution is to interleave planning with plan ezecution. In
an embedded planning system, which continuously in-
teracts with its environment, additional information can
often be acquired during the course of its actions. Such
information can then be used to guide the system’s fu-
ture actions, especially in unpredicted situations. On
the other hand, a planning system may choose to trade
increased planning time for improved performance in
plan execution. It should be stressed that the amount
of available information puts a realistic bound on how
much a plan can be optimized. In other words, when
the information is not suflicient to warrant a specific
optimal plan for the given situation, no amount of plan-
ning will help find the optimal solution. Furthermore,
a planner may not always have enough computational
power to figure out the right actions to perform under
resource constraints. There has been active research on
strategies for interleaving planning and acting {Bratman
et al., 1988, Georgeff and Ingrand, 1989], although it re-
mains largely an open problem.

At the other end of the spectrum of approaches to
planning in dynamic environments is the various work
under the rubic of reactive planning [Agre and Chap-
man, 1987, Kaelbling, 1987, Schoppers,1987}. Instead
of assuming the intended effects of an action to always
hold, the world can be in any of all the possible states
after action execution. Constant feedbacks from sensory
inputs are necessary, and planning becomes the task of
determining an action to do given the current situation.
One important research issue is the integration of goal-
directed reasoning with reactivity [Drummond, 1989b,
Nilsson, 1989].

To address the problem of incomplete information, we

proposes partial planning as a new way to control the
behavior of an intelligent agent. The basic idea under-
lying our approach is to plan as much as is permitted
by the planner’s current resource without overcommit-
ing one’s actions. Our planner maintains a partial plan
at all times, and refines the plan when new resource,
i.e. 1nformation or time, becomes available. Our ap-
proach allows the system to act at any time according
to its partial plan, although the quality of the actions
performed depends strongly on the amount of resource
that has been utilized by the planner.

In the following sections, we first describe a plan rep-
reseniation formalism suitable for planning in uncertain
and changing environments. We then analyze the im-
portant role of information (or knowledge) in planning,
and show how new information is used to prune the
space of possible plans. A simple strategy for interleav-
ing planning and execution used is given. The process of
incremental specialization of partial plans will be illus-
trated by an example in Section 4. Section 5 sketches an
anytime algorithm [Dean and Boddy, 1988] for partial
planning.

Plan Representation

In classical planning, a planner typically takes as in-
put the initial state(s) of the world as well as the goal
state(s), and outputs a plan that will achieve the goal(s)
when executed from the initial state. Two types of
plan representation that have been most widely used
in earlier planners are: state-space and action-ordering
[Drummond, 1989a). As will be discussed below, such
plan representations are not adequate for dealing with
incomplete information. We will introduce a more gen-
eral plan representation formalism with functional se-
mantics that is suitable for the job.

State-space plan representation A state is a snap-
shot of the world, and an action is a transformation of
the world from one state into another. A state-space
plan is a path from (one of) the initial state(s) into (one
of) the goal state(s) in the space of all possible world
states. The order of actions in a standard state-space
plan is completely specified, and the states (including
intermediate ones) are explicitly represented. A partial
plan (or a partially constructed plan) can be defined
to be an incompletely specified path, i.e. the prefix or
suffix of a complete plan.

The problem with representing plans this way is that
the causes/effects of the operators are assumed to be
completely known, and there is no provisions for han-
dling unexpected situations. It is also difficult to de-
scribe behavioral properties such as constraints among
actions in a plan without prematurely committing to a
fixed sequence.

Action-ordering plan representation An action-
ordering representation has no explicit notion of states.

A plan is a set of operators with constraints on the order
of variables. This representation allows the use of least-
commitment strategy in plan construction, i.e. actions
in the plan are left unordered as long as possible [Sacer-
doti, 1975]. A partial plan, or a partially-ordered plan,
is one in which the order over the (possibly incomplete)
set of actions is not fully specified. Partially-ordered
plans allow more flexibility, but it still assumes com-
plete knowledge about the effects of actions, and thus
cannot handle unpredicted situations. In particular, the
reasoning necessary for deciding the ordering of actions
in the plan depends on the planner’s knowing the pre-
conditions and postconditions of all the actions. If the
information is incomplete, then the resulting ordering
may be incorrect.

Functional plan representation Let S be the set
of states and A be the set of actions, then each action
a in A can be described by a function from states into
states, i.e. a ; S — S. A complete plan o consisting
of a sequence of actions a;,...a, from A can thus be
represented by a function « : § — § defined as follows
(where the operator o stands for function composition}:

a=a30Q20 - -0ap.

A partial state-space plan is a function §: § — S such
that o = Boa’ or a = a'of for some sequence of actions
a'. A partially-ordered plan is a function v : § — §
such that o = 7(v, a') for some functional 7.

In order to relax the assumption of complete knowl-
edge, reactive or situated planners consider a plan to
be a set of mappings from situations into actions. A

reactive plan can be described by a function,
a: S — A

The sequence of actions is decomposed into individual
actions so that the reliance on the effects of actions to
hold is eliminated. However, such approach based its ac-
tion selection on the current state only, therefore it is not
powerful enough to deal with cases that call for a finite
number of repeated actions without looping. One can
address this problem by having some metalevel mech-
anism that reasons about the actions (e.g. counters,
random noise etc.) and get the system out of trouble
whenever necessary.

Our approach generalizes the view taken in reactive
planning in two ways: We uses the notion of percepts
(denoted by P), i.e. a possibly partial description of the
world, to account for the sensory limitations of an agent.
We also includes the history of percepts by modeling
the behavior (plan) of an agent as a function from its
perceptual histories into actions, i.e.

a: P — A
Consequently, we define a partial plan to be a partial

specification of this function, i.e. some mappings are not
(uniquely) defined. Using perceptual histories allows us

to represent state sets (e.g. for uncertainty regarding
initial state) as well as internal states of the agent. This
formalism is more expressive than the traditional plan
representations in that we can describe the correlations
between states and actions, sequences or ordering of ac-
tions, as well as constraints among actions in different
states [Genesereth and Hsu, 1989].In addition, it offers
the ability to handle incomplete information since one
can start with a partial specification of a plan and refine
the plan incrementally by simply adding information to
it. We will explain this process in more details in the
following section.

Information-specific planning

Our planner starts out by assuming the most general
partial plan, in which every action is applicable at ev-
ery situation. Intuitively, each partial plan corresponds
to a set of possible complete plans. When the spec-
ification of the plan entails a unique action for any
given perceptual history, the plan becomes complete.
At any point of time, the planner tries to find the max-
imally specific plan based on the current information
and computational resources. This idea is analogous to
least-commitment strategy in non-linear planning. The
choice of action for any given perceptual history is not
made prematurely so that new information can be uti-
lized to make better decisions. As a result, the efficiency
of both planning and execution can be improved.

Planning is thus a process of incremental specializa-
tion of the partial plan at hand. For example, if the
planner receives information about the goal, it can as-
sert that the proper action for any situation satisfying
the goal is to stop (succeed). It can also assert that an
action should be performed at a given situation if the re-
sult of executing that action satisfies the goal condition.
Similarly, the planner can declare an action undesirable
if it prevents the goal from being achieved. In any case,
the partial plan becomes increasingly specific as infor-
mation accumulates. The incremental specialization is
performed using a technique based on partial evaluation.

Given incomplete plan specifications, the behavior of
a system 1s underconstrained such that more than one
action may be possible in some situations. The amount
of information available puts a lower bound on the num-
ber of possible plans consistent with the partial specifi-
cation. When the information is incomplete, more plan-
ning won’t help. Therefore, one only needs to {or can)
plan ahead as much as what one knows. On the other
hand, it has been shown that there is no benefit to delay
planning if complete information is available and time
is not critical [Genesereth, 1989].

However, under resource constraints, it is not always
possible to compute all such mappings in a partial plan.
Even if it’s computationally feasible, it may not be eco-
nomical to do so, since some of the situations will occur
rarely or none at all. The latter problem is due to the
fact that the planner does not take any knowledge about

state transitions into account. If we assume the world is
predictable most of the time, then the planner can use
a model of the world, i.e. a state transition funtion that
maps the perceptual history and an action into a new
percept, to guide the computation.

Let’s define the size of the search space for our plan-
ner to be the number of action sequences that can be
chosen based on the current computation. The lower
bound on the search space is the the number of possi-
ble complete plans corresponding to the current partial
plan. In general, given complete information, the size of
the search space is inverse proportional to the planning
time spent as shown by curve I, in Figure 1.

Search
Space

Planning Time

Figure 1: Effects of information and planning time.

The above diagram also shows the lower bounds of
the search space when there is no information (lp) or
partially specified (I; and I;). The more information
is available, the lower the bound on the search space
becomes. For example, in Figure 1,

I > Ig > I 1.

Interleaving planning and execution It should be
noted that the boundary between planning and plan ex-
ecution is quite artificial. Interleaving planning and exe-
cution is beneficial, if not necessary, when information is
incomplete. For example, results from action execution
can sometimes help improve future steps in the plan, i.e.
the planner acquires more information, thus effectively
lowers the bound of the search space.

The strategy used by our planner is to spend as much
time planning until it reaches the lower bound pre-
scribed by the current information, or until it has to
act. (See Section 5 for more details.) Our approach
makes explicit the roles of information and time, which
are the two most valuable resources in planning. So
far, we have not consider the optimality of the resulting
plans. Given a goal, all the plans that can lead to the
goal state(s) are considered to be equally good.

Bay-Area Transit Problem

Let’s look at an example of planning with incomplete
information. Suppose we are given a map of the high-
ways in the Bay Area. To simplify the presentation, we
assume that all roads are either vertical or horizontal,
and two roads always intersect at the right angle. The
set of possible percepts are the names of the intersec-
tion of any two roads, such as PO, P1, ..., P10 shown in
Figure 2. There are five actions available to the agent:
N (move-to-north), § (move-to-south), E (move-to-east),
¥ (move-to-west), and Stop. We further assume that
any two adjacent nodes can be connected by a bus or
not, and the agent needs to take a bus from one node
to another.

Berkeley - Rc?ads
; =~ Bridges
Pa — [IR Buildings
{7} Bay
y N
pio| "8 Ps [..o P

P8 P2

Pg pP7 P3

Stanford A~i)

Figure 2: A map of the Bay Area.

The incompleteness of this problem stems from the
facts that the agent does not have a map with the bus
routes to begin with, there may be traffic jams blocking
the road, and roads (or bridges) may be closed tem-
porarily etc.

In general, if there are n percepts and m actions, the
initial search space for the agent will be:

3 k
mitntnitotntte

Our task for the agent is to get from Berkeley to Stan-
ford. Even without any specific information other than
the map, the agent may end up in the right state af-
ter a tremendous amount of search since there are finite
number of nodes and connections.

If the agent tries to come up with a plan in the ab-
sence of complete information, it will often find itsell
failing to achieve the goal, and having to revise it’s plan
by backtraking and replanning. This process is very in-
efficient. Instead, the agent may try to acquire more
information, e.g. asking for advice, and plan as much as
what the information entails. For example, some other
agent can give world specifications or procedural hints
like to following:

e World specifications: e.g.
There are three bridges for crossing the Bay.
Berkeley is located at PO.
Stanford is located at P9.

o Elimination of specific actions: e.g.
Do not take the bus from P4 to P5.

Prescription of specific actions: e.g.
Move south from p1.

Constraints on actions: e.g.
Cross the Bay exactly once.

e Preferences among possible alternatives: e.g.
Prefer moving south from P5 than moving west.

After giving the above information to the agent, the
search space has been reduced significantly. Most of the
statements above rely on the agent’s current percept
only except constraints such as “Cross the Bay exactly
once”. It is necessary to refer to the perceptual history
in order to specify this sort of information. Although
statements expressing preferences among actions does
not reduce the search space, it affects the order in which
the search is carries out by the planner.

Anytime Planning

The constraints on the amount of knowledge and com-
putational resources currently available prompted us to
come up with a practical way of implementing the ideas
described in the previous sections. We designed an any-
time algorithm that utilizes a data structure for caching
precomputed results in order to react in real-time situ-
ations.

Our system executes a simple percetve-select-act loop.
It observes its environment to decide the current per-
cept, selects an action based on the perceptual history,
and then acts on the action. Let’s assume the observa-
tion and action execution are performed by the agent’s
sensory and effectory component. The bulk of what the
system does at execution time is to decide which ac-
tion to perform. We can imagine the planner constantly
tries to prove correlations among its perceptual histories
and actions, and the results are stored in a huge lookup
table!. Each perceptual history has a corresponding
entry in the table, and its value contains the list of ac-
tions that are applicable, i.e. those that have not been

1The actual implementation is done by a tree structure
for correlations that have been explicitly referenced, but we
won’t go into details in this paper.

pruned. The actions are ordered in a way that is consis-
tent with the information regarding preferences in the
partial plan.

The planning algorithm can be roughly describe as
follows:

LOOP forever
Observe
Update perceptual history
Look up entry in the table
IF more than one actions found
THEN Plan (reaction-time-bound)
Choose an action A1, s8.t.
no other actions are preferred to Al.
Act
END LOOP

When a unique action is not prescribed, the next ac-
tion is chosen at random from the set of applicable ac-
tions. As such, the system is able to act on demand
at any time, and its performance should improve over
time. This approach will work in any domain in which
the effects of actions does not prevent goals from being
achieved if any solution actually exists. Under this con-
dition, our planning algorithm is guaranteed to find a
solution provided one exists, although it may not find
the optimal solution when solutions are considered to
be different in terms of their performance.

Acknowledgements

Thanks go to Mike Genesereth for motivating the work
on partial programs. Discussions with John Woodfll,
Nils Nilsson, and Charlie Koo have influenced the de-
velopment of the ideas presented in this paper.

References

[Agre and Chapman, 1987] Philip E. Agre and David
Chapman. Pengl: An implementation of a theory
of activity. In Proceedings of the Sizth National Con-
ference on Artificial Intelligence. Seattle, WA, pages
268-272, July 1987.

[Bratman et al., 1988] Michael E. Bratman, David J.
Israel, and Martha E. Pollack. Plans and resource-
bounded practical reasoning. Computational Intelli-
gence, 4(4):349-355, 1988.

[Dean and Boddy, 1988]

Thomas Dean and Mark Boddy. An analysis of time-
dependent planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence. Saint
Paul, Minnesota, pages 49-54, August 1988.

[Druramond, 1989a] Mark Drummond. Ai planning: A
tutorial and review. Technical Report AIAI-TR-30,
University of Edinburgh, January 1989.

[Drurnmond, 1989b] Mark Drummond. Situated con-
trol rules. In Proceedings of the First International
Conference on Principles of Knowledge Representa-
tion and Reasoning, May 1989.

[Genesereth, 1989] Michael R. Genesereth. A compar-
ative analysis of some simple architectures for intel-
ligent agents. Technical Report Logic-89-1, Stanford
University, March 1989.

[Genesereth and Hsu, 1989] Michael R. Genesereth and
Jane Yung-jen Hsu. Partial programs. Technical Re-
port Logic-89-20, Stanford University, 1989.

[Georgeff and Ingrand, 1989] Michael P. Georgeff and
Francois Felix Ingrand. Decision-making in an em-
bedded reasoning system. In Proceedings of the
Eleventh IJCAIL Detroit, Michigan, pages 972-978,
August 1989.

[Hsu and Genesereth, 1989] Jane Yung-jen Hsu and
Michael R. Genesereth. Knowledge compilation for
informable agents. In: Proceedings of the AAAI
Spring Symposium Series on Al and Limated Ratio-
nality, March 1989.

[Kaelbling, 1987] Leslie Pack Kaelbling. An architec-
ture for intelligent reactive systems. In M. P. Georgeff
and A. L. Lansky, editors, Reasoning about Actions
and Plans: Proceedings of the 1986 Workshop, pages
395-410. Morgan Kaufmann Publishers, Los Altos,
CA, 1987.

[Nilsson, 1989] Nils J. Nilsson. Action networks. In
Proceedings of the Rochester Planning Workshop:
From Formal Systems to Practical Systems. Tenen-
berg, J. et al. (eds.), University of Rochester, 1989.

[Sacerdoti, 1975] Earl D. Sacerdoti. The Non-linear Na-
ture of Plans. In Proceedings of IJCAI-75, pages 206~
214, 1975.

[Schoppers, 1987] Marcel J. Schoppers. Universal plans
for reactive robots in unpredictable domains. In Pro-
ceedings of the Tenth IJCAIL Milan, Italy, pages 852~
859, 1987.

A Framework for Replanning in Hierarchical Nonlinear Planning’

Subbarao Kambhampati

Center for Design Rescarch
Stanford University
Stanford CA 94305

email: rao@sunrise.stanford.edu

1. Introduction

An iraportant characteristic of planning in unpredictable
and changing and environments is that the planner may
often be called upon to modify its plans in response to
unexpected changes in the environment. Such
modification, called replanning, is necessitated during plan
execution when the planner’s expectations of the world
are being violated either due to the actions of some hostile
agent or due to the occurrence of some random unex-
pected events.! To manage replanning efficiently, the
planner requires the ability to detect when a modification
is needed to its plan and to flexibly and efficiently carry
out the modification. To facilitate this, the planner needs
access t0 an appropriate representation of the internal
causal dependency structure of the plan. The efficiency
considerations demand that the modification be controlled
in such a way as to minimally change the existing plan,
preserving as many of its applicable parts as possible.

Much of the previous work on replanning for
hierarchical planners did not focus on conservative replan-
ning capability. In this paper, we will present a domain
independent framework for replanning in Aierarchical
nonlinear planning, the dominant method of abstraction
and least-commitment in classical planning [ChM84].
Our framework uses a formal hierarchical representation
of plan rationale to guide and control replanning. In con-
trast to previous approaches to replanning, our approach
explicitly focuses on conservatism of plan modification by
attempting to reuse all the applicable parts of the existing
plan during replanning. We shall argue tha' these charac-
teristics make it particularly suitable for intcgration into a
general architecture for reactive planning.

The replanning approach we present here is a direct
product of our research on PRIAR, a framewcrk for flexible

* The support of the Defense Advanced Rcsearch Projects
Agency and the U.S. Army Engineer Topograp.ic Laboratories
under contract DACA76-88-C-0008, and that of Office of Naval
Research under contract N00014-88-K-0620 are gratefully ack-
nowledged.

! Note that replanning in this sense does not cover the exe-
cution time failures that arise due to the incorrectness and incom-
pleteness of the planner’s domain knowledge [Kam89].

reuse and modification of plans [Kam89] [KaH89a]
[KaH89b], and it has been implemented in the PRIAR sys-
tem. In PRIAR, the internal dependencies of a plan are
represented explicitly in the form of its validation struc-
ture (see below). The validation structure is then used to
guide and control the modification and reuse of that plan
in a new problem situation. Our main claim in this paper
is that PRIAR’s validation structure based plan modification
approach provides an efficient and conservative frame-
work for replanning in hierarchical planning. In particular,
we develop the notion of validation-states for monitoring
the execution of a plan, and to check if the current plan
itself can be restarted in the event of execution-time
failures due to unexpected events. If the current plan can-
not be restarted, it is flexibly reused to achieve the origi-
nal goals from the current world state.

We begin with a brief overview of PRIAR’s valida-
tion structure based plan modification frarmework. Then,
we explain how PRIAR monitors the execution of its plans,
and how it carries out replanning efficiently. Next we dis-
cuss the role of this type of replanning capability in a
reactive planning architecture, and finally discuss the rela-
tionship to previous research.

2. Overview of PRIAR Plan Modification
Framework

2.1. Validation Structure

In PRIAR framework, the building blocks of the stored plan
dependency structure are validations. A validation is a 4-
tuple (E ng,C ,nd) where the effect E of the task n; in the
hierarchical task network (HTN) is used to satisfy (support)
the condition C of task n,;. For any plan synthesized by a
hierarchical planner, there are a finite set of validations,
corresponding o the protection intervals [ChM84] that are
maintained during planning; we denote this set by V. The
individual validations are classified based on the type of
the conditions they support.

The uniqueness of PRIAR framework is in the way
the plan validations are stored on the HTN to guide its sub-
sequent modification. Each task n in the HTN is annotated
with the set o validations that are supplied by, consumed
by. or necessarily preserved by the tasks belonging to the

sub-reduction (hierarchical wedge) rooted 2. n. We call
these the external effect conditions (e—conditions), exter-
nal preconditions (e —preconditions) and persistence con-
ditions (p—conditions) respectively of task n. These anno-
tations are computed efficiently for each node in the HTN
in a bottom-up, breadth-first fashion at the planning time
for every plan that is generated by the planner. In
[KamB9], we provide a O (N?) algorithm (where N is the
length of the plan) for doing this.

The annotated validation structure effectively pro-

vides a hierarchical explanation of correctness of the plan

with respect to the planner’s knowledge of the domain?.

In PRIAR, it is used (i) to locate the parts of the plan that
would have to be modified, (ii) to suggest appropriate
modification actions, (iii) to control the modification pro-
cess such that it changes the existing plan minimally to
make it work in the new situation, and also (iv) to assist
in plan mapping and retrieval.

2.2. Plan Modification
Verification

Given a plan to be reused to fit the constraints of a new
problem situation, PRIAR first maps the plan into the new
problem situation. This process, known as interpretation,
marks the differences between the plan and the problem
situation. These differences in turn are seen to produce
inconsistencies in the plan validation structure (such as
missing, failing, or redundant validations). In PRIAR
framework, a plan is modified in response to inconsisten-
cies in its validation structure. PRIAR uses a process
called annotation-verification to suggest appropriate
modification to the plan for removing those inconsisten-
cies from the validation structure of the plan. These
domain independent modifications depend on the type of
the inconsistency. They include removal of redundant
parts of the plan, exploitation of any serendipitous effects
of the changed situation to shorten the plan, and addition
of high level refit-tasks to re-establish any failing valida-
tions. At the end of the annotation-verification, which is a
polynomial time process [Kam89], PRIAR will have a par-
tially reduced plan with a consistent validation structure.
Next, PRIAR’s hierarchical nonlinear planner accepts this
partially reduced plan and produces a completely reduced
HTN. The planner uses a conservative heuristic search
control strategy called task kernel-based ordering (see
[KaH&89a]) to control this process of refitting, so as to
localize the modification to the plan and preserve as many
of its applicable portions as possible.

via annotation-
4

3. Replanning in PRIAR

A general replanning framework requires strategies for (i)
monitoring the world to detect unexpected events that may
cause problems to the plan executability, and (i) for

* For a complete and formal presentatica of validation
structure, see [Kam89].

modifying the plan conservatively to make it work in the
changed situation. PRIAR’s approach is to characterize the
ramifications of the unexpected events on the executability
of the plan in terms of the inconsistencies they cause in
the validation structure of the plan, and to use its plan
modification strategies to efficiently repair those incon-
sistencies in the presence of the planner. To detect the
inconsistencies in the validation structure, PRIAR uses the
notion of validation-states. To correct the inconsistencies,
it uses the annotation verification and refitting processes.

3.1. Execution Monitoring

In PRIAR framework, a plan is considered executable as
long as there are no inconsistencies in its validation struc-
ture. To monitor problematic events during execution,
PRIAR keeps track of the set of validations that should
hold before and afler the execution of each primitive task
in the plan. These structures, called validation-states, for-
mally characterize the conditions whose preservation
should be monitored, and thereby help the planner recog-
nize the need for modifying its plan during execution.
Using the task annotations (introduced above), PRIAR
defines the notion of a validation-state preceding and fol-
lowing each primitive executable action in the plan as fol-
lows:

Preceding Validation-state AP (n) =
e —preconditions (n) \J p—conditions (n)

Succeeding Validation-state A*(n) =
e—conditions (n) \U p—conditions (n)

The validation-states thus specify the set of validations
that should hold at each point during the plan execution
so that the rest of the plan will have a consistent valida-
tion structure (thereby guaranteeing its successful execu-
tion)>. Only those unexpected events that affect the vali-
dations in the current validation-state cause problems to
the plan executability necessitating replanning; all the oth-
ers can be safely ignored. This gives PRIAR the following
simple model for execution monitoring.

Each primitive task n in the HTN is considered an
execution point for the plan. Normally, the primitive
tasks can be executed in any way consistent with the par-
tial ordering relations among them. Before executing a
primitive task n of the plan, a check is made to see if any
of the validations in its preceding validation-state Af (n)
are failing in the current world state W. Formally, we say
n is executable if

3 An important point to bear in mind here is that even if
the execution monitoring finds no discrepancies between the
validation-states and the world states, the plan may stll fail to
achieve its intended outcomes because of incorrectness and in-
completeness of the planner’s domain model. The replanning
problem addressed here only guarantees detection and correction
of failures that lie in the deductive closure of the planner’s
domain knowledge.

Vvi{E i ,Cng)e AP (n), WH—E

where W = FE is true if E can be deductively inferred

from W and the domain causal theory. Thus, by ‘‘execut-
able’’, here we mean that not only the current primitive
action, but the rest of the plan can be successfully exe-
cuted. If any validation belonging to A”(n) does not
satisfy the above condition, it implies that there are incon-
sistencies in the plan validation structure; the plan cannot
be successfully executed from this point.

In practice, this check could either be done by mak-
ing explicit monitors for keeping track of the truth values
of the validations or by allowing an external module to
input an arbitrary predicate as the effect of an unexpected
event. In our current implementation, we have the user
specify an arbitrary description P as the partial effect of
some unexpected event, and the system uses that informa-
tion 10 compute the resultant world state W and checks to
see if any of the validations in the current validation-state

fail in W*.
3.2. Replanning

3.2.1. Restartability

We have shown above that if any of the validations of
AP (n) do not hold in W, the plan cannot be successfully
executed from n. However it may be possible to restart
the plan from some other execution point. The advantage
of checking for such a possibility is that it gives the
planner a chance to reduce its response tims by eliminat-
ing the necessity for replanning, there by making it very
reactive. However, it should be noted that given
sufficiently general types of unexpected events, a plan is
typically not restartable, unless happens to be a “‘span-
ning iree plan’’ [Nil89] (see below).

Validation-states can help us decide efficiently
whether or not a plan can be restarted from the current
world state to achieve all its intended goals. When the
execution monitoring detects discrepancies between the
current validation-state and the current state of the world,
PRIAR scans the primitive tasks in the HTN, starting back-
wards from the goal node, to see if there exists a task n;
such that all the validations in its preceding validation-
state A (n;) are satisfied in the current world state W. If
such an n; is found, ie.,

‘v‘v:(E, ng, C, ng)eA?(nj), W — E

4 Computation of the current world state afier an unexpect-
ed event involves removing any descriptions that are contradicted
by P from the expected world state W', and adding P and any
deductive effects that follow from P 1o the result. PRIAR
represents the causal theory of the domain in the form of “‘state
rules” and ‘‘causal rules’’ (as described in [Wil88]). The causal
theory is then used to infer the deductive effects of the unexpect-
ed event.

then the execution can be restarted fron. n; onwards. If
no such validation-state exists, the plan cannot be res-
tarted and we have to rcsort to a more general replanning
strategy involving the modification of the plan.

Since only a finite set V of validations constitute the
plan validation structure, we can ensure that cach valida-
tion is checked at most once by kecping track of the vali-
dations that have already been checked. This gives a
scanning algorithm that runs in time linear in the size of
V.

3.2.2. Plan Modification during Replanning

When the current plan is not restartable from any of the
execution points, then it has to be modified to fit it to the
current situation. Efficiency considerations demand that
as much of this plan be reused as possible to achieve the
goals from the current situation. Depending upon the
ramifications of the unexpected event on the plan, both
the parts of the plan that are yet to be executed, and those
that are already executed might be reusable in the new
situation. (Suppose an unexpected event undoes some
goals that are achieved by the parts of the plan already
executed. Then it is possible that some of those goals
could be reachieved efficiently by re-executing some of
the already executed actions, instead of trying to plan for
those goals again.) Thus, if a replanning strategy only
attempts to repair the unexecuted parts of the plan, it
might lead to unnecessary repetition of some planning
activity. What we need here is the ability to flexibly
reuse all the applicable portions of the current plan.

PRIAR’S approach to this general replanning problem
is to consider it as a problem of flexible plan reuse. In
particular, if R is the HTN being executed, G° the set of
original goals of the plan, and W the current state of the
world (which necessitated the replanning), then, PRIAR
converts the replanning problem into the following plan
reuse problem:

Find a plan to achieve G° from the current world
state W, reusing the plan R® and retaining as many
of its applicable parts as possible.

That is, instead of trying to repair the validation failures
that are preszent in the validation-state preceding the
current execution point, PRIAR tries to reuse the entire ori-
ginal plan to achieve the original goals starting from the
current situation. The motivation is that a straight forward
algorithm to repair validation failures preceding the
current execution point would not be able to reuse already
executed parts of the original plan.

During the reuse of R°, the interpretation procedure
marks the differences between A®(n;) of R° and W.
These differences will be causing inconsistencies in the
validation structure of R°. The interpreted plan is then
sent to the annotation-verification procedure, which carries

5 Since this is a replanning situation, the interpretation
mapping will be an identity mapping,.

out various modifications to remove the inconsistencies in
the validation structure. The modification actions depend
on the type of the validation failure or inconsistency.
They make use of the node annotations to remove redun-
dant parts of the old plan or add high leve. refit-tasks to
achieve missing or failing validations. Ir addition to
repairing inconsisiencies, the annotation-verification pro-
cedure will also take advantage of any serendipitous
effects at the execution time to shorten the plan.(For com-
plete details of these modification actions see [Kam89].)

The partially reduced HTN that is the result of the
annotation-verified plan is then sent 1o the PRIAR refitting
process, where any refit-tasks suggested by the
annotation-verification process are reduced to produce a
complete plan. This refitting process is controlled by the
task kemnel-based ordering which essentially involves
reducing each refit-task by a task reduction schema that
causes the least amount of disturbance to the validation
structure of the remaining applicable parts of the plan; this
strategy is detailed in [KaH89a). At the end of this pro-
cessing, PRIAR would have modified the original plan
minimally to make it achieve the original goals from the
current (changed) world situation.

By expending a polynomial amount ¢f work during
annotation-verification to pinpoint inapplicatle parts of the
plan, and by controlling refitting, PRIAR' attempis (o
minimize the repetition of planning effort (thereby accru-
ing possibly exponential savings in replanning time).
However, while PRIAR tries to reuse as much of the origi-
nal plan as possible to make the replanning efficient,
unless we can circumscribe the ramifications of the unex-
pected events, the worst case performance of the replan-
ning is still the same as that of planning from scratch. In
particular, the unexpected events may be such that very
little of the plan can be reused, making the replanning
problem degenerate into from scratch planning. This is
however to be expected; it is the average case efficiency
of replanning that we believe will be improved by this
strategy.

4. Replanning and Reactivity

Recent research in reactive planning has lead to increased
interest in planning and execution architectires that allow
an agent to rapidly respond to changes in i3 world situa-
tion. In view of this, an argument could be‘made that the
plan modification strategies such as the ones proposed
here would require so high a response time to change the
course of action in the event of unexpected events as
be of liitle use in reactive planning architectures. In the
following, we will counter this argument by pointing out
the utility of a flexible and conservative plan modification
strategy in reactive planning architectures.

Typical strategies for increasing the reactivity of
plans involve construction of plans with a high degree of
conditionality, which will be ablte to respond to most
unanticipated events at execution time by res‘arting execu-
tion from an appropriate conditional branck. As Nilsson

points out in [Nil89], to be able to deal with every unex-
pected event in this way, the planner needs to be able to
construct a ‘‘spanning tree plan’ (that represents the
course of actions which can take the agent from any
world state to the goal state) rather than the usual
“‘solution-path plan’> (which takes the agent from a
specific initial state to the goal state). However, for any
realistic planning domain, automatic construction of a
spanning tree plan will be prohibitively expensive®
[Gin89]. This implics that for any realistic plan, there
may be several execution time events which cannot be
handled by restarting the plan; the agent would have to
modify the plan to make it work in the new situation’.

We suggest a more plausible approach for construc-
tion of such reactive plans that retaing the ability to
replan, and combines the result of replanning with the
current plan to incrementally construct a tree-plan [Nil89].
In such a strategy, an unexpected event which requires
replanning the first time can be tackled by restarting the
tree-plan the next time around. This gives the planner a
way of incrementally acquiring a sufficiently reactive plan
to respond to the typical types of unexpected events in the
domain. It is in this sense that we believe that the
replanning framework described here can become a com-
ponent of a general architecture for reactive planning. In
particular, we are currently investigating to see if the
replanning framework of PRIAR can be used to construct
and extend tree-plans incrementally during execution time.
We believe that the flexibility and conservatism of
modification offered by PRIAR framework would be of
particular utility in ensuring both the efficiency of
modification and the compactness of the acquired tree-
plan.

5. Related Work

One of the assumptions made by the STRIPS plan execu-
tion monitoring system PLANEX [FHN72] was that execu-
tion time failures can always be handled by restarting (or
skip starting) the plan execution from an appropriate past
(future) execution point. PLANEX used datastructures
called triangle tables to decide the point from where the
plan can be restarted. The notion of validation-states in
our approach can be seen as a generalization of the trian-
gle table kemnels [FHN72] to handle partially ordered
plans. However, as we pointed out in the previous sec-
tions, unless the plan being executed has sufficient condi-
tionality, the capability to restart will not be sufficient 1o

6 Of course, a tree plan that anticipates the typical kinds of
unexpected events and provides conditional branches only for
them would also serve the purpose. However, it is not clear how
this can be done a priori.

7 Ginnsberg [Gin89] argues that knowing what to do when
the cached plans are not applicable in the current situation, and
incrementally increasing their coverage during runtime is a linc
of research which would lead to substantial improvements in the
behavior of situcted automata.

deal with unexpected events at execution time.,

Very little past rescarch has addressed the issue of
flexible and conservative replanning of partially ordered
plans. Work that does address this problem includes
[Hay75] and [Dan77]. However, the replanning in these
systems does not allow for much more than deleting
redundant parts of the plan, and redoing ‘the planning.
Wilkins [Wil85] points out that these systems are non-
conservative in the sense that they often delete potentially
reusable parts of the plan, thus increasing the replanning
cost. Wilkin’s SIPE [Wil85] planning system has consider-
ably more advanced replanning capabilities. However,
SIPE’s replanning strategy can also be construed as non-
conservative in comparison 10 PRIAR’s. In particular, SIPE
could not reuse any already executed parts of the plan,
even if the corresponding goals have been undone. It also
does not attempt to ensure conservatism of the refitting
once high level goals to be reachieved have been sug-
gested. Another difference between the approaches of SIPE
and PRIAR concerns the latter’s reliance on validation
structure as a formal hierarchical representation of plan
rationale. Among other things, this gives PRIAR a precise
way of specifying replanning actions to cover the various
types of applicability failures [Kam89].

6. Summary

We have presented a framework for replanning where the
plan validation structure, a formal hierarchical representa-
tion of plan rationale, forms the basis for execution moni-
toring, restarting and replanning strategies. We have
shown that casting the problem of replanning as that of
reusing the original plan to achieve the intended goals
starting from the current world state gives rise to a flexi-
ble and conservative replanning strategy. We have also
discussed the utility of our replanning strategy in a gen-
eral architecture for reactive planning.

References

[ChM84] E. Charniak and D. McDermott, ‘‘Chapter 9:
Managing Plans of Actions™, in Introduction
to Artificial Intelligence, Addison-Wesley
Publishing Company, 1984, 485-554.

L. Daniel, ‘‘Planning: Modifying non-linear
plans’’, DAI Working paper 24, University of
Edinburgh, December 1977. (Also appears as
“Planning and Operations Research,” in
Artificial Intelligence: Tools, Techniques and
Applications, Harper and Row, New Yoik,
1983).

R. Fikes, P. Hart and N. Nilsson, ‘‘Learning

and Executing Generalized Robot Plans™,
Artificial Intelligence 3 (1972), 251-288.

M. L. Ginnsberg, ‘‘Universal Planning
Research: A Good or Bad Idea?”’, Al
Magazine 10, 4 (Winter 1989).

[Dan77]

[FHNN72]

[Gin89]

[Hay75]

[KaH89a]

[KaH89b]

[Kam89]

[Nil89]

[Wil85)

[Wil88]

P. J. Hayes, ‘‘A Representation for Robot
Plans’’, Proceedings of 4th IJCAI, 1575,

S. Kambhampati and J. A. Hendler, *‘Control
of Refitting during Plan Reuse”, 1lth
International Joint Conference on Artificial
Intelligence, Detroit, Michigan, USA, August
1989, 943-948.

S. Kambhampati and J. A. Hendler, “‘Flexible
Reuse of Plans via Annotation and
Verification’’, Proceedings of 5th IEEE Conf.
on Applications of Artificial Intelligence,
1989, 37-44.

S. Kambhampati, ‘‘Flexible Reuse and
Modification in Hierarchical Planning: A
Validation Structure Based Approach’, CS-
Technical Report-2334, CAR-Technical
Report-4698, Center for Automation Research,
Department of Computer Science, University
of Maryland, College Park, MD 20742,
October 1989. (Ph.D. Dissertation).

N. J. Nilsson, ‘‘Telco-Reactive Agents”,
Stanford University, Department of Computer
Science, 1989. (Draft).

D. E. Wilkkins, ‘‘Recovering from execution
errors in SIPE’’, Computational Intelligence 1
(1985).

D. E. Wilkins,
planning’’,
(1988).

““Causal reasoning in
Computational Intelligence 4

Real-Time Search for Dynamic Planning

Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, Ca. 90024

Abstract

We present a generic class of algorithms for planning
in uncertain, unpredictable, or changing environments.
The algorithms plan their actions by searching in a prob-
lem space to a search horizon determined by the com-
putational or informational resources available, They
then apply a heuristic evaluation function at the fron-
tier nodes to estimate the relative merit of the predicted
outcomes, and back up these values to the immedi-
ate children of the current state. Finally, one move is
made to the best child. Successive actions are based on
new searches that make use of new observations of the
state of the world. We show that in the case of sliding
tile puzzles, a simple combination of heuristic and sub-
goal searches yields a real-time search algorithm that
scales up to arbitrarily large problems. In particular,
the running time of the algorithm grows proportionally
to the lengths of optimal solutions as the problem size
increases.

Introduction

Some of the most successful programs developed in the
Al community are two-player game programs. For ex-
ample, the best chess programs are comparable to the
top 30 players in the country[l]. To some degree, these
programs plan moves in uncertain, unpredictable, and
changing environments. What general lessons so such
programs hold for planning in general?

There are two primary sources of uncertainty in a do-
main such as chess. The first is uncertainty about the
merit of a position, due to the combinatorially explosive
size of the problem space. If board configurations could
be searched all the way to terminal positions, the value
of particular configurations could be determined exactly.
However, since computation is severely limited, we have
to rely on the value of an inexact heuristic function ap-
plied to positions at the search horizon. The second.
and more important, source of uncertainty in two-player
games 1s the opponent’s moves. While the opponent’s
move can often be predicted with relative accuracy, the

actual moves made often differ substantially.

Given this uncertainty, what is the planning algo-
rithm employed by two-player game programs? Basi-
cally, these programs perform a full-width, fixed-depth
lookahead search to as a great a depth as the compu-
tational resources and time constraints on moves allow.
They apply the heuristic function to the frontier nodes,
alternately back up the minimum and maximum values,
and finally make one move to the child with the best
value. Additional techniques, such as alpha-beta, al-
low them to make the same decisions with substantially
less computation. This lookahead search is the planning
component of a chess program.

After the machine makes its move, and the opponent
makes a moves, the machine performs an entirely new
search for the next move. Thus the plan formulated
in the previous search is used only to make one move.
After that move, the plan is discarded and a completely
new plan is constructed for the next move. At first
glance this seems rather wasteful. The rationale for this
strategy is dictated by the combinatorics of the problem
space.

Assume that at any given point, there are B different
moves that can be made, and that the opponent will
then have B alternative responses available. Since all
possible moves and all possible responses are considered,
the portion of the search space examined in one search
that 1s still relevant after the machine chooses its move
and the opponent responds is only 1/B%. In chess, the
bran :hing factor B is typically about 35, resulting in
wast-« computation on the order of one part in 1225.
Thus, there is little to be lost by replanning each move
from scratch.

One could artificially add more uncertainty and un-
pred.ctability to the chess domain in any of a number
of ways. For example, pieces on the board could ran-
domly move at random times, or the move selected by
the raachine might only be executed with some proba-
bility, with other moves made in the remaining cases.
While these changes would make the game more dif-
ficult to play, the same algorithms would be employed.

In particular, the strategy of replanning each move after
the previous moves have been executed would be even
more important. If the board configuration is chang-
ing, then planning should be based on the most recent
observations of the board, and replanning prior to each
move provides the most up-to-date information. Simi-
larly, if the actual moves made are unpredictable, then
subsequent moves can be more effectively planned based
on the observation of previous moves, rather than their
predicted values.

Single-Agent and Multi-Agent Search

In previous work, we have extended the techniques of

fixed-depth lookahead search to single-agent problems
and multi-agent cooperative and competitive problem
solving. Each of these algorithms interleaves planning
and execution, and replans for each move from scratch
in constant time.

For the multi-agent case, the minimax algorithm can
be generalized to an algorithm called maxn[2]. Instead
of a single heuristic value associated with each position,
there is an N-tuple of values, with each component cor-
responding to the utility of that position for one of the
N agents in the game. The agents alternate moves, try
to maxirmize their utilities, and are indifferent to the
utilities of the other agents. The backed-up value of a
position where player 7 is to move is the entire N-tuple
of the child for which component 7 is a maximum.

In [3] we examine the extension of alpha-beta pruning
to multi-player garnes. We find that shallow pruning is
valid, but not deep pruning. Furthermore, while shal-
low pruning is quite effective in the best case, in the
average case the asymptotic complexity of the search is
not reduced over the brute-force case. Thus alpha-beta
pruning is not eflective on the average with more than
two players.

For the single-agent case, we have developed sev-
eral real-time algorithms[4]. Minimin lookahead search
is a specialization of minimax search to single-agent
problems. In this case, the A* evaluation function[5],
F(n) = g(n)+h(n), is applied to the frontier nodes, and
the minimum values of children are backed-up to the
parents. A single move is made to the child of the cur-
rent state with the best backed-up values. Since in prac-
tice most heuristic functions yield an f(n) function that
is monotonically nondecreasing, branch-and-bound can
be applied to dramatically speed up this search without
effecting the decisions made. This algorithm is called
alpha pruning, by analogy to alpha-beta pruning,

Since in a two-player game moves cannot be undone,
the minimax algorithm is simply repeated for each suc-
cessive move. In the single-agent case, however, back-
tracking over previously committed moves may be per-
missible, and in fact necessary in some situations. The
challenge is to permit backtracking while avoiding in-
finite loops. We developed an algorithm, called Real-
Time-A*, that backtracks when it is rational to do so, is

guaranteed to find a solution when one exists, and makes
locally optimal decisions on a tree. This algorithm ef-
fectively solves much larger problems than are solvable
by A*, primarily by sacrificing optimal solutions. There
is also a learning version of the algorithm that eventu-
ally learns exact heuristic values over repeated provlem-
solving trials,

Both the multi-agent and single-agent algorithms de-
scribed above share with the two-player algorithms the
property that significant replanning is done for each suc-
cessive move. In the single-agent case, some information
is saved from one move to the next principally to en-
able intelligent backtracking. In general, however, for
the same reasons given in the discussion of two-player
games, these algorithms would be very effective in un-
certain, unpredictable, and changing environments. An
overview of the main results in both of these areas can
be found in [6].

Scaling of Real-Time Search

Current research is focussed on extending these tech-
niques to scale up to arbitrarily large problems. What
does it mean for a search algorithm to scale within a
class of problems? Since the optimal solution lengths
may increase as problem size increases, and any algo-
rithm that solves a problem must use at least as much
time as the length of the optimal solution, the best we
can hope for is performance that grows linearly with the
length of optimal solutions. We will say that a search
algorithm scales if its time complexity is linear in the
length of the optimal solution. Note that this also guar-
antees that the solution lengths found will be bounded
by a constant times the length of the optimal solutions.
In the remainder of this section, we will consider the
well-known sliding tile puzzles, such as the Eight Puz-
zle, Fifteen Puzzle, etc., as a case study in the scaling
of real-time search techniques.

Consider the manhattan distance heuristic function
for sliding tile puzzles. It is computed by determin-
ing the distance along the grid of each individual tile
from its goal position, and summing these values over
all the tiles. By giving up the requirement for optimal
solutions, algorithms such as RTA* can effectively solve
puzzles as large as the ten-by-ten ninety-nine puzzle,
using the manhattan distance evaluation function.

In extending these algorithms to even larger prob-
lems, however, what typically happens is that almost the
entire puzzle will be solved, leaving two tiles swapped
out of place. The algorithm then spends an inordinate
amount of time trying to reduce the heuristic to zero by
manioulating tiles far removed from the two swapped
tiles. It 1sn’t smart enough to realize that it won’t
reach the goal unless it fixes those two tiles, regardless
of how many tiles must be disturbed in the meantime.
As the problem size increases, the number of moves
required to rectify these impasses grows. Thus, pure
heuristic search using this evaluation function does not

scale up according to our definition. As another exam-
ple, consider assembling a car engine from scratch using
a heuristic function that gives credit for parts in their
correct places. Such an algorithm could easily leave a
piston out of the block, then proceed to assemble the
rest of the engine without realizing until very much later
that it will have to be largely disassembled to insert the
piston.

The only way around this problem is to somehow or-
der the subgoals in the problem. For the sliding tile
puzzles, the obvious subgoals are to correctly position
the individual tiles one at a time. This suggests the fol-
lowing algorithm, which we call pure subgoal search[7].
Given a sequence of tiles, t;,%5,...,1,,, and a current
state, s, the current focus is defined as the first tile ; in
the ordering that is not in its goal position in the cur-
rent state. If the current focus is tile ¢, search the space
until a state is found in which the first 7 tiles are in their
goal positions, and then execute the corresponding se-
quence of moves that lead to this state. Recalculate the
new focus, which must be strictly greater than 7, and
continue until the goal is reached.

A natural way to perform the individual searches is
to use depth-first iterative-deepening[8]. This algorithm
performs a series of depth-first searches to successively
greater depths until the current focus tile and all preced-
ing tiles in the solution order are solved. Note that since
each successive search strictly increases the number of
solved tiles, no memory is required between searches,
other than the value of the current focus. Furthermore,
since depth-first search is used, the memory required
during a search is only linear in the depth of the search.

This idea is used by Ruby and Kibler in this same
domain{9]. One of the problems immediately raised is
how to determine the order of the subgoals, or in other
words, the order the tiles are to be solved in. Ruby
and Kibler give an algorithm that automatically gener-
ates reasonable solution orders, based on the openness
heuristic. A closely related idea was presented in [10].
In addition, their system learns to improve its perfor-
mance by caching the results of previous searches in the
form of new subgoal sequences.

Unfortunately, as in the casc of pure heuristic search,
pure subgoal search by itself does not scale in this do-
main. The reason is that as the puzzle size increases,
the maximum distance that a tile may have to travel to
reach its goal position increases, and hence the search
horizon required to solve the most difficult subgoal in-
creases.

While neither heuristic search nor subgoal search by
themselves scale up in this domain, a combination of
the two techniques does scale, The idea is as follows.
At the top level, we order the tiles and perform a sub-
goal search to solve them one at a time. Within a par-
ticular subgoal search, however, we employ a heuristic
evaluation function based primarily on the current fo-
cus tile in order to guide its progress to its goal position.

The obvious evaluation function is the manhattan dis-
tance of the current focus tile from its current position
to its goal position. In order to prevent previous tiles in
the solution order from being permanently dislocated,
we actually calculate the manhattan distance of all tiles
in the solution order up to and including the current fo-
cus, and sum these values. The resulting algorithm then
performs depth-first iterative-deepening as before, ter-
minating when this partial manhattan distance value is
decreased from its current value. Another way of view-
ing this algorithm is that we have increased the granu-
larity of the subgoals by making moving the current tile
one step closer to its goal position by the manhattan
distance measure a subgoal in itself.

Unfortunately, this combined algorithm doesn’t quite
scale up. The reason is that once the current focus tile
is correctly positioned, the focus moves to the next tile
in the solution order, and the algorithm must “find”
this tile. In other words, the blank position must be
maneuvered to a position adjacent to this tile before the
tile can be moved. Since the distance between the blank
and the next tile to be solved can grow with increasing
problem size, this step may require increasing the worst
case search horizon for larger problems, thus violating
the scaling requirement.

Once we think of the heuristic function as estimating
the cost of solving an individual subgoal, the solution
to this problem becomes obvious. Namely, add to the
manhattan distance of a tile from its goal position the
manhattan distance of the blank from the given tile,
minus one. The reason for subtracting one is that the
precondition for moving a tile is that the blank be adja-
cent to it, or in other words, the manhattan distance of
the blank to the tile is exactly one. This new heuristic
gives a lower bound on the number of moves required
to solve a particular tile. If more than one tile less than
or equal to the focus tile in the solution order is out of
place, then after summing the manhattan distances of
all these tiles from their goal locations, we add the mini-
mum manhattan distance of the blank to any of the tiles
in question. Note that this modification of the heuris-
tic captures the common sense notion that moves that
carry the blank away from a given tile are generally not
relevant to the positioning of that tile.

This new heuristic function is then combined with
depth-first iterative-deepening. Since the modified
Leuristic function is still a lower bound on the number
of moves required to solve current the focus tile, an im-
portant pruning opportunity presents itself. In a given
depth-first iteration, the difference between the current
deptli of a state and the search horizon for that iteration
is the maximum amount that the heuristic function of
the given state can possibly decrease during that iter-
ation. If this is not sufficient to decrease the heuristic
value of the initial state for that iteration, the given
state and all of its progeny can be pruned from further
consideration during that iteration.

Even with a good solution order, impasses still oc-
cur where the current focus tile cannot be moved closer
to its goal position without violating previously solved
tiles. The search component of the algorithm provides
a simple and natural mechanism for dealing with these
subgoal interactions. For example, the way that a row
of tiles is solved by this algorithm, assuming that they
occur sequentially in the solution order, is as follows. All
but the last tile are solved one at a time without mov-
ing previously solved tiles, nor with any regard for the
positions of the following tiles in the order. Assuming
that the final tile does not fortuitously appear in its goal
position at this point, it will be moved to a position ad-
jacent to its goal position, without disturbing the rest of
the row. Then, a somewhat deeper search is required to
correctly position the final tile, and involves temporarily
moving the next to last tile in the row. One solution to
this problem requires ten moves. Thus, a simple search
algorithm replaces complex special case reasoning about
subgoal interactions.

Assuming that the goal state leaves the blank in a
corner, the solution order we chose for our experiments
solves the N x N puzzle by first solving the row and
column furthest from the final position of the blank.
This reduces the problem to an N -1 x N — 1 puzzle.
Using this solution order, the worst case search horizon
required to solve any subgoal for any size problem is
thirteen moves. Both the solution lengths, and the total
number of nodes generated, grow proportional to N3,
where N is the length of one side of the puzzle. We can
easily show that the optimal solution lengths must also
be O(N?). The reason is that there are N? — 1 tiles
to be moved, and the average manhattan distance of an
individual tile to its goal position is of order N. Thus,
since the asymptotic time complexity of our algorithm
is the same as the asymptotic growth of the length of
an optimal solution, the algorithm scales up according
to our definition.

Furthermore, since the algorithm saves no informa-
tion from one move to the next, but recomputes it from
scratch after every move, it is ideally suited to plan-
ning in an uncertain and unpredictable environment.
While the sliding tile domain doesn’t contain much un-
certainty, it could be artificially added by introducing
a certain amount of random rearrangement of the tiles,
and actually executing selected moves with only a cer-
tain probability. The point is that in such a situation,
the algorithm described here would be even more ap-
propriate.

Discussion and Conclusions

We have presented a generic class of algorithms for
planning in uncertain and unpredictable environments.
Their suitability for such domains stems from the fact
that they recompute their plans after every action,
based on new observations of the environment.

In addition, we developed and imiplemented a particu-

lar algorithm for sliding tile puzzles that scales up to ar-
bitrary size puzzles, in the sense that the running time of
the algorithm, and the solution lengths generated grow
proportional to the lengths of optimal solutions. The al-
gorithm is a simple combination of heuristic and subgoal
search.

One may criticize this work as simply the design of a
special purpose algorithm for solving sliding tile puzzles.
Indeed, other scalable algorithms for this problem have
been reported in the literature[11]. While there is some
merit to this position, it is not entirely accurate. We
view our algorithm as a very simple combination of two
well-known weak methods: heuristic search and subgoal
search, and not a dedicated algorithm designed for a
specific problem.

The first piece of domain specific knowledge that
we have used is the fact that the puzzle is composed
of individual components, each one of which must be
solved to solve the entire problem. 'This property is
true of many combinatorial problems, and is immedi-
ately obvious when one is presented with such a prob-
lem. The second item of knowledge is the particular
order in which the individual components are solved.
While some solution orders for this problem would not
result in a scalable algorithm, such as solving the tiles
furthest removed from the final position of the blank
last, most solution orders that solve the furthest tiles
first will scale. This idea is also fairly obvious, compa-
rable to the notion that in painting the floor of a room
one should start with the corner furthest from the door,
or that assembly tasks should proceed from the inside
outwards. In addition, domain-independent algorithms
have been developed that automatically produce such
solution orders[10,9]. The final bit of domain-specific
knowiedge is the manhattan distance heuristic on the
individual tiles. Again, we claim that this is fairly obvi-
ous and there exists a good theory[12] and implemented
programs[13] that automatically derive such heuristics
for problems.

As a demonstration of the generality of these idecas,
one can easily see how to apply them to a different prob-
lem such as Rubik’s Cube. There the individual sub-
goals would be to correctly position and orient the indi-
vidual cubies. Furthermore, it is easy to generate plau-
sible solution orders for this problem. Finally, we can
also see how to calculate a three-dimensional manhat-
tan d.stance heuristic for the individual cubies, and even
one that includes orientation as well. Unfortunately, it
is not clear that such an algorithm, not any other al-
gorithm, would scale up for larger versions of Rubik’s
Cubec.

In the case of the sliding tile puzzles, however, a sim-
ple combination of heuristic and subgoal search yields an
algorithm that effectively scales up to arbitrarily large
problems.

Acknowledgements

I'd like to thank John McCarthy for helpful discus-
sions concerning this work. This research was supported
by an NSF Presidential Young Investigator Award,
NSF Grant IRI-8801939, and an equipment grant from
Hewlett-Packard.

References

(1} Berliner, H., “Deep-Thought wins Fredkin Interme-
diate Prize”, Al Magazine, Vol. 10, No. 2, Summer,
1989.

[2] Luckhardt, C.A., and K.B. Irani, An algorithmic
solution of N-person games, Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAL
86), Philadelphia, Pa., August, 1986, pp. 158-162.

{3] Korf, R.E., Multi-player alpha-beta pruning, to ap-
pear in Artificial Inielligence, 1990.

[4] Korf, R.E., Real-time heuristic search, to appear in
Artificial Intelligence, 1990,

[5] Hart, P.E., N.J. Nilsson, and B. Raphael, A formal
basis for the heuristic determination of minimum
cost paths, IEFEE Transactions on Systems Science
and Cybernetics, SSC-4, No. 2, 1968, pp. 100-107.

[6] Korf, R.E., Depth-limited search for real-time prob-
lem solving, to appear in Real-Time Systems, 1990.

[7] Korf, R.E., Planning as search: A quantitative ap-
proach, Artificial Intelligence, Vol. 33, No. 1, 1987,
pp. 65-88.

[8] Korf, R.E., Depth-first iterative-deepening: An op-
timal admissible tree search, Artificial Intelligence,

Vol. 27, No. 1, 1985, pp. 97-109.

[9] Ruby, D., and D. Kibler, Learning subgoal sequences
for planning, Proceedings of the Eleventh Inierna-
tional Joint Conference on Artificial Intelligence
(IJCAI-89), Detroit, Mich, Aug. 1989, pp. 609-614.

[10] Korf, R.E., Learning to Solve Problems by Search-
wng for Macro-Operators, Pitman, Boston, 1985.

[11] Ratner, D., and M. Warmuth, Finding a short-
est solution for the NxN extension of the 15-Puzzle
is intractable, in Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAISG),
Philadelphia, Pa., 1986.

[12] Pearl, J. Heuristics, Addison-Wesley, Reading,
Mass, 1984.

[13] Mostow, J., and A. Prieditis, “Discovering ad-
missible heuristics by abstracting and optimizing:
A transformational approach™, Proccedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence (IJCAI-89), Detroit, Mich, Aug.
1989, pp. 701-707.

The Role of Meta-Reasoning in Dynamic Environments

Daniel R. Kuokka

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Introduction

It has been argued that systems operating in complex,
dynamic environments cannot rely on traditional planning.
Instead, such systems must respond directly to the
environment, an approach called situated action. However,
many problems are more naturally solved via planning,
such as when errors are very costly, or when the appropriate
action is not apparent from the environment. This suggests
that a system must be able to integrate a variety of problem
solving tactics in order to operate effectively.

The problem is further complicated by the practical
limitations on semsors. An agent cannot expect to have
complete, or even sufficient perceptory input at all times.
Hence, it may be necessary to take actions in order to
augment the current sensory input. For example, an agent
may have to move to gain a different view of an object in
order to determine its shape and identity. This implies a
deliberative aspect to the control of problem solving.

This paper describes a system, called MAX, that satisfies
the above requirements by encoding and controlling its
problem solving strategies explicitly, much like traditional
systemns control their basic actions. In addition, the system
is designed to remain reactive to spontaneous stimuli.
Thus, MAX can select and perform arbitrarily complex and
protracted reasoning while remaining responsive, both to
the external world and its internal state.

The next section gives a brief overview of the MAX
architecture, including the knowledge representation that is
instrumental to the requisite meta-reasoning. Subsequent
sections cover the means by which MAX selects its
problem solving technique, augments its sensors, and
respoads to unexpected situations. Finally, the relationship
to other systems is explored, and conclusions are presented.
The capabilities described in this paper have been
implemented and tested in several domains, including a
simulated household robot.

The MAX Architecture

The MAX architecture is designed to support the explicit
control of problem-solving. Since systems generally only
reason about basic actions, the control of problem solving is
a form of meta-level reasoning. There are several hurdles
that must be overcome to permit such reasoning. First, the
knowledge representation must be powerful enough to
express the complexities of problem solving, while

remaining simple enough to be the object of reasoning.
Second, the control structure must allow the explicit
problem solving knowledge to be directly executed without
becoming blinded to the environment. Finally, since almost
none of the reasoning capabilities of the system am
hardwired, a significant body of reasoning expertise must
be encoded as explicit knowledge. This paper can only
give a brief overview of MAX, those interested in a more
detailed description should refer to (Kuokka, 1990).

Knowledge Representation

The main hurdle that must be overcome to support meta-
level reasoning is the definiion of an appropriate
knowledge representation. The representation used by
MAX is purely conjunctive first order logic augmented with
a new data structure, called the Iframe. An lframe can be
thought of as an entire logical theory, or a state. Since a
state is the basic object of much meta-level reasoning,
lframes are particularly well suited to their intended task.

There are two main features of the representation that are
central to its utility. First is the association of variables
with terms instead of sentences, allowing a single term to
represent an infinite number of possibly parameterized
objects. This is crucial to the succinct representation of
complex knowledge. The second feature is the definition of
a set of basic relations over lframes. Five relations have
been defined so far: match, not-match, wunion,
intersection, and difference, which perform the associated
set operation on the sets of literals constituting lframes.
These relations allow entire states to be compared and
constructed, a basic requirement of any reasoning system.
In essence, they provide a lexicon for reasoning, allowing
leamning and problem solving to be implemented at a high
level of detail.

Two example lframe structures are shown in figure 1: a
meta-level rule, and the meta-level state against which the
rule’s condition would be matched. An Iframe is depicted
as a set of literals enclosed in square brackets. The $vars
syntax declares the associated variables to be local to the
associated lframe, thereby allowing it to represent many
different instantiated terms. The function of the rule is to
determine if a base-level operator is applicable to a problem
by matching the operator’s effects against the difference
between the current state and goal. Notice how this is
easily encoded in terms of the basic relations over lframes

once the goal and state information is made explicit. The
action portion of the rule is to fire an operator called
subgoal (the specification of the operator is not shown,
but world be at the same level as the rule).

Meta-Level Rule:

[(Svars ?state ?goal ?diff ?name 7?add)

(cond [(state ?state)
(geal ?goal)
(difference ?goal ?state ?diff)
(domain [(cperator ?name

[(add 2add)])])

(match ?diff ?add)])

(action subgoal [(operator ?name)])])

Met:a-Level State:
[(state [(on blocka blockb)
(on blockb blocke) ...])
(geal [($vars ?block)
(on blocke ?block)
(on ?block blocka)])
(domain [(operator put-~down
[($vars ?bl ?b2)
(pre [(holding ?bl}) ...]1)
(del [(holding ?bl) ...1])
(add [(on 2?bl ?b2])1)1)1]

Figure 1: Partial encoding of a planner

There are many issues central to the Iframe
representation that cannot be covered here. The point of
this section is only to introduce the general flavor of the
Iframe representation, and to illustrate how problem solving
can be encoded succinctly and explicitly. In particular,
entire states are the object of reasoning, which can be
compared and constructed to produce arbitrary reasoning
behavior.

Control Structure

The above example demonstrates how reasoning can be
encoded, but some kernel is still required for processing to
occur. However, since all knowledge that performs
reasoning is supposed to be explicit, the kernel can be
extremely simple. In fact, to build significant expertise into
the fixed kernel is to place learning and reasoning where it
cannot be controlled.

The kemel can best be described as a procedure-based
production system interpreter. Instead of there being one
central production memory, there are many small
production memories arranged as procedures. Each
productiori memory is called a behavior, since it
implements some form of reasoning behavior. There is
only one behavior active at any time, but a behavior can call
another behavior, installing it as the new active behavior.
Thus, there is a stack of pending behaviors, much like a
stack of pending procedure calls.

A behavior consists of a set of rules and a set of
operators. The rules’ conditions are matched against
working memory, and the rules’ actions specify which
operator to fire. The operators, in turn, specify the adds and

deletes to be applied to working memory. In fact, figure 1
is really a portion of a behavior that does means-ends
planning, and is directly executable by the kemel.

A parent behavior invokes a child behavior via a
compound operator. A compound operator is similar to a
simple operator, except when fired, an associated behavior
is invoked as the current behavior. When the child
behavior is finished, it returns bindings that are then
asserted by the deletes and adds of the compound operator
within the parent behavior. In this way, a single operator
can perform an arbitrary amount of reasoming. For
example, the planning behavior of figure 1 would be
invoked by an operator called plan within a higher-level
bebavior. Such an operator is shown in figure 2. WLen the
planning behavior is finished, the generated plan is returned
and bound to the variable ?plan so it can be asserted
within the higher-level behavior.

[($vars
(pre [(state Z?state)
(goal ?gcal)
(domain ?domain)])
(del [])
(add [(plan ?state ?goal ?plan)])
(compound plan-behav [(return ?plan)])]

Figure 2: Compound operator that invokes plan behavior

In addition to the current behavior, there is also a
collection of monitors that run in the background. A
monitor is structurally identical to a behavior, but can be
defined dynamically. This allows the monitoring of
unforeseen conditions independent of the current behavior.
The monitor facility is extremely important to the reactivity
of the system, and is discussed in more detail below.

So far, only an empty architecture has been described.
The specific reasoning knowledge that constitutes each
behavior represents the majority of any MAX-based
system. In particular, the expertise that allows the system
to operate in complex and dynamic environments is
implemented as behavioral knowledge on top of the
architecture, The following sections describe several of the
more pertinent capabilities.

Integrating Planning and Reaction

Since planning and sitwated action are applicable in
different situations, there must be a means to select between
them intelligently. Moreover, the very invocation of
situated action requires deliberation, since a reactive
procedure is generally applicable to a single class of goals.
MAX provides the means to perform such reasoning by
representing the various problem solving options as explicit
choices within a meta-reasoning behavior.

The choice of problem solving method is made within
the solve behavior, which is responsible for achieving a
goal. The solve behavior is invoked directly by the
system’s top-level behavior, which is responsible for
choosing the current focus of attention for the agent. The
inputs to the solve behavior are the goal, the current state,

and the domain theory specifying the allowable actions in
the world. The domain theory may also contain a variety of
other knowledge, such control rules for planning, reactive
procedures, and domain axioms. The main operators
available within the solve behavior are to plan, to execute a
plan, and to run a reactive procedure. There is also an
operator to obtain knowledge, which is discussed in the
following section.

Currently, a relatively small set of heuristics are used
within the solve bebavior. If situated action is explicitly
preferred for the domain, or the domain is known to be
reversible, and there is a reactive procedure available, then
execute the procedure; otherwise, use plan-then-execute. A
goal class is associated with each reactive procedure which
is matched against the current goal. This allows the
appropriate reactive procedure to be executed.

It is unlikely that a single problem solving method is
appropriate for all aspects of a problem. Thus, MAX
allows a problem to be decomposed hierarchically, thereby
allowing finer grained control of problem solving. The
approach is to encode domain actions as compound
operators that recursively invoke the solve behavior. To
better illustrate this, consider a typical domain which has
operators like move and put~-down. Putting down an
object in a specific location is still a fairly complicated
operation, possibly requiring a significant amount of
problem solving. This is achieved in MAX by making
put-down a compound operator which invokes the solve
behavior recursively.

The solve behavior invoked by put-down is instantiated
with a different state, goal, and domain theory. The domain
theory represents the details involved in putting down and
picking up objects, such as positioning the robot in the
correct position, avoiding obstructing objects, and
manipulating the arm. The state and goal, correspondingly,
are specified to a greater level of detail. Unlike the higher-
level domain, the operations performed in the put-down
domain are better controlled via situated action due to the
increased attention to detail and the need for hand-eye
coordination. Thus, solving a problem in this domain
generally executes a reactive procedure instead of
attempting to plan.

A portion of the behavior to pick up an object is shown in
figure 3. This rule states that if the goal object (to be
picked up) is perceived to be obstructed by another object,
and the other object is known to be heavy, then move
around the obstructing object. Furthermore, the location to
be moved to cannot be in the set of failed locations;
otherwise, the behavior could loop forever. Of particular
importance in this example is the use of knowledge that is
not directly perceivable (e.g., the weight of the obstructing
block), and the memory capability (e.g., the set of failed
locations). This allows the system to perform actions
outside the scope of simple situated action, yet still respond
directly to perceptions of the state.

Taking a step back to examine this whole scenario, a
complex interleaving of planning and situated action
emerges. At the highest level, a plan was formed over very

[{($vars ?g %o ?rl ?gl 70l 2fle 7?nl)
{(cond [(see [(at robot ?rl)

(at ?g ?gl)

(at 20 %0l)

(in-line %0l ?rl %?¢gl)])
(state [(weight ?o heavy)

(next-to ?nl 2rl 7?gl)])
(failed-locs ?fls)
(not-match ?£ls [(elt ?al)])])
(action move [location ?nl])]

Figure 3: Meta-level sitnated action

abstract operators. This allows the agent to avoid costly
and possibly destructive mistakes. The abstract operators
are executed by performing situated action in the more
specific, low-level domains. This avoids the complexities
of planning over such details. It is quite natural to extend
this technique to arbitrarily many levels, each of which uses
the most appropriate method.

As in most such systems, reactive procedures in MAX
are approximate; they may perform an incorrect action.
Unlike most other systems, though, MAX has an inherent
recovery mechanism. Since the invocation of the reactive
procedure was a deliberate choice, the system can make an
alternate choice if the first fails. The alternate may even be
to perform traditional planning. Of course, an incorrect
reactive procedure may get the agent into irreversible
trouble, but such cases are assumed to be rare (recall that
the invocation of situated action is based on the assumption
of a forgiving environment). Thus, the system can more
freely make use of approximate reactive procedures.

Sensor Augmentation

It is not practical to assume that the sensory capabilities
of an autonomous agent can automatically present sufficient
information about the world. The cognitive and physical
capabilities of the agent must be used to augment
perceptions. In particular, information no longer within the
field of perception of the agent should be remembered, and
actions may be required to direct the field of perception.
The meta-level reasoning capability of MAX allows the
system to perform both of these activities.

Remembering past states, and combining them with
perceptions is relatively straightforward. Perceptions arc
presented as explicit states (e.g., see in figure 3); thus,
they can be easily manipulated. For example, the
perception lframe can be unioned with the modeled state
lframe, thereby updating the current model of the world.
The explicit nature of perceptions is of great utility, and is
an integral part of the examples of figures 3 and 4.

The process of directing action to aid perception is
somewhat more complex. The general technique is to
detect the absence of required knowledge during problem
solving, perform recursive reasoning and problem solving
to obtain the required knowledge, and then proceed with the
goal as usual. Missing knowledge is detected by a rule that
checks for a condition in a goal that should be known in the
current state, but is not.

For example, assume the robot has a goal of fetching a
hammer, but the hammer has been moved to an unknown
location. The system fires the solve behavior, which in
turn, fires the plan behavior. During planning, a subgoal is
generated containing a literal stating that the tool is at some
unbound location. However, the state contains no assertion
as to the location of the tool, since its location is unknown.
This situation is detected by a rule in the planner, and the
current planning path is aborted. If no alternate paths lead
to a solution, the planner retums an error condition
indicating the need for additional knowledge.

Upon receipt of the error condition, the solve behavior
must attempt to obtain the required knowledge in order to
satisfy the goal. This is done by firing an exploration
behavior (exploration is actually invoked via an
interrnediate behavior that maps from a domain
independent goal to a domain-specific method). The inputs
to the exploration behavior are the needed knowledge and
the current knowledge. Exploration uses a number of
heuristics to efficiently search the environment. For
example, adjacent rooms are explored first, as are those that
the robot has not been in recently. Also, unlocked doors are
favored over locked doors. It is within this behavior that
the robot actually moves from room to room until it detects
the hammer. Furthermore, a great deal of recursive
problem solving may be required to implement the
exploration activities.

To continue the example, once the hammer is located, the
newly augmented model of the house is updated and
retumed to the problem solving behavior. Now equipped
with the necessary knowledge, the planner can successfully
produce a plan (starting from the new current state), which
is then executed as in the previous section.

This example demonstrates how meta-level reasoning
allows the system to detect a lack of information and direct
its attention to getting that information. Such reasoning is
outside the scope of traditional planning as well as basic
situated action. However, both planning and situated action
play an important role in the entire behavior.

Monitoring the Environment

So far, the discussion has focused on operating in
complex and slowly changing environments where the main
concerns are the proper integration of planning and action.
However, real environments can also change rapidly and
dangerously, and a system must be able to respond to such
changes in a timely fashion. MAX copes with this
requirement by supporting monitors that cast a wary eye on
the world, regardless of the current active behavior. Since
the basic control cycle of MAX is forward chaining, such
an extension fits naturally within the basic architecture.

A monitor can be defined within any behavior, and the
rules within the monitor will be checked on each cycle as
long as the behavior is pending. If a rule within an active
monitor is satisfied, it fires, causing the associated operator
to fire. Generally, only two operators are used in monitors:
return from the current behavior, and return to the top-level

goal selection behavior. The former allows the behavior
that defined the monitor to deal with the unexpected
condition, and the latter allows the top-level goal selection
behavior to decide on an action.

Even though monitors can be defined dynamically, there
is a default monitor that covers a great many cases. The
rule simply checks for conditions in the current real world
state that both match an emergency situation and are
unexpected. For example, even if fires are in the set of
emergencies, the robot will not react to a fire in the
fireplace. The encoding of the default monitor rule is
shown in figure 4,

[(§vars 7emergency ?percepts 7?state)
(cond [(emergencies [(elt Zemergency)])
(see 7?percepts)
(match ?percepts ?emergency)
{state ?state)
(not-match ?state Zemergency)])
(action interrupt [1)])

Figure 4: A default monitor rule

To better illustrate monitors, consider once again the
example of fetching the hammer. Assume the robot is int
the midst of computing the high-level plan to get the
hammer when an ember explodes out of the fireplace onto
the carpet. The default monitor rule detects the fire on the
carpet as an unexpected emergency condition, and
interrupts the planning behavior in favor of the top-level
goal selection behavior. The goal selection behavior
prioritizes the fire as being more important than any other
current goals, and invokes the extinguish behavior. Once
finished, the robot returns to its previous task (in fact,
resumption is a very complex issue that is too involved for
this discussion).

The monitor mechanism of MAX has several strong
points. First, it keeps the knowledge of emergency
situations separate from unrelated behaviors. For example,
the planning behavior should not be compelled to watch the
real world; it is reasoning about hypothetical states.
Second, monitors can be defined dynamically, allowing
specific conditions that become apparent only at run-time to
be monitored. Third, monitors are always active; thus, the
system will react to emergencies within one cycle. Finally,
the capability to recursively call the top-level goal selection
behavior, which is intended to handle focus of attention,
allows a more intelligent response and avoids duplication of
knowledge.

Related Work

There are apparently two views of planning in dynamic
domains. On the one hand, there are the situated actors,
such as (Agre & Chapman, 1987, Brooks, 1985, Kaelbhing,
1988, Schoppers, 1987). These authors argue convincingly
that planning is inappropriate for many everyday tasks. The
other side of the issue is represented by the serious
planners, such as (Carbonell et al., 1990, Wilkins, 1984},

and those who focus on making planning more appropriate

for dynamic domains (Dean & Boddy, 1988, Doyle et al.,
1986). These authors clearly believe that some form of
planning is needed.

Even though the validity of both positions is widely
acknowledged (even by the opposite camps), and the need
for a unifying superstructure has been stated, few systems
pursue an integrated approach. Work that spans both
reasoning and reacting includes ROBO-SOAR (Laird et al.,
1989) and PRS (Georgeff, 1987), and the task control
architecture for the CMU plapetary rover (Simmons &
Mitchell, 1989). These systems, along with MAX, span the
spectra of generality, uniformity, and practicality (in their
current incarnations). Further work is needed to draw
meaningful comparisons. In particular, increased effort
must be devoted to the interaction with real domains, There
would appear to be limited potential in examining dynamic
planning within simulated blocks worlds.

Conclusions

The basic motivation of this paper is that a variety of
capabilities are required of a system that operates in
complex or dynamic environments, such as traditional
planning, situated action, memory, sensor augmentation,
and reactive task interruption and resumption. Given that
such a variety of behaviors are required, there must be a
mechanism to effectively integrate them.

The central claim is that a form of situated action
performed at the meta-level yields the benefits of both
traditional planning and situated action, as well as provides
the means to integrate a variety of other behaviors. The
system can directly respond to the environment, yet it can
perform traditional planning as well as complex meta-
reasoning, reflection, and knowledge obtainment.
Furthermore, the reactivity of the system is maintained at
all times by the use of monitors.

This approach provides a great deal of power, but at what
cost in terms of efficiency? MAX rules only perform
matching; no chaining can occur within the basic cycle.
More elaborate processing emerges over many cycles.
Furthermore, since the architecture provides direct access to
the matcher (via the mat ch relation) the explicit base-level
matching present in meta-level rules incurs no interpretive
overhead. Thus, MAX is efficient to the extent that any
system based on matching is efficient.

Acknowledgments
This research was supported in part by ONR grants
N00014-79-C-0661 and NO0014-82-C-50767, DARPA
contract number F33615-84-K-1520, NASA contract
number NCC 2-463, and a grant from the Hughes Aircraft
Corporation.

References
Philip E. Agre and David Chapman. Pengi: An
implementation of a theory of activity. In

Proceedings of the National Conference on Artificial
Intelligence. Seatde, WA, 1987,

Rodney Brooks. A Robust Layered Control System for a
Mobile Robot (Tech. Rep. 864). Artificial
Intelligence Laborabory, Massachusetts Institute of
Technology, 1985.

J.G. Carbonell, C.A. Knoblock, and S.N. Minton.
PRODIGY: An integrated architecture for planning
and leamning. In Kurt Van Lehn (Ed.), Architectures
for Intelligence. Lawrence Erlbaum, 1990,

Thomas Dean and Mark Boddy. An analysis of time-
dependent planning. In Proceedings of the National
Conference on Artificial Intelligence. Saint Paul,
MN, 1988.

Richard J. Doyle, David J. Atkinson, and Rajiumar
S. Doshi. Generating Perception Requesis and
Expectations to Verify the Exzctuion of Plans (Tech.
Rep. JPL D-3394). Artificial Intelligence Group, Jet
Propulsion Laboratory, 1986.

M. Georgeff and A. Lansky. Reactive Reasoning and
Planning. In Proceedings of the National Conference
on Artificial Intelligence. Seattle, WA, 1987.

Leslie Pack Kaelbling. Goals as parallel program
specifications. In Proceedings of the National
Conference on Artificial Intelligence. Saint Paul,
MN, 1988.

Daniel R. Kuokka. The Deliberative Integration of
Planning, Execution, and Learning. Doctoral
dissertation, School of Computer Science, Camegie
Melion University, 1990,

J.E. Laird, E.S. Yager, CM. Tuck, and M. Hucka.
Leaming in tele-autonomous systems using Soar. In
NASA Conference on Space Telerobotics. Pasadena,
CA, 1989.

M.J. Schoppers. Universal plans for reactive robots in
unpredictable environments. In Proceedings of the
International Joint Conference on Artificial
Intelligence. Milano, Italy, 1987.

Reid Simmons and Tom Mitchell. A task control
architecture for autonomous robots. In Proceedings
of the Conference on Space Operations and
Autonomous Robotics. Houston, TX, 1989.

David E. Wilkins. Domain-independent planning:
Represenatation and plan generation. Artificial
Intelligence, 1984, Vol. 22.

Integrating Planning and Execution in Soar*

John E. Laird
Artificial Intelligence Laboratory
The University of Michigan
1101 Beal Ave.

Ann Arbor, Michigan

The classical approach to planning in artificial intelli-
gence (AI) has emphasized a distinction between plan-
ning and execution. When a problem is presented, a
plan is developed, and then the plan is executed. Dif-
ficulties with this approach arise in domains where the
outcome of planned actions are uncertain or the envi-
ronment is unpredictable. One advantage of the classi-
cal approach is that it separates planning and execution
into two modules so that each module can be optimized
for its specific task. The end result is that planning
and execution are considered in isolation and planning
knowledge is separated from execution knowledge. The
weak link in this approach is the limited communica-
tion that is available between the two modules in do-
mains where a high degree of run-time interaction be-
tweer. planning and execution is necessary because of
unexpected changes occur in the environment.

In this paper, we present an alternative to classical
planning based on the Soar architecture.! Soar suc-
cessfully avoids the difficulties inherent to the modu-
lar approach to planning and execution by using a sin-
gle architecture and knowledge base for both. Soar’s
approach is distinguished by the following characteris-
tics: planning is invoked automatically when execution
knowledge is inadequate; plans are not represented ex-
plicitly but stored as individual control rules; execution
decisions are based on all previous experiences, not just
the current plan; and learning improves both planning
and execution. For the sake of brevity, work related to
this approach will not be explicitly referenced. See the
other papers in this volume for alternative approaches.

The remainder of the paper presents Soar and em-
phasizes its capabilities for integrating planning and ex-
ecution. Throughout this presentation we demonstrate
these capabilities using two systems. The first system is

“This research was sponsored by grant NCC2-517 from
NASA Ames and ONR grant N00014-88-K-0554.

'The systems described in this paper were implemented

in Soar 5. For a complete description of Soar 3, see Laird et
al. (1990) .

48109-2110

NN = @@ ;i /7

7 KN

Figure 1: Robo-Soar

called Robo-Soar (Laird et al., 1989) , and 1t controls a
Puma robot arm using a camera vision system, as shown
in Figure 1. The vision system provides the position and
orientation of blocks in the robot’s work area, as well as
the status of a trouble light. Robo-Soar’s task is to
align blocks in its work area, unless the light goes on,
in which case it must immediately push a button. The
environment for Robo-Soar 1s unpredictable because the
light can go on at any time, and an outside agent may
intervene at any time moving blocks in the work area,
either helping or hindering Robo-Soar’s efforts to align
the blocks. There is also uncertainty in Robo-Soar’s per-
ception of environment because the robot arm occludes
the vision system while a block is being grasped. Until
the arm is removed from the work area, there is no feed-
back as to whether a block has been successfully picked
up. ’

The second system, called Hero-Soar, controls a Hero
2000 robot, as shown in Figure 2. The Hero 2000 is =
mobile robot with an arm for picking up objects and
sonar sensors for detecting objects in the environment,
Hero-Soar’s task is to pick up cups and deposit them in
a waste basket. Our initial demonstrations of Soar will
use Robo-Soar. Only at the end of the paper will we

-

Figure 2: Hero-Soar

return to Hero-Soar, and at that time we will describe
it more fully.

In presenting Soar, we first review its basic process-
ing structure: the way 1t encodes knowledge and uses
its knowledge to select and apply operators. Robo-Soar
serves as an illustrative example. These details are nec-
essary to set up Soar’s approach to planning, which de-
pends on the representation of long-term knowledge as
productions and the run-time integration of short-term
knowledge to selecting and applying operators. By ne-
cessity, some details of Soar’s operation are skipped. See
Laird et al. (1990) for a complete description of the Soar
architecture.

Execution

In Soar, all deliberate activity takes place within the
context of goals or subgoals. A goal (or subgoal) is at-
tempted by selecting and applying operators to trans-
form an initial state into intermediate states until a de-
sired state of the goal is reached. For Robo-Soar, one
goal that arises is to align the blocks in the work area.
The first decision to be made in a goal is the selection
of a problem space. The problem space determines the
set of available operators that can be used for a goal.
In Robo-Soar, the problem space consists of operators
such as open-gripper and move-gripper.

The second decision to be made is the selection of the
initial state of the problem space. For goals involving
interaction with an external environment, this is essen-
tially given by the sensors. In Robo-Soar, the states
consist of current and past data from Robo-Soar’s sen-
sors, as well as internally computed elaborations of this
data, such as hypotheses about the positions of occluded
blocks. Once the initial state is selected, decisions are
made to select operators, one after another, until the
goal is achieved.

Every decision made by Soar, be it to select a prob-
lem space, initial state, or operator for a goal, is based
on preferences retrieved from its long-term memory. A

preference is an absolute or relative statement of the
worth of a specific object for a specific decision. The
simplest preference, called acceptable, means that an ob-
ject should be considered for a decision. Other prefer-
ences help distinguish between the acceptable objects.
For example, a preference in Robo-Soar might be that it
is better to select close-gripper than move-gripper
for a given goal.

A preference is only considered for a decision if it has
been retrieved from the long-term production memory.
Productions are continually matched against the work-
ing memory. The working memory includes all active
goals and their associated problem space, state, and op-
erators. For example, a production in Robo-Soar that
proposes the close-gripper operator might be:

If the gripper is open and surrounds a block
then create an acceptable preference
for close-gripper.

Soar’s production memory is unusual in that it fires
all matched production instantiations in parallel, and
it retracts the actions of production instantiations that
no longer match as in a JTMS. Thus, preferences and
working memory elements exist only when they are rel-
evant to the current situation. Decisions for selecting
the problem space, the initial state and operators are
made when Soar’s production memory reaches quies-
cence, that is, when there are no new changes to working
memory.

Once an operator is selected, productions sensitive
to that operator can fire to implement the operator’s
actions. Operator implementation productions do not
retract their actions when they no longer match. By
nature they make changes to the state that must persist
until explicitly changed by other operators. For an inter-
nal operator, the productions modify the current state.
For an operator involving interaction with an external
environment, the production augments the current state
with appropriate motor commands. The Soar architec-
ture picks up these augmentations and sends them di-
rectly to the robot controller. For both internal and
external operators, there must be an additional produc-
tion that tests to see that the operator was successfully
applied. For external operators, feedback from sensors
is tested to insure that an operator was actually carried
out. This production creates a special preference that
signals that the operator has terminated and that a new
operator can be selected.

At this point, the basic execution level of Soar has
been defined and it provides the basis for examining the
integration of planning and execution. This basic exe-
cution level will be expanded later, to include both more
reflexive and more deliberate execution. To summarize,
execution consists of the selection and application of op-
erators. Selections are based on the integration at run-
time of preferences created by productions. It is these
selections that are the basic control acts for which plan-
ning can provide additional knowledge.

Planning

For situations in which Soar has sufficient control knowl-
edge, the preferences created for each operator decision
will lead to the selection of a single operator. However,
for many decisions, the control knowledge encoded as
productions will be incomplete or inconsistent, creating
preferences that do not suggest a unique best choice.
We call the situation when a decision is underdeter-
mined an impasse. The Soar architecture detects im-
passes and automatically creates subgoals to determine
the best choice. Within a subgoal, Soar once again casts
the problem within a problem space, but this time the
goal is to determine which operator to select, not to
solve the original problem.

To determine the best operator, any number of meth-
ods can be used, such as drawing analogies to previ-
ous problems, asking an outside agent, or planning.
At a minimum, planning requires additional knowledge,
specifically, the ability to simulate the actions of ex-
ternal operators on the internal model of the world. As
expected, this knowledge is encoded as productions that
directly modify the internal state when an operator is se-
lected to apply to an internal state. Additional planning
strategies can be implemented through the addition of
planning problem spaces with associated operators and
control knowledge.

In Robo-Soar, an internal model of the environment
is created and then searched to evaluate the alternative
operators using any available control knowledge. The
result of the search is the determination of the rela-
tive worth of the various alternative operators. These
determinations are translated into preferences. When
sufficient preferences have been created to allow a single
choice to be made, the subgoal is automatically termi-
nated and the appropriate selection is made.

This is the simplest example of planning in Soar,
where a planning episode is used to resolve a single inde-
cision. The planning can use both domain-independent
strategies as well as domain-dependent control knowl-
edge to restrict the search. The final plan is only a
single step plan, consisting of the preferences that were
created for the operators participating in the impasse.
Even this simple example illustrates a unique property
of planning in Soar; planning is invoked automatically as
a response to insufficient knowledge; planning uses the
same architecture and shares short-term and long-term
knowledge with the execution system.

If this is the only point of indecision on the path to the
goal, then there is no need to create a longer term plan.
However, the typical case is that many of the decisions
required to solve a problem are underdetermined and a
more complete plan is required. If other decisions are
underdetermined, then they will also lead to impasses
and associated subgoals. The result is a recursive ap-
plication of the planning strategy to each decision in
the search where the current knowledge is insufficient.
When a solution is found, one step plans of preferences

are created in the subgoals for each of these decisions.
Unfortunately, these preferences cannot directly serve
as a plan because they are associated with specific sub-
goals, and they are removed from working memory when
their associated subgoals are terminated.

At this point, Soar’s learning mechanism, called
chunking, comes into play to preserve the control knowl-
edge that was produced in the subgoals, Chunking is
based on the observation that: (1) an impasse arises
because of lack of directly available knowledge, and (2)
problem solving in the associated subgoal produces new
information that is available to resolve the impasse.
Chunking caches the processing of the subgoal by cre-
ating a production whose actions recreate the results of
the subgoal. The conditions of the production are based
on those working-memory elements that were tested by
productions in the subgoal and found necessary to pro-
duce the results.

When chunking is used in conjunction with the plan-
ning scheme described above, new productions are
learned that create preferences for operators. Since the
problem solving in the subgoal originally created pref-
erences based on searching for a solution to the goal,
the productions include all of the relevant tests of the
current situation that are necessary to achieve the goal.
Chunks are learned not only for the original operator de-
cision, but also for each decision that had an impasse in a
subgoal. As a result, productions are learned that create
sufficient preferences for making each decision along the
path to the goal. Once the original impasse is resolved,
the productions learned during planning will apply, cre-
ating sufficient preferences to select each operator on
the path to the goal.

The ramifications of this approach are as follows:

1. Planning without plans.

In classical planning, the plan is the data structure
that provides communication between the planner
and the execution module. In Soar, an explicit plan is
not created, but instead a sequence of control produc-
tions are learned to direct execution. These control
productions not only suggest the appropriate opera-
tor to select, they can also suggest that an operator
be avoided.

2. On-demand planning.

Soar invokes planning whenever knowledge 1s insuffi-
cient for making a decision and it terminates planning
as soon as sufficient knowledge is found. Because of
this, planning is always in service of execution.

3. Learning improves execution and planning.

Once a control production is learned, it can be used
for future problems that match its conditions. These
productions improve both execution and planning by
eliminating indecision in both external and internal
problem solving.

4. Run-time combination of multiple plans.

When a new situation is encountered, all relevant pro-

ductions will fire. It makes no difference in which
previous problem this productions were learned. For
a novel problem, it is possible to have productions
from many different plans contribute to the selection
of operators on the solution path.

It is this last observation that is probably most im-
portant for planning in uncertain and unpredictable en-
vironment. By not committing to a single plan, but
instead allowing all cached planning knowledge to be
combined at run-time, Soar can respond to unexpected
changes in the environment, as long as it has previously
encountered the situation. If it does not have sufficient
knowledge for the current situation, it will plan, learn
the appropriate knowledge, and in the future be able to
respond directly without planning.

Interruption

The emphasis in our prior description of planning, was
on acquiring execution knowledge that could be respon-
sive to changes in the environment. This ignores the
issue of how the system responds to changes in its en-
vironment while it is planning. Consider two scenarios
from Robo-Soar. In the first scenario, one of blocks
is removed from the table while Robo-Soar is planning
how to align the blocks. In the second, a light goes on
while Robo-Soar is planning how to align the blocks.
This light signals that Robo-Soar must push a button
as soon as possible. The key to both of these scenar-
ios, 1s that Soar’s productions are continually matched
against working memory including incoming sensor data
and all goals and subgoals. When a change is detected,
planning can be revised or abandoned if necessary.

In the first example, the removal of the block does
not eliminate the necessity to plan, it just changes the
current state, the desired state (fewer blocks need to be
aligned) and the set of available operators (fewer blocks
can be moved). The change in the set of available op-
erators modifies the impasse but does not eliminate the
need to plan. Within the subgoal, operators and data
that was specific to moved block will be automatically
retracted from working memory. The exact effect will
depend on the state of the planning and its dependence
on the eliminated block. In the case where an outside
agent suddenly aligned all but one of the blocks, and
Robo-Soar had sufficient knowledge for that case, the
impasse would be eliminated and the appropriate oper-
ator selected.

In the second example, we assume that there exist a
production in long-term knowledge whose purpose is to
direct the Robo-Soar to push a button when a light is
turned on. This production will test for the light and
create a preference that the push-button operator must
be selected. When the next decision is made for the
operator, there is no longer a tie, and the push-button
operator is selected. One disadvantage of this scheme is
that it eliminates any subgoals from working memory,

so that any partial planning that has not been captured
in chunks will be lost.

Interruption of planning can be predicated on a vari-
ety stimuli. For example, productions can keep track of
the time spent planning and abort the planning by cre-
ating preferences to select some action, if some action is
better than none.

Hierarchical Planning and Execution

In our previous examples of Robo-Soar, the set of op-
erators corresponded quite closely to the motor com-
mands of the robot controller. However, Soar has non
restriction that problem space operators must directly
correspond to individual actions of the motor system.
For many problems, planning is greatly simplified if it is
performed with abstract operators far removed fror the
primitive actions of the hardware. For execution, the
hierarchical decomposition provided by multiple levels
of operators can provide important context for dealing
with execution errors and unexpected changes in the
environment.

Soar provides hierarchical decomposition by creat-
ing subgoals whenever an operator there is insufficient
knowledge encoded as productions to implement it di-
rectly. In the subgoal, the implementation of the oper-
ator is carried out by selecting and applying operators,
until the operator is terminated.

To demonstrate Soar’s capabilities in hierarchical
planning and execution we will use our second system,
Hero-Soar. Hero-Soar searches for the cups using sonar
sensors. The basic motor commands include position-
ing the various parts of the arm, opening and closing the
gripper, orienting sonar sensors, and moving and turn-
ing the robot. A more useful set includes operators such
as search-for-object, center-object, pickup-cup,
and drop—cup. The execution of each of these opera-
tors involves a combination of more primitive operators
that can only be determined at run-time. For example,
search-for—-an-object involves an exploration of the
room until the sonar sensors detect an object.

In Hero-Soar, the problem space for the top-most goal
consists of just these operators. Control knowledge, pro-
vided either manually or acquired through planning, can
select the operators when appropriate. However, once
one of these operators is selected, an impasse arises be-
cause there are no relevant implementation productions.
For example, once the search-for-object operator is
selected, a subgoal is generated and a problem space is
selected that contains operators for moving the robot
and combining sonar readings.

Operators such as search-for-object would be con-
sidered a goal in most other systems. In contrast, goals
in Soar arise only when knowledge is insufficient to make
progress. One advantage of Soar’s more uniform ap-
proach is that all the decision making and planning
methods also apply to these “goals” (abstract opera-
tors). For example, if there is an abstract internal simu-

lation of an operator such as pickup-cup, it can be used
in planning for the top-goal in the same way planning
would be performed at more primitive levels, and con-
trol knowledge can select between competing abstract
operators.

A second advantage of treating operator as goals is
that it even seemingly primitive acts, such as move~arm
can become goals, providing hierarchical execution.
This is especially important when there is uncertainty as
to whether a primitive action will complete successfully.
Hero-Soar has exactly these characteristics because it
can lose motor commands and sensor data between the
Hero and the controlling workstation. Hero-Soar han-
dles this uncertainty by selecting an operator, such as
move-arm, and then waits for feedback that the arm
is in the correct position before terminating the oper-
ator. While the command is executing on the Hero
hardware, a subgoal is created. In this subgoal, the
primary operator is wait which adds one to a counter
and terminates itself. It is then reselected, continually
counting how long it is waiting. If appropriate feed-
back is received from the Hero, the move-arm operator
terminates, a new operator is selected, and the subgoal
is removed. However, if the motor command or feed-
back was lost, or there is some other problem, such as
an obstruction preventing completion of the operator,
the waiting continues. Productions sensitive to the se-
lected operator and the current count detect when the
operator has taken too long. These productions propose
operators that directly query the feedback sensors, retry
the operator, or attempt some other recovery strategy.
Because of the relative computational speed differences
between the Hero and Soar on an Explorer 11+, Hero-
Soar spends approximately 30% of its time waiting for
its external actions to complete.

Reactive Execution

Hierarchical execution provides important context for
complex activities. Unfortunately it also exacts a cost
in terms of run-time efficiency. In order to perform a
primitive act, impasses must be detected, goals created,
problem spaces selected, and so on, until the motor com-
mand is generated. Selecting and applying operators di-
rectly is more efficient, but has its own overheads. The
actions of an operator will only be executed after the
operator has been selected. Operators are selected only
upon quiescence, thus forcing a delay. The advantage of
these two approaches is that they allow knowledge to be
integrated at run-time, so that a decision is not based on
an isolated production. This allows Soar to recover from
incorrect knowledge through learning (Laird, 1988) .
Soar also supports direct reflex actions where a pro-
duction creates motor commands without testing the
current operator. These productions act as reflexes for
low level responses, such as stopping the wheel motors
when an object directly in front of the robot. Along
with the increase responsiveness comes a loss of control;

no other knowledge will contribute to the decision to
stop the robot.

The ultimate limits on reactivity rests with Soar’s
ability to match productions and process preferences.
Unfortunately, there are currently no fixed time bounds
for Soar’s responsiveness. Given Soar’s learning, an even
greater concern is that extended planning and learning
will actually reduce responsiveness as more and more
productions must be matched (Tambe and Newell, 1088)

Recent results suggest that these problems can be
avoided by restricting the expressiveness of the produc-
tion conditions (Tambe and Rosenbloom, 1989) .

Although there are no time bounds, Soar is well
matched for both Hero-Soar and Robo-Soar. In nei-
ther case does Soar’s processing provide the main bot-
tleneck. However, as we move into domains with more
limited time constraints, further research on bounding
Soar’s execution time will be necessary.

Acknowledgments

The author would like to thank Michael Hucka, Eric
Yager, Chris Tuck, and Clare Congdon for help in de-
veloping Robo-Soar and Hero-Soar.

References

[1] J. E. Laird. Recovery from incorrect knowledge in
Soar. In Proceedings of the AAAI-88, August 1988.

[2] J. E. Laird, K. Swedlow, E. Altmann, and C. B. Con-

gdon. Soar 5§ User’s Manual. University of Michigan,
1990. In preparation.

[3] J.E. Laird, E.S. Yager, C.M. Tuck, and M. Hucka.
Learning in tele-autonomous systems using Soar. In
Proceedings of the 1989 NASA Conference on Space
Telerobotics, 1989. In press.

[4] M. Tambe and A. Newell. Some chunks are expen-
sive. In Proceedings of the Fifth International Con-
ference on Machine Learning, 1988.

[5] M. Tambe and P. S. Rosenbloom. Eliminating ex-
pensive chunks by restricting expressiveness. In Pro-
ceedings of IJCAI-89, 1989.

Autonomous Prediction and Reaction with Dynamic Deadlines

Richard Levinson
Recom Technologies Inc.
NASA Ames Research Center
Mail Stop: 244-17

Moffett Field, CA

Abstract

We describe a distributed planning architec-
ture that allows an autonomous agent to dy-
namically balance planning time vs. execu-
tion time according to changing execution time
deadlines. Our approach is being applied to-
ward a NASA project for autonomoussoil anal-
ysis. This paper introduces the concepts and
terminology of our planning system. A high
level description of key underlying mechanisms
is then illustrated using a simplified formal ex-
ample from our soil analysis domain.

1 Basic Terminology in Our Approach

We are modeling our domain using a multiple agent
framework. In our domain, an AGENT is an entity that
independently modifies data in the external world. The
EXTERNAL WORLD is a collection of data, called EX-
TERNAL DATA, accessible to all agents. Each agent
possesses a different set of perceptors which interpret
the external data in ways useful to that agent. Our
agent continuously reasons with and updates a quali-

tative model of the external world, called the WORLD

MODEL. The world model is a collection of facts that
represent our agent’s perception of the world. These
facts are either raw sense data or inferences from that
data, and may express quantitative or qualitative in-
formation. Each agent requires external data for in-
put, and modifies external data as output. We call this
input-output cycle the RESPONSE CYCLE. We define
a HYPOTHETICAL WORLD to be a copy of the world
model that can be modified by the agent, without mod-
ifying the actual world model or external data. We de-
fine PREDICTION to mean creating any model of the
future. We define PROJECTION to mean a type of pre-
diction that creates and analyzes hypothetical worlds.
Qur agent has a 3 component response cycle:

1. INTERPRETATION = External data input and

transformation.

2. PLANNING == Using prediction to synthesize be-
haviors which modify external data.

94035

3. EXECUTION = Execution of behaviors which
modify external data.

The real-time requirements of our domain demand that
the total response cycle time be tractable and bounded.
This crucial parameter is defined as : RESPONSE
TIME = INTERPRETATION TIME + PLANNING
TIME + EXECUTION TIME

Figure 1: Our agent’s response cycle (R=I+P+E)

Due to the unpredictable nature of our target environ-
ment, the proper proportions of each component in the
response cycle cannot be fixed at system design time.
The partition between each component in the response
cycle can be seen as a sliding wall. By sliding a par-
tition in either direction, the “percentage of the pie” is
changed. It is probably necessary to vary all 3 partitions
dynamically in an autonomous system. However, we
are focusing on the Planning/Execution ratio in order
to study dynamic adjustment on the predictive/reactive
spectrum. Qur system will provide the flexibility of au-
tomatically adjusting the P/E RATIO according to un-
predictable changes in the external world. We call this
a DYNAMIC RESPONSE TIME RATIO.

Our system will handle DYNAMIC P/E RATIOs in
the following way: We can associate each subgoal with
a deadline describing when that subgoal must be exe-
cuted. This deadline can either be an absolute time in
the real world, or an offset from the starting time of the
task. We can state what percentage of task execution
time should be used to achieve each subgoal, essentially
describing how time is to be distributed within the task
body. This information can then be used to determine
if the tasks are running according to schedule. When

running ahead of schedule we increase P/E, when run-
ning behind we decrease P/E. Due to these dynamic
{ime constraints, our system may need to begin execu-
tion before planning is complete. Faced with the need
to act immediately, but having only an incomplete plan,
our agent must start executing the beginning of a plan
while continuing to reason hypothetically about the rest
of that plan. This requires that our plan synthesis al-
gorithms possess significant anytime properties in the
sense of Dean and Boddy[DB88]. To address this re-
quirement, we focus on the question of when decisions
are made.

We define DECISION PHASES as the time intervals
when decisions are made. A DECISION to us primarily
means selecting actions, variable bindings, and action
orderings. Our system is particularly concerned with
runtime projection because our aim is (o eventually han-
dle highly procedural actions with conditional effects.
We identify 3 decision phases for autonomous behavior
in an agent: PRE-REUN PREDICTION: The decision is
made by a human designer or an off-line computation
which models the future before the agent has executed
any behavior at all (before the agent is ”alive”). During
this phase, external data are static or uninstantiated.
RUNTIME PREDICTION: The agent itself makes the
decision by modeling the future while instantiated ex-
ternal data are changing. These decisions are part of
the planning component of our response cycle. EXE-
CUTION: The agent makes the decision by modifying
external data without consulting any model of future.
The autonomy and uncertainty in our domain requires
the flexibility of using all 3 decision phases. Our system
will provide coverage in all phases, although we are pri-
marily interested in studying decision making during the
runtime prediction phase. Many of the new reactive sys-
tems combine pre-run prediction with execution, while
the classical planning systems have minimal execution
phase competence. To study the mechanics of our sys-
tem further, we introduce a simplified domain example.

2 The Domain Description

Qur project is concerned with control of a Soil Lab
Experiment Director (SLED) which can operate au-
tonomously in an uncertain and unpredictable environ-
ment. SLED will provide the interpretation, planning
and execution components for controlling the mineral
analysis equipment on a planetary rover. SLED designs
and coordinates experiments which use multiple mod-
ules of analysis hardware to describe an unknown min-
eral compound. Although the compound may be un-
known on Earth, SLED will design experiments which
attempt to disambiguate between possible descriptions.
SLED will contend with the unpredictable behavior of
the following agents:

ROVER - The rover executive in which SLED is embed-
ded. This is SLED’s boss and it dynamically controls
SLED’s time, power and goal requirements.

DTA - The Differential Thermal Analyzer. Analysis
hardware which can detect phase changes in a soil sam-
ple as it is heated according to a “heating program”.
This agent can malfunction unpredictably.

GC - The Gas Chromatograph. Analysis hardware
which can sniff gas that evolves during the heating pro-
cess of the DTA (above). This agent can malfunction
unpredictably.

SOIL - The unknown soil. This agent will always act
unpredictably. For example, if the soil heats up faster
or slower than expected then it affects time constraints.
We may design an experiment assuming the presence of
a mineral which is actually not present. If there 1s much
less of some mineral than expected, the DTA heating
program may proceed too fast to notice. We are pri-
marily interested in 2 sets of temperatures:
reference-temperatures = [0...100]

soil-temperatures = the set [<, >, =] where

>= soil temperature is hotter than reference.

<= soil temperature is cooler than reference.

== soll temperature is equal to reference.

Facts in our example database are represented as
predicates. The sensory facts in our database are :
(reference-temp). x € reference-temperatures. This
reference-temp parameter is given as an index into the
other three predicates. (soil-temp z y): x € reference-
temperatures, y € soil-temperatures. (gc-status z y) T X
€ reference-temperatures, y € [on, off]. (oven-speed z y)
: x € reference-temperatures, y € [High, Medium, Low,
Neutral]. The interpretation component supplies sev-
eral reference-temp vs. soil-temp curves for previously
analyzed minerals which may be present in soil. Each
curve is represented as a stream of <soil-temp, reference-
temp> coordinate pairs. EXPECTED-CURVES = a set
of previously recorded curves for known soil-temps vs.
reference-temps.

In addition to the sensory facts, we have facts which
are maintained internally within our agent. These mem-
ory facts in our database are: (ezpected-soil-temp ¢ y z)
: X € expected-curves, y € reference-temperatures, z €
soil-temperatures. The interpretation system also sup-
plies abstract descriptions of the expected-curves. Our
abstract view of a curve is: (ezpecied-curve-description z
y): x € expected-curves, y = a list of thermal events. A
thermal event describes an interval of exothermic (>) or
an endothermic (<) difference between the soil tempera-
ture and the reference temperature. A thermal event, e,
is a triple < duration, direction, onset-temp> : duration
€ [small, medium, large], direction € [<, >, =], onset-
temp € reference-temperatures. For e = the event <dur,
dir, onset>> we have the facts (ezpecled-event-duration e
y) : y = dur, (ezpected-event-direction e y) : y = dir,
(expected-event-onset-temp e y) : y = onset. A STATE
=w, X, Y, z: (reference-temp w)A(soil-temp w x)A{ge-
status w y)A(oven-speed w z). In other words, a state
= a set of values for the four sensory facts.

3 An Example Mineral Analysis
Planning Problem

The goal of our simplified DTA-Driver example is to:
Predict a sequence of states which burn the soil as fast
as possible while slowing down for higher resolution at
expected critical recording temperatures. Examples of
critical recording temperatures are: 1) short duration
thermal events and 2)differentiating between similar ex-
pected curves. While trying to predict the road ahead,
the DTA-driver will also be reacting to real-time sensory
evidence which contradicts expected-curve evidence.

How to predict the state sequences? For each
reference-temp from 0 to 1000, our agent must predict
3 values:

Predict x : (soil-temp reference-temp x)

o Choose x’s value from [<, >, =]

o Can use a heuristic H1 based on w: (expected-soil-
temp c reference-temp w): V ¢ € expected-curves.

o The DTA-driver (our autonomous agent) cannot
control this value.

Predict y : (ge-status reference-temp y)

e Choose y's value from [ON, OFF]

o 2 actions allow the DTA-driver to deterministically
control this value based on expected or sensed val-
ues of (soil-temp reference-temp x)

Predict z : (oven-speed reference-temp z)

s Choose z’s value from [HIGH, MEDIUM, LOW,
NEUTRAL], which correspond to heating rates.

e 4 actions allow the DTA-driver to heuristically con-
trol this value.

¢ Can use a heuristic H2 based on y: (expected-event-
duration x y) V x € events occurring at reference-
temp, V curve-descriptions, V expected-curves.

Here are the actions in our domain. The format is:
preconditions — action-name — postconditions. The
DTA must be in neutral (isothermal) before changing
speeds.

1. (soil-temp reference-temp >) — GC-ON — (ge-
status ON)

2. —(soil-temp reference-temp >) -+ GC-OFF — (gc-
status OFF)

3. (oven-speed reference-temp NEUTRAL) —
SPEED-H — (oven-speed reference-temp HIGH)

4. (oven-
speed reference-temp NEUTRAL) — SPEED-M —
(oven-speed reference-temp MEDIUM)

5. (oven-speed reference-temp NEUTRAL) —
SPEED-L — (oven-speed reference-temp LOW)

6. —(oven-speed reference-temp Neutral) — PAUSE
— (oven-speed reference-temp NEUTRAL)

The Time constraints in this example are:

1. The agent must fit execution time within a given
execution time slot. The agent’s expectations and
reactions can each lengthen execution time.

2. The agent must fit planning time within a changing
execution time interval. The interval is the time
until the next program step is needed. The interval
length depends on speed: Time = Temperature-
change/Heating-rate. The agent’s expectations and
reactions can each lengthen planning time.

3. The agent must have the GC available and warmed
up to catch exothermic (>) thermal events. The
agent never really knows how long until the next
exothermic event.

4 The Situated Planning Society
Architecture

SLED will be developed using the EXECUTIVE TOOL
KIT (XTK). XTK i1s a rapid-prototyping tool for de-
veloping models of executive behavior in distributed au-
tonomous systems. It is a procedurally expressive multi-
tasking reasoning system originally derived from the
STRIPS-based KEE backward chainer. The basic object
in XTK is a TASK. XTK tasks are goal-driven symbolic
procedures which allow subgoaling. Some tasks in a do-
main are run as parallel processes (co-routines) while
others are called as subroutines. This system and PRS
(GE87)share much of the same motivation. However,
XTK is aimed at an even higher level of procedural ex-
pressiveness than PRS, combined with projection.

In XTK, decisions appear as choice points. A
CHOICE POINT is a non-deterministic subgoal ex-
pression in XTK. A statement of the form (ACHIEVE
<subgoal> USING <supervisor>) can be used if a
choice must be made between several subgoal achieve-
ment methods. When a task executes this type of sub-
goal expression, we have “encountered a choice point”.
In this situation, many planners focus on one choice un-
til it either succeeds or fails, before they try another
approach. This is a rather coarse update quantum if we
really want our plan to be ready anytime. XTK handles
choice points explicitly by providing high level options
for controlling search heuristically from these points.
Our approach is to get better anytime performance by
associating each choice point with softer, heuristic meta
goals called SCORING CONDITIONS. These scoring
conditions are monitored by a supervisor task, so that
decisions can be made continuously throughout the pro-
jection of future worlds (runtime projection)— not only
at the end. These conditions are predicates designed
during pre-run prediction and can include Lisp func-
tions. The scoring conditions refer to changing facts in
a hypothetical world model, and they capture domain
heuristics for local choice selection.

The planning mechanisms in XTK are embedded
within the execution system. Situated, goal-driven be-
havior is performed by a team of tasks; some of whom

perform execution activities while others perform plan-
ning activities. Our teamn consists of REAL WORLD
TASKS, HYPOTHETICAL TASKS, SUPERVISORS
and EXECUTION MONITORS. A REAL WORLD
TASK (Q) is the basic task used to model domain ac-
tions. The basic XTK scenario is: A real world task is
modifying external data (i.e. executing - defined in Sec-
tion 1), when it encounters a choice point. If the choice
cannot be made using less expensive methods (due to
uncertainty), then the appropriate choice is selected by
simulating the alternatives in hypothetical worlds using
hypothetical tasks (RUNTIME PROJECTION). A HY-
POTHETICAL TASK (O) is identical to a real world
task except that it is running in a hypothetical world
- thus simulating the action not executing it. Each
leaf in a hypothetical task tree represents a potential
sequence of plan decisions, thus each leaf identifies a
unique PLAN. A task called a SUPERVISOR (A) is cre-
ated at each choice point, in order to monitor the scoring
conditions that are modified by subordinate hypotheti-
cal tasks. The job of a supervisor is to maintain a pref-
erence ordering on the plans below it by ranking each
plan when it changes with respect to a scoring condition.
Additionally, the supervisors will consider the cost and
time deadlines in their sorting functions. Whenever a
real world task encounters a choice point, an EXECU-
TION MONITOR (©) is created as the interface expert
between the tasks executing in the real world and the
hypothetical tasks which simulate decision alternatives.
Execution monitors control the scheduling of hypotheti-
cal tasks and decide when planning time runs out. They
must then collect the highest scoring hypothetical task
tree, and monitor the execution of that partial plan in
the real world. It may even need to simultaneously co-
ordinate the efforts of planning tasks with those of exe-
cution tasks. Here is a sample fragment of the task tree
for our example:

The Top Level Controller (TLC) is executing in the
real world when it encounters the goal: (a DTA program
considering expected-curves is ?program). The deadline
for that goal permits 5 minutes of planning time before

we run the experiment. The execution monitor, M, is
created as a subtask of TLC in order to interface be-
tween tasks in hypothetical worlds and the real world
task TLC. The responsibility of the interface includes
first controlling the transition from real world execution
into planning, and then most importantly, controlling
the transition from planning into real world execution.
This means coordinating the communication between
the simulation of plans on the left and the execution
of plans on the right. After M is created, the dta-
driver, D, 1s run in a hypothetical world. It encounters
the choice point : (ACHIEVE (soil-temp reference-temp
soil-temp) USING H1). H1 is the name of a supervisor
whose scoring conditions use Heuristic-1, based on ex-
pected and sensed values of x: (soil-temp reference-temp
x)-see section 3. Three subtasks suggest the alternative
values >, < or =. The Driver,D, splits into 3 differ-
ent CPU processes to model 3 different futures based
on each possible value. Since the driver,D, split into 3
CPU processes, we copy the computational continuation
of D into each choice. These Driver Continuations are
labelled DC; they are effectively clones of the driver, D.
The heuristics of an H1 supervisor prefer the > future
so it is given more CPU. Since it is exothermic (>), the
GC is turned on. We then hit another choice point:
(ACHIEVE (oven-speed reference-temp speed) USING
H2).The DC now splits 4 ways to model the alterna-
tive futures—HIGH, MEDIUM, LOVW or NEUTRAL. By
monitoring facts in their scoring conditions, the H1 and
H2 supervisors each know when the leaves below them
change . These 2 supervisors rank the plans below them
according to different heuristics. They each send their
recommendations to M who sorts those local suggestions
based on more global information, like changes in the ex-
ternal world and slips in execution time. M maintainsan
ordering on the alternative sequences of plan decisions
below it. When we hit the 12 choice in the bottom row,
planning time runs out. The highest ranking plan at
that point is selected (encircled subtree). These tasks
are then executed by the monitor (shown in circles and
squares on the right).

5 The Dynamic P/E Balancing
Mechanism

We define PLANNING TIME as the time left over when
running ahead of our execution deadlines. Our hook into
time is the Deadline option on the ACHIEVE state-
ment: (ACHIEVE <subgoal> :DEADLINE <Time Vv
Offset >) This execution time deadline represents a
pointer to the time when subgoal execution must be-
gin. The deadline is designed during pre-run prediction
or could be probabilistically learned based on previous
subtask duration times. This is the time when planning
must stop, a choice is selected, and execution begins.
When real-world tasks achieve subgoals, they calculate
the closeness of their time constraints : Planning lime
= subgoal-execution-deadline - current-time. Positive

planning time indicates we are ahead of schedule, and
can spend more time thinking. Negative planning time
indicates we are behind schedule, and must spend more
time doing. We currently have 3 mechanisms based on
this deadline information:

1. When a task encounters a choice point, it passes
the planning time to an execution monitor who
counts down till the execution deadline. When the
deadline is up, the monitor selects the best par-
tial plan at that time, and starts concurrent plan-
ning/execution. A countdown is initiated this way
(a) when a choice point is encountered for the first
time or (b) when a previous choice point must be
replanned due to new sensor evidence (reaction).

2. As subgoals are are achieved in the real world, the
execution tasks pass their planning time calcula-
tions to their monitor, allowing the monitor to keep
abreast of slips in the execution schedule. Positive
planning time is added to the monitor’s current
planning time countdown, and negative planning
time is subtracted from the countdown.

3. The subgoal deadline is used by supervisors to com-
pare expected subtask duration with subgoal dead-
lines while scoring alternative subtasks. This allows
the planners to reason about subtasks which may
not make their subgoal deadlines.

6 Search Control & Communication in
The Situated Planning Society

XTK provides a distributed planning approach with
search controlled by a combination of local and global
decision experts. Each plan actually represents a par-
ticular sequence of plan decisions, where each decision
is monitored by a different supervisor. The supervisors
each sort their subordinate plans based on their own
heuristic preference. As a result, supervisors at differ-
ent levels in the task tree may have different scores for a
single plan. The supervisors each send a preferred sub-
set of choices to an execution monitor task, who sorts
the suggestions a second time based on the percentage of
supervisors that recommended each one. The most pop-
ular plans get scheduled for CPU time, allowing them
to be further simulated. This provides a parallel-beam
search control mechanism.

When the monitor notices that the execution states of
the tasks on right differ significantly from the assump-
tions of the planning tasks on the left, then M adjusts
the weight on the local heuristic supervisors. Sugges-
tions from supervisors based on currently true states
are weighted more heavily than suggestions based on
false states. The local rankings occur independently of
actual subgoal success or failure. Instead, the rankings
change whenever relevant facts change in the simulated
states. This allows each supervisor to independently
change its local ranking at any time. Likewise, the global
sort changes asynchronously due to continuous sensor

information. We call this “anytime” because the plans
represent conlinuously sorted chronological sequences of
plan decisions. Any time we run out of planning time,
we have a locally and globally elected sequence of deci-
sions to execute starting from the initial state. While
the beginming of the plan is executing on the right, plan-
ning continues on the left. The plans get better as time
progresses because they look further into the future; be-
coming more complete and globally coherent.

The execution monitor provides communication be-
tween concurrent planning and execution tasks about
“mutually interesting results”. The Execution Monitor
watches for several types of events, then passes informa-
tion between planning subtasks (P) and execution sub-
tasks (E). First,the monitor watches for slips in the ex-
ecution time. When the schedule slips forward or back-
ward, messages are sent from the E tasks to the P tasks.
Secondly, the preconditions which support the tasks in a
selected plan are monitored as that plan is executed by E
tasks. If those planned preconditions are not true during
execution time, messages are sent from the E tasks to the
P tasks in order to initiate replanning (time permiting).
Additionally, these messages allow the planning tasks to
prune their search space according to execution choices
being made in the real world. As the planning tasks in-
crementally decide on upcoming choice points, messages
are sent in the P to E direction. These messages may
involve sending entire planned subtrees incrementally to
an execution monitor who then integrates the tree with
it’s execution tasks. Alternatively, the planning tasks
could send Drummond’s Situated Control Rules (DR89)
to the execution monitor for a more reactive response.

The above approach to planning significantly breaks
down the usual dichotomy between planning and ex-
ecution activities. Since planning and execution are
both represented using tasks, the planning activity is
an execution activity. The only difference is that plan-
ning activities reason about hypothetical procedures as
opposed to reasoning about attributes in the physical
world. They can communicate with each other about
mutually interesting results, providing flexibility in the
face of dynamic time constraints.

A cknowledgements

Thanks to Mark Drummond and Dave Thompson for
their feedback during the evolution of this work.

References

[1] Dean, T., Boddy, M. 1988. An Analysis of Time-
Dependent Planning. Proceedings from AAAI ’88.
St. Paul MN.

[2] Georgeff, M., Lansky, A. 1987 Reactive Reasoning
and Planning. Proceedings from AAAI ’87. Los An-
geles, CA.

[3] Drummond, M, 1989. Situated Control rules. Pro-

ceedings of Conference on Principles of Knowledge
Representatlion and Reasoning, Toronto, Canada.

Task Planning using a Formal Model for Reactive
Robot Plans

D.M. Lyons, R.N. Pelavin, A.J. Hendriks, D.P. Benjamin

Autonomous Systems Department
Philips Laboratories
North American Philips Corporation
345 Scarborough Road
Briarcliff Manor
NY 10510
dml@philabs.philips.com

Keywords: RS, Planning, Plan Representation, Reactive Planning, Opportunism, Plan Anal-

ysis.

1 Introduction.

Our work is focused on the automatic generation
iand verification of plans for uncertain and dynamic
environments. An intelligent system cannot explicitly
plan out all its actions in advance if it is operating in
such an environment. For example, in Sanborn’s Traf-
fic World (Sanborn 1989), cars approach at unknown
and dynamically changing velocities. The only way to
deal with this problem is to construct reactive plans:
plans that can tune their actions to suit the environ-
iment. Reactive plans can be constructed in advance,
eeither manually, as in (Agre & Chapman 1987) Pengi
or in the (Brook 1986) subsumption architecture, or
jautomatically, given some knowledge about the uncer-
tainty in the environment. Plan generation in dynamic
1;domacins involves identifying relevant (external) condi-
ttions to monitor and determining an appropriate con-
itrol mechanism that links the sensor information to the
effectors so that the agent can react properly to external
levents.

i We have developed a model for representing reactive
iplans as networks of distributed processes, RS (Lyous
& Arbib 1989; Lyons 1988,1989). In addition, this
model can also be used to represent the environment
in which the plan acts. We have developed formal tech-
miques for analyzing plans and worlds expressed in the
model. Our work is novel in that it offers (1) a pre-
cise framework for reactive plans, and (2) techniques
for looking at the behavior of reactive plans in uncer-
tain and dynamic environments.

2 The RS Model.

The RS (Robot Schemas) model was developed to

express robot plans that could ‘tune’ their behavior to
suit their environment. This is particularly relevant in
the robot domain because object locations, identities
and behaviors are never precisely known in any real-
istic task. We chose to build a special model of dis-
itributed computation for reasons of efficiency in exe-
icution, and because of the formal analysis techniques
éavailable (Hoare 1985; Hennessy 1988). A plan in RS
is a network of concurrent processes. The processes can
Ibe coupled into networks in two ways: they can commu-
}nicate messages to each other via communication ports,
]or they can be composed together using several kinds of
[process composition operators. Processes can be defined
in terms of networks of other processes, grounding out
with a set of primitive, pre-defined, processes.

'3 Representing Reactive Plans.

The canonical structure for a plan in our model is
the task unit, which written as a network schema of
three concurrent, communicating processes:

TU =[S, T, M|

The process S implements the sensory activities for
task TU, the process M implements the motor activ-
ities for task TU, and the process T implements the
connection between sensing and motor activities that
characterizes the task. The connection map ¢ describes
the connections between the communication ports on
the three processes. Thus, every plan is phrased as
action linked to sensing. Additionally, the S com-
ponent, which implements task-specific sensing, allows
us to represent the world in functional-indexical terms.
That is, objects are only represented in RS in terms of
the role they play in task units.

To represent more explicitly how the T process im-
plements the connections between sensing and action,
we developed a set of process composition operators.
For example, the enable operator ¢’ combines two pro-
cesses sequentially but allows the first process to pa-
rameterize the second. The following network uses this
operator to implement a plan to assemble a box from
two sides, a top and a base, in a reactive fashion:

Plan = Locatepase(p): Placep;
[Locate,1(p) : Placep,
Locate,2(p) : Place,];

Locate;.p(p) : Place,

Locate,, does a sensory search of the environment
for an object of class m and returns a pointer to it in
p when it is found and terminates. The value p is then
used to enable the next process Place. Place,
places part p in the assembly and terminates. The
operation links these two processes so that each part
is searched for and then placed — it ‘synchronizes’ the
Place process with the environment. The ‘;’ operator
implements sequential composition; it ‘imposes’ a.strict
ordering on some actions in the plan. However, the
concurrency in searching for, and placing, the sides (s1
and s2) means that these operations will be done in
whatever order the environment enables. This sort of
reaction is sometimes called opportunism (Fox & Kempf

1985).

4 Representing Uncertain and -
Dynamic Environments.

The RS model can also be used to represent dy-
namic and uncertain worlds. The composition opera-

~ tors can be used to build temporal descriptions. The re-

' curring enable composition operation, written

€.,
5y Pro-

duces a process that is like an enable composition in an
infinite loop. Let Ran be a process that terminates in
some random, finite time. Let the Car process repre-

. sent a car. The network

OneCarWorld = Ran :; Car

repeatedly generates a Car process at a random time.

The transcondition operation, ‘#’, allows us to use
one process to limit the execution of another: it pro-
duces a process that acts like the concurrent network

. of both its argument until either argument terminates,

then the composition terminates. In a clean room do-
main, wafer batches have to be heated in ovens to facil-
itate various chemical processes. Unfortunately, these

. ovens go down a lot. Let the process Oven represent

the operating oven. Let the lermination of IfError
represent the event that causes the oven to go out of op-

'say that process A
-condition § if A becomes equal to B when condi-

eration. Let OvenDown represent the oven being down.
Finally, let the termination of IfRepaired represent
the successful conclusion of the activities necessary to
fix the oven. The following network is a causal model
of this uncertain and dynamic world:

CleanWorld = [Oven#IfError] :; [IfRepaired#0venDown]

This accurately represents what is know about the
world (the causal structure) but doesn’t say anything
about when specifically, or how often, the oven will go
down.

5 Plan Analysis.

The formal semantics of the RS model is constructed
using Port Automata (Steenstrup et al. 1983), a special
automata theoretic model for distributed computation.
The process equality, composition operators and port
communication are defined in terms of port automata.
We use the methodology of process algebra (Hoare 1985)
to analyze the behavior of plans in worlds. In addition
to using the algebraic properties of the composition op-
erators we have discussed, we have also developed a
plan analysis operator, ‘evolves,’ defined as follows. We
‘evolves’ into process B under

‘tion § occurs; we write this as A L, B, Let Stop be

a special process that immediately terminates. Asking

[Plan, World] LN Stor is equivalent to asking under
what conditions will Plan terminate in environment
World. The environment, World, 1is a network of
models, such as CleanWorld or OneCarWorld above,
that describes the environment in which the plan is to
he ecarried ont. We can also ask under what conditions
some Goal mnetwork is produced, [Plan, Vbrld] LR
Goal. The evolves operator can be easily implemented
as follows: The termination conditions for each prim-
itive process must be specified. The definitions of the
individual composition operators can be used to deduce
how composite processes evolves.

6 Autogeneration of Reactive
Plans.

We are developing a formalism that embraces both
the school of reactive planning (Agre & Chapman 1987)
and the hierarchical top-down planning methodology
(Sacerdoti 1974; Fikes & Nilsson 1971). Like (Agre
and Chapman 1978) we recognize the computational
expense of using classical techniques to generate plans,
and see the need for reactive mechanisms. However,

¥

we argue that it is always advantageous to have some

a priort plan generation component, even in the case

when the plan itsell is highly reactive. Our objective is

to develop a uniform framework that can handle a broad

spectrum of tasks, ranging from short term reactions to

long term strategic planning, based on the RS model.
. We summarize the keys features of our approach to plan
' generation as follows.

¢ In our framework, a planner produces an abstract
plan in response to a specified goal and typically
based on a incomplete view of the world. This
abstract plan may contain actions at various lev-
els of detail. The one important constraint we
impose on this plan is that the first step must be
executable. This enables the agent to undertake
execution of this step, while concurrently either
refining or updating the plan.

¢ To determine the appropriate steps to include in
an abstract plan, it is important to determine
which features in the external world are relevant
features that the agent must monitor and respond
to. Previous work has considered only manual
plan construction; the user must determine the
appropriate actions (Fikes & Nilsson 1971) and
set of features to monitor (Sacerdoti 1974). In
contrast, we are developing methods for automat-
ically determining which features are relevant. In
(Benjamin et al. 1989), we show how to automat-
ically decompose a task described by a network
into a hierarchy of subtasks, such that each level
of the hierarchy has an associated feature identi-
fying the aspect of the world to be monitored.

we are extending the concepts of (Pelavin 1988) to
connect the ports of RS processes and to handle
all of the RS process combination operators (tem-
poral coordination). Meeting timing constraints
is also an important issue. Work in progress on
real-time scheduling in RS (Lyons & Mehta 1989;
Pocock 1989) starts to address this issue.

| o To automate the process of coordinating processes,
L
|
I

o We plan to move away from “airtight planning”
by incorporating decision theory and adapting our
methods to work with probabilistic statements
and statements about utilities. Decision theory
provides a formal framework for choosing the plan
that best achieves the agent’s (possibly compet-
ing) objectives in an uncertain world. The use of
decision theory for planning in uncertain worlds
has been previously advocated by (Langlotz et al.
1986).

7 Implementation.

We have implemented an RS kernel and front-end
on an inhouse multiprocessor and are using it for ex-
periements in intelligent robot control (Lyons & Mehta
1989). We have simulated a subset of the “evolves” op-

. -erator in PROLOG on a SUN, and are now building a

first version of the plan generation software.

References

[1] P. Agre and D. Chapman. Pengi: an implemen-
tation of a theory of action. In Proc. AAAI-87,
Santa Cruz CA, Oct. 1987, pp.123-154.

[2] Allen, J.F. Towards a General Theory of Action
and Time. In Artificial Intelligence 23,2, 1984, pp.
123-154

(3] Benjamin, D.P., Dorst, L., Mandhyan, I. and
Rosar, M., An introduction to the decomposi-
tion of task representation in Autonomous Sys-

tems. In Change of Representation and Inductive
Bias Kluwer Academic Publishers, 1989.

' [4] R. Brooks. A robust layered control system for a
mobile robot. IEEE J. Rob. & Aut., RA-2(1):14-
22, Mar. 1986.

[6] Fikes, R.E. and Nilsson, N.J. STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving Artificial Intelligence 2, 1971,
pp-189-208.

[6] B.R. Fox and K.G. Kempf. Opportunistic schedul-
ing for robotic assembly. In IEEE Int. Conf.
Robotics & Automation, pages 880-889, St.Louis
MO, 1985.

[7] Langlotz, C., Fagan, L., Tu, S., Williams, J., and
Sikic, B. ONXY: An Architecture for Planning
in Uncertain Environments. Proc. AAAI-86, 1987
pp.447-449

[8] M. Hennessy. Algebraic Theory of Processes. MIT
Press, 1988.

[9] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International Series in Com-
puter Science, 1985.

[10] D.M. Lyons. On-line allocation of robot resources
to task plans. In SPIE Symp. on Advances in In-
telligent Robotic Systems; Expert Robots for Indus-
trial Use (Vol. 1008), pages 215222, Nov. 1988.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

D.M. Lyons. A process-based approach to task-
plan representation. In Submitted io the IEEE Int.
Conf. Robotics & Automation, Cincinatti, Ohio,
May 1990.

D.M. Lyons and M.A. Arbib. A formal model
of computation for sensory-based robotics. [EEE
Trans. on Robotics & Automation, 5(3):280-293,
June 1989.

D.M. Lyons and S. Mehta. A distributed comput-
ing environment for the multiple robot domain. In
Fourth International Conference on CAD, CAM,
Robotics and factories of the future, New Delhi,
India, Dec. 19-22 1989.

McDermott, D., A Temporal Logic for Reasoning
about Process and Plans. Cognitive Science 6,2

(1982), 101-155.

Pel88 Pelavin, R. N., A Formal Approach to
Planning with Concurrent Actions and External
Events. PhD Thesis, University of Rochester, 1988.

Pocock, G. A Distributed Real-Time Program-
ming Language for Robotics. IEEE 1989 Ini. Conf.
on Rob. & Aut. May 14-19th 1989, Scottsdale Ari-
zona, pp. 1010-1015.

Sacerdoti. E. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5, 1974, pp.115-135.

J. Sanborn. Dynamic reaction: Controlling behav-
1or in dynamic domains. Technical Report CS-TR-
2184, University of Maryland, Dept. of Computer
Science, College Park, MD 20742, 1989.

M. Steenstrup, M.A. Arbib, and E.G. Manes.
Port automata and the algebra of concurrent pro-

cesses. Journal of Computer and System Sciences,
27(1):29-50, Aug. 1983.

Reactive Planning using a "Situation Space'

Stacy C. Marsella and Charles F. Schmidt

Department of Computer Science
Rutgers University
New Brunswick, NJ

Introduction

Consider the problem of how a single agent, the
actor, can plan rationally in a world populated with
multiple independent intelligent agents. Each agent
can bring about changes in the actor’s world which
could frustrate or facilitate some course of action that
the actor might entertain as part of a possible plan for
achieving a goal. In the classical planning paradigm
the actor is the sole source of change. This assumption,
coupled with an assumption that the actor possesses
a complete and correct model of the world, allows us
to adopt a fairly straightforward definition of rational-
ity for such a planning system. The system behaves
rationally if it creates correct plans which are in a cer-
tain sense also minimal. A plan is correct if the goal
can be proved to follow from the initial state and the
plan. It satisfies a sense of minimality if no part of the
plan can be removed and the proof remain valid. This
is an Intuitively reasonable criterion for rationality in
this classical paradigm. However, research within this
paradigm has led to a deeper understanding of the dif-
ficulties that stand in the way of creating an efficient
computational model of planning that is guaranteed
to satisfy this notion of rationality when the world is
even of moderate complexity.

More recently, there has been a good deal of re-
search in AI planning on the problem of how to ex-
tend the investigation of planning to contexts where
the assumptions of the classical model are relaxed (e.g.
Hendler and Sanborn, 1987; Firby, 1987; Schmidt et
al., 1989). The relaxation ranges from withdrawing
the assumption that guarantees success of action ex-
ecution to the withdrawal of the assumption that the
planner is the only source of change in the planning en-
vironment. Not surprisingly, the notion of rationality
assumed in classical planning is difficult to realistically
apply to most non-classical planning environments. If
complete and certain knowledge is either lacking or of
a complexity thal precludes its effective use, then it
may be the case that the success of any plan cannot

be guaranteed.

In this paper we will tentatively put forward a hy-
pothesis about a way in which to implicitly structure
the space of states associated with a domain such that
a weaker form of rationality is enforced when a plan-
ner uses this structure to guide its planning activity.
We will term this structuring of the space of states a
situation space.

An Example Domain - PWorld

It is useful to define an example domain within
which the idea of a situation space can be motivated
and the intuitions behind this structure discussed. The
domain that is used for this purpose is referred to as
PWorld. It was loosely defined by analogy to the kind
of goals that might govern the movement of persons
congregrated at a party. In this world there is a set of
agents and a set of cells which are spatially structured
as a grid. At any point in time each agent is located
at some cell and no two agents may occupy the same
cell.

The primitive actions available to each actor are
of two types. Either staying in the current location
or movement to a rectilinearly adjacent cell. Staying
in a location can always be carried out. The rules
of movement are basically those of rectilinear motion
with constraints which depend upon the location of
other agents. First, an agent cannot move to a cell
occupied by another agent since this would violate the
constraint that only one agent can occupy any cell.
More interestingly, when two agents are adjacent only
to one another and no other agent then neither agent
can move to a cell that would cause the other agent to
no longer be adjacent to some agent. Here adjacency
holds between two agents if they occupy cells which
are immediately rectilinearly or diagonally adjacent.
Call this the politeness constraini. Note that if the
agent is adjacent to more than one other agent, then
it is possible for an agent

. to move to a cell that breaks this adjacency relation

and possibly causes the agent not to be adjacent to any
other agent. This politeness constraint is sufficient to
yield interesting “group” behavior when a sufficient
number of agents are “packed” into a fixed set of cells.

These minimally interesting agents can have goals
of being adjacent to other agents, not being adjacent
to other agents, or some conjunct of these possibilities.
We assume that there is no communication about goals
among the agents and that no agent’s goal involves
intentionally blocking or facilitating the goal achieve-
ment of another agent. It is a benign though possibly
chaotic world. We further assume that the agents’
goals are sufficiently diverse to make it unlikely that
the true situation is a competitive one. For example,
where more than eight agents had the goal of being
adjacent to the same other agent.

The agents are assumed to plan and act asynchro-
nously. Whenever, two or more agents attempt to
move to the same free location at the same time, we as-

i sume a world monitor that indifferently decides which

agent’s action succeeds. In the case where an agent
attempts to move to a cell occupied by an agent who
is executing the action of staying in that cell, then the
world monitor always rules in favor of the agent that
is staying in the cell.

Now let us distinguish one particular agent, called
the actor, and consider the problems encountered by
the actor in attempting to achieve the goal of being
aligned with some specific other agent, the attractor.
One agent is said to be aligned with another agent if
the agent occupies a cell that is immediately north,
south, east, or west of the other.

Some Observations about PWorld

What are some of the aspects of PWorld that make
planning particularly difficult? First, simply consider
some estimates of aspects of the state space associ-
ated with a PWorld problem. Assume there are 15
agents at a party. Recall that there are five primitive
actions that an agent might attempt. A reasonable es-
timate of the average number of these actions that an
agent can actually perform at a point in time is three.
With 15 agents there are roughly 3'° or over 14 mil-
lion possible next states. Even if each agent could only
choose between two actions, then the average branch-
ing factor of the state space would be 2% or over 33
thousand. Consequently, reasoning through this space
of possible next states to find a sequence of actions
that guarantees goal achievement regardless of the ac-
tions of the other agents would be a formidable search
task. The problem is particularly difficult if the plan
involves many actions.

Another possibility would be to attempt to accu-
rately model each agent’s plan. However, if each agent’s
plan depends on modelling the planning of other agents,
the combinatorics of these models of models, ..., be-
comes prohibitive, if not actually inconsistent. What
seems to be required is some means of forming abstrac-
tions or reformulations of the primitive state space use-
ful to the planner. An obvious candidate is to aggre-
gate agents that are adjacent to each other into groups
based on the transitive closure of the adjacency rela-
tionship. With 15 agents we might have states which
involve one group of all agents, states which involve 2

- groups of 1 and 14 agents, or 2 and 13, and so on, to
' the state where there are 15 groups, that is, each agent

is isolated. From the rules of motion for individuals, 1t
is possible to determine the rules of group motion and
the possibilities of group formation and dissolution for
groups of different size and spatial distribution. For
example, a two agent group can undergo an identity
transformation, a rigid translation in any of the four
directions, a clockwise or counter-clockwise circling of

- one agent about the other, and so on. A three agent

group has a set of group transformations unique to
it such as deformation from horizontally aligned to a
triangular configuration, and so on, together with the
two agent group transformations possible when two
agents actions are joined and the third allowed to vary
independently, and so on. The advantage of such a re-

- formulation accrues from the ability to collapse states

i based on the symmetries discovered. Unfortunately,

our actor would have to be rather well-versed in the
mathematical theory of groups to accomplish this re-
formulation and there is no guarantee that such a re-
formulation would simplify the planning for achieve-
ment of the actor’s goal.

These observations about PWorld are consistent

- with the following conclusions. First, a classical plan-
* ning formulation of this type of domain is very unlikely
. to be of practical use. Second, it is unlikely that a co-

herent formulation that allows the planner to reason
from “correct” models of each agent to deterministic
predictions of each agent’s actions is possible. And,
even if possible, it is unlikely that the use of such
models is tractable. Third, even if a reformulated
space describing aggregate motion could be derived
from the laws of individual motion and states, the re-
sulting state would still be highly complex and carry
no guarantee that it could be usefully employed to sig-
nificantly simplify the planning problem. Thus, we
seem to find ourselves in the world of problems which
require the paradoxical notion of “reactive planning.”

A Plan-Derived Situation Space

One suggestion for dealing with unpredictable en-
vironments is to create a universal plan which “spec-
ifies appropriate reactions to every possible situation
within a given domain...” (Schoppers, 1987). This
suggestion is less than helpful in a domain such as
PWorld. Agre and Chapman (1987) have studied the
problem of selecting actions in an arcade game, Pengo,
that shares some of the characteristics of our PWorld.
We share their belief that a “state collapsing” mecha-
nism to control the selection of action in domains such
as these is required. Their hope is that such a mech-
anism emerges from an appropriate coupling or “sit-
uated” interplay between a “vision” system and con-
crete activity. In constrast, the hypothesis advanced
here is that the traditional representations available in
planning systems may provide a basis for usefully col-

" lapsing the states associated with a problem to yield
" a kind of “situated planner.”

We refer to this basis for controlling planning as a

' situation space. The intent is that a situation space

provide an efficient representation of an abstract par-
tial plan that can be used to monitor the changing
state of the world, provide the planner information
about the appropriate goal to pursue in the “current
situation”, and enforce a goal-oriented coherence to
a planning system that typically attempts to achieve
and maintain subgoals in a local fashion.

The problem in realizing this intent is that of de-
termining how to identify an abstract partial plan for
a problem without exhaustively planning in the prim-
itive problem space. Our proposed solution involves
two basic moves. First, note that for a complex do-
main such as PWorld there will often be many differ-
ing plans that might yield a solution. The representa-
tion of an abstraction of this “OR-space” of plans can
yield a situation space that itself would be difficult to
use and will make the identification of a construction
procedure more problematic. What is desired is the
imposition of a simple structure on the abstract par-
tial plan. This will result in curtailing the possible
plans that a planner controlled by this space can pro-
duce. And, it can mean that a plan is not found for
some specific problem despite the fact that one exists.
The second move is to construct this abstract partial
plan in as egocentric a fashion as possible. That is,
the idea is to exploit the simplification that results
by considering the affect that the world can have on
the actor’s ability to produce actions within a local or
egocentrically defined portion of the space rather than
to emphasize reasoning about the global properties of
the space. An additional problem that must be faced
by any constructive procedure is that of the choice of

parameters for the basic objects of the space. Clearly,
a situation space for a PWorld with a suitably fixed
number of cells and involving 15 agents will differ and
be largely irrelevant for one that involves only four
agents.

The current ideas concerning a plausible method
for constructing such a situation space will be pre-
sented by sketching a possible situation space for our
PWorld problem. The basic strategy is inductive in
form but the induction is controlled to yield partial
state descriptions that collapse the space into action
and goal related classes.

Figure 1 presents an example of a situation space
for PWorld. The construction begins with a tentative
set of situation predicates, Free, Paired, and Sur-
rounded. This tentative set is based on a classifica-

' tion of partial state configurations that differentially

constrain the actor’s actions. Then we show how these
set of situation predicates might be modified when fit
iisto a situation space.

Counsider first the Surrounded predicate, which re-
turns true when there are other agents in the four cells
that are vertically and horizontally adjacent to the ac-
tor’s cell location. The effect of being in such a state is
to make the actions of the actor conditional on those

 four agents. In particular, if the surrounding agents do

not move, the actor cannot move. The Paired predi-
cate is when there is exactly one other agent adjacent
to the actor (i.e. in just one of the 8 vertically, hori-
zontally, or diagonally adjacent cells) and none of the
actor’s immediate legal moves bring additional agents
into the group. The effect is to place the actor in a
two person group, whereby the politeness constraint
restricts the actor’s actions. If the other agent does
not move, the actor can take at most 2 different moves
and if the other agent continues not to move over some

i sequence of the actor’s actions there will be a a cyclic
| structure to that action sequence. Free is true when

the actor is not adjacent to any other agents or alterna-
tively is in a group of more than 2 persons and is not
surrounded. Thus the actor is either not in a group
and can thus immediately take any of four different
actions (walls permitting) or is capable of leaving the
group and thus eventually will be able to take any of
four different actions, again assuming the other agents
do not move.

These three situation predicates coincide with dif-
ferent restrictions on the Actor’s view of its ability to
compose actions. This view is egocentric in the sense
that it ignores the other agents’ actions. Furthermore,
it is shortsighted because it ignores the actor’s goals.
Thus the task remains to coalesce this action based
view of what an actor can do with a goal based view

of what the actor wants to do.

Consider now a fourth situation, Aligned, which
is when the actor is vertically or horizontally adjacent
to the Attractor. States satisfying this predicate are
the desired goal states. Being Aligned does not co-
incide with a unique or uniform restriction on action.
Aligned can restrict the Actor’s actions, and can do
so to different degrees depending on whether there are
other members in the group. For instance, one can be
aligned in a two or three person group. The distinction
here is that when alignment has been achieved restric-
tion on action is no longer a major hindrance vis-a-vis
goal achievement and can even be beneficial.

Clearly, Aligned is important for goal achievement,
vet it is not simply defined in terms of restrictions on
actions. This is why situations cannot only express re-
strictions on the ability of the actor to act. A situation
space must also overlay onto or otherwise distinguish
situations based on some incomplete overall plan or
plans to achieve the goal and how subgoals in those
plans are associated with situations. So, whereas sit-
uations are in part “locally” defined in terms of the
actor’s capabilities they must also fit into a situation
space that coherently relates a situation to the overall
goal. This suggests certain modifications to the situa-
tion predicates.

For instance, the most important goal is to achieve
and maintain alignment. As we have seen, the vari-
ous states in which the goal is true do not uniquely or
uniformly satisfy any of the three situations based on
action restriction. So an Aligned situation predicate is
defined and associated with the overall goal of achiev-
ing and maintaining alignment. However, in order to
distinguish the Aligned situation from Surrounded, we
further constrain Surrounded so that none of the other,
surrounding, agents is the Attractor. Likewise, we con-
strain Paired so that the other agent is not the At-
tractor. See Figure 2 for examples that satisfy these
modified situation predicates.

Now that we have the situations we must fit them
into a situation space that guides the actor’s planning
and action execution. This involves adding additional
structure. First, associated with each situation predi-
cate is a situationally appropriate goal to pursue when
the predicate is true. The goal associated with Sur-
rounded is to achieve a state that satisfies Free. The
goal associated with Paired is also Free. When in the
situation Free, the goal is either “Approach Attrac-
tor and Maintain Free” or, failing that just “Maintain
Free”. This disjunctive goal is due to possibility of
approach paths being blocked by other agents.

In addition to the situation predicates and goals,
Figure 1 represents possible transitions from one sit-

uation to another as arcs connecting situations. Al-
though not explicitly represented in Figure 1, each of
these arcs has an associated predicate to be monitored
that determines when the transition occurs. There
are two kinds of transition arcs, solid and dotted. The
solid arcs represent transitions that are associated with
the successful achievement of the goal associated with
the situation at the tail end of the arc. In contrast,
the dotted arcs mark unexpected transitions. A path

- along solid arcs encodes a possible sequence of situa-

tions that represent various “expected” paths for the
actor in the situation space. Any such sequence from
some current situation to the Aligned situation is a de-
composition into a collection of planning islands with
the following characteristics:

e there is an order on the planning for the islands
and on the execution of the solutions as noted
by the arcs,

e an island’s goal ignores future islands,
* anisland’s goal includes some maintenance goals.

This situation space denotes the limited rational-
ity of the Actor. Due to the instability of PWorld it
doesn’t make sense to make complete plans that plan
across future islands. Nevertheless the situation space
itself insures that the planning for the present situa-
tion coincides with at least one formulation of an ab-
stract decomposition structure for the goal. Roughly
speaking, we can characterize this as get Free, Ap-
proach Attractor, and Align. Fortuitous transitions

- simply bypass part of the structure. The maintenance
: goals serve to guard against catastrophic transitions

that shift the actor into a less advantageous situation
in terms of the situation space’s partial order.

Concluding Remarks

The further development and evaluation of these
ideas of how to construct and use situation spaces in
planning requires the pursuit of two directions of re-
search. One is to find an appropriate formal charac-
terization of the construction procedure in order to de-
termine its appropriateness and generality. A second
is to experimentally explore the behavior of possible
situated planners that can be designed to use the sit-
uation space to control planning activity.

Figure 1: Example Situation Space

ag ag ag
ag|Ac|ag ag | Acjag Ac Ac
ag ag|ag ag

Exampies of Surrounded

Examples of Paired

ag

At

ag |Ac

Ac Ac Ac| At

ag

ag

Examples of Free

Examples of Aligned
Key:
Ac->Actor
At->Attractor
ag->agent

Figure 2: Example Situations

References [3] Hendler, J.A. and Sanborn, J.C. A model of reac-

tion for planning in dynamic environments. In Pro-

(1] Agre, P.E. and Chapman, D. Pengi: An implemen- ceedings of the Knowledge-Based Planning Work-
tation of a theory of activity. In Proceedings of shop, DARPA, 1987, 24-1 - 24-10.

the National Conference on Artificial Intelligence,

AAAI, 1987, 268-272.

[4] Schmidt, C.F., Goodson, J.L., Marsella, S.C.,
Bresina, J.L., Reactive Planning Using a Situation

[2] Firby, R.J. An investigation into reactive planning Space. In Proceedings of the 1989 AI Systems in
in complex domains. In Proceedings of the Na- Government Conference, IEEE, 1989.

tional Conference on Artificial Intelligence, AAAI

1987, 202-206.

[5] Schoppers, M.J. Universal plans for reactive robots
in unpredictable environments. In Proceedings of
the Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI, 1987, 1039-1042.

A Logic for a Non-monotonic Theory of Planning

Leora Morgenstern
IBM T. J. Watson Rescarch Center
P.O. Box 704, Mail Stop HIN08
Yorktown Heights, NY 10598
(914)784-7151
E-mail: leora@IBM.COM

1 Abstract

We arguc that a realistic theory of planning must
be based on a non-monotonic logic. We present
MANMI, a multiple-agent non-monotonic logic,
which is an extension of Moorce’s autocepistemic
logic. Several imference rules are suggested for
MANML. While these allow the sort of reasoning
that one neceds in multi-agent planning, they are
shown to be too permissive. inally, we show
that a restriction of onc of these inference rules
gives intuitive results for temporal projection,

2 Introduction

AJ researchers have long recognized that agents
who operate In complex envirenments often don’t
krow enough to perform desired actions or to
achicve their goals. During the past two decades,
rescarchers have responded to this problem via
two distinct approaches. On the one hand, for-
malists have developed theeries that allow an
agent to reason about his ability to perform
an action ([McCarthy and Hayes 1969], [Moore
1980]. and (o cxccute complex plans even in
the absence of knowledge [Morgenstern 1987].
On the other hand, more practically oriented
AT researchers have investigated reaclive plan-
ners ([Kaelbling 1986),[Schoppers 1987]) where
little advance planning is performed, aclions -
reactions to a particular state of the world - arc
hard-wired into the system, and the effect of in-
complete knowledge is minimized.

For many rcasonably complex planning prob-
lems, however, both of these approaches are in-
adequale. Reactive planning systems may he a

good solution far simple planning scenarios, cs-
pecially for those sitvations in which an agent
will not have the necessary information ahcad of
time, but will have that information at run time.
Nevertheless, there are many situations in which
stragetic planning is both necessary and natu-
ral. If an agent needs a picee of information, and
the only way Lo gel thal information is to ask an-
other agent, wailing until run time won’t get him
anywhere. The point, clearly, is that the agent
must cxplicitly plan to ask the sccond agent for
the information, and must somchow rcason that
this plan will work. On the other hand, the for-
malist approach as it has so {ar been developed
is too rigid te model reasonably complex plan-
ning problems. Consider for example, the Chain
Request Problem:

Suppose Alice wants to open a safe. She knows
that the combination of the safe is either some se-
quence N1 or N2, but she doesn’t know which. 1t
is crucial to know the correct combination before
attempting to dial, Dhecause dialing the wrong
combination causes the salc to blow up. TFurther-
more, various anthorized individuals may change
the combination of the safe from N1 to N2 and
vice versa. Alice knows that both Jim and Lisa
know the combinatinon of the sale, bul she is not
friendly enough with either of them to ask. How-
cver, she knows Susan quile well, and she knows
that Susan 1s Iriendly with cither Lisa or Jim.
Alice therefore constructs the following plan:

o Alice asks Susan to ask either Jim or Lisa for
the combination

¢ Susan asks Jim or Lisa for the combination
e Jitn or Lisa tells Susan the combination

e Susan tells Alice the combination

Despite the apparent simplicity of this plan,
Alice cannot predict with any certainty that this
plan will work. She can assume that Jim or Lisa
will give Susan the information, but she cannot
be absolutely certain of it; she can be reasonably
confident that the combinatlion of the safe won't
change during this process - and that Jim and
Lisa will know this - but this is not an absolute
certaity.

The standard formalist approach has concen-
trated on iron-clad proofs showing that an ig-
norant agent could do something to acheive his
goals. Often such proofs have relied on axioms
thal were drastic oversimplifications of common-
sense knowledge. In contrast, we aim to develop
a theory with realistic axioms, default rules, and
defeasible conclusions. That is, we would like to
develop a theory of planning that is grounded in
a non-monotonic logic.

Given that il s nccessary to ground a robust
theory of planning in a non-monotonic logic, why
not simply fusc an cxisting non-rnonotonic logic
with an existing theory of knowledge and action?
Such an approach would be inadequate, primar-
ily because existing non-monotonic logics are in-
tended for modelling how a single agent reasons
with partial information and with default rules.
In a non-monotoenic theory of planning, however,
When
an agent plans, he will oflen take into account

the singlc-agent case no longer suflices.

the actions that he believes another agent will
perform. To order to predict the actions of an-
other agent, he must know how that other agent
plans, ic., he woust know how that other agent
reasons non-monotonically. Thus, we need a mul-
tiple agent non-monotoaic logic.

3 MANML

MANMI is a Multiple Agent Non-Monotonic
Logic that has been developed in recenl work
[Morgenstern 1990]. The core of MANMI, is an
extension of Moore’s autoepistemic logic (AEL)
to the multiple agent casec.

ATL was designed to formalize how an agent
reasons about his own beliefs. Sentences of ALILL
arc defined by the following rules: (1) 1f ¢ is a
formula of the predicate calenlus, ¢ € ATL; (2)
il ¢ € AGL, Lo € AL, where L is the standard

beliel operator: (3) il ¢ and 4 arc sentences of
AEL, so are ¢ A ¢ and .

We say a theary T of AT is a stable sct i it
obeys the following three rules:

[1] T is closed under logical consequence
[2] if el then LI’e T
B P ¢ET, then oL eT.

To extend this logic to multiple agents, we in-
dex the belicl operator L. We thus state the for-
mation rules of MANRMIL, as [ollows:

{1) il ¢ is a sentence of the predicate calculus, ¢
is a sentence of MANNMIL.

(2) il ¢ is a sentence of MANMIL, L. is a sen-
tence of MANMIL, where a is a constant of the
language that represents an agent

(3) il ¢ and 4 arc sentences of MANML, so are
¢ Ay and ~¢

Once we introduce mulliple agents into the the-
ory, the stable set formation rules of AR no
longer hold. If I?ic in T, we do not necessarily
want to say thal Lg/" s in T, for any a. Never-
theless, we wish to get the effect of these rules, so
that agents can reason autoepistemically and rea-
son aboul other agents reasoning autocpistenii-
cally. We alter the siable set formation rules by
adding an explicit level of indexing in the obvious
way. This yields the following sct of rules:

160 Loy oy Lo
L.QeT

2.0 L, eT, then L, L, €T

e T, P..P, F @, then

3. L P ¢l then Ly~L,"eT

Default rules must also be indexed appropri-
ately. Bill's beliel that he would know if he had
an older brother is represented as Lpg (PP =
L1}, where P stands for the sentence: Bill has
an older broiher. Suppose Lpii(P = LpuP) is
the only sentence of the forin L in T By 1,
]zn;u(*‘]/];,‘”/) = *!/’). HH(,, since]/[;,'” r ¢ 7‘. b‘}'
J., [/,1,'(1—1]/[7,‘”]' el T’HIS, hy 1., Ln,'{(_‘]”.

We have the following Theorem: et T be a
set of sentences of NIANMIL. Let 7, = { d|Lad €
T}. Then, Lol is a MANML stable sct conse-
quence of Tl 17 is an Al stable set consequence

of T,.

Note that, in restricted cases, MANMI, seems
to permit ofher apeuis to rcason about an in-
dividual agent’s autocpistemic reasoning. Sup-

pose, for example, that T contains the following
axioms: LpiiLater (P = L)) (Bill believes
that il Alex had an older brother, Alex would
know about it) and Lp{-Tat-»1’). Then by
rule 1. of MANML, we get Ll stee—1.

In the foregoing example, however, Bill did not
really reason about Alex’s autocpislemic reason-
ing abilities at all. He explicitly knew that Alex
didn’t belicve that he had an older brother. This
goes against the spirit of auloepistemic reason-
ing. The point is to start out from the positive
belicls in one’s data base, use the stable set prin-
ciples to conclude what beliefs one doesn't have,
and to go from there to negalive beliels.

Similarly, recall the Chain Request Problem of
Section 1, and supposc thal Susan belicves that
friendly agents typically give over information
when they are requested to do so. Using a sim-
ple temporal logic where actions take unit time
{as in [Morgenstern 1989]), following Konolige’s
[1987] suggestion for representing defaull rules in
autoepistemic logic, and adding the appropriate
indexing, we can represent this rule as
LSu.mn,

tions arc quite different from the assumption of
perfect introspection thal characterizes auloepis-
temic reasoning in the single-agent case. In the
single-agent case, the given Lheory was a com-
plete description of the mind of the agent. In the
mulli-agent case, agents have al best a partial
description ol other agents’ beliels.

Note that the default assumptlions thal one
agents makes about another agent’s lack of be-
liels is deleasible. In fact, onc agent may be
wrong in what he thinks another agent does not
belicve. Morcover, this principle cimbodies a cer-
tain amount of arrogance. An agent who rcasons
about how a sccond agent uscs non-monotonic
reasoning must be arrogant with respect to his
belicls about the frmitalions ol the sccond agent’s
beliefs. Ile must in some sense believe that he
knows all that is important to know about the

sccond agent’s beliefs.

We aim to limit this arrogance as much as pos-
sible. For any delault rule of the formm Lya A
LB = Loy let us call ~Laf the ignorant parl
of the rule, since it deals with an agent’s negative

beliels. To enable multi-agent non-monotonic

[Lsysan(True(t, Occur s(do(a, request(b, tellw(d))))reasoning, we need only assume that agents are

A Truc(l, friendly(a,b)))
A=Ligyran =T rue(t + 1, Occur s(do(b, tellw(d))))
= True(l + 1,do(b, tellw(d))))

tellw describes the action of an agent taking a
disjunction and telling which disjunct is truc.

Suppose also thal Susan belives that a and b
arc Iriendly and that e has just requested b to
tell him which ol the disjuncis in d is true, i.c.
LsusanTruc(t, Occurs(do(a, request(b, tell(d))))
AT'rue(l, friendly(a,b)))
and that Alice knows that Susan has these beliefs.
In order for Alice to believe that Susan belicves
that bin fact will do the telling action, Alice must
also believe that Susan docs nol believe thal the
telling action will not happen. Again, these con-
straints go against the spirit of non-monotonic
rcasoning. The whole point is thal agentls nced
not have explicit knowledge of the conditions that
arc assumed to be true by default.

How can one agent reason about the way in
which another agent uses default rules? The core
of the answer is this: Agents reason about how
other agents reason non-monotonically by mak-
ing defaull assumptions ahout what these agents
do notl belicve. Note that these delault assurmp-

arrogant with respect to the negative parts of the
default rules.

A Brst step at a principle of inference for
MANML might therefore be:
Il an agent X belicves that a second agent Y be-
lieves some default rule Lyo A =Ly 8 = v, and
X believes that Y believes @ and has no reason
to behieve that Y helieves 3, N can conclude that
Y believes v. Formally, suppose:

[/‘\']_/y([/yn ALy = ’7’) € Ty Lya €T,
LxlyBdgT. Then, LxlyveT.

We will call the above principle the Principle of
Moderate Arrogance (PMA).

Tt can casily be scen that the Principle of Mod-
crale Arrogance allows ns (o model in a rational
manner how Alice comes to conclude that Susan
will believe that Tisa or Jim will tell her what the
combinalion is.

Ofien, even an arrogant agent finds it worth-
while io be mere cirenmspect about ascribing
negative beliefs to other agents. This is partic-
ularly the case when the agent does believe the
We call this
rule of inference the Principle of Cautious Arro-

negative parl of some default rule.

gance (PCA). Tt is formalized as follows: Suppose
L_\']/)'(L}’O‘ A-LyB = “() e T, l.xLya € T,
LyLyB g T, and Ly ¢ T. then LyLyyeT.

The PCA may be too caulious at times. In
general, however, both the PMA and the PCA
arc much too permissive. Below, we discuss a re-
striction of the PMA that works well in temporal
projecction.

4 Epistemic Motivated Ac-
tion Theory in MANML

Epistemic Motivated Action Theory (IXMAT)
was originally developed to handle two strange
variant [rame problems (hat arise in an intc-
grated theory of knowledge and multi-agent plan-
ning ([Morgenstern 1989]). The Chain Reqguest
Problem, which we introduced in Section 1, cap-
tures the salient features of these problems in a
simipler Tormal:

Comnsider Alice’s simple 4-step plan (ask Susan
to ask Lisa or Jim for the combination, Susan
asks Lisa or Jim, Lisa or Jim tells Susan, Susan
tells Alice the combination) Tt turns out that in
a standard monotonic logic with frame axioms,
Alice cannot prove that her plan will work. She
does not know that Lisa or Jim will tell Susan the
combination, since Lisa or Jim will have no way
of knowing that the combination of the safe has
not changed since the beginning of the planning
process. No arnount of frame axioms will help.
The problem is not a lack of frame axioms, or
even alack of knowledge on the part of Lisa and
Jim of the frame axioms. IHowever, since Lisa and
Jim may not know what has happened during
the planning process, they may have no way of
applying these frame axioms.

Surprisingly, standard won-monotonic tempo-
ral logics ([Lifschitz 1987], [[augh 1987], and
[Baker and Ginsherg 1988]) are ol no help cither.
Very briefly, the reason these logics won't work s
that they are bascd on the sitnation calculus, and
thercfore allow no gaps in any agent’s knowledge

"The original variant frame problems and their so-
lutions in EMAT, were developed in a rich logical lan-
guage that allowed quantification into epistcmic con-
texts, AFL (even Konolige's extended version) and there-
fore MANML do not allow quantification inlo mpistemic
contexts,

of what actions arc occurring in a chronicle.

OF course, a commonsense reasoning svslem
should be able to conclude that Alice’s plan will
work. Presumably, the combination of the sale
will not change. Lisa and Jim know this. There-
fore, as long as Jim and Lisa don’t know of
anything that would indicate that the combina-
tion has changed, they will assume thal it hasn’t
changed. Alice therefore reasons that Lisa or Jim
will know the combination when Susan asks.

The basic principle underlying the [oregoing
reasoning is thal actions happen only il they
have to happen, or arc molivaled. This princi-
ple has heen formalized Motivated Action The-
ory (MAT) [Morgenstern and Stein 1988, We
assume a theory of causal and persistence rules
T, and a collcction of statements giving a partial
description of a chronicle, CD. CDUT =717, a
particular theory instantiation. A statcment is
said to be moliraled is a theorem of TI; a state-
ment is said to be motivated with respect to a
particular model il it has to be (rue, given rules
and boundary conditions, within that particular
model, We prefer models which minimize unmo-
tivated statements of the form T(t,Occurs(act)).

EMAT extends MAT by parawmecterizing theory
instantiations with respect (o agents and times.
For example, TI{at1,bt2) = TI{a,t1)(b,t2) is
what a at t1 believes h at (2 believes. Agents
assume that other agents reason using MAT on
the theory instantiations which they ascribe to
them.

ISMAT Al-

ice to prove that her d-step plan will work.

In the above cxample, allows
The theory instaniiations TI{Alice,1,Jim,3) and
TH Alice,1,Lisa,3) both contain the statement
that the combination at time 3 is identical to the
combination ab time I; thus, Lisa and Jim know

the combination.

EMAT provides a simple and clegant solu-
tion to the problem of temporal projection in
epistemic contests. The principle embodied in
FMAT is quite close to a restricted Torm of the
PMA in MANMIL. Note that the principle un-
deriving MAT and FATAT - actions happen only
il they have (o happen - can be capiured by the

following axiom schema of MANMIL: 2

La(~FaOccurs(act) = =Occurs(act))

2the corraspandence is elose bul not exact.

That is, it is assumed by default that unmoti-
vated actions do not occur,

Agents in EMAT implcitly assume that the
partial characterization that they have of the
other agents’ theory instaniiations is sufficient for
their purposes. This assumption can be madce ex-
plicit in the following restricted form of the PMA,
which is limited to default rules of causal reason-
img. This restricted form of the PMA, (EMAT-
PMA) can be stated as follows:

Suppose

Ly Ly(Ly(): A
=Ly True(l, Occurs(act))) = v

LxLyaeT
Ly LyTrue(l, Occurs(act)) ¢ T
Then Ly Lyvye T

This gives us a powerful inference rule for non-
monotonic temporal reasoning. BEMAT-PMA will
allow Alice to rcason thal Jim or Lisa will give
Susan the combination, and thal Susan will give
her the combination. Naturally, a logic that has
EMAT-PMA will not permit much of the reason-
ing that a commonsense reasoner ought Lo be able
to do. Nonetheless, the reasonableness of this in-
ference rule suggest the possibility that a group
of tules of this sort, cach expressing a restriction
of PMA for some sort of reasaning, is a good first
step toward building a gencral purpose theory of
non-monotonic planning.

5 Conclusion

We have that a theory of

monotonic planning is crucial for a realistic the-

argued non-

ory of commonsense reasoning. We have pre-
sented MANML, a logic of multiple-agent non-
monotonic reasoning, and have showed that it
1s a good basis for a won-monotonic theory of
planning.
rules for MANMI., based on the concept of an
agent's arrogance lowards his knowledge of an-
other agent’s ignorance. These rules were shown

We have suggested several inference

Lo be overly permissive. We demonstrated that
an cxisting theory of temporal reasoning, which
allowed for imited multiple-agent non-monotonic
reasoning, could be duplicated by a restricted
form of onc of the principles of arrogance.

6 References

Baker, Andrew and Matthew Ginsherg: Some
Problems in Temporal Reasoning, 1988

Haugh, Brian: Simple Causal Minimizations for
Temporal Persistence and Projection, Proceed-
ings, AAAT 1987

Kaelbling, Leslier An Archilecture for Tntelli-
gent Reactive Systems, in Georgelf, Michael and
Amy Lansky, eds: Reasoning About Actions and
Mlans, Proceedings ol the 1986 Workshop at Tim-
berline, 1987

Konolige, Kurt: On the Relation Between De-
fault Theorics and Autoepistemic Logic, Pro-
ceedings, 1JCAT 1987

Lifschitz, Vladimir: Formal Theories of Action,
Proceedings, IJCAT 1987

McCarthy, John and Patrick Tayes: Some Philo-
sophical Problemns from the Standpoint of Arti-
ficial Intelligence, in Bernard Meltzer, ed. Ma-
chine Tntelligence, 1969

Moore, Robert: Reasoning About Knowledge
and Action, SRI TR 1971, 1980

Moore, Robhert: Semantical Considerations on
Nonmonolonic Logie, AL}, Vol.25, 1985

Morgenstern, Leora: Knowledge and the Irame
'roblem, Proceedings, Workshop on the Frame
P'roblem, Pensacola, 1989

Morgenstern, [eora:r Knowledge Preconditions
for Actions and Plans, 1JCAT 1987

Morgenstern, Leora:r Preliminary Investigations
into a Theory of Multiple Agent Nonmonotonic
Reasoning, submitted Lo 1990 Workshop on Nou-
monotonic Reasoning

Meorgenstern, l.eora and Lynn Andrea Stein:
Why Things go Wrong: A Formal Theory of

Causal Reasoning, Proceedings, AAAT 1088
Reiter, Ray: A Logic for Default Reasoning, ALJ,
Vol. 13, 1980

Schoppers. Marcel: Universal Plans for Reactive
Robots in Unpredictable Fnvironments, 1JCAT,
1987

INTRODUCING THE TILEWORLD:
EXPERIMENTALLY EVALUATING AGENT ARCHITECTURES

Martha E. Pollack
Artificial Intelligence Center and

Center for the Study of Language and Information

SRI International

Menlo Park, CA
pollack@ai.sri.com

Introduction

Recently there has been a surge of interest in systems
that are capable of intelligent behavior in dynamic, un-
predictable environments. Because agents inevitably
have bounded computational resources, their deliber-
ations about what to do take time, and so, in dynamic
environments, they run the risk that things will change
while they reason. Indeed, things may change in ways
that undermine the very assumptions upon which the
reasoning is proceeding. The agent may begin a delib-
eration problem with a particular set of available op-
tions, but, in a dynamic environment, new options may
arise, and formerly existing options disappear, during
the course of the deliberation. An agent that blindly
pushes forward with the original deliberation problem,
without regard to the amount of time it is taking or
the changes meanwhile going on, is not likely to make
rational decisions.

One solution that has been proposed eliminates ex-
plicit execution-time reasoning by compiling into the
agent all decisions about what to do in particular
situations [Agre and Chapman, 1987, Brooks, 1987,
Kaelbling, 1988]. This is an interesting endeavor whose
ultimate feasibility remains an open question, but we
and others believe that in complex domains, the ex-
clusive use of compilation techniques is impractical
[D’Ambrosio and Fehling, 1989, Doyle, 1988, Pollock,
1989].

An alternative is to design agents that perform ex-
plicit reasoning at execution time, but manage that rea-
soning by engaging in meta-level reasoning. Within the
past few years, researchers in Al have provided theo-
retical analyses of meta-level reasoning, often applying
decision-theoretic notions to it [Boddy and Dean, 1989,
Russell and Wefald, 1989, Horvitz, 1987). In addition,
architectural specifications for agents performing meta-
level reasoning have been developed [Bratman et al.,
1988], and prototype syvstems that engage in meta-level

Marc Ringuette
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
mnr@cs.cmu.edu

reasoning have been implemented [Cohen et al., 1989,
Georgeff and Ingrand, 1989]. The project we describe
in this paper involves the implementation of a sys-
tem for experimentally evaluating competing theoret-
ical and architectural proposals.

More specifically, we have been constructing a system
called Tileworld, which consists of a simulated robot
agent and a simulated environment which is both dy-
namic and unpredictable. Both the agent and the envi-
ronment are highly parameterized, enabling one to con-
trol certain characteristics of each. We can thus exper-
imentally investigate the behavior of various meta-level
reasoning strategies by tuning the parameters of the
agent, and can assess the success of alternative strate-
gies in different environments, by tuning the environ-
mental parameters. Our hypothesis is that the appro-
priateness of a particular meta-level reasoning strategy
will depend in large part upon the characteristics of
the environment in which the agent incorporating that
strategy is situated. We shall describe below how the
parameters of our simulated environment correspond
to interesting characteristics of real, dynamic environ-
ments.

In our initial experiments using Tileworld, we have
been evaluating a version of the meta-level reasoning
strategy proposed in earlier work by one of the authors
[Bratman et al., 1988]. However, we will also describe
how Tileworld can be used to evaluate a range of com-
peting proposals, such as the ones mentioned above.

The Tileworld Environment

The Tileworld is a chessboard-like grid on which there
are agents, tiles, obstacles, and holes. An agent is a unit
square which is able to move up, down, left, or right,
one cell at a time. A tile is a unit square which behaves
like a tile: it slides, and rows of tiles can be pushed by
the agent. An obstacle is a group of grid cells which are
immovable. A hole is a group of grid cells, each of which

can be “papered over” by a tile when the tile is moved
on top of the hole cell; the tile and hole cell disappear,
leaving a blank cell. If a hole becomes completely filled,
the agent gets points for filling it in. The agent knows
ahead of time how valuable the hole is; its overall goal
is to get as many points as possible by filling in holes.

LR EEEEEEEEEEEEEE XN

T T T T
22 T
2
##5 T
#R#5T
#5 T a T#
T
T T TT
¥TH#T T
T LI
% T
T T T T
#
T % #
T LR 2 I
tHEERR
3 # TT #
T T T
IR EEEEEEEEEE NN

A Typical Tileworld Starting State
a = agent, # = obstacle, T = tile, <digits> =hole

A Tileworld simulation takes place dynamically: it
begins in a state which is randomly generated by the
simulator according to a set of parameters, and changes
continually over time. Objects (holes, tiles, and ob-
stacles) appear and disappear at rates determined by
parameters set by the experimenter, while at the same
time the agent moves around and pushes tiles into holes.
The dynamic aspect of a Tileworld simulation distin-
guishes it from many earlier domains that have been
used for studying Al planning, such as blocks-world.

The Tileworld is a rough abstraction of the Robot De-
livery Domain, in which a mobile robot roams the halls
of an office delivering messages and objects in response
to human requests.! We have been able to draw a fairly
close correspondence between the two domains (i.e., the
appearance of a hole corresponds to a request, the hole
itself corresponds to a delivery location, tiles correspond
to messages or objects, the agent to the robot, the grid
to hallways, and the simulator time to real time).

Features of the domain put a variety of demands on
the agent. Its spatial complexity is nontrivial: a sim-
ple hill-climbing strategy can have modest success, but

Various projects at SRI have employed this domain,
some of them also employing an actual mobile robot, Flakey.

when efficient action is needed, more extensive reason-
ing is necessary. But the time spent in reasoning has an
assoclated cost, both in lost opportunities and in unex-
pected changes to the world; thus the agent must make
tradeoffs between speed and accuracy, and must mon-
itor the execution of its plans to ensure success. Time
pressures also become significant as multiple goals vie
for the agent’s attention.

The Tileworld can be a good test of an agent’s abili-
ties to behave intelligently in a dynamic, unpredictable
environment. But a single Tileworld simulation, how-
ever interesting, will give only one data point in the de-
sign space of robot agents. To explore the space more
vigorously, we must be able to vary the challenges that
the domain presents to the agent. We have therefore pa-
rameterized the domain, and provided “knobs” which
can be adjusted to set the values of those parameters.

The knob settings control the evolution of a Tile-
world simulation. Some of the knobs were alluded to
earlier, for instance, those that control the frequency
of appearance and disappearance of each object type.
Other knobs control the number and average size of
each object type. Still other knobs are used to control
factors such as the shape of the distribution of scores
associated with holes, or the choice between the instan-
taneous disappearance of a hole and a slow decrease in
value (a hard bound versus a soft bound). By adjust-
ing the knobs, one can allow conditions to to vary from
something resembling an unconstrained football field 1o
something like a crowded maze, or from fixed puzzle to
constantly changing chaos. For each set of parameter
settings, an agent can be tested on tens or hundreds of
randomly-generated runs automatically. Agents can be
compared by running them on the same set of pseudo-
random worlds; the simulator is designed to minimize
noise and preserve fine distinctions in performance. We
will describe the form of an experiment more precisely
in a later section.

An Agent Architecture

In our initial experiments with Tileworld, we are in-
vestigating a particular architecture for meta-level rea-
soning [Bratman et al., 1988}, which we briefly describe
here. This architecture builds on observations made by
Bratman [Bratman, 1987] that agents who are situated
in dynamic environments benefit from having plans be-
cause their plans can constrain the amount of subse-
quent reasoning they need to perform. Two constrain-
ing roles of plans will concern us here ?:

e An agent’s plans focus subsequent means-end rea-
soning so that the agent can, in general, concen-

2 Additional constraining roles have also been postulated
[Bratman, 1987, Pollack, 1990].

trate on elaborating its existing plans, rather than
on computing all possible courses of action that
might be undertaken.

¢ An agent’s plans restrict the set of further potential
courses of action it needs to give full consideration
to, by filtering out options that are inconsistent
with the performance of what it already plans to

do.

The first role of plans has always been at least implicit
in the standard models of AI planning: Al planners
compute means to goals that the agent already has.
The second has a more dramatic effect on the architec-
ture we are investigating: it leads to the introduction
of a filtering mechanism, which manages execution time
reasoning by restricting deliberation to options that are
compatible with the performance of already intended
actions. (To have the desired effect of lessening the
amount of reasoning needed, the filtering mechanism
must be computationally inexpensive, relative to the
cost of deliberation.)

Of course, a rational agent cannot always remain
committed to its existing plans. Sometimes plans may
be subject to reconsideration or abandonment in light
of changes in belief. But if an agent constantly recon-
siders its plans, they will not limit deliberation in the
way they need to. This means that an agent’s plans
should be reasonably stable, i.e., they should be rela-
tively resistant to reconsideration and abandonment.

To achieve stability while at the same time allowing
for reconsideration of plans when necessary, we include
two components in the filtering mechanism. The first
checks a new option for compatibility with the exist-
ing plans. The second, an override mechanism, encodes
the conditions under which some portion of its exist-
ing plans is to be suspended and weighed against some
other option. The filter override mechanism operates in
parallel with the compatibility filter. For a new option
to pass through the filter, it must either pass the com-
patibility check or else trigger an override by matching
one of the conditions in the override mechanism.

An agent’s filter override mechanism must be care-
fully designed to embody the right degree of sensitivity
to the problems and opportunities that arise in its en-
vironment. If the agent is overly sensitive, willing to
reconsider its plans in response to every unanticipated
event, then its plans will not serve sufficiently to limit
the number of options about which it must deliberate.
On the other hand, if the agent is not sensitive enough,
it will fail to react to significant deviations from its ex-
pectations.

The options that pass through the filter are then sub-
ject to deliberation. The deliberation process is what

actually selects the actions the agent will form inten-
tions towards. In other words, it is the deliberation
process that performs the type of decision-making that
is the focus of traditional decision theory. The filter-
ing mechanism thus serves to frame particular decision
problems.

The Tileworld Agent

The Tileworld agent embodies the architecture de-
scribed in the previous section. It simultaneously rea-
sons about what to do, and performs actions and per-
ceives changes in its environment. Our model is of a
robot with two sets of processing hardware. One pro-
cessor executes a short control cycle, acting on previ-
ously formulated plans and monitoring the world for
changes; the second processor executes a longer cycle
which permits computations with lengths of up to sev-
eral seconds. Although this model incurs a certain cost
in the complexity of synchronizing the two processes, it
allows for a balance of computational flexibility and re-
activity. We feel that this is a realistic choice for robot
design, although in our current system, we simulate the
concurrency for the sake of convenience.

The act cycle is straightforward; the agent performs
those acts that have been identified during the previous
reasoning cycle, monitoring for limited kinds of failures.
The reasoning cycle is more interesting, and the por-

tion of the agent architecture that controls reasoning is
sketched below.

Environment
|
v
| Means- | | Perception
---> | Ends | e
| | Reasoner | [
o = I
| ! [
| v v

The task of the reasoning cycle is to make deci-
sions about what goals to pursue and how to pursue

them. New options for consideration can come from
two sources. First, the agent may perceive environ-
mental changes that suggest new options—in Tileworld,
this occurs when new holes or tiles appear. Second, op-
tions may be suggested by a means-end reasoner. This
is currently a fairly standard backwards-chaining plan-
ner, augmented with special-purpose routines for route-
planning. The means-end reasoner suggests options
that can serve as means to already intended ends. For
example, it may suggest moving to a certain location in
order to push a particular tile into some hole, when the
filling of that hole is a component of the agent’s current
plans.®

Options from both sources are then subject to filter-
ing. Most of our efforts so far have concerned the filter-
ing of top-level options, i.e., options to fill a particular
hole, and we focus on that here. However, at least some
extensions to subordinate options are obvious: for ex-
ample, the use of particular tile to fill one hole should
be filtered as incompatible when there already exists an
plan to use that tile for a different hole.

Compatibility checking of top-level options is
straightforward. If the agent has a current intention
to fill a particular hole (say, hole N) right now, then
it 1s the case that filling any other hole M right now
will be incompatible with the existing intention. Con-
sider then what happens if the agent is filling hole N
when hole M appears. The option to fill hole M now
will not survive the compatibility filter. Thus, delib-
eration about whether to abandon, at least temporar-
ily, work on N, and instead work on M, will depend
upon the override mechanism. In the simplest version
of the override mechanism, a threshold level is set to
some constant v, which represents the marginal increase
in potential value that the new hole must have over
the old one to be worthy of further consideration. In
other words, if (score(M)—score(N)) > v, deliberation
about whether to work on M will ensue. (The func-
tion score(X) denotes the number of points the agent
will receive for filling X.) Recall that deliberation will
not necessarily result in the agent’s abandoning its cur-
rently executing plan; that depends upon the details
of the deliberation component, described below. How-
ever, if (score(M) — score(N)) <= v, then the agent
will not even consider abandoning its filling of N, and
will defer without further consideration attempts to fill
M. Notice that if we set the threshold value to —o0, de-
liberation will occur whenever the environment changes
in such a way as to provide a new potential option.

The deliberation process is used to decide amongst
competing options. In the example we have been de-

3By the agent’s “current plans” we mean those courses
of action it has already formed an intention to perform.

scribing, assume that filling M now survives the filter-
ing mechanism. Then it is necessary to deliberate about
whether in fact to adopt that intention, and begin work
on filling M, or whether to continue with the current
plan of filling N. Alternative deliberation strategies can
be chosen in Tileworld by the setting of a parameter.
We currently have implemented two deliberation mod-
ules.

The simpler deliberation module evaluates competing
top-level options by selecting the one with the higher
potential score. Thus, when the threshold parameter
for the override mechanism is nonnegative, this mode
of deliberation will always select the new competing
option over the one that was previously held. This il-
lustrates a general point: if deliberation is extremely
simple, it may be redundant to posit separate deliber-
ation and filtering processes.

A slightly more sophisticated deliberation strategy
estimates the subjective expected utility (SEU) of a top-
level goal. For a given option to fill a hole M, SEU is
estimated as a function of score(M), time available to
fill M, distances of the agent and available tiles from
M, and the size of M; these factors can be combined
into an improved measure of the likelihood of success
of filling M in the time allotted. With this mode of
deliberation, the agent may decide to continue with its
current plan to fill N, even if filling M has a higher
potential score (which would be necessary for filling M
even to survive the filter); this will occur if the filling
of N has a significantly higher likelihood of success.

We intend to design additional deliberation modules,
including one that simulates complete means-end rea-
soning for options under consideration.

Experiments With Our Agent

With both the simulator and the agent in place, we
are in a position to conduct experimental studies of the
the performance of the agent and thereby illuminate the
tradeoffs inherent in some of our design decisions.

By adjusting the Tileworld “knobs”, we can control
a number of domain characteristics. We can vary what
we call dynamism (the rate at which new holes appear),
hostility (the rate at which obstacles appear), variabil-
ity of ulility (differences in hole values), variability of
difficulty (differences in hole sizes and distances from
tiles), and hard/soft bounds (holes having either hard
timeouts or gradually decaying in value). There are
also variables we can adjust in the agent: act/think rate
(the relative speeds of acting and thinking), the filter’s
threshold level, and the sophisticalion of the deliberation
mechanism.

To perform an experiment, we begin by holding fixed
all but a single parameter. We then run many simula-

tions, varying the setting of the parameter of interest,
and recording the score received in each simulation. For
example, by varying the dynamism of the domain, we
can examine how a particular Tileworld agent with fixed
settings reacts to more and less rapidly changing envi-
ronments. It is also useful to vary two dimensions at
once: for instance, we are interested in seeing the scores
achieved by our agent as we vary both the threshold level
and the act/think rate. Some other pairings of variables
which we currently consider interesting are threshold vs.
variability of utility, threshold vs. sophistication of de-
liberation, and act/think rate vs. sophistication of de-
liberation. Extensive experiments of this kind are made
much more feasible by the capability of the simulator
to generate automatically an unlimited number of test
runs.

Experiments With Other Agents

We also see the Tileworld testbed as a good basis
for comparison of other agent architectures proposed in
the literature. We intend not only to mix and match
components of our own agent, but also to investigate
the performance of entirely different architectures in our
domain.*

The goal of our experiments is an improved under-
standing of the relation between agent design and en-
vironmental factors. In the future, when faced with
a performance domain for an agent, one should be
able to draw on such an understanding to choose more
wisely from the wide range of implementation possibil-
itles available.

Acknowledgements

This research was supported by the Office of Naval
Research under Contract No. N00014-85-C-0251, by
a contract with the Nippon Telegraph and Telephone
Corporation and by a gift from the System Develop-
ment Foundation.

References

[Agre and Chapman, 1987] Philip E. Agre and David
Chapman. Pengi: An implementation of a theory of
activity. In Proceedings of the Sizth National Confer-
ence on Artificial Intelligence, Scattle, Wa., 1987.

[Boddy and Dean, 1989] Mark Boddy and Thomas
Dean. Solving time-dependent planning problems. In

Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, Detroit, MI, 1989.

*We strongly encourage other researchers to demon-
strate their agents in our domain: it is relatively clean
and portable, is written in CommonLisp, and is available
electronically over the Internet from Marc Ringuette at
mnré@cs.cmu. edu.

[Bratman et al., 1988] Michael E. Bratman, David J.
Israel, and Martha E. Pollack. Plans and resource-

bounded practical reasoning. Computational Intelli-
gence, 4(4), 1988.

[Bratman, 1987] Michael E. Bratman. Intention, Plans
and Practical Reason. Harvard University Press,
Cambridge, Ma., 1987.

[Brooks, 1987] Rodney A. Brooks. Planning is just a
way of avoiding figuring out what to do next. Tech-
nical Report 303, MIT, 1987.

[Cohen ef al., 1989] P. R. Cohen, M. L Greenberg,
D. M. Hart, and A. E. Howe. Real-time problem
solving in the phoenix environment. In Proceedings
of the Workshop on Real-Time Artificial Intelligence
Problems, Detroit, MI, 1989.

[D’Ambrosio and Fehling, 1989] B. D’Ambrosio and
M. Fehling. Resource bounded-agents in an uncer-
tain world. In Proceedings of the AAAI Symposium
on Limiled Rationality, pages 13-17, Stanford, Ca.,
1989.

[Doyle, 1988] J. Doyle. Artificial intelligence and ra-
tional self-government. Technical Report CS-88-124,
Carnegie Mellon University, Pittsburgh, Pa., 1988.

[Georgeff and Ingrand, 1989] M.P. Georgeff and F.F.
Ingrand. Decision-making in an embedded reason-
ing system. In Proceedings of the International Joint
Conference on Artificial Intelligence, Detroit, Mi.,
1989.

[Horvitz, 1987] Eric J. Horvitz. Reasoning about be-
liefs and actions under computational resource con-
straints. In Proceedings of the 1987 Workshop on
Uncertainty in Ariificial Intelligence, Seattle, WA,
1987.

[Kaelbling, 1988] Leslie Kaelbling. Goals as parallel
program specifications. In AAAI-88, Proceedings of
the Seventh National Conference on Artificial Intel-
ligence, pages 60-65, Saint Paul, Minnesota, 1988.

[Pollack, 1990} Martha E. Pollack. Overloaded expec-
tations. In preparation, 1990.

[Pollock, 1989] J.L. Pollock. Oscar: A general theory of
rationality. In Proceedings of the AAAI Symposium
on Limited Rationalily, pages 96-100, Stanford, Ca.,
1989.

[Russell and Wefald, 1989] Stuart J. Russell
and Eric H. Wefald. Principles of metareasoning. In
Proceedings of the First International Conference on
Principles of Knowledge Representation and Reason-
ing, Toronto, 1989.

Planning Emergency Response

B.D. Pomeroy, W.E. Cheetham and D.E. Gaucas

GE Research and Development
P.O. Box 8
Schenectady, New York 12301

Introduction

Al techniques such as hierarchical planning and

i transformational synthesis have been applied to tacti-

cal and mission planning problems for several military
applications. In the Pilot’s Associate (PA) program
[Smith & Broadwell 1987] it has become apparent that

+ similar techniques may also be required for automating
" the response to emergencies arising from battle dam-

age or random equipment failures. Furthermore, this
requirement extends beyond fighter aircraft to crewsta-
tion aids for helicopters, submarines and commercial
jet-liners.

We have developed examples of F-16 fighter aircraft
emergencies in the context of pilot tasks such as achiev-
ing mission goals, reacting to tactical situations, and
assessing aircraft status. An equipment failure and the
emergency procedure responding to that failure inter-
rupt the normal script of pilot actions by blocking some

" actions and adding others. Multiple failures can cause
: even more complex changes to the normal sequence if

the faults interact to change not only the normal oper-

~ ations but also the emergency procedures themselves.
: This paper presents an example emergency script, and
. describes the problems of script modification and ac-
" tlon monitoring relative to a changing pilot environ-
" ment that have motivated our search for planning-based

solutions.

The Pilot’s Environment

We view the pilot’s environment in the context of the
Pilot’s Associate [Lockheed 1988], an advisory system
for managing pilot tasks including:

e assessment of the external threat and target envi-
ronment

» assessment of the internal status of the aircraft sys-
tems

¢ planning the mission route, and replanning in re-
sponse to changes in threats/targets or to accom-
modate equipment faults

e planning optimal tactics to achieve mission goals
within the constraints of threat/target behavior
and the aircraft performance limits

s planning emergency action to correct faults or mit-
igate their effects

The integration and coordination of such tasks under
the dynamic constraints of the environment is a major
challenge; the example we present below focuses on the
last task of addressing equipment failures relative to the
normal operations during an offensive engagement.

When an emergency occurs, pilot response must be
consistent with the context, situation and environment
variables of the operation. For example, the context
is characterized by variables such as the mission phase
(e.g., takeoff, cruise, commit, engaged, recovery or land-
ing). The situation is represented by variables such
as aircraft altitude, airspeed, bank angle, thrust and
attack angle. The environment is captured by vari-
ables such as runway accessibility, weather and wing-
man availability.

Pilot Procedures

Representation

Normal and emergency procedures in the pilot domain
are currently expressed as and/or trees in a flight man-
ual [General Dynamics 1983] and, in a more abbrevi-
ated form, in a booklet strapped to the pilot’s leg in
flight. These trees are limited by their printed format
in that they are brief for clarity and do not cover many
contingencies. In particular, these trees are almost use-
less for dealing with multiple system failures.

Several of these trees have been expanded and en-
coded for on-line access in the Pilot’s Associate program
[Lockheed 1988]. We found that computerization of the
procedure trees helped to cover a wider range of con-
tingencies. It also provided a better focus of attention
for the pilot by hiding information until il was required.
However, we also found that the tree format imposed
severe limits on the number of faults and contingencies
that could be considered, and that 1t was difficult to
express action monitoring in this format.

Detection
Monitor

call return

Action

Selector spawn

A

c rl kil

Precondition
Monitor

Action
Tree A

Action
Tree B

Condition
Monitor

Figure 1: Architecture of Procedures

We have begun a search for better solutions to this
problem of representing actions and control. The initial
step has been to develop a library of F-16 emergency
procedures which display the various plan and goal in-
teractions observed informally in Pilot’s Associate. We
extended our conceptual tree language for procedures to
include calls to (returns from) sub-trees and spawning
(killing) of parallel monitors.

The procedures developed thus far have the archi-
tecture shown in Figure 1. There are top level event
detection monitors which run continuously and trigger
the appropriate action selection tree when a fault oc-
curs such as an equipment failure. The selection trees
are classification processes which select an action tree
based upon the context, situation and environmental
variables. An action precondition monitor is always
spawned with an action tree; its purpose is to stop the
actions if the context/situation/environment changes.
An aborted action restarts the selection process. An

, action tree may call more specialized action trees and
. spawn additional condition monitors as required, e.g.,

during generator failure, a procedure is started to mon-
itor the emergency power unit in case the generator
fails again. Parallel execution can occur when actions
are monitored during a single fault, and when several

. action trees and monitors are running in response to
. multiple faults.

The action trees themselves represent relationships
among actions which include partial ordering, condi-
tional branching and preservation conditions. They also
capture merged procedures by representing equivalence

i of two actions, merging of two similar actions with com-

patible parameter scopes, blockage of an action, and

Partial ordering, i.e. A must occur before B,
C may occur anytime during A & B
and A,BC must all be completed before D.

A is a conditional.

A is blocked.

A is a new action caused by the
interactions of the procedures or by
physical limitations.

continue Shows a monitor which continues beyond

the end of the current procedure.

Figure 2: Tree Notation

. addition of new actions not present in the parent pro-

cedures.
Our case studies to date include:

¢ single faults covering procedures for hydraulic,
electrical and flight control system failures showing
partial ordering of actions, conditional branching
and preservation conditlons.

e multiple faults describing the interactions be-
tween the single fault procedures such as equiva-
lence of actions, merging of similar actions with
compatible parameter scopes, blockage of actions,
and addition of new actions.

e multiple contexts showing the backdrop of tac-
tical actions that must be merged with the emer-
gency procedures, e.g., the actions during take-off,
offensive engagement, and landing; multiple con-
texts showing the tailoring of the procedures within
the various contexts to suppress inappropriate ac-
tions.

e real-time events describing the eflect of a context
change on an incomplete procedure and, similarly,
the effects of sequential faults on emergency pro-
cedure generation and monitoring.

For this short paper we have selected one example

showing the normal operations involved in offensive en-

gagement, the procedure for dealing with a generator
failure, and the interactions between the two. Action
relationships in this example are expressed using the
notation in Figure 2.

Pult Down

Climb

Pull Down

target

Y

Figure 3: Offensive Engagement

! Normal Operations in Offensive Engagement

" An example of a bombing run developed by a Tactical
Planner such as the one in Pilot’s Associate consists of
a low altitude approach to an initial point (IP), followed
I by a sequence of maneuvers to enable a target hit and
, terminating with arrival at a rendezvous point (RP).
' See Figure 3. The acticns in this procedure, shown
graphically in Figure 4, are defined as follows:

N1 Begin monitor for threats; if threats appear then
; change the current context to engaged defensive
‘ and replan.

\
' N2

|
|
|

Begin monitor for arrival at point 1; when point 1
is achieved then alert pilot.

" N3
i N4

Set throttle at full power without afterburner.

Begin monitor for climb angle and speed and ar-
rival at point 2; if deviate from climb path or arrive
at point 2 then alert pilot.

Set throttle at 50% afterburner.

Move stick to pitch-up into climb.

N5
‘N6

N7 Begin electronic targetting and monitor for dive
| angle and arrival at point 3; if deviate from dive
‘ path or arrive at point 3 then alert pilot.

- N8
N9

Set throttle at full power without afterburner.

Move stick to invert aircraft and pitch-down into
dive.

N10 Release chaff (radar reflective decoy).

" N11 Begin monitor for turn rate and arrival at point
RP; if deviate from time constraints or RP is
reached then alert pilot.

N12 Set throttle at 100% afterburner.

N13 Move stick to roll pitch-up, roll upright, and turn
away from target.

N14 Release chaff.

N15 Release bombs.

N1 N2 N3
1’::[__1
N5
N4 NG
-
N7 N8
N9
N10
N15
N16
N11 N12
N13
N14
1
1
end

: Figure 4: Normal Procedure for Offensive Engagement

|

. N16 Begin monitor for dive angle and arrival at point
4; if deviate from dive path or arrive at point 4

then alert pilot.

- Generator Failure Emergency

- The F-16 has a single electrical generator driven by a
power take-off on its jet engine. When this generator
fails, an emergency power unit (EPU) driven by an aux-
iliary gas turbine is started to provide back-up power
- to most aircraft loads. If the EPU also fails, the flight
' and engine controls will continue to function on battery
' power so the pilot can land the aircraft.

Pilot response to a generator failure depends upon
i the current context, situation, and environment as de-
termined by the action selector in Figure 1. The action
tree considered here is appropriate for the engaged of-
fensive context, Figure 5. Some conditional branches
i and sub-trees for other contexts have been suppressed
‘; for clarity. The actions Figure § are defined as follows:

+ G2 Advise pilot of loss of main generator.

" G7 Advise pilot to limit angle of attack to 12 degrees
and bank angle change to 90 degrees maximum,
and avoid rapid roll rates.

. G25 Warn pilot that leading edge flaps may be locked
and will require reset.

G26 Begin or continue monitor for repeated failures of
main generator; if begin then repeat=1 otherwise
repeat=repeat+1. (This monitor continues even
after the generator procedure is completed.)

G27 GOTO start EPU script.

G28 Set EPU switch to ON.

G30 Begin monitor for continued EPU operation; if
EPU fails then abort main generator procedure and
replan for double failure of generator and EPU.

G31 Set main power switch to BATTERY then to
MAIN POWER.

G33 Advise pilot to check whether main power switch
is in MAIN POWER position.

G37 Set EPU switch OFF the set to NORMAL.

G40 Press servo electric reset switch. (Resets leading
edge flaps control.)

G42 When speed is subsonic set throttle to mid-range
then set electronic engine control backup control
(EEC BUC) switch to OFF, and then set switch
to EEC.

G43 When speed is subsonic then set afterburner (AB)
switch to AB RESET, and then set switch to NOR-
MAL.

G44 Advise pilot that all electrical systems are back
to normal.

G46 Alert pilot to systems lost, i.e., lights, master
power switch, fuel pumps, fuel feed control, code
transmitter, missile launchers, electronic bomb
sighting, electronic countermeasures, chaff.

3 G47 Alert Tactical Planner to unavailable resources.

G50 Warn pilot not to retard throttle below full power
until subsonic speed is achieved, to avoid engine
stall.

| G54 Alert pilot: chaff and electronic bomb sighting

unavailable.

- G56 Alert pilot to failure of EPU, and declare EPU

failure to the emergency planner database. (This
will trigger the detection monitor for EPU failure.)

G557 (Null action for readability.)

GQ32 Is the main power switch in the MAIN POWER
position?

" GQ34 Is main generator back on-line, 1.e., is main gen-

erator light green?

- GQ35 Is this the first time the main generator has

failed, i.e., is repeat=17
GQ41 Is engine model PW2007

“GQ42 Is engine model PW2207

start
l
[]
a2 X1
G7
1 G25
\ GQ49
| GSQ'
i Q20
G27
| Q20
\
G28
Q20
G57 —~~
G56
G3t G26
GQ32 G30
GQ34
; continue
\
j GQ35
G40
‘ Ga7 GQ41
G40
GQA41 Gaz GQ42
/\ G43]
G42 GQ42 G54 .
G47
G43
G44
end

Figure 5: Emergency Procedure for Generator Failure

G Q49 Is airspeed supersonic?
Q20 Is the EPU running?

X1 Begin monitor for fault and context; if fault is cor-
rected or context changes then abort the main gen-
erator emergency procedure.

Merging Normal Operations and Emergency

" Response

Assume that the generator fails just as the pilot reaches
the IP, and that he has a few moments during his transit
to point 1 in which to attempt a fix. The merged pro-
cedure, Figure 6, shows that the pilot should try to ac-
complish the entire generator procedure before starting
his climb. If the generator reset were successful, then
he could proceed with the mission as before. However,
if the reset fails, then he has lost power to his weapons
computer which blocks the electronic targeting action,
N7, and he has lost his chaff dispenser which blocks
N10 and N14. There is no substitute for N10 and N14,
but he can shift over to manual targeting, N17, for the
bomb release. N17, a new action not present in either

" of the parent procedures, is defined as follows:

N17 Begin manual targetting monitor for dive angle

and arrival at point 3; if deviate from dive path or -

arrive at point 3 then alert pilot.

If the generator fault occurs later in the run, it changes

' the context to disengaged, i.e., the Tactical Planner

aborts the attack.

We also have considered the multiple emergency ex-
ample of generator and hydraulic failure in the context
of mission recovery. This example displayed the addi-
tional concepts of equivalent actions and merged actions
not shown here.

Conclusion

Providing automated emergency response for ad-

. vanced crewstations, whether in military or civilian ap-
© plications, will require the ability to merge scripts of ac-
' tions and to reason about interactions over time. This
: modification of procedures must be relative to multiple
. goals in a semi-predictable world where fast reactivity
© 1s often important, but where strategic planning is also

needed to avoid rescurce depletion and other unrecov-
erable mistakes.

The rules for combining two or more procedures are
emerging slowly from our pilot domain examples; how-
ever, it is still not clear how these combinations should
be accomplished in all cases. Clearly the parent pro-
cedures need to be more rigidly structured into seg-
ments such as fault alerts, critical warnings, corrective
actions, and Tactical/Mission replanning alerts, so that
actions can be merged in groups according to their im-
portance to the pilot. However, additional mechanisms
are needed to handle unforeseen interactions between
procedures such as blocked actions and new actions.

start

_1
G)

N1 N2 N3
] I]
1
Generator Gass Generator
reset fails
reset OK \
N4 N5 NC_ N5
‘ N6 l_ NS
b—f-‘ —
N7 N8 N7 NS
N9 Ni7 | N9
N10 6
N15 N15
N16 N16
N1t N2 NTT NI2
N13 N13
N14 L N
end

1 Figure 6: Merge of Offensive Engagement and Gener-
" ator Emergency (node G refers to entire procedure in
. Figure 5)

References

[General Dynamics 1983] Flight Manual USAF/EPAF

Series Aircraft F-16 A/B, Technical Order 1F-16A-
1, General Dynamics, Fort Worth Division, change
3,11 July 1983.

[Lockheed 1988] Phase 1 Interim Report of the Pi-
lot’s Associate Program, Document PA-INT/RPT,
Contract No. ¥33615-85-C-3804, Lockheed Aero-
nautical Systems Company, Georgia Division, Ma-
rietta, GA, 5 Aug. 1988.

[Smith & Broadwell 1987] Smith, D. and Broadwell,
M. Plan Coordination in Support of Expert System
Integration. Proceedings of DARPA Knowledge-
Based Planning Workshop, Austin, Texas, Dec.
1987.

Plan Fields and Real-World Uncertainty

Neil C. Rowe

Code 52Rp, Naval Postgraduate School
Monterey, CA 93943 USA

Planning can be considered a many-to-one map-
ping from the space of possible problems to the
space of possible plans. For most interesting
problems, the mapping is too complicated to for-
mulate other than procedurally. But we can do it
for means-ends analysis, where the notion of the
difference between the current state and a goal
state determines the next planning action. Focus-
ing on differences makes means-ends analysis a
step-at-a-time planner, so even when results unex-
pected by the planner arise from actions, a solu-
tion can still usually be found from the new unex-
pected states.

Our recent research on robot navigation has tried
to find analogous ideas for planning with real-
valued quantities like position and orientation of a
robot. Our approach has been to define "path
fields" over the configuration space for the robot,
"fields" in the physics sense of electrical or gravi-
tational ones but now extended to plans as well as
vectors for every point in the space. For example,
for high-level robot path planning to a particular
goal point in some terrain, we can define a "path
field" at every point in the terrain which indicates
the best path or best direction to head from there
to reach the goal point. Then if we accidently
wander from the path planned when trying to fol-
low it in the real world, or unexpected accident
forces us from it, we can just reassess where we
are and look up the best way to go from this new
location, analogously to means-ends analysis.

Figure 1 (from (Alexander 1989) which in turn
uses the path-planning program of (Rowe 1990)),
shows an example path-direction field for two-
dimensional terrain with an obstacle (the check-
ered triangle) and a crossable but costly "river”
(the bumpy vertical line in the lower left), where
all non-obstacle and non-river areas are con-
sidered equal-cost-per-distance to traverse, and
where the goal is the small circle on the right just
below the middle. The small lines indicate the
direction of the optimal path to the goal point
from evenly-spaced start points. The smooth thin
longer lines indicate boundaries between abrupt
changes in optimal-path behavior, determined by
methods that will be explained later; for instance,
the gently curved line in the lower left distin-
guishes optimal-path behavior that crosses the
river from optimal-path behavior that avoids the
river by going around its endpoint.

Construction of plan fields that would tell you
what to do next from any state would seem to be a
difficult or impossible issue for many problems,
because nontrivial search spaces are either enor-
mous or infinite. For instance, robot navigation
involves real numbers, so there are an infinity of
states. One approach is to impose a regular tessel-
lation on the space of possible states (for a robot,
the terrain) and then associate every point within a
particular cell with the same field direction (next
behavior) as that of the center of the cell. This
heuristic approach will not always work, as when

VYRV R A AR AN

VAV A A A A A
’/////////////
I AV AV AV AN A A

N/ AV A A A A A A A A A
//////////////

N NN N N N N AN
~ NN N N N NN
~ NN N N N NN
~ NN N N N N N
NN N N NN
NN N N NN

N N N N NN
NN N N NN
i

b R e e
R e T T N NN
— ot e e e
i .
e o et e e e .
e e
//—///////“/,‘
—— = - s /0
— il N AV VA |
PR N A A A A |
P AP 7 1

/s /7
///’,/_/_//////(\

:,—//<.\ -~

— ot e me e mm

———0.—-.———‘/////
——— — - /‘;,//ﬁfji:
/////////
N N e
\\\\\\;\\\&/‘
T N S N U |
— Ny
T v
P N e / 7/

UL NN N N U U U W

///////’
I//////’

i
]

AU N N N VR U N N M M\
SN N N N U U N A
AUEENUEE N N N N W N N W U

NN U N N N N N W W ¥

RN U N N N N N N VA VR WY
NG N N N N N Y S M W

//////////////

\

RN N N N N N W W W WY

KEY:
e RAVCT Scpmenl
Obstacle
O Goal Point
- Initial dircction
ol optimal path

homogencous -

AN N N N O T T

N N N e N U T

SR RN N N U U U

P N N N N N R YA Y
NONON N N N N V)Y
S N U N N U U Y

-~ N e NN NN N AN

— e~ N N NN N
~~~~~~~ ~ =~
_____ J
I P A
I T A 4
///////////
P N N P VA A |
///////////
v st s
/(/////////
s s 77 0000
VRV VA A A B A
sor s s 240
VYAV AV AT AN A AN |
s s 7 2 7 7 7 111
VAV A A A B B !
VAV A B B B
V2V N B A B B
VWAV A A B B | !

|
|
]
!
\
|
\
\
\

Boundary between

N Y e e e am aem — =

¢

/
/
{
!
I
|
}
|
|
!
|
|
|
}
|
1
]

==._._.-_.-__..._.—----._.._.._._.-_—.--.’/

behavior rcgions

NN N N . s s~

Figure 1

Example Optimal-Path Map




an impassable obstacle crosses a terrain cell.
Another approach is to define irregular cells of in-
tuitive meaning like the terrain bounded by a ridge
and two roads, but this requires expert judgment,
and cannot be relied on to give regions of similar
path behavior.

Fortunately, a rigorous alternative exists based on
terrain-partition algorithms for path planning such
as (Rowe and Lewis 1989), (Rowe and Richbourg
1990), and (Rowe and Ross 1990). These algo-
rithms find an optimal path from a start point to a
goal point by partitioning polygonally-modeled
terrain (or polyhedrally-modeled airspace, for the
three-dimensional program of (Rowe and Lewis
1989)) into equivalence classes of points whose
path behavior to the goal is fundamentally similar.
We can extend these algorithms to find paths from
everywhere in the terrain to that same goal point,
since they recursively decompose paths to the goal
point into "wedges" or "corridors" of similarly-
behaving paths, eventually decomposing terrain
into a set of "well-behaved path subspaces” whose
behavior can be summarized by the sequence of
terrain features it encounters. Each wedge is com-
posed of irregular subregions between features,
which can be considered "behavioral regions”,
equivalence classes of points that cross exactly the
same terrain features in the same order on their
way to the goal. A path field is the mapping from
points to their associated behavioral regions and
hence to a sequence of terrain-feature crossings.
‘Note that finding the exact optimal paths is then
straightforward with homogeneous-cost-per-unit-
distance regions, because the paths can only turn
on the boundary of cost regions, and those turns
must obey Snell’s Law.

Thus the seemingly infinitely variable plan fields
for a real-valued multi-dimensional space can be
reduced to a finite number of "behavior classes”
narrow enough in definition so that once a
situation’s class is known, computing the optimal
plan for the situation is straightforward. Thus

behavior classes are a kind of problem abstraction.
However, the whole trick is determining the class
of a situation, because such spaces need not have
"nice” shapes. Thus much of our recent work,
exemplified by (Alexander 1989) and (Rowe and
Ross 1990), has tried to develop mathematical
methods for finding behavioral boundaries, since
once these are found, the region shapes follow.
The methods of the last paragraph are not
sufficient, because generally the wedges found
will overlap, so new theorems must be developed.
For instance, for Figure 1 we can prove that the
boundaries not emanating from obstacle or river
endpoints are hyperbolas; for "weighted regions”,
regions with homogeneous cost-per-unit distance,
boundaries also include parabolas and a variety of
curves describable only by parametric functions.

Path fields and plan fields can also address a more
fundamental uncertainty, state and world-feature
uncertainty, that means-ends analysis and kindred
planning techniques cannot directly address. If we
can create separate plan fields for possible world
situations, we could combine them into a con-

sensus plan field. In other words, we could draw
an analogy to the methods of superposition of
electrical fields of multiple charged objects by cal-
culating the fields separately for each object and
adding the field vectors at every point. For in-
stance in the robot path-planning problem, sup-
pose we are not sure where or whether a bridge
crosses the river in the vicinity. We could create a
separate path field for each reasonably possible
siting of the bridge, then take the weighted aver-
age of the initial vector directions at every point in
the terrain, based on our degree of belief in the
likelihood of each possibility. This would be best
when we are not close to the river, but otherwise
we would probably be able to see any bridges and
then create a new plan field. Such an approach is
appealing, but it is easy to forget that it is heuristic
and has no formal mathematical basis: for one
thing, path fields are not even continuous. How-
ever, this idea does have appealing analogies to



recent ideas for robot subsumption architectures
like those of Rosenblatt and Payton at Hughes, for
which similar "higher-level” plan ideas can be
weighted against lower-level concerns like
avoidance of immediate obstacles.

Reaching a consensus between the recommenda-
tions of competing plan fields is actually a prob-
lem of multiple inheritance at each point in the
plan space, and many standard approaches are ap-
plicable. If one plan inherited subsumes all the
others, then there is no conflict and that more gen-
eral plan can be used. We could set priorities
among fields that depend on location in the field,
giving a consensus field consisting of pieces of the
component fields stitched together. That would be
appropriate if plans cannot be "diluted” without
damage; for instance, if you’re not sure whether
an obstacle is blocking the road at a point P, you
should still slow down when you approach P. If
the plans differ only quantitatively, then some sort
of weighted averaging can be used, where the
weighting is their probabilities, as in (Rowe
1982). We may be able to guarantee even a result
that does not subsume the others. If a vector field
is truly an "optimal-path field", besides having the
field direction represent the best path direction, we

can let its vector magnitude represent the differ-
ence between the cost of going in this direction
versus the cost of going in the second-best
locally-optimal direction at that point. Then the
vector magnitude is the relative goodness of the
recommended direction at that point. If the total
weight in some direction is more than the sum of
weights in all other directions, it is guaranteed that
that is the best direction because the other effects
could never cancel it out.

A multiple-inheritance consensus between possi-
ble world situations requires that we compute
complete path fields in advance. But frequently
the terrain itself restricts possibilities to a finite
set, like places for a bridge or ways to Cross a
mountain ridge. We can also exploit experiments.

For instance, if we are not sure how far a forest
extends to the right of us, we can pick evenly-
scaled extents for the forest and derive path fields
for each. If in two path fields the direction is the
same, at corresponding points, it must be the same
(with a few known exceptions) for any "intermedi-
ate” field in which the extent of the features is in-
termediate between the extents in the two original
fields. So when we find two path fields whose
vector directions are point-for-point nearly identi-
cal, we do not need to store any intermediate fields
between them. Furthermore, even when two sam-
ple fields have significant differences, we need
only study the areas in which those differences oc-
cur to obtain intermediate fields between them,
which saves much time.

Acknowledgements

This work was supported in part by the U.S. Army
Combat Developments Experimentation Center
under MIPR ATEC 88-86. Also in part this work
was prepared in conjunction with research con-
ducted for the Naval Air Systems Command and
funded by the Naval Postgraduate School.

References

R. Alexander, "Construction of optimal-path maps

for homogeneous-cost-region path-planning prob-
Jems", Ph.D. thesis, Dept. of Computer Science,

U.S. Naval Postgraduate School, September 1989.

N. C. Rowe, "Inheritance of statistical properties”,
Proceedings of the National Conference, AAAIL
Pittsburgh, PA, August 1982, 221-224.

N. C. Rowe, Roads, rivers, and rocks: optimal
two-dimensional route planning around linear
features for a mobile agent. To appear in /nterna-
tional Journal of Robotics Research, 1990.

N. C. Rowe and D. H. Lewis, Vehicle path-
planning using optics analogs for optimizing visi-
bility and energy cost. NASA Conference on
Space Telerobotics, Pasadena CA, January 1989.



N. C. Rowe and R. F. Richbourg, An efficient
Snell’s-law method for optimal-path planning
across  multiple  two-dimensional  irregular
homogeneous-cost regions. To appear in /nrerna-
tional Journal of Robotics Research, 1990.

N. C. Rowe and R. S. Ross, Optimal grid-free path
planning across arbitrarily-contoured terrain with
anisotropic friction and gravity effects. Accepted
to IEEE Transactions on Robotics and Awoma-
tion, January 1990.



The Dimensions of Knowledge Based Control Systems
and the Significance of Metalevels

Marcel Schoppers and Ted Linden

Advanced Decision Systems, 1500 Plymouth Street, Mountain View, CA 941043

Abstract

We argue that knowledge based control systems
(KBCSs) can be viewed as making tradeoffs between
four dimensions: response time, program size, process-
ing power, and inattentiveness. As a system’s rating
on any one of these axes approaches zero, its rating on
one of the other three axes must increase. We charac-
terize various planning and metareasoning research
thrusts as exploring different regions in the four dimen-
sional tradeoff space. We then define metacontrols and
show that they hold a central position in KBCS design,
potentially allowing a system to dynamically reposition
itself anywhere within the reachable volumes of the
tradeoff space.

Dimensions of Control

Knowledge based control systems {(KBCSs) have
numerous applications, including automated vehicles
for land, air, water and space; intelligent assistants for
pilots and submarine commanders; factory automation
and robots in general; process control systems; and en-
vironment management systems (on space stations, for
example). A general requirement of control systems is
that they must select and execute a response to a
stream of events and must do so in a sufficiently short
time to keep the controlled system or “plant” within
prescribed boundaries. The nature of the prescribed
boundaries need not concern us here; the main point is
that they usually imply constraints on the amount of
real time a system may take to select and execute its
responses.

The field of Computer Science has long known
that, although there are a large number of ways of im-
plementing any given function, faster implementations
tend to need more memory space -- the so-called
time/space tradeoff. To make this idea a little more

precise and more directly applicable to control systems,
we do the following:

e We regard a control system as a function that
maps possible courses of events to - possible
courses of action. Courses of events might be
regarded as strings of symbols, with symbols
representing sets of events in the world. Courses
of action might be regarded as strings whose
symbols represent sets of actions.

o We take ‘“‘real time” to refer to the elapsed time
delay a system requires in order to map a par-
ticular course of events into an appropriate
course of action that depends on those events.

e We take “processing time” to refer to the num-
ber of CPU instruction cycles a program requires
in order to map a particular course of events
into an appropriate course of action that
depends on those events.

e We take “processing power” to refer to the
number of CPU instruction eycles per second
that a hardware system can deliver.

e We take “program space’” to mean the amount
of computer memory required to store both the
control system program and whatever data it
maintains.

e We take “‘attentiveness’’ to mean the extent to
which the system takes all available data into
full account in all its processing. The converse
concept is “inattentiveness’, which manifests it-
self in action parameters that are not computed
and in input data that is ignored or under-
utilized.

On the time issue, two further comments are
needed. First, both of the time measurements just



described are implicitly subscripted by the course of
events whose response time is being measured. If we
added together all the (real or processing) times re-
quired to map each possible course of events to the cor-
responding course of action, we would have the total
(real or processing) time required to compute a com-
plete lookup table for the function being realized by
the system. Second, neither concept of time pays the
slightest attention to the time required to build the
system. When it comes to measuring system response,
execution time is all that matters; the time spent on
system design, programming and compilation are ir-
relevant.

It is now easy to see that all real-time control sys-
tems can be mapped into some point in a four-
dimensional coordinate space whose axes are 1) real
time (per response), 2) processing power, 3) program
space, and 4) inattentiveness.

Suppose we ignore system inattentiveness for a
moment, and suppose our system is in fact a giant
lookup table that maps courses of events into courses
of action. Such a system could be exceedingly fast (low
real time per response) but also exceedingly demanding
of program space. In order to reduce program space
we could replace parts of the lookup table with some
amount of computation (processing time). As program
size shrinks, the amount of processing time required to
reconstruct the missing entries goes up. Increased
demands for processing time can be dealt with in two
ways: either the amount of real time required to com-
pute a response can go up, or the system’s processing
power can go up (meaning either faster CPUs or more
CPUs).

Lastly, we can factor in the dimension of inatten-
tiveness. If the system can ignore some data or if it
can simply leave some decisions unmade, then it can
clearly get away with less computing. - But the closer
the inattentiveness dimension is pushed toward gzero,
i.e. toward complete processing, the more the system
must suffer increases in either real time required,
processing power required, or program space required.

Thus the four axes of real time, processing power,
program space and inattentiveness are mutually con-
straining. For any given control system there is some
volume of that four-dimensional coordinate system that
the systern can never reach, because reductions along
one dimension inevitably require increases on the other
dimensions.

Relevant work in control systems and artificial in-
telligence can be characterized as exploring various

points on the four coordinate axes described above.
“Reaction plans” [8] are programs that cover a wide
variety of possible situations by being highly con-
ditional, and they achieve very rapid execution because
most of the necessary planning is done off-line, at sys-
tem design time. Classical planning, on the other
hand, needs to have a particular initial state from
which to begin planning; in other words, the classical
planning approach is to do the planning at run time.
Because classical planning came first in Al, the reaction
plans approach is regarded as being impossibly
demanding of program space [2]. But of course, reac-
tion plans -~ and indeed the vast majority of control
systems -- have merely chosen to minimize real
response time at the expense of an increase in program
space [8].

Among Al practitioners,- an alternative approach
to real-time computing is to leave unchanged the na-
ture of the plan being constructed and to work instead
on making reasoning systems adaptible under time
pressure (c.f. anytime algorithms [1] and the applica-
tion of blackboard systems to realtime problems, e.g.
several papers in [3]). The tradeoff here is clearly be-
tween the axes of real response time and inattentive-
ness -- as response time comes down, inattentiveness
must go up.

When real time systems builders show interest in
parallel hardware, they-are considering a decrease in
response time at the expense of an increase in process-
ing power (i.e. special purpose processors or more
processors).

Given that the four tradeoff axes represent degrees
of freedom in the -design of realtime systems, there
should be no sense of competition between the various
research efforts. In the design of the knowledge based
control systems of the future, the issue will not be
which approach is best, but at what point on the four
tradeoff axes the target system should be located. The
goal of future control system designers might be
phrased as follows:

Subject to constraints on hardware cost and sys-
tem reliability -- these implying constraints on
response time, processing power and inattentive-
ness -- construct the smallest snitable program.

The Notion of Metacontrol

The more a system is subject to demanding real-
time constraints, the less its responses can be computed
on demand, and the more its responses must be



reduced to table lookup. Unfortunately, gaint lookup
tables tend to be unintelligible to human cognitive
processes. Hence there may well exist applications
whose complexity and realtime demands are so severe
that the human mind is incapable of understanding the
appropriate program.

That this possibility is not merely speculative is
evidenced by experience with chess playing programs.
For some chess endgames it is possible to construct a
complete table of legal positions and to associate each
position with a move that either maximally advances
or maximally delays a victory. That table amounts to
an optimal and extremely fast chess player. Just such
a table was constructed, by Kenneth Thompson of Bell
Telephone Laboratories, for the endgame King and
Queen against King and Rook. With the exception of
a few special positions, this endgame is known to be a
theoretical win for the Queen’s side. Thompson’s
lookup table machine played the Rock’s side and al-
ways played the move that maximally delayed the
Queen’s victory. At the 1977 Toronto meeting of the
IFIP, Thompson invited two International Masters,
Hans Berliner and Lawrence Day, to play the Queen’s
side against the machine. Although the Masters were
at first secure in the belief that the endgame was
theoretically theirs, and although every position with
which they were confronted seemed to be a winning
position, they were embarrassed to find that they could
make no headway against the machine. They found
the experience upsetting and earnestly wished to find
out how the machine was making its inexplicable es-
cape time after time. There was no explanation other
than a lookup table of some three million entries.
(This episode was reported to the authors by Donald
Michie.)

More recently, work on the endgame King and two
Bishops against King and Knight, comprising a
hundred million positions, has shown that although
that endgame was generally believed to lead to a draw,
it is in fact a win for White from all but a few freak
positions; and even when a chess Master knows this
and is supplied with examples of optimal play, six
months of study is not enough to make the machine’s
strategy intelligible to humans (the experiment is
reported in [7]). We conclude that if realtime con-
straints can be so severe as to demand a lookup table
implementation of a control system, then there exist
control systems that are unintelligible to, and hence in-
constructible by, unaided human cognition.

Nevertheless, such control systems can be built by

other programs. As with Thompson’s lookup table
machine, it may be easier to specify how the control
system should be built than it is to build the control
system directly. Such system-building programs are in-
stances of the Al notion of metalevel reasoning and, as
reported above, can open up reaches of the four-
dimensional space of possible control systems that were
previously inaccessible to humans. (It is a matter
deserving serious ethical consideration whether such
unintelligible control systems should ever be turned
loose on real applications [6].)

In AI, the “meta” relation is loosely defined as fol-
lows: “meta-X" is “‘reasoning about X”’. A moment’s
thought shows that this intuitive definition is quite
useless as a filter of what is or is not meta. What
qualifies as “‘reasoning’”? Our main motive for trying
to define the idea more clearly is that even the intui-
tive ideas of ‘“‘meta’ and of “planning” imply that
“planning” is “meta” to plan execution or action.
From this it follows that the ‘“meta” relation is the
primary link between Al research and control systems
work. That being so, clarity in what it means to be
“meta’ will serve both fields.

Activity X is a ‘“‘metacontrol” for activity Y
when X allocates or deallocates processing power
for Y by performing operations upon a data
structure that represents Y.

Several remarks are in order.

® Because of our interest in planning and control,
we are interested in the use of ‘“‘reasoning” to
control computation and hence have left metath-
eory aside.

o Unlike others who have considered metalevels,
we do not find the idea of representation prob-
lematic. We are content to leave to the system
implementer the mode of representation to be
used. We require only that the relevant aspects
of Y and the data structure representing Y must
always be in alignment under that mode of
representation.

e Our definition makes very clear that metalevel
activities are about the allocation of a limited
resource: processing power.

e The requirement that X’s influence should be ex-
erted upon Y by means of a data structure
serves to distinguish X’s metalevel activity from
conditional branching within Y.



® Metalevel 0 could consist (for example) of
numerous control laws awaiting an opportunity
to drive a robot’s physical effectors. In that
case, metalevel 1 would be selecting the par-
ticular control laws to compute at each moment.

o Planners are a special case of metacontrols: their
outcome, a plan, is a data structure that al-
locates processing power and other resources to
specified activities over an extended period of
real time. The same is true of programming and
programs.

o A definition that prevented an operating system
from being ‘“meta” to every program it
scheduled would also rule out most agenda
managers and blackboard systems, although the
latter are among the foremost examples of
metalevel reasoning.

The “meta” relation may be transitive, reflexive
and symmetric -- there are no restrictions on
which activities may be “meta” to others.

o It follows from our definition that X is not a
metacontrol for Y if X only determines what
goals Y should attempt to achieve. X would not
be allocating processing power; it would only be
passing a parameter to Y. '

e A more borderline case arises if X is constraining
the set of activities available for Y to execute,
e.g. when Y is a planner and X is deciding what
set of actions Y may utilize. In this case we
deem X to be a metacontrol for the activities it
is ruling in or out, but X is not a metacontrol
for Y,

The Significance of Metalevels

The analysis of systems in terms of metalevels
makes clear exactly how knowledge based control sys-
tems (KBCSs) will extend both control systems and Al
work.” KBCSs are distinguished by possessing a
“controls level” and at least one metalevel. The con-
trols level contains the system’s sensor and effector
capabilities, and distinguishes the system from a pure
planner. The metalevels are concerned with controlling
the activities of the levels below, and distinguish the
system from a pure control system. The first metalevel
may or may not be a planner, but it must have at least
an implicit model of the effects and requirements of the
activities at the controls level.

Now let us consider how metacontrols can con-
tribute to the tradeoffs discussed earlier. Processing
power is likely to be fixed at design time, leaving the
system no control over iis rating on the processing
power axis. The system can however make dynamic
adjustments in its rating on the other three axes, sug-
gesting that it might dynamically adjust the tradeoffs
between a) response time and program size, b)
response time and inattentiveness, and ¢) program size
and inattentiveness. We now show that metacontrols
are important in all three tradeoffs.

The possible goals/setpoints, world states, and
controls level activities may be so numerous that an-
ticipating all the possible combinations is infeasible on
account of program size (not to mention programming
complexity). Nevertheless, the system can be
redesigned to construct, at run time, only those com-
binations that are actually required. In making that
redesign, the designer is trading off reduced program
size against increased processing time, and is moving
some of the system’s functionality from the controls
level (metalevel 0) into a planner (metalevel 1).

If a system’s input data rate can vary dynami-
cally, the system might be designed to adapt to chang-
ing loads and circumstances by dynamically deciding
either to delay its responses or to ignore some infor-
mation or implications. This tradeoff between response
time and inattentiveness is a matter of where to al-
locate processing power, and is by definition a
metalevel issue. A most interesting discussion of this
use of metalevels is given in [4].

Situations having exceptionally urgent response
deadlines can be responded to either by caching parts
of the appropriate response or by ignoring other
aspects of the situation. This tradeoff between
program space and inattentiveness will in practice
depend on how critical it is to be confident about
details of the situation, how critical it is to have a
precise response, how serious the damage might be, and
so forth. The general issue is, knowing when it is
worthwhile to cache the results of a computation. The
activity of caching is “meta” to the responses being
cached and may be left to the system (if that is safe).

We have now shown that each of the dynamically
adjustable tradeoff§ are issues of metalevel
functionality. It follows that in control system design,

Al technology is applicable whenever a system must

vary its own rating on the tradeoff axes.
Al technology is also applicable as an antidote to
the difficulty of programming complex control systems.



There are two obvious uses for Al technology even
when a system’s position in the tradeoff space is static:
a) the complexity of programming everything at the
controls level may be worse than the complexity of
programming the same competence by distributing it
across several metalevels; and b) the system must be
able to dynamically extend its model of the domain
and must be able to adapt to those extensions. The
latter problem is being attacked by AI learning
research.

Incidentally, it is not necessary to use Al technol-
ogy in a control system merely because the system’s
functioning depends on information that can only be
obtained after the system has been fielded. Control
systems always depend heavily on run-time infor-
mation. The real issue is the metalevel at which that
information is used. Al based approaches are necessary
only if the information must be used at metalevel 1 or
higher, and that is arguable only if one of the reasons
listed above applies.

Conclusions

We have argued that knowledge based control sys-
tems (KBCSs) can be viewed as making tradeoffs be-
tween four dimensions: response time, program size,
processing power, and inattention. As a system’s
rating on any one of these axes approaches zero, its
rating on one of the other three axes must increase.
We characterized various conirol, planning, and
metareasoning research thrusts as exploring different
regions in the four-dimensional tradeoff space, and sug-
gested that all have a role in the technology of KBCS
design. We then defined metacontrols and argued their
importance, both in potentially allowing a system to
dynamically reposition itself within the tradeoff space
and in simplifying the construction of complex control
systems,

It was pointed out to us by Mike Fehling that at
least three of the axes of our tradeoff space are objec-
tively quantifiable. We wish to encourage the use of
empirical measurements in comparisons between Al
systems, and cite [5] as being both relevant and ex-
emplary.

[1]

3]

[4]

[6]

[7]

[8]

References

DEAN, T.L. AND BODDY, M.
An analysis of time-dependent planning.
In Proc AAAI pages 49-54. 1988,

GINSBERG, M.

Universal planning: an (almost) universally bad
idea.

Al Magazine 10:4:40-44, 1989.

JAGANNATHAN, V., DODHIAWALA, R. AND
BAUM, L. (editors).

Blackboard Architectures and Applications.
Academic Press, 1989.

LESSER, V., PAVLIN, J. AND DURFEE, E.

Approximate processing in real-time problem
solving. . o

Al Magazine :49-61, Spring 1988.

MICHIE, D.

A theory of advice.

Machine Intelligence 8.

Ellis Horwood, Chichester, England, 1977, pages
151-168.

MICHIE, D.

Computer chess and the humanization of tech-
nology.

Nature 299:3911f, 1982.

MICHIE, D. AND BRATKO, L

Knowledge synthesis with respect to the
KBBKN chess endgame.

In Proc Internat’l School for the Synthesis of
Ezpert Knowledge (ISSEK) Workshop (Bled,
Yugoslavia). The Turing Institute, 36 N
Hanover Street, Glasgow G1 2AD, Scotland,
Aug 1986.

SCHOPPERS, M.
In defense of reaction plans as caches.
Al Magazine 10:4:51-60, 1989.



Robust Behavior with Limited Resources

Reid Simmons

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We address the problem of mobile robots that
operate with multiple goals in uncertain,
changing environments, but have limited
sensors and computational resources. Such
systems need to use their resources to best
advantage, trying to achieve the tasks at hand,
while maintaining reactivity. We describe how
the Task Control Architecture (TCA) is being
used to provide such capabilities by taking
advantage of the hierarchy, concurrency, and
focus of attention inherent in the robot's tasks.

We are interested in mobile robots with

multiple, often conflicting, goals that
operate in uncertain and changing
environments. Such systems should be

goal-directed, but must also be reactive to
changes that signal errors or
opportunities.

A prevalent approach is to build robots
that continually monitor all (relevant)
aspects of the environment, essentially
using stimulus-response rules to decide
what to do next (e.g., (Brooks 1986),
(Kaelbling 1986)). To get the robot to
perform a new task or react to a new
contingency typically involves adding
more sensors and/or processors. While
this approach has the advantage of being
very reactive, it does not scale well as the
tasks become more complex and more
numerous. For any given robot it is only a
matter of time before we run out of space
or power for new sensors and processors.

In contrast, our approach tries to create
a robust, reactive system that can handle
multiple tasks in spite of the limited
sensors and processors of the robot. To

succeed, our approach tries to take full
advantage of the resources that the robot

does have. This includes using
hierarchical coarse-to-fine control
strategies, using concurrency whenever

feasible, and explicitly focusing attention
on the robot's tasks and monitored
conditions.

Our approach is also largely empirical,
to date using two robot systems. The CMU
Planetary Rover is a six-legged walker

designed for navigation and sample
acquisition in outdoor, rough terrain
(Bares et al. 1989). While still under

construction, we have
system that integrates perception,
planning, and mechanism control to
"walk" a single prototype leg through an
obstacle course (Krotkov, 1990).

The main testbed for developing these
ideas is an indoor, mobile manipulator
based on the Heathkit HERO 2000 (Lin et al.
1989b). Sensors include an overhead
camera for 2D vision and sonars mounted
on the robot's torso, base, and wrist. The
HERO's tasks include spotting and
collecting small objects from the floor of
the 1lab, picking wup printer output,
delivering objects to people at
workstations, and recharging when its
battery gets low. The robot also tries to
avoid collisions with people and other
objects.

implemented a

The Task Control Architecture

Both our testbeds use the Task Control
Architecture (TCA) to control the robot's
actions, manage its resources, and monitor
the robot and its environment (Simmons &



Mitchell 1989). TCA is a distributed system
with centralized control that provides
mechanisms to construct and manipulate
hierarchical plans, to allocate and manage
user-defined resources, to monitor selected
conditions, and to handle exceptional
conditions.

At the base level, TCA provides facilities
for connecting processes to the central
conirol and for sending messages between
processes. All messages are routed through
the central control, which decides when to
handle messages, and which processes will
handle them.

Various types of messages are defined
on top of this base level. For example,
query messages enable processes to obtain
information, such as current sensor data,
from one another.

Goal and command messages are used to

create hierarchical plans, which TCA
represents using a task tree. Whenever a
goal, command, or monitor message

message is issued, TCA adds a node in the
task tree as a child of the node that issued
the message. For example, the message
handler for the "collect cup” goal issues
sub-goal messages to approach the cup,
line up with it, etc. These, in turn, issue
other messages, eventually bottoming out
in messages to execute commands and
monitor the systems' progress.

Besides goal/sub-goal relationships, the
task tree also encodes temporal constraints
between nodes. Processes can add temporal
constraints such as that one goal must be
achieved before another goal can start
(sequentiality), or that one goal cannot be
planned out until it is ready to be achieved
(deferred planning). For example, the
system can add temporal constraints to
indicate that while the robot must grasp
the cup before going to the bin, it is free to
plan how to approach the bin any time
after it has arrived near the cup.

The task trees also contain monitor

messages. Monitors are condition-action
pairs that indicatc how to react to change

in a sensor. TCA provides both
synchronous, polling monitors and
asynchronous, demon-invoked monitors.

For example, the HERO wuses a polling

monitor to check its battery level every so
often, and uses a demon monitor to notify
the system if a cup-like object is found,
which is activated whenever an image has
been processed.

TCA also provides mechanisms to handle
exceptional conditions, such as those
detected by monitors. Processes can attach
exception handlers to nodes in the task
tree. When an exception is raised, TCA
searches up the task tree to find a handler
for the exception. Exceptions are typically
handled by manipulating the task tree,
such as killing sub-trees, adding new
nodes, or resending messages. For
example, when the HERO notices a blocked
path, the sub-tree representing the path
plan is killed and the original "go to"
message is resent, causing the system to
replan the path.

Another task of TCA is to manage the
robot's resources. TCA provides facilities
for defining hardware and software
resources and for associating message
handlers with resources. TCA regulates the
flow of messages to resources to prevent
conflicts. For example, by defining the
camera to be a resource, TCA will ensure
that only one process can access the
camera at any one time. On the other hand,
if the robot's drive motors and its internal
sensors are declared to be separate
resources, information about the sensors
can be obtained while the robot is moving.

Dealing with Limited Resources

The TCA mechanisms have been used to
build robot systems that can operate
robustly with limited resources. In
implementing the HERO and Rover systems,
several simple, but effective, organizing
principles have become apparent: 1) take
advantage of hierarchy in plans, monitors,
and exceptions, 2) make full use of the
concurrency available in the tasks, and 3)
maintain an explicit focus of attention for
tasks and monitors. Currently, these
principles are used by humans to design
the system, but we hope to eventually have
the robot use them to control itself.



Hierarchy

An effective organizing principle is to take
advantage of hierarchy inherent in the
tasks. For example, plans can be generated
much more efficiently using hierarchical
planning than by considering all the
details at once. Also, by using hierarchical
planning the system can plan only to the
level of detail warranted by its current
knowledge of the environment. This
capability is supported by TCA's temporal
constraint mechanism.  For example, the
HERO defers planning how to pick up the
cup until it gets near enough to determine
what kind of cup it is. On the other hand,
once it has approached the cup it has
enough information (using its overhead
camera) to plan how to get to the bin.
Thus, the path plan will usually be
available by the time the robot has grasped
the cup.

While the principle of hierarchy is
usually applied to planning, hierarchical
coarse-to-fine strategies have also proven
useful for monitoring and exception
handling. For example, the system can use
a coarse sensor to provide an indication of
potential trouble or opportunity, and then
actively explore using its fine sensors to
discriminate the possibilities. = The HERO
uses this strategy in collecting cups — the
overhead camera detects regions in the
image that are approximately cup-shaped.
These trigger monitors that insert tasks to
approach the object and map it with the
wrist-mounted sonar to determine if it in
fact matches the robot's model of a cup.

The HERO uses a similar coarse-to-fine
strategy to handle certain exceptions,
enabling it to react quickly without using
excessive resources. The robot uses on-
board guarded move procedures that
continually monitor the sonars and wheel
encoders while the robot is moving. If the
sonars detect a close object, or the encoders
detect no movement, the motors are stopped
to stabilize the robot and an exception is
signaled (a similar mechanism is used on
the Rover). TCA then uses its exception-
handling mechanism to provide a reasoned
response to the problem. A more

sophisticated approach along these lines is
that of (Miller, 89) which generates a
sensor profile for the low-level control to
monitor.

Another aspect of the hierarchical
exception-handling mechanism is that if
an exception handler decides it cannot deal
with an error, TCA searches up the task
tree for another handler. This approach is
used in docking the HERO on its battery
charger. To ensure good contact, the HERO
is centered in front of the charger and
backs up past where the charger is
predicted to be. When the charger is
contacted, the guarded move detects that
the wheels are not moving, and halts the
robot. This exception is passed up an

exception handler associated with the
"dock" goal, which checks whether the
robot is in fact on the charger (by

querying the HERO's charge light). If it is
not on the charger, which might occur if
the robot was not centered correctly, the
exception is passed up to a more general
handler which replans the docking action.

Concurrency

Another way to deal with limited resources
is to make full use of the available
resources. In particular, we use the
distributed nature of TCA to exploit the
opportunities for concurrency in the
domain. One source of concurrency is the

interleaving of planning and execution
described above. Another valuable source
is the perception system. Our original

system (Lin et al. 1989a) processed vision
data on request; the new system (Lin et al.
1989b) continually processes image data to
create 2D world maps used by the path
planner and monitors. This use of
asynchronous vision processing has led to
a nearly twofold speedup in the cup-
collection task.

To be reactive to changing conditions,
the system must monitor its environment
concurrently with planning and
execution. To this end, processes can

specify the frequency of polling for
monitors.  For optimal performance, these
frequencies should be based on the

likelihood of the monitored condition



occurring, the urgency for response, and
the time needed to react. For example, if at
70% of maximum charge the robot has 15
minutes of battery charge left, and the
robot neceds a maximum of 10 minutes to
reach its charger, then the battery can be
safely monitored (at the 70% level) every 5
minutes.

Some conditions require reaction times

too fast for a centralized system to
guarantee response, such as avoiding
obstacles while moving. As described

previously, our approach in such cases is
to implement reflexive procedures outside
TCA that stabilize the mechanism and then
notifies the higher-level system (through
TCA) to handle the exception.

Focus of Attention

A third organizing principle is that a robot
with limited resources must explicitly
maintain a focus of attention — that is, it is
unreasonable to expect the system to moni-
tor all possible conditions or to plan for all
tasks at once. While currently the robot's
focus of attention is programmed in, we are
developing techniques that would enable
the system to make such decisions itself.

A  recurring theme throughout this
paper is that of selectively monitoring for
change. While, admittedly, this could cause
the system to miss something unexpected,
the tradeoff 1is necessary under the
presumption of limited resources. TCA
supports selective monitoring in several
ways. First, the wuse of asynchronous,
demon-invoked monitors enables the
system to check conditions only when
certain triggering events occur. Second,
the frequency of polling monitors can be
specified so as to tune the monitor to the
likelihood of the changes occurring.

Third, monitors in TCA are constrained
to begin and end at certain times relative to
other tasks. For example, the HERO system
sets up a monitor that checks whether the
robot is holding an object which is
constrained to start after the cup has been
grasped and continues until the cup is
placed over the bin. In this way, resources
are not overloaded checking for conditions
that are not applicable to the current tasks.

This contrasts with other systems, (e.g.,
(Brook 1986), (Kaelbling 1986)), in which
all conditions are continually monitored.

TCA wuses its resource mechanism to
maintain the focus of attention on its
currently active tasks — if multiple
messages arrive for the same resource,
they are prioritized. While TCA currently
uses only a simple FIFO queue to schedule
access, we are beginning to investigate
dynamic  scheduling based on a
cost/benefit analysis. For example, if the
battery monitor warns of a low charge
while the robot is collecting a cup, the
system will prioritize the tasks based on the
costs of completing the collection task
followed by recharging, versus
recharging first and then getting the cup.

Note that resource-based focus of
attention allows the system to easily handle
multiple, non-conflicting tasks. For
example, by declaring the robot's motors
and voice synthesizer to be separate
resources, the system can concurrently
navigate and communicate with lab
occupants.  Similarly, the robot can plan
one task while executing another since the
planner resource is separate from the
robot controller resources.

Conclusions

While many mobile robots use a plethora of
sensorss and  processors, we  are
investigating how to build robust and
reactive robot systems that have limited
resources for the tasks and environments
they encounter.

We have developed the Task Control
Architecture to manage the robot's
resources. TCA provides mechanisms for
defining hardware and software resources,
for creating hierarchical task trees (our
representation of plans), for monitoring
the environment, and for handling
exceptions in a context-dependent way.

Our experiments with such systems
have led us to postulate several general
(albeit, not particularly surprising)

principles of system organization. First,
the system should take advantage of
hierarchy in the domain by wusing a



variety of coarse-to-fine strategies.  These
include 1) hierarchical planning at
various levels of detail, 2) using coarse
sensors to detect potential opportunities or
problems, followed by active search using
fine sensors, and 3) reflexive procedures
that stabilize the robot followed by a
reasoned response to correct the error.

Second, the system should take
advantage of those resources it does have
by exploiting the concurrency inherent in
its tasks. This includes 1) concurrent
perception, 2) planning during execution,
and 3) monitoring selected conditions at
different rates. Finally, the system needs
to keep an explicit focus of attention.

These principles have been tested using
TCA to control the HERO robot in its tasks of
collecting cups, retrieving printer output,
and recharging, and to “"walk" a single leg
of the CMU Planetary Rover through rough
terrain. We intend to further test and
refine these ideas by operating the HERO in
an occupied laboratory for extended
periods of time.

Acknowledgements

Many pecople have contributed to the HERO
and Planetary Rover projects. In particu-
lar, Christopher Fedor implemented much
of the TCA, Long-Ji Lin designed the
exception-handling mechanism and imple-
mented much of the HERO system, and
Lonnie Chrisman and Goang-Tay Hsu
implemented behaviors to retrieve printer
output and deliver objects to workstations.
The research is funded by under NASA
contract NAGW-1175.

References

Bares, J, et al.,, Ambler: An autonomous
rover for planetary exploration, in: /EEE
Computer vol 22, no 6 (1989).

Brooks, R, A robust layered control system
for a mobile robot, in: IEEE Journal of Rob-
ots and Automation, vol RA-2, no 1 (1986).

Kaelbling, L, An
intelligent reactive

architecture for
systems, in:

Proceedings of the Workshop on Planning
and Reasoning about Action (1986).

Krotkov, E, Roston, G, Simmons, R,
Integrated system for single leg walking,
in preparation.

Lin, L J, et al,, A case study in autonomous
robot behavior, CMU-RI-89-1, Robotics In-
stitute, Carnegie Mellon University (1989).

Lin, L J, Simmons, R, Fedor, C, Experience
with a task control architecture for mobile
robots, CMU-RI-89-29, Robotics Institute,
Carnegie Mellon University (1989).

Miller, D, Execution monitoring for a
mobile robot system, in: SPIE Conference
on Intelligent Control (1989).

Simmons, R, Mitchell, T, A task control
architecture for mobile robots, in: Stanford
Spring Symposium (1989).



Subjective Ontologies

Devika Subramanian*
Computer Science Department
Cornell University
Ithaca, New York 14850

Abstract

In this paper, we study the tradeoffs made in expres-
sive power and computational efficiency by indexical-
functionals (?], a new class of representations now pop-
ular in the world of reactive planning [?]. We present a
knowledge level analysis [?] of some indexical terms that
clarifies their logical content and helps us identify the
source of their computational power. In particular, we
demonstrate that indexical terms can be formalized in
a restriction of the situation calculus. Indexical theories
gain descriptional as well as computational efficiency by
using terms whose referents are determined in context
by the perceptual machinery of an agent, and by se-
lecting those and only those terms that are essential for
determining a course of action for the agent. We show
how, in some cases, indexical theories can be synthe-
sized from a situation calculus description of a planning
problem using knowledge of the goals of the agent. The
general problem of synthesizing appropriate indexicals
remains open. Qur analysis of indexical terms provides
us not only with a way of understanding what their on-
tological underpinnings are, but also helps us analyze
the conditions under which they are useful.

Introduction

The intractability of classical planning and the need to
actively monitor plans in a complex, dynamic world has
led to the development of reactive planners that build
plans at execution time based solely on the situation ex-
isting then [?]. Several designs for reactive planners have
been proposed in the recent literature: the theory of
situated automata and their combinational circuit com-
pilation by Rosenschein and Kaelbling [?], the theory
of indexical-functional aspects in the reactive planner
Pengi proposed by Chapman and Agre, universal plans
by Schoppers [?], and Rod Brooks’ [?] subsumption ar-
chitecture. The aim of our analysis of these approaches

*This author is supported by NSF IRI-8902721.
tThis author was supported in part by ONR Contract
N00014-81-K-0004.

John Woodfillt
Computer Science Department
Stanford University
Stanford, California 94305

is to articulate the assumptions about the world and
the planning process that are made in order to contain
the complexity of planning in these frameworks. The re-
sults we seek are a declarative specification of the worlds
in which reactive planning works and an analysis of its
computational and descriptional efficacy.

The impetus to perform this analysis comes from two
sources. One, the existence of the fundamental trade-
off between expressiveness and efficiency in knowledge
representation [?] indicates that the computational ad-
vantage in indexical-functional representations ought to
come from expressiveness limitations. If we can identify
them, we can determine the worlds for which they are an
epistemologically adequate formalism. Two, we would
like to design methods for compiling out indexical-
functional aspects from more expressive situation cal-
culus descriptions of the world. Presently the designers
of Pengi synthesize these ‘aspects by hand. Should the
rules of the world change, they will have to manually re-
construct these indexical-functionals and the situation-
action rules that use them. Specifying modifications at
the level of individual situation-action rules (or worse
circuits) is clumsy and for moderately complex worlds
almost impossible. An analysis of this representation
in terms of situation calculus allows us to build a com-
piler for indexical-functional aspects and thus to specify
modifications at a reasonable level of description.

The designers of Pengi state that “registering and act-
ing on indexical-function aspects is an alternative to rep-
resenting and reasoning about complex domains, and
avoids combinatorial explosions”. We demonstrate that
indexical-functionals can be constructed out of the ob-
jective ontology of the world assumed by a situation
calculus representation using the processes of indexical-
ization and propositionalization. Theories that contain
indexical-functionals use a simpler model of time than
the situation calculus, they also solve a simpler formu-
lation of the standard planning problem.

The problems with the classical planning model are
well known. First, it assumes that the world had been
abstracted into an objective description consisting of a



set of well-formed formulas in the situation calculus.
The effects of actions in the world are then formulated as
sentences in first-order logic and the planning problem
is: what sequence of actions achieves the goal descrip-
tion? Chapman([?] showed that the problem as formu-
lated above is NP complete even in the propositional
case. This standpoint on planning leaves open the ques-
tions of how exactly the referents of symbols in these
theories map to the world (the reference problem), and
introduces the additional problem of execution moni-
toring where the planner makes sure that the world is
indeed in the state specified by the descriptions.

Reactive planners make a more careful analysis of the
requirements of planning. Situation calculus allows one
to make too many distinctions in the world. Planners
that need to work in changing environments cannot be
as wasteful — they need to simplify their models of the
world and of their decision-making. We demonstrate
that reactive planners access the world via terms in a
agent-centered ontology (e.g. the block-to-my-right) as
opposed to terms in an objective ontology (block A).
This allows one to rewrite theories of the world in propo-
sitional form. Designers of reactive planners develop
elaborate perceptual components for delivering the ref-
erents of these subjective or indexical terms. This is
a partial solution to the reference problem. The next
simplification they perform is to formulate the planning
problem as: what action to take nezt. This simplifi-
cation is in accord with the nature of the world - it is
pointless to calculate action two or more time steps from
now, because the world may cease to be in a state that
allows for the execution of these action sequences.

This informal argument is made precise in this paper
and extended in [?] to account for indexicals other than
the time indexical Now. Using the indexical situation
calculus we demonstrate that

1. What is common among the various approaches to re-
active planning is their use of propositional theories
to link perception to action. Naive propositionaliza-
tion of full first-order theories of situations will not
do - instead, indexicals are used to provide limited
quantification.

2. The visual sensors of an agent deliver the referent of
an indexical at any given time. The cost of unification
to determine an applicable instance of a universal rule
in a theory is replaced by the cost of determining the
referents via perception. When the rules of the world
change slowly relative to the actual state of the world
at any given time, the approach of reasoning with
indexical theories is a computational win.

3. The theories of action that can be indexicalized are
those which permit computation of the nezt action
based on information available now. It is possible
to extend this analysis to agents with limited state
information.

4. Learning indexicals is a hard induction problem, and

this is clearly revealed in our attempts to indexicalize
theories with objective ontologies. The hardest part
of designing reactive agents is to pick appropriate dis-
tinctions (indexicals) in the world that determine the
agent’s next action.

Reactive planners work because their designers carefully
and explicitly separate the changing aspects of the world
from the stable ones, at design time. The rules of the
world are compiled into propositional theories with in-
dexicals which allow them to access the dynamic aspects
of the world via sensors.

We begin by introducing the time indexical Now into
situation calculus. An agent that has its present theory
of the world expressed in terms of the logical constant
Now alone, is computationally simpler than one that re-
quires expression of statements about time points in
terms of some fixed time point other than Now. We in-
troduce the axioms needed for meaningful introduction
of Now in the situation calculus. In the next section,
we use these axioms to reformulate a standard first or-
der predicate logic sentence that assumes an objective
ontology into an indexical one tuned for one-step plan-
ning. The introduction of Now, sets the stage for intro-
ducing further indexicals pertaining to space (Here and
There), and to objects (The Block-that-is-behind-me).
However, introducing additional indexical terms, neces-
sitates making assumptions about the process of deter-
mining their referents. We then discuss the expressive
limitations of indexicals and present an analysis of the
time and space costs associated with using them for ex-
ecution monitoring and one-step planning. We conclude
with a summary of the main points and directions for
future research.

A Conceptualization with a View

To use logic one must choose a point of view. Traditional
situation calculus starts from a sort of god’s eye or ob-
jective point of view. This objective stance allows one to
frame eternal sentences, e.g. “Block A is on block B at
3:13, May 3rd, 1989”. “block A” and “3:13, May 3rd,
1989” are considered as rigid designators that denote
the same things for all time. Eternal sentences have the
nice property that any conjunction of eternal sentences
is also an eternal sentence. If an agent acquires true
beliefs in the form of eternal sentences, it can always
conjoin these new beliefs to its old true beliefs without
fear of contradiction.

It is also possible to develop a situation calculus from
an agent’s subjective point of view. Consider a subjec-
tive ontology. What things and relations are central to
an agent’s point of view? First, the current time seems
interesting, Now must be a distinguished thing for an
agent. The place, Here, must be something special. The
agent could have a theory of here-and-now couched in
symbols denoting these various elements of the ontology
of here-and-now.



As a first example of an indexical theory, let us con-
sider a rather narrow minded agent that makes one dis-
tinction, and hence deals with one predicate, Rich. Rich
is true when the agent is rich, and false when the agent
is not. Suppose further that the agent owns AI stock
that was worth millions yesterday. Yesterday, the agent
could have a theory containing the one sentence Rich.
Today, the stock market fell and the stock is worth noth-
ing; the agent can add —Rich to its supply of facts. The
agent seems committed to the sentence: Rich A —Rich.

Rich must be made situation dependent. From an
agent’s point of view, the current moment (not Sg, the
first situation) is the most interesting moment, so we in-
troduce a term Now which now denotes the current situ-
ation. Our agent can maintain ~Rich(Now). The agent’s
state of richness yesterday can be stated today if we in-
troduce a function Before which maps one state to its
predecessor: Rich(Before(Now)) Notice that Rich-Now
is a quite useful propositional symbol where Rich-S0 is
not. The question of whether I am rich now is always
fairly relevant, while the question of being rich at some
fixed time loses significance. In what follows, we will
describe how we can convert a theory that contains a
situation-dependent predicate like Rich expressed in the
full situation calculus that allows access to arbitrary sit-
uations, into an indexical one that allows reference only
to the current situation and its predecessors via the Be-
fore function.

Two obstacles prevent the use of Now and Before and
their corresponding symbols Now and Before in stan-
dard situation calculus: first, Before is not definable
in standard situation calculus as there is no unique
predecessor of a situation; second, it seems that an
agent’s theory becomes highly non-monotonic across
time. Rich{Now) was in the theory yesterday, and it
is not today. The first obstacle is overcome by adding
appropriate axioms for situations and Before. The sec-
ond obstacle is stepped around by accepting the idea of
having a different, current, theory for each new situa-
tion in time, and considering the issue of transforming
one theory of here-and-now at ¢; to another theory of
here-and-now at ¢,.

The Reformulated Situation Calculus

The need to provide more axioms for the situation cal-
culus arises because Before is not explicitly definable in
the standard situation calculus. To see that Before is
not definable consider a world containing a compass C
and four directions in which the compass’ needle can
point: N, E, S and W. The two actions in this world,
Clockwise, and Anti-Clockwise, turn the compass. One
model of this world has four situations, one for each
direction the needle of the compass can point to.

S1=C(N),S2 = C(E),S3=C(S),S4 = C(W)

If Before were definable, Before(S2) would have to be
either §1 or S3. But Do(Clockwise,S2) = S1 and

Do(Anti-Clockwise, S3) = S1. Clearly there can be
no function defined on these four situations which picks
out the previous situation.

The following axioms restrict the models of situation
calculus to those in which there is a unique previous
situation. The variables a1 and a2 range over actions,
and s1 and s2 range over situations.

Intuitively, we would like to define a function Before
which maps a situation into its predecessor, just as the
function “the day before” maps today into yesterday.
This intuition is captured by the following definition for
a relation:

(A). {{x,y)|JaDo(a,x) =1y}
However for many models of situation calculus, this for-
mula is not functional. The definition becomes func-
tional if Do satisfies the following sentence.
(B). Yy 3axDo(a,x) =y

= (VzDo(a,z) =y = x = z2)
After restricting Do in this way, Before is still not de-
fined by (A) for situations which are not in the range of
Do. We choose to introduce an axiom relating Before
and Do which entails (B) and forces Before to agree
with (4):
(ISC1). Va s Before(Do(a,s))=s
As in our everyday world, given this axiom, each sit-
uation has a unique predecessor. However, there may
be several distinct actions which take one situation to
the same successor. Although not necessary for the con-
struction, in accord with common intuition, we provide
an axiom which forces situations with distinct histories
to be distinct:
(ISC2). Yala2sal#a2

=> Do(al, s) # Do(a2, s) optional
Later when we discuss transforming one theory of here-
and-now to the next theory of here-and-now, we will re-
quire that every situation be before some situation, (that
Before be onto) for a soundness condition to hold:
(ISC3). Vs13s2Before(s2) = si
We introduce (ISC4) in order to pick out an initial sit-
uation for a set of standard points, just as 0 picks out
an initial element in the standard points of Peano arith-
metic.
(ISC4). —JasDo(a,s)=S0 optional

Given the notion that a situation has a predecessor,
the identity of the action resulting in a situation be-
comes an object of interest!. (ISC5) is a definition of
an additional relation Action-that-generated in terms
of Do.

(ISC5). Va si Action-that-generated(si,a)

<&=> Js2Do(a,s2) = s1 definition
Action-that~generated(S,4) is true if performing A4
in some situation would result in S.

A useful consequence of these axioms and definitions
is:

YIf (1SC2) is omitted, the identities of the actions which
could have resulted in a situation are objects of interest.



(ISC6). Vas Action-that-generated(s,a) <=
Do(a,Before(s)) =s [ISC1, ISC5]

Transforming Theories

At each situation an agent is best served by having the
best theory for that situation. In some environments
the best theory for a situation is a theory couched in
the subjective terms denoting the objects present to the
agent in that situation. Each new situation will have
a different theory. The theory of one situation is not,
in general, a subset of the theory of the succeeding sit-
uation. We need a method for generating the current
theory in terms of the current subjective ontology that
describes the preceding situation. For now, only the
term Now changes its reference from situation to situ-
ation We define a translation which, given a theory of
the previous situation, produces a theory that is true in
the current situation. The translation maps the term
Now in the first theory to a term which designates the
same thing in the second theory. Since Before(Now)
now designates the situation which Now designated in
the previous situation, the translation 7 maps Now to
Before(Now), and all other parameters to themselves.
To generate the theory of a new situation from the the-
ory of the previous situation one applies the syntactic
translation corresponding to =, replacing all occurrences
of Now by Before(Now). This transformation has the de-
sirable property that it preserves the consequences of a
theory modulo the shift in designation for Now.

Lemma 1 Given a set of sentences T, and letling
¢ denole the sentence Vsi 3s2 si = Before(s2)
(aziom (ISC2) from above), and w denote [Now —
Before(Now)], (the replacement of Before(Now) for
Now), for any sentence ¢: T U {¢} k= ¢ if and only
if 7(T) U {8} = 7(6)

Reformulations

Now that we have the apparatus for talking about Now
and Before, we consider formulations which are partic-
ularly well suited for one-step planning. We start with
a blocks world axiom from [?]:

Vsxy T(On(x, y),s) A T(Clear(x),s)

= T(Cleaz(y), Do(U(x,¥),5)) (1)

For one-step planning, we also need some notion of
the relation between goals and what an agent ought to
do now. We introduce an axiom of rationality.

(ISC7). Vaps T(p,Do(a,Now)) A Goal(p, Now)
A=T(p, Now) => Must(Now) = a

Which just says that if doing a would result in p, if
one has the goal p, and if p doesn’t hold now then one
must do a.

In one step planning the Goal and properties of Now
are the relevant aspects of the situation, and so the ax-
jom should be reformulated in those terms.

Resolving (ISCT7) and (1), so that we are talking about
goals,

Vxy T(On(x,y), Now) A T(Clear(x), Now)
A ~T(Clear(y), Now) A Goal(Clear(y), Now)
= Must(Now) = U(x,y) (2)

Introducing the time indexical Now has proposition-
alized the situation component of the planning axiom.
We can carry this one step further, by instantiating the
variables x and y with particular blocks.

T(On(4, B), Now) A T(Cleax(4), Now) (3)
A ~T(Clear(B), Now) A Goal(Clear(B),Now)
= Must(Now) = U(4,B)

And finally introducing propositional symbols to
make the sentence propositional,

On-A-B A Clear-A
A Clear-B A Goal-Clear-B
= Must-U-A-B (4)

Formula (4) is good for one-step planning because de-
termining the truth value of a set of literals about Now
determines what the agent must do.

Here is another example taken from the Pengo [?].

Vapts T(Completely-Adjacent(z,p),s) A
T(Heading(a) = Axis-Between(a,p), s)

AT(Heading(a) = Axis-Between(p, t),s)

=> Must(s) = Throw-Projectile-At-Target(a,p, t)
This states that if the penguin, a projectile and a target
are lined up in that order, the penguin must throw the
projectile at the target.

VaptT(Completely-Adjacent(a,p), Now) A
T(Heading(a) = Axis-Between(a,p), Now)
AT(Heading(a) = Axis-Between(p, t), Now)
=> Must(Now) = Throw-Projectile-At-Target(a,p,t)
We replace the situation variable s by the constant Now,
so that the above statement is specialized to the current
situation.

T(Completely-Adjacent(A,P), Now) A
T(Heading(A) = Axis~Between(4,P), Now)
AT(Heading(4) = Axis-Between(P, T), Now)
= Must(Now) = Throw-Projectile-At-Target(A,P,T)
Again, we replace universal variables a and p that stood
for arbitrary penguins and projectiles by constants A and
P that are indexicals: A stands for Pengo and P stands
for the projectile adjacent to Pengo now. The referent
of P is delivered by Pengo’s visual apparatus.

T-Completely-Adjacent-A-P-Now A
T-Heading-A-=-Axis-Between-A-P-Now
AT-Heading-~A-=-Axis-Between-P-T-Now
=> Must-Now-=-Throw-Projectile-At-Target-A-P-T
In both these theories, the right indexicals could be gen-
erated directly by replacing situation variables and ob-
ject variables by the constants Now and A and P. As long
as the visual sensors deliver the right referents for A and



P, appropriate actions will be generated by our proposi-
tional theory. In general, the choice of indexicals is to be
determined by what sensors an agent has and its present
goals. The most creative aspect of reactive planner de-
sign is the choice of which indexical-functional aspects
of the situation determine an agent’s action now.

Analysis
The class of theories in the situation calculus that we
can transform to the indexical form is restricted by the
requirement that the theory be consistent with ISC1-
ISC4. This restriction rules out theories that fix the
number of situations or that make two situations with
distinct histories equivalent.

Claim 1 A theory T can be indexicalized if TU {ISC1-
ISC}} is consistent.

In a previous section we used the axioms of the in-
dexical situation calculus to generate propositional the-
ories that are suited for plan monitoring from a theory
in the situation calculus. The previous theorem estab-
lishes the class of theories for which this conversion is
possible. We now show that the compilation methods
we use are sound.

Let I be a transformation performed on a theory 7 in
the situation calculus that obeys the limitation in Claim
1. I is sound if

Soundness. T UISC1-ISC6 |= I(7T)

We further require that the theory I(7) be proposi-
tional, because we wish to gain the computational ad-
vantages that reasoning within the propositional frag-
ment of logic gives us.

Claim 2 The transformations in Sections 3 are sound.

Proof: Follows from the fact that the transformation I
is deduction. O

We examine the computational consequences of index-
icalization and propositionalization. First we consider
space requirements. To propositionalize a theory 7T in
clausal form in a typed logic, one must augment the
language until there are object constants for each ob-
ject in each type. The resulting theory 7/ is the set of
all ground instances of all clauses in the original theory.
The cardinality of this set of clauses is expressed by the
following formula.

m=y 1

c€T veVariables(c)

Considering one type, D, a clause replicates exponen-
tially in the number of variables occurring in it.

_ Variables(c)|
’=3 p|
ceT
Even a theory with one clause containing one literal with
. - . . . g
one situation variable in propositional form would con-
tain infinitely many clauses.

[type(v)|

Here is where the power of the indexical approach lies.
If the agent can do all its reasoning with a few situation
terms such as Now and Before(Now), and a few world
terms This-Block and That-Block, this explosion may
not be significant. Essentially we reduce the size of the

theory to
=3 1I

c€T veVariables(c)

[type(v)|

where type(v) = 1 (Now) when v is a situation variable
and type(v) = n (the number of propositional object
referents, like the-bee-that-is-chasing-me) when v
is an object variable.

Claim 3 Indezicalizalion is a win in lerms of space
only if the number of situation referents and object refer-
ents (indezical-functional aspects) is much smaller than
the total number of situations and objects described in
the theory T in the situation calculus.

Suppose we have a theory of cars in the United States
expressed in situation calculus. The straightforward
propositionalization of this theory would result in an-
other theory whose size is proportional to 200 million
(number of cars in the United States). This theory al-
lows us to name every car. If however, we restricted
our attention to cars of interest to the agent: The-car-
behind-me, The-car-passing-me etc.., we would have a
propositional theory whose size is proportional to the
number of such referents. The power of using these
indexical terms is that it gives us implicit quantifica-
tion: the actual referent of the The-car-behind-me is
determined by the perceptual machinery of the agent.
These indexical terms allow access to that part of the
immense propositional theory that is actually needed by
the agent.

A really significant performance improvement can be
achieved by transforming the propositional theory into
a set of equations. This can be done if the proposi-
tional theory can be “directionalized”. We first sub-
divide the literals in the theory into the perceptions
or the givens (examples are On-A-B-Before-Now and
On-A-B-Now) and the actions or the conclusions (e.g.
Clear-B-Now and Must-Unstack-A-B). To facilitate the
directionalization of the reasoning chains in this theory
from perceptions to actions, we will assume that the
conclusion literals occur in unnegated form.? Now, for
each conclusion, we collect all minimal conjunctions of
the givens which imply it, disjoin the set of conjunc-
tions, and construct a definition of the form Conclusion
= Disjunction of Conjunctions.

Claim 4 The worst case complezity of concluding the
truth of the aciion literals in the directionalized theory
constructed above is linear in their number.

2This is to avoid problems that arise {from negation as
failure.



Proof: Since the truth assignments to the givens can
be determined in constant time by the perceptual equip-
ment, the complexity of concluding each action literal in
the constructed theory is also a constant. If there are
n action literals, we need O(n) time to determine their
truths.

The definitions for the action literals can be straight-
forwardly compiled into combinational circuits (AND
gates for conjunctions and OR gates for disjunctions),
then the time complexity for concluding all the action
literals goes to O(1).

Claim 5 By compiling the definitions of the action lit-
erals into combinational circuits, we can determine their
truths in constant time.

Note that the two results above depend on the fact
that perception can be done in constant time. This is
actually an assumption that Pengi makes.

Another interesting property of indexicalized theories
is that they allow simple descriptions of current situa-
tions. The description of the current situation is Now in
the propositional indexical theory and Do(an (Do(....
(Do(a1, s0))))) in the original theory expressed in sit-
uation calculus (s0 is the initial situation). Situations
in the past can be accessed by the Before function in
the indexical theory, so that situations far back in the
past are rather clumsy to express; their length is lin-
ear in their distance from Now. In the first-order theory
expressed in situation calculus, the length of a term de-
scribing a situation is linear in its distance from the
initial situation sO.

Conclusions

This paper provides a principled account of several
forms of indexicality. The introduction of Now is a nec-
essary condition for introducing other indexical terms
non-rigidly referring to objects. We present a method
for generating indexical theories from a domain descrip-
tion in situation calculus. Determining the truth of liter-
als involving indexicals requires that perception be able
to determine their referents. Indexical theories can be
made into propositional ones with good computational
properties. This benefit comes at the cost of losing the
ability to rigidly refer to arbitrary objects and situa-
tions. .

We have shown that indexical-functionals can be ex-
plained in terms of a well understood formalism: the
situation calculus. In so doing we have exposed some
of the expressiveness and efficiency trade-offs resulting
from using them.

Acknowledgements

We would like to thank Andy Baker, Michael Gene-
sereth, Jane Hsu, Nils Nilsson, and Stan Rosenschein
for helpful discussions on an earlier version of this paper

which appeared in the proceedings of the First Interna-
tional Conference on Representation an Reasoning, May
1989.

References

(Agre and Chapman, 1987] Philip E. Agre and David
Chapman. Pengi: An implementation of a theory of
activity. In AAA47, 1987.

[Brooks, 1987] Rod Brooks. Intelligence without repre-
sentation. In Workshop on the Foundalions of Al
1987.

[Chapman, 1987] David Chapman. Planning for con-
junctive goals. Artificial Intelligence, 32(3), 1987.

[Firby, 1987] R. James Firby. An investigation into re-
active planning in complex domains. In AAAL 1987.

[Genesereth and Nilsson, 1987] Michael R. Genesereth
and Nils J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, 1987,

[Levesque and Brachman, 1985] Hector J. Levesque
and Ronald J. Brachman. A fundamental tradeoff
in knowledge representation and reasoning (revised
version). In Readings In Knowledge Representation.
Morgan Kaufmann, 1985.

[Newell, 1982] Alan Newell. The knowledge level. ALJ,
18(1), 1982.

[Rosenschein and Kaelbling, 1986] S. J. Rosenschein

~and L. P. Kaelbling. The synthesis of machines with
provably epistemic properties. In Proc of the Conf
on Theoretical Aspects of Reasoning about Knowledge,
1986. .

[Schoppers, 1989] M. Schoppers. Representation and
Automatic Synthesis of Reaction Plans. PhD thesis,
University of Illinois at Urbana-Champaign, 1989.

[Subramanian and Woodfill, 1990] Devika  Subrama-
nian and John Woodfill. Making situation calculus
indexical. Technical report, Cornell University, 1990.
In Preparation.



First Results with DYNA, an Integrated Architecture
for Learning, Planning and Reacting

Richard S. Sutton

GTE Laboratories Incorporated
Waltham, MA 02254
Rich@gte.com

How should a robot decide what to do? The tradi-
tional answer in Al has been that it should deduce its
best action in light of its current goals and world model,
1.e., that it should plan. However, it is now widely recog-
nized that planning’s usefulness is limited by its compu-
tational complexity and by its dependence on a complete
and accurate world model. An alternative approach is
to do the planning in advance and compile its result into
a set of rapid reactions, or situation-action rules, which
are then used for real-time decision making. Yet a third
approach is to learn a good set of reactions by trial and
error; this has the advantage of eliminating the depen-
dence on a world model. In this paper I briefly introduce
Dyna, a simple architecture integrating and permitting
tradeoffs among these three approaches. Results are
presented for a simple Dyna system that learns from
trial and error while it learns a world model and uses
the model to plan reactions that result in optimal action
sequences.

Dyna is based on the old idea that planning is like
trial-and-error learning from hypothetical experience
(Craik, 1943, Dennett, 1978). The theory of Dyna is
based on the classical optimization technique of dy-
namic programming (Bellman, 1957; Ross, 1983) and
on the relationship of dynamic programming to rein-
forcement learning (Watkins, 1989; Barto, Sutton &
Watkins, 1989), to temporal-difference learning (Sutton,
1988), and to AI methods for planning and search. Wer-
bos (1987) has previously argued for the general idea
of building AI systems that approximate dynamic pro-
gramming, and Whitehead (1989) and others (Sutton &
Barto, 1981; Sutton & Pinette, 1985; see also Rumelhart
et al., 1986) have presented results for the specific idea
of augmenting a reinforcement learning system with a
world model used for planning.

The Dyna architecture consists of four primary com-
ponents, interacting as shown in Figure 1. The policy
is simply the function formed by the current set of re-

actions; it receives as input a description of the current
state of the world and produces as output an action to
be sent to the world. The world represents the task to
be solved; prototypically it is the robot’s external en-
vironment. The world receives actions from the policy
and produces a next state output and a reward out-
put. The overall task is defined as maximizing the long-
term average reward per time step (cf. Russell, 1989).
The Dyna architecture also includes an explicit world
model. The world model is intended to mimic the one-
step input-output behavior of the real world. Finally,
the Dyna architecture includes an evaluation function
that rapidly maps states to values, much as the policy
rapidly maps states to actions. The evaluation func-
tion, the policy, and the world model are each updated
by separate learning processes.

EVALUATION
FUNCTION L
Heuristic
Reward
A (scalar)
4
Reward POLICY
(scalar)
State
Action
WORLD
OR
WORLD MODEL

Figure 1. Overview of Dyna.



For a fixed policy, Dyna is a simple reactive system.
However, the policy is continually adjusted by an inte-
grated planning/learning process. The policy is, in a
sense, a plan, but one that is completely conditioned by
current input. The planning process is incremental and
can be interrupted and resumed at any time. It con-
sists of a series of shallow searches, each typically of one
ply, and yet ultimately produces the same result as an
arbitrarily deep conventional search. I call this relaz-
ation planning. Dynamic programming is a special case
of this.

Relaxation planning is based on continuously adjust-
ing the evaluation function in such a way that credit is
propagated to the appropriate steps within action se-
quences. Generally speaking, the evaluation of a state
z should be equal to the best of the states y that can be
reached from it in one action, taking into consideration
the reward (or cost) r for that one transition, i.e.:

Eval(z) “=” max E{r+ Eval(y)|=,a}, (1)

aEActions

where E {- | -} denotes a conditional expected value and
the equal sign is quoted to indicate that this is a condi-
tion that we would like to hold, not one that necessarily
does hold. If we have a complete model of the world,
then the right-hand side can be computed by looking
ahead one action. Thus, we can generate any number of
training examples for the process that learns the eval-
uation function: for any z, the right-hand side of (1)
is the desired output. If the learning process converges
such that (1) holds in all states, then the optimal pol-
icy is given by choosing the action in each state z that
achieves the maximum on the right-hand side. There is
an extensive theoretical basis from dynamic program-
ming for algorithms of this type for the special case
in which the evaluation function is tabular, with enu-
merable states and actions. For example, this theory
guarantees convergence to a unique evaluation function
satisfying (1) and that the corresponding policy is opti-
mal (e.g., see Ross, 1983).

The evaluation function and policy need not be ta-
bles, but can be more compact function approximators
such as decision trees, k-d trees, connectionist networks,
or symbolic rules. Although the existing theory does
not directly apply to the case in which these machine
learning algorithms are used, it does provide a theoreti-
cal foundation for exploring their use. Finally, this kind
of planning also extends conventional planning in that
it is applicable to stochastic and uncertain worlds and
to non-boolean goals.

The above discussion gives the general idea of relax-
ation planning, but not the exact form used in Dyna.

0. Decide if this is a real experience or a hypothetical
one.

1. Pick a state z. If this is a real experience, use the
current state.

2. Form prior evaluation of z: e — Eval(z)
3. Choose an action: a — Policy(z)

4. Do action a; obtain next state y and reward r from
world or world model.

5. If this is a real experience, update world model from
z,a,yandr.

6. Form posterior evaluation of z: ¢/ — r + yEval(y)

7. Update evaluation function so that FEwal(z) is
more like ¢/ rather than e; this typically involves
temporal-difference learning.

8. Update policy—strengthen or weaken the tendency
to perform action a in state z according to e’ —e.

9. Go to Step 0.

Figure 2. Inner loop of a Dyna algorithm. These
steps are repeatedly continually, sometimes with real
experiences, sometimes with hypothetical ones.

Dyna is based on a closely related method known as
policy iteration (Howard, 1960), in which the evaluation
function and policy are simultaneously approximated.
In addition, Dyna is a Monte Carlo or stochastic ap-
prozimation variant of policy iteration, in which the
world model need only be sampled, not examined di-
rectly. Since the real world can also be sampled, by ac-
tually taking actions and observing the result, the world
can be used in place of the world model in this method.
In this case, the result is not relaxation planning, but a
trial-and-error learning process much like reinforcement
learning (see Barto, Sutton & Watkins, 1989). In Dyna,
both of these are done at once. The same algorithm is
applied both to real experience (resulting in learning)
and to hypothetical experience generated by the world
model (resulting in relaxation planning). The results in
both cases are accumulated in the policy and the eval-
uation function. There is insufficient room here to fully
Justify the algorithm, but it is quite simple and is given
in outline form in Figure 2.

As a simple illustration of the Dyna architecture, con-
sider the navigation task shown in the upper right of
Figure 3. The space 1s a 6 by 9 grid of possible lo-
cations or states, one of which is marked as the start-
ing state, “5”, and one of which is marked as the goal
state, “G”. The shaded states act as barriers and cannot



800
700
S
600
500
STEPS
PER
TRIAL
400
300 0 Planning steps
(Trial and Ervor Leaming
Only)
200 10 Planning
Steps
100 Planning
Sleps
100
14 \~
1 20 40 60 80 100

TRIALS

Figure 3. Learning curves for Dyna systems on
a simple navigation task. A trial is one trip from
the start state “S” to the goal state “G”. The shortest
possible trial is 14 steps. The more hypothetical expe-
riences (“planning steps”) using the world model, the
faster an optimal path was found.

be entered. All the other states are distinct and com-
pletely distinguishable. From each there are four pos-
sible actions: UP, DOWN, RIGHT, and LEFT, which
change the state accordingly, except where such a move-
ment would take the system into a barrier or outside the
space, in which case the location is not changed. Reward
is zero for all transitions except for those into the goal
state, for which it is +1. Upon entering the goal state,
‘the system is instantly transported back to the start
state to begin the next trial. None of this structure and
-dynamics is known to the Dyna system a priori.

- In this demonstration, the world was assumed to
‘be deterministic, that is, to be a finite-state automa-
ton, and the world model was implemented simply as
next-state and reward tables that were filled in when-
ever a new state-action pair was experienced (Step 5
of Figure 2). The evaluation function was also imple-
mented as a table and was updated (Step 7) accord-
ing to the simplest temporal-difference learning method:

Eval(z) — Eval(x) + B(¢’ — €). The policy was imple-
mented as a table with an entry w,, for every pair of
state z and action a. Actions were selected (Step 3)
stochastically according to a Boltzmann distribution:
Pla|z} = e¥=/} ;€"=. The policy was updated
(Step 8) according to: wyg «— Weq +a(e’ —e). For hypo-
thetical experiences, states were selected (Step 1) at ran-
dom uniformly over all states previously encountered.
The initial values of the evaluation function Ewval(z)
and the policy table entries w,, were all zero; the ini-
tial policy was thus a random walk. The world model
was initially empty; if a state and action were selected
for a hypothetical experience that had never been expe-
rienced in reality, then the following steps (Steps 4-8)
were simply omitted.

In this instance of the Dyna architecture, the inner
loop (Figure 2) was applied alternately to the real world
and to the world model. For each experience with the
real world, k hypothetical experiences were generated
with the model (Step 0). Figure 3 shows learning curves
for k = 0, k = 10, and k = 100, each an average over
100 runs. The k¥ = 0 case involves no planning; this
is a pure trial-and-error learning system entirely anal-
ogous to those used in reinforcement learning systems
(Barto, Sutton & Anderson, 1983; Sutton, 1984; An-
derson, 1987). Although the length of path taken from
start to goal falls dramatically for this case, it falls much
more rapidly for the cases including hypothetical experi-
ences (planning), showing the benefit of using a learned
world model. For k = 100, the optimal path was gener-
ally found and followed by the fourth trip from start to
goal; this is very rapid learning. The parameter values
used were § = 0.1, ¥ = 0.9, and & = 1000 (k = 0) or
a =10 (k = 10 and k¥ = 100). The a values were chosen
roughly to give the best performance for each k value.

Figure 4 shows why a Dyna system that includes plan-
ning solves this problem so much faster than one that
does not. Shown are the policies found by the k = 0
and k = 100 Dyna systems half-way through the second
trial. Without planning (k = 0), each trial adds only
one additional step to the policy, and so only one step
(the last) has been learned so far. With planning, the
first trial also learned only the last step, but here during
the second trial an extensive policy has been developed
that by the trial’s end will reach almost back to the start
state. By the end of the third or fourth trial a complete
optimal policy will have been found and perfect perfor-
mance attained.

This simple illustration is clearly limited in many
ways. The state and action spaces are small and de-
numerable, permitting tables to be used for all learning



WITHOUT PLANNING (k = 0)

$
WITH PLANNING (k = 100)
3 i &
s I J !
. . e B T
AR S TI7
Wl ool bt T

Figure 4. Policies found by planning and non-
planning Dyna systems by the middle of the sec-
ond trial. The black square indicates the current loca-
tion of the Dyna system, and the arrows indicate action
probabilities (excess over the smallest) for each direction
of movement.

processes, and making it feasible for the entire state
space to be explicitly explored. For large state spaces
it is not practical to use tables or to visit all states; in-
stead one must represent a limited amount of experience
compactly and generalize from it. The Dyna architec-
ture is fully compatible with the use of a wide range of
learning methods for doing this. In this example, it was
also assumed that the Dyna system has explicit know!-
edge of the world’s state. In general, states can not be
known directly, but must be estimated from the pattern
of past interaction with the world (Rivest & Schapire,
1985; Mozer & Bachrach, 1989). The Dyna architec-
ture can use state estimates constructed in any way,
but will of course be limited by their quality and resolu-
tion. A promising area for future work is the combina-
tion of Dyna architectures with egocentric or “indexical-

functional” state representations (Agre & Chapman,
1987; Whitehead, 1989).

Yet another limitation of the example Dyna system
presented here is the trivial form of search control used.
Search control in Dyna boils down to the decision of
whether to consider hypothetical or real experiences,
and of picking the order in which to consider hypothet-
ical experiences. The task considered here is so small
that search control is unimportant, and was thus done
trivially, but a wide variety of more sophisticated meth-
ods could be used. Particularly interesting is the possi-
bility of using the Dyna architecture at a higher level to
make these decisions.

Finally, the example presented here is limited in that
reward is only non-zero upon termination of a path from
start to goal. This makes the problem more like the kind
of search problem typically studied in Al, but does not
show the full generality of the framework, in which re-
wards may be received on any step and there need not
even exist start or termination states. In the general
case, the Dyna algorithm given here attempts to maxi-
mize the cumulative reward received per time step.

Despite these limitations, the results presented here
are significant. They show that the use of an inter-
nal model can dramatically speed trial-and-error learn-
ing processes even on simple problems. Moreover, they
show how the functionality of planning can be obtained
in a completely incremental manner, and how a plan-
ning process can be freely intermixed with reaction and
learning processes. I conclude that it is not necessary to
choose between planning systems, reactive systems and
learning systems. These three can be integrated not just
into one system, but into a single algorithm, where each
appears as a different facet or slightly different use of
that algorithm.



Acknowledgements. The author gratefully acknowl-
edges the extensive contributions to the ideas presented
of his colleagues Andrew Barto and Chris Watkins. I
also wish to also thank the following people for ideas
and discussions: Steve Whitehead, Paul Werbos, Luis
Almeida, Ron Williams, Glenn Iba, Leslie Kaelbling,
John Vittal, Charles Anderson, Bernard Silver, Oliver
Selfridge, Judy Franklin, Tom Dean and Chris Matheus.

References

Agre, P. E., & Chapman, D. (1987) Pengi: An imple-
mentation of a theory of activity. Proceedings of AAAI-
87, 268-272.

Anderson, C. W. (1987) Strategy learning with multi-
layer connectionist representations. Proceedings of the
Fourth International Workshop on Machine Learning,
103-114. Irvine, CA: Morgan Kaufmann.

Barto, A. G., Sutton R. S., & Anderson, C. W. (1983)
Neuronlike elements that can solve difficult learning con-
trol problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13, 834-846.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H.
(1989) Learning and sequential decision making.
COINS Technical Report 89-95, Dept. of Computer
and Information Science, University of Massachusetts,
Ambherst, MA 01003.

Bellman, R. E. (1957) Dynamic Programming. Prince-
ton University Press, Princeton, NJ.

Craik, K. J. W. (1943} The Nature of Explanation.
Cambridge University Press, Cambridge, UK.

Dennett, D. C. (1978) Why the law of effect will not
go away. In Brainstorms, by D. C. Dennett, 71-89,
Bradford Books, Montgomery, Vermont.

Howard, R. A. (1960) Dynamic Programming and
Markov Processes. Wiley, New York.

Mozer, M. C., & Bachrach, J. (1989) Discovering the
structure of a reactive environment by exploration.
Technical Report CU-CS-451-89, Dept. of Computer
Science, University of Colorado at Boulder 80309.

Rivest, R. L., & Schapire, R. E. {1987) A new approach
to unsupervised learning in deterministic environments.
Proceedings of the Fourth International Workshop on
Machine Learning, 364-375. Irvine, CA: Morgan Kauf-
mann.

Ross, S. (1983) Introduction to Stochastic Dynamic Pro-
gramming. Academic Press, New York.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., &
Hinton, G. E. (1986) Schemata and sequential thought
processes in PDP models. In Parallel Distribuied Pro-
cessing: Ezplorations in the Microsiructure of Cogni-
tion, Volume II, by J. L. McClelland, D. E. Rumelhart,
and the PDP research group, 7-57.

Russell, S. J. (1989) Execution architectures and com-
pilation. Proceedings IJCAI-89, 15-20.

Sutton, R. S. (1984) Temporal credit assignment in re-
inforcement learning. Doctoral dissertation, Depart-
ment of Computer and Information Science, University
of Massachusetts, Amherst.

Sutton, R.S. (1988) Learning to predict by the methods
of temporal differences. Machine Learning 3: 9-44.

Sutton, R.S., Barto, A.G. (1981) An adaptive network
that constructs and uses an internal model of its en-

vironment. Cognition and Brain Theory Quarterly 4:
217-246.

Sutton, R.S., Pinette, B. (1985) The learning of world
models by connectionist networks. Proceedings of the
Seventh Annual Conf. of the Cognitive Science Society,
54-64.

Watkins, C. J. C. H. (1989) Learning with Delayed Re-
wards. PhD thesis, Cambridge University.

Werbos, P. J. (1987) Building and understanding adap-
tive systems: A statistical/numerical approach to fac-
tory automation and brain research. IEEE Transactions
on Systems, Man, and Cybernetics, Jan-Feb.

Whitehead, S. D. (1989) Scaling reinforcement learning
systems. Technical Report 305, Dept. of Computer Sci-
ence, University of Rochester, Rochester, NY 14627.



Abstraction Planning in Real-Time

Richard Washington and Barbara Hayes-Roth
Knowledge Systems Laboratory
Computer Science Department
Stanford University
Stanford, CA 94305

Introduction

The basic aim of real-time planning is, given a goal
and time constraints, to decide on and execute a
series of actions towards that goal under the time
constraints. In many realistic applications, plan-
ning must also be able to adapt to changes in the
world, in the goals, and in the time constraints.
The planner should adapt its plan to the changing
situation.

Changes in the world are either unexpected ef-
fects of the planner’s actions or events caused by
some external force. These changes may present
opportunities for new planning. They may also
require the existing plan to be modified or dis-
carded. Complete precompiled plans [Schoppers,
1987] adapt to these changes by storing all pos-
sible world states and the appropriate actions for
each one, but such plans are impractical in practice
[Ginsberg, 1989]. Any other approach needs to be
able to replan. This replanning needs to happen
under the existing time constraints to maintain the
overall real-time performance of the planner.

The goals of the system may change during plan-
ning. These changes may be small enough that an
existing partial plan could be modified to achieve
the new goals, or large enough to require a com-
pletely new plan. To maintain real-time planning
performance, the planner must be able to adapt to
new goals within the time constraints. Approaches
that require building a complete plan to achieve
goals, such as existing compilation work, require
too much time to adapt to new goals.

The time constraints also may vary during plan-
ning. Unexpected world changes, new goals, or

reduced computational resources may affect the
available time. To prove effective under varying
time constraints, the planner’s performance must
improve given more time and degrade gradually
given less time. This performance change should
be smooth, not catastrophic.

The approach we propose is to use levels of ab-
straction, with partial plans at each level of ab-
straction. The steps in the partial plans are sen-
sitive to the situation in which they may be used.
When the situation changes, plan steps are added,
deleted, or modified as necessary to keep all plan
steps consistent with the expected state of the
world. At any point, the plan may be expanded
further within one level of abstraction, or it may be
refined to a lower level of abstraction. The planner
chooses a strategy that will provide an executable
(partial) plan under the time constraints. How-
ever, if time were to run out unexpectedly, the
planner could generate an executable action ap-
propriate for the partially-constructed plan. This
approach provides the performance and adaptivity
that are necessary for effective real-time planning.

This approach to planning using levels of ab-
straction and partial plans is being implemented as
a component of the Guardian system for intensive-
care monitoring [Hayes-Roth et al., 1989]. Cur-
rently we are using planning for patient therapy.
We intend to apply the approach also to control of
the system’s reasoning.

Architectural Foundations

In this section we will describe the basic archi-
tectural assumptions that underlie our approach.



These have been dictated by the application do-
main and implementation system, but they are
reasonable assumptions for a wide range of tasks.

The basic representation of an event is an inter-
val of time. Events are separated into the classes of
occurred, expected, and intended. Occurred events
are observations and executed actions. Ezpected
events are predictions made by the reasoning sys-
tem, to be confirmed or contradicted by occurred
events. Iniended events serve as goals to guide
the reasoning system. Together the intervals form
a timeline representing the state of the system’s
knowledge.

Observations enter the system via a set of sen-
sors. The sensors monitor the world continuously,
reporting events judged significant by criteria pro-
vided by the reasoning system [Washington and
Hayes-Roth, 1989]. The reporting of observations
is asynchronous with respect to the reasoning cycle
of the system.

Actions to be executed are placed on the time-
line along with their expected effects. Once the
planner has constructed a plan and put it on the
timeline, that plan will be executed unless the
planner retracts it. The plan execution is indepen-
dent of planning: when the time arrives to execute
a planned action, it will be executed by the system
even when the planner is still extending the plan.

Plans are constructed using states and opera-
tors, but the states and operators differ from their
traditional meaning. A state contains the system’s
knowledge and beliefs about the world, including
the past, present, and future. The current state
contains intervals representing the current obser-
vations, expectations, and intentions of the sys-
tem. Note that these intervals represent the sys-
tem’s beliefs at a particular time, not the instanta-
neous state of the world at that time. An operator
moves the system from one set of beliefs to a new
set of beliefs. In a given state, an operator has the
effect of suggesting a “future” state that contains
the knowledge and beliefs of the given state aug-
mented with the operator’s expected effects. The
operator’s effects appear as expected intervals in
the new state (see Figure 1). So a future state in
a plan is the result of a sequence of operators, and
it represents the beliefs the system would have if it

were to execute that operator sequence. The goals
of the planner are represented as intentions on the
timeline.

Planning competes with other reasoning tasks
in the overall system. The system as a whole may
apply various reasoning methods to the data it
receives. Planning will receive varying resources
depending on the importance of the other reason-
ing. As the situation changes, so may the resources
available to planning. In addition, the other rea-
soning may provide the planner with information
that may affect the developing plan.

Planning as Search

At each level of abstraction, planning is treated
as a search problem. The search proceeds “left
to right,” from the start state to the goals. The
motivation for this search order is to maintain at
all times a partial plan that is the best given the
knowledge and beliefs in the current state. Then
if time were to run out, the existing plan would
begin execution as the planner worked to extend
the plan.

Constructing a plan is performed by adding op-
erators to the existing states and then adding the
operators’ resultant.states. To add an operator
to an existing state, the planner first matches the
available operators against the state. Operators
that match are instantiated for the state. An op-
erator will have as its expected result a new state
with the operator’s effects appearing as expected
intervals.

Since this is a basic search technique, the prob-
lems of search control arise. To handle that, an
evaluation is performed on each state generated in
the plan to determine its progress towards achiev-
ing the goals. Using these evaluations, a best-first
search strategy such as Real-Time A* [Korf, 1987]
will provide heuristic search control to limit the
search space (see Figure 2). The levels of abstrac-
tion discussed below also help limit the search.

The best plan from a state, as defined by the
evaluation, appears as expected actions in the
state. The system will execute an action in the
best plan from the current state when the appro-
priate time arrives. When an operator’s action is



operator effects

(- | A1 l ) ( l A1 | A2 \ )
I_E_I B1 _IB2
C1 operator > C1
D2
t time Yo time
q > \ >
state1 state2

Figure 1: Application of an operator to a state. The new state contains the knowledge and beliefs of the
old state, with the operator’s expected effects added.

Level 3 O >C

N T T T TE T TS L AL T T

+goals

Level 2

A P I Far A g 0 @ JF g g 3 B & K & I g o Rl

Level 1

Figure 2: Planning at multiple levels of abstraction. Planning at each level is a best-first search from the
current state to the goals. Abstract states are refined to lower-level goals. The plan may be expanded
either by searching further within a level or refining an existing plan to a lower level.



executed, the current state will now contain the
expected effects of the operator. This in essence
moves the current state one step along the plan.
Note that executing an action may not actually re-
sult in the action’s expected effects, so the planner
merely adds expectations that must be confirmed
by the observations.

The planner adapts to a changing situation be-
cause each operator is sensitive to the conditions
that make it appropriate. Whenever a situation
changes, new operators that rely on the new in-
formation may be invoked, and existing operators
that relied on the old information may be modi-
fied or discarded. For example, an operator in a
planned sequence may depend on effects expected
as a result of earlier operators. If these effects
are contradicted by observations, then the opera-
tor can no longer be executed. Thus the structure
of the plan will change as needed to remain con-
sistent with current information.

Planning with Levels of Abstraction

Abstraction is used to guide both planning and
replanning. Abstract plans provide goals for con-
structing lower-level plans. When the situation
changes so that lower-level plans fail, the higher-
level plans will still offer a general strategy that
can be refined into a low-level plan.

A partial plan at one level of abstraction is a
sequence of states and operators. Each of these
states contains expectations about the effects of
the operator leading to the state. At an abstract
level, this operator may not be directly executable,
but instead it may represent a sequence of lower-
level operators for achieving the effects. So at
the next lower level, the expected effects are con-
verted to goals to be achieved by a sequence of
low-level operators. Since the expected effects are
represented as expected intervals in the states,
the transformation is thus from states at the ab-
stract level to goals at the lower level (see Figure
2). These goals serve to guide the search in the
lower level, augmenting the local evaluation func-
tion with more global direction.

This global perspective aids in replanning. Re-
planning is performed as a form of planning, so

the influence of abstraction is the same. In replan-
ning, the more abstract plans lead the lower-level
replanning work along a path consistent with the
planner’s goals. Since the search at each level is
adaptive, the highest level plan that needs modifi-
cation will start to be reconstructed, and that will
affect the replanning at the lower levels.

One potential problem in planning at levels of
abstraction is reaching executable actions under
time stress. Although the plan at each level need
not be complete before starting work on the next
lower level, the planner may not have refined the
plan to an executable level when execution be-
comes necessary. In this case the planner must
quickly find an executable action compatible with
its partial, abstract plan. This can be achieved
by expanding only the first plan step at succes-
sively lower levels of abstraction. Each such plan
step would be the best with respect to the goals
provided by the more abstract plans, so the exe-
cutable action would remain consistent with the
higher-level goals.

Strategies for Partial Planning

As the planner searches more deeply at each level
of abstraction and refines the plan to lower levels of
abstraction, the executable actions are more likely
to be useful for the higher-level goals. The decision
whether to search to greater depth or to refine to
lower levels depends on the characteristics of the
domain.

If the world is unpredictable, a long plan is un-
likely to execute completely without any unex-
pected effects. In that case, the time spent build-
ing a long plan may be better spent refining a short
plan to lower levels. If the time constraints vary
widely, then it may be useful to maintain a nearly
executable plan at all times. Then if time were
to run out unexpectedly, it would take only a few
steps to reach an executable action. If the evalua-
tion function is suboptimal, then the best plan at
a given level may change as the search progresses,
causing changes to the goals of lower-level plan-
ning. In that case, a more complete plan at a given
level would provide more stability in the plan and
less wasted work at lower levels.



The planner should tailor the search and refine-
ment to match the characteristics of the domain,
since there is no general strategy that is optimal
for all domains. In particular, the planner must
provide a flexible way to specify and implement
strategies for controlling the plan expansion.

Since execution occurs concurrently with plan-
ning, the results of execution could provide addi-
tional information that would reduce the search
space of the remaining plan. Alternatively, execu-
tion of an uncertain plan could prove harmful if
the actions are irreversible or costly. Given two
partial plans that execute at different times, the
planner would need to use information about the
costs and benefits of the planned actions to pre-
fer one over the other. Thus the planner should
have a way to specify and implement strategies for
preferring planning or execution.

Application Domain

The planning work described here is being applied
to the domain of monitoring patients in a surgical
intensive-care unit (SICU). In the SICU, a vari-
ety of machines measure patient parameters and
provide observations continually. Others offer ob-
servations upon request. Actions and effects in
the SICU take place over time. Deadlines arise to
solve problems with the patient, and these dead-
lines may change with the patient condition. Un-
expected events may occur, altering the under-
standing of the patient’s state.

Planning is implemented as a component
of the Guardian system for SICU monitoring
[Hayes-Roth et al., 1989]. Planning is currently
being applied to the task of constructing plans for
patient therapy over time. Other components of
Guardian perform tasks such as associative diag-
nosis, model-based diagnosis, and input data man-
agement. Execution of the various components
may interleave, and the components may compete
for computational resources. To manage the over-
all system behavior, planning will also be applied
to the global control problem.

Conclusion

Real-time planning and replanning can be
achieved by using multiple levels of abstraction,
with partial planning at each level. The plan at
each level is sensitive to changes in the situation,
modifying the plan to remain consistent with the
evolving world and problem-solving states. The
levels of abstraction provide goal-directed guid-
ance for planning and replanning, while retaining
real-time performance and adaptivity.

Further work is necessary on strategies for con-
trolling the planning process. Although universal
strategies appear unlikely, strategies applicable to
a class of problems appear more reasonable. Such
strategies should be identified and specified.

References

[Ginsberg, 1989] M. L. Ginsberg. Universal plan-
ning: An (almost) universally bad idea. AT Mag-
azine, 10(4):40-44, 1989.

[Korf, 1987] R. E. Korf. Real-time heuristic
search: First results. In Proceedings of AAAI-
87, pages 133-138, 1987.

[Hayes-Roth et al., 1989] B. Hayes-Roth,
R. Washington, R. Hewett, M. Hewett, and
A. Seiver. Intelligent monitoring and control.
In Proceedings of the 1989 International Joint
Conference on Artificial Intelligence, 1989.

[Schoppers, 1987] M. J. Schoppers.  Universal
plans for reactive robots in unpredictable envi-
ronments. In Proceedings of IJCAI pages 1039-
1046. IJCAI, 1987.

[Washington and Hayes-Roth, 1989] R. Washing-
ton and B. Hayes-Roth. Input data manage-
ment for real-time Al systems. In Proceedings
of the 1989 International Joint Conference on
Artificial Intelligence, 1989.



The STRIPS Assumption for Planning Under Uncertainty

Michael P. Wellman

Al Technology Office, Wright R&D Center
Wright-Patterson AFB, OH 45433
wellman@aagate.avlab. wpafb.af. mil

Abstract

The STRIPS assumption bounds the information relevant
to determining the effects of actions. It is fundamentally
a statement about beliefs, and does not in fact assume
anything about the world itself. This treatment sepa-
rates the STRIPS assumption from other necessary fea-
tures of a planning architecture, such as its model of
persistence and its inferential policies. We can charac-
terize the STRIPS assumption in terms of probabilistic
independence, thereby facilitating analysis of represen-
tations for planning under uncertainty.

1 The Frame Problem and the
STRIPS Assumption

The classic dilemma in representing and reasoning about
the effects of actions is the frame problem, originally
identified by McCarthy and Hayes [7]. The frame prob-
lem has come to stand for a variety of computational
and notational complexities arising from the apparent
necessity of considering the possible change in status of
every proposition for each action. Characterizations of
the problem vary widely {1, 11], proposed solutions even
more so, but a kernel of consensus does seem to exist.
Al researchers agree that part of the problem, at least,
has to do with specifying the effects of actions without
explicitly describing all ramifications and qualifications.
In particular, we want to avoid a requirement for explicit
frame azioms specifying the propositions not aflected by
each action.

Actual planners eschew frame axioms and restrict at-
tention to propositions explicitly mentioned in action
specifications. Waldinger has named this policy the
“STRIPS assumption” [12], after its first application [3].
McDermott [8] asserts that no program since STRIPS has
been practically bothered by the frame problem, which
is true if we define it as the need for frame axioms in the
deductive planning approach. But as McDermott also

points out, the frame problem does frustrate attempts
at logical analyses of these programs, which (many be-
lieve) hinders our efforts to build planners capable of
reasoning about change in complex environments.

Understanding the nature of the STRIPS assumption
and the extent to which it circumvents the frame prob-
lem is a first step to understanding the larger issues
in reasoning about actions. Previous discussions of the
STRIPS assumption tended to encompass all of these is-
sues, failing to distinguish the various roles played by
this particular notational convention. While the broader
views provide fuller accounts of the planners they ad-
dress, their analyses are not transferable to planning
frameworks that take significantly different approaches
to representing and reasoning about change.

For example, Lifschitz [6] focuses on conditions under
which STRIPS’s add/delete mechanism will be guaran-
teed to produce only valid plans. The analysis concludes
essentially that sTRIPS systems are sound as long as

1. the use of non-atomic sentences in operator descrip-
tions and world models is restricted (in a precise
manner described by Lifschitz), and

2. akind of strong persistence holds, where no changes
occur except as specified in add and delete lists.

These conditions apply to planning frameworks that
adopt the same strong persistence model and forbid in-
ference about the further consequences of specified ef-

fects. Many have been unwilling to accept these re-

strictions, and have worked on methods and semantic
accounts of systems that go beyond them.

Research on the task of determining the implications
of specified effects of actions (called the ramification
problem), its counterpart for preconditions (the gqual:-
fication problem), and development of models of persis-
tence are important areas of investigation for Al plan-
ning. The point of this paper is that there is a separable
aspect of the STRIPS assumption that is orthogonal to
these issues, and therefore applicable across a variety of



planning frameworks. Generally stated, the STRIPS as-
sumption per se dictates that the effect of an action on
the world model be completely determined by the direct
effects explicit in its specification. By saying only that
it 1s “completely determined,” we permit the nature of
the implicit effects to vary among planning systems.

I examine this interpretation below from the perspec-
tive of planning under uncertainty. Uncertainty pro-
vides further motivation for this view of the STRIPS as-
sumption, and concepts from uncertain reasoning help
to characterize it more precisely for application to ex-
isting planning frameworks.

2 Planning under Uncertainty

An agent plans under uncertainty whenever it cannot
flawlessly predict the state of the environment result-
ing from its actions. By this definition, uncertainty is
a characteristic of the agent’s knowledge rather than an
inherent property of the environment. Given that we are
never likely to achieve perfect prediction in realistic en-
vironments, all planning is actually performed under un-
certainty; planning under certainty is an unrealizable—
yet often useful—idealization.

The frame problem arises in planning under uncer-
tainty just as it does in the idealized framework. Plan-
ners need something like the STRIPS assumption to jus-
tify leaving non-effects of an action implicit in their
omission from the action’s specification. However, se-
mantic accounts of the STRIPS assumption in classi-
cal planning (e.g., STRIPS itself [6]) do not easily map
over to the uncertain case. The conventional informal
interpretation—that planners assume relations in the
world model are unchanged unless explicitly specified
otherwise-—does not apply to planners that admit to in-
complete knowledge about the effects of their actions.

Perhaps we could modify the interpretation to as-
sume that changes of unspecified relations are un-
likely rather than impossible. The problem of this ap-
proach is identifying a particular, well-motivated, likeli-
hood assumption that is sufficiently general for domain-
independent planning. As demonstrated by work along
these lines {2, 4], defining such a convention is tanta-
mount to adopting a model of persistence and proba-
bilistic inference. Moreover, these persistence models
tend to be more varied and complicated than those pro-
posed for planning under certainty. These differences
provide further motivation for a characterization of the
STRIPS assumption independent of a particular model of
persistence.

The essential property of the STRIPS assumption that
justifies implicit treatment of non-effects is the presump-
tion that the information specified explicitly is suffi-

cient to describe the agent’s change in belief. In other
words, once the direct effects are known, knowledge of
the action itself is superfluous for purposes of predic-
tion. Thus, the sTRIPS assumption is fundamentally
a statement that the agent’s beliefs about changes in
propositions not mentioned in an action’s specification
are independent of the action, given those effects explic-
itly specified. For planning under uncertainty, we can
characterize beliefs in terms of probability distributions
and use the concept of probabilistic independence to for-
malize this interpretation of the STRIPS assumption.

3 Probabilistic Independence

In a state of uncertainty, an agent’s beliefs are repre-
sentable by a probability distribution over possible situ-
ations (which is not to say that the agent’s beliefs need
be encoded as such). We take situations to be assign-
ments on a universe of variables describing the world,
including such things as what actions are performed and
their consequences. Beliefs are then probability distri-
butions over this space. Note that this framework avoids
imposing a temporal ontology, which would provide es-
sential structure for the planning problem but would
detract from the generality of our analysis of the issue
at hand.

To capture the meaning of the STRIPS assumption pro-
posed above, we need a way to express the sufficiency
of explicitly specified effects to describe the full impact
of an action on the agent’s beliefs about the world. For
this purpose, the natural concept in probability theory
is conditional independence. We say that random vari-
ables z and y are conditionally independent given z iff

Pr(sly, 2) = Pr(z}2) (1)

for any possible values of the variables. In other words,
once the value z is known, finding out the value of y has
no effect on the agent’s belief about 2. In this case, y is
superfluous information.

The STRIPS assumption is paraphrased by a schema
for equation (1). Performance of an action is repre-
sented by y, z stands for the explicit effects of y plus
the “background,” and z represents “everything else.”
The independence assertion is that for a given back-
ground, knowing the explicit effects of y provides all the
information useful for predicting its implicit effects, that
is, everything else. Given its explicit effects, knowledge
about the action’s performance is redundant.

For a satisfactory interpretation, we need a more com-
plete account of concepts like “background” and “every-
thing else.” To understand their role in planning sys-
tems, we investigate a class of representations for actions



and events based on graphical models. Graphs provide
a formal language for expressing (via adjacency) the lo-
cality of explicit effects in planning representations.

4 Dependency Graphs

A probabilistic network (also called Bayesian or belief
network [9] or influence diagram) is a directed acyclic
graph {DAG) with nodes for the random variables con-
nected by links indicating probabilistic relations. Asso-
ciated with each node is a probability distribution for
its variable given the possible values for its predeces-
sors in the graph. Thus, a link from z to y indicates
that y might depend probabilistically on z. Conversely,
the absence of links restricts the dependencies that can
be encoded in the network. The graphical condition
for conditional independence in probabilistic networks
is called d-separation [9, 10]. Two nodes z and y are
d-separated by a set of nodes Z in a DAG iff for every
undirected path between them either:

1. there is a node z € Z on the path with at least one
of the incident edges leading out of z, or

2. there is a node z' on the path with both incident
edges leading in, and neither z/ nor any of its suc-
cessors are in Z.

A dependency graph for which all d-separations are
valid conditional independencies is called an I-map. Al-
though any joint distribution can be represented graph-
ically by some probabilistic network (which are all I-
maps), the most efficient representations are those with-
out superfluous links, called minimal I-maps.

We can characterize the independence condition un-
derlying the sTRIPS assumption in terms of these depen-
dency graph concepts. Consider a probabilistic network
with variables for all actions and events relevant to the
planner. Every action node has an outgoing link exactly
to those events explicitly represented as direct effects.
Events may have arbitrary connections among them-
selves, as dictated by some world model (outside the
scope of discussion here). Action nodes have no incom-
ing links, reflecting our presumption that the planner
has control over which actions are to be performed.

The sTRIPS assumption is that the graph so con-
structed is an I-map. Let S, be the set of event vari-
ables that action variable a directly affects, a’s imme-
diate successors in the dependency graph. By virtue
of I-mapness, a is conditionally independent of any
e & S, given e’s predecessors (see, for example, [14,
Lemma 4.1]). Each predecessor d of e, in turn, is either
a direct effect of a or is conditionally independent given
its own predecessors. Ultimately, the effect of a on e is

completely determined by a’s direct eflects and e’s re-
lation to them. Note that we still need to describe the
interaction, if any, between a and e in their joint effects.

The probabilistic STRIPS assumption does notf require
that a be conditionally independent of e given the direct
effects S,, or even by any subset of S,. In Figure 1,
for example, a and e are d-separated by {s,b} but by
no other variable set. The variable b is necessary for
conditional independence of a and e even though & itself
is unconditionally independent of a.

o Eaan

Figure 1: Action a is conditionally independent of e
given Z, = {s,b} but not given any subset of its direct
effects S, = {s}.

If we enlarge the conditioning set to include predeces-
sors of a’s direct effects, however, we get another vahd
independence condition. Let Z; = S; U B,, where B,
(the “background”) is the set of variables that affect a’s
direct effects:

B, = U predecessors(s) — {a}.
5€S.

The d-separation condition implies that a is condition-
ally independent of e given Z,. In the graph of Figure 1,
for example, the background B, = {b}, and Z, = {s,b}.

The dependency graph model permits us to formalize
the STRIPS assumption in terms of probabilistic condi-
tional independence. In particular, there must exist an
I-map of variables in the world model where any vari-
able e not specified as an effect of action a is not di-
rectly connected to a. Under this condition there may
be a probabilistic dependency between a and e in some
situations, but this can always be described in terms of
a’s and e’s relations to S,.

We can apply the graph construction to the informal
statement of the independence condition given in the
previous section. Filling in the terms, our statement is
that the complete effects of an action a are fully speci-
fied by the direct effects, S,;, and the background, B,.
Everything else, e, is implicit in these variables. That
is, e is conditionally independent of a given S, and B,.

5 Applications

The conditional independence interpretation is valuable
tool for studying specific planning systems and validat-



ing their use of the STRIPS assumption. A practical
prerequisite for applying these results is identifying the
relevant background context, B,, for the various plan-
ners. Note that while planners adopt different policies
regarding how the implicit effects are derived from the
explicit effects and background, validity of the sTRIPS
assumption does not depend on these policies.

In the following sections I illustrate the application
of the independence concepts by analyzing aspects of
three planning systems. The planners examined differ
in their probabilistic or deterministic representations for
the effects of actions, as well as the type of temporal
structure imposed on the planning environment.

5.1 SUDO-Planner

SUDO-PLANNER [13] uses qualitative probabilistic net-
works (QPNs) [14], abstractions of the models described
above, for representing and reasoning about the effects
of actions. When introducing actions and events of in-
terest, the planner modifies the structure of the exist-
ing network to preserve the model’s validity. One class
of constructs appearing in SUDO-PLANNER’s knowledge
base, called Markov influences, specify the effect of an
action on an event variable and its dependence on the
previous value of that variable.

For example, consider a QPN for a medical therapy
problem that includes a variable for the extent of a pa-
tient’s coronary artery disease (CAD). One action con-
sidered by the planner is a coronary artery bypass graft
(CABQG): bypass surgery to alleviate the coronary dis-
ease. The effect of CABG is to decrease CAD (in a pre-
cise probabilistic sense [14]). Furthermore, the Markov
influence specifies that the decrease is greater for pa-
tients with more severe CAD initially. This relation-
ship refers to the variable CAD at two distinct points
in time—before and after CABG—and thus cannot be
captured by simply adding CABG to the network. In-
stead, SUDO-PLANNER modifies the QPN by splitting
CAD into two variables, CAD; and CAD,. Figure 2
diagrams the result of this mitosis process. CABG neg-
atively influences CAD,, which is otherwise positively
related to its value before surgery, CAD,. The boxed
minus sign indicates the synergistic interaction of CABG
with CAD,. Predecessors of the original CAD variable
are connected to CAD;, while its successors before pro-
cessing the Markov influence are transferred to CAD-.

This process has direct implications for conditional
independence (which indeed was the reason for calling
them Markov influences). Specifically, influencers of the
original variable CAD are independent of CAD, given
CAD,, and CAD’s original influences cannot depend on

CAD; given CAD;. (The reason is that any path be-

CAD influences

influences CAD

Figure 2: The Markov influence of CABG on CAD.

tween influences and influencers that circumvents the
CA D; variables must include at least one node with both
incident edges leading in.) These conditions in turn im-
ply that any variable in the network is independent of
CABG given CAD; and CAD,.

More generally, suppose the action a is defined exclu-
sively by Markov influences on a set of event variables
E. The sTRIPS assumption dictates that the effects of a
be completely captured by these influences. The corre-
sponding independence condition is that any other event
be conditionally independent of a, given 7, = S, U By,
where the direct effects S, = F,, the second halves of
the split event variables, and the background B, = F,
the first halves produced by suDo’s variable mitosis pro-
cess.

5.2 Markov Influence Diagrams

Kanazawa and Dean [5] propose a framework for plan-
ning under uncertainty based on “causal models,” in-
fluence diagrams with the Markov property and some
other features inessential for our purposes. In a Markov
influence diagram, there is a node corresponding to ev-
ery proposition of interest at every distinguished instant
of time. The Markov property is enforced by permit-
ting nodes at time ¢ to depend only on nodes from time
t — 1. If this convention applies to actions as well, then
any event at time ¢ is d-separated by actions from time
t’ < t by the action’s direct effects (all at time ¢/ + 1),
plus the events of time t'.

With respect to our statement of the STRIPS assump-
tion, the background is (conservatively) the state of the
world at the time of the action. The direct effects are
the events from the next time point with links from the
action node.

5.3 STRIPS

Instantiated propositionally for a finite world, we find
that a STRIPS model is actually a degenerate kind of
Markov influence diagram. The Markov property fol-



lows from the linearity of the situation calculus frame-
work [7]. 'The propositions at a situation s are determin-
istic functions of those of the previous situation. The
persistence model of sSTRIPS is that for a given propo-
sition this function is the identity in the absence of an
action performed at s affecting that proposition. Thus,
the background required for any proposition is only its
value in the previous situation.

For deterministic variables, there is a stronger graph-
ical criterion for conditional independence, called D-
separation (note uppercase) [10]. Although the inde-
pendence condition for STRIPS’s simple graph structure
is trivial, the more powerful criterion might be useful for
analyzing STRIPS-like systems that permit logical and
perhaps probabilistic relations among propositions.

It is not surprising that the analyses of these systems
all appeal to some sort of Markov property. Any tempo-
ral structure on a pattern of conditional independence
can be properly termed Markovian.

6 Summary

The interpretation presented here provides a new per-
spective on the STRIPS assumption, constraining the se-
mantics of a planner’s knowledge base of actions and
events. Essentially, it mandates that the implicit conse-
quences of an action be completely specified by its direct
effects. Although described and motivated in terms of
probabilistic conditional independence, the interpreta-
tion has implications for planning systems regardless of
whether they employ probabilistic representations.

The main advantage of this approach is that it distin-
guishes the concept of belief dependency from the model
of persistence of events in the world. It does not obviate
the need for such a persistence theory, though it renders
the issue orthogonal to the STRIPS assumption per se.

The most important limitation of the analysis is that
dependency graphs are an inherently propositional rep-
resentation. Application to planning systems with quan-
tified constructs (any nontrivial action and event repre-
sentation) requires some instantiation mechanism. A
potential solution approach is to apply the axioms of
conditional independence directly; the axiomatic theory
may be stronger than the graphical even for the propo-
sitional case {10].

References

[1] Frank M. Brown, editor. The Frame Problem in Ar-
tificial Intelligence: Proceedings of the 1987 Work-
shop. Morgan Kaufmann, 1987.

[2] Thomas Dean and Keiji Kanazawa. Probabilistic
temporal reasoning. In Proceedings of the National
Conference on Artificial Intelligence, pages 524-
528, 1988.

[3] Richard E. Fikes and Nils J. Nilsson. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189—
208, 1971.

[4] Steven John Hanks. Projecting plans for uncertain
worlds. Technical Report YALEU/CSD/RR 756,
Yale University, January 1990.

[6] Keiji Kanazawa and Thomas Dean. A model
for projection and action. In Proceedings of the
Eleventh International Joinl Conference on Artifi-
cial Intelligence, pages 985-990, 1989.

[6] Vladimir Lifschitz. On the semantics of STRIPS. In
Michael P. Georgeff and Amy L. Lansky, editors,
Reasoning about Actions and Plans: Proceedings,
pages 1-9. Morgan Kaufmann, 1986.

[7] J. McCarthy and P. J. Hayes. Some philosophi-
cal problems from the standpoint of artificial in-
telligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463-502. Edinburgh
University Press, 1969.

[8] Drew McDermott. Al, logic, and the frame prob-
lem. In Brown [1], pages 105-118.

[9] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[10] Judea Pearl, Dan Geiger, and Thomas Verma. Con-
ditional independence and its representations. Ky-
bernetika, 25:33-44, 1989.

[11] Zenon W. Pylyshyn, editor. The Robot’s Dilemma:
The Frame Problem in Artificial Intelligence.
Ablex, 1987.

[12] Richard Waldinger. Achieving several goals simul-
taneously. In E. Elcock and D. Michie, editors,
Machine Intelligence 8, pages 94-136. Edinburgh
University Press, 1977.

[13] Michael P. Wellman. Formulation of Tradeoffs in
Planning Under Uncertainty. Pitman and Morgan
Kaufmann, 1990.

[14] Michael P. Wellman. Fundamental concepts of
qualitative probabilistic networks. Artificial Intel-
ligence, to appear.



PLANNING, REPLANNING, AND LEARNING
WITH AN ABSTRACTION HIERARCHY

Hua Yang and Douglas H. Fisher
Computer Science Department, P. O. Box 1679, Station B
Vanderbilt University, Nashville, TN 37235

hua@vuse.vanderbilt.edu

Hubertus Franke
Electrical Engineering Department, Vanderbilt University

Introduction

In traditional planning scenarios, a sequence of prim-
itive operations (i.e., a plan) is derived from domain
knowledge on the applicability of operators and a world
model that captures the status of the environment.
Most planning systems rely on the closed-world assump-
tion, that is the presence of a complete environmental
model. However the real world is often unpredictable.
The model may be incomplete or inconsistent because
of unanticipated changes in the environment. Thus,
during execution an operation can fail to yield its ex-
pected results. Recovery from failure and replanning
must be considered as an important component of real-
world planning systems.

Planning and replanning are often search-intensive
processes, with costs that cannot be well managed un-
der real-world time constraints. However, with an ap-
propriate organization of operators and plans the cost
of planning can be significantly mitigated. This paper
proposes that conceptual clusiering methods can orga-
nize operators and plans into ‘similarity’ classes based
on their shared applicability conditions and effects, thus
facilitating the efficient reuse of appropriate past expe-
riences for purposes of planning and replanning.

Background

Automated acquisition and organization of plan knowl-
edge has been investigated by many researchers. Vere’s
THOTH (1980) induces a minimal set of relational op-
erators that cover a training set of state to state transi-
tions. For example, having observed the many individ-
ual transitions required to build a block tower, THOTH
might formulate abstract operator descriptions that cor-
respond to the ‘classic’ operators of Stack, Pick-up,
etc. However, THOTH does not have a strong notion
of ‘good’ operator organization, other than to discover
a minimal set of abstractions that cover the training ex-
amples. Nonetheless, THOTH’s ability to autonomously

discover operator ‘classes’ make it an early conceptual

ancestor of the clustering approach that we propose.

Unlike THOTH, STRIPS (Fikes, Hart & Nilsson,
1972) begins with a set of abstract operator descrip-
tions and conjoins them using means-ends analysis to
form plans. Moreover, STRIPS generalizes the applica-
bility of these plans (using analytic methods in contrast
to THOTH’s empirical approach) and stores them for
reuse. However, recent work in learning to plan indicate
that a STRIPS approach to saving plans in an uncon-
strained manner may actually have detrimental effects
on planning time: the time to search for applicable past
experience may eventually surpass the cost of planning
from scratch (Minton, 1988).

Anderson and Farley (1988) suggests a possible way to
mitigate the cost of finding applicable past knowledge.
Their system, PLANERUS, generates a hierarchy based
on common ADD conditions of STRIPS-like operators.
ADD condition indices allow PLANERUS to find opera-
tors that reduce differencesin a means-ends planner. In
principle a discrimination net over ADD conditions can
be very efficient, but like THOTH, PLANERUS appears
to lack a strong prescription of operator class quality:
its indexing method appears to require an exponential
number of indices in the worst case because it groups
operators based on combinations of one or more shared
conditions. In this regard Minton (1988) points out that
even with indexing schemes, systems must also be will-
ing to dispose of past experiences (e.g., abstractions,
ADD-condition combinations) that prove to be of low
utility (e.g., infrequent).

THOTH, STRIPS, and PLANERUS are important
precursors to our work, but we hope to extend the ideas
illustrated by these systems in several directions. First,
a system like PLANERUS is designed primarily to fa-
cilitate goal-driven behavior, as its exclusive reliance on
ADD-condition indexing indicates. However, work in
reactive or situaled planning (Schoppers, 1989) suggests
that the current situation should also influence the se-
lection of applicable operators: an ideal operator is one
that achieves desirable goals and requires minimal al-



(sub) plan

Planner
with

Generalizer
and
Organizer

macro-operator

Operator
Hierarchy

execution

problem

4
(initial and goal) ¢ operator(s)

operator(s) Retrlever

Figure 1: PLOT system: Planning and Learning with Operator Trees

terations to the current situation to do so. Thus, we
propose that when using STRIPS-like operators, PRE
conditions, as well as ADD conditions should be used to
retrieve operators that make progress towards the goal
and that best fit the current conditions of the environ-
ment. In addition, operator class discovery and indexing
should be controlled by a strong heuristic prescription
of high utility operator and plan classes. Without these
prescriptions; planning with or without the benefit of
previous experience remains a search-intensive, often in-
tractable enterprise (Ginsberg, 1989).

Overview of Our System

Our system, PLOT, is designed to plan, replan in the face
of execution failures, and efficiently exploit previous ex-
perience in these endeavors whenever possible. Figure 1
illustrates the system structure. There are four basic
components in our planning/learning system. Planner
constructs new plans, monitors executions, and fixes in-
correct plans. Execution and planning are integrated so
as to facilitate reactive planning. Retriever gets poten-
tial operators for Planner from the Operator Hierarchy.
The solution found by Planner is generalized and stored
into the Operator Hierarchy. These generalized plans
are used in subsequent planning. We now turn to a
more detailed description of the system.

Knowledge Organization

Operators (primitive and macro) are typically specified
by their requirements of and effects on the world model;
we assume a STRIPS representation of PRE-, ADD- and
DELETE- lists. Operators specified in this manner can
be organized for efficient reuse through conceptual clus-
tering methods. Conceptual clustering was proposed by
Michalski and Stepp (1983) as a method to group obser-
vations (objects, situations, facts) into classes based on a
‘similarity’ measure. In particular, we use an extension
of Fisher’s COBWEB system (1987), that incrementally
forms an abstraction hierarchy of operators based on
similarity over PRE- and ADD- lists.! Operator classes

IDELETE-lists are not currently considered in class for-
mation as they have not proved useful in operator retrieval,

are represented as nodes in the hierarchy; operators arc
grouped together using category utilily (Gluck & Corter,
1985), which is a probabilistic measure of the increase
of information that can be predicted about members of
classes. In planning we want to maximize the ability of
the planner to predict both operator effects (ADD con-
ditions) and applicability (PRE conditions). The utility
of an operator class, Cg, is given by a measure of the
expected gain in the planner’s ability to predict the con-
ditions (predicates) of each (PRE, ADD) list. For each
list the function, E;."zl[P(predlek)2 — P(pred;)?), is
computed where P(pred;|C}) stored in node Cy is the
proportion of Cy members for which predicate, pred;, is
true. Assuming that Cj is one class (i.e. a node) in an
abstraction hierarchy, P(pred;) is the probability that
pred; is true of a member of Cy’s parent node; thus, the
difference of the two is a measure of information gain
provided by Cj. ‘Good’ operator classes are those that
have high expected gains over the PRE and ADD lists.

An operator is added to the hierarchy by using cate-
gory utility as a partial matching function ~ the operator
is incorporated into the class whose predicate distribu-
tions (probabilities) are best reinforced by the opera-
tor’s conditions. Class distributions are then adjusted
dynamically to reflect the new operator’s addition. This
process is recursively applied so that the operator is clas-
sified down the classification tree. If an operator does
not sufficiently match any existing class then it may be
used to initialize a new operator class. Primitive and
macro operators reside at the leaves. Interior nodes of
the hierarchy represent operator classes (henceforth, ab-
stract operators) by the conditions that they share over
all the lists.? FEach class defines an abstract operator
over its children. In general, the probabilistic, partial-
matching capabilities of PLOT are important in domains
with uncertainty. It is unlikely that operators will al-
ways bring about identical results from identical condi-
tions and in many cases conditions are not completely
known.

though they remain part of operator description and are used
in planning.

2 Actually, we use a probabilistic representation that al-
lows exceptions to common conditions.



Planning and Replanning

An operator hierarchy is the key component for man-
aging knowledge in our system. We assume that PLoT
is initially given a set of primitive, operator definitions.
These operators are then organized into a hierarchy by
the methods and heuristics that we sketched above. This
initial hierarchy is then used to limit the search for op-
erators. Given a planning problem in the guise of a cur-
rent state and goal state, operator retrieval is performed
by classifying the (appropriately formatted) current and
goal conditions against the first level of the hierarchy. In
particular, PLoT factors initial and goal conditions into
PRE and ADD lists: the initial state conditions become
the PRE-list, and the goal state conditions minus the
inttial become the ADD-list.

Classification returns an ordered list of best-matching
(possibly abstract) operators that appear to bring about
desirable changes under current conditions. The means-
ends planner selects the ‘best’ matching operator for ex-
amination. One of the following situations is possible.

1. If the operator is a primitive or macro operator,

1t will be tried to solve the given problem. If it
can achieve some of the goals and it does not vio-
late protection constraints, then planning recurses
on the subgoals required by the selected operator’s
preconditions (if necessary) and again on the un-
satisfied conditions of the original goal.

2. If the operator is an abstract operator, refine-
ment is performed by recursively classifying the cur-
rent/goal conditions down another level of the tree
(i.e., using the current abstract operator as the root
of classification). After getting a list of ordered op-
erators, the planner picks up the ‘best’ one, and
begins the examination procedure for that opera-
tor.

3. Otherwise, the operator is not applicable. The next
operator in the list is selected for examination. If
there are no operators available, backtracking is
invoked, and an alternative solution path will be
tested.

Subgoals are achieved recursively by the same procedure
we use to achieve the main goal. In summary, a plan is
constructed via a hill climbing search, but one that al-
lows backtracking (i.e., a heuristically-guided depth-first
search) by selection from alternative operators returned
from classification.

Operator retrieval also facilitates replanning in the
face of execution failures. However, a plan execution
failure suggests that certain operator effects proved not
to be reliable. In fact, the environment may have
changed in some unknown manner. Thus, rather than
backtracking to old choice points that were retrieved
under conditions that may no long be valid, a better
strategy at failure time is to reassess the environment
and replan from the current state.

Learning and Reusing Old Plans

Following successful planning the system can incremen-
tally assimilate newly discovered plans into the abstrac-
tion hierarchy. In particular, the plan is mapped onto a
three-list representation and sorted down the hierarchy
based on its similarity to current operator classes. For
example, consider the following plan:

gotod(dr); open(dr); gothrudr(dr).

The PRE conditions of this plan are those PRE con-
ditions of the plan’s individual operators that are not
introduced in the body of the plan. The plan’s ADD
list is composed of those conditions that are ADDed
by constituent operators and that are not subsequently
DELeted. The plan’s DELete list contains conditions
of the previously computed plan PRE list that are sub-
sequently DELeted in the body of the plan. For our
example, the three lists on which we will base classifica-
tion are:

PRE: inroom{Robot,rooml), status(dr,closed),

connect{dr,roomi,room2)

DEL: inroom(Robot,rooml)
ADD: inroom{Robot,room2)

Thus the newly-acquired knowledge is incorporated into
an existing hierarchy. Figure 2 shows an operator hier-
archy with the above plan (MOP-2) and additional one
(MOP-1: gotod; gothrudr) incorporated. A new class
was created for these two new macros because they share
more similarities than any other operators.

Learning also can occur during planning: whenever a
subgoal has been achieved the partial solution can be
learned. This process is a simple recursive extension of
the process that incorporates complete plans, but it has
the great advantage of allowing ‘within-trial’ learning:
the reuse of plan fragments within the construction of
the same global plan.

There are two kinds of learning implicit in the plan-
ning and hierarchy incorporation procedures described
above. Along a ‘horizontal’ dimension, sequentially re-
lated operators are concatenated into a single macro-
operator. Macro-operators can be reused as compo-
nents to solve more complicated problem, thus increas-
ing the problem-solving power of the planner (Fikes,
Hart & Nilsson, 1972). However, unless it is generalized
the macro may have little applicability in future prob-
lem solving; thus, a ‘vertical’ dimension is concerned
with generalizing the macro. STRIPS used an analytic
method the maximally generalize the plan. In a more
subtle way PLANERUS also uses a simple analysis of
ADD condition commonalities around which it forms
operator classes. In contrast, we generalize plans em-
pirically by clustering them into an existing conceptual
hierarchy. The advantage of an empirical approach is
that it is sensitive the ‘structure’ of the environment; the
probabilistic representation will tend to weight the im-
portance of operator classes by the frequency that they



pre: inroom(x3,x4)

del: at{robot,s1,52)
nextto(robot,s1)

pre:
add: nextto(robot, x1)
del:

gothrudr

/

pre: type{x1,x2)

add:

pre:: connect{x1,x4,x5)
add: inroom(robot,x4)
del: inroom(robot,s1)

Pre: status{x1,x7)
add:
del:

pre: inroom(robot,x4) @
add:
del:

add:
del

pre: nextto(x3,x1)

OW =

"gotod @ @

gotod; gothrudr

pre: connect(x1,x4,x5) pre: inroom(x1,x4)
add: add:
del: del: del:

pre: connect(x1,x4,x5)

(gotod: open: gothrudr)

Figure 2: Partial Operator Hierarchy with Macro-Operators

prove useful in the environment. Moreover, an empirical
approach will not enumerate operator classes that will
never prove useful in the domain since they will never
be constructed. Finally, empirical strategies can in prin-
ciple track environmental changes and/or adapt an ini-
tially ‘incorrect’ set of operator specifications to better
model the actual structure of the environment. To do
so, it is important that plans not be assimilated into
memory until after they have been successfully executed,
perhaps with the intervention of replanning mechanisms
triggered by execution failures.

Discussion

Our means-ends planner was developed as a vehicle for
testing the efficiency facilitated by an operator/plan hi-
erarchy. Our initial experiments with the system have
uncovered several advantages and problems. Most no-
tably, operator retrieval does a good job of excluding
irrelevant operators and retrieving relevant operators:
those that will eventually participate in the final plan.
However, in the blocks-world examples that we have
tested the ‘best’ operator retrieved from the hierarchy
often is among the last operators of the final plan, since
they often ADD a bulk of the final goal conditions. Un-
fortunately, planning around this initially selected op-
erator will often cause excessive backtracking because
of subgoal interactions. For example, if a plan calls for
a robot to push material from a room A to a room B,
then the initially chosen operator of plan expansion may
call for the robot to go from room A to B (without
the material), thus requiring a later backtrack to insure

that other conditions of the plan can be satisfied (e.g.,
the robot must be in room A in order to push material
through to B).2

There appear to be two approaches to overcoming
this problem. The first strategy secks to salvage the
depth-first means-ends approach by differentially eval-
uating (qualitatively or quantitatively) PRE condition
and ADD condition matches depending on the state of
plan construction. PRE condition matches may be pre-
ferred early in construction with ADD conditions taking
priority later in plan (and subplan) construction. An al-
ternative is to exploit the fact that relevant operators are
well targeted during retrieval, and to employ a deferred-
commitment planner that simultaneously considers the
applicability of all retrieved operators and (re)orders
them as constraints dictate (Waldinger, 1977; Sacerdoti,
1975).

Another difficulty with our approach relates to the
utility problem (Minton, 1988) described earlier. Thus
far, our system does not eliminate this problem. To
overcome this problem, some techniques must be ap-
plied to retain only useful operator classes. During clas-
sification, we have methods (again, based on our work in
conceptual clustering) of selectively utilizing past plans
by descending to an ‘optimal’ point of abstraction in the
hierarchy. We are going to investigate this problem in
the future.

30f course once a plan is formed it may be reused so
as to mitigate this ordering problem on similar problems,
but nonetheless this undesirable phenomena appears to be a
possibility on any subsequent, relatively novel problem.



Finally, there are important similarities and differ-
ences between our strategy and a variety of other ap-
proaches. In fact our approach can be viewed as a hy-
bridization of some previous approaches. Our strategy
shares the general strategy of trying to maximally re-
duce important differences with means-ends planning
strategies, but an attempt is made to initially retrieve a
set of applicable operators that collectively satisfy many
of the subgoals in a current problem simultaneously.
Like hierarchical planning the selected operators may be
abstract, thus requiring step-wise refinement; However,
in our system the plan abstraction space is organized
autonomously through conceptual clustering. However,
as of now we have not exploited deferred commitment
techniques that are present in many of these systems.
Finally, we view planning as a process of memory-based
classification as do case-based approaches. However, our

. approach appears to have the desirable and emergent ef-
fect that if little is known about the current situation
then retrieval of primitive operators will simulate weak
methods, but specialized plans can bring about greater
gains as experience accumulates. In many of the above
respects our work is related to several recent research ef-
forts. Of these it is most similar to Allen and Langley’s
DAEDALUS (1989); an operator hierarchy is constructed
to support a means-ends analysis planner. It indexes
primitive operators and plans by the difference they re-
duce, in a strict means-ends analysis manner.

Acknowledgments

We thank Jungsoon Yoo, Pat Langley, and John Allen
for interesting and insightful discussions on this mate-
rial. This research is supported by NASA Ames grant
NCC 2-645.

References

Allen, J. and Langley, P. (1989). Using Concept Hier-
archies to Organize Plan Knowledge. Proceedings
of the Sizth International Workshop on Machine
Learning, Ithaca, New York, Morgan Kaufmann.

Anderson, J. S. and Farley, A. M. (1988). Plan Ab-
straction Based on Operator Generalization. Pro-
ceedings of the Sevenih National Conference on Ar-
tificial Intelligence, (pp. 100-104). St. Paul, MN:
Morgan Kaufmann.

Fikes, R. E., Hart, P. E. and Nilsson, N. J. (1972).
Learning and Executing Generalized Robot Plans.
Artificial Intelligence, 3, 251-188.

Fisher, Douglas H. (1987). Knowledge Acquisition
Via Incremental Conceptual Clustering. Machine
Learning, 2, 139-172.

Ginsberg, M. L. (1989). Universal Planning: An (Al-
most) Universally Bad Idea. Al Magazine, Vol 14,
No 4, Winter 1989, 40-44.

Gluck, M. A., and Corter, J. E. (1985). Information,
Uncertainty and the Utility of Categories. Proceed-
ings of the Seventh Annual Conference of the Cogni-
tive Science Sociely, 283-287. Irvine, CA: Lawrence
Erlbaum.

Michalski, Ryszard S. and Stepp III, Robert E. (1983).
Learning from Observation: Conceptual Cluster-
ing. In R. S. Michalski, J. G. Carbonell, and T.
M. Mitchell (Eds.), Machine Learning: An Artifi-
cial Intelligence Approach. Los Altos, CA: Morgan
Kaufmann.

Minton, S. (1988). Quantitative Results Concerning
the Utility of Explanation-Based Learning. Seventh
National Conference on Artificial Intelligence. (pp.
564-569). St. Paul, MN: Morgan Kaufmann.

Sacerdoti, E. D. (1975). A Structure for Plans and
Behavior. Tech. Note 109, Al Center, SRI Inter-
nation, Inc. Calif (Doctoral Dissertation).

Schoppers, M. J. (1989). In Defense of Reactive Plans
as Caches. Al Magazine, Vol 14, No 4, Winter
1989, 51-60.

Vere, S. (1980). Multilevel Counterfactuals for Gen-
eralization of Relation Concepts and Productions.
Artificial Intelligence 14, 139-164.

Waldinger, R. (1977). Achieving Several Goals Si-
multaneously. In E. W. Elcock and D. Michie
(Eds.), Machine Intelligence 8. New York: Hal-
stead /Wiley.

Yang, H. and Fisher, D. (1989). Conceptual Clus-
tering of Means-Ends Plans. Proceedings of the
Sizth International Workshop on Machine Learn-
tng, Ithaca, New York, Morgan Kaufmann.

Yang, H., Yoo, J. and D. Fisher (1989). Improving
Performance by Conceptual Clustering and Con-
cept Formation. Technical Report 83-12, Depart-
ment of Computer Science, Vanderbilt University,
Nashville, TN.






