
ABSTRACT

Title of thesis: DESIGN AND TESTING METHODOLOGIES
FOR SIGNAL PROCESSING SYSTEMS
USING DICE

Soujanya A. Kedilaya, Master of Science, 2010

Thesis directed by: Professor Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering

Embedded computing has witnessed explosive growth in recent years in both

scientific and consumer applications, driving the need for high-performance complex

digital systems. The design and integration of embedded systems in heterogeneous

programming environments is still largely done in an ad hoc fashion, and is espe-

cially sluggish in large collaborative projects with globally-distributed design teams,

making the overall development process more complicated, error-prone and tedious.

This has led to the increased need for systematic and efficient design flows.

In this work, we propose enhancements to existing design flows that utilize

model-based design to extract dataflow behavior and to verify cross-platform cor-

rectness of individual actors. The DSPCAD Integrative Command Line Environ-

ment (DICE) is a realization of managing these enhancements to the design flow.

DICE, with its platform independent conventions, facilitates the efficient manage-

ment of design and test of cross-platform software projects, and enjoys a high level of

synergy with the Dataflow Interchange Format (DIF), a model-based development

environment for signal processing systems.

We demonstrate this design flow with two case studies. We use DICE’s novel

test framework on modules of a triggering system in the Compact Muon Solenoid of

the Large Hadron Collider (LHC), and demonstrate how the cross-platform model-

based approach, automatic testbench creation and integration of testing in the de-

sign process alleviate the rigors of developing such a complex digital system.

The second case study is an exploration study into the required precision for

eigenvalue decomposition (EVD) using the Jacobi algorithm. This case study is a

demonstration of the use of dataflow modeling in early stage application exploration

and the use of DICE in the overall design flow.

DESIGN AND TESTING METHODOLOGIES FOR
SIGNAL PROCESSING SYSTEMS USING DICE

by

Soujanya A. Kedilaya

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2010

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Associate Professor Emeritus Steve Tretter
Associate Professor Gang Qu

c© Copyright by
Soujanya A. Kedilaya

2010

Acknowledgments1

Foremost, I would like to thank my advisor, Professor Shuvra Bhattacharyya

for his inspiration and guidance. This thesis and the two years of work that went into

it would not have been a thoroughly enjoyable experience if not for his enthusiasm,

sound advice and encouragement.

I am indebted to the Department of Electrical and Computer Engineering

at University of Maryland College Park, and Texas Instruments, Germantown for

selecting me as a Texas Instruments Scholar for the year 2009-2010. At TI I had

the invaluable experience of working on excellent industry projects with the best of

minds. I would like to thank Mr. Brian Johnson, Mr. Aleksander Purkovic and

Ms. Mingjian Yan for their support and mentoring, which have been crucial to my

research. I look forward to spending more time at TI as I take on a full-time position

there.

The highlight of the last year has been the five months I spent as a visiting

student at the Salzburg University of Applied Sciences (FHS) in Salzburg, Austria

where I was exposed to a whole new school of thought. I wish to thank Professor

Bhattacharyya, Professor Gabriele Abermann of FHS, and the Austrian Marshall

Plan Foundation for facilitating this exchange. I would like to acknowledge Pro-

fessor Gerhard Jöchtl and Simon Kranzer for the interesting discussions and the

Deutsch-English translations, and the wonderful company of Bernadette, Andreas,

1This research was supported in part by the Austrian Marshall Plan Foundation, the US Na-

tional Science Foundation (Award Number 0823989), and Texas Instruments.

ii

Peter and the other staff members of the University who made my stay in Austria

unforgettable. Danke schön!

My special thanks go out to Dr. William Plishker for his thoughtful advice,

which often served as a sense of direction during my research work. The DSPCAD

group has been a cornerstone in my two years at UMD, and I would like to thank

Chung-Ching, Nimish, George, Wu, Kishan, Ruirui, Hojin and Inkeun for providing

great company and ideas.

I would like to express my sincere gratitude to Dr. Steve Tretter and Dr. Gang

Qu for serving on my Masters Thesis committee.

I wish to thank all my friends at College Park, who helped me make the best

out of Graduate School life and the residents of 4301-102, Rowalt Drive for all the

emotional support, camaraderie and entertainment.

Lastly and most importantly, I wish to thank my parents and my sister who

have always stood by me and encouraged all my endeavours in life. To them I

dedicate this thesis.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Contributions of this thesis . 3
1.2 Outline of the thesis . 5

2 Background 7
2.1 Dataflow Modeling . 7
2.2 Dataflow Interchange Format . 8

2.2.1 The DIF Package (TDP) . 8
2.3 Functional DIF . 9

3 DSPCAD Integrative Command Line Environment (DICE) 12
3.1 Introduction . 12
3.2 DICE Unit Testing Framework . 13
3.3 Related Work . 15

4 Cross-Platform Model-Based Design Approach 17
4.1 High-level Application Specification 19
4.2 Interface Specification for Tests . 20
4.3 Model-based Testing . 21
4.4 Automatic Testbench Creation . 23

5 Case Study - Trigger System of the Compact Muon Solenoid 27
5.1 CMS Calorimeter Trigger system . 27
5.2 Motivation for Cross-platform Model-based approach in CMS 28
5.3 Demonstration . 29

6 Case Study - Precision Analysis of the Jacobi Eigenvalue Decomposition 33
6.1 EVD in MIMO wireless technology 33
6.2 Eigenvalue Decomposition . 35

6.2.1 Existing EVD algorithms . 36
6.3 The Jacobi idea . 38
6.4 Motivation for Precision Analysis . 40
6.5 Functional Simulation and Performance Evaluation 43

6.5.1 Simulation Framework . 44
6.5.2 Performance Evaluation . 44
6.5.3 Simulation Parameters . 46
6.5.4 Results and Discussion: Part I 46

6.6 Dataflow model of the Jacobi EVD 47
6.6.1 Introduction . 47

iv

6.6.2 Related Work . 48
6.6.3 Dataflow model for Jacobi EVD 49

6.6.3.1 2× 2 Matrix . 50
6.6.3.2 4× 4 and 8× 8 Matrices 50

6.7 Dynamic Range Analysis . 52
6.7.1 Interval arithmetic for Jacobi EVD 53
6.7.2 Dynamic range simulation with functional DIF and DICE . . 54

6.8 Results and Discussion: Part II . 58

7 Conclusion 65
7.1 Future Work . 67

Bibliography 68

v

List of Tables

5.1 DICE testbenches automatically generated from dataflow models of
CMS actors . 30

6.1 Convergence of Jacobi EVD implementation for all precisions 47
6.2 Number of iterations of the base graph for Jacobi EVD 50
6.3 Interval Arithmetic . 54
6.4 runme file for multiple iterations in Jacobi EVD 57
6.5 Dynamic ranges for various data formats 58
6.6 Dynamic ranges for computations in 4× 4 Jacobi EVD 59
6.7 Dynamic ranges 4× 4 Jacobi EVD with reformulation 62

vi

List of Figures

2.1 DIF-based design flow. 10

4.1 Traditional design flow with proposed model-based features. 18
4.2 DICE file and directory structure of a cross-platform project. 22
4.3 Automatically generated testbench - DIF graph 25
4.4 Automatically generated testbench - DIF file 26

5.1 Automatically generated testbench for the ClusterWeight actor. . . . 31

6.1 MIMO Channel . 34
6.2 Dataflow graph for the 2x2 Jacobi EVD 51
6.3 SNR in dB vs condition number for 2× 2 Hermitian matrix 63
6.4 SNR in dB vs condition number for 4× 4 Hermitian matrix 64
6.5 SNR in dB vs condition number for 8× 8 Hermitian matrix 64

vii

Chapter 1

Introduction

As the demands for functionality and performance are increasing in embed-

ded software development, more diverse sets of target platforms are being used to

satisfy these demands including digital signal processors (DSPs), microcontrollers,

and field programmable gate arrays (FPGAs). This can be a challenging task as

programmability for high performance platforms is inherently low level and is not

tailored for a particular application. This is the fundamental reason why program-

ming approaches for high performance implementations are proliferating where the

different approaches have their own programming models and development envi-

ronments and are often developed with their own design teams. Also, due to the

increased use of and need for the design and development of complex digital sys-

tems in scientific fields like wireless communications, medical imaging, high energy

physics, there arises a need for application development techniques more accessible

to scientists and engineers specialized in the application domain, but not in high

performance hardware design. Thus the original application description also often

has its own programming environment to facilitate fast development of the platform-

independent algorithm, which can range from general imperative languages like C, to

object oriented ones like C++ or Java, to domain specific approaches like MATLAB.

This naturally leads to the need for having multiple implementations for algorithm

1

development and hardware designs.

This multitude of languages and programming environments make the design

flow for modern embedded systems time consuming and error prone as developers

are often manually transcoding between them. With no end in sight for this problem

in the near future, developers would need tools that are nimble enough to deal with

this uncertainty of hopping from one platform to the other with nearly unportable

code.

Many best practices are utilized in industrial and academic environments to

help this process, such as automatically generating documentation, auto-configuration,

adherence to interface specifications, and unit testing. In particular, unit testing fa-

cilitates productive design by integrating testing early into the design flow to catch

erroneous or unexpected behavior in a module earlier in the design cycle. Such

techniques have proven effective for many languages and platforms individually, but

for systems that employ more than one of these into a single design process, these

tools still leave many manual, error prone steps possible, leading to longer design

times with lower quality implementations. In today’s signal processing and control

system based applications, model-based design is especially useful to help isolate

domain experts from the need to understand low-level hardware and software de-

tails. Model-based design improves efficiency by using a common design abstraction

across project teams and by linking designs directly to requirements.

2

1.1 Contributions of this thesis

In this work, we propose to enhance existing design flows with model-based

design that extracts dataflow behavior and verifies cross-platform correctness of

individual actors. Furthermore, with model-based development, automatic test-

bench creation is possible, improving the ease with which designers can create cross-

platform tests.

The DSPCAD Integrative Command Line Environment (DICE) [1] is a realiza-

tion of managing these enhancements to the design flow. It is a framework for facil-

itating efficient management of design and test of cross-platform software projects.

DICE defines platform and language independent conventions for describing and

organizing tests, facilitating high portability of tests for cross-platform operation.

Not only do designers want build and test structures to port as much as possible,

but equally important, and something that is ignored by other tools, is the ability to

quickly hook in the inevitable platform specific tools shipped with the new platform

(such as the compiler, synthesizer, and documentation engine). DICE fits in this

requirement by being a grounded, yet light-weight tool that will be able to change

with a shifting low level programming landscape. Although DICE can be used for

any type of software development, it makes a natural fit with dataflow models due

to the streaming nature of inputs and outputs supported by DICE. DICE runs and

analyzes tests using shell scripts and programs written in high-level languages and

is an open access resource available for download [2] [3].

We use the Dataflow Interchange Format (DIF) [4] as our dataflow analysis

3

engine which can leverage the extracted dataflow models, and as our model-based

development environment. Although DIF and DICE are orthogonal to each other

(one can exist without the other), we explore novel synergies between them, such as

integrating testing with design to continuously identify and correct errors; generating

automatic testbenches for improving the ease with which cross-platform tests are

created; and using DICE as a framework to simulate systems modeled in DIF, and

explore design trade-offs, component interactions, and system-level metrics.

As part of this work, we present two case studies. First we demonstrate this

novel test framework on modules of a triggering system for the Large Hadron Collider

(LHC) [5], which includes algorithm development modules in C++ and implementa-

tion modules developed in Verilog. The LHC is a true example of a complex digital

system, and is a collaborative project among geographically distributed teams each

using diverse target platforms and different programming paradigms. Through the

integration of model-based design with DICE, we highlight the use of good practices

in system testing and integration to decrease overall development time, and in the

process validate equivalence of modules and expose concurrency in the application.

The second part of this work deals with an exploration study into the inter-

nal precision of computation for the Jacobi Eigenvalue Decomposition (EVD) [6].

EVD is a matrix decomposition where a given square matrix is factorized into a

canonical form containing the eigenvalues and eigenvectors of the matrix. EVD is

used in a wide range of modern signal processing and communication applications

such as Multiple-Input and Multiple-Output (MIMO) wireless communication, im-

age recognition technologies, and direction of wave arrival estimation algorithms. In

4

the context of this work, the EVD algorithm is being studied as part of a beamform-

ing application inherent to MIMO wireless technology. The primary objective of this

work is to determine the least precision required for DSP implementation of EVD in

order to obtain the minimum desired performance. But also due to the mathemat-

ically intensive nature of the computations in this algorithm, it becomes important

to comprehensively analyze the required precision at every step of the algorithm.

We do this analysis by modeling the Jacobi EVD as a mixed-grain dataflow graph

in DIF. We not only verify the functional correctness of the EVD algorithm, but

also further demonstrate the synergy between DIF and DICE when analyzing the

data dynamic range of the intrinsic computations by reusing the same application

graph. Based on this analysis, we are able to provide useful feedback to the low-level

designers about the formulation of some parts of this algorithm.

With these two case studies, we aim to show that using this model-based

approach and the integration of DICE, we are able to make model-based design

easier on the application designer while still being rigorous, agile, and evolvable.

1.2 Outline of the thesis

The outline of the thesis is as follows. Chapter 2 provides a background on

the dataflow model of computation for DSP applications. Chapter 3 introduces

DICE and the DICE Unit Testing Framework. In Chapter 4, we describe the cross-

platform model-based design approach with DIF and DICE, and an illustration of

model-based testing, before providing a demonstration of the same in Chapter 5

5

with the triggering system of the Large Hadron Collider as an example application.

Chapter 6 presents a case study on the precision analysis of the Jacobi Eigenvalue

Decomposition, this time demonstrating the use of DIF and DICE in application

exploration. Conclusions and scope for future work are discussed in Chapter 7.

6

Chapter 2

Background

To give context to our model based testing approach, this section covers the

dataflow models that we base our technique on, as well as the dataflow modeling

tool we utilize for application description.

2.1 Dataflow Modeling

Modeling DSP applications through coarse-grain dataflow graphs is widespread

in the DSP design community, and a variety of dataflow models have been devel-

oped for dataflow-based design. A growing set of DSP design tools support such

dataflow semantics. Designers are expected to be able to find a match between

their application and one of the well-studied models, including cyclo-static dataflow

(CSDF), synchronous dataflow (SDF) [7], single-rate dataflow, homogeneous syn-

chronous dataflow (HSDF), or a more complicated model such as boolean dataflow

(BDF) [8].

Common to each of these modeling paradigms is the representation of com-

putational behavior as a dataflow graph. A dataflow graph G is an ordered pair

(V, E) , where V is a set of vertices (or nodes), and E is a set of directed edges. A

directed edge e = (v1, v2) ∈ E is an ordered pair of a source vertex v1 ∈ V and a

sink vertex v2 ∈ V . Nodes or actors represent computations while edges represent

7

a FIFO communication links between them.

2.2 Dataflow Interchange Format

To describe dataflow applications for this wide range of dataflow models, ap-

plication developers can use the Dataflow Interchange Format (DIF) [4], a stan-

dard language founded in dataflow semantics and tailored for DSP system design.

DIF is suitable as an interchange format for different dataflow-based DSP design

tools because it provides an integrated set of syntactic and semantic features that

can fully capture essential modeling information of DSP applications without over-

specification [9]. From a dataflow point of view, DIF is designed to describe mixed-

grain graph topologies and hierarchies as well as to specify dataflow-related and

actor-specific information.

The dataflow semantic specification is based on dataflow modeling theory and

independent of any design tool. Therefore, the dataflow semantics of a DSP ap-

plication is unique in DIF regardless of any design tool used to originally enter the

application specification. Moreover, DIF also provides syntax to specify design-tool-

specific information, which is captured within the data structures associated with

DIF intermediate representations.

2.2.1 The DIF Package (TDP)

To utilize the semantics captured by describing applications in the DIF lan-

guage, the DIF package was created. An overview is illustrated in Figure 2.1 (for a

8

full explanation of it, see [4]). Along with the ability to transform a DIF descrip-

tion into a manipulatable internal representation, the DIF package contains graph

utilities, optimization engines, and algorithms that can prove useful properties of

an application. These facilities make the DIF package an effective environment

for modeling dataflow applications, providing interoperability with other design en-

vironments and developing new tools. To promote reuse, DIF provides common

dataflow features so that developers and users of design tools can focus on the novel

features and unique constraints associated with their design problems. Beyond these

features, DIF is also suitable as a design environment for implementing dataflow-

based application representations. Developer productivity benefits from the tailored

semantics and the dataflow tool suite. The internal representation can be turned

into functional implementation with the DIF-to-C tool [10], which is an efficient and

optimized code synthesis tool for SDF.

2.3 Functional DIF

To quickly arrive at quality prototypes, designers must be able to describe

their complex applications in a single environment. In the context of dataflow pro-

gramming, this involves describing not only the top level connectivity and hierarchy

of the application graph, but also the functionality of the graph actors (the func-

tional modules that correspond to the non-hierarchical graph vertices), preferably

in a natural way that integrates with the semantics of the dataflow model they are

embedded in. Once the application is appropriately captured, designers need to be

9

Figure 2.1: DIF-based design flow.[4]

able to evaluate static schedules (for high performance) alongside dynamic behav-

ior without losing semantic ground. With a properly-constructed schedule and a

fully-described application, designers should be able to verify the functionality of a

dataflow-based system. With such a feature set, designers should arrive at quality

prototypes faster.

The functional DIF [11] (DIF with functional designs) package enables fast

simulation and prototyping of scheduling strategies. Prototyping in functional DIF

is useful because it not only allows one to rapidly validate the overall functionality

and high level dataflow architecture of a design, but also allows for a much faster

simulation of complete system functionality.

Once the functional DIF prototype has been completed and validated, the

designer can proceed with greater confidence to tackling the lower level implemen-

10

tation details required for the targeted HDL implementation. At the same time,

the designer has a valuable reference implementation for functional validation of the

HDL design as it evolves.

In this work, we would like to not only model the application description but

also have functional simulation for which we utilize functional DIF. The semantic

foundation of functional DIF is core functional dataflow (CFDF) [11], which is ca-

pable of expressing deterministic, dynamic dataflow applications. In this formalism,

each actor a ∈ V has a set of modes, Ma, in which it can execute. Each mode,

when executed, consumes and produces a fixed number of tokens. In the context

of the work presented in this thesis, we use only the SDF model of computation

in which the actors have only one mode. We use this structured representation of

functionality to derive the appropriate dataflow testbench for each actor.

11

Chapter 3

DSPCAD Integrative Command Line Environment (DICE)

3.1 Introduction

DICE (the DSPCAD Integrative Command Line Environment) [1] is a package

of utilities that facilitates efficient management of software projects. The objective

of DICE is to provide a flexible, light-weight environment for the research, devel-

opment, testing, and integration of software projects, particularly those that em-

ploy heterogeneous programming languages or models of computation. DICE is not

meant to replace existing software development tools. Instead it is a command line

solution to utilize the existing tools more effectively, especially for cross-platform

design.

DICE is implemented as a collection of utilities that are in the form of bash

scripts, C programs, and python scripts. The package is intended for cross- plat-

form operation, and is currently being developed and used actively on the Windows

(equipped with Cygwin), Solaris, and Linux platforms.

DICE includes a variety of utilities to help improve productivity while working

in a command-line or shell-based project development environment. Since naviga-

tion and relocating files and directories inside or across complex project directory

structures can be tedious and prone to errors, DICE provides a set of utilities for

efficient navigation through directories and to easily move files and folders between

12

different directories.

3.2 DICE Unit Testing Framework

DICE includes a framework for implementation and execution of tests for

software projects. Although the emphasis in this framework is on unit tests, and

therefore, it is often referred to as the DICE unit testing framework, the framework

can also be applied to testing at higher levels of abstraction, including subsystem-

and system-level testing.

A major goal of the testing capabilities in DICE is to provide a lightweight

and flexible unit testing environment. It is lightweight in that it requires minimal

learning of new syntax or specialized languages, and flexible in that it can be used

to test source code in any language, including C, Java, Verilog, and VHDL. This

is useful in heterogeneous development environments so that a common framework

can be used to test across all of the relevant platforms.

The basic component of the DICE unit testing framework is a directory referred

to as an Individual Test Subdirectory (ITS). The test suite consists of several ITSs

that test the different behaviors of the MUT. Every ITS name must start with the

prefix ”test” (e.g., test01, test02, test-square-matrix-1, test-square-matrix-2, etc.).

By doing so, changing the ITS prefix to any word other than ”test” will exclude it

from the test suite.

An ITS consists of the following required files:

• A readme.txt file that contains an explanation of what part of the MUT func-

13

tionality this ITS tests. This is useful for the proper documentation of all the

tests.

• A makeme script that contains all compilation steps required before running

the test. It is important to note that makeme does not compile the source code

of the MUT, but it compiles any additional code required for the test (e.g., a

driver program that supplies the MUT with inputs and prints its outputs).

• A runme script that runs the test. The contents of runme may vary depending

on the type of the MUT. For example, when testing a C program, one may

need to just run an object file, but for a Verilog module, a hardware simulator

such as ModelSim may need to be run. Also the runme file may contain a

call to other executables that perform different post processing on the MUT

output before doing the comparison with correct-output and expected-error

files.

• A correct-output.txt file that contains the correct standard output that has to

be produced by the test (i.e, after running the runme file).

• An expected-errors.txt file that contains the error messages that the test is

expected to produce on the standard error. This file is useful when the ITS

checks for the errors that the MUT should be catching.

The basic DICE utility that makes use of the required files and exercises the

test suite is called dxtest. By running dxtest from a certain directory, it recursively

traverses all subdirectories that begin with the prefix ”test”. A subdirectory that

14

contains a runme file is considered as an ITS. When dxtest traverses an ITS, it first

executes the makeme, followed by the runme. It then compares the actual output

generated after running runme with the correct-output.txt and the actual standard

error output with the expected-errors.txt. After traversing all the subdirectories, a

summary of successful and failed tests is produced.

Through appropriate programming of the runme file, the standard output

of runme is in general highly configurable by the person who develops the test.

Creative design of runme files can help to make more powerful and convenient test

organizations within the DICE testing framework. We demonstrate this in Chapter

6.

The use of the unit testing framework for cross-platform model based design

is elucidated in Sec. 5.3.

3.3 Related Work

Typically the tools designers employ for design and verification are language

specific [12], [13]. More than just a syntactic customization, such frameworks are

often tied to fundamental constructs of the language. For example, in CppUnit, a

unit test inherits from a base class defined by CppUnit. A test writer then overloads

various methods of the base class to put the specific unit test in this framework.

Tests requiring the specific features that leverage the constructs of a language (e.g.

in an object oriented language, checking that method exhibits the proper form of

polymorphism) are well served by these approaches. Furthermore, these language-

15

specific approaches work well when designers are using only a single language or

a single platform for their final implementation. But when designers must move

between languages with different constructs (like C++ to Verilog), the existing tests

must be rewritten. This creates extra design effort and creates a new verification

challenge to ensure unit tests between these two languages are in fact performing

the same test.

Probably the most related framework to DICE is the Test Anything Proto-

col (TAP) [14]. Like DICE, TAP achieves language independence by defining the

protocol that manages the communication between unit tests and a test harness.

Individual tests (TAP producers) communicate test results to the testing harness

(TAP consumers). TAP enables multi-platform and multi-language design, but only

at the communication boundary. Unit tests need only adhere to the communication

design, leaving test writers with no specific language independent mechanism for

writing the tests themselves. Indeed, many language specific unit tests have TAP

compatible outputs so they may be hooked into a larger multilanguage testing envi-

ronment. In contrast with these other efforts, we provide a cross-platform approach

to utilizing model-based utilities and unit test writing by inferring dataflow models

and leveraging primitive datatypes with DICE. Some unit test frameworks have data

generators, but DICE encourages designers to think of module interface in terms

of streaming data primitives. DICE captures these input/output sequences in files

and then ensures the output files match with a structured build and run framework.

These assumptions allow test writers in DICE to build more complete solutions than

a test communication protocol alone.

16

Chapter 4

Cross-Platform Model-Based Design Approach

Figure 4.1 illustrates the traditional design flow of first performing application

exploration in a high-level development environment to achieve correct functionality

and do preliminary planning for implementation. Once the design is finalized, the

application is either synthesized or transcoded to the programming environment of

the target platform. But in cross-platform design flows, developers need a descrip-

tion that will have meaning for future platforms. Therefore we require a formal

specification with structure and formalisms as defined by the application area and

not by any platform, so that even as the target platform shifts, there is still a good

starting point to take on whatever platform specific issues arise with the next tar-

get. This is a more suitable paradigm than C, because it provides a more structured

description with customizable programming restrictions (i.e. model selection). In

order to incorporate model-based design in a cross-platform design flow, we pro-

posed an approach [15] that augments this design flow by detecting the models of

the actors used in the application. By using this information it is possible to pro-

vide more analysis to the application exploration phase and improve testing. In this

thesis, we present DICE a cross platform based design tool which is able to verify

the functionality of the final implementation and the original high level description

of it.

17

Figure 4.1: Traditional design flow augmented with proposed model-based features.[15]

18

4.1 High-level Application Specification

System development often involves an initial application description in a design

environment, which is then manually transcoded and tuned to target the final design

platform. Often separated by languages, tools, and even different teams, going from

an initial application description to a final implementation tends to be a manual,

error-prone, and time-consuming problem. To improve the quality and performance

while reducing development time, a cross platform design environment is needed

that accommodates both early design exploration and final implementation tuning.

The initial higher level application specification can also be effectively used for

testing purposes. Such a description allows testing the functionality of the applica-

tion specification for a valid set of inputs. This functionally correct implementation

could then be used as a benchmark as the development of underlying subsystem(s)

in the application proceeds on various platforms using different tools.

DIF provides one such tool for model-based design and implementation of

signal processing systems using dataflow graphs. A designer starts with a platform-

independent description of the application in DIF. This structured, formal applica-

tion description is an ideal starting point for capturing concurrency and optimizing

and analyzing the application. After settling on the DIF description, a designer can

refine this description to a high-performance implementation by employing plat-

form specific tools including compilers, debuggers, and simulators. Any transcoding

or platform specific enhancements are accommodated by DICE via its flexible but

standardized build and test framework. This allows designers to utilize the same de-

19

sign framework at inception as they do at final implementation. Software developed

jointly with DIF and DICE enjoys a single, cross platform software management

framework, where verification of modules is handled consistently throughout each

phase of development. If DIF is used as the reference description, transcoding ef-

fort is saved by having a formal, unambiguous application description to base the

implementation on. Quality is controlled with a high degree of automation through

the direct reuse of unit tests in DICE.

The DICE framework can be applied for testing each of the individual mod-

ules, subsystems, or even an entire application. In case of testing an individual

module, we specify valid inputs and expected correct outputs for that module using

concepts mentioned in Sec. 4.2. We create wrapper modules consisting of an indi-

vidual module, its valid input interface, and the output interface. Such a wrapper

module can then be tested independently of other modules. This functionally cor-

rect module description can then be used to develop platform or language specific

implementations of that module. We could use the same test suite for testing and

verifying the correctness of such modules using the features of DICE, as explained

in Section 4.3.

4.2 Interface Specification for Tests

Most of the tools available for unit testing require the test inputs and outputs

to be specified in a way that is platform or application language dependent. Such

dependence makes it difficult to use tests designed for a particular platform or ap-

20

plication language across other platforms or languages. Our framework provides a

solution to this problem by allowing test inputs and outputs to be specified in a

manner that is platform and application language independent. While using DICE

framework, test inputs and outputs are of primitive data types. The valid sets of

such inputs and the corresponding correct outputs are solely dependent on the func-

tionality of the module being tested. A given set of valid inputs for a module should

produce a corresponding expected correct output depending upon the functionality

of that module and is independent of the application language or implementation

platform. DICE framework has platform independent test features and utilities that

help running tests with test suites so that tests may be uniformly created and aggre-

gated. It has scripts to build the source code using plugins that call the language-

specific compiler. This built code is tested for a valid set of inputs to generate the

corresponding output. The resultant output is then compared with the expected

correct output as determined by the functionality of the module being tested.

4.3 Model-based Testing

In order to accommodate cross platform operation, the DICE engine consists

of a collection of utilities implemented as Bash scripts, C programs, and python

scripts. By writing DICE based on these open-source command line interfaces and

languages, DICE is able to operate on different platforms such as Windows (equipped

with Cygwin), OS-X, Solaris, and Linux. This gives DICE a wide base from which

to integrate specific design flows. From this base, we have architected a testing

21

!"#$%&'&($)*"+&,-$

./*&,-"*0$

!&1-23(41-&*$!&1-25'&*(6#2

7/(-&*$

!&1-28/9$!&1-2,,$!&1-2'&*/(":$

!&1-23(41-&*2$

3";#4-6<"=$

!&1-23(41-&*2$

!>*&1>"(8$

,"**&,-?"4-#4-@-A-$

&A#&,-&8?&**"*@-A-$

*4=;&$

;6B&;&$

*&68;&@-A-$

4<($

,";;"=2/=#4-C@-A-$

,";;"=2/=#4-D@-A-$

,";;"=2"4-#4-@-A-$

,"**&,-?"4-#4-@-A-$

&A#&,-&8?&**"*@-A-$

*4=;&$

;6B&;&$

*&68;&@-A-$

,"**&,-?"4-#4-@-A-$

&A#&,-&8?&**"*@-A-$

*4=;&$

;6B&;&$

*&68;&@-A-$

Figure 4.2: DICE file and directory structure of a cross-platform project using our testing

approach.[15]

approach that is applicable across design flows.

To implement a unit testing suite, the developer provides a test reference for

the functional behavior of the module under test (MUT). This reference consists

of a set of inputs and the set of outputs that are produced as a result of correct

processing of those inputs. Unit testing is performed by executing the module and

comparing the actual output with the correct expected behavior. In the event of a

module throwing an expected error (e.g. a designer is trying to see that when an

input condition is violated, the application returns the proper error), this can be

added to the test reference as well.

In the example in Figure 4.2, there are three implementations under test for the

same module: DIF, C++, and Verilog. The input and output patterns are common

22

to each of these tests and reside in the util directory. While each language has cus-

tomized build and simulation scripts in makeme and runme, and correct-output.txt

and expected-error.txt tailored to their simulation environments, the fundamental

inputs and outputs are directly shared between these platforms. By using such a

framework that automates the process of test verification, any change to the basic

MUT can be verified not only for the new functional correctness, but also to ensure

that it does not ruin a previous correct behavior. This also enables an incremental

code development, and reduces the development and verification time.

4.4 Automatic Testbench Creation

With model-based development, automatic testbench creation is possible, im-

proving the ease with which designers can create cross-platform tests. We use the

dataflow interchange format (DIF) as our model-based development environment

to create automatic testbench using a testbench creator and improve the ease with

which designers can create cross-platform tests.

For the high-level application specification, the formal description of the func-

tionality of each module is done using functional DIF by implementing the system

modules or graph nodes as actors. Each actor contains in its description, the names

of its input and output ports and other related properties. A given module-under-

test is provided as an input to the testbench creator. The testbench creator extracts

information about the input and output ports of the given MUT from the descrip-

tion file of the corresponding actor, and attaches File Readers and File Writers to

23

each input and output port respectively. File Readers and File Writers are also

functional DIF based actors that read and write input and output samples from in-

put and output text files respectively. The testbench generated is a dataflow graph

specified in the form of a DIF file (with .dif file extension), which can be simulated

with appropriate input files containing the test patterns for the MUT.

Figures 4.3 and 4.4 demonstrate the automatic testbench generation for the

MUT ComplexMag. ComplexMag is an actor that computes the magnitude of a

complex number. Hence this actor has two input ports corresponding to the real and

imaginary parts of a complex number and one output port which is the computed

complex magnitude. The testbench creator extracts the port-related information

from the actor file and automatically assigns two File Readers, input1 and input2

to read the inputs from the files input1.txt and input2.txt. The file names and

the names of the File Reader actors are directly adapted from the port names in

the actor file. Similarly a File Writer is also assigned for the sole output port

output. The testbench creator also automatically creates the edges connecting the

File Readers and the File Writer to the MUT ComplexMag. The input edges are

named in1, in2 etc. and the output edges are named out1, out2 and so on. In this

manner, testbench creation is automated for any MUT and the MUT can be tested

straightway for functionality.

When the total number of IO ports for the MUT is very high, the automatic

generation of the testbench saves a developer the time of writing the testbench. This

aspect has been demonstrated in Sec. 5.3 for modules of the trigger system of the

Compact Muon Solenoid, some of which have dozens of IO ports.

24

Figure 4.3: Automatically generated testbench for the ComplexMag actor that computes

the magnitude of a complex number.

25

Figure 4.4: Automatically generated testbench in the form of a DIF file for the Com-

plexMag actor that computes the magnitude of a complex number.

26

Chapter 5

Case Study - Trigger System of the Compact Muon Solenoid

DICE is actively being used as a test framework for the Trigger system of the

Compact Muon Solenoid (CMS) Detector of the Large Hadron Collider (LHC) at

CERN. The LHC [5] is the world’s largest particle accelerator built for physicists to

study the most fundamental questions in particle physics. Along with this collider,

there are multiple particle detectors to track the motion and measure the energy

and charge of the new particles thrown out in all directions from the collisions. The

Compact Muon Solenoid (CMS) [16] being one of these is designed as a general-

purpose detector, capable of studying many aspects of proton collisions at energies

in the TeV range. It contains subsystems which are designed to measure the energy

and momentum of photons, electrons, muons, and other products of the collisions.

5.1 CMS Calorimeter Trigger system

Although each beam consists of thousands of billions of particles, the particles

are so tiny that the chance of any two colliding is very small. To maximize the

probability of observing interesting events in the detector, a very large number of

collisions are required. However, the amount of raw data from each collision to store

and process is massive, and well beyond the maximum rate that can be archived by

the online computer farm. Thus, a trigger system in the CMS is used to perform

27

the initial filtering by passing on only interactions of interest. The Level-1 (L1)

trigger system [17] first reduces the proton-proton interaction rate and then a High

Level Trigger (HLT), using an on-line computer farm, handles the remaining rate

reduction. The L1 trigger is designed to do a fast detection of signatures of isolated

and non-isolated electrons, photons, jets, muons, and missing and total transverse

energy by comparing the measured energies to certain thresholds. The identified

events of interest are sent to the HLT where a more detailed analysis takes place

before archiving the obtained data.

5.2 Motivation for Cross-platform Model-based approach in CMS

Much of the logic in the trigger system is contained in custom and semi-custom

Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Ar-

rays (FPGAs). In general, systems for high energy physics (HEP) applications like

the CMS trigger increasingly depend on FPGAs for data processing and communica-

tion. Increased use of and need for complex FPGA-based designs in scientific fields

like HEP necessitates application development techniques more accessible to scien-

tists and engineers specialized in the application area, but not in high performance

hardware design. This naturally leads to the need for having multiple implemen-

tations for algorithm development and hardware designs for an application such as

the CMS trigger.

The design of the CMS trigger, being a complex digital system, is collabo-

rative between multiple geographically distributed research groups, each of which

28

create their designs independently, often using different styles and techniques. On

the whole, over 130 institutions all over the world collaborate on the design and

working of the LHC. This complicates system testing and integration, and hinders

the use of good practices important to decrease the development time. For exam-

ple, with the current CMS trigger system, dozens of teams from different institutions

have contributed to the design of hundreds of boards. Individual teams use differ-

ent design tools, hardware description languages, and FPGA platforms or ASICs in

their designs. This non-uniform method of design has made the digital systems in

the current CMS trigger difficult to maintain, test, and enhance. DICE as a plat-

form independent framework supports such projects that involve such heterogeneous

programming languages and offers a unified framework for testing and integration.

By having access to a common test suite through DICE, designers can verify

any changes they make to the design incrementally and independently. Furthermore

because of the emphasis placed on adding tests in the test suite as an integral part

of the development process, designers can have high confidence that their changes

to the code are being tested comprehensively with respect to the rest of the code

base.

5.3 Demonstration

Building on our integration of testing considerations into this project, we have

explored novel synergies between dataflow-based system design and unit testing

methodologies. We use the evolving test suites in the project to help ensure consis-

29

Actor Input Output # samples

Cluster Threshold 12 12 1333

Cluster Computation 12 6 1333

Cluster Overlap Filter 8 4 10248

Cluster Weight 4 2 10248

Jet Reconstruction 1 2 128

Table 5.1: DICE testbenches automatically generated from dataflow models of CMS
actors

tency between multiple implementations of the same actor in a design. For example,

a given functional block in the CMS trigger has a Java-based version for the DIF

simulation, a C++ based version for software emulation, and a Verilog version for

FPGA implementation. We have created a library of actors corresponding to each

module in the L1 trigger. The common DIF representation to which these actors

interface ensures that the actors are designed with a standard, precise, and efficient

method of communication to the enclosing application by standardizing its input

and output interfaces. Unit testing provides a complementary form of integration

support by validating equivalent input/output functionality across multiple versions

of the same actor in an extensive and highly automated way. Based on software em-

ulation, the algorithm developers provide a set of test patterns with inputs and

corresponding outputs for correct functionality. All three actor versions are tested

with the same tests thereby ensuring that tests need not be rewritten for different

languages and that the multiple implementations are consistent with each other.

30

Figure 5.1: Test bench automatically generated from the model description of the Cluster
Weight actor, which reads a cluster of four towers and calculates the η and φ weights based
on the concentration of energies in the η and φ axes.

Through the integration offered by DICE, the application development has

been systematic and development time has been reduced by identifying and fixing

implementation and programming bugs early in the development cycle. Inconsis-

tencies in versioning, data representation, and deviations from design specifications

and requirements are some of the errors that were identified by utilizing the unified

testing framework for the CMS trigger.

We have applied model based design with DICE testing to CMS actors which

are summarized in Table 5.1. From the formal description of the functionality of a

model, a DIF graph of the resulting testbench is generated (figure 5.1) that hooks

into input text file readers and writes to the appropriate output text file writers.

When the total number of ports for these actors is as high as 24 ports, the automatic

31

generation of the testbench saves a developer the time of writing the testbench.

Due to this automatic generation of testbench and streaming input data, the actors

can be seamlessly hooked into the framework making the testing process largely

automated and hassle-free, thus making the integration of testing into the design

process easy and very efficient. With more efficient dataflow scheduling techniques,

the simulation time is expected to improve further.

32

Chapter 6

Case Study - Precision Analysis of the Jacobi Eigenvalue

Decomposition

Eigenvalue decomposition (EVD) is used in a wide range of modern signal

processing and communication applications such as MIMO wireless communication,

image recognition technologies, direction of wave arrival estimation algorithms etc.

In the context of this work, the EVD algorithm is being implemented as part of a

beamforming application inherent to MIMO wireless technology.

6.1 EVD in MIMO wireless technology

With the wireless community engaged in the research and development of the

fourth generation (4G) of wireless cellular systems, various schemes are being ex-

plored to achieve the data rate requirements for 4G. Multiple-input multiple-output

(MIMO) wireless communication has been one of the most promising technologies

for improving the spectrum efficiency of wireless systems. MIMO along with or-

thogonal frequency division multiplexing (OFDM) will serve as the physical layer of

two key technologies for mobile communication systems: LTE and WiMax. LTE is

the 4G evolution of cellular systems, while WiMax seeks to deliver last mile wireless

broadband access. Both LTE and WiMax technologies make extensive use of MIMO.

MIMO schemes enable a variety of functions including multi-stream transmission for

33

Figure 6.1: MIMO Channel. Figure taken from Intel Technology Journal [19].

high spectrum efficiency, improved link quality through diversity mechanisms, and

adaptation of radiation patterns for signal gain and interference mitigation through

adaptive beamforming [18].

Figure 6.1 shows a model for a MIMO channel. When a signal x is transmitted

through a MIMO channel with channel gain matrix H, the received signal y can be

modeled as,

y = Hx + n

where n is the noise experienced by the receivers.

34

When omni-directional antennas are used at the basestation, the transmis-

sion/reception of each user’s signal becomes a source of interference to other users

located in the same cell, making the overall system interference limited. Beamform-

ing is a technique where each user’s signal is multiplied with a beamforming vector

with complex weights that adjusts the magnitude and phase of the signal to and

from each antenna. This causes the output from the array of antennas to form a

transmit/receive beam in the desired direction and minimizes the output in other

directions. By transmitting in the direction of the eigenvector corresponding to

the largest eigenvalue of the positive semi-definite matrix H†H, the signal-to-noise

ratio (SNR) at the receiver is maximized [20]. More generally, vector information

could be sent along all of the eigenchannels of H†H as described in [21], resulting

in increased spectral efficiency. [22] proposes the methodology of eigenbeamforming

where the transmit beamforming vector is chosen as the eigenvector corresponding

to the largest eigenvalue of the matrix given by 1
K

K∑

k=1

H†(k)H(k), where K is the

number of sub-carriers. Eigenvalue decomposition is thus used in beamforming and

MIMO systems to compute the eigenvalues and corresponding eigenvectors of H†H.

6.2 Eigenvalue Decomposition

A (non-zero) vector x of dimension N is an eigenvector of a square (N × N)

matrix A if and only if it satisfies the linear equation

Ax = λx

35

where λ is a scalar, termed the eigenvalue corresponding to x and the eigenvalues

are roots of the equation

det(A− λI) = 0

Let A be a square (N ×N) matrix with N linearly independent eigenvectors.

Then A can be factorized as:

A = VDV−1 (6.1)

V is the square (N × N) matrix whose i-th column is the eigenvector qi of

A and D is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues, i.e., Dii = λi. This is known as the eigenvalue decomposition (EVD)

or eigendecomposition of the matrix A.

All eigenvalue algorithms are iterative by Abel’s theorem [23]. Abel’s theorem

shows that there are no direct methods for solving the general eigenvalue problem,

for the existence of a finite, pre-specified procedure would imply the existence of a

complicated formula for the solutions of an arbitrary polynomial equation. Due to

the iterative nature of the EVD algorithms, a key aspect of any EVD algorithm is

whether the algorithm always converges and if so, the rate of convergence.

6.2.1 Existing EVD algorithms

Many algorithms exist for the calculation of eigenvectors and eigenvalues of

matrices. The choice of the algorithm will depend on the application, nature of the

input matrix, required number of eigenvalues/eigenvectors and also computational

constraints like speed, accuracy etc.

36

• Power Method: The power iteration is a very simple algorithm. It does not

compute a matrix decomposition, and hence it can be used when A is a very

large sparse matrix. However, it will find only one eigenvalue (the one with

the greatest absolute value) and it may converge only slowly.

• QR Iterations: For dense, non-symmetric eigenvalue problems, QR method is

shown to be the best algorithm [23]. However in the symmetric case, QR by

itself is not the most efficient algorithm.

• Block Lanczos Method: Typically, the Block Lanczos method works well for

large, sparse matrices, but is notorious for its instability with respect to round-

ing errors.

• Tridiagonal Methods: This involves reducing the given matrix A to tridiag-

onal form before applying other methods to do the final computation of the

eigenvalues and vectors.

• Jacobi Method: This is one of the oldest known methods for EVD. It has

good convergence properties, especially for small, dense matrices. It rose to

prominence of late due to its inherent parallelism.

In the context of this work, the EVD algorithm is being implemented as part

of a beamforming application inherent to MIMO wireless technology. The matrix

of interest in this case is a Hermitian matrix that characterizes the channel between

each pair of transmit and receive antennas. This channel matrix typically has the

nature of being small and dense. The matrix sizes under consideration are 2 × 2,

37

4× 4 and 8× 8. In this method, we explore the Jacobi method due to its efficiency

with respect to small, dense matrices and its inherent parallelism.

6.3 The Jacobi idea

The Jacobi method diagonalizes the given matrix by systematically reducing

the norm of the off-diagonal elements of the matrix given by the quantity,

off(A) =

√√√√
n∑

i=0

n∑

j=1,j 6=i

a2
ij

This is achieved by performing a series of Jacobi Rotations (similar to the

Givens rotations) where each transformation (a Jacobi rotation) is just a plane

rotation designed to annihilate one of the off-diagonal matrix elements. Successive

transformations undo previously set zeros, but the off-diagonal elements nevertheless

get smaller and smaller, until the matrix is diagonal to machine precision. The

Jacobi rotation matrix is given by

J(p, q, θ) =




p q

1 . . . 0 . . . 0 . . . 0

...
. . .

...
...

...

p 0 . . . c . . . s . . . 0

...
...

. . .
...

...

q 0 . . . −s . . . c . . . 0

...
...

...
. . .

...

0 . . . 0 . . . 0 . . . 1




where c = cos(θ) and s = sin(θ) for some θ which is the rotation angle.

38

Algorithm 1 Pseudocode for the Jacobi EVD [6]

while offset(A) > ε do
for p = 1 to n− 1 do

for q = p + 1 to n do
(c, s) = sym.schur2(A, p, q)
A = J(p, q, θ)T AJ(p, q, θ)
V = V J(p, q, θ)

end for
end for
Recalculate offset(A)

end while

In the pseudocode for Jacobi EVD, sym.schur2(A,p,q) represents a 2× 2 sym-

metric Schur decomposition that computes the (c, s) pair that forces A(p, q) to 0.

Every iteration results in off(A)2 = off(A)2− 2a2
pq. In this sense, A moves closer

to the diagonal form with each Jacobi step. This algorithm overwrites A with

VTAV with V being orthogonal and A being increasingly diagonal.

However, the Jacobi method shown in the pseudo code does not apply to

complex-valued Hermitian symmetric positive definite matrix. Instead it is possible

to derive a closed-form expression of the EVD of a 2× 2 complex-valued Hermitian

symmetric matrix. This is then used to substitute the 2 × 2 Schur decomposition

for each Givens rotation.

For such matrix




a b

b∗ c


 where a and c are positive real-valued, the eigenval-

ues can be written as:

λ1,2 =
(a + c)±

√
(a− c)2 + 4|b|2
2

(6.2)

39

It can also be derived that the two eigenvectors can be written as:

v1,2 =
1√

1 + |µ1,2|2




µ1,2

1


 (6.3)

µ1,2 =
b

λ1,2 − a
=

2b

−(a− c)±
√

(a− c)2 + 4|b|2
(6.4)

The above formulation albeit correct, suffers from numerical instability issues

as the parameter b appears both in the numerator and denominator in equation (6.4),

and with b being an off-diagonal element, the goal is to make it as close as possible to

zero. With some algebraic manipulation, the eigenvector formulation in equations

(6.3) and (6.4) can be rewritten as shown in equation (6.5). This formulation for

2 × 2 EVD can be used to replace the 2 × 2 real-valued Schur decomposition to

extend the Jacobi method for any complex-valued Hermitian symmetric matrix.

v1 =




ejθq
1+ 1

|µ1|2

1√
1+|µ1|2


 v2 =




−ejθq
1+ 1

|µ2|2

1√
1+|µ2|2


 (6.5)

µ1 =
2√

δ2 + 4− δ
µ2 =

2√
δ2 + 4 + δ

(6.6)

δ =
a− c

|b| θ = tan−1

[
Im(b)

Re(b)

]
(6.7)

6.4 Motivation for Precision Analysis

The goal is to conduct an initial exploration study of various bit precisions for

eigenvalue decomposition in order to provide a benchmark for system designers to

help decide on the internal precision of their system given signal and noise variances

40

and required output SNR. The focus of the study is to obtain the minimum required

signal to noise ratio (SNR) in eigenvalue decomposition by reducing the internal

precision of the computation.

However, it may be optimistic to assume that the Jacobi EVD for Hermitian

matrices can be fully implemented with wordlengths lesser than that of full 32-bit

fixed-point or floating-point formats due to the nature of mathematical operations

used in the algorithm.

For example, the Jacobi algorithm for eigenvalue decomposition is an iterative

algorithm with each sweep of the algorithm propagating the errors of previous stages.

So a high degree of precision in both the signal and coefficients are required to

minimize the effects of these propagated errors. Second, as the number of sweeps

increase, a number of off-diagonal elements start tending to zero and data accuracy

must be maintained, even as it approaches zero due to the presence of division

operations. In such an application it becomes important to fully analyze the data

set to decide which type of data format to use, as this is essential to both the

convergence of the algorithm and the accurate computation of the eigenvalues and

eigenvectors.

In general, floating point DSPs achieve much greater precision and dynamic

range at the expense of speed, since it requires multiple cycles for each operation.

In the past, fixed-point DSPs were favored for high-volume applications where unit

manufacturing costs had to be kept low and floating-point DSPs were adopted for

low-volume applications where the time and cost of software development were of

greater concern. This is because floating-point DSPs were easily programmable

41

through higher level languages like C and by coding real arithmetic directly onto

the hardware, unlike fixed-point DSPs which had to be coded at assembly level

making development time longer. However, this ease of use of floating point DSPs

was offset by other factors like more internal circuitry, wider data buses, larger die

area and packaging that resulted in a significant cost premium.

As semiconductor technology has evolved with transistor sizes having dras-

tically reduced, cost issues relating to size of the DSP core is no longer as signif-

icant. Programming fixed-point DSPs has also evolved through the development

of advanced tools for compiling, developing and debugging embedded applications.

Overall, fixed-point DSPs still have an edge in cost and floating-point DSPs in ease

of use, but the edge has narrowed to the point where the choice of using a fixed-

or floating-point DSP boils down to whether floating-point math is needed by the

application data set.

Clearly the floating-point format provides greater accuracy with larger man-

tissa word widths and the exponentiation vastly increasing the dynamic range avail-

able for the application. A wide dynamic range is important in dealing with ex-

tremely large data sets and with data sets where the range cannot be easily pre-

dicted.

With a new family of TI DSPs like the TMS320C674x series supporting a

superset of both fixed- and floating-point instruction sets, it has become possible to

implement an application in fixed-point with only a subset of instructions in floating-

point. Keeping this in mind, the precision analysis was executed in a step-by-step

manner. First a functional simulation of the Jacobi EVD was implemented in C

42

language in double precision, single precision and pseudo floating point formats for

all matrix sizes of interest and the performance was analyzed, in terms of convergence

and accurate computation of the eigensystems. Based on the results from this

initial simulation (Sec. 6.5.4), the need was identified for a more thorough analysis

on the data precision at every step of the algorithm. This naturally led to the

representation of the algorithm as a fine-grained data flow graph where each node

represented a basic block of computation (Sec. 6.6). This facilitated an analysis

methodology where the data at the output edge of every node could be recorded, and

its range over the entire duration of the program could be studied, leading to a better

understanding of the required precision for computation and data representation

(Sec. 6.8). We use DIF to model the dataflow of the Jacobi EVD and DICE as the

framework within which the precision analysis is carried out.

6.5 Functional Simulation and Performance Evaluation

The Jacobi EVD was implemented in double precision, single precision and

pseudo floating point formats to analyze the performance of the algorithm as a

function of precision. Here the pseudo floating point format is a generalized float-

ing point format that we define, where any real number can be represented as

Mantissa× 2Exponent. The number of bits for the mantissa and exponent are given

by I and E respectively. By appropriately setting the values of I and E, the internal

bit precision of the numbers can be controlled. By using this pseudo floating point

format, all computations in the program are performed within the precision given by

(I, E), thereby simulating a system with the given precision. In this work, precisions

43

of interest are all combinations from within I = 16, 24, 31 and E = 6, 8, 10.

6.5.1 Simulation Framework

The channel matrix H is generated with a Gaussian random number generator,

such that H is Hermitian with real and imaginary parts of each element being 16-

bit fixed-point numbers. The product of H and its conjugate transpose H† provides

the input matrix A where each complex number entry has 32-bits each for real and

imaginary parts. This matrix can be converted to single or double floating point, or

custom pseudo floating point precision using the respective conversion routines.

The Jacobi EVD routines written in C compute the eigenvalue decomposition

of A. The resulting D and V matrices contain the eigenvalues and corresponding

eigenvectors. In order to evaluate the correctness of the decomposition, MATLAB R©

is used as a golden reference. MATLAB’s built-in function eig(A) computes the EVD

of a given matrix A using any one of a series of library routines.

6.5.2 Performance Evaluation

The performance is measured in terms of the Signal to Noise Ratio (SNR),

where the noise part refers to the amount of deviation of the obtained decomposition

from an ideal case. With the decompositions obtained using the C-based Jacobi

EVD and MATLAB the original matrix is reconstructed as given in equation (6.1).

Using the input matrix A as the ideal case, SNRs for the C and Matlab based

implementations are computed using the formulae given in equations (6.8) and (6.9).

44

SNRM =

N∑
i=1

N∑
j=1

|A(i, j)|2

N∑
i=1

N∑
j=1

|A(i, j)−Ar,M(i, j)|2
(6.8)

SNRC =

N∑
i=1

N∑
j=1

|A(i, j)|2

N∑
i=1

N∑
j=1

|A(i, j)−Ar,C(i, j)|2
(6.9)

Similarly, the SNRs for the D and V matrices are computed as well, with

MATLAB as the ideal case.

SNRV =

N∑
i=1

N∑
j=1

|VM(i, j)|2

N∑
i=1

N∑
j=1

|VM(i, j)−VC(i, j)|2
(6.10)

SNRD =

N∑
i=1

|Di,M |2

N∑
i=1

|Di,M −Di,C |2
(6.11)

We plot the obtained SNR against the condition number while comparing the

SNRs obtained for different precisions. Condition number of a given matrix A in

Ax = b measures the sensitivity of the solution of this system of linear equations

x to errors or changes in b. A is said to be well-conditioned, and hence has a

high condition number if changes in x due to changes in b are low and A is ill-

conditioned or has a low condition number otherwise. Condition number of A can

be computed by MATLAB using cond(A). Since condition number is independent of

machine precision, it provides a common ground for comparing performance results

for various precisions.

45

6.5.3 Simulation Parameters

The parameters used during the simulations are:

• Number of receive antennas NR

• Number of transmit antennas NT : Note that NR = NT since the matrices of

interest are purely Hermitian which are square matrices. NR ×NT is the size

of the input matrix H.

• Signal variance σ2

• Number of realizations of matrix H

• Precision parameters: In case of pseudo floating point, values for I and E are

specified.

6.5.4 Results and Discussion: Part I

Simulation was carried out for double, single and pseudo floating point formats

for matrix sizes of 2×2, 4×4 and 8×8. As described in section 6.2, all eigenvalue al-

gorithms are iterative by Abel’s theorem and due to the iterative nature of the EVD

algorithms, a key aspect of concern is the convergence of the algorithm. Theoret-

ically, the Jacobi EVD always converges [6]. However, due to insufficient precision

leading to rounding errors, it may be possible that the algorithm may not always

converge with finite arithmetic implementations. Preliminary simulations test for

the convergence of the Jacobi EVD for all precisions. The results are documented

in Table 6.1.

46

Precision 2× 2 4× 4 8× 8

Double Converges Converges Converges
Single Converges Does not converge Does not converge

Pf (31,10) Converges Does not converge Does not converge
Pf (31,8) Converges Does not converge Does not converge
Pf (31,6) Converges Does not converge Does not converge

Pf (24,10) Converges Does not converge Does not converge
Pf (24,8) Converges Does not converge Does not converge
Pf (24,6) Converges Does not converge Does not converge

Pf (16,10) Converges Does not converge Does not converge
Pf (16,8) Converges Does not converge Does not converge
Pf (16,6) Converges Does not converge Does not converge

Table 6.1: Convergence of Jacobi EVD implementation for all precisions

The double precision floating point implementation of the Jacobi EVD con-

verged for all required matrix sizes, and the implementations for all precisions con-

verged for matrix size of 2×2. However, the overall results were well below expecta-

tions as the implementation did not converge for any precision configuration other

than double floating point for 4 × 4 and 8 × 8 matrices. This was indeed largely

unsatisfactory as some of the considered precisions offer large dynamic ranges and

fractional word lengths sufficient for most sensitive applications. This warranted a

much more detailed analysis of the required precision at every step of the algorithm.

6.6 Dataflow model of the Jacobi EVD

6.6.1 Introduction

As described earlier in section 6.4, the overall objective of the Jacobi EVD

project is to identify the minimum required internal precision of computation in

order to obtain the required SNR. However, following the convergence issues with

the initial implementation, there arises a need to identify the parts of the algorithm

47

that leads to the non-convergence of the implementation. An intuitive way to do

this would be to cleverly partition the algorithm into smaller computation nodes

and represent the algorithm as a dataflow graph. By doing appropriate analysis

at every node on the data propagating through this graph, we can estimate the

required precision at every node.

6.6.2 Related Work

Dataflow modeling has often been used in such precision analysis, most com-

monly in automatic floating to fixed point conversion of programs. Since high level

languages like C do not have built-in fixed-point datatypes, it is common practice to

develop DSP algorithms with floating point datatypes and then implement them on

fixed point architectures. Since the manual transformation of floating-point data to

fixed-point data is time consuming and error prone, a lot of research has been focused

on the automatic conversion of floating-point to fixed-point code ([24], [25], [26]).

Some of these research works like [24], [27], [28] use fine-grained dataflow graphs

as an intermediate representation between the floating- and fixed-point programs.

In this intermediate representation, the dataflow graph has nodes representing the

operations and the variables as edges. Using this dataflow graph as the backbone,

several statistical and/or analytical methods are applied at every node to compute

and annotate the nodes with their respective dynamic ranges, binary point posi-

tions, and ultimately bit widths. We adopt some of these methods to analyze the

data set of the Jacobi EVD, and identify the computations in the algorithm that

require more precision.

48

6.6.3 Dataflow model for Jacobi EVD

DIF has been used to model the dataflow graph for the Jacobi EVD. In con-

structing this graph, we identify the operations in the algorithm that are more

sensitive to precision and make them individual nodes in the graph. Such opera-

tions typically include square root, division etc. There are many such occurrences

in the Jacobi algorithm for eigenvalue computation. The computation of v1 and v2

given by the equations (6.5), (6.6) and (6.7) clearly indicate the presence of mul-

tiple square root, reciprocal and division operations. These are all represented as

individual nodes in the graph as they tend to be more sensitive to precision. Each

of the matrix multiplication steps in the Jacobi pseudocode (Algorithm 1) that are

composed of multiply-and-add operations are also represented as nodes in the graph

and are of higher granularity relative to the rest of the nodes. All the nodes are

implemented as actors within the functional DIF package.

An important point of consideration in constructing the dataflow graph is

the presence of unbounded and bounded loops in the algorithm. As Algorithm 1

indicates, the Jacobi algorithm has two bounded loops to iterate over the rows and

columns of the matrix, and one unbounded loop to execute the algorithm till a

suitable solution within specified error bounds has been obtained. Normally the

graphs can be unrolled for bounded loops. However, since the base graph structure

remains the same for all the iterations, we make use of functional DIF’s CFDF

simulator capabilities in simulating the graph behavior for the required number

of iterations. We use a statistical estimate for the number of iterations of the

49

Matrix size Statistical estimate
for unbounded loop
iterations

No. of (p,q) index
combinations

Total number of itera-
tions of base graph

2× 2 1 1 1
4× 4 4 6 24
8× 8 5 28 140

Table 6.2: Number of iterations of the base graph for Jacobi EVD

unbounded loop by simulating the double precision floating point implementation of

Jacobi EVD over thousands of realizations and estimating the maximum number of

iterations of the unbounded loop required for all matrix sizes. Using this information

(documented in Table 6.2), the iteration count is set accordingly for the simulation

of the graph behavior. The dataflow graph for the Jacobi EVD for one iteration of

the algorithm is shown in Figure 6.2.

6.6.3.1 2× 2 Matrix

As Table 6.2 indicates, only one iteration of the graph is required for a 2 × 2

matrix. Hence, the graph in Figure 6.2 with (p, q) as (0, 1) is the dataflow graph for

the 2× 2 Jacobi EVD.

6.6.3.2 4× 4 and 8× 8 Matrices

For 4× 4 and 8× 8 matrices, the graph in Figure 6.2 is iteratively simulated

24 and 140 times respectively (from Table 6.2), with each iteration having a dif-

ferent (p, q) index. The output matrices of each iteration will be the input of the

next iteration. DICE is used to facilitate this configuration, by correspondingly

50

Figure 6.2: Dataflow graph for the 2x2 Jacobi EVD

51

programming the runme file.

6.7 Dynamic Range Analysis

The number of bits required to represent a data variable in a fixed-point format

is the sum of the integer and fractional wordlengths. The required precision for

any data variable can be computed by estimating the required integer wordlength

(iwl) and the required fractional wordlength (fwl). There exist both analytical and

statistical methods to determine these wordlengths. [29] discusses some of these

methods. In general, the iwl is estimated by computing the dynamic range of the

data variable. The fwl can be obtained by simulating the program for all the possible

fwls and determining the SNR in each case and comparing it to the required SNR.

Or, when using analytical methods, the computation error at every node can be

expressed in terms of the fwl of the corresponding variable. The total error at the

output can thus be expressed in terms of all the fwls. Using optimization techniques

the fwls can be estimated such that the total error is less than a threshold determined

by the required SNR.

In our work, we concentrate on the analysis of the dynamic range of different

data variables. The goal is not to come up with exact numbers for the iwl and

fwl for the different data, but instead to identify and understand the precision

needs for different computations. We extrapolate the information obtained from

the computed dynamic ranges to understand the precision required in both the

integer and fractional part of the data representation without directly calculating

52

the wordlengths.

Two methods can be used for evaluating the data dynamic range of an applica-

tion. One method involves doing a floating point simulation of the application and

statistically estimate the ranges of the data variables. This in general tends to be

a more real estimate, but since it is simulation-based, some possible cases could be

overlooked leading to overflow. The second method is an analytical approach where

the dynamic range of a particular output variable is expressed in terms of dynamic

ranges of the inputs to that node. In this method, dataflow modeling is useful for

dynamic range analysis. This method guarantees no overflow, but is a worst-case

estimate thereby being more conservative. For our application, it is more suitable

to adopt the latter approach so that all possible cases are taken into account.

Interval Arithmetic theory [30] can be used to determine data dynamic range in

this method. The dynamic range of each data is obtained during the traversal of the

application graph with the help of propagation rules defined by interval arithmetic

theory. Each operator or computation node has a defined propagation rule.

6.7.1 Interval arithmetic for Jacobi EVD

Interval arithmetic is an arithmetic defined on sets of intervals, rather than sets

of real numbers. Table 6.3 enlists the interval computations for the basic arithmetic

operations of addition, subtraction, multiplication, division, squaring and square

root. These are the most commonly used operations in the Jacobi EVD. Some of

the other operations in Jacobi EVD that do not have straightforward formulae for

53

Operation Interval Computation

Addition [a, b] + [c, d] = [a + c, b + d]

Subtraction [a, b]− [c, d] = [a− d, b− c]

Multiplication [a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

Division [a, b]÷ [c, d] = [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)],

0 /∈ [c, d]

Squaring [a, b]2 = [a2, b2], if a ≥ 0

[a, b]2 = [b2, a2], if b < 0

[a, b]2 = [0,max(a2, b2)] otherwise

Square root [a, b]1/2 = [
√

a,
√

b]

Table 6.3: Interval Arithmetic

interval computation are sine,cosine and atan2. Instead, worst case ranges are used

for these three functions. sine and cosine values always lie in the interval [−1, 1]

and similarly atan2 outputs angles in the range [−π, π].

6.7.2 Dynamic range simulation with functional DIF and DICE

A library of functional DIF actors are written corresponding to the nodes in

the application graph. All these actors have a single mode and are therefore SDF

with constant production and consumption rates. They are tested through the

DICE unit testing framework. The application graph shown in Figure 6.2 is verified

for functional correctness using the CFDF simulator and sample test patterns with

54

appropriate correct-output.txt files.

Since we are using model-based principles by describing the application as a

dataflow graph, we are able to reuse the same top-level representation for any analy-

sis with or without simulation. By reusing the application graph, we save significant

time in design exploration as the need for re-specifying the graph or rewriting the

DIF file is avoided. The DIF file to describe this application is over 500 lines of code.

It becomes even more invaluable when applied to larger applications. For dynamic

range analysis, the same application graph is used but a parallel library of actors is

created corresponding to each node. This time each actor calculates the dynamic

range of the corresponding operation using interval arithmetic’s propagation rules.

All the actor properties remain the same in terms of their models but the production

and consumption rates double wherever applicable because for each data variable,

there are now two values - the minimum and maximum values of the range.

The DICE unit testing framework is not restricted to unit testing or functional

verification alone, but is flexible to be used for any simulation-based application

exploration. For the dynamic range analysis, the range of values of the input matrix

is specified in a similar fashion as the input test patterns of a unit test by hooking

in File Readers and the final outputs from the V and D matrices are hooked into

File Writers. The dynamic range is computed by each actor based on the dynamic

ranges of the inputs. Since the data ranges at all the nodes have to be analyzed

and not just at the outputs, we also hook in File Writers to the intermediate nodes

that record this information.

For the 2×2 matrix, this process is straightforward as only one iteration of the

55

graph is required. However for the 4× 4 and 8× 8 matrices, the number of required

iterations is set in the CFDF simulator and the reconfigurability of the runme file

is made use of to facilitate the feedback of output to input for successive iterations.

For example, the input files for data ranges for the input A matrix is written

in input-Areal.txt and input-Aimag.txt (for the real and the imaginary parts of the

complex number respectively). The output files for the V and D matrices are output-

Vreal.txt, output-Vimag.txt, output-Dreal.txt and output-Dimag.txt. However, since

we require a feedback loop from the output to the input, the File Readers and File

Writers read and write from intermediate files Vreal.txt, Vimag.txt, Dreal.txt and

Dimag.txt, instead of the above specified input and output files. The runme file

shown in Table 6.4 is programmed in such a way that the input files are first copied

to the intermediate files, followed by the actual simulation before finally copying

the intermediate files to the output files. This way the input files remain intact

and are not overwritten by any intermediate results. If not for the availability of

such a provision where the same base graph is used iteratively, there would have

been a forcible need to unroll the loops. This is an incredibly tedious task for

the 4 × 4 matrix with its 24 loops, leave alone the 8 × 8 matrix with 140. Thus,

by exercising model-based design with simulation capabilities, development process

is largely automated and simplified, and the development time has significantly

reduced.

For the functional verification of the whole application, outputs from the sink

nodes alone are required. For dynamic range analysis, outputs from all intermediate

nodes are required as well. To facilitate this, File Writers are hooked into each

56

cp input-Areal.txt Dreal.txt

cp input-Aimag.txt Dimag.txt

cp input-Vreal.txt Vreal.txt

cp input-Vimag.txt Vimag.txt

../util/runtest

cp Dreal.txt output-Dreal.txt

cp Dimag.txt output-Dimag.txt

cp Vreal.txt output-Vreal.txt

cp Vimag.txt output-Vimag.txt

Table 6.4: runme file for multiple iterations in Jacobi EVD

computation node. Ultimately each node has an associated output file consisting of

the corresponding dynamic range from every iteration. These files can be manually

examined to make inferences on the required precisions, but it can become another

tedious or even error-prone process in the case of a large application with numerous

computational nodes, especially when there are too many iterations. Hence we

automate this process by using an additional actor to read from these files and to

generate the minimum and maximum values computed by any node over the course

of the entire simulation.

57

Data Format Number of bits Approx. Dynamic Range

Double precision I=53, E=11 −10308 to 10308

Single precision I=24, E=8 −1038 to 1038

Pseudo float I=31/24/16, E=10 −10154 to 10154

I=31/24/16, E=8 −1038 to 1038

I=31/24/16, E=6 −109 to 109

Table 6.5: Dynamic ranges for various data formats

6.8 Results and Discussion: Part II

Table 6.5 enlists the dynamic ranges offered by the different data formats

under consideration in this work. It can be seen that double precision floating point

offers very high dynamic range with the capability to express numbers as high as

10308. As the number of exponent bits decrease, the dynamic range also drops off

exponentially, with the exponent bit width of 6 offering a much more limited range

of [−109, 109].

From the dynamic range simulation for input matrix of size 2×2, it is observed

that the results from the computations do not exceed 1010. From Table 6.5, it can

be inferred that the Jacobi EVD for a 2× 2 matrix should produce valid results for

all precisions under consideration except when E = 6 in the pseudo floating-point

representation. This is in agreement with the results obtained in Sec. 6.5.4.

However, for the 4 × 4 matrix, Table 6.6 indicates multiple nodes with infi-

nite dynamic range. Although this is a conservative estimate even for a worst-case

58

Node Computation Dynamic Range

ComplexMag
√

a2 + b2 [1.49× 10−8, 4.78× 1014]

EVDdelta (a− b)/c [−4.65× 1022, 4.65× 1022]

EVDdelta2p4 a2 + 4 [4, 2.17× 1045]

sqrt
√

x [2, 4.65× 1022]

EVDmu12 (
√

δ2 + 4− δ)2 [0, 2.16× 1045]

EVDmu22 (
√

δ2 + 4 + δ)2 [0, 2.16× 1045]

Sqrtp1mu1
√

x + 1 [1, 4.65× 1022]

Sqrtp1mu2
√

x + 1 [1, 4.65× 1022]

ev-x1 1/x [2.15× 10−23, 1]

ev-x2 1/x [2.15× 10−23, 1]

recipmu1 1/x [0,∞]

recipmu2 1/x [0,∞]

recipy1
√

x + 1 [0,∞]

recipy2
√

x + 1 [0,∞]

ev-y1 1/x [0, 1]

ev-y2 1/x [0, 1]

negev-y2 −x [−1, 0]

mult1 a ∗ b [−1, 1]

mult2 a ∗ b [−1, 1]

mult3 a ∗ b [−1, 1]

mult4 a ∗ b [−1, 1]

Vupdate AB [−3.51× 106, 1.76× 106]

Dupdate1 AB [−1.04× 1015, 1.04× 1015]

Dupdate2 AB [−1.04× 1015, 1.04× 1015]

Table 6.6: Dynamic ranges for computations in 4× 4 Jacobi EVD

59

scenario, it is still an obvious indication that the dynamic range of some of these

computations are dangerously high. Indeed, it is no accident that in the simulations

carried out in Sec. 6.5.4, the 4 × 4 and 8 × 8 implementations converged only for

double precision floating point which has a much larger dynamic range. The first

actors that correspond to the infinite range are recipmu1 and recipmu2 which cal-

culate the dynamic range of a reciprocal operation on the outputs from EVDmu12

and EVDmu22. Since the minimum possible value at EVDmu12 and EVDmu22 is

0, the maximum value at recipmu1 and recipmu2 come out to be ∞. EVDmu12

computes the dynamic range of the operation (
√

δ2 + 4−δ)2. Mathematically speak-

ing, this expression should always be greater than 0 because it a squaring operation

and
√

δ2 + 4 6= δ. The fact that the minimum value at this node is 0, when it

should not be so is the reason why further operations in the application become ∞

thereby leading to many incorrect computations and the loss of convergence. On

closely observing the flow of the data in this part of the graph and the respective

dynamic ranges, it can be seen that this happens when δ assumes very high values.

These operations correspond to equations (6.6) and (6.7) which are restated here

for convenience. As the number of iterations increase in the Jacobi EVD algorithm,

the off-diagonal elements (parameter b in the equation for δ) tend to 0. There-

fore, as the number of iterations increases, δ → ∞. As δ → ∞,
√

δ2 + 4 ≈ δ and

√
δ2 + 4− δ → 0). In case of insufficient precision, this difference becomes exactly 0

leading to incorrect computations further on. The same happens when δ < 0 with

60

EVDmu22 which computes (
√

δ2 + 4 + δ)2

µ1 =
2√

δ2 + 4− δ
µ2 =

2√
δ2 + 4 + δ

(6.12)

δ =
a− c

|b| θ = tan−1

[
Im(b)

Re(b)

]
(6.13)

Using our application exploration framework and adopting basic principles of

precision analysis, we have identified the source of precision loss in the Jacobi eigen-

value decomposition. By identifying solutions to this problem, and verifying them,

we can provide useful feedback to the low-level designers regarding the implementa-

tion. Prima facie one of two methods can be used to overcome this problem. One

option is to confirm by a more accurate analysis if double precision floating point’s

precision is sufficient to accurately compute
√

δ2 + 4− δ for all possible values of δ.

The second option is to reformulate the equation for µ1 in (6.12) in such a way as to

avoid the difference operation. Note that when δ > 0, µ2 can be computed without

any precision loss due to the presence of the addition operation. Obviously, if refor-

mulating the expression for µ1,2 is feasible, it would be a more foolproof solution to

confirm the convergence of the algorithm.

On close inspection of the equations in (6.12), it can be seen that µ1 can be

expressed in terms of µ2 thereby avoiding the difference operation.

µ1µ2 =

(
2√

δ2 + 4− δ

)(
2√

δ2 + 4 + δ

)
=

4

(
√

δ2 + 4)2 − δ2
= 1

µ1 =
1

µ2

=

√
δ2 + 4 + δ

2

This theoretically eliminates the root of the precision problem, and is useful

feedback to the algorithm developers. In order to verify this new formulation, the

61

Node Computation Dynamic Range

ComplexMag
√

a2 + b2 [1.49× 10−8, 4.78× 1014]
EVDdelta (a− b)/c [−4.65× 1022, 4.65× 1022]
EVDdelta2p4 a2 + 4 [4, 2.16× 1045]
sqrt

√
x [2, 4.65× 1022]

EVDmu12 (
√

δ2 + 4 + δ)2 [10−45, 2.16× 1045]

Sqrtp1mu1
√

x + 1 [1, 4.65× 1022]
ev-x1 1/x [2.15× 10−23, 1]
ev-x2 1/x [2.15× 10−23, 1]
recipmu1 1/x [4.6× 10−46, 10−45]

recipy1
√

x + 1 [1, 4.65× 1022]
ev-y1 1/x [2.15× 10−23, 1]
negev-y2 −x [−1,−2.15× 10−23]
ev-y2 1/x [2.15× 10−23, 1]
mult1 a ∗ b [−1, 1]
mult2 a ∗ b [−1, 1]
mult3 a ∗ b [−1, 1]
mult4 a ∗ b [−1, 1]
Vupdate AB [−3.51× 106, 1.76× 106]
Dupdate1 AB [−1.04× 1015, 1.04× 1015]
Dupdate2 AB [−1.04× 1015, 1.04× 1015]

Table 6.7: Dynamic ranges 4× 4 Jacobi EVD with reformulation

actors for computing the dynamic range of µ1 and µ2 were accordingly rewritten and

the dynamic range simulation with functional DIF was repeated. The new ranges

obtained are all within [−1046, 1046] and can thus be implemented with pseudo

floating point with at least E = 10. However, since this analysis is conservative,

it may be possible to implement this algorithm even with E = 8. We confirm this

with C simulation.

This analysis can also be verified with the C-based implementation by rewrit-

ing the code segment corresponding to µ1,2’s computation. The new implementation

converged for all the precisions under consideration and produced valid results for

all configurations with E ≥ 8. As was shown in the dataflow-based dynamic range

62

10
0

10
1

10
2

10
3

10
4

10
5

60

80

100

120

140

160

180

200

220

Condition number (log scale)

S
N

R
 (

in
 d

B
)

Matlab
Pseudofloat 31,10
Pseudofloat 31,8
Pseudofloat 24,10
Pseudofloat 24,8
Pseudofloat 16,10
Pseudofloat 16,8

Figure 6.3: SNR in dB vs condition number for 2× 2 Hermitian matrix

analysis, E = 6 did not provide sufficient range. The plots in figures 6.3, 6.4 and

6.5. show the SNR of the reconstructed matrix after eigenvalue decomposition as a

function of the independent parameter, the condition number, for both MATLAB

and C. The SNRs are expectedly higher for higher precisions, but in all cases are

above the minimum required SNR of 50 dB. Thus the minimum required internal

precision for computation for the Jacobi eigenvalue decompositon is I = 16, E = 8.

By using DIF to model the eigenvalue decompositon and functional DIF to

prototype the dynamic range analysis of this application in the DICE framework, we

have demonstrated how dataflow modeling and DICE synergistically facilitate high

level application exploration. DICE’s highly flexible and reconfigurable framework

enables it to be used in various stages of application development and is especially

well-suited in model-based or dataflow based implementations.

63

10
0

10
1

10
2

10
3

10
4

10
5

40

60

80

100

120

140

160

Condition number (log scale)

S
N

R
 (

in
 d

B
)

 Matlab

Pseudofloat 31,10

Pseudofloat 31,8

Pseudofloat 24,10

Pseudofloat 24,8

Pseudofloat 16,10

Pseudofloat 16,8

Figure 6.4: SNR in dB vs condition number for 4× 4 Hermitian matrix

10
1

10
2

10
3

10
4

10
5

40

60

80

100

120

140

160

Condition number (log scale)

S
N

R
 (

in
 d

B
)

 Matlab

Pseudofloat 31,10

Pseudofloat 31,8

Pseudofloat 24,10

Pseudofloat 24,8

Pseudofloat 16,10

Pseudofloat 16,8

Figure 6.5: SNR in dB vs condition number for 8× 8 Hermitian matrix

64

Chapter 7

Conclusion

With the rapidly growing number of application domains in modern embedded

computing, many sophisticated applications requiring complex digital systems are

emerging. This has led to the increased need for systematic and efficient design flows

facilitating the use of heterogeneous programming environments, languages and tar-

get platforms making the overall development process more complicated, error-prone

and tedious. The design and development of embedded systems is still largely done

in an ad hoc fashion, and is especially sluggish in large collaborative projects with

globally-distributed design teams. Best practices used do include model-based de-

sign which improves efficiency by using a common design environment across project

teams and by linking designs directly to requirements.

In this work, we proposed enhancements to existing design flows that utilize

model-based design to extract dataflow behavior and to verify cross-platform cor-

rectness of individual actors. We introduce the DSPCAD Integrative Command

Line Environment (DICE) as a realization of managing these enhancements to the

design flow. DICE with its platform independent conventions facilitates the effi-

cient management of design and test of cross-platform software projects, and enjoys

a high level of synergy with Dataflow Interchange Format (DIF), our model-based

development environment, in high level application exploration and in the seamless

65

integration of testing with design.

We demonstrated the use of this enhanced design flow with two case studies.

The development of electronic systems in the Compact Muon Solenoid of the Large

Hadron Collider is a collaborative project with multiple geographically distributed

teams, and with each sub-system having separate teams for algorithm development,

firmware and hardware development and so on. We actively use DICE’s novel test

framework on modules of a triggering system in the CMS, and demonstrate how

the cross-platform model-based approach, automatic testbench creation and inte-

gration of testing in the design process alleviate the rigors of developing such a

complex digital system. The use of a common framework like DICE for all the im-

plementations helped standardize design specifications, communication interfaces,

and ensured uniformity in data representation, apart from facilitating the reuse of

tests.

In our second case study, we began with an exploration study into the per-

formance versus precision metrics for the Jacobi Eigenvalue Decomposition (EVD).

With the initial implementation in C leading to significant convergence issues, we

identified the need to perform a fine-grained analysis on the precision for all the com-

putations in the application. We modeled the application graph and the precision

analysis with DIF and functional DIF and executed the entire analysis by slightly

reconfiguring the DICE unit testing framework. Although the aim was to do an

analysis and not testing or verification per se, simulation of the application graph

was still required with external inputs, making DICE a convenient framework for

this exploration study. We were able to analyze the required precisions at different

66

nodes in the application graph and hence identify the nodes that required higher

precision than available. By reformulating the mathematical expressions for this

operations, we circumvented this problem and provided feedback to the algorithm

developers. This case study is a demonstration of the use of dataflow modeling in

early stage application exploration and the use of DICE in the overall design flow.

With these two case studies, the integration of DICE with model-based ap-

proach was highlighted to make the application design process easier, yet still rig-

orous and evolvable.

7.1 Future Work

In this thesis, we have presented a model-based design flow with a language

independent software development framework. We have highlighted the benefits

of using dataflow models to do analysis and verification of system modules. Fu-

ture work along the same lines would involve using DICE for automating aspects of

testing like test case generation using formal specification and derivation of hard-

ware description language (HDL) test components from functional test structures

developed at higher levels of abstraction using dataflow methods.

67

Bibliography

[1] S. S. Bhattacharyya, S. Kedilaya, W. Plishker, N. Sane, C. Shen, and G. Zaki.
The DSPCAD integrative command line environment: Introduction to DICE
version 1. Technical Report UMIACS-TR-2009-13, Institute for Advanced Com-
puter Studies, University of Maryland at College Park, August 2009.

[2] DICE for download, http://www.ece.umd.edu/DSPCAD/home/software.htm.

[3] S. S. Bhattacharyya, S. Kedilaya, W. Plishker, N. Sane, C. Shen, and G. Zaki.
Using the DSPCAD integrative command-line environment: User’s guide for
DICE version 1.0. Technical Report DSPCAD-TR-2009-01, Maryland DSP-
CAD Research Group, Department of Electrical and Computer Engineering,
University of Maryland at College Park, 2009.

[4] C Hsu, I. Corretjer, M. Ko., W. Plishker, and S. S. Bhattacharyya. Dataflow
interchange format: Language reference for DIF language version 1.0, user’s
guide for DIF package version 1.0. Technical Report UMIACS-TR-2007-32,
Institute for Advanced Computer Studies, University of Maryland at College
Park, June 2007. Also Computer Science Technical Report CS-TR-4871.

[5] C Lefevre. LHC: the guide. CERN-Brochure-2008-001-Eng, January 2008.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 3rd edition, 1996.

[7] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous dataflow
programs for digital signal processing. IEEE Transactions on Computers,
February 1987.

[8] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the
token flow model. In Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, April 1993.

[9] C. Hsu and S. S. Bhattacharyya. Porting DSP applications across design tools
using the dataflow interchange format. In Proceedings of the International
Workshop on Rapid System Prototyping, pages 40–46, Montreal, Canada, June
2005.

[10] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis from the dataflow
interchange format. In Proceedings of the International Workshop on Software
and Compilers for Embedded Systems, pages 37–49, Dallas, Texas, September
2005.

[11] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Func-
tional DIF for rapid prototyping. In Proceedings of the International Symposium
on Rapid System Prototyping, pages 17–23, Monterey, California, June 2008.

68

[12] T. Dohmke and H. Gollee. Test-driven development of a PID controller. IEEE
Software, 24(3):44–50, 2007.

[13] P. Hamill. Unit test frameworks. O’Reilly, 2004.

[14] S. Cozens. Advanced Perl Programming, 2nd edition, chapter 8. O’Reilly, 2005.

[15] W. Plishker et al. Model-based DSP implementation on FPGAs. In Proceed-
ings of the International Symposium on Rapid System Prototyping, pages 8–11,
Fairfax, Virginia, June 2010.

[16] D. Acosta, M. Della Negra, L. Fo, A. Herv, and A. Petrilli. CMS physics:
Technical design report. CMS Technical Design Report CERN-LHCC-2006-
001, CERN, Geneva, Switzerland, 2006. Also CMS-TDR-008-1.

[17] P. Chumney, S. Dasu, J. Lackey, M. Jaworski, P. Robl, and W. H. Smith.
Level-1 regional calorimeter trigger system for CMS. In Proceedings of the
International Conference on Computing in High Energy and Nuclear Physics,
La Jolla, California, March 2003.

[18] D. Gerlach and A. Paulraj. Adaptive transmitting antenna arrays with feed-
back. IEEE Signal Processing Letters, 1(10):150–152, oct 1994.

[19] I. Hen. MIMO architecture for wireless communication. Intel Technology Jour-
nal, 10(2), 2006.

[20] A. J. Grant. Performance analysis of transmit beamforming. IEEE Transactions
on Communications, Vol. 53:738–744, 2005.

[21] I. E. Telatar. Capacity of multi-antenna gaussian channels. European Transac-
tions on Telecommunications, 10:585–595, 1999.

[22] F. W. Vook, T. A. Thomas, and Z. Xiangyang. Transmit diversity and trans-
mit adaptive arrays for broadband mobile OFDM systems. In IEEE Wireless
Communications and Networking, volume 1, pages 44 –49, 2003.

[23] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley and Sons,
Inc., 2nd edition, 2002.

[24] D. Menard, D. Chillet, F. Charot, and O. Sentieys. Automatic floating-point to
fixed-point conversion for DSP code generation. In Proceedings of International
Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES 2002), pages 270–276, Grenoble, France, October 2002.

[25] H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A fixed-point
design and simulation environment. Design, Automation and Test in Europe
Conference and Exhibition, page 429, 1998.

69

[26] K. Kum, J. Kang, and W. Sung. AUTOSCALER for C: an optimizing floating-
point to integer C program converter for fixed-point digital signal processors.
IEEE Transaction on Circuits and Systems II: Analog and Digital Signal Pro-
cessing, 47(9):840–848, September 2000.

[27] P. Belanovic and M. Rupp. Automated floating-point to fixed-point conversion
with the fixify environment. In RSP 2005: Proceedings of the 16th IEEE Inter-
national Workshop on Rapid System Prototyping, pages 172–178, Washington,
DC, USA, 2005. IEEE Computer Society.

[28] A. A. Gaffar, W. Luk, P. Y. K. Cheung, and N. Shirazi. Customising floating-
point designs. In FCCM 2002: Proceedings of the 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, page 315, Washington,
DC, USA, 2002. IEEE Computer Society.

[29] K. Han and B. L. Evans. Optimum wordlength search using sensitivity infor-
mation. EURASIP Journal on Applied Signal Processing, 2006:76, 2006.

[30] R. B. Kearfott. Interval computations: Introduction, Uses and Resources. Eu-
romath Bulletin, 2:95–112, 1996.

70

