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We analyze how distributed or decentralized estimation canbe performed over net-

works, when there is a price to be paid whenever nodes in the network communicate with

each other. The work here has application especially in the network control systems. As-

sume that different nodes in the network can track perfectlyor with imperfectly some

stochastic processes, while other nodes in the network needto estimate these stochastic

processes. The nodes which can observe the stochastic processes can send information

directly to the nodes which need to estimate the processes, or information can be sent to

intermediate nodes. When each transmission is performed a cost for communication is

paid. The goal of the network is to optimize jointly a cost which consists both of a func-

tion of the estimation error and a function of the transmission cost. We show here that for

some simple topologies the decision to send information over the network is a threshold

policy, while the estimators are linear estimators which resemble with the Kalman-filter.

For the result dealing with simple topologies we have provedthe results using majoriza-

tion theory.

It is also shown here both analytically and numerically thatthings can immediately



become quite complicated. If we take into consideration multidimensional problems or

problems with multiple agents and/or transmission noise, the optimal strategies can no

longer be found analytically and it can be quite difficult to compute numerically the opti-

mal strategies.
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Chapter 1

Introduction

1.1 Motivation

Decentralized systems appear in a wide number of application, such as Internet,

sensor networks, MANET (mobile as-hoc networks), robotics, multi-core CPUs, telecom-

munications, surveillance networks, control of autonomous aerial or underwater vehicles

etc. Decentralized systems are made from multiple components, where each component

has total or partial information about the state of the system. In centralized systems, if

these systems are not fully observable, the control has a dual aspect, the actual control

which alters the state of the system and the estimation, i.e.the control that alters the fu-

ture information about the state of the system. In decentralized systems, the control has

one other function, the communication, i.e. the control that alters the future information

that other components or agents have about the state of the system. Hence, in decentral-

ized systems we can talk about the triple aspect of control: actual control, estimation and

communication. The term triple aspect of control was introduced by P. Varayia. Even in

the case where in the network there are components which haveperfect information about

the state of the system, there is still the issue of what information must send those agents

to other components. It theory at least, if the communication is noiseless, they can send

the entire information, but since in practice the communication channels are noisy and the

components have constrained computation capabilities, itis useful to analyze what infor-
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mation is sufficient for the components with partial observation of the system in order to

achieve the common goal of the network.

We analyze how distributed or decentralized estimation canbe performed over net-

works, when there is a price to be paid whenever nodes in the network communicate with

each other. The work here has application especially in the network control systems. As-

sume that different nodes in the network can track perfectlyor with imperfectly some

stochastic processes, while other nodes in the network needto estimate these stochastic

processes. The nodes which can observe the stochastic processes can send information

directly to the nodes which need to estimate the processes, or information can be sent to

intermediate nodes. When each transmission is performed a cost for communication is

paid. The goal of the network is to optimize jointly a cost which consists both of a func-

tion of the estimation error and a function of the transmission cost. We show here that for

some simple topologies the decision to send information over the network is a threshold

policy, while the estimators are linear estimators which resemble with the Kalman-filter.

For the result dealing with simple topologies we have provedthe results using majoriza-

tion theory.

When the topologies become slightly more complicated, the optimal policies be-

come more complex and it becomes more difficult to analyze analytically or to compute

numerically these optimal strategies.
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1.2 Literature review

Multi-agent systems can be classified based on the objectiveof the agents as teams

or on the information available to the agents as static or dynamic systems. Dynamic sys-

tems can be further decomposed in sequential and non-sequential. Sequential systems

can be decomposed in systems with classical information structures and non classical

information structures. The multi-agent systems as teams were studied first by Rad-

ner in [20], Marschak and Radner in [21], later in control systems by Witsenhausen in

[22] and [24], and Ho in [27] and [28], and others. The distinction between sequential

and non-sequential systems was given by Witsenhausen in [23] and [25]. Witsenhausen

studied also the optimal design of non-sequential systems in [24]. Properties of non-

sequential systems were studied by Andersland [31], Andersland and Teneketzis [32] and

[33], Teneketzis [34] and Teneketzis and Andersland [35]. The importance of informa-

tion structures was first highlighted by Witsenhausen in [22]. The role of information

structures in specific teams problems was studied by Ho and Chu in [29], Chu in [30],

Yoshikawa in [36] and others.

Previous work has been done in the field of distributed estimation and in filtering.

We mention here the work of Hajek [1], which explores the optimization of paging and

registration policies in cellular networks. Motion is modeled as a discrete-time Markov

process, and minimization of the discounted, infinite-horizon average cost is addressed.

Majorization theory and Rieszs rearrangement inequality are used to show that jointly

optimal paging and registration policies are given for symmetric or Gaussian random

walk models by the nearest-location-first paging policy anddistance threshold registration
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policies. An iterative algorithm is proposed and investigated, which alternates between

paging policy optimization and registration policy optimization. This paper [1] refers only

to random walk or Gaussian random walk, while we are looking at linear systems driven

by Gaussian noise and we are using the square of the estimation error in computing the

cost.

In [7], the authors consider a nonlinear filtering problem ofa diffusion process,

when several sensors are available. A nonlinear filter can use any number of these sensors

at each time, with each of the sensor having an associated cost. The problem considered

in [7] is the optimal selection of a schedule of these sensorsfrom the available set, so

as to optimally estimate a function of the state at the final time. This problem is more

general than what we are solving, but it is very difficult to compute the optimal policies

in practice.

In [5], the authors consider a sequential estimation problem with two decision mak-

ers, one agent makes sequential observation about the stateof a stochastic process and

decides whether to send information to the other agent, which will estimate the state of

the underlying stochastic process. These agents have a common objective of minimizing

a performance criterion, with the constraint that the observer agent can send information

to the estimator agent only a limited number of times. In [5],the authors assume that the

decision policies are threshold policies, while in our paper we prove the optimality of the

threshold policies for similar problems.

The work in [8] is motivated by large-scale sensor network where data collection

from all sensors is prohibitive. These sensors are part of a network control system in

which a controller can observe the sensors. The observations are not fixed, the controller
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can choose which sensors to observe and each choice has a costassociated with it. The

work in [8] looks mainly at the linear quadratic Gaussian problem and also looks at a

problem similar to Problem 2.1, for which the authors found numerically that the optimal

policy is a threshold policy.

In [9], the author presents an optimization problem dealingwith selecting one mea-

surement from many sensors, where each measurement has an associated cost. In [9] it is

shown that the problem of selecting the optimal strategy canbe transformed into a deter-

ministic control problem. The computation of the measurement policy takes place offline

and the optimal strategy is adopted. In contrast to our result, the decisions analyzed in [9]

are taken in an off-line fashion. In [10], the paper considers a class of problems known

as measurement adaptive problems, in which the control is available not only to the plant

but also the measurement subsystem. In the special case of linear systems, quadratic cost,

and Gaussian random processes, the authors showed that the optimization of plant control

can be carried out independently of the measurement controloptimization. Moreover the

optimization of the measurement control can be done apriori, hence the optimization of

the measurement subsystem is done off-line.

In [6], the control and the estimation are separated and the estimation problem is

exactly the same problem that we address in this paper. The authors assume that estimator

policy is a linear estimator and show using dynamic programming that the decision to send

a sample depends on the estimation error. The problem analyzed in [6] deals also with

the multidimensional case, which we handle handle in Chapter 4. In contrast to the work

in [6] we proved analytically that the state estimator is linear for the scalar case and that

there exists a threshold policy which is an optimal samplingdecision policy.
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In [17], [42], similar problems are discussed, in which estimation is performed

with a single sensor and a single measurement and the question is when to take send a

measurement. The author could not prove the optimality of the threshold sampling, he

proved that the scheme is better than a deterministic scheme. Another problem discussed

in [17] is similar to the one discussed in Chapter 2, i.e. the level-triggered sampling

scheme. Again the author did not prove the optimality of sucha scheme, while we prove

its optimality in Chapter 2.

In [15], [16], the optimal design of multi-agent sequentialteams is investigated, and

a methodology is presented to convert the search of a multistage design into a sequence

of nested optimization problems. This conversion is calledsequential decomposition and

it drastically simplifies the search of optimal solution forboth finite and infinite horizon

problems.

In [18], it is considered a stochastic dynamic decision problem where at each step

two decision must be taken, the first one is what information about the signal should be

sent, while the second one what control must be adopted. For afinite horizon first order

ARMA model, with Gaussian statistics and quadratic cost criterion, the authors showed

that the optimal measurement strategy consists of transmitting the innovation linearly,

which will imply that the optimal control law is also linear.The authors show that for

higher order ARMA models, there exist a nonlinear design that outperforms the optimal

affine design.

In [19], it is discussed the optimal controllers for linear-quadratic stochastic sys-

tems, where the measurement channels are no longer fixed, butthey will be a part of the

overall design. The authors show that, for the scalar case, the optimal measurement chan-
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nel is linear and the optimal controller is also linear. In the vector version however, it is

possible to find nonlinear design which outperforms the optimal linear design.

In [40, 44], the authors are looking at distributed estimation problems and place the

Witsenhausen couterexample [26] within a broad class of dynamic decision problems with

nonclassical information. In [51], a vector version of the Witsenhausen counterexample is

presented. Moreover, it was reported in [43] that the discretized version of Witsenhausen’s

counter-example is NP-complete. This fact has motivated the numerical studies in [45,

46, 47].

The work in [29, 30], considered the case where a linear information pattern is de-

fined by a directed graph. Using the notion of partially nested information structure, the

authors of [29, 30] characterize when the optimal solution can be found, while bounds

are derived when the optimal is unknown. In [48], it is shown that if Witsenhausen Coun-

terexample is modified using an induced norm then the optimalcontrol is linear. In [50],

the authors show that linear sensing policies over Gaussianchannels might not be op-

timal in a distributed multi-sensor, single controller scenario, for the minimization of a

quadratic cost function. This is in contrast with the corresponding single-sensor problem,

which does admit an optimal linear solution. The work in [49]addresses one follow-up

question listed in the paper by Witsenhausen, more specifically, [49] discusses the con-

nections between partially nested structures, for which linear controllers are known to

be optimal, and quadratically invariant structures, for which the optimal linear control is

known to be convex.
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Figure 1.1: The Two Blocks

1.3 Thesis Structure

In Chapter 2 we solve a distributed estimation problem whichconsists from a

pre-processor or encoder and an estimator or a decoder, shown in Figure 1.1. The pre-

processor has perfect knowledge about a stochastic processand the decoder has access

only to the information which it receives from the decoder. Each time the encoder sends

information to the decoder it must pay a cost for communication. The encoder and the

decoder must jointly optimize a common cost, which consistsfrom the estimation error

and the communication cost. The problem which arises is whenand what information

must be sent to the estimator. Using theory of majorization [4], it was shown that the

optimal policy to send sample to the estimator is a thresholdpolicy.

In Chapter 3, we present some applications of the problem presented in Chapter 2,

from which we include general costs and noise distributions, noisy observation at the

pre-processor side, a quadratic control problem, a problemwhere we consider packet

drop with acknowledgement, infinite time horizon problems(the discounted cost and the

average cost) and the tandem problem.

In Chapter 4, we show that if we tackle the problem described in Chapter 2, but we
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look at the multidimensional case, things can get quite complicated. First, the method

used for proving the linearity of the estimator fails. If we consider a linear estimator (or

equivalent, a symmetric policy at the pre-processor), it isdifficult to prove properties of

the decision sets for time horizons bigger or equal to three.Moreover, for the time horizon

two, or at the penultimate stage, we found numerically that the decision sets need not be

convex.

In Chapter 5, we present a problem with multiple agents and noisy transmission

links. In this case, we show that simple affine strategies arenot optimal, despite the

fact that the problem has quadratic costs and Gaussian noise. We show numerically that

signalling strategies perform actually better.

In Chapters 2 and 3 we show how to solve the two blocks problem,while in Chap-

ters 4 and 5, we show the limitations of the methods used in Chapters 2 and 3.

In Chapter 6, we present future research directions, i.e. how the problems studied in

Chapters 2, 3, 4 and 5 can be applied to general network topologies or to control problem

with communication costs.

9



Chapter 2

The Two Blocks Problem: A Majorization Theory Approach

2.1 Problem Formulation

We address the design of a finite horizon optimal state estimation system featuring

two causal operators; a pre-processorP0,T and a remote estimatorE , whereT denotes the

time-horizon. At each time instant, the pre-processor outputs either an erasure symbol

or a real number, based on causal measurements of the state ofa first order linear time-

invariant system driven by process noise. The estimator hascausal access to the output of

the pre-processor and its output is denoted as state estimate. We consider an optimization

problem characterized by cost functions that combine the state estimation error and a

communication cost. In our formulation, the communicationcost depends on the output

of the pre-processor, where we ascribe zero cost to the erasure symbol and a pre-specified

positive constant otherwise. The state process, denoted asXk, is given and the two causal

operatorsP0,T andE are to be jointly designed so as to minimize the given cost function.

Most of this Section is dedicated to precisely formulating such an optimal estima-

tion problem. In subsection 2.1.1 we give a description of the information structure of our

framework, followed by subsections 2.1.2, where we give theproblem formulation. In

Section 2.2, we state the optimal solution of the problem studied in this chapter, without

proof, while Section 2.4 is dedicated to presenting notionsfrom majorization theory and

to setting up the proof the optimality of the scheme presented in Section 2.2. In Sec-

10



- P0,T
- E(P0,T ) -

{Xk}T
k=0 {Vk}T

k=0 {X̂k}T
k=0

Figure 2.1: Schematic representation of the distributed estimation system considered in

this chapter. It depicts the pre-processorP0,T and the corresponding optimal estima-

tor E(P0,T ), which produces the minimum mean squared error estimate of the process

{Xk}T
k=0 given in (2.5).

tion 2.5, we prove the optimality scheme presented in Section 2.2. In Section 2.6, we

present a simulation example, where we show how the optimal solution of the main prob-

lem from this chapter works. We also need to mention that in Appendices A.1 and A.2

we state and prove lemmas that are supporting results used throughout the chapter.

2.1.1 Preliminary Definitions and Information Pattern Description

We start by describing the three stochastic processes and the two classes of causal

operators (pre-processor and estimator) that constitute our problem formulation.

Definition 2.1 (State Process) Given a real constanta, and a positive real constantσ2
W ,

consider the following first order, linear time-invariant discrete-time scalar system driven

by process noise:

X0
def
= x0 (2.1)

Xk+1
def
= aXk + Wk, k ≥ 0 (2.2)

where{Wk}T
k=0 is an independent identically distributed (i.i.d.) Gaussian zero mean

stochastic process with varianceσ2
W andx0 is a real number. The filtration generated by

11



{Xk}T
k=0 is denoted as:

Xk
def
= σ (Xt; 0 ≤ t ≤ k) (2.3)

whereσ (Xt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Xt, 0 ≤ t ≤ k}, for

all integersk.

Definition 2.2 (Pre-processor and remote link process) Consider an erasure symbol de-

noted asE and a causal mapP0,T : (x0, . . . , xk) 7→ vk, defined fork ∈ {0, . . . , T} and

vk ∈ R ∪ {E}. Hence, at each time instantk, the preprocessorP0,T outputs either a

real number or the erasure symbol, based on past observations of the state process.P0,T

generates a stochastic process{Vk}T
k=0 via the application of the operatorP0,T to the

process{Xk}T
k=0 (See Figure 2.1). The mapP0,T is a valid pre-processor if the following

two conditions hold: (1) The pre-processor transmits the initial statex0 at time zero, i.e.,

V0 = x0. (2) The pre-processor is measurable in the sense that the process{Vk}T
k=0 is

adapted toXk.

The filtration generated by{Vk}T
k=0 is denoted as{Bk}T

k=0 and it is obtained as:

Bk
def
= σ (Vt; 0 ≤ t ≤ k) (2.4)

Remark 2.1 Notice that any finite vector of reals can be encoded into a single real num-

ber via a suitable invertible transformation. Hence, without loss of generality, we can

also assume that the pre-processor can transmit either a vector of real numbers or the

erasure symbol.

Definition 2.3 (Optimal estimate and optimal estimator) Given a pre-processorP0,T , we

consider the optimal estimator in the expected squared sense whose optimal estimate at
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timek is denoted aŝXk and takes values:

x̂k
def
=





E
[
Xk|{vt}k

t=0

]
if k ≥ 1

x0 if k = 0

(2.5)

whereE
[
Xk|{vt}k

t=0

]
represents the expectation of the stateXk conditioned on the ob-

served current and past outputs of the pre-processor{vt}k
t=0 (see Figure 1). We useE(P0,T )

to denote theoptimal estimatorassociated with a given pre-processor policyP0,T .

Notice that from Definition 2.2 we assume that the pre-processor always transmits

the initial statex0. Hence, the initial estimate is set to satisfyx̂0 = v0 = x0. Such an

assumption is a key element that will allow us to prove the optimality of a certain scheme,

via an inductive method. This will be discussed later on in Section 2.5.

Remark 2.2 It is important to note that all the information available atthe estimator

E(P0,T ) is also available at the pre-processorP0,T . Hence, the pre-processorP0,T can

construct the state estimatêXk by reproducing the estimation algorithm executed at the

optimal estimator.

2.1.2 The Two Blocks Problem and Main Results

In this subsection, we define the optimal estimation paradigm that is central to this

chapter. We start by specifying the cost, which is used as a merit criterion throughout the

chapter, followed by the problem definition.

Definition 2.4 (Finite time horizon cost function)Given a valid pre-processorP0,T

(Definition 2.2), a real constanta, a positive integerT , a positive real numberd less

13



than one and positive real constantsσ2
W andc, we define:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

dk−1E



(
Xk − X̂k

)2

+ cRk︸︷︷︸
communication cost


 (2.6)

whereXk is the state of the system defined in (2.1)-(2.2),X̂k is the optimal estimate

specified in Definition 2.3, andRk is the following indicator function:

Rk
def
=






0 if Vk = E

1 otherwise

, k ≥ 1 (2.7)

Remark 2.3 (Cost does not depend onX0) Notice that because the plant (2.1)-(2.2) is

linear, the fact that̂x0 = x0 holds (see Definition 2.3) implies, in view of Remark 2.2,

in particular, a is known at the estimator, that the homogenous part of the state can

be reproduced at the estimator. Hence, the optimal estimator will incorporate such an

homogeneous term, thus subtracting it out from the estimation errorXk − X̂k, for k ≥ 0.

This also implies that the cost (2.6) does not depend on the homogeneous term nor on the

initial conditionX0.

The following is the main problem addressed in this chapter.

Problem 2.1 Let a real constanta, the variance of the process noiseσ2
W and the initial

conditionx0 be given. In addition, consider that a positive realc, a positive real number

d less then one and a positive integerT are given, specifying the cost as in Definition 2.4.

Find:

P∗
0,T ∈ argmin

P0,T

J0,T (a, σ2
W , c,P0,T ) (2.8)

14



2.2 Optimal Solution to the Two Block Problem

In this section, we start by defining a particular choice of estimator (section 2.2.1)

and pre-processor (section 2.2.3), which we denote as Kalman-like and symmetric thresh-

old policy, respectively. As we argue later on, in Theorem 2.1, such estimator and pre-

processor are optimal for Problem 2.1.

2.2.1 A Kalman-like estimator

Definition 2.5 (Kalman-like estimator) Given the process defined in (2.1)-(2.2) and a

pre-processorP0,T , define the mapZ : (v0, . . . , vk) 7→ zk, for k in the set{0, . . . , T},

wherezk is computed as follows:

z0
def
= x0 (2.9)

zk
def
=





azk−1 if vk = E

vk otherwise

, with k ≥ 1 (2.10)

Remark 2.4 The Kalman-like filter generates the process{Zk}T

k=0 via the operatorZ

applied to the process{Vk}T
k=0. Notice that the pre-processor has access to the estimate

Zk because it has access and full control of the input applied toZ.

2.2.2 The SetPT - of Admissible Pre-Processors

We proceed by defining a class of admissible pre-processors,which is amenable

to the use of recursive methods for performance analysis. Weargue in Remark 2.6 that

15



there always exist an admissible pre-processor that is an optimal solution to Problem 2.1.

This implies that we incur no loss of generality in constraining our analysis to admissible

pre-processors.

The following Remark provides an equivalent characterization of the class of ad-

missible pre-processors.

Remark 2.5 Let T ∈ N and letP0,T be given. ThenP0,T is admissible if and only if for

eachm ∈ {0, . . . , T} there exists a mapPm,T : (xm, . . . , xk) 7→ vk and a binary process

{rj}T

j=0:

rm = 1 =⇒ Pq,T (xq, . . . , xk) = Pm,T (xm, . . . , xk), xq, . . . , xk ∈ R, k ≥ m ≥ q ≥ 0

(2.11)

Given an admissible pre-processorP0,T , later on we will also refer to the time-restricted

pre-processors{Pm,T}T
m=1 according to Definition 2.6, or equivalently as implied by

(2.11).

Definition 2.6 (Admissible pre-processor) Let a horizonT larger than zero and a pre-

processor policyP0,T be given. The pre-processorP0,T is admissible if there exist maps

Pm,T : (xm, . . . , xk) 7→ vk, with 0 ≤ m ≤ T and k ≥ m, that satisfies the following

recursion:

Algorithm Pm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm.

• (Step A) Setk = k + 1. If k > T then terminate, otherwise execute Step B.

16



• (Step B) Obtain the pre-processor output at timek by computingPm,T (xm, . . . , xk).

If Pm,T (xm, . . . , xk) = E then setrk = 0 andvk = E (i.e. send the erasure symbol)

and go back to Step A. Otherwise execute algorithmPk,T .

End of Algorithm for Pm,T

The class of all admissiblepre-processors is denoted asPT .

Remark 2.6 Given a positive time-horizonT , there is no loss of generality in restrict-

ing our search for an optimal pre-processor to the setPT . Indeed, let an optimal pre-

processor policyP∗
0,T be given. If a transmission takes place at some timem (rm = 1

holds) then the optimal output at the pre-processor isvk = xk, since, given that a real

number is transmitted, the choicevk = xk must be optimal because it leads to a perfect

estimatex̂m = xm. Hence, given thatrm = 1, by Markovianity we conclude that the

current and future output produced by the pre-processor{Vk}T
k=m will not depend on

the stateXk for timesk prior to m. Consequently,P∗
0,T satisfies (2.11), and hence it is

admissible.

2.2.3 Symmetric threshold pre-processor

Definition 2.7 In order to simplify our notation, we define the following process:

Yk
def
= Xk − aZk−1 (2.12)
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Using Definitions 2.1 and 2.5, we find that{Yk}T

k=0 can be rewritten as:

Y0 = 0 (2.13)

Yk+1 =





aYk + Wk if Rk = 0

Wk if Rk = 1

(2.14)

Remark 2.7 Yk has an even probability density function, sinceWk has an even prob-

ability function. This fact makes{Yk}T
k=0 a more convenient process to work with, in

comparison to{Xk}T
k=0. This motivates its use in our analysis hereon, whenever possi-

ble. No loss of generality is incurred because{Yk}T
k=0 can be recovered from{Xk}T

k=0,

and vice-versa, via the use of{Zk}T
k=0, which is common information at the pre-processor

and estimator (See Remark 2.4). In addition, notice that thecost (2.6) can be re-written

in terms of{Yk}T
k=0 as follows:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

dk−1E

[(
Yk − Ŷk

)2

+ cRk

]
(2.15)

whereŶk
def
= E

[
Yk|{Vt}k

t=0

]
. A key fact here is that̂Yk = X̂k − aZk−1 holds, leading

to the validity of the identityYk − Ŷk = Xk − X̂k.

Definition 2.8 Given a positive integer horizonT and an arbitrary sequence of positive

real numbers (thresholds)τ = {τk}T

k=1, for eachm in the set{0, . . . , T}, we define the

following algorithm fork ≥ m, which we denote asSm,T :

Algorithm Sm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm or

equivalently setym = 0.
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• (Step A)Increase the time counterk by one. Ifk > T holds then terminate, other-

wise execute Step B.

• (Step B)If |yk| < τk holds then setrk = 0, transmit the erasure symbol, i.e.,vk = E,

and return to Step A. If|yk| ≥ τk holds then setm = k and executeSm,T .

End of Algorithm Sm,T

Definition 2.9 (Symmetric threshold policy) The algorithmS0,T , as in Definition 2.8, is

denoted as symmetric threshold pre-processorand the class of all symmetric threshold policies

is denoted asST .

The following is the main result of this chapter.

Theorem 2.1 Let the variance of the process noiseσ2
W , the system’s dynamic constanta,

the communication costc, the discount factord and the time horizonT be given. There

exists a sequence of positive real numbersτ ∗ = {τ ∗
k}T

k=1, such that the corresponding

symmetric threshold policyS∗
0,T is an optimal solution to (2.8) and the corresponding

optimal estimatorE(S∗
0,T ) is Z. HereS∗

0,T andZ follow Definitions 2.9 and 2.5, respec-

tively.

Note: The proof of Theorem 2.1 is given in Section 2.5.

2.3 Auxiliary optimality results
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We start by defining the following class of path-dependent pre-processor policies,

which is an extension of Definition 2.9 so as to allow time-varying thresholds that de-

pend on past decisions. Such a class of admissible pre-processors will be used later in

Section 2.5, where we provide a proof for Theorem 2.1.

Definition 2.10 (AlgorithmDm,T ) Given a horizonT , consider that a sequence of (thresh-

old) functionsT def
= {Tm,k|m < k ≤ T, 1 ≤ m ≤ T}, with Tm,k : {0, 1}m−k → R, is

given. For everym in the set{1, . . . , T}, we define the following algorithm, which we

denote asDm,T :

Algorithm Dm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm or

equivalently setym = 0.

• (Step A)Increase the time counterk by one. Ifk > T holds then terminate, other-

wise execute Step B.

• (Step B)If |yk| < Tm,k(rm, . . . , rk−1) holds then setrk = 0, transmit the erasure

symbol, i.e.,vk = E, and return to Step A. If|yk| ≥ Tm,k(rm, . . . , rk−1) holds then

executeDk,T .

End of AlgorithmDm,T

Recall thatr0 throughrk−1 represent past decisions by the pre-processor, whererk = 1

indicates that the state is transmitted to the estimator at timek, whilerk = 0 implies that

an erasure symbol was sent.
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Definition 2.11 (Path-dependent symmetric threshold policy) Given a horizonT , con-

sider that a sequence of (threshold) functionsT def
= {Tm,k|m < k ≤ T, 1 ≤ m ≤ T}, with

Tm,k : {0, 1}m−k → R, is given. The path-dependent symmetric threshold pre-processor

associated withT is implemented via the execution of the algorithmD0,T , as specified

in Definition 2.10. Typically, we denote such an admissible pre-processor asD0,T . We

useD0,T to denote the entire classof path-dependent symmetric threshold pre-processors

with time horizonT .

The goal of this sectionis to provide the following two results that are crucial in

the proof of Theorem 2.1: In Proposition 2.1, we prove that ifD0,T is any given path-

dependent symmetric threshold pre-processor policy then the associated optimal esti-

matorE(D0,T ) is Z. In Lemma 2.1 we prove that if we optimize within the class of

path-dependent policies then the optimum is of the path-independent type, as specified in

Definition 2.9. This fact might raise the question of whetherDefinition 2.11 is needed.

The answer isyesbecause we adopt a constructive argument in the proof of Theorem 2.1

in Section 2.5, which uses Definition 2.11.

Proposition 2.1 Let D0,T be a pre-selected path-dependent symmetric threshold policy

(Definition 2.11), it holds that the optimal estimatorE(D0,T ) is Z, as described in Defi-

nition 2.5.

Remark 2.8 Proposition 2.1 could be recast by stating thatX̂k = Zk holds in the pres-

ence of path-dependent symmetric threshold pre-processors.

Proof: (of Proposition 2.1) In order to simplify the proof, we define{X̃k}T
k=0 as

the process quantifying the error incurred by adopting a Kalman-like estimatorZ (See
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Definition 2.5), i.e.,X̃k
def
= Xk − Zk. More specifically,{X̃k}T

k=0 can be equivalently

expressed as follows:

X̃0 = 0 (2.16)

X̃k+1 =






aX̃k + Wk if Rk = 0

0 if Rk = 1

, 0 ≤ k ≤ T − 1 (2.17)

The proof follows from the symmetry of all probability density functions involvingX̃k

andVk. More specifically, under symmetric path-dependent threshold policies the prob-

ability density function ofX̃k, given the past and current observations{Vt}k
t=0, is even.

Hence, we conclude thatE[X̃k|{Vt}k
t=0] = 0, which implies that̂Xk

def
= E[Xk|{Vt}k

t=0] =

Zk. �

2.3.1 Optimizing within the classDT

Remark 2.9 If D0,T is a symmetric path-dependent threshold pre-processor (see Defini-

tion 2.11) thenŶk = 0 holds, leading to the following equality:

J0,T

(
a, σ2

W , c,D0,T

)
=

T∑

k=1

dk−1E
[
Y

2
k + cRk

]
, D0,T ∈ DT (2.18)

The process defined in (2.14) is a Markov Decision Process (MDP) whose state and

control areYk andRk, respectively. Hence the minimization of (2.18) with respect to pre-

processor policiesD0,T in the classDT can be cast as a dynamic program [13]. To do so,

we define the sequence of functionsVt,T : R → R, t ∈ {1, . . . , T + 1} which represent

the cost-to-go as observed by the pre-processor. HereT represents the horizon, while

t denotes the time at which the decision was taken, and the argument of the function

is the MDP stateYt. In order to simplify our notation, we adopt the convention that
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VT+1,T (yT+1)
def
= 0, yT+1 ∈ R. Using dynamic programming, we can find the following

recursive equations forVt,T (yt), t ∈ {1, . . . , T}:

Vt,T (yt)
def
= min

rt∈{0,1}
Ct,T (yt, rt), t ∈ {1, . . . , T} (2.19)

whereCt,T : R × {0, 1} → R is defined as:

Ct,T (yt, rt)
def
=






c + dE [Vt+1,T (Wt)] if rt = 1

y2
t + dE [Vt+1,T (ayt + Wt)] if rt = 0

(2.20)

From (2.20) it immediately follows that an optimal decisionpolicy r∗t at any timet

is given by:

r∗t =





1 if Ct,T (yt, 1) ≤ Ct,T (yt, 0)

0 if Ct,T (yt, 0) < Ct,T (yt, 1)

(2.21)

Using the MDP given in Definition 2.7 and the value functions from equation (2.19),

we prove the following Lemma, which states that,within the class of symmetric path-

dependent pre-processorsDT (Definition 2.11), there exists an optimal path-independent

symmetric threshold policyS∗
0,T (Definition 2.9) for Problem 2.1.

Lemma 2.1 Let the parameters specifying Problem 2.1 be given, i.e., the variance of

the process noiseσ2
W , the system’s dynamic constanta, the communication costc, the

discount factord and the time horizonT are pre-selected. Consider Problem 2.1 with

the additional constraint that the pre-processor must be ofthe symmetric path-dependent

typeDT specified in Definition 2.11. There exists an optimal path-independentsymmetric

threshold policyS∗
0,T , as given in Definition 2.9, whose associated threshold selection
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{τ ∗
k}T

k=1 is given by a solution to the following equations:

Ct,T (τ ∗
t , 0) = Ct,T (τ ∗

t , 1), t ∈ {1, . . . , T} (2.22)

Proof: From (2.21), we conclude that in order to prove this Lemma we only need

to show that there exist thresholds{τ ∗
k}T

k=1 for which the following equivalences hold:

|yt| ≥ τ ∗
t ⇐⇒ Ct,T (yt, 1) ≤ Ct,T (yt, 0), t ∈ {1, . . . , T} (2.23)

Indeed, if (2.23) holds then the optimal strategy in (2.21) can be implemented via a thresh-

old policy. In order to prove that there exist thresholds{τ ∗
k}T

k=1 such that (2.23) holds, we

will use the following facts (A.1 thorugh A.4):

• (Fact A.1): For everyt in the set{1, . . . , T}, Ct,T (yt, 1) depends only ont, i.e., it

is a time-dependent constant independent ofyt.

• (Fact A.2): It holds thatCt,T (0, 0) < Ct,T (yt, 1) for yt ∈ R.

• (Fact A.3): For everyt in the set{1, . . . , T} there exists a positive constantut

such thatCt,T (yt, 0) > Ct,T (yt, 1) andCt,T (−yt, 0) > Ct,T (−yt, 1) hold for everyyt

satisfying|yt| > ut.

• (Fact A.4): It holds thatCt,T (yt, 0) is a continuous, even, quasi-convex and un-

bounded function ofyt, for everyt in the set{1, . . . , T}.

Facts A.1 and A.2 follow directly from (2.20), while Fact A.3follows from Fact

A.4, which requires a proof that we defer to a later stage. At this point we assume that

Fact A.4 is valid, and we proceed by noticing that continuityof Ct,T (yt, 0) with respect

to yt, as well as Facts A.2 and A.3, imply that the equations in (2.22) have at least one
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Figure 2.2: Illustration suggesting that Facts A.1 throughA.4. imply the existence of

thresholds for which equation (2.23) holds.

solution{τ ∗
k}T

k=1. Moreover, from Facts A.1 through A.4 we can conclude that such a

solution{τ ∗
k}T

k=1 guarantees that (2.23) is true (See Figure 2.2).

(Proof of Fact 4) Sincey2
t is an even, convex, unbounded and continuous function

of yt, from (2.20) we conclude that it suffices to prove by induction thatVt,T (yt) is even,

quasiconvex, bounded and continuous for eacht in the set{1, . . . , T}.

SinceVT+1,T (yT+1) = 0 holds by convention, the following is true:

VT,T (yT ) = min
(
c, y2

T

)
, yT ∈ R

HenceVT,T (yT ) is an even, quasiconvex, bounded and continuous function ofyT . Using

Lemma A.10 in Appendix A.2, we conclude thatE [VT,T (ayT−1 + WT−1)] is also an

even, quasiconvex, bounded and continuous function ofyT−1, which implies that so is

VT−1,T (yT−1). By induction it follows thatVt,T (yt) is an even, quasiconvex, bounded and

continuous ofyt, for eacht in the set{1, . . . , T}.�

Remark 2.10 Lemma 2.1 shows that the optimal policy, which solves Problem 2.1 under

the additional constraint that the pre-processor must be ofthe symmetric path-dependent

type, is in fact a symmetric path-independent policy. We want to compute the optimal

thresholds{τ ∗
k}T

k=1 and for that we need the value functions{Vk,T}T

k=1. The value func-
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tions can be computed recursively using equations (2.19) and (2.20) and the fact that

VT+1,T (y) = 0 for all y ∈ R. From factsA.1 andA.4 in the proof of Lemma 2.1 and the

fact thatCt,T (yt, 0) is strictly increasing foryt > 0 and strictly decreasing foryt < 0 for

all t ∈ {1, . . . , T}, it follows that the optimal thresholds are given by the solution of the

equations:

y2 + dE [Vt+1,T (ay + Wt)] = c + dE [Vt+1,T (Wt)] , t ∈ {1, . . . , T} (2.24)

Since the functions{Vk,T}T

k=1 are even, quasiconvex, bounded and continuous, it follows

that the solution of the system of equation (2.24) is unique,hence the optimal thresholds

{τ ∗
k}T

k=1 are unique.

2.4 Notation, Definitions and Basic Results for the Proof of Theorem 2.1

This section is dedicated to introducing notation, definitions and basic results in ma-

jorization theory that will streamline our proof of Theorem2.1. The proof of Theorem 2.1

is given in Section 2.5. In Subsection 2.4.1, we introduce basic majorization theory and

state a few Lemmas, which are supporting results for the proof of Theorem 2.1. In Sub-

section 2.4.2, we introduce notation and we derive recursive equations for the time update

of certain conditional probability density functions of interest.
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2.4.1 Basic Results, Notation and Definitions from Theory ofMajoriza-

tion

In [1], the authors define what a neat probability mass functions is. We will adapt

this definition for probability density functions onR.

Definition 2.12 (Neat pdf) Let f : R → R be a probability density function. We say

that f is neat iff is quasiconcave and there exists a real numberb such thatf is non-

decreasing on the interval(−∞, b] and non-increasing on[b,∞).

Remark 2.11 Throughout the chapter, we will use the useful fact that the convolution of

two neat and even probability density functions is also neatand even. The complete proof

of this fact is given in Lemma A.1 in Appendix A.1.

Hajek gives in [1] the definition of symmetric non-increasing function onRn. Since

we work only on the real line, it suffices to notice that a probability density function

f : R → R is symmetric non-increasing if and only if it is neat and even. Hence, without

loss of generality, in this chapter only usesymmetric non-increasingto qualify certain

probability density functions throughout the chapter.

Let A be a given Borel measurable subset ofR, we denote its Lebesgue measure

by L (A). If the Lebesgue measure ofA is finite then the symmetric rearrangement ofA,

denoted byAσ, is a symmetric closed interval centered around the origin with Lebesgue

measureL (A):

A
σ =

{
x ∈ R : |x| ≤ L (A)

2

}
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Let f : R → R be a given non-negative function, we definefσ, the symmetric

non-decreasing rearrangement off , as follows:

fσ(x)
def
=

∫ ∞

0

I{z∈R:f(z)>ρ}σ(x)dρ (2.25)

whereI{z∈R:f(z)>ρ}σ : R → {0, 1} is the following indicator function:

I{z∈R:f(z)>ρ}σ(x)
def
=





1 if x ∈ {z ∈ R : f(z) > ρ}σ

0 otherwise

, x ∈ R

If f andg are two probability density functions onR, then we say thatf majorizes

g, which we denote asf ≻ g, provided that the following holds:

∫

|x|≤ρ

gσ(x)dx ≤
∫

|x|≤ρ

fσ(x)dx, for all ρ ≥ 0 (2.26)

One interpretation of the inequality in (2.26) is that,f majorizesg, if and only if for

any Borel setF′ ⊂ R with finite Lebesgue measure, there exists another Borel setF ⊂ R

satisfyingL (F′) = L (F) and such that the following holds:

∫

F′

g(x)dx ≤
∫

F

f(x)dx

Given a probability density functionf : R → R and a Borel setK, such that

∫
K

f(x)dx > 0, we define the restriction off to K as follows:

fK(x)
def
=





f(x)
R

K
f(x)dx

if x ∈ K

0 otherwise

(2.27)

It is clear thatfK is also a probability density function.

The following Lemma is a supporting result for the proof of Theorem 2.1 given in

Section 2.5.
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Lemma 2.2 Let f, g : R → R be two probability density functions, such thatf is neat

and even andf ≻ g. Let κ be a real number in the intervalκ ∈ (0, 1), and letA =

[−τ, τ ] be the symmetric closed interval such that
∫ τ

−τ
f(x)dx = 1 − κ. For any function

h : R → [0, 1] satisfying
∫

R
g(x)h(x)dx = 1 − κ, the following holds:

fA ≻ g · h
1 − κ

(2.28)

whereg · h : R → R is defined asg · h(x)
def
= g(x)h(x), for x ∈ R.

Proof: From Lemma A.6 given in Appendix A.1, we know that for any function h :

R → [0, 1] satisfying
∫

R
g(x)h(x)dx = 1 − κ, there exists a setA′ ⊂ R, satisfying

∫
A′ g(x)dx = 1 − κ, such that the following holds:

gA′ ≻ g · h
1 − κ

(2.29)

From Lemma A.5 given in Appendix A.1, we know thatfA ≻ gA′. From equation (2.29)

and the fact thatfA ≻ gA′ holds, equation (2.28) follows.�

The following Lemma, which we state without proof, can be found in [1]:

Lemma 2.3 [1, Lemma 6.7] Letf andg be two probability density functions onR, withf

symmetric non-increasing andf ≻ g. For a symmetric non-increasing probability density

functionh the following holds:

f ∗ h ≻ g ∗ h (2.30)

Lemma 2.4 Let f be a neat and even probability density function on the real line. Letg

be a probability density function on the real line satisfying g ≺ f . The following holds:

∫

R

x2f(x)dx ≤
∫

R

(x − y)2g(x)dx, y ∈ R (2.31)
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Proof: The result follows by selectingh(x) = x2 in Lemma A.9 found in Appendix A.�

Remark 2.12 Consider the conditions of Lemma 2.4. The fact that the probability density

functionf is even implies that
∫

R
xf(x)dx = 0. Hence, if we selecty =

∫
R

xg(x)dx then

it follows from equation (2.31) that the variance off is less than or equal to the variance

of g.

2.4.2 Conditional probabilities and conditional probability density func-

tions

Before proving Theorem 2.1, in this subsection we need to make a few remarks

and introduce more notation, which will streamline our proof. This subsection contains

two parts: We start by introducing the notation for certain conditional probability density

functions of interest, while in the second part we will derive recursive equations for the

time update of the conditional densities, and we will also obtain a recursive expansion for

the cost associated with any given admissible pre-processor policyP0,T .

Definition 2.13 Let a pre-processorP0,T , implementing a decision policy as in Defini-

tion 2.2, be given. We define the following notation for conditional probability densities,

which will streamline our proof of Theorem 2.1:

1. Define the conditional probability density function ofYk given that only erasure

symbols were transmitted up until timek as follows:

γk|k (y)
def
= fYk |R1=0,...,Rk=0 (y) , y ∈ R
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2. Define the conditional probability density function ofYk given that only erasure

symbols were transmitted up until timek − 1 as follows:

γk|k−1 (y)
def
= fYk |R1=0,...,Rk−1=0 (y) , y ∈ R

Definition 2.14 We define the following streamlined notation for certain conditional prob-

abilities of interest:

1. Define the probability that, under policyP0,T , only erasure symbols have been

transmitted up until timek:

ςk
def
=





P (R1 = 0, . . . ,Rk = 0) if k ≥ 1

1 if k = 0

2. Define the conditional probability that, under policyP0,T , the pre-processor trans-

mits the erasure symbol at timek, given that only erasure symbols have been trans-

mitted up until timek − 1.

ςk|k−1
def
=





P (Rk = 0|R1 = 0, . . . ,Rk−1 = 0) if k > 1

ς1 if k = 1

Definition 2.15 Let P0,T be a decision policy given as in Definition 2.2. Letk be a

positive integer andy be a real number. For a positive integerk, define the function

ρk : R → [0, 1] as follows:

ρk (y)
def
= P (Rk = 0|Yk = y,R1 = 0, . . . ,Rk−1 = 0) , x ∈ R (2.32)
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which is the probability that, at timek, the erasure symbol is transmitted, given that

Yk = y, wherey is any real number, and the fact that only erasure symbols have been

transmitted up until timek − 1.

Notation: For a random variableY described by a probability density functionf

and a real functionh, we denote byEf [h(Y)], the expected value of the random variable

h(Y) under the probability density functionf .

2.4.3 Time Evolution

Now, we describe how the conditional probability density functions presented in

subsection 2.4.2 evolve in time, for a given policyP0,T . For a real numbera, below we

define the conditional probability density function ofaYk given that no observation was

received up until timek:

γa
k|k(y)

def
= faYk|R1=0,...,Rk=0 (y)

We denote byNσ2
W

the probability density function ofWk, for all k, i.e., the Gaus-

sian zero mean probability density with varianceσ2
W , or more concretelyNσ2

W
(x) =

1√
2πσ2

W

e
− x2

2σ2
W . Since the sequence{Wk}T

k=0 is i.i.d.,Wk−1 is also independent of{Yl}k−1
l=0 ,

which implies that the following holds:

γk|k−1 = γa
k−1|k−1 ∗ Nσ2

w
(2.33)

Proposition 2.2 The conditional densitiesγk|k−1 and γk|k are related via the following

time-recursion:

γk|k(y) =
γk|k−1(y)ρk (y)

ςk|k−1

, ςk|k−1 6= 0, k ≥ 1 (2.34)
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Proof: In order to arrive at (2.34), we use Baye’s rule to write:

fYk|R1=E,...,Rk=E (y) =
P (Rk = 0|Yk = y,R1 = 0, . . . ,Rk−1 = 0)

P (Rk = 0|R1 = 0, . . . ,Rk−1 = 0)
fYk|R1=0,...,Rk−1=0 (y)

(2.35)

The recursion (2.34) follows from (2.35) by rewriting it according to Definitions 2.13,

2.14 and 2.15. Equation (2.35) holds only ifP (Rk = 0|R1 = 0, . . . ,Rk−1 = 0) = ςk|k−1 6=

0. If ςk|k−1 = 0 then the conditional density functionfYk |R1=0,...,Rk=0 (y) is no longer

defined.�

Definition 2.16 Given an admissible pre-processorP0,T and an integerm ∈ {0, . . . , T}

, we adopt the following definition for the partial cost computed for the horizon{m +

1, . . . , T} under the assumption thatrm = 1:

Jm,T

(
a, σ2

W , c,Pm,T

) def
=






∑T
k=m+1 dk−m−1E

[(
Yk − Ŷk

)2

+ cRk

]
if 0 ≤ m < T

0 if m = T

(2.36)

Remark 2.13 Given an integerm, we notice that the cost in (2.36) will not depend on the

value of the state at timem. This is so because, according to Definition 2.6, sinceP0,T

is admissible it holds that the current and futureoutputof Pm,T will not depend on the

current and past state observations. This Remark is an extension of Remark 2.3, which

considered the case form = 0.

Proposition 2.3 Given an arbitrarily selected admissible pre-processorP0,T , the finite
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horizon cost (2.6) can be expanded as:

J0,T

(
a, σ2

W , c,P0,T

)

=
T∑

k=1

dk−1

(
Eγk|k

[(
Yk − Ŷk

)2
]

ςk +
(
c + Jk,T

(
a, σ2

W , c,Pk,T

))
ςk−1(1 − ςk|k−1)

)

(2.37)

Here we use the notationEγk|k

[(
Yk − Ŷk

)2
]

def
= E

[(
Yk − Ŷk

)2

|R1 = 0, . . . ,Rk = 0

]
,

whereγk|k is given in Definition 2.13.

Proof: We start by noticing that, by the total probability law, we can expand the

cost as:

J0,T

(
a, σ2

W , c,P0,T

)

=
T∑

k=1

dk−1

(
E

[(
Yk − Ŷk

)2

|R1 = 0, . . . ,Rk = 0

]
P (R1 = 0, . . . ,Rk = 0) +

+
(
c + E

[
Jk,T

(
a, σ2

W , c,Pk,T

)
|Rk = 1,R1 = 0, . . . ,Rk−1 = 0

])
×

P (Rk = 1,R1 = 0, . . . ,Rk−1 = 0)

)
(2.38)

We proceed by obtaining the following identities:

P (Rk = 1,R1 = 0, . . . ,Rk−1 = 0) = P (R1 = 0, . . . ,Rk−1 = 0)−

− P (R1 = 0, . . . ,Rk = 0) = P (R1 = 0, . . . ,Rk−1 = 0)−

− P (Rk = 0|R1 = 0, . . . ,Rk−1 = 0)P (R1 = 0, . . . ,Rk−1 = 0) =

= ςk−1(1 − ςk|k−1), k ≥ 1

(2.39)

Notice that, using standard probability theory, from{ςk}T
k=1 we can compute

{
ςk|k−1

}T

k=1

and vice versa. Here, equation (2.39) is still valid fork = 1, since we definedς0 = 1 and
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ς1|0 = ς1. Finally, notice that from Remark 2.13, we conclude the following:

E
[
Jk,T

(
a, σ2

W , c,Pk,T

)
|Rk = 1,R1 = 0, . . . ,Rk−1 = 0

]
= Jk,T

(
a, σ2

W , c,Pk,T

)

(2.40)

The proof of this Proposition is complete once we substitute(2.39) and (2.40) into (2.38).�

Definition 2.17 The following is a convenient definition for the optimal cost:

J ∗
m,T

(
a, σ2

W , c
) def

=





minPm,T ∈PT−m
Jm,T (a, σ2

W , c,Pm,T ) , T ≥ 1

0, T = 0

(2.41)

From Proposition 2.3, we can immediately state the following Corollary:

Corollary 2.1 The following inequality holds for every admissible pre-processorP0,T :

J0,T

(
a, σ2

W , c,P0,T

)
≥

T∑

k=1

dk−1

(
Eγk|k

[(
Yk − Ŷk

)2
]

ςk +
(
c + J ∗

k,T

(
a, σ2

W , c
))

(1 − ςk|k−1)ςk−1

)
(2.42)

2.5 Proof of Theorem 2.1

Ourstrategyto prove Theorem 2.1 is to show that for every admissible pre-processor

policy P0,T , there exists a path-dependent symmetric threshold policyDo
0,T which does

not underperformP0,T . This fact, which we denote asFact B.1, leads to the following

conclusions:

• (Fact B.2): Lemma 2.1 (Section 2.3.1), in conjunction with Fact B.1, implies that

an optimumS∗
0,T for Problem 2.1 exists and that it is of the symmetric threshold

typeST (Definition 2.9).
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• (Fact B.3): From Fact B.2 and Proposition 2.1 (Section 2.3), we conclude there

exists a symmetric threshold policyS∗
0,T and a Kalman-like estimatorZ (Defini-

tion 2.5) that are jointly optimal for Problem 2.1.

Proof: (of Theorem 2.1) Facts B.2 and B.3 constitute a proof for Theorem 2.1. It

remains to prove the validity of Fact B.1.

(Proof of Fact B.1): Here we will use an inductive approach that is analogous to

the one used in [1, Lemma 6.5]. Our proof for Fact B.1 is organized in two parts. InPart

I , we will prove Fact B.1 for the case when the time-horizonT is one, while inPart II ,

we prove the general induction step.

Notation: According to the definitions of Section 2.4.2 , any given pre-processor

has associated with it conditional probability density functions
{
γk|k

}T

k=1
and

{
γk|k−1

}T

k=1
,

as well as conditional probabilities{ςk}T
k=1 and

{
ςk|k−1

}T

k=1
. Hence, we assume that the

path-dependent symmetric threshold policyDo
0,T - to be constructed as part of this proof

- defines conditional probability density functions
{

γo
k|k

}T

k=1
and

{
γo

k|k−1

}T

k=1
as well as

conditional probabilities{ςo
k}T

k=1 and
{
ςo
k|k−1

}T

k=1
.

Part I: Here we will prove Fact B.1 forT = 1. We will do so by constructing a

policyDo
0,1 as follows:

ro
1

def
=





1 if |y1| > τ1

0 otherwise

(2.43)

whereτ1 is a threshold that we will select appropriately. Hence, if the absolute value ofy1

is less than or equal toτ1 then the pre-processor transmits the erasure symbol, otherwise

it sendsx1. Consider that a policyP0,1 is given. We start by noticing that forP0,1 and
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Do
0,1 it holds thatγ1|0 = γo

1|0 = Nσ2
W

, while the cost associated with policyP0,1 is:

J0,1

(
a, σ2

W , c,P0,1

)
= Eγ1|1

[(
Y1 − Ŷ1

)2
]

ς1 + c(1 − ς1) (2.44)

whereŶ1 = Eγ1|1
[Y1]. We construct a desirableDo

0,1 by selectingτ1 such thatςo
1 =

ς1, which from (2.43) leads to a probability density functionγo
1|1 that is neat and even.

Furthermore, Lemma 2.2 implies thatγ1|1 ≺ γo
1|1 holds. From Lemma 2.4 we arrive at the

following inequality:

Eγo
1|1

[(
Y1 − Ŷ

o
1

)2
]
≤ Eγ1|1

[(
Y1 − Ŷ1

)2
]

(2.45)

The cost associated with the policyDo
0,1 is given by:

J0,1

(
a, σ2

W , c,Do
0,1

)
= Eγo

1|1

[(
Y1 − Ŷ

o
1

)2
]

ς1 + c(1 − ς1) (2.46)

Finally, we conclude from (2.44), (2.45) and (2.46) that:

J0,1

(
a, σ2

W , c,P0,1

)
≥ J0,1

(
a, σ2

W , c,Do
0,1

)
(2.47)

which leads to the desired conclusion thatDo
0,1 does not underperformP0,1.

Part II: (General induction step) Let T I be a given horizon that is strictly larger

than one. Assume theinductive hypothesisthat Fact B.1 is valid for any horizonT less

thanT I .

We start by noticing that the validity of our inductive hypothesis implies the follow-

ing facts:

• (Fact B.4): The inductive hypothesis in conjunction with Lemma 2.1 implies that

Problem 2.1 has an optimum for every horizonT less thanT I .

37



• (Fact B.5): The inductive hypothesis also implies that Problem 2.1 admits an opti-

mal pre-processor policy of the symmetric threshold type (Definition 2.9), for every

horizonT less thanT I .

Hence, Fact B.5 implies that there existS∗
1,T I throughS∗

T I ,T I that satisfy the following:

Jm,T I (a, σ2
W , c,S∗

m,T I ) = min
P̃

m,TI ∈P
TI−m

Jm,T I (a, σ2
W , c, P̃m,T I ) =

(a)
J ∗

m,T I(a, σ2
W , c) 1 ≤ m ≤ T I

(2.48)

whereS∗
m,T I is of the symmetric threshold typeST I−m and (a) above follows by definition

from (2.41).

Now we proceed to showing that the general induction step holds. In order to do

so, we show that for any admissible policyP0,T I , we can construct a path-dependent

symmetric threshold policyDo
0,T I that does not underperformP0,T I . Henceforth, assume

thatP0,T I is an arbitrarily chosen admissible policy.

The following is our algorithm forDo
0,T I :

Description of Algorithm for Do
0,T I

• (Initial step) Setk = 0 and transmit the current state, i.e.,v0 = x0 or equivalently

sety0 = 0.

• (Step A) Increase the time counterk by one. If k > T I holds then terminate,

otherwise execute Step B.

• (Step B) If |yk| < τ o
k holds then setrk = 0, transmit the erasure symbol, i.e.,

vk = E, and return to Step A. If|yk| ≥ τ o
k holds then executeS∗

k,T I , as defined in

(2.48).
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where{τ o
k}T I

k=1 are appropriately chosen thresholds, as described next.

End of description of Algorithm for Do
0,T I

Notice thatDo
0,T I is a path-dependent symmetric threshold strategy (Definition 2.10),

for which we can also conclude thatDo
m,T I = S∗

m,T I holds for1 ≤ m ≤ T I .

In order to complete the specification ofDo
0,T I so that it does not underformP0,T I ,

we proceed by appropriately selecting the thresholds{τ o
k}T I

k=1.

(Selection of thresholds{τ o
k}T I

k=1) We proceed to describing how to choose the

threshold sequence{τ o
k}T

k=1 and what this choice implies. Notice thatγo
1|0 = Nσ2

W
and

that the Gaussian probability density function is neat and symmetric. Chooseτ o
1 such

that ςo
1 = ς1, it follows that the probability density functionγo

1|1 is neat and even. From

equation (2.33), which describes how the conditional probability density functions evolve

in time, it holds thatγo
2|1 is neat and even. By further selectingτ o

2 such thatςo
2|1 = ς2|1,

it also follows thatγo
2|2 andγo

3|2 are neat and even. By repeated execution of this selec-

tion process, we can choose all the thresholdsτ o
k such thatςo

k|k−1 = ςk|k−1 for all k in

{
1, . . . , T I

}
. These choices also imply thatγo

k|k andγo
k|k−1 are neat and even for allk in

{
1, . . . , T I

}
. Sinceςo

k|k−1 = ςk|k−1 holds for allk in
{
1, . . . , T I

}
, it follows thatςo

k = ςk

is satisfied for allk in
{
1, . . . , T I

}
.

At this point, we know thatγ1|0 = γo
1|0 = Nσ2

W
and that the Gaussian probability

density functionNσ2
W

is neat and even. Hence, then from Lemma 2.2, we conclude that

γ1|1 ≺ γo
1|1. It also follows from Lemma A.7 in the Appendix A.1 and Lemma 2.3 that

γ2|1 ≺ γo
2|1 holds. From the repeated application of this idea, it follows thatγk|k ≺ γo

k|k

for all k in
{
1, . . . , T I

}
and, in addition, sinceγo

k|k is neat and even, it holds that̂Y
o
k =
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Eγo
k|k

[Yk] = 0 for all k in
{
1, . . . , T I

}
. Sinceγk|k ≺ γo

k|k holds andγo
k|k is neat and even,

Lemma 2.4 implies that the following is true:

Eγo
k|k

[(
Yk − Ŷ

o
k

)2
]
≤ Eγk|k

[(
Yk − Ŷk

)2
]

, k ∈
{
1, . . . , T I

}
(2.49)

The cost obtained by applying the pre-processor policyPo can be expressed us-

ing (2.37) as follows:

J0,T I

(
a, σ2

W , c,Do
0,T I

)
=

T I∑

k=1

dk−1

(
Eγo

k|k

[(
Yk − Ŷ

o
k

)2
]

ςk+

(
c + Jk,T I

(
a, σ2

W , c,Do
0,T I

))
(1 − ςk|k−1)ςk−1

)
(2.50)

Using (2.48), we can re-write (2.50) as follows:

J0,T I

(
a, σ2

W , c,Do
0,T I

)
=

T I∑

k=1

dk−1

(
Eγo

k|k

[(
Yk − Ŷ

o
k

)2
]

ςk+

(
c + J ∗

k,T I

(
a, σ2

W , c
))

(1 − ςk|k−1)ςk−1

)
(2.51)

From inequality (2.42), which lower bounds the cost associated with any pre-processor

policy, equation (2.51) and equation (2.49), we conclude that:

J0,T I

(
a, σ2

W , c,Do
0,T I

)
≤ J0,T I

(
a, σ2

W , c,P0,T I

)
(2.52)

That we were able to constructDo
0,T I satisfying (2.52) for an arbitrarily chosen

admissible pre-processorP0,T I constitutes a proof for Fact B.1.�

2.6 Simulation Example

In this section, we will show the results of simulation for Problem 2.1, if we adopt

the optimal pre-processor and the optimal estimator. We considera = 1.5, σ2
W = 2,
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c = 3 andT = 220. With green line, we depict the processYk, with red line we depict

the process̃Yk, which we define to bẽYk = Xk − X̂k, while with blue line we show the

thresholdsτk. First we notice thatτk converges, fact that will be discussed in Chapter 3 in

Problem 3.6, which is the infinite time horizon counterpart of Problem 2.1. We notice that

as long asYk is within the blue lines, i.e.|Yk| ≤ τk then the estimation error is less than

the threshold andYk = Ỹk. On the other hand, if|Yk| > τk then the estimation error is

bigger than the threshold, hence the preprocessor sends thetrue value of the system to the

estimator, which implies that̃Yk = 0.
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Figure 2.3: Simulation results

41



Chapter 3

Applications of Problem 2.1

3.1 Introduction

In this chapter, we will solve a few problems on which we will use the results and

the proofs from Chapter 2. We will show how to extend the results for Problem 2.1.

First, we will extend Problem 2.1 to more general costs, moregeneral noise distributions.

We will then deal with the problem where the pre-processor has noisy observations. Prob-

lem 2.1 is an estimation problem, we will show then how to solve a quadratic control prob-

lem with communication costs. We will solve then a similar problem with Problem 2.1,

in which we will allow packet drop, i.e. the information sentfrom the pre-processor to

the estimator can be lost. We will extend Problem 2.1 to its infinite horizon counterpart,

where we will deal with the infinite horizon discounted cost and average cost. In the

end, we will solve a tandem problem, where the information will be sent over multiple

pre-processors.

In this chapter we will use similar notions for the pre-processor, estimator and the

processes from Chapter 2. We will use in general the definitions from Chapter 2, but we

will also give new definitions, if needed.
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3.2 General Costs and General Noise Distributions

We define the state process:

Definition 3.1 (State Process) Given a real constanta, consider the following first order,

linear time-invariant discrete-time system driven by process noise:

X0
def
= x0 (3.1)

Xk+1
def
= aXk + Wk, k ≥ 0 (3.2)

where{Wk}T
k=0 is an independent identically distributed (i.i.d.) zero mean stochastic

process with an even and quasiconcave probability density functionhW andx0 is a real

number.

We use the Definitions 2.2 and 2.3 for the pre-processor and estimator. In Defini-

tion 3.1, we relaxed the assumption from Definition 2.1 that the process noise{Wk}T

k=0

is an i.i.d. process, Gaussian, zero mean with varianceσ2
W . We consider that the process

noise{Wk}T
k=0 is an i.i.d. process, zero mean with an even and quasiconcaveprobability

density function.

Consider the set of functions{hi}T

i=1, hi : R → R, for all i ∈ {1, . . . , T}, such that

the functions{hi}T

i=1 are continuous, even and quasiconvex.

Consider the following cost:

Definition 3.2 (Finite time horizon cost function for general cost and general function)

Given a valid pre-processorP0,T (Definition 2.2), a real constanta, a positive integerT ,

a positive real numberd less than one, the probability density functionhW , the set of
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functions{hi}T

i=1 and the positive constantc, we define:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

E


hk

(
Xk − X̂k

)
+ cRk︸︷︷︸

communication cost


 (3.3)

whereXk is the state of the system defined in (3.1)-(3.2),X̂k is the optimal estimate

specified in Definition 2.3, andRk is the following indicator function:

Rk
def
=





0 if Vk = E

1 otherwise

, k ≥ 1 (3.4)

We define the following problem:

Problem 3.1 Let a real constanta, the probability density functionhW and the initial

conditionx0 be given. In addition, consider that a positive realc, the set of functions

{hi}T
i=1 and a positive integerT are given, specifying the cost as in Definition 3.2. Find:

P∗
0,T ∈ argmin

P0,T

J0,T (a, σ2
W , c,P0,T ) (3.5)

The following is the main result of this section.

Theorem 3.1 Let the parameters specifying Problem 3.1 be given, i.e., the real constant

a, the probability density functionhW , the communication costc, the set of functions

{hi}T

i=1 and the time horizonT are pre-selected. There exists a sequence of positive real

numbersτ ∗ = {τ ∗
k}T

k=1, such that corresponding symmetric threshold policyS∗
0,T is an

optimal solution to (3.5) and the corresponding optimal estimator E(S∗
0,T ) is Z. Here

S∗
0,T andZ follow Definitions 2.9 and 2.5 from Chapter 2, respectively.
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Proof: We note that in the proof of Theorem 2.1 we just needed that theprocess

noiseWk have an even and quasiconcave probability density functionand the cost need

not be quadratic but an even, continuous and quasiconvex function. �

In order to define the optimal thresholds, we need to define thevalue functions

Vt,T : R → R, for t ∈ {1, T + 1}:

VT+1,T (yT+1) = 0, ∀yT+1 ∈ R

Vt,T (yt) = min (c + E [Vt+1,T (Wt)] , ht (yt) + E [Vt+1,T (ayt + Wt)])

(3.6)

An immediate application of Problem 3.1 is to choose the functions{hi}T
i=1 to be

quadratic functions as follows:

hi (x) = bix
2, for all i ∈ {1, . . . , T} (3.7)

wherebi are strictly positive real numbers for alli ∈ {1, . . . , T}. Hence the cost defined

in equation (3.3) becomes:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

E

[
bk

(
Xk − X̂k

)2

+ cRk

]
(3.8)

Moreover, we can select the process noise{Wk}T

k=0 to be white, zero-mean and Gaussian,

but the variance ofWk need not be the same for allk. For this noise and the cost defined in

equation (3.8) the optimal policy is a symmetric threshold policy, as stated in Theorem 3.1

with the optimal thresholds defined in equations (3.6), by adoptinghi (x) = bix
2 for all

i ∈ {1, . . . , T} and by taking the apprpriate statistics for the process noise{Wk}T

k=0.

3.3 Distributed Estimation with Observation Noise

The next application of Problem 2.1 is the situation where weconsider that the pre-

processor has noisy observation of the state process. We will define the state processXk,
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{Xk}T

k=0
- - P0,T

- E(P0,T ) -

{Nk}T
k=0

{Yk}T
k=0 {Vk}T

k=0 {X̂k}T
k=0

Figure 3.1: Schematic representation of the distributed estimation system considered in

Problem 3.2, where we consider observation noise at the pre-processor side.

which will be the same as in Chapter 2, the observation processYk and the pre-processor.

The estimator will the the same as in Chapter 2 (Definition 2.3).

Definition 3.3 (State Process for Estimation with Observation Noise) Given a real con-

stanta, positive real constantsσ2
W and σ2

N , a real numberx0, consider the first order,

linear, time-invariant and discrete-time system driven byprocess noise:

X0
def
= x0 (3.9)

Xk+1
def
= aXk + Wk, k ≥ 0 (3.10)

Yk
def
= Xk + Nk (3.11)

where the process noise{Wk}∞k=0 is an i.i.d., Gaussian and zero mean stochastic process

with varianceσ2
W and the observation noise{Nk}∞k=0 is an i.i.d., Gaussian and zero mean

stochastic process with varianceσ2
N .

The filtration generated by
{
{Xt}k

t=0

}
is denoted as:

Xk
def
= σ (Xt; 0 ≤ t ≤ k) (3.12)

whereσ (Xt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by the random variables

{
{Xt}k

t=0

}
, for all integersk ∈ {0, . . . , T}.
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The filtration generated by
{
{Yt}k

t=0

}
is denoted as:

Yk
def
= σ (Yt; 0 ≤ t ≤ k) (3.13)

whereσ (Yt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by the random variables

{
{Yt}k

t=0

}
, for all integersk ∈ {0, . . . , T}.

Definition 3.4 (Pre-processor and remote link process) Consider an erasure symbol de-

noted asE and a causal mapP0,T : (x0, . . . , xk) 7→ vk, defined fork ∈ {0, . . . , T} and

vk ∈ R ∪ {E}. Hence, at each time instantk, P0,T outputs a real number or the erasure

symbol, based on past observations of the observation process.P0,T generates a stochas-

tic process{Vk}T
k=0 via the application of the operatorP0,T to the process{Xk}T

k=0 (See

Figure 3.1). The mapP0,T is a valid pre-processor if the following two conditions hold:

(1) The pre-processor transmits the initial statex0 at time zero, i.e.,v0 = x0 (Put in other

words the estimator knowsx0). (2) The pre-processor is measurable in the sense that the

process{Vk}T
k=0 is adapted toYk.

The filtration generated by{Vk}T
k=0 is denoted as{Bk}T

k=0 and it is obtained as:

Bk
def
= σ (Vt; 0 ≤ t ≤ k) (3.14)

whereσ (Vt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Vt, 0 ≤ t ≤ k}, for

all non-negative integersk.

We define the cost just like in Definition 2.4, which repeat here for clarity purposes.

Definition 3.5 (Finite time horizon cost function with observation noise)Given a valid

pre-processorP0,T (Definition 3.4), a real constanta, a positive integerT , a positive real
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numberd less than one and positive real constantsσ2
W , σ2

V andc, we define:

J0,T

(
a, σ2

W , σ2
N , c,P0,T

) def
=

T∑

k=1

E

[(
Xk − X̂k

)2

+ cRk

]
(3.15)

whereXk is the state of the system defined in (3.9)-(3.10),X̂k is the optimal estimate

specified in Definition 2.3 (Chapter 2), andRk is the following indicator function:

Rk
def
=





0 if Vk = E

1 otherwise

, k ≥ 1 (3.16)

We will state now the main problem of this section and then we will give the optimal

solution.

Problem 3.2 Let a real constanta, the variance of the process noiseσ2
W , the variance of

the observation noiseσ2
N and the initial conditionx0 be given. In addition, consider that

a positive realc, a positive real numberd less then one and and a positive integerT are

given, specifying the cost as in (3.15). Find:

P∗ ∈ argmin
P

J (a, σ2
W , σ2

N , c,P) (3.17)

We define the optimal cost for the infinite horizon cost:

J ∗
(
a, σ2

W , σ2
N , c
) def

= inf
P

J (a, σ2
W , σ2

N , c,P)

We state now the theorem, which solves Problem 3.2:

Theorem 3.2 Let the parameters specifying Problem 3.2 be given, i.e., the variance of

the process noiseσ2
W , the variance of the observation noiseσ2

N , the system’s dynamic
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constanta, the communication costc, the discount factord and the time horizonT are

pre-selected. There exists a sequence of positive real numbersτ ∗ = {τ ∗
k}T

k=1, such that

the corresponding symmetric threshold policyS∗
0,T is an optimal solution to (3.17) and

the corresponding optimal estimatorE(S∗
0,T ) isZ. HereS∗

0,T andZ follow Definitions 2.9

and 2.5, respectively.

Proof: In order to prove Theorem 3.2, we notice that the pre-processor P can compute

the state estimatẽXk as a function of the observations{Yj}k

j=1. Due to the linearity of the

process and of the observation,X̃k is given by the usual Kalman filter. We notice thatX̂k

computed at the estimator side are functions of{Vj}k

j=1. The variablesVk are functions

of the observation noise{Yj}k

j=1. It follows that X̂k are functions of the observation

noise{Yj}k

j=1. We can re-write the cost 3.15 as follows:

J0,T

(
a, σ2

W , σ2
N , c,P0,T

)
=

T∑

k=1

dk−1E

[(
Xk − X̂k

)2

+ cRk

]

=
T∑

k=1

dk−1E

[(
Xk − X̃k + X̃k − X̂k

)2

+ cRk

]

=

T∑

k=1

dk−1E

[(
Xk − X̃k

)2

+ cRk

]
+ dk−1E

[(
X̃k − X̂k

)2
]

+ 2dk−1E
[(

X̃k − X̂k

)(
Xk − X̃k

)]

=

T∑

k=1

dk−1E

[(
X̃k − X̂k

)2

+ cRk

]
+ dk−1E

[(
Xk − X̃k

)2
]

The cross termE
[(

X̃k − X̂k

)(
Xk − X̃k

)]
disappears due to the orthogonality princi-

ple. The termE

[(
Xk − X̃k

)2
]

cannot be affected in any way, hence we need to optimize

the cost:
T∑

k=1

dk−1E

[(
X̃k − X̂k

)2

+ cRk

]
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From the standard Kalman filtering, the processX̃k follows the dynamics:

X̃k+1 = aX̃k + W̃k

whereW̃k is the innovation process from the standard Kalman filtering. We note the that

innovation process is independent, zero-mean and Gaussian, but it is not i.i.d.. Combining

this with the results from Problem 3.1, the result in Theorem3.2 follows. Note that the

factordk−1 can be replaced by any strictly positive real number.�

3.4 Control Problem with Communication Costs

Before we start actually to present the control problem, we will solve a simple

estimation problem. We consider a process and a cost similarto the ones in Problem 2.1

from Chapter 2.

Definition 3.6 (State Process) Given a real constanta, and a positive real constantσ2
W ,

consider the following first order, linear time-invariant discrete-time system driven by

process noise:

X0
def
= x0 (3.18)

Xk+1
def
= aXk + Uk + Wk, k ≥ 0 (3.19)

where{Wk}T
k=0 is an independent identically distributed (i.i.d.) Gaussian zero mean

stochastic process with varianceσ2
W andx0 is a real number. The filtration generated by

{Xk}T
k=0 is denoted as:

Xk
def
= σ (Xt; 0 ≤ t ≤ k) (3.20)
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whereσ (Xt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Xt, 0 ≤ t ≤ k}, for

all integersk. For now, we just say that the random variablesUk are measurable with

respect toXk.

We note that since the random variablesUk are measurable with respect toXk, the

sigma algebras{Xk}∞k=0 are well defined. We will give a precise definition of the process

{Uk}∞k=0 later. We define the pre-processor and the estimator like in the Definitions 2.2

and 2.3 from Chapter 2.

Let H : (v0, . . . , vk) 7→ uk whereuk ∈ R and vj ∈ R ∪ {E}. HenceH is a

deterministic map which takes the output of the pre-processor (what is received by the

estimator) and maps it into a real number.

We define the process{Uk}∞k=0 to be the process generated by the mapH applied to

the process{Vk}∞k=0. We notice that this is consistent with the Definition 3.6. Moreover,

we note that the process{Uk}∞k=0 is known both at the estimator and the pre-processor

side.

Definition 3.7 (Finite time horizon cost function)Given a valid pre-processorP0,T

(Definition 2.2), a real constanta, the mappingH, a positive integerT , a positive real

numberd less than one and positive real constantsσ2
W andc, we define:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

dk−1E

[(
Xk − X̂k

)2

+ cRk

]
(3.21)

whereXk is the state of the system defined in (3.18)-(3.19),X̂k is the optimal estimate
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Figure 3.2: Schematic representation of the distributed estimation system considered in

Problem 3.3, where the estimator can influence the processXk.

specified in Definition 2.3, andRk is the following indicator function:

Rk
def
=





0 if Vk = E

1 otherwise

, k ≥ 1 (3.22)

The following is the problem addressed in this section.

Problem 3.3 Let a real constanta, the variance of the process noiseσ2
W , the mappingH

and the initial conditionx0 be given. In addition, consider that a positive realc, a positive

real numberd less then one and a positive integerT are given, specifying the cost as in

Definition 3.7. We want to find an optimal solutionP∗
0,T to the following optimization

problem:

P∗
0,T ∈ argmin

P0,T

J0,T (a, σ2
W , c,P0,T ) (3.23)

We notice that this problem has just a slight modification in comparison to Prob-

lem 2.1.

Similar to Definition 2.5, we define the following estimator:
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Definition 3.8 (Kalman-like estimator) Given the process defined in (3.18)-(3.19) and a

pre-processorP0,T , define the mapZ : (v0, . . . , vk) 7→ zk, for k in the set{0, . . . , T},

wherezk is computed as follows:

z0
def
= x0 (3.24)

zk
def
=






azk−1 + uk−1 if vk = E

vk otherwise

, with k ≥ 1 (3.25)

whereuk = H (v0, . . . , vk).

We define a process similar to the process{Yk}∞k=0 as follows:

Definition 3.9 We define the following process:

Yk
def
= Xk − (aZk−1 + Uk−1) (3.26)

Using Definitions 3.6 and 3.8, we find that{Yk}T

k=0 can be rewritten as:

Y0 = 0 (3.27)

Yk+1 =





aYk + Wk if Rk = 0

Wk if Rk = 1

(3.28)

We notice that the equations (3.28) is exactly as the equation (2.14).

We can state now the optimal solution of Problem 3.3, which will be just a corollary

of Theorem 2.1.

Corollary 3.1 Let the variance of the process noiseσ2
W , the mappingH, the system’s

dynamic constanta, the communication costc, the discount factord and the time horizon
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T be given. There exists a sequence of positive real numbersτ ∗ = {τ ∗
k}T

k=1, such that the

corresponding symmetric threshold policyS∗
0,T is an optimal solution to (3.23) and the

corresponding optimal estimatorE(S∗
0,T ) is Z. HereS∗

0,T andZ follow Definitions 2.9

and 3.8, respectively.

Proof: It follows from Remark 2.3, which states that initial condition x0 does not

influence the total cost since it can be subtracted at the estimator side. The same ar-

guments hold for the process{Uk}∞k=0, since it is known both at the estimator and the

pre-processor.�

We will proceed now to define a quadratic control problem withcommunication

costs. We keep the Definition 3.6 for the state process and thedefinition for the pre-

processor to be Definition 2.2. We need to define a controller,which will generate the

process{Uk}T
k=0.

Definition 3.10 (Controller and the Control Process) Given a pre-processorP0,T , con-

sider the mappingC0,T :
(
{vt}k

t=0

)
7→ uk, which we call controller. The controller

generates the stochastic process{Uk}T
k=0 via the operatorC0,T applied to the process

{Vk}T
k=0. Hence, the process{Uk}T

k=0 is adapted to the filtration{Xk}T
k=0 and it repre-

sents the output of the controller.

Remark 3.1 Just like in Remark 2.2, the pre-processor has all the information which the

controller has. Hence, the pre-processorP0,T can construct the controlUk by reproduc-

ing the control algorithm executed at the controller.

We will define the performance criterion and the main problemfrom this section.
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Figure 3.3: Schematic representation of the distributed estimation system considered in

Problem 3.4, where we have a quadratic control problem with communication costs.

Definition 3.11 (Finite time horizon control cost)Given a positive integerT , a mea-

surable pre-processorP0,T (Definition 2.2), a controllerC0,T (Definition 3.10), a real

constanta and the positive real constantσ2
W andc, we define:

JT

(
a, σ2

W , c,P0,T , C0,T

) def
=

T∑

k=0

E
[
X

2
k+1 + Uk

2 + cRk

]
(3.29)

whereXk indicates the state of the process from Definition 3.6,Uk denotes the input

provided by the controllerC0,T , E indicates expectation andRk is defined as follows:

Rk
def
=





1,V 6= E, k ≥ 0

0,Vk = E, k ≥ 0

(3.30)

Problem 3.4 Let a real constanta, the variance of the process noiseσ2
W and the initial

conditionx0 be given. In addition, consider that a positive realc is given. We want to

find an optimal solution
(
P0,T

∗, C∗
0,T

)
for the following optimization problem:

(
P∗

0,T , C∗
0,T

)
∈ arg min

(P0,T ,C0,T )
JT

(
a, σ2

W , c,P0,T , C0,T

)
(3.31)

Here the pre-processorP0,T and the estimatorC0,T must be optimized jointly so as to

minimize the cost function.
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Before, we state the main result of this section, we need to define a certain con-

troller.

Definition 3.12 (Scalar Discrete Riccati Equations) Given a real constanta, define the

sequence of real numbers:

pT+1
def
= 1

pt
def
= 1 + a2pt+1 −

a2p2
t+1

1 + pt+1
, t ∈ {0, . . . , T}

(3.32)

We notice that Definition 3.12 is the scalar version of the Riccati equation.

Definition 3.13 Given a real constanta, define the mapC(a)
0,T , as follows:

C(a)
0,T (v0, . . . , vk)

def
= uk, {vt}k

t=0 ∈ (R ∪ {E}) k ≥ 0 (3.33)

and uk is constructed using a supporting variablezk which will have the role of state

estimate. We defineu−1
def
= 0 andz−1

def
= 0, thenzk anduk are defined as follows

uk
def
= − apk

1 + pk

zk, k ∈ {0, . . . , T} (3.34)

wherezk follows the dynamics from Definition 3.8 and{pt}T+1
t=0 was defined in equa-

tion (3.32).

We notice that in Definition 3.13 together with Definition 3.8, uk is a function ofzk

andzk is a function ofvk, uk−1 andzk−1, recursively it follows that bothzk anduk are

functions of the values{vt}k
t=0, henceuk is well defined.

We are ready now to state the main result from this section.

Theorem 3.3 Let the parameters specifying Problem 3.4 be given, i.e., the variance of

the process noiseσ2
W , the system’s dynamic constanta, the communication costc, and
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the time horiazonT are pre-selected. There exist a sequence of positive real numbers

τ = {τk}T

k=0, such that the associatedS∗
0,T andC(a)

0,T are an optimal solution to (3.31).

Proof: We will make some manipulation of the cost in equation (3.29).

JT

(
a, σ2

W , c,P0,T , C0,T

)
=

T∑

k=1

E
[
X

2
k+1 + U

2
k + cRk

]

=

T∑

k=0

E
[
X

2
k+1 + U

2
k + pkX

2
k − pkX

2
k + cRk

]

= pkX
2
0 +

T∑

k=0

E
[
pk+1X

2
k+1 + U

2
k + X

2
k − pkX

2
k + cRk

]

= pkX
2
0 +

T∑

k=0

E
[
pk+1a

2
X

2
k + pk+1U

2
k + U

2
k + X

2
k − pkX

2
k + cRk

]

+

T∑

k=0

E
[
2pk+1aXkUk + 2pk+1aXkWk + 2pk+1UkWk + pk+1W

2
k

]

=
T∑

k=0

E

[
p2

k+1a
2

1 + pk+1

X
2
k + (pk+1 + 1)U2

k + 2pk+1aXkUk + cRk

]

+ pkX
2
0 +

T∑

k=0

pk+1σ
2
W

=
T∑

k=0

E

[
p2

k+1a
2

1 + pk+1

X̂
2
k + (pk+1 + 1)U2

k + 2pk+1aX̂kUk

]

+

T∑

k=0

E

[
p2

k+1a
2

1 + pk+1

(
Xk − X̂k

)2

+ cRk

]

+

T∑

k=0

E

[
2

p2
k+1a

2

1 + pk+1

(
X

2
k − X̂

2
k

)
X

2
k + 2pk+1a

(
Xk − X̂k

)
Uk

]

+ pkX
2
0 +

T∑

k=0

pk+1σ
2
W
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=
1

pk+1 + 1

T∑

k=0

E

[(
pk+1aX̂k + (pk+1 + 1)Uk

)2
]

+

T∑

k=0

E

[
p2

k+1a
2

1 + pk+1

(
Xk − X̂k

)2

+ cRk

]

+ pkX
2
0 +

T∑

k=0

pk+1σ
2
W

In the equations above, the last two terms are constant, the first term (which can be only

positive) can be made equal to zero by selectingUk = − pk+1a

pk+1 + 1
X̂k, while the second

term can be minimized according to Corollary 3.1 and the result of Theorem 3.3 follows.�

3.5 Distributed Estimation with Communication Costs and Packet Drops

Just like in Problem 2.1, we address the design of an optimal state estimation system

featuring two blocks; a pre-processorP0,T and a remote estimatorE . The pre-processor

has causal access to the state of a first order, linear and time-invariant system driven by

Gaussian zero mean, white process noise and, at each time instant, it outputs either an

erasure symbol or a real number into a communication channel. The communication

channel acts as an erasure link and with some probability it can drop the packets received

from the pre-processor. The estimator has access to the output of the channel and its

output is denoted as the state estimate. When the pre-processor transmits a real number,

the channel can drop this real number and the estimator will receive an erasure symbol.

If the channel sends to the estimator the erasure symbol instead of a real number, it will

give an acknowledgement to the pre-processor that it dropped the real number. Whenever

the pre-processor will transmit the erasure symbol, the estimator will receive this erasure

symbol. The estimator cannot make the difference between anerasure symbol received
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from the pre-processor or because the channel lost he packet.

We define first the channel process.

Definition 3.14 Let p be a positive real number less then one. We define the channel

process to be{Ck}∞k=0, as follows:

• C0 = 1;

• {Ck}∞k=1 is a Bernoulli process with parameterp (i.e. P (Ck = 1) = p, for all

integeresk bigger or equal to one.)

We will define for clarity purposes the process, which will have a definition like in

Chapter 2.

Definition 3.15 (State Process for Estimation) Given a real constanta, a positive real

constantσ2
W , a real numberx0, consider the following first order, linear, time-invariant

and discrete-time system driven by process noise:

X0
def
= x0 (3.35)

Xk+1
def
= aXk + Wk, k ≥ 0 (3.36)

where the process noise{Wk}∞k=0 is an i.i.d., Gaussian and zero mean stochastic process

with varianceσ2
W .

The filtration generated by
{
{Xt}k

t=0, {Ct}k
t=0

}
is denoted as:

X E
k

def
= σ (Xt; 0 ≤ t ≤ k;Ct; 0 ≤ t ≤ k; ) (3.37)
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whereσ (Xt; 0 ≤ t ≤ k;Ct; 0 ≤ t ≤ k; ) is the smallest sigma algebra generated by the

random variables
{
{Xt}k

t=0, {Ct}k
t=0

}
, for all integersk ∈ {0, . . . , T}.

The filtration generated by
{
{Xt}k

t=0, {Ct}k−1
t=0

}
is denoted byX P

k :

X P
k

def
= σ (Xt; 0 ≤ t ≤ k;Ct; 0 ≤ t ≤ k − 1; ) , k ≥ 0 (3.38)

whereσ (Xt; 0 ≤ t ≤ k;Ct; 0 ≤ t ≤ k; ) is the smallest sigma algebra generated by ran-

dom variables
{
{Xt}k

t=0, {Ct}k−1
t=0

}
, for all integersk ∈ {0, . . . , T}.

Definition 3.16 (Estimation Pre-processor) Consider an erasure symbol denoted asE

and a causal mapP0,T : (x0, . . . , xk, c0, . . . , ck−1) 7→ v̂k, defined fork ∈ {1, . . . , T},

xk ∈ R, ck ∈ {0, 1} and v̂k ∈ R ∪ {E}. Hence, at each time instantk, P0,T outputs a

real number or an erasure symbol, based on past observationsof the process{Xj}k

j=0

and and{Cj}k−1
j=0 . P0,T generates a stochastic process{V̂k}T

k=0 via the application of

the operatorP0,T to the processes{Xk}T
k=0 and{Cj}T−1

j=0 and we note that the random

variableV̂k is measurable with respect to theσ-algebraX P
k . The pre-processorP0,T is

valid if at time zero,̂v0 = x0

Definition 3.17 (Remote link process) The remote link process is denoted as{Vk}T
k=0

and it takes values inR
⋃{E}, whereE signifies erasure (See Definition 3.16). Given a

real constanta, the positive real constantsσ2
W , x0 and a pre-processorP0,T , the process

{Vk}T
k=0 is adapted to{X E

k }T
k=0 and it represents the input received by the estimatorE

via the following relationship:

Vk
def
=





V̂k, Ck = 1, k ≥ 0

E, Ck = 0, k ≥ 0

(3.39)
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Hence, at each time instantk, the pre-processor outputs a real number or an erasure

symbol, based on the past observations of the state process and the channel process. If

the channel processCk = 1 at the current time timek then the output of the preprocessor

will be received by the estimator, otherwise the estimator will receive an erasure symbol.

We notice that the estimator receives the initial conditionX0 since we setC0 = 1. The

filtration generated by{Vk}T
k=0 is denoted as{Vk}T

k=0 and it is obtained as:

Vk
def
= σ (Vt; 0 ≤ t ≤ k) (3.40)

whereσ (Vt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Vt, 0 ≤ t ≤ k}, for

all integersk ∈ {0, . . . , T}.

Definition 3.18 (Optimal estimate and optimal estimator) Given a pre-processorP0,T ,

we consider optimal estimators in the expected squared sense whose optimal estimate at

timek is denoted aŝXk and is expressed as follows:

X̂k
def
=






E
[
Xk|{Vt}k

t=0

]
if k ≥ 1

x0 if k = 0

(3.41)

whereE
[
Xk|{Vt}k

t=0

]
represents the expectation of the stateXk conditioned on current

and past information received by the estimator{Vt}k
t=0. We useE(P0,T ) to denote the

optimal estimatorfor the given pre-processor policyP0,T

Note: The estimator given in Definition 3.18 is the same with the onegiven in

Definition 2.3.

Definition 3.19 (Finite time horizon cost function)Given a positive integerT , a mea-

surable pre-processorP0,T (Definition 3.16), a real constanta, a positive real constantp
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less than or equal to one and positive real constantsσ2
W andc, we define:

J0,T

(
a, σ2

W , p, c,P0,T

) def
=

T∑

k=1

E

[(
Xk − X̂k

)2

+ cRk

]
(3.42)

whereXk is the state of the system defined in (3.35)-(3.36),X̂k is the optimal estimate

specified in Definition 2.3, andRk is the communication cost defined in (3.43).

Rk
def
=





0 if V̂k = E

1 if V̂k 6= E

, k ≥ 1 (3.43)

We define the process{Lk}T

k=0 as follows:

Lk = RkCk (3.44)

It follows that Lk = 0 either if the pre-processor sends the erasure symbol, or if the

channel drops the packet andLk = 1 if the pre-processor sends a real number and the

channel does not drop the packet. Hence the processLk is zero if the estimator receives

an erasure symbol and is equal to one if the estimator receives a real number. Since

C0 = 1 and V̂0 = X0, it follows thatL0 = 1, hence the estimator knows the initial

condition of the system described in (3.35)-(3.36)

Remark 3.2 (Cost does not depend onX0). Just like in the Remark 2.3, notice that

because the plant (3.35)-(3.36) is linear, the fact thatx̂0 = x0 holds (see Definition 3.18)

implies that the homogenous part of the state can be reproduced at the estimator. Hence,

the optimal estimator will include such an homogeneous term, thus subtracting it out from

the estimation errorXk − X̂k, for k ≥ 0. This also implies that the cost (3.42) does not

depend on the homogeneous term nor on the initial conditionX0.
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Problem 3.5 Let a real constanta, the variance of the process noiseσ2
W , the initial con-

dition x0 and the parameterp of the channel process be given. In addition, consider that

a positive realc is given. We want to find an optimal solutionP∗
0,T for the following

optimization problem:

P∗
0,T ∈ argmin

P0,T

J0,T

(
a, σ2

W , p, c,P0,T

)
(3.45)

3.5.1 A Kalman-like filter

Definition 3.20 (Kalman-like estimator) Given the process defined in (3.35)-(3.36) and

a pre-processorP0,T define the mapZ : (v0, . . . , vk) 7→ zk, for k in the set{0, . . . , T},

wherezk is computed as follows:

z0
def
= x0 (3.46)

zk
def
=





azk−1 if vk = E

vk if vk 6= E

, with k ≥ 1 (3.47)

Remark 3.3 Notice that the pre-processor has access to the estimateZk because it has

access and full control of the input applied toZ.

Remark 3.4 Notice that Definition 3.20 is identical with Definition 2.5,but we must point

that vk has different meanings in these two definitions. In Definition 2.5,vk is the output

of the pre-processor , while in Definition 3.20,vkis the output of the channel.

3.5.2 The SetPT - of Admissible Pre-Processors

We proceed by defining a class of pre-processors, which is amenable to the use of

recursive methods for perfomance analysis. If a pre-processor belongs to such a class
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then we denote it as admissible, and we argue in Remark 3.6 that there always exist an

admissble pre-processor that is an optimal solution to Problem 3.5. This implies that we

incur no loss of generality in constraining our analysis to admissible pre-processors.

Definition 3.21 (Admissible pre-processor) Let a horizonT larger than zero, a pre-

processor policyP0,T and a mapF0,T be given. The pre-processorP0,T is admissible

if there exists mapsPm,T : (xm, . . . , xk, cm, . . . , ck−1) 7→ v̂k, with 0 ≤ m ≤ T and

k ≥ m, such thatP0,T can be specified recursively as follows:

Algorithm for Pm,T

• (Initial step) Setk = m, lm = 1 and transmit the current state, i.e.,v̂m = xm and

the channel will deliver the packet, i.e.cm = 1, which implies thatlm = 1.

• (Step A) Increase the counterk by one. Ifk > T holds then terminate, otherwise

execute Step B.

• (Step B) Obtain the pre-processor output at timek via v̂k = Pm,T (xm, . . . , xk, cm, . . . , ck−1).

If v̂k = E then setrk = 0 which implieslk = 0 and go back to Step A. If̂vk 6= E

and if ck = 0, go to step A, if̂vk 6= E and if ck = 1 then execute algorithmPk,T .

End of Algorithm for Pm,T

The class of all admissiblepre-processors is denoted asPT .

The following Remark provides an equivalent characterization of the class of ad-

missible pre-processors.
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Remark 3.5 Let a horizonT larger than zero and a pre-processor policyP0,T be given.

The pre-processorP0,T is admissible if and only if for eachm ∈ {1, . . . , T} there exists

a mapPm,T : (xm, . . . , xk, cm, . . . , ck−1) 7→ v̂k such that the following holds:

lm = 1 =⇒ Pq,T (xq, . . . , xk, cq, . . . , ck−1) =

Pm,T (xm, . . . , xk, cm, . . . , ck−1),

xq, . . . , xk ∈ R, cm, . . . , ck−1 ∈ {0, 1},

k > m ≥ q ≥ 0

(3.48)

Given an admissible pre-processorP0,T , later on we will also refer to the time-restricted

pre-processors{Pm,T}T
m=1 according to Definition 3.21, or equivalently as implied by

(3.48).

Remark 3.6 Given a positive time-horizonT , there is no loss of generality in constrain-

ing our search for optimal an pre-processor to the setPT . Indeed, let an optimal pre-

processor policyP∗
0,T be given. If a transmission takes place at some timem (rm = 1

holds) then the optimal output at the pre-processor isv̂k = xk. If the transmission is

successful (i.e.ck = 1), it holds thatvk = v̂k = xk. Since, given that a real number is

transmitted, the choicêvk = xk must be optimal because it leads to a perfect estimate

x̂m = xm. Hence, given thatlm = 1 (i.e. rm=1, cm = 1), by Markovianity we con-

clude that the current and future values produced by the pre-processor{V̂k}T
k=m will not

depend on observations prior tom. Consequently,P∗
0,T satisfies (3.48), and hence it is

admissible.
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3.5.3 Symmetric threshold pre-processor

Definition 3.22 In order to simplify our notation, we define the following process:

Yk
def
= Xk − aZk−1 (3.49)

Using Definitions 3.15 and 3.20, we find that{Yk}T
k=0 can be rewritten as:

Y0 = 0 (3.50)

Yk+1 =





aYk + Wk if Lk = 0

Wk if Lk = 1

(3.51)

Remark 3.7 We notice that the process{Yk} is defined in a similar way in (3.28) or (2.14).

This remark is the same as Remark 2.7 and we repeat it here for clarity purposes.Yk has

an even probability density function. This fact makes{Yk}T

k=0 a more convenient process

to work with, in comparison to{Xk}T
k=0, which motivates its use in our analysis hereon,

whenever possible. No loss of generality is incurred because {Yk}T
k=0 can be recovered

from {Xk}T
k=0, and vice-versa, via the use of{Zk}T

k=0, which is common information at

the pre-processor and estimator (See Remark 2.4 or Remark 3.3). In addition, notice that

the cost (3.42) can be re-written in terms of{Yk}T
k=0 as follows:

J0,T

(
a, σ2

W , p, c,P0,T

) def
=

T∑

k=1

E

[(
Yk − Ŷk

)2

+ cRk

]
(3.52)

whereŶk
def
= E

[
Yk|{Vt}k

t=0

]
. A key fact here is that̂Yk = X̂k − aZk−1 holds, leading

to the validity of the identityYk − Ŷk = Xk − X̂k.

Definition 3.23 Given positive integer horizonT and an arbitrary sequence of positive

real numbers (thresholds)τ = {τk}T
k=1, for eachm in the set{0, . . . , T}, we define the

following algorithm fork ≥ m, which we denote asSm,T :
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Algorithm Sm,T

• (Initial step) Setk = m, lm = 1 (i.e. rm = 1 andcm = 1) and transmit the current

state, i.e.,̂vm = xm or equivalently setym = 0.

• (Step A)Increase the time counterk by one. Ifk > T holds then terminate, other-

wise execute Step B.

• (Step B) If |yk| < τk holds then setrk = 0, transmit the erasure symbol, i.e.,

v̂k = E = vk, and return to Step A. If|yk| ≥ τk holds and ifck = 0 return to Step

A, if |yk| ≥ τk holds and ifck = 1 then setm = k and executeSm,T .

End of Algorithm Sm,T

Definition 3.24 (Symmetric threshold policy) The algorithmS0,T , as in Definition 3.23,

is denoted as symmetric threshold pre-processor. The pre-processorS0,T is admissible

and the class of all symmetric threshold policiesis denoted asST .

Theorem 3.4 Let the parameters specifying Problem 3.5 be given, i.e., the variance of

the process noiseσ2
W , the system’s dynamic constanta, the communication costc, the

parameterp of the channel process, and the time horizonT are pre-selected. There exists

a sequence of positive real numbersτ ∗ = {τ ∗
k}T

k=1, such that the corresponding symmet-

ric threshold policyS∗
0,T is an optimal solution to (3.45) and the corresponding optimal

estimatorE(S∗
0,T ) isZ. HereS∗

0,T andZ follow Definitions 3.24 and 3.20, respectively.
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3.5.4 Optimizing within the classDT

We start by defining the following class of path-dependent pre-processor policies,

which is an extension of Definition 3.24 so as to allow time-varying thresholds that depend

on past decisions. Such a class of pre-processors will be used later when we provide a

proof for Theorem 3.4.

Definition 3.25 (AlgorithmDm,T ) Given a horizonT , consider that a sequence of (thresh-

old) functionsT def
= {Tm,k|m ≤ k ≤ T, 1 ≤ m ≤ T}, with Tm,k : {0, 1}m−k → R, is

given. Given a selection of the threshold functionsT , for everym in the set{1, . . . , T},

we define the following algorithm fork ≥ m, which we denote asDm,T :

Algorithm Dm,T

• (Initial step) Setk = m, lm = 1 (i.e. rm = 1 andcm = 1) and transmit the current

state which will be received by the estimator, i.e.,v̂m = vm = xm or equivalently

setym = 0.

• (Step A)Increase the time counterk by one. Ifk > T holds then terminate, other-

wise execute Step B.

• (Step B)If |yk| < Tm,k(lm, . . . , lk−1) holds then setrk = 0, transmit the erasure

symbol, i.e.,̂vk = vk = E, and return to Step A. If|yk| ≥ Tm,k(lm, . . . , lk−1) and if

ck = 0, thenvk = E and return to Step A, if|yk| ≥ Tm,k(lm, . . . , lk−1) and ifck = 1

hold then executeDk,T .

End of AlgorithmDm,T
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Recall thatl0 through lk−1 represent past information received by the estimator, where

lk = 1 indicates that the state is received at the estimator at timek, while lk = 0 implies

that an erasure was received.

Definition 3.26 (Path-dependent symmetric threshold policy) Given an horizonT , con-

sider that a sequence of (threshold) functionsT def
= {Tm,k|m ≤ k ≤ T, 1 ≤ m ≤ T}, with

Tm,k : {0, 1}m−k → R, is given. The path-dependent symmetric threshold pre-processor

associated withT is implemented via the execution of the algorithmD0,T , as specified in

Definition 3.25. We denote such an admissible pre-processorasD0,T . We useD0,T to

denote the entire classof path-dependent symmetric threshold pre-processors with time

horizonT .

The goal of this sectionis to provide the following two results that are crutial in

the proof of Theorem 3.4: In Proposition 3.1, we prove that ifP0,T is any given path-

dependent symmetric threshold pre-processor policy then the associated optimal estima-

tor E(P0,T ) is Z. In Lemma 3.1 we prove that if we optimize within the class of path-

dependent policies then the optimum is of the path-independent type specified in Defini-

tion 3.24. This fact might raise the question of whether Definition 3.26 is needed. The

answer isyesbecause we adopt a constructive argument in the proof of Theorem 3.4 in

Subsection 3.5.7, which will make use of Definition 3.26.

Proposition 3.1 Let P0,T be a pre-selected path-dependent symmetric threshold policy

(Definition 3.26), it holds that the optimal estimatorE(P0,T ) isZ, as described in Defini-

tion 3.20.
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Remark 3.8 Proposition 3.1 could be recast by stating thatX̂k = Zk holds in the pres-

ence of path-dependent symmetric threshold pre-processors.

Proof (of Proposition 3.1) In order to simplify the proof, we define{X̃k}T
k=0 as the

process quantifying the error incurred by adopting a Kalman-like estimator (See Defini-

tion 3.20), i.e.,X̃k
def
= Xk−Zk. More specifically,{X̃k}T

k=0 can be equivalently expressed

as follows:

X̃0 = 0 (3.53)

X̃t+1 =





aX̃t + Wt if Lt = 0

0 if Lt = 1

(3.54)

The proof follows from the symmetry of all probability density functions involvingX̃k

andVk. More specifically, under symmetric path-dependent threshold policies the prob-

ability density function ofX̃k, given the past and current observations{Vk}t
k=0, is even.

Hence, we conclude thatE[X̃t|{Vk}t
k=0] = 0, which implies that̂Xt

def
= E[Xt|{Vk}t

k=0] =

Zt.�

Remark 3.9 If D0,T is a symmetric path-dependent threshold pre-processor (see Defini-

tion 3.26) thenŶk = 0 holds, leading to the following equality:

J0,T

(
a, σ2

W , p, c,D0,T

)
=

T∑

k=1

E
[
Yk

2 + cRk

]
,

D0,T ∈ DT

(3.55)

The process defined in (3.51) is a Markov Decision Process (MDP) whose state and

control areYk andRk, respectively. Hence the minimization of (3.55) with respect to

pre-processor policiesD0,T in the classDT can be cast as a dynamic program [13]. To
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do so, we define the sequence of functionsVt,T : R → R, t ∈ {1, 1, . . . , T + 1} which

represent the cost-to-go as observed by the pre-processor.HereT represents the horizon,

while t denotes that the decision at timet was taken, and the argument of the function

is the MDP stateYt, as seen by the pre-processor. In order to simplify our notation, we

adopt the convention thatVT+1,T (yT+1)
def
= 0, yT+1 ∈ R. Using dynamic programming,

we can find the following recursive equations forVt,T (yt), t ∈ {1, . . . , T}:

Vt,T (yt)
def
= min

rt∈{0,1}
Ct,T (yt, rt), t ∈ {1, . . . , T} (3.56)

whereCt,T : R × {0, 1} → R is defined as:

Ct,T (yt, 1)
def
= c + pE [Vt+1,T (Wt)]

+ (1 − p)
(
yt

2 + E [Vt+1,T (ayt + Wt)]
)

Ct,T (yt, 0)
def
= yt

2 + E [Vt+1,T (ayt + Wt)]

(3.57)

From (3.57) it immediately follows that an optimal decisionpolicy r∗t at any timet

is given by:

r∗t =





1 if Ct,T (yt, 1) ≤ Ct,T (yt, 0)

0 if Ct,T (yt, 0) < Ct,T (yt, 1)

(3.58)

We state the next Proposition, which will state properties of the functionsVt,T for

t ∈ {1, . . . , T + 1}:

Proposition 3.2 There exist functions̃Vt,T : R → R, t ∈ {1, . . . , T + 1} and positive

real numbers
{
mT

t

}T+1

t=1
such that:

Vt,T (yt) = mT
t y2

t + Ṽt,T (yt) (3.59)
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whereVt,T (yt), t ∈ {1, . . . , T + 1} are defined in equation 3.56. Moreover, the functions

Ṽt,T : R → R, t ∈ {1, . . . , T + 1} are even, quasi-convex, continuous and bounded.

Proof: Define the sequence of positive numbers
{
mT

t

}T+1

t=1
as follows:

mT
T+1

def
= 0

mT
t

def
= (1 − p)

(
1 + a2mT

t+1

)
, t ∈ {1, . . . , T}

(3.60)

Define the functions̃Vt,T : R → R, t ∈ {1, . . . , T + 1} as follows:

ṼT+1,T (yT+1)
def
= 0

Ṽt,T (yt)
def
= mT

t+1σ
2
W + (1 − p)E

[
Ṽt+1,T (ayt + Wt)

]

+ min
(
c + pE

[
Ṽt+1,T (Wt)

]
, +p(1 + a2mT

t+1)y
2
t + pE

[
Ṽt+1,T (ayt + Wt)

])
,

t ∈ {1, . . . , T}

(3.61)

We will show that the functions̃Vt,T : R → R, t ∈ {1, . . . , T + 1} defined in equa-

tions (3.61) and the sequence of positive numbers
{
mT

t

}T+1

t=1
defined in equations (3.60)

satisfy equations (3.59).

The functionṼT−1,T (yT−1) = min
(
c, py2

T−1

)
is bounded. By induction, it follows

that the functions̃Vt,T , t ∈ {1, . . . , T + 1} are bounded.

We prove equation (3.59) by induction:

VT,T (yT ) = min
(
c + (1 − p)y2

T , y2
T

)

= (1 − p)yT
2 + min

(
c, py2

T

)

= mT
T y2

T + ṼT,T (yT )

We can compute the functionE [VT,T (ayT−1 + WT−1)]:

E [VT,T (ayT + WT )] = (1 − p)a2y2
T + (1 − p)σ2

W + E
[
ṼT,T (ayT + WT )

]
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We note that the functionE [VT,T (ayT + WT )] is well defined for all real numbersyT ,

becausẽVT,T is bounded henceE
[
ṼT,T (ayT + WT )

]
exists for all real numbersyT .

Assume thatVk,T (yk) satisfies equation (3.59) for allk ∈ {t + 1, . . . , T + 1},

which implies that the functionsE [Vk+1,T (ayk + Wk)] , k ∈ {t, . . . , T} are well de-

fined for all real numbersyk, since:

E [Vk+1,T (ayk + Wk)] = mT
k+1a

2y2
k + mT

k+1σ
2
W + E

[
Ṽk+1,T (ayk + Wk)

]
, k ∈ {t, . . . , T}

In order to prove equation (3.59) fort, we use equations (3.56) and (3.57) :

Vt,T (yt) = min
(
c + pE [Vt+1,T (Wt)] + (1 − p)

(
y2

t + E [Vt+1,T (ayt + Wt)]
)
,

y2
t + E [Vt+1,T (ayt + Wt)]

)

= (1 − p)
(
y2

t + E [Vt+1,T (ayt + Wt)]
)

+ min
(
c + pE [Vt+1,T (Wt)] , p

(
y2

t + E [Vt+1,T (ayt + Wt)]
))

= (1 − p)y2
t + (1 − p)a2mT

t+1yt
2 + (1 − p)σ2

W + (1 − p)E
[
Ṽt+1,T (ayt + Wt)

]

+ min
(
c + pmT

t+1σ
2
W + pE

[
Ṽt+1,T (Wt)

]
,

py2
t + pmT

t+1a
2y2

t + pmT
t+1σ

2
W + pE

[
Ṽt+1,T (ayt + Wt)

])

= (1 − p)
(
1 + a2mT

t+1

)
y2

t + mT
t+1σ

2
W + (1 − p)E

[
Ṽt+1,T (ayt + Wt)

]
+

min
(
c + pE

[
Ṽt+1,T (Wt)

]
, py2

t + pmT
t+1a

2y2
t + pE

[
Ṽt+1,T (ayt + Wt)

])

=mT
t y2

t + Ṽt,T (yt) �

Using the MDP given in Definition 3.22 and the value functionsfrom equation (3.56),

we prove the following Lemma, which states that,within the class of symmetric path-

dependent pre-processorsDT (Definition 3.26), there exists an optimal path-independent

symmetric threshold policyS∗
0,T (Definition 3.24) for Problem 3.5.
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Lemma 3.1 Let the parameters specifying Problem 3.5 be given, i.e., the variance of the

process noiseσ2
W , the system’s dynamic constanta, the communication costc, the channel

process parameterp and the time horizonT are pre-selected. Consider Problem 3.5 with

the additional constraint that the pre-processor must be ofthe symmetric path-dependent

typeDT specified in Definition 3.26. There exists an optimal path-independentsymmetric

threshold policyS∗
0,T , as given in Definition 3.24, whose associated threshold selection

{τ ∗
k}T

k=1 is given by a solution to the following equations:

Ct,T (τ ∗
t , 0) = Ct,T (τ ∗

t , 1), t ∈ {1, . . . , T} (3.62)

Proof: From (3.58), we conclude that in order to prove this Lemma we only need

to show that there exist thresholds{τ ∗
k}T

k=1 such that the following equivalences hold:

|yt| ≥ τ ∗
t ⇐⇒ Ct,T (yt, 1) ≤ Ct,T (yt, 0), t ∈ {1, . . . , T} (3.63)

Indeed, if (3.63) holds then the optimal strategy in (3.58) can be implemented via a thresh-

old policy. In order to prove that there exist thresholds{τ ∗
k}T

k=1 such that (3.63) holds, we

will use the following facts (A.1 thorugh A.4):

• (Fact A.1): For everyt in the set{1, . . . , T}, Ct,T (yt, 1) depends only ont, i.e., it

is time-dependent constant independent ofyt.

• (Fact A.2): It holds thatCt,T (0, 0) < Ct,T (yt, 1) for yt ∈ R.

• (Fact A.3): For everyt in the set{1, . . . , T} there exists a positive constantut

such thatCt,T (yt, 0) > Ct,T (yt, 1) andCt,T (−yt, 0) > Ct,T (−yt, 1) hold for everyyt

satisfying|yt| > ut.
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Figure 3.4: Illustration suggesting that Facts A.1 throughA.4. imply the existence of

thresholds for Problem 3.5, where we allow packet drop with ackowledgement.

• (Fact A.4): It holds thatCt,T (yt, 0) is a continuous, even, quasi-convex and un-

bounded function ofyt, for everyt in the set{1, . . . , T}.

Facts A.1 and A.3 follow immediately from Fact A.4, which requires a proof that we defer

to a later stage. Fact A.2 also follows from Fact A.4 and from (2.20), which implies that

Ct,T (0, 0) < Ct,T (0, 1). At this point we assume that Fact A.4 is valid, and we proceed

by noticing that continuity ofCt,T (yt, 0) with respect toyt, as well as Facts A.2 and A.3,

imply that the equations in (2.22) have at least one solution. Moreover, from Facts A.1

through A.4 we can conclude that such a solution guarantees that (3.63) is true (See

Figure 3.4).

(Proof of Fact 4) It follows from Proposition 3.2.�

3.5.5 Conditional probabilities and conditional probability density func-

tions

Before proving Theorem 3.4, in this subsection we need to make a few remarks

and introduce more notation, which will streamline our proof. This subsection contains

two parts: We start by introducing the notation for certain conditional probability density
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functions of interest, while in the second part we will derive recursive equations for the

time update of the conditional densities, and we will also obtain a recursive expansion for

the cost associated with any given admissible pre-processor policyP0,T .

Definition 3.27 Let a pre-processorP0,T , implementing a decision policy as in Defini-

tion 3.16, be given. We define the following notation for conditional probability densities,

which will streamline our proof of Theorem 3.4:

1. Define the conditional probability density function ofYk given that only erasure

symbols were received by the estimator up until timek as follows:

γk|k (y)
def
= fYk |L1=0,...,Lk=0 (y) , y ∈ R

2. Define the conditional probability density function ofYk given that only erasure

symbols were received up until timek − 1 as follows:

γk|k−1 (y)
def
= fYk |L1=0,...,Lk−1=0 (y) , y ∈ R

Definition 3.28 We define the following streamlined notation for certain conditional prob-

abilities of interest:

1. Define the probability that, under policyP0,T , only erasure symbols have been re-

ceived up until timek:

ςk
def
=





P (L1 = 0, . . . ,Lk = 0) if k ≥ 1

1 if k = 0
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2. Define the conditional probability that, under policyP0,T , the pre-processor trans-

mits the erasure symbol at timek, given that only erasure symbols have been re-

ceived up until timek − 1.

ςk|k−1
def
=





P (R1 = 0) , if k = 1

P (Rk = 0|L1 = 0, . . . ,Lk−1 = 0) , ow

Definition 3.29 Let P0,T be a decision policy given as in Definition 3.16. Letk be a

positive integer andy be a real number. For a positive integerk, define the function

ρk : R → [0, 1] as follows:

ρk (y)
def
= P (Rk = 0|Yk = y,L1 = 0, . . . ,Lk−1 = 0) , (3.64)

wherey ∈ R. The functionρk (y) is the probability that, at timek, the erasure symbol is

transmitted, given thatYk = y, wherey is any real number, and the fact that only erasure

symbols have been received up until timek − 1.

3.5.6 Time Evolution

Now, we describe how the conditional probability density functions presented in

subsection 3.5.5 evolve in time, for a given policyP0,T . For a real numbera, define the

conditional probability density function ofaYk given that no observation was received

up until timek under the decision policyP0,T :

γa
k|k(y)

def
= faYk|L1=0,...,Lk=0 (y)

We denote byNσ2
W

the probability density function ofWk, for all k, i.e., the Gaus-

sian zero mean probability density with varianceσ2
W , or more concretelyNσ2

W
(x) =
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1√
2πσ2

W

e
− x2

2σ2
W . Since the sequence{Wk}T

k=0 is i.i.d.,Wk is also independent of{Yl}k
l=0,

which implies that the following holds:

γk|k−1 = γa
k−1|k−1 ∗ Nσ2

W
(3.65)

Proposition 3.3 The conditional densitiesγk|k−1 and γk|k are related via the following

time-recursion:

γk|k(y) =
γk|k−1(y)ρk(x) + (1 − p)(1 − ρk(y))γk|k−1(y)

ςk|k−1 + (1 − ςk|k−1)(1 − p)
,

ςk|k−1 + (1 − ςk|k−1)(1 − p) 6= 0, k ≥ 1

(3.66)

Proof: In order to arrive at (3.66), we use Baye’s rule to write:

fYk |L0=0,...,Lk=0 (y) =
P (Lk = 0|Yk = y,L0 = 0, . . . ,Lk−1 = 0)

P (Lk = 0|L0 = 0, . . . ,Lk−1 = 0)
fYk |L0=0,...,Lk−1=0 (y)

(3.67)

The recursion (3.66) follows from (3.67) and by rewriting itaccording to Definitions 3.27,

3.28 and 3.29. Equation (3.67) holds only ifςk|k−1 + (1 − ςk|k−1)(1 − p) 6= 0, otherwise

the conditional density functionfYk|L1=0,...,Lk=0 (y) is no longer defined.�

Definition 3.30 Given an admissible pre-processorP0,T and an integerm ∈ {0, T} , we

adopt the following definition for the partial cost computedfor the horizon{m, . . . , T}

under the assumption thatlm = 1:

Jm,T

(
a, σ2

W , p, c,Pm,T

) def
=

T∑

k=m+1

E

[(
Yk − Ŷk

)2

+ cRk

]
, if 0 ≤ m < T (3.68)

If m < 0 or m ≥ T we defineJm,T (a, σ2
W , p, c,Pm,T ) to be equal to zero.

Remark 3.10 Given an integerm, we notice that the cost in (3.68) will not depend on the

value of the state at timem. This is so beause, according to Definition 3.21, sinceP0,T
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is admissible it holds that the current and futureoutputof Pm,T will not depend on the

current and past state observations. This Remark is an extension of Remark 3.2, which

considered the case form = 0.

Proposition 3.4 Given an arbitrarily selected admissible pre-processorP0,T , the finite

horizon cost (3.42) can be expanded as:

J0,T

(
a, σ2

W , p, c,P0,T

)

=
T∑

k=1

((
Eγk|k

[(
Yk − Ŷk

)2
]

+
c(1 − p)ςk|k−1

ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk|k

+
(
c + Jk,T

(
a, σ2

W , p, c,Pk,T

)) (
ςk−1 −

(
ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk−1

)
)

(3.69)

Here we use the notationEγk|k

[(
Yk − Ŷk

)2
]

def
= E

[(
Yk − Ŷk

)2

|L1 = 0, . . . ,Lk = 0

]
,

whereγk|k is given in Definition 3.27.

Proof: We start by noticing that, by the total probability law, we can expand the

cost as:

J0,T

(
a, σ2

W , c,P0,T

)

=
T∑

k=1

((
E

[(
Yk − Ŷk

)2

|L1 = 0, . . . ,Lk = 0

]

+cP (Rk = 1|L1 = 0, . . . ,Lk = 0))P (L0 = 0, . . . ,Lk = 0)

+ cP (Lk = 1,L1 = 0, . . . ,Lk−1 = 0)

+ E
[
Jk,T

(
a, σ2

W , p, c,P0,T

)
|Lk = 1,L1 = 0, . . . ,Lk−1 = 0

]

· P (Lk = 1,L1 = 0, . . . ,Lk−1 = 0)

)

(3.70)
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We proceed by obtaining the following identities: We are interested in computing the

following conditional probabilities:

P (L = 1,L0 = 0, . . . ,Lk−1 = 0) =

= P (L1 = 0, . . . ,Lk−1 = 0) − P (L1 = 0, . . . ,Lk = 0)

= P (L1 = 0, . . . ,Lk−1 = 0)

− P (Lk = 0|L1 = 0, . . . ,Lk−1 = 0)P (L1 = 0, . . . ,Lk−1 = 0)

= ςk−1 −
(
ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk−1

(3.71)

P (Rk = 1|Lk = 0, . . . ,L1 = 0)

= P (Rk = 1|Lk−1 = 0, . . . ,L1 = 0)

· P (Lk = 0|Rk = 1,Lk−1 = 0, . . . ,L1 = 0)

P (Lk = 0|Lk−1 = 0, . . . ,L1 = 0)

=
(1 − p) · ςk|k−1

ςk|k−1 + (1 − ςk|k−1)(1 − p)

(3.72)

Notice that, using standard probability theory, from{ςk}T
k=1 we can compute

{
ςk|k−1

}T

k=1

and vice versa. Here, equations (3.71) and (3.72) are still valid fork = 1, since we defined

ς0 = 1 andς1|0 = ς1. Finally, notice that from Remark 3.10, we conclude the following:

E
[
Jk,T

(
a, σ2

W , p, c,Pk,T

)
|Lk = 1,L1 = 0, . . . ,Lk−1 = 0

]
= Jk,T

(
a, σ2

W , p, c,Pk,T

)

(3.73)

The proof of this Proposition is complete once we substitute(3.71), (3.72) and (3.73)

into (3.70).�

Definition 3.31 The following is a convenient definition for optimal cost:

J ∗
m,T

(
a, σ2

W , p, c
) def

= min
Pm,T

Jm,T

(
a, σ2

W , p, c,Pm,T

)
, (3.74)

whereT ≥ 1. If T = 0, we setJ ∗
m,T (a, σ2

W , p, c)
def
= 0.
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From Proposition 3.4, we can immediately state the following Corollary:

Corollary 3.2 The following inequality holds for every admissible pre-processorP0,T :

J0,T

(
a, σ2

W , p, c,P0,T

)

≥
T∑

k=1

((
Eγk|k

[(
Yk − Ŷk

)2
]

+
c(1 − p)ςk|k−1

ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk|k

+
(
c + J ∗

k,T

(
a, σ2

W , p, c
)) (

ςk−1 −
(
ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk−1

)
)

(3.75)

3.5.7 Proof of Theorem 3.4

Before proceeding with the actual proof of Theorem 3.4, we state Lemma 3.2,

which is a supporting result for the proof Theorem 3.4 and extends existing results from

majorization theory (See Section 2.4.1). Before stating Lemma 3.2, we need the following

definition.

Definition 3.32 Given a probability density functionf : R → R and a Borel setK, such

that
∫

K
f(x)dx > 0, and a positive real constantp ≤ 1 we define the probability density

functionfKp as follows:

f p
K
(x)

def
=





f(x)
R

K
f(x)dx+(1−p)

R

R\K
f(x)dx

, x ∈ K

(1−p)f(x)
R

K
f(x)dx+(1−p)

R

R\K
f(x)dx

, x /∈ K

It is clear thatf p
K

is also a probability density function.

Lemma 3.2 Let f, g : R → R be two probability density functions, such thatf is neat

and even andf ≻ g. Let κ be a real number in the intervalκ ∈ (0, 1) and letp be a

real number such thatp ∈ (0, 1]. Let A = [−τ, τ ] be the symmetric interval, such that
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∫ τ

−τ
f(x)dx = 1 − κ. For any functionh : R → [0, 1] satisfying

∫
R

g(x)h(x)dx = 1 − κ,

the following holds:

f p
A
≻ g · h + (1 − p)(1 − h) · g

1 − κ + (1 − p)κ
(3.76)

Proof: Let F ∈ R be a Borel set withL (F) < ∞. Sincef is even and quasiconcave,

it holds that,f(x) ≤ f
(

L(F)
2

)
, x ∈ F \

[
−L(F)

2
, L(F)

2

]
andf(x) ≥ f

(
L(F)

2

)
, x ∈

[
−L(F)

2
, L(F)

2

]
\ F. It follows that:

∫

F

f(x)dx ≤
∫ L(F)

2

−
L(F)

2

f(x)dx (3.77)

Sincef ≻ g, and letF ∈ R be a Borel set withL (F) < ∞ we obtain that:

∫

F

g(x)dx ≤
∫ L(F)

2

−L(F)
2

f(x)dx (3.78)

We need to analyze two cases. The first case is whenL (F) ≤ L (A) = 2τ , which implies

that L(F)
2

≤ τ .

∫ L(F)
2

−L(F)
2

f(x)dx ≥
∫

F

g(x)dx

=

∫

F

h(x)g(x)dx +

∫

F

(1 − h(x)) g(x)dx

≥
∫

F

h(x)g(x)dx +

∫

F

(1 − p) (1 − h(x)) g(x)dx

(3.79)

The second case is whenL (F) ≥ L (A) = 2τ , which implies thatL(F)
2

≥ τ .

∫ L(F)
2

−L(F)
2

f(x)dx =

∫ τ

−τ

f(x)dx +

∫ −τ

−L(F)
2

f(x)dx

+

∫ L(F)
2

τ

f(x)dx ≥
∫

F

h(x)g(x)dx +

∫

F

(1 − h(x)) g(x)dx

We know that
∫ τ

−τ
f(x)dx = 1 − κ ≥

∫
F
h(x)g(x)dx. If we have that:

∫ −τ

−
L(F)

2

f(x)dx +

∫ L(F)
2

τ

f(x)dx ≥
∫

F

(1 − h(x)) g(x)dx
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It holds then that:
∫ τ

−τ

f(x)dx + (1 − p)

(∫ −τ

−
L(F)

2

f(x)dx +

∫ L(F)
2

τ

f(x)dx

)

≥
∫

F

h(x)g(x)dx + (1 − p)

∫

F

(1 − h(x)) g(x)dx

(3.80)

If we have that:

∫ −τ

−L(F)
2

f(x)dx +

∫ L(F)
2

τ

f(x)dx ≤
∫

F

(1 − h(x)) g(x)dx

Then the following holds:

∫ τ

−τ

f(x)dx −
∫

F

h(x)g(x)dx ≥
∫

F

(1 − h(x)) g(x)dx

−
(∫ −τ

−L(F)
2

f(x)dx +

∫ L(F)
2

τ

f(x)dx

)

≥ (1 − p)

∫

F

(1 − h(x)) g(x)dx

− (1 − p)

(∫ −τ

−
L(F)

2

f(x)dx +

∫ L(F)
2

τ

f(x)dx

)

It follows that:
∫ τ

−τ

f(x)dx + (1 − p)

(∫ −τ

−
L(F)

2

f(x)dx +

∫ L(F)
2

τ

f(x)dx

)

≥
∫

F

h(x)g(x)dx + (1 − p)

∫

F

(1 − h(x)) g(x)dx

(3.81)

Multiplying the inequalities (3.79), (3.81) and (3.81) by 1
1−κ+(1−p)κ

and using Def-

inition 3.32, we obtain that for any Borel setF with L (F), there exists a set, i.e. the

interval[−L(F)
2

, L(F)
2

], such that:

∫ L(F)
2

−
L(F)

2

f p
A
(x) ≥

∫

F

g(x)h(x) + (1 − p)(1 − h(x))g(x)

1 − κ + (1 − p)κ
dx (3.82)

Equation (3.82) implies that:

f p
A
≻ g · h + (1 − p)(1 − h) · g

1 − κ + (1 − p)κ

83



�

Ourproof strategy is to show that for every pre-processor policyP0,T , there exists

a symmetric path-dependent threshold policyDo
0,T which does not underperformP0,T ,

when evaluated according to Problem 3.5. This fact, which wedenote asFact B.1, leads

to the following conclusions:

• (Fact B.2): Lemma 3.1, in conjunction with Fact B.1, implies that an optimum for

Problem 3.5 exists and that it is of the symmetric threshold type (Definition 3.24).

• (Fact B.3): From Fact B.2 and Proposition 3.1, we conclude that symmetric thresh-

old policies (Definition 3.24) and Kalman-like estimators (Definition 3.20) are jointly

optimal for Problem 3.5.

Proof of Theorem 3.4:

We prove Theorem 3.4 by induction. LetP0,T be an arbitrary admissible policy,

given in Definition 3.21, for this policy we will construct a symmetric path-dependent pol-

icy Do
0,T given in Definition 3.25, which does not underperformP0,T . Hence it is enough

to search the optimum admissible policyP∗
0,T for Problem 3.5 only on the set of symmet-

ric path-dependent policies. The optimal symmetric path-dependent pre-processor policy

is given in Lemma 3.1 and it is actually a symmetric path-independentpolicy.

Let T , the time horizon be equal to one. The pre-processor policyP0,1 defines

the conditional probabilitiesς1|0, ς1|1 from Definiton 3.28 and the conditional probability

density functionsγ1|0(y) andγ1|1(y) from Definition 3.27. The cost associated with the
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pre-processor policyP0,1 is given in Proposition 3.69:

J0,1

(
a, σ2

W , p, c,P0,1

)

=

(
Eγ1|1

[(
Y1 − Ŷ1

)2
]

+
c(1 − p)ς1|0

ς1|0 + (1 − ς1|0)(1 − p)

)
ς1|1

+ c
(
ς0 −

(
ς1|0 + (1 − ς1|0)(1 − p)

)
ς0
)

(3.83)

We need to construct a path-depedent pre-processor policy,but since the time hori-

zon T is equal to one, we just need to select one threshold. Hence,Do
0,1 is given in

Definition 3.25, i.e. if|y1| < T0,1(l0) transmit the erasure symbol, otherwise transmit the

true value of the systemX1. Notice thatl0 was set from the beginning to be equal to one,

i.e. the estimator knows the value ofx0. The pre-processor policyDo
0,T has associated the

conditional probability density functionsγD
1|0(y) andγD

1|1(y) from Definition 3.27 and the

conditional probabilitiesςD
1|0, ςD

1|1 from Definiton 3.28. Choose the thresholdT0,1(1) such

that ςD
1|0 = ς1|0. It follows immediately thatςD

1|1 = ς1|1. The cost associated withDo
0,1 is

given in Proposition 3.69:

J0,1

(
a, σ2

W , p, c,Do
0,1

)

=

(
EγD

1|1

[(
Y1 − Ŷ1

)2
]

+
c(1 − p)ς1|0

ς1|0 + (1 − ς1|0)(1 − p)

)
ς1|1

+ c
(
ς0 −

(
ς1|0 + (1 − ς1|0)(1 − p)

)
ς0
)

(3.84)

We have used the fact thatςD
1|0 = ς1|0 andςD

1|1 = ς1|1.

We notice thatγD
1|0(y) = γ1|0(y) = Nσ2

W
(y). From Lemma 3.2 it follows that

γD
1|1 is neat and even and thatγD

1|1 ≻ γ1|1. SinceγD
1|0 is neat and even, it follows that

Ŷ1 = EγD
1|1

[Y1] = 0, and from Lemma 2.4 it follows thatEγ1|1

[(
Y1 − Ŷ1

)2
]

≥

EγD
1|1

[(
Y1 − Ŷ1

)2
]
, hence:

J0,1

(
a, σ2

W , p, c,P0,1

)
≥ J0,1

(
a, σ2

W , p, c,Do
0,1

)
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Hence forT = 1, for any pre-processor policyP0,1 there exists a symmetric path-

dependent threshold policyDo
0,1, which does not underperformP0,1. It follows from

Lemma 3.1 that there exists an optimal policy, which is a symmetric path-independent

threshold policy.

Assume that for all time horizons in the set{1, . . . , T − 1}, the claim of Theo-

rem 3.4 is true, i.e. Problem 3.5 has an optimal policy, whichis a symmetric, path-

independent threshold policy. We need to show the claim for the time horizon equal to

T . LetP0,T be an arbitrary policy, this policy defines the conditional probabilitiesςk|k−1,

ςk|k from Definiton 3.28 and the conditional probability densityfunctionsγk|k−1(y) and

γk|k(y) from Definition 3.27, fork ∈ {1, . . . , T}. We need to construct the symmetric

path-dependent threshold policyDo
0,T . First we choose{Tk}T

k=1 positive real numbers,

and then we constructDo
0,T as follows:

Description of Algorithm Do
m,T

• (Initial step) Setk = 0, l0 = 1 (i.e. r0 = 1 andc0 = 1) and transmit the current

state which will be received by the estimator, i.e.,v̂0 = v0 = x0 or equivalently set

y0 = 0.

• (Step A) Increase the time counterk by one. If k > T holds then terminate,

otherwise execute Step B.

• (Step B) If |yk| < Tk holds then setrk = 0, transmit the erasure symbol, i.e.,

v̂k = vk = E, and return to Step A. If|yk| ≥ Tk and if ck = 0, thenvk = E and

return to Step A, if|yk| ≥ Tk and ifck = 1 hold then executeS∗
k,T .
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End of description of Algorithm Do
m,T

We remind to the reader thatS∗
k,T is the optimal symmetric threshold policy, if the

initial time isk and the final time isT , or better said the time horizon isT −k. According

to Lemma 3.1,S∗
k,T is path-independent, and by the induction step, this policyis optimal

among all admissible policies. Hence the policyDo
0,T can be described as follows, if

|Yk| ≤ Tk transmit the erasure symbol, if|Yk| ≥ Tk send the true state of the process, if

the channel sends the true state safely then adopt the optimal policy from that point on.

The policyDo
0,T defines the conditional probabilitiesςD

k|k−1, ςD
k|k from Definiton 3.28 and

the conditional probability density functionsγD
k|k−1(y) andγD

k|k(y) from Definition 3.27,

for k ∈ {1, . . . , T}. Choose the threshold{Tk}T
k=1 such thatςD

k|k−1 = ςk|k−1 for all

k ∈ {1, . . . , T}, which implies thatςD
k|k = ςk|k for all k ∈ {1, . . . , T}.

The cost associated with the policyDo
0,T is given by Proposition 3.69:

J0,T

(
a, σ2

W , p, c,Do
0,T

)

=
T∑

k=1

((
EγD

k|k

[(
Yk − Ŷk

)2
]

+
c(1 − p)ςk|k−1

ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk|k

+
(
c + Jk,T

(
a, σ2

W , p, c,Do
k,T

)) (
ςk−1 −

(
ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk−1

)
)

=

T∑

k=1

((
EγD

k|k

[(
Yk − Ŷk

)2
]

+
c(1 − p)ςk|k−1

ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk|k

+
(
c + J ∗

k,T

(
a, σ2

W , p, c
)) (

ςk−1 −
(
ςk|k−1 + (1 − ςk|k−1)(1 − p)

)
ςk−1

)
)

We notice thatγD
1|0(y) = γ1|0(y) = Nσ2

W
(y). From Lemma 3.2 it follows thatγD

1|1

is neat and even and thatγD
1|1 ≻ γ1|1. From equation (3.65) and Lemma 2.3, we have

that γD
2|1 ≻ γ2|1, again using Lemma 3.2 it follows thatγD

2|2 is neat and even and that

γD
2|2 ≻ γ2|2. By an induction argument we conclude thatγD

k|k is neat and even for allk ∈
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{1, . . . , T} and thatγD
k|k ≻ γk|k for all k ∈ {1, . . . , T}. It follows thatŶk = EγD

k|k
[Yk] =

0 for all k ∈ {1, . . . , T}, and from Lemma 2.4 it follows thatEγk|k

[(
Yk − Ŷk

)2
]
≥

EγD
k|k

[(
Yk − Ŷk

)2
]

for all k ∈ {1, . . . , T}. Using Corollary 3.2 we obtain that:

J0,T

(
a, σ2

W , p, c,Do
0,T

)
≤ J0,T

(
a, σ2

W , p, c,P0,T

)

�

3.6 Infinite Horizon - Discounted Cost Problem

We will look now at the infinite horizon counterpart of Problem 2.1. For this we

first extend naturally the definitions for the processXk (Definition 3.1), the pre-processor

(Definition 2.2), the pre-processor algorithms (Definitions 2.6, 2.8 and 2.10) by letting

the time-horizonT go to infinity.

We define the following cost:

J
(
a, σ2

W , c,P
) def

=
∞∑

k=1

dk−1E



(
Xk − X̂k

)2

+ cRk︸︷︷︸
communication cost


 (3.85)

We state now the infinite horizon counter part of Problem 2.1:

Problem 3.6 Let a real constanta, the variance of the process noiseσ2
W and the initial

conditionx0 be given. In addition, consider that a positive realc and a positive real

numberd less then one specifying the cost as in (3.85). We want to find an optimal

solutionP∗ to the following optimization problem:

P∗ = argmin
P

J (a, σ2
W , c,P) (3.86)
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We define the optimal cost for the infinite horizon cost:

J ∗
(
a, σ2

W , c
) def

= inf
P

J (a, σ2
W , c,P)

We state now the theorem, which solves Problem 3.6:

Theorem 3.5 Let the parameters specifying Problem 3.6 be given, i.e., the variance of

the process noiseσ2
W , the system’s dynamic constanta, the communication costc, the

discount factord and the time horizonT are pre-selected. There exists a positive real

numberτ and the sequence of positive real numbersτ ∗ = {τ ∗
k}∞k=1, with τk = τ for all

integersk, such that the corresponding symmetric threshold policyS∗
0,∞ is an optimal

solution to (3.86) and the corresponding optimal estimatorE(S∗
0,∞) is Z. HereS∗

0,T and

Z follow Definitions 2.9 and 2.5, respectively.

Proof: For the infinite time horizon, choose a horizonT and adopt the following

policy:

• if the current timet is less thanT choose the optimal policy for time horizonT ;

• if the current timet is greater thanT choose to transmit the current stateXk.

We note that for the infinite horizon case, this policy might not be optimal, hence

we obtain the following inequalities:

J ∗
0,T (a, σ2

W , c) ≤ J ∗(a, σ2
W , c) ≤ J ∗

0,T (a, σ2
W , c) + c

dT−1

1 − d
(3.87)

Noting thatd < 1, taking the limit asT goes to infinity it follows that:

lim
T→∞

J ∗
0,T (a, σ2

W , c) = J ∗(a, σ2
W , c) (3.88)
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Since there exists a symmetric threshold policy, which is optimal for the finite hori-

zon case, it follows that the policy chosen to prove equations (3.87) and (3.88) is a thresh-

old policy. Hence, for every positive numberǫ there exists a threshold policy applied to

the estimation error which gives a cost less thenJ ∗
d (a, σ2

W , c) + ǫ. It is enough to show

that it exists an optimal threshold policy for the infinite horizon case.

Just like in the finite horizon case, for the infinite horizon case, we can restrict the

estimator to be linear estimatorE given in Definition 2.5. The pre-processor can observe

the estimation errorXk−aZk−1, which follows the dynamics given in Definition 2.7. The

infinite horizon cost can be rewritten in terms ofYk as follows:

J
(
a, σ2

W , c,P
)

=

∞∑

k=1

dk−1
(
E
[
Y

2
k + cRk

])
(3.89)

Just like in the finite horizon case, we need to solve a Markov Decision Process

problem, with the dynamics given in equation (2.14). We needto define the value function

for this problem. We define the value functionV : R → R, where for a real numbery,

V(y) is the cost-to-go when the initial estimation error is equalto y. It holds that:

V0,T (y) ≤ V(y) ≤ V0,T (y) + c
dT−1

1 − d
(3.90)

similar as in equation (3.87). It follows from equation (3.90), that:

V(y) = lim
T→∞

V0,T (y) (3.91)

Moreover the limit in equation (3.91) in uniform ony, which follows from equation (3.90).

Hence the properties ofV0,T are inherited byV, i.e. V is an even, bounded, continuous

and quasiconcave function, andV satisfies the optimality equation:

V(y) = min
(
c + dE [V (W)] , y2 + E [V (ay + W)]

)
(3.92)
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From equation (3.92), it follows that there exist a unique thresholdτ , which gives the

optimal policy andτ is the solution of the equation:

y2 + E [V (ay + W)] = c + dE [V (W)] (3.93)

�

3.7 Infinite Horizon - Average Cost Problem

We will look now at the infinite horizon average counterpart of Problem 2.1. For

this we first extend naturally the definitions for the processXk (Definition 3.1), the pre-

processor (Definition 2.2), the pre-processor algorithms (Definitions 2.6, 2.8 and 2.10) by

letting the time-horizonT go to infinity.

For this we define the following cost:

Javg

(
a, σ2

W , c,P
) def

= lim sup
T→∞

∑T
k=1 E

[(
Xk − X̂k

)2

+ cRk

]

T
(3.94)

We state now the infinite horizon average cost counter part ofProblem 2.1:

Problem 3.7 Let a real constanta, the variance of the process noiseσ2
W and the initial

conditionx0 be given. In addition, consider that a positive realc specifying the cost as

in (3.94). We want to find an optimal solutionP∗ to the following optimization problem:

P∗ = argmin
P

Javg(a, σ2
W , c,P) (3.95)

We define the optimal cost for the infinite horizon average cost:

J ∗
avg

(
a, σ2

W , c
) def

= inf
P

Javg(a, σ2
W , c,P)
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We state now the theorem, which solves Problem 3.7:

Theorem 3.6 Let the parameters specifying Problem 3.7 be given, i.e., the variance of

the process noiseσ2
W , the system’s dynamic constanta, the communication costc and the

time horizonT are pre-selected. There exists a positive real numberτ and the sequence

of positive real numbersτ ∗ = {τ ∗
k}∞k=1, with τk = τ for all integersk, such that the

corresponding symmetric threshold policyS∗
0,∞ is an optimal solution to (3.95) and the

corresponding optimal estimatorE(S∗
0,∞) is Z. HereS∗

0,T andZ follow Definitions 2.9

and 2.5, respectively.

Proof: We can show that the optimal estimator is linear, using the same technique like

in the proof of Theorem 2.1. Just like in the finite horizon case, we can restrict the

estimator to be linear estimatorE given in Definition 2.5. The pre-processor can observe

the estimation errorXk−aZk−1, which follows the dynamics given in Definition 2.7. The

infinite horizon cost can be rewritten in terms ofYk as follows:

Javg(a, σ2
W , c,P) = lim sup

T→∞

∑T
k=1 (E [Y2

k + cRk])

T
(3.96)

Both in the finite horizon case and infinite horizon case (the discounted cost) we

notice that, we always send a real number ifY
2
k ≥ c. This follows from the dynamic

programming equations. After the real number is sent by the pre-processor the process

given in Definition 2.7 is reset to zero. Just analyzing the cost in (3.96), we notice that,

the pre-processor needs to send ifY
2
k > c. We can restrict ourselves to the policies, for

which the pre-processor will transmit the state of the process, ifY2
k > c. Hence, at each

time, if the pre-processor sends ifY
2
k > c, there existsp > 0 such that with a probability

greater or equal top, the pre-processor sends a real number the next time.
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There are two cases to be analyzed. First case is when−√
c ≤ Yk ≤ √

c, then

based on the policy adopted by the pre-processor the next state will be eitheraYk + Wk

or Wk. We need to verify when−√
c ≤ aYk + Wk ≤ √

c. It follows that, if Wk ∈

(−∞,−√
c (1 + |a|))∪ (

√
c (1 + |a|) ,∞) then−√

c ≥ aYk +Wk or aYk +Wk ≥ √
c.

Hence, the probabilityp can be taken to beP (Wk ∈ (−∞,−√
c (1 + |a|)) ∪ (

√
c (1 + |a|) ,∞)).

The second case is when|Yk| ≥ √
c, then if Wk ∈ (−∞,−√

c) ∪ (
√

c,∞),

|Yk+1| ≥
√

c, which implies that the pre-processor needs to send a real number. Hence

we can takep = P (Wk ∈ (−∞,−√
c (1 + |a|)) ∪ (

√
c (1 + |a|) ,∞)).

It follows that, the infinite horizon average cost problem has an optimal policy given

by the dynamic programming inequality:

h(y) + J∗
avg(a, σ2

W , c) ≥ min
(
c + E [h (W)] , y2 + E [h (ay + W)]

)
(3.97)

whereh : R → R is the value function,W is a generic random variable, Gaussian, zero

mean with varianceσ2
W . Moreover, there exists an increasing subsequence{dk}∞k=1, such

that,0 < dk < 1, for all integersk and:

lim
k→∞

dk = 1 (3.98)

Let Vk be the value function of the infinite time horizon problem with discounted cost,

given in Problem 3.6 and Theorem 3.5, with the dynamic’s constanta, the communication

cost c, the variance of the process noiseσ2
W and discount factordk. Then the value

function for the average cost problem is given by the following limit:

h(y) = lim
k→∞

(1 − dk) (Vk(y) − Vk(0)) (3.99)

From equation (3.99), we notice that the functionh(y) is even and quasiconvex,
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hence there exists a thresholdτ such that:

y2 + E [h (ay + W)] ≤ c + E [h (W)] ⇐⇒ |y| ≤ τ (3.100)

�

3.8 Tandem Networks

We address the design of an optimal state estimation system featuring three blocks;

two pre-processorP1
0,T andP2

0,T and an estimatorE . The pre-processorP1
0,T has causal

access to the state of a first order, linear and time-invariant system driven by Gaussian zero

mean, white process noise and, at each time instant, it outputs an erasure symbol or a real

number. The pre-processorP2
0,T has causal access to the output of the pre-processorP1

0,T ,

and it outputs a real number or an erasure symbol. The estimator has causal access to the

output of the pre-processorP2
0,T and its output is denoted as state estimate. We consider

an optimization problem characterized by cost functions that depends on both the state

estimation error and the communication cost. In our formulation, the communication cost

is a function of the output of the pre-processors, if erasuresymbols are sent is assigned

a zero cost and a pre-specified positive constants otherwise. In our formulation, the state

processes, denoted asXk is given and the three causal operatorsP1
0,T , P2

0,T andE are to

be jointly designed so as to minimize the given cost function.

Definition 3.33 (State Process) Given a real constanta, a real numberx0 and a positive

real constantσ2
W , consider the following first order, linear, time-invariant and discrete-

time system driven by process noise:
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X0
def
= x0 (3.101)

Xk+1
def
= aXk + Wk, k ≥ 0 (3.102)

where{Wk}∞k=0 is white, Gaussian and zero mean stochastic processes with variances

σ2
W . The filtration generated by{Xk}∞k=0 is denoted as

Xk
def
= σ (Xt; 0 ≤ t ≤ k) (3.103)

whereσ (Xt; 0 ≤ t ≤ k) is the smallest sigma algebra generated byXt for all integerst.

Definition 3.34 (First pre-processor and first remote link process) Consider an erasure

symbol denoted asE and a causal pre-processorP0,T : (x0, . . . , xk) 7→ v1
k, defined for

k ∈ {0, . . . , T} andv1
k ∈ R∪{E}. Hence, at each time instantk, the preprocessor outputs

a real number or the erasure symbol, based on past observations of the state process.

Notice that a pre-processor generates a stochastic process{V1
k}T

k=0 via the application

of the operatorP0,T to the process{Xk}T
k=0. The mapP0,T is a valid pre-processor if

the following two conditions hold: (1) The pre-processor transmits the initial statex0 at

time zero, i.e.,v1
0 = x0. (2) The pre-processor is measurable in the sense that the process

{V1
k}T

k=0 is adapted toXk.

The filtration generated by{V1
k}T

k=0 is denoted as{B1
k}T

k=0 and it is obtained as:

B1
k

def
= σ

(
V

1
t ; 0 ≤ t ≤ k

)
(3.104)

whereσ (V1
t ; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{V1

t , 0 ≤ t ≤ k}, for

all non-negative integersk.

95



Note: Definition 3.34 is the same as Definition 2.2.

Definition 3.35 (Second pre-processor and second remote link process) Consider an

erasure symbol denoted asE and a causal mapP2
0,T : (v1

0, . . . , v
1
k) 7→ v2

k, defined for

k ∈ {0, . . . , T} and v1
i ∈ R ∪ {E} for i ∈ {0, . . . , k} and v2

k ∈ R ∪ {E}. Hence, at

each time instantk, P2
0,T outputs a real number or the erasure symbol, based on past

observations of the state process.P2
0,T generates a stochastic process{V2

k}T
k=0 via the

application of the operatorP2
0,T to the process{V1

k}T
k=0. The mapP2

0,T is a valid pre-

processor if the following two conditions hold: (1) The pre-processor transmits the initial

statev1
0 at time zero, i.e.,v2

0 = v1
0. (2) The pre-processor is measurable in the sense that

the process{V2
k}T

k=0 is adapted toB1
k.

The filtration generated by{V2
k}T

k=0 is denoted as{B2
k}T

k=0 and it is obtained as:

B2
k

def
= σ

(
V

2
t ; 0 ≤ t ≤ k

)
(3.105)

whereσ (V2
t ; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{V2

t , 0 ≤ t ≤ k}, for

all non-negative integersk.

Definition 3.36 (Optimal estimate and optimal estimator) Given the pre-processorsP1
0,T

andP2
0,T , we consider optimal estimators in the expected squared sense whose optimal

estimate at timek is denoted aŝXk and is expressed as follows:

x̂k
def
=






E
[
Xk|{v2

t }k
t=0

]
if k ≥ 1

x0 if k = 0

(3.106)

whereE
[
Xk|{vt}k

t=0

]
represents the expectation of the stateXk conditioned on the ob-

served current and past outputs of the second pre-processor{v2
t }k

t=0. We useE(P1
0,T ,P2

0,T )
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to denote theoptimal estimatorassociated with a given pre-processor policiesP1
0,T and

P2
0,T .

Notice that from Definitions 3.34 and 3.35 we assume that the pre-processors al-

ways transmits the initial statex0. Hence, the initial estimate is set to satisfyx̂0 = v2
0 =

v1
0 = x0.

Remark 3.11 It is important to note that the pre-processorP1
0,T has more information

than the estimator and the pre-processorP2
0,T , which implies that the pre-processorP1

0,T

can reproduce all computation performed at the estimatorE and the pre-processorP2
0,T .

We define the following cost:

Definition 3.37 (Cost function fininte time horizon)Given measurable pre-processors

(Definition 3.34 and 3.35) , an estimator (Definition 3.36), areal constanta, a positive

real numberd less than one, a positive real constantσ2
W , a positive integerT and positive

real numbersc1 andc2, we define:

J0,T

(
a, σ2

W , c1, c2,P1
0,T ,P2

0,T

) def
=

T∑

k=1

dk−1E

[(
Xk − X̂k

)2

+ c1Rk + c2Pk

]
(3.107)

whereRk andPk are defined as follows:

Rk
def
=






0 if V
1
k = E

1 otherwise

, k ≥ 0 (3.108)

Pk
def
=





0 if V
2
k = E

1 otherwise

, k ≥ 0 (3.109)
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Problem 3.8 Let a real constanta and the variance of the process noiseσ2
W , that com-

pletely specify the state process{Xk}∞k=0, be given. In addition, consider that positive

realsc1 andc2, the integerT and a positive real numberd < 1 are given. We want to find

an optimal solution
(
P1∗

0,T ,P2∗
0,T

)
to the following optimization problem:

min
(P1

0,T
,P2

0,T )
J0,T

(
a, σ2

W , c1, c2,P1
0,T ,P2

0,T

)
(3.110)

Definition 3.38 Consider the map̂P2
0,T : (v1

0, . . . , v
1
k) 7→ v2

k, with given by:

P̂2
0,T : (v1

0, . . . , v
1
k)

def
= v1

k (3.111)

Theorem 3.7 Let the parameters specifying Problem 3.8 be given, i.e., the variance of

the process noiseσ2
W , the system’s dynamic constanta, the integerT , the communication

costsc1 and c2, and the discount factord are pre-selected. There exists a sequence of

positive real numbersτ ∗ = {τ ∗
k}T

k=1, such that the corresponding symmetric threshold

policyS∗
0,T and theP̂2

0,T is an optimal solution to (3.110) and the corresponding optimal

estimatorE(S∗
0,T , P̂2

0,T ) is Z. HereS∗
0,T , P̂2

0,T andZ follow Definitions 2.9, 3.38 and 2.5,

respectively.

Remark 3.12 The second pre-processor just passes the information from the first pre-

processor to the estimator and then Problem 3.8 reduces to Problem 2.1 with the commu-

nication costc1 + c2.

Proof: We will show that Remark 3.12 is true, by proving that for eachpair of

pre-processor policies
(
P1

0,T ,P2
0,T

)
there exists another pair

(
S1

0,T , P̂2
0,T

)
such that:

J0,T

(
a, σ2

W , c1, c2,P1
0,T ,P2

0,T

)
≥ J0,T

(
a, σ2

W , c1, c2,S1
0,T , P̂2

0,T

)
(3.112)
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First consider an arbitrary pair
(
P1

0,T ,P2
0,T

)
. We can assume, using Remark 2.1,

that whenever each of the pre-processor transmits a real number, they can transmit the

entire history of the processXk (for P1
0,T ) or the processV1

k (for P2
0,T ).

We perform analysis on sample paths. Assume that there are cases whenP2
0,T

transmits twice a real number (or more that twice), beforeP1
0,T transmits a real number.

Consider the policies,̃P1
0,T and P̃2

0,T and for the estimator we pickE(P1
0,T ,P2

0,T ) (we

do not pickE(P̃1
0,T , P̃2

0,T ), which is optimal for(P̃1
0,T , P̃2

0,T )). We defineP̃2
0,T to perform

exactly likeP2
0,T , except for the cases where it transmits more consecutive numbers before

consecutive numbers beforeP1
0,T transmits. We restrict̃P2

0,T to send only the first time

P2
0,T used to send. Notice from Remark 3.11 thatP1

0,T has all the information available

to P2
0,T , hence the decision ofP1

0,T depends only on the processXk. We also adopt

P̃1
0,T = P1

0,T . It is clear that in this case the output of the estimators in these two cases

are the same, hence the estimation cost is the same, but the communication cost for the

choice(P̃1
0,T , P̃2

0,T ) is smaller, hence:

J0,T

(
a, σ2

W , c1, c2,P1
0,T ,P2

0,T

)
≥ J0,T

(
a, σ2

W , c1, c2, P̃1
0,T , P̃2

0,T

)

Hence, we can assume thatP2
0,T does not transmit, twice (or more) a real number

beforeP1
0,T transmits a real number.

Assume that there are cases whenP1
0,T transmits twice a real number (or more that

twice), beforeP2
0,T transmits a real number. Consider the policies,P̃1

0,T andP̃2
0,T and for

the estimator we pickE(P1
0,T ,P2

0,T ) (we do not pickE(P̃1
0,T , P̃2

0,T ), which is optimal for

(P̃1
0,T , P̃2

0,T )). We defineP̃1
0,T to perform exactly likeP1

0,T , except for the cases where

it transmits more consecutive numbers beforeP2
0,T transmits. We allowP̃1

0,T to transmit
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only the last timeP1
0,T was supposed to transmit. Notice from Remark 3.11 thatP1

0,T

has all the information available toP2
0,T , henceP1

0,T knows whatP2
0,T has to do, and we

need to definẽP2
0,T so it transmits at the same times asP2

0,T . In this case the output of

the estimators are the same, hence the estimation cost is thesame, but the communication

cost for the choice(P̃1
0,T , P̃2

0,T ) is smaller, hence:

J0,T

(
a, σ2

W , c1, c2,P1
0,T ,P2

0,T

)
≥ J0,T

(
a, σ2

W , c1, c2, P̃1
0,T , P̃2

0,T

)

We established the face that for each transmission ofP1
0,T there is a transmission

fromP2
0,T . We only need to establish the fact that they transmit in the same time. Clearly,

because of the cases discussed above,P1
0,T transmits beforeP2

0,T . Assume that at timek1,

P1
0,T transmits, and the corresponding transmission atP1

0,T takes place atk2 > k1. Let

P̃2
0,T = P̂2

0,T . Clearly, the communication costs are the same, but in the latter case the

estimation error is smaller, hence:

J0,T

(
a, σ2

W , c1, c2,P1
0,T ,P2

0,T

)
≥ J0,T

(
a, σ2

W , c1, c2,P1
0,T , P̂2

0,T

)

The result of Theorem 3.7 follows then from Theorem 2.1.�
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Chapter 4

Multidimensional Counterpart of Problem 2.1

4.1 Introduction

We address the design of an optimal state estimation system featuring two blocks;

a pre-processorP and a remote estimatorE . The pre-processor has causal access to ob-

servation of the state of a first order, linear and time-invariant system driven by Gaussian

zero mean, white process noise and, at each time instant, it outputs either an erasure sym-

bol or a real finite dimensional vector. The estimator has causal access to the output of

the pre-processor and its output is denoted as state estimate. We consider an optimization

problem characterized by cost functions that depends on both the state estimation error

and the communication cost. In our formulation, the communication cost is a function of

the output of the pre-processor, where to the erasure symbolis assigned zero cost and a

pre-specified positive constant otherwise. In our formulation, the state process, denoted

asXk and the two causal operatorsP andE are to be jointly designed so as to minimize

the given cost function.

Remark 4.1 We note that the problem described in this chapter is the multidimensional

counterpart of Problem 2.1 presented in Chapter 2. Most of the definitions in this chapter

are similar to the definitions from Chapter 2, but we will repeat them for clarity purposes.
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- P0,T
- E(P0,T ) -

{Xk}T
k=0 {Vk}T

k=0 {X̂k}T
k=0

Figure 4.1: Schematic representation of the distributed estimation system considered in

Problem 4.1, which is the multidimensional counterpart of Problem 2.1 in Chapter 2.

4.1.1 Preliminary Definitions and Information Pattern Description

We start by describing the three stochastic processes and the two classes of causal

operators (pre-processor and estimator) that constitute our problem formulation.

Definition 4.1 (State Process) Given a positive integern greater or equal to two, a real

square matrixA of dimensionn × n, and a positive definite matrixΣW of dimension

n×n, consider the following first order, linear time-invariantdiscrete-time system driven

by process noise:

X0
def
= x0 (4.1)

Xk+1
def
= AXk + Wk, k ≥ 0 (4.2)

where{Wk}T
k=0 is an independent identically distributed (i.i.d.) Gaussian zero mean

stochastic process with varianceΣW andx0 is a real vector of dimensionn. The filtration

generated by{Xk}T
k=0 is denoted as:

Xk
def
= σ (Xt; 0 ≤ t ≤ k) (4.3)

whereσ (Xt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Xt, 0 ≤ t ≤ k}, for

all integersk.
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Definition 4.2 (Pre-processor and remote link process) Consider an erasure symbol de-

noted asE and a causal mapP0,T : (x0, . . . , xk) 7→ vk (pre-processor), defined for

k ∈ {0, . . . , T} andvk ∈ Rn ∪ {E}. Hence, at each time instantk, P0,T outputs either

a real number or the erasure symbol, based on past observations of the state process.

The mapP0,T generates a stochastic process{Vk}T
k=0 via the application of the operator

P0,T to the process{Xk}T
k=0 (See Figure 4.1). The mapP0,T is a valid pre-processor if

the following two conditions hold: (1) The pre-processor transmits the initial statex0 at

time zero, i.e.,V0 = x0. (2)P0,T is measurable in the sense that the process{Vk}T
k=0 is

adapted toXk.

The filtration generated by{Vk}T
k=0 is denoted as{Bk}T

k=0 and it is obtained as:

Bk
def
= σ (Vt; 0 ≤ t ≤ k) (4.4)

Remark 4.2 Notice that any finite vector of real numbers can be encoded into a single

real vector of dimensionn via a suitable invertible transformation. Hence, without loss

of generality, we can also assume that the pre-processor cantransmit either a vector of

real numbers of dimensionn or the erasure symbol.

Definition 4.3 (Optimal estimate and optimal estimator) Given a valid pre-processor

P0,T , we consider optimal estimator in the expected squared sense whose optimal estimate

at timek is denoted aŝXk and is expressed as follows:

x̂k
def
=





E
[
Xk|{vt}k

t=0

]
if k ≥ 1

x0 if k = 0

(4.5)

whereE
[
Xk|{vt}k

t=0

]
represents the expectation of the stateXk conditioned on the ob-

served current and past outputs of the pre-processor{vt}k
t=0 (see Figure 4.1). We useE(P0,T )
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to denote theoptimal estimatorassociated with a given pre-processor policyP0,T .

Notice that from Definition 4.2 we assume that the pre-processor always transmits

the initial statex0. Hence, the initial estimate is set to satisfyx̂0 = v0 = x0. Such an

assumption is a key element that will allow us to prove the optimality of a certain scheme,

via an inductive method.

Remark 4.3 Remark 2.2 is repeated here for emphasis. All the information available

at the estimatorE(P0,T ) is also available at the pre-processorP0,T . Hence, the pre-

processorP0,T can construct the state estimatêXk by reproducing the estimation algo-

rithm executed at the optimal estimator.

Remark 4.4 The definitions in this chapter are very similar to the definitions from Chap-

ter 2. This is natural since in these definitions we made little or no use of the dimension

of the system defined in equations 4.1 and 4.2.

4.1.2 The Two Blocks Problem - The Multi Dimensional Case

In this subsection, we define the estimation paradigm that iscentral to this chapter.

We start by specifying the cost, which is used as a merit criterion throughout the chapter,

followed by the problem definition.

Definition 4.4 (Finite time horizon cost function)Given a valid pre-processorP0,T

(Definition 4.2), a real square matrixA of dimensionn × n, a positive integerT , a

positive real numberd < 1 and positive definite real matrixΣW and a nonnegative real
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numberc, we define:

J0,T (A, ΣW , c,P0,T )
def
=

T∑

k=1

dk−1E



(
Xk − X̂k

)T (
Xk − X̂k

)
+ cRk︸︷︷︸

communication cost




(4.6)

whereXk is the state of the system defined in (4.1)-(4.2),X̂k is the optimal estimate

specified in Definition 4.3, andRk is the following indicator function:

Rk
def
=





0 if Vk = E

1 otherwise

, k ≥ 1 (4.7)

Remark 4.5 (Cost does not depend onX0) This remark is similar with the Remark 2.3

from Chapter 2. Notice that because the plant (4.1)-(4.2) islinear, the equalitŷx0 = x0

(see Definition 4.3), implies, in view of Remark 4.3, in particular A is known at the esti-

mator, that the homogenous part of the state can be reproduced at the estimator. Hence,

the optimal estimator will incorporate such an homogeneousterm, thus subtracting it out

from the estimation errorXk − X̂k, for k ≥ 0. This also implies that the cost (4.6) does

not depend on the homogeneous term nor on the initial conditionX0.

The following is the main problem addressed in this chapter.

Problem 4.1 Let be an integern greater than one, real square matrixA of dimension

n × n, the variance of the process noiseΣW and the initial conditionx0 be given. In

addition, consider that a positive realc, a positive real numberd less then one and a

positive integerT are given, specifying the cost as in Definition 4.4. Find:

P∗
0,T ∈ argmin

P0,T

J0,T (a, σ2
W , c,P0,T ) (4.8)
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4.2 Optimal Symmetric Solution to the Two Blocks Problem

In this section, we start by defining a particular choice of estimator (section 4.2.1)

and pre-processor (section 4.2.3), which we denote as Kalman-like and symmetric policy,

respectively. As we argue later on, in Conjecture 4.1, such estimator and pre-processor

are optimal for Problem 4.1, if we restrict ourselves to the class of policies, to be defined

in Section 4.2.3.

4.2.1 A Kalman-like estimator

Definition 4.5 (Kalman-like estimator) Given the process defined in (4.1)-(4.2) and a

pre-processorP0,T , define the mapZ : (v0, . . . , vk) 7→ zk, for k in the set{0, . . . , T},

wherezk is computed as follows:

z0
def
= x0 (4.9)

zk
def
=






Azk−1 if vk = E

vk otherwise

, with k ≥ 1 (4.10)

Remark 4.6 The Kalman-like filter generates the process{Zk}T
k=0 via the operatorZ

applied to the process{Vk}T
k=0. Notice that the pre-processor has access to the estimate

Zk because it has access and full control of the input applied toZ.

4.2.2 The SetPT - of Admissible Pre-Processors

We proceed by defining a class of admissible pre-processors,which is amenable

to the use of recursive methods for performance analysis. Weargue in Remark 4.8 that
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there always exist an admissible pre-processor that is an optimal solution to Problem 4.1.

This implies that we incur no loss of generality in constraining our analysis to admissible

pre-processors.

The following Remark provides an equivalent characterization of the class of ad-

missible pre-processors.

Remark 4.7 Let T ∈ N and letP0,T be given. ThenP0,T is admissible if and only if for

eachm ∈ {0, . . . , T} there exists a mapPm,T : (xm, . . . , xk) 7→ vk and a binary process

{rj}k

j=m
such that the following holds:

rm = 1 =⇒ Pq,T (xq, . . . , xk) = Pm,T (xm, . . . , xk), xq, . . . , xk ∈ R
n, k > m ≥ q ≥ 0

(4.11)

Given an admissible pre-processorP0,T , later on we will also refer to the time-restricted

pre-processors{Pm,T}T
m=1 according to Definition 4.6, or equivalently as implied by

(4.11).

Definition 4.6 (Admissible pre-processor) Let a horizonT larger than zero and a pre-

processor policyP0,T be given. The pre-processorP0,T is admissible if there exist maps

Pm,T : (xm, . . . , xk) 7→ vk, with 0 ≤ m ≤ T and k ≥ m that satisfies the following

recursion:

Pm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm.

• (Step A) Setk = k + 1. If k > T holds then terminate, otherwise execute Step B.
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• (Step B) Obtain the pre-processor output at timek by computingPm,T (xm, . . . , xk).

If Pm,T (xm, . . . , xk) = E then setrk = 0 and vk = E and go back to Step A. If

Pm,T (xm, . . . , xk) 6= E then execute algorithmPk,T .

End of Algorithm for Pm,T

The class of all admissiblepre-processors is denoted asPT .

Remark 4.8 Given a positive time-horizonT , there is no loss of generality in restrict-

ing our search for an optimal pre-processor to the setPT . Indeed, let an optimal pre-

processor policyP∗
0,T be given. If a transmission takes place at some timem (rm = 1

holds) then the optimal output at the pre-processor isvk = xk. Since, given that a real

number is transmitted, the choicevk = xk must be optimal because it leads to a perfect

estimatex̂m = xm. Hence, given thatrm = 1, by Markovianity we conclude that the

current and future output produced by the pre-processor{Vk}T
k=m will not depend on

the stateXk for timesk prior to m. Consequently,P∗
0,T satisfies (4.11), and hence it is

admissible.

4.2.3 Symmetric threshold pre-processor

Definition 4.7 In order to simplify our notation, we define the following process:

Yk
def
= Xk − AZk−1 (4.12)
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Using Definitions 4.1 and 4.5, we find that{Yk}T

k=0 can be rewritten as:

Y0 = 0 (4.13)

Yk+1 =





AYk + Wk if Rk = 0

Wk if Rk = 1

(4.14)

Remark 4.9 Yk has an even probability density function, sinceWk has an even proba-

bility density function. This fact makes{Yk}T
k=0 a more convenient process to work with,

in comparison to{Xk}T
k=0. This motivates its use in our analysis hereon, whenever pos-

sible. No loss of generality is incurred because{Yk}T
k=0 can be recovered from{Xk}T

k=0,

and vice-versa, via the use of{Zk}T
k=0, which is common information at the pre-processor

and estimator (See Remark 4.6). In addition, notice that thecost (4.6) can be re-written

in terms of{Yk}T
k=0 as follows:

J0,T (A, ΣW , c,P0,T )
def
=

T∑

k=1

dk−1E

[(
Yk − Ŷk

)T (
Yk − Ŷk

)
+ cRk

]
(4.15)

whereŶk
def
= E

[
Yk|{Vt}k

t=0

]
. A key fact here is that̂Yk = X̂k − AZk−1 holds, leading

to the validity of the identityYk − Ŷk = Xk − X̂k.

We found that solving Problem 4.1 is quite difficult, hence wewill restrict the search

for the optimal policies, only to a class of policies, which we will name symmetric poli-

cies. Towards defining the symmetric policies and the optimal solution within this class

of policies we first define a class of sets and functions. We start by defining the star sets.

Definition 4.8 Let K ⊂ Rn be Lebesgue measurable. We say thatK is a symmetric star

set if the following hold:
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• The setK is symmetric, i.e. ifx ∈ K, then−x ∈ K;

• The setK is a star set, i.e. ifx ∈ K, thenαx ∈ K, for every real numberα ∈ [0, 1].

Definition 4.9 Let f : Rn → R be an even nonnegative function. We say thatf is a star

function if the level sets off are star sets (Definition 4.8).

Next, we extend the definition of central convex unimodal distribution from [38] to

nonnegative functions.

Definition 4.10 LetM be a positive real number. Let:

CM
def
= {αIK, α > 0, K ⊂ R

n, symmetric, compact and convex, such thatαL (K) ≤ M}

(4.16)

whereL (K) is the Lebegue measureK. We say that a nonnegative functionf : Rn → R

is central convex unimodal if there existsM > 0, such thatf ∈ Co{CM}, where Co{CM}

is the closure (L (Rn) topology) of the convex hull generated byCM .

We denote byC the set of central convex unimodal functions.

Remark 4.10 We note thatCM in Definition 4.10 is the set of indicator functions of sym-

metric, compact and convex sets, scaled by positive real numbers such that iff ∈ CM ,

then it holds that
∫

Rn f(x)dx ≤ M . It follows that iff ∈ Co{CM}, thenf can be ap-

proximated (inL (Rn) sense) by linear positive combinations of indicator functions of

symmetric, compact and convex sets. Moreover, it holds that
∫

Rn f(x)dx ≤ M .

Remark 4.11 The central convex unimodal functions are star functions (see Definition 4.9).
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The following lemma from [38] will give some insight about the main problem

from this chapter.

Note: By f ∗ g we mean the convolution betweenf andg.

Lemma 4.1 Let f and g be two central convex unimodal functions, thenf ∗ g is also

central convex unimodal.

Proof: Sincef andg are central convex unimodal, it follows from Remark 4.10,

that there existM1 andM2 such that
∫

Rn f(x)dx ≤ M1 and
∫

Rn g(x)dx ≤ M2, then it

follows thatf ∗ g is well defined and
∫

Rn f ∗ g(x)dx ≤ M1M2. Let K1 andK2 be two

symmetric, compact and convex sets. Let’s assume thatf = IK1 andg = IK2. It follows

thatf ∗ g is even and quasiconcave from [37]. Since an integrable, even and quasicon-

cave function can be approximated (inL (Rn) sense) by a positive linear combination of

convex, compact symmetric sets, the lemma is proved for thisparticular case.

Now let f andg be arbitrary central convex unimodal functions. Thenf andg

can be approximated by positive linear combinations of indicator functions of symmetric,

compact and convex sets, thenf ∗ g is a linear combination of integrable, even and quasi-

convex functions, hence it is central convex unimodal. It follows that for general central

convex unimodal functionsf andg, f ∗ g is central convex unimodal.�

Next, we extend the definition of monotone unimodal distribution from [38] to non-

negative functions.

Definition 4.11 Let M be a positive real number. We defineCMM to be the set of func-

tions as follows:

CMM =

{
f : R

n → R, s.t.f(x) ≥ 0, ∀x ∈ R
n,

∫

Rn

f(x)dx ≤ M

}
(4.17)
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such that
∫

D+αx
f(y)dy is non-increasing as a function ofα, for α ∈ [0,∞), for all

x ∈ R
n and all setsD ⊂ R

n, whereD is compact, convex and symmetric. Iff ∈ CMM ,

for some real numberM , then we say thatf is monotone unimodal.

We denote byCM the set of monotone unimodal functions. The following result is

from [38], which will be used later.

Lemma 4.2 Letf be a monotone unimodal function andg be a central convex unimodal,

thenf ∗ g is a monotone unimodal function.

We define yet another class of functions related to Definitions 4.10 and 4.11.

Definition 4.12 We defineCL to be the set of functions as follows:

CL = {f : R
n → R, s.t.f(x) ≥ 0, ∀x ∈ R

n} (4.18)

such that
∫ τ

−τ
f(αx + βy)dβ is non-increasing as a function ofα, for α ∈ [0,∞), for all

τ > 0 and for allx, y ∈ Rn.

Lemma 4.3 It holds thatC ⊂ CM ⊂ CL

Proof See [38].�

We now define a class of symmetric pre-processor policies. Werestrict the search

to the optimal pre-processor policy to the class of policiesgiven in Definition 4.14 .

Definition 4.13 (Algorithm Dm,T ) Given a horizonT , consider a sequence of set func-

tionsT def
= {Tm,k|m < k ≤ T, 1 ≤ m ≤ T}, with Tm,k : {0, 1}m−k → B (Rn) such that

Tm,k (rm, . . . , rk−1) is a symmetric set inRn for all rm, . . . , rk−1 ∈ {0, 1}, is given, where
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B (Rn) denotes the Borelσ-algebra generated byRn. For everym in the set{1, . . . , T},

we define the following algorithm, which we denote asDm,T :

Algorithm Dm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm or

equivalently setym = 0.

• (Step A)Increase the time counterk by one. Ifk > T holds then terminate, other-

wise execute Step B.

• (Step B)If yk ∈ Tm,k(rm, . . . , rk−1) (also−yk ∈ Tm,k(rm, . . . , rk−1) from symme-

try) holds then setrk = 0, transmit the erasure symbol, i.e.,vk = E, and return to

Step A. Otherwise executeDk,T .

End of AlgorithmDm,T

Recall thatr0 throughrk−1 represent past decisions by the pre-processor, whererk = 1

indicates that the state is transmitted to the estimator at timek, whilerk = 0 implies that

an erasure symbol was sent.

Definition 4.14 (Symmetric policy) Given a horizonT , consider that a sequence of func-

tionsT def
= {Tm,k|m < k ≤ T, 1 ≤ m ≤ T}, with Tm,k : {0, 1}m−k → B (Rn), is given.

The symmetric pre-processor associated withT is implemented via the execution of the algorithmD0,T ,

as specified in Definition 4.13. We denote such an admissible pre-processor asD0,T . We

useD0,T to denote the entire classof symmetric pre-processors with time horizonT .
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We will define a special class of the symmetric pre-processorpolicy, namely, the

ones which are path-independent.

Definition 4.15 Given a positive integer horizonT and an arbitrary sequence of symmet-

ric star setsτ = {Tk}T

k=1 , Tk ∈ B (Rn), for eachm in the set{0, . . . , T}, we define the

following algorithm fork ≥ m, which we denote asSm,T :

Algorithm Sm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm or

equivalently setym = 0.

• (Step A)Increase the time counterk by one. Ifk > T holds then terminate, other-

wise execute Step B.

• (Step B)If yk ∈ Tk(also−yk ∈ Tk) holds then setrk = 0, transmit the erasure

symbol, i.e.,vk = E, and return to Step A. Ifyk /∈ Tk holds then setm = k and

executeSm,T .

End of Algorithm Sm,T

We note from Definitions 4.13 and 4.15 that the differences between the Algorithms

Dm,T andSm,T are the facts that in Definition 4.15, the setsTk do not depend on the past

decisions and are symmetric star sets.

Definition 4.16 (Symmetric threshold policy) The algorithmS0,T , as in Definition 4.15,

is denoted as symmetric threshold pre-processorand the class of all symmetric threshold policies

is denoted asST .
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The Problem 4.1 proved to be quite difficult to solve even if werestrict the search of the

optimal policies to the symmetric policies. since we do not know how to prove the general

result, we just state a conjecture, which we believe to be correct. We were able to prove

the conjecture only forT ∈ {1, 2}

Conjecture 4.1 Let the dimensionn, the variance of the process noiseΣW , the system’s

dynamic matrixA, the communication costc, the discount factord and the time horizonT

be given. There exists a sequence of star setsτ ∗ = {T∗
k}T

k=1, such that the corresponding

symmetric threshold policyS∗
0,T is an optimal solution to:

S∗
0,T ∈ arg min

P0,T ∈D0,T

J0,T (A, ΣW , c,P0,T ) (4.19)

and the corresponding optimal estimatorE(S∗
0,T ) is Z. HereS∗

0,T andZ follow Defini-

tions 4.15 and 4.5, respectively.

4.3 Auxiliary optimality results

Proposition 4.1 Let D0,T be a pre-selected path-dependent symmetric threshold policy

(Definition 4.14), it holds that the optimal estimatorE(D0,T ) is Z, as described in Defi-

nition 4.5.

Remark 4.12 Proposition 4.1 could be recast by stating thatX̂k = Zk holds in the

presence of path-dependent symmetric threshold pre-processors.

Proof: (of Proposition 4.1) In order to simplify the proof, we define{X̃k}T
k=0 as

the process quantifying the error incurred by adopting a Kalman-like estimatorZ (See
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Definition 4.5), i.e.,X̃k
def
= Xk − Zk. More specifically,{X̃k}T

k=0 can be equivalently

expressed as follows:

X̃0 = 0 (4.20)

X̃k+1 =





AX̃k + Wk if Rk = 0

0 if Rk = 1

, 0 ≤ k ≤ T − 1 (4.21)

The proof follows from the symmetry of all probability density functions involvingX̃k

andVk. More specifically, under symmetric policies the probability density function of

X̃k, given the past and current observations{Vt}k
t=0, is even. Hence, we conclude that

E[X̃k|{Vt}k
t=0] = 0, which implies thatX̂k

def
= E[Xk|{Vt}k

t=0] = Zk. �

4.3.1 Optimizing within the classDT

Remark 4.13 If D0,T is a symmetric path-dependent threshold pre-processor (see Defi-

nition 4.14) thenŶk = 0 holds, leading to the following equality:

J0,T (A, ΣW , c,D0,T ) =
T∑

k=1

dk−1E
[
Y

T
k Yk + cRk

]
, D0,T ∈ DT (4.22)

The process defined in (4.14) is a Markov Decision Process (MDP) whose state and

control areYk andRk, respectively. Hence the minimization of (4.22) with respect to

pre-processor policiesD0,T in the classDT can be cast as a dynamic program [13]. To

do so, we define the sequence of functionsVt,T : Rn → R, t ∈ {1, . . . , T + 1} which

represent the cost-to-go as observed by the pre-processor.HereT represents the horizon,

while t denotes the time at which the decision was taken, and the argument of the function

is the MDP stateYt. In order to simplify our notation, we adopt the convention that
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VT+1,T (yT+1)
def
= 0, yT+1 ∈ Rn. Using dynamic programming, we can find the following

recursive equations forVt,T (yt), t ∈ {1, . . . , T}:

Vt,T (yt)
def
= min

rt∈{0,1}
Ct,T (yt, rt), t ∈ {1, . . . , T} (4.23)

whereCt,T : Rn × {0, 1} → R is defined as:

Ct,T (yt, rt)
def
=






c + dE [Vt+1,T (Wt)] if rt = 1

yT
t yt + dE [Vt+1,T (Ayt + Wt)] if rt = 0

(4.24)

From (4.24) it immediately follows that an optimal decisionpolicy r∗t at any timet

is given by:

r∗t =





1 if Ct,T (yt, 1) ≤ Ct,T (yt, 0)

0 if Ct,T (yt, 0) < Ct,T (yt, 1)

(4.25)

Using the MDP given in Definition 4.7 and the value functions from equation (4.23),

we discuss the following Remark, which states that if Conjecture 4.1 is true,within the

class of symmetric pre-processorsDT (Definition 4.14), there exists an optimal path-

independentsymmetric threshold policyS∗
0,T (Definition 4.16) for Problem 4.1.

Remark 4.14 Let the dimension of the systemn, the variance of the process noiseΣW ,

the system’s dynamic matrixA, the communication costc, the discount factord and the

time horizonT be given. Consider Problem 4.1 with the additional constraint that the pre-

processor must be of the symmetric typeDT specified in Definition 4.14. If Conjecture 4.1

is correct, then there exists an optimal path-independentsymmetric threshold policyS∗
0,T ,

as given in Definition 4.16, and the associated star sets{T∗
k}T

k=1 have the boundaries
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given by the solution to the following equations:

Ct,T (yt, 0) = Ct,T (yt, 1), t ∈ {1, . . . , T} (4.26)

From (4.25), we conclude that in order to show that Conjecture 4.1 is true, we

only need to show that there exist symmetric star sets{T∗
k}T

k=1 for which the following

equivalences hold:

yt /∈ T
∗
t ⇐⇒ Ct,T (yt, 1) ≤ Ct,T (yt, 0), t ∈ {1, . . . , T} (4.27)

Indeed, if (4.27) holds then the optimal strategy in (4.25) can be implemented via a thresh-

old policy. Similar to the scalar case from Chapter 2, we willuse the following facts (A.1

thorugh A.4):

• (Fact A.1): For everyt in the set{1, . . . , T}, Ct,T (yt, 1) depends only ont, i.e., it

is a time-dependent constant independent ofyt.

• (Fact A.2): It holds thatCt,T (0, 0) < Ct,T (yt, 1) for yt ∈ Rn.

• (Fact A.3): For everyt in the set{1, . . . , T} there exists a symmetric star setUt

such thatCt,T (yt, 0) > Ct,T (yt, 1) andCt,T (−yt, 0) > Ct,T (−yt, 1) hold for everyyt

satisfyingyt /∈ Ut.

• (Fact A.4): It holds that for every positive constantM , the functionM−min (M, Ct,T (yt, 0))

is a continuous, and belongs to the function setCL, given in Definition 4.12 , for

every sett in the set{1, . . . , T}.

Facts A.1 and A.2 follow directly from (4.24), while Fact A.3follows from Fact

A.4. The only difficulty is to prove Fact A.4, which we will discuss later. At this point
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we assume that Fact A.4 is valid, and we proceed by noticing that continuity ofCt,T (yt, 0)

with respect toyt, as well as Facts A.2 and A.3, imply that the equations in (4.27) have at

least one solution{T∗
k}T

k=1. Moreover, from Facts A.1 through A.4 we can conclude that

such a solution{T∗
k}T

k=1 guarantees that (4.27) is true.

(Discussion of Fact 4)SinceyT
t yy is an even, convex, unbounded and continuous

function ofyt, from (2.20) we conclude that it suffices to prove by induction thatVt,T (yt)

is even bounded, continuous and belong to the set of functions CL, for eacht in the set

{1, . . . , T}.

SinceVT+1,T (yT+1) = 0 holds by convention, the following is true:

VT,T (yT ) = min
(
c, yT

T yT

)
, yT ∈ R

From equation (4.24), it follows thatCT,T = yT
T yT . Hence Fact A.4 holds trivially.

It follows then, thatVT,T (yT ) is an even, quasiconvex, bounded and continuous function

of yT . It follows that the function:

g (yT ) = c − VT,T (yT )

is an even, continuous, bounded and quasiconcave function and has a compact support

(which implies that it is integrable). It follows from Lemma4.1 that the function:

E [g (AyT−1 + WT−1)] = c − E [VT,T (AyT−1 + WT−1)]

is an even, continuous, bounded and monotone unimodal function. It follows that the

decision set for:

min
(
c + E [VT,T (WT−1)] , y

T
T−1yT−1 + E [VT,T (AyT−1 + WT−1)]

)
(4.28)
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is a unique star set. We notice that the expression in equation (4.28) is in factVT−1,T (yT−1).

The question is, whetherVT−1,T (yT−1) is monotone unimodal. If this is the case then we

can conclude that the decision set:

min
(
c + E [VT−1,T (WT−1)] , y

T
T−2yT−2 + E [VT−1,T (AyT−2 + WT−1)]

)
(4.29)

is a symmetric star set.

We were able to prove that the functionsVt,T , for t ∈ {1, T + 1} are monotone

unimodal if it holds that, for any monotone unimodal function f :

g(x) = max(f(x), C) − C (4.30)

is monotone unimodal, for any positive real numberC. This latter question, however, is

open.

4.4 Decision Sets Need NOT Be Convex

The results from Chapter 2 tell that for the scalar problem, the decision sets are

symmetric intervals. One immediate thought would be to check if the decision sets in

the multidimensional case are symmetric convex sets. In [41], the author investigates the

policies associated to Problem 4.1, by looking only at symmetric convex sets. In this

section, we present a simple numerical example where we showthat the symmetric con-

vex sets are not optimal for Problem 4.1, even if we restrict ourselves only to symmetric

policies.

Let ΣW = I, A = diag(1, 7), T = 2 andd = 0.99.

Notice that in the provious section, we have already proved the for T = 2, the
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decision sets are star sets. We will show here, in the figures below the value functionV1,2

and the decision set forT = 2.

Figure 4.2: The value functionV1,2 on the set[−2.5, 2.5] × [−2.5, 2.5]

In the figures below, we show the decision set at timet = 1.

0

0

−2.5
−2.5

2.5

2.5

Figure 4.3: The setT1 on [−2.5, 2.5] × [−2.5, 2.5]

It can be clearly seen, especially in Figure 4.3 that the setT1 is not a convex set.
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Chapter 5

Basic Network Topologies with Noisy Transmission Links

5.1 Introduction

In this chapter, we will approach an estimation problem withcommunication cost,

but the cost will be different than in the previous chapters.In chapters 2, 3 and 4, the

cost is taken to be a positive constant, while in this chapter, the communication costs will

have the meaning of transmission power and will be the secondmoment of the random

variables, which represent the signal send over a communication link. Moreover, we will

study systems, which consists from more than two agents and we will analyze how this

fact will affect the optimal policies and we will also look attransmission noise which will

affect the communication. In this chapter, we investigate control strategies for a scalar,

one-step delay system in discrete time, i.e., the state of the system is the input delayed

by one time unit. In contrast with classical approaches, here the control action must be a

memoryless function of the output of the plant, which consists the current state corrupted

by measurement noise. We adopt a first order state-space representation for the delay

system, where the initial state is a Gaussian random variable. In addition, we assume

that the measurement noise is drawn from a white and Gaussianprocess with zero mean

and constant variance. Performance evaluation is carried out via a finite-time quadratic

cost that combines the second moment of the control signal, and the second moment of

the difference between the initial state and the state at thefinal time. We show that if
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the time-horizon is one or two then the optimal control is a linear function of the plant’s

output, while for a sufficiently large horizon a control taking on only two values will

outperform the optimal affine solution.

Consider the following discrete-time delay system:

X(k + 1) = U(k), k ≥ 0 (5.1)

Y (k) = X(k) + V (k), k ≥ 0 (5.2)

whereV (k), U(k), X(k), andY (k) take values on the reals, and they represent the mea-

surement noise, input, state, and output of the plant, respectively. In addition, we assume

that the initial stateX(0) is a Gaussian random variable, with zero mean and variance

σ2
0. The measurement noise{V (k)}∞k=0 is white, Gaussian, zero mean and with constant

variance given byσ2
V . We also assume that the noise{V (k)}∞k=0 andX(0) are mutually

independent. In this chapter, we will investigate the following problem:

Problem 5.1 Letσ2
0 andσ2

V be pre-selected positive constants representing the variance

of X(0) and V (k), for all k ∈ {0, . . . , m − 1} and m be a given integer denoting the

length of an optimization horizon. Consider that the systemdescribed by (5.1)-(5.2) ac-

cepts a control strategy of the following form:

U(k) = Fk(Y (k)), k ∈ {0, . . . , m − 1} (5.3)

where, for eachk in the set{0, . . . , m − 1}, Fk : R → R is a Lebesgue measurable

function. Given a positive real parameter̺, we wish to determine Lebesgue measurable
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functions{Fk}m−1
k=0 that minimize the following cost:

J ({Fk}m−1
k=0 , ̺, σ2

0, σ
2
V )

def
= E[(X(m) − X(0))2]

+̺

m−2∑

k=0

E[U(k)2]

(5.4)

In Figure 5.1, we present a graphic interpretation of Problem 5.1. Notice that Problem 5.1

can be viewed as an optimal control problem aimed at the design of a memory element

capable of storingX(0). The memory element must be constructed using a one-step delay

and memoryless components{Fk}m−1
k=0 , which are used in a feedback configuration. In

addition, the memoryless control has access to noisy measurements of the delay’s state.

Minimizing the cost function defined in (5.4) amounts to finding the minimal energy

memoryless control that leads to the optimal recovery ofX(0) from Y (m−1), in a mean

square sense.

The following is the organization of this chapter (introduction not included):

• In Section 5.2, we derive the optimal solution to Problem 5.1, subject to the con-

straint that the feedback maps{Fk}m−1
k=0 are affine. We also show that ifm is one or

two then affine solutions are optimal over all feedback maps.

• In Section 5.3, we adopt a class of functions{Fk}m−1
k=0 that take on only two values

for each stepk. Givenσ2
0 andσ2

V , we show that there existsm for which the two

valued strategy outperforms the optimal affine control and we provide numerical

examples, and in the end we discuss conclusions and open issues.
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Figure 5.1: Graphical interpretation to Problem 5.1.

5.2 Optimal affine memoryless control

In this section, we solve Problem 5.1 under the constraint that the functions{Fk}m−1
k=0

are affine. In particular, we adopt the following steps:

• We start this section by defining an auxiliary problem (Problem 5.2), in which

we adopt the costE
[
(X(0) − X(m))2] subject to an upper bound constraint on

∑m−2
k=0 E[U(k)2], whereX(k) andU(k) are as defined in Problem 5.1;

• Proposition 5.1 below solves Problem 5.2, for two stages (m = 2), for the special

case where the initial noise is set to zero (V (0) = 0);

• In Lemma 5.1 below, we find the optimal solution to Problem 5.2, subject to affine

memoryless control strategies;

• In Proposition 5.2 below, we give the optimal solution of Problem 5.2, for two

stages(m = 2), and we show that the optimal memoryless policy is affine;

• The main result of the section is given in Theorem 5.1, in which the optimal cost of

Problem 5.1 is computed subject to affine memoryless controlstrategies.

Problem 5.2 Letσ2
0 andσ2

V be pre-selected positive constants representing the variance

of X(0) and V (k), for all k ∈ {0, . . . , m − 1} and m be a given integer denoting the
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length of an optimization horizon. Consider that the systemdescribed by (5.1)-(5.2) ac-

cepts a control strategy of the following form:

U(k) = Fk(Y (k)), k ∈ {0, . . . , m − 1} (5.5)

where, for eachk in the set{0, . . . , m − 1}, Fk : R → R is a Lebesgue measurable

function. Given a positive real parameterγ, we wish to determine Lebesgue measurable

functions{Fk}m−1
k=0 that minimize the following cost:

C({Fk}m−1
k=0 , σ2

0, σ
2
V )

def
= E[(X(m) − X(0))2] (5.6)

s.t.
m−2∑

k=0

E[U(k)2] ≤ (m − 1)σ2
V γ (5.7)

Using standard Lagrangian relaxation [39], it is readily verified that there exists a positive

real number̺ , such that the optimal solution of Problem 5.2, is also an optimal solution

of the problem.

min
{Fk}

m−1
k=0

E[(X(m) − X(0))2] + ̺

m−2∑

k=0

E[U(k)2]

with X(0), X(m) andU(k) defined as in Problem 5.2, where̺ is the Lagrange multiplier

associated with the constraint
∑m−2

k=0 E[U(k)2] ≤ (m− 1)σ2
V γ. Hence, using Lagrangian

relaxation we can recover Problem 5.1. We will show later in Theorem 5.1, that, sub-

ject to affine memoryless control and under some additional conditions, Problem 5.1 and

Problem 5.2 share an optimal solution. We introduce Problem5.2 because it will aid in

the solution of Problem 5.1, subject to affine memoryless control.

The following proposition is an important supporting result for this section. It pro-

vides a solution to Problem 5.2, for the particular case, where m is two and the initial
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noise is set to zero (V (0) = 0). Our proof uses a result in [40], where a similar problem

was analyzed. In Figure 5.2, we present an alternative interpretation of Proposition 5.1.

-
X G0

-
Z(0)

��
��

+
?

W

- G1

Z(1)
-

Figure 5.2: Graphical interpretation to Proposition 5.1.

Proposition 5.1 Given strictly positive real numbersσ2
X andσ2

W , let X andW be zero

mean Gaussian independent random variables with varianceσ2
X and σ2

W , respectively.

For a positive real numberσ2, define the optimal cost:

J∗ def
= min

G0,G1

E
[
(X − Z(1))2

]
(5.8)

s.t.E
[
Z(0)2

]
≤ σ2 (5.9)

whereZ(0) and Z(1) are random variables defined asZ(0)
def
= G0 (X) and Z(1)

def
=

G1 (Z(0) + W ) respectively, andG0 and G1 are Lebesgue measurable functions. The

following holds:

J∗ = σ2
X

(
1 − σ2

σ2 + σ2
W

)

and the functionsG∗
0 andG∗

1 , which minimize the cost, are linear and given by:

G∗
0(x) = ± σ

σX

x and G∗
1(x) = ± σX · σ

σ2 + σ2
W

x

Proof: Using standard optimization techniques (e.g. page 243 in [39]), we can verify

that there exists a positive real numberµ, such that the problem in the statement of the
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proposition, shares an optimal solution with the problem.

min
G0,G1

E
[
(X − Z(1))2

]
+ µE

[
Z(0)2

]
(5.10)

whereX, Z(0), Z(1) andG0 andG1 are defined in the statement of the Proposition and the

positive numberµ is the Lagrange multiplier associated with the constraintE [Z(0)2] ≤

σ2. Basar and Bansal proved in [40], that an optimal solution of(5.10) is given by linear

G∗
0 andG∗

1 . This implies that there exists a linear optimal solution for (5.8)-(5.9), hence

it suffices to considerG∗
0(x) = ax andG∗

1(x) = bx, wherea and b are real numbers.

Equivalently, we can consider thatZ(0) = aX andZ(1) = abX + bW . The problem in

the statement of the Proposition becomes:

min
a,b

E
[
((1 − ab)X − bW )2]

s.t. E
[
a2X2

]
≤ σ2

Knowing that the variance ofX is σ2
X , the variance ofW is σ2

W and thatX andW are

independent, the problem becomes:

min
a,b

(1 − ab)2σ2
X + b2σ2

W

s.t. a2σ2
X ≤ σ2

(5.11)

By the first order necessary condition (page 243 in [39]), forthe optimala∗ andb∗, there

exist a nonnegative real numberλ such that:

− 2b∗(1 − a∗b∗)σ2
X + 2λa∗σ2

X = 0 (5.12)

− 2a∗(1 − a∗b∗)σ2
X + 2b∗σ2

W = 0 (5.13)

Let us assume thatλ = 0. If λ takes the value zero, then, from (5.12), it follows that

b∗ = 0 or 1−a∗b∗ = 0. If b∗ = 0, from (5.13), it follows thata∗ = 0. If 1−a∗b∗ = 0, then
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it follows that b∗ = 0, which contradicts the condition that1 − a∗b∗ = 0. This implies

that, if the optimalλ is equal to zero, thena∗ = b∗ = 0 and the optimal cost isJ∗ = σ2
X .

Let us assume thatλ 6= 0, then the constraint from equations (5.11) is active, which

implies thata∗ = σ
σX

ora∗ = − σ
σX

. Leta∗ = σ
σX

, then, from equation (5.13),b∗ = σX ·σ
σ2+σ2

W

.

In the same way, we show that, ifa∗ = − σ
σX

, thenb∗ = − σX ·σ
σ2+σ2

W

. In both these cases

J∗ = σ2
X

(
1 − σ2

σ2+σ2
W

)
< σ2

X . The value of the cost whena = b = 0 is σ2
X , hence, the

constraint in (5.11) is active and the optimal solution is given bya∗ = σ
σX

andb∗ = σX ·σ
σ2+σ2

W

or bya∗ = − σ
σX

andb∗ = − σX ·σ
σ2+σ2

W

.

Therefore the functions:

G∗
0(x) = ± σ

σX

x and G∗
1(x) = ± σX · σ

σ2 + σ2
W

x

are the optimal solution to (5.8)-(5.9) and the optimal costis:

J∗ = σ2
X

(
1 − σ2

σ2 + σ2
W

)
�

Lemma 5.1 describes the solution of Problem 5.2, subject to affine memoryless

policies. Before stating Lemma 5.1, we define a class of affinememoryless strategies of

interest.

Definition 5.1 Let all parameters defining Problem 5.2 be given. Let the realnumbers

{λ(k)}m−1
k=0 and{β(k)}m−1

k=0 be given. Define the class of affine memoryless strategies as

follows:

U(k)
def
= λ(k)Y (k) + β(k), k ∈ {0, . . . , m − 1} (5.14)

(5.15)
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In view of equation (5.1) a direct consequence of (5.14) is equation (5.16) below

(setk = m − 1).

X(m)
def
= λ(m − 1)Y (m − 1) + β(m − 1) (5.16)

Consider the following cost:

CA

(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ2

0, σ
2
V

) def
= E[(X(m) − X(0))2] (5.17)

which must be computed with the control (5.14) applied to (5.1)-(5.2).

Definition 5.2 Given real a positive constantγ, define the following optimal cost:

C∗
A

(
m, γ, σ2

0, σ
2
V

) def
= min

{(λ(k),β(k))}m−1
k=0

CA

(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ2

0 , σ
2
V

)
(5.18a)

s.t.
m−2∑

k=0

E[U(k)2] ≤ (m − 1)γσ2
V (5.18b)

whereU(k), k ∈ {0, . . . , m − 2} are defined in equation (5.14).

Lemma 5.1 Let all parameters defining Problem 5.2 be given and letγ be a positive real

number. Adopt an affine memoryless control strategy, as given in equation (5.14). The

following holds:

C∗
A

(
m, γ, σ2

0 , σ
2
V

)
= σ2

0

(
1 − σ2

0

σ2
0 + σ2

V

γm−1

(1 + γ)m−1

)
(5.19)

and the optimum is reached by selecting the following affine functions:

β(k) = 0, k ∈ {0 . . .m − 1} (5.20)

λ(0) =

√
γσ2

V

σ2
V + σ2

0

(5.21)

λ(k) =

√
γ

γ + 1
, k ∈ {1 . . .m − 2} (5.22)

λ(m − 1) =

√
σ2

0

σ2
0 + σ2

V

(
γ

γ + 1

)m−1
2

√
σ2

0

γσ2
V + σ2

V

(5.23)
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Before we prove Lemma 5.1, we need to state and prove two supporting results.

Lemma 5.2 Let all parameters and cost function defining Lemma 5.1 be given. Given

the positive numbers{σ2
i }

m−1
i=1 , define the optimal cost:

C∗
σ

(
m, σ2

0 , σ
2
V ,
{
σ2

i

}m−1

i=1

)
def
= min

{(λ(k),β(k))}m−1
k=0

CA

(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ2

0, σ
2
V

)

(5.24)

s.t. E[U(k)2] = σ2
k+1, k ∈ {0 . . .m − 2} (5.25)

Then the following holds:

C∗
σ

(
m, σ2

0, σ
2
V ,
{
σ2

i

}m−1

i=1

)
= σ2

0

(
1 −

m−1∏

i=0

σ2
i

σ2
i + σ2

V

)
(5.26)

E[X(m)2] = σ2
0

m−1∏

i=0

σ2
i

σ2
i + σ2

V

and the optimum is reached by selecting the following affine functions:

β(k) = 0, k ∈ {0 . . .m − 1} (5.27)

λ(k) =

√
σ2

k+1

σ2
k + σ2

V

, k ∈ {0 . . .m − 2} (5.28)

λ(m − 1) =
m−1∏

i=0

√
σ2

i

σ2
i + σ2

V

·
√

σ2
0

σ2
m−1 + σ2

V

(5.29)

Proof: We notice that the affine functions at each step withk ∈ {0, . . .m − 2} act only

as scale factors. Because of linearity the values of theλ(k)’s k ∈ {0, . . .m − 2} appear

immediately the way they are written in equation (5.28),λ(m−1) can be computed using

the fact thatY (m−1) is Gaussian, henceX(m) = E[X(0)|Y (m−1)], and with the values

of β(k) = 0, ∀k. Note that the values ofλ(k) are not unique. It is straightforward to show

that if we take a even number of parametersλ(k), whenβ(k) = 0 and flip their sign the

131



value of the cost, given in the statement of the theorem, remains the same. However, the

values forβ(k) are unique, i.e. if there exists at least one indexk ∈ {0, . . . , m − 1} such

thatb(k) 6= 0, then the cost will be larger than the one from equation (5.26).

First we will show that the optimalλ(k) 6= 0, for all k ∈ {0, . . . , m − 1}, then

we will prove by induction that the costCA

(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ2

0, σ
2
V

)
is lower

bounded byσ2
0

(
1 −∏m−1

i=0
σ2

i

σ2
i +σ2

V

)
from equation (5.26) for allλ(k) and β(k), k ∈

{0, . . . , m − 1} which satisfy the constraint from equation (5.25). Then, weshow that

the cost from equation (5.26) can be reached by selecting thevalues forλ(k) andβ(k)

from equations (5.28), (5.29) and (5.27). Finally, we will show that the optimal values for

β(k), for all k ∈ {0, . . . , m − 1} are always zero. We process now through these three

steps.

We first show that for a generalm, there is nok ∈ {0, . . . , m − 1} for which

λ(k) = 0. Assume that exists such ak, thenU(k) = β(k), which will be just a constant,

and all theY (l), l ≥ k will be independent ofX(0), which will makeX(m) independent

of X(0). Hence, the cost function becomes:

E[(X(0) − X(m))2] = E[X(0)2] + E[X(m)2] ≥ σ0

but the values ofλ(k) andβ(k) from equations (5.28), (5.29) and (5.27) satisfy the con-

straints from equation (5.25) and have the associated cost from equation (5.26) which less

thenσ2
0, hence we conclude that the optimalλ(k), k ∈ {0, . . . , m − 1} are always non

zero. Since we showed that the optimal values forλ(k) are non-zero we will consider

from this point on thatλ(k) 6= 0 for all k ∈ {0, . . . , m − 1}.
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Second, we show that the cost from equation (5.26) can be reached by selecting

the values forλ(k) andβ(k) from equations (5.28), (5.29) and (5.27). It is a standard

computation to show that the lemma hold form = 1 and for m = 2. For m = 1,

X(1) = E[X(0)|Y (0)], due to the Gaussianity ofX(0) and the noise, and the result is

immediate. The results form = 2 are found also in the proof for Proposition 5.2. Assume

that the claim holds form ≥ 2. We need to prove that it holds also form + 1. Let it be

them + 1 stage problem. Let̃X(m) the best affine estimator ofX(0) givenY (m − 1).

By the properties of the affine estimators̃X(m) is an affine function ofY (m − 1) and

E[X̃(m)] = E[X(0)] = 0. Since all theλ(k) 6= 0, k ∈ {0 . . .m − 2} it follows that

X̃(m) is an invertible affine function ofY (m − 1). This means thatX(m), being an

affine function ofY (m − 1), is an affine function ofX̃(m). Using the orthogonality

principle we can write the cost:

E[(X(0) − X(m + 1))2]

= E[(X(0) − X̃(m) + X̃(m) − X(m + 1))2]

= E[(X(0) − X̃(m))2] + E
[
(X̃(m) − X(m + 1))2

]

+ 2E[(X(0) − X̃(m))(X̃(m) − X(m + 1))]

= E[(X(0) − X̃(m))2] + E[(X̃(m) − X(m + 1))2]

The valueE[(X̃(m) − X(m + 1))2] can be bounded from below using Proposition 5.1,

sinceX(m) is an affine function of̃X(m) andE[X(m)2] = σ2
m. We know thatX̃(m) is

the best affine estimator ofX(0) givenY (m− 1). Then using the orthogonality principle
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we obtain:

E[X(0)2] = E[(X(0) − X̃(m) + X̃(m))2]

= E[(X(0) − X̃(m))2] + E[X̃(m)2] + 2E[(X(0) − X̃(m))X̃(m)]

= E[(X(0) − X̃(m))2] + E[X̃(m)2]

Looking back at the initial cost:

E[(X(0) − X(m + 1))2]

= E[(X(0) − X̃(m))2] + E[(X̃(m) − X(m + 1))2]

≥ E[(X(0) − X̃(m))2] + E[X̃(m)2]

(
1 − σ2

m

σ2
m + σ2

V

)

= E[X(0)2]

(
1 − σ2

m

σ2
m + σ2

V

)
+ E[(X(0) − X̃(m))2]

− E[(X(0) − X̃(m))2]

(
1 − σ2

m

σ2
m + σ2

V

)

= E[X(0)2]

(
1 − σ2

m

σ2
m + σ2

V

)
+ E[(X(0) − X̃(m))2]

σ2
m

σ2
m + σ2

V

≥ σ2
0

(
1 −

m−1∏

i=0

σ2
i

σ2
i + σ2

V

)
σ2

m

σ2
m + σ2

V

+ σ2
0

(
1 − σ2

m

σ2
m + σ2

V

)

= σ2
0

(
1 −

m∏

i=0

σ2
i

σ2
i + σ2

V

)

The first inequality takes place due to the fact thatX(m) is an affine function ofX̃(m)

andE[X2(m)] = σ2
m, so the second term can be lower bounded using 5.1 and the second

inequality appears due to the induction. Both inequalitiescan be reached with equality by

selecting the parametersλ(k), k ∈ {0, . . .m − 2} andβ(k), k ∈ {0, . . .m − 2} for them

stage problem and the values forλ(m − 1), λ(m), β(m − 1), β(m) andE[X(m + 1)2]

follow from 5.1.
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Third and finally, we show that the optimal valuesb(k), for all k ∈ {0, . . . , m − 1}

are always zero. We will rewrite for the reader convenience the equation which govern

the system when we adopt affine control strategies:

X(k + 1) = U(k), k ≥ 0

Y (k) = X(k) + V (k), k ≥ 0

U(k) = λ(k)Y (k) + β(k), k ≥ 0

Adopt λ(k) and β(k), for k ∈ {0, . . . , m − 2} such that the constraints from equa-

tion (5.25) are satisfied. Since we are trying to minimize thecost functionE
[
(X(0) − X(m))2

]
,

we letX(m) to be:

X(m) = E [X(0)|Y (m − 1)]

SinceX(0) andV (k), k ∈ {0, . . . , m − 1} are Gaussian random variables and are mu-

tually independent, it follow thatX(m) is an affine function ofY (m − 1). We can write

U(k) as follows:

U(k) =
k∏

i=0

λ(i)X(0) +
k∑

i=0

V (k)
k∏

j=i

λ(j) +
k−1∑

i=0

b(i)
k−1∏

j=i

λ(j) + β(k) (5.30)

The real numbersλ(k) andβ(k), for k ∈ {0, . . . , m − 2} are chose such that the

constraint from equation (5.25) is satisfied, hence it holdsthat:

E
[
U2(k)

]
= σ2

k+1, k ∈ {0, . . . , m − 2}

Define the positive real numbers{σ̃2
k}

m−1
k=1 as follows:

σ̃2
k

def
= E



(

k∏

i=0

λ(i)X(0) +

k∑

i=0

V (k)

k∏

j=i

λ(j)

)2

 , k ∈ {1, . . . , m − 1} (5.31)
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SinceX(0) andV (k) , for all k ∈ {0, m − 2} are zero mean random variables, it

follows thatσ̃2
k ≤ σ2

k for all k ∈ {1, . . . , m − 1}. We find immediately that:

λ(0)2 =
σ̃2

1

σ2
0 + σ2

V

λ(k)2 =
σ̃2

k+1

σ̃2
k + σ2

V

, k ∈ {1, . . . , m − 2}
(5.32)

Since we are computingX(m) = E [X(0)|Y (m − 1)], from standard estimation

theory we obtain:

λ(m − 1) = σ2
0

∏m−2
i=0 λ(i)

σ̃2
m−1 + σ2

V

β(m − 1) = σ2
0

∏m−2
i=0 λ(i)

σ̃2
m−1 + σ2

V

(
m−3∑

i=0

b(i)
k−1∏

j=i

λ(j) + β(m − 2)

)

E
[
(X(0) − X(m))2] = σ2

0 − σ4
0

∏m−2
i=0 λ(i)2

σ̃2
m−1 + σ2

V

Using equation (5.32) we obtain:

E
[
(X(0) − X(m))2] = σ2

0

(
1 −

m−1∏

i=0

σ̃2
i

σ̃2
i + σ2

V

)

≤ σ2
0

(
1 −

m−1∏

i=0

σ2
i

σ2
i + σ2

V

) (5.33)

where the inequality appears due to the fact thatσ̃2
k ≤ σ2

k, for all k ∈ {1, . . . , m − 1}

and because the functionx
1+x

is strictly increasing for positive real numbersx. Let

k̃ = inf {k ≤ m − 2 : b(k) 6= 0}, it follows that σ̃2
k̃+1

< σ2
k̃+1

, then the inequality from

equation (5.33) will become strict, henceb(k) = 0 for all k ∈ {0, . . . , m − 2} , which

implies thatb(m − 1) = 0 . �

The Lemma 5.3 below is a supporting result for Lemma 5.1

Lemma 5.3 Let{αi}n

i=1 be positive real numbers. Consider the following cost function:

C ({αi}n

i=1)
def
=

n∏

i=1

αi

1 + αi
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Given a positive real number P, define the following optimal cost:

C∗ def
= max

{αi}
n
i=1

C ({αi}n
i=1)

s.t.

∑n
i=1 αi ≤ P

αi ≥ 0, i ∈ {1, . . . n}

Then the following hold:

C∗ =

(
P
n

)n
(
1 + P

n

)n

α∗
i =

P

n
, i ∈ {1, . . . , n}

where{α∗
i }n

i=1 are the optimal values of{αi}n

i=1 for which the problem is solved.

Proof: First we show that the optimization problem is equivalent tothe following prob-

lem:

max
{αi}

n
i=1

C ({αi}n
i=1)

s.t.

∑n
i=1 αi ≤ P

αi ≥ ǫ, i ∈ {1, . . . n}

for someǫ > 0.

The cost function is positive for any choice of positiveαi ≥ 0 and is zero if exist an

integeri s.t. αi = 0. Choose anyαi > 0 such that
∑n

i=1 αi ≤ P . For this choice,

let
∏n

i=1
αi

αi+1
= ǭ > 0. Then for anyk ∈ {1, . . . , n},

n∏

i=1

αi

αi + 1
≤ αk

αk + 1
≤ αk

Chooseǫ = ǭ
2
, then if αk ≤ ǫ, then

∏n
i=1

αi

αi+1
< ǭ no matter of the values of the other

αi, i ∈ {1, . . . , k − 1, k + 1, . . . , n}. This shows that the first problem and the second

problem are equivalent. Moreover it shows that for the second problem, the inequality
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constraintsαi, i ∈ {1, . . . n} are inactive. Then the second problem can be solved by

solving the equivalent problem:

max
{αi}

n
i=1

log

n∏

i=1

αi

αi + 1

s.t.

∑n

i=1 αi ≤ P

αi ≥ ǫ, i ∈ {1, . . . n}

which is the same with:

max
{αi}

n
i=1

n∑

i=1

log
αi

αi + 1

s.t.

∑n

i=1 αi ≤ P

αi ≥ ǫ, i ∈ {1, . . . n}

We note that the optimization function is strictly concave on the maximization domain

and the inequality constraints are affine functions, which means that values for{αi}n
i=1

which reach the maximum are unique. From the argument of the previous problem the

inequality constraintsαi ≥ ǫ, i ∈ {1, . . . n} are inactive, so the Lagrange multipliers

associated with these constraints are 0. Letµ be the Lagrange multiplier associated with

the remaining inequality constraint. Then for the optimization problem the first order

optimality conditions can be written:

∂
∑n

i=1 log αi

αi+1

∂αk

+ µ = 0, k ∈ {1, . . . n}

which is after differentiation:

1

αk

− 1

αk + 1
+ µ = 0, k ∈ {1, . . . n}

First we note thatµ < 0 and that the inequality constraint is active. Thenαk can be

written as a function ofµ: αk =
−1 +

√
1 − 4

µ

2
We obtain that theαk, k ∈ {1, . . . n} are
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equal and,αk =
P

n
and the result follows.�

Proof of Lemma 5.1The initial optimization problem:

C∗
A

(
m, γ, σ2

0, σ
2
V

) def
= min

{(λ(k),β(k))}m−1
k=0

CA

(
{λ(k)}m−1

k=0 , {β(k)}m−1
k=0 , σ2

0, σ
2
V

)

s.t.
m−2∑

k=0

E[U(k)2] ≤ (m − 1)γσ2
V

is equivalent to the following optimization problem:

C∗
A

(
m, γ, σ2

0, σ
2
V

) def
= min

{σ2
i}m−1

i=1

C∗
σ

(
m, σ2

0 , σ
2
V ,
{
σ2

i

}n

i=1

)

s.t.
m−1∑

i=1

σ2
i ≤ (m − 1)γσ2

V

Taking into consideration thatσ2
i ’s are the variances of some random variables, hence

they must be positive, the results of Lemma 5.1 follow directly from Lemma 5.2 and

Lemma 5.3.�

The following proposition, in conjunction with Lemma 5.1, shows that affine strate-

gies are optimal for the two stage version of Problem 5.2.

Proposition 5.2 Let all the parameters defining Problem 5.2 be given and assume that

m = 2. Given a positive real constantγ, let F0 be a Lebesgue measurable function

satisfyingE[U(0)2] ≤ γσ2
V . The following holds:

E[(X(2) − X(0))2] ≥ C∗
A

(
2, γ, σ2

0, σ
2
V

)
(5.34)

whereC∗
A(2, γ, σ2

0, σ
2
V ) is given by (5.19).
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Proof: Let X̃(1) = E[X(0)|Y (0)] =
σ2

0

σ2
0 + σ2

V

Y (0). The cost can be written as follows:

E[(X(2) − X(0))2]

= E[(X(2) − X̃(1) + X̃(1) − X(0))2]

= E[(X(2) − X̃(1))2] + E[(X̃(1) − X(0))2]

+ 2E[(X(2) − X̃(1))(X̃(1) − X(0))]

(5.35a)

= E[(X(2) − X̃(1))2] + E[(X̃(1) − X(0))2]

= E[(X(2) − X̃(1))2] +
σ2

0σ
2
V

σ2
0 + σ2

V

(5.35b)

We note thatX̃(1) is a linear function ofY (0), which means thatY (0) can be written as a

linear function ofX̃(1) and alsoX(1) = U(0) is a function ofX̃(1). The variableX(2)

is a function ofY (0) andV (1), hence, it follows thatX(2) is a function ofX̃(1) and

V (1). The noiseV (1) is independent ofX(0) andV (0), hence it follows that the equality

between equations (5.35a) and (5.35b) is valid, because thecross term is zero due to the

orthogonality principle. Moreover, we can use Proposition5.1, by lettingX̃(1) take the

place ofX, X(1) the place ofZ(0), X(2) the place ofZ(1) andV (1) the place ofW ,

leading to the following lower bound onE[(X(2) − X̃(1))2]:

E[(X(2) − X(0))2] = E[(X(2) − X̃(1))2] +
σ2

0σ
2
V

σ2
0 + σ2

V

≥ σ4
0

σ2
V + σ2

0

(
1 − σ2

V γ

σ2
V + σ2

V γ

)
+

σ2
0σ

2
V

σ2
0 + σ2

V

= σ2
0

(
1 − σ2

0

σ2
0 + σ2

V

γ

1 + γ

)
= C∗

A

(
2, γ, σ2

0, σ
2
V

)
�

Remark 5.1 As shown in Lemma 5.1, inequality (5.34) can become an equality by adopt-

ing U(0) =
√

γσ2
V

σ2
0+σ2

V

Y (0) and X(2) =
√

σ2
0

σ2
0+σ2

V

γ

γ+1

√
σ2
0

γσ2
V

+σ2
V

Y (1). Hence, optimal
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feedback strategies for Problem 5.2, withm = 2, are given by:

F∗
0 (x) = ±

√
γσ2

V

σ2
0 + σ2

V

x

F∗
1 (x) = ±

√
σ2

0

σ2
0 + σ2

V

γ

γ + 1

√
σ2

0

γσ2
V + σ2

V

x

The optimal strategiesF∗
0 andF∗

1 can be derived also from Proposition 5.1.

The following Theorem gives the optimal solution of Problem5.1 subject to affine

memoryless control.

Theorem 5.1 Part I. Let all parameters defining Problem 5.1 be given, withm larger

than or equal to two. We denote byJ ∗
A (m, ̺, σ2

0 , σ
2
V ) the optimal cost of Problem 5.1

subject to affine strategies of the form (5.14). The following equality holds:

J ∗
A

(
m, ̺, σ2

0, σ
2
V

)
= min

γ≥0

[
C∗

A

(
m, γ, σ2

0, σ
2
V

)
+ (m − 1)̺γσ2

V

]
(5.36)

whereC∗
A (m, γ, σ2

0, σ
2
V ) is given by (5.19).

Part II. Consider the following conditions: (a)̺ =
σ4
0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m and (b)

m < γ + 2. Given̺ and m, if there exists a positive real numberγ for which the

conditions (a) and (b) hold, thenγ is an optimal solution of (5.36). If no suchγ exists,

thenγ = 0 is an optimal solution of (5.36).

Remark 5.2 For a fixed value of̺ and for large enoughm, the optimal solution of (5.36)

is γ equal to zero. That is, if the number of stages is large enough, then the optimal affine

solution is to adoptFk = 0 for k ∈ {0, . . . , m − 2} and then it follows that the optimal

Fm−1 is also zero.
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Proof: Using Lagrange relaxation [39], there exists a postive realnumberγ, such that

Problem 5.1 subject to affine strategies of the form (5.14) shares an optimal solution

with the problem defined in Lemma 5.1, for this particularγ. Using the results from

Lemma 5.1,Part I of Theorem 5.1 follows.

In order to provePart II of the Theorem, we need to define the following function:

f(γ)
def
= C∗

A

(
m, γ, σ2

0, σ
2
V

)
+ ̺(m − 1)γσ2

V

The functionf(γ) is the function to be minimized in equation (5.36). We will show that

there are at most two valuesγ for which condition (a) is satisfied and the larger of the two

is a point of local minima. We will show that if conditions (a)and (b) hold, then the local

minima identified by condition (a) is in fact a point of globalminima. If either condition

(a) or condition (b) fails for every positiveγ then zero is the global optimum.

We proceed with casem ≥ 3, while the treatment for the case wherem = 2 is left

at the end of the proof. Letm, the number of stages be greater than or equal to three.

We will show that for a fixedm and̺, there are at most two points which can satisfy

condition (a).

In order to find the minimum off(γ), we take the derivative off(γ) with respect

to γ and, using equation (5.19), we obtain:

∂f

∂γ
(γ) = −(m − 1)

σ4
0

(σ2
0 + σ2

V )

γm−2

(1 + γ)m + ̺(m − 1)σ2
V

The fact that the derivative off with respect toγ satisfies condition (a) is equivalent

to ∂f

∂γ
(γ) = 0. The function γm−2

(1+γ)m has a single stationary point, which is a point of

maximum atm−2
2

, for γ > 0. This implies that∂f

∂γ
(γ) has a single point of minimum
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at m−2
2

and moreover∂f

∂γ
is strictly decreasing forγ ≤ m−2

2
and strictly increasing for

γ ≥ m−2
2

.
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Figure 5.3: (a) The functionf(γ) satisfies conditions (a) and (b); (b) The derivative of the

function from (a); (c) The functionf(γ) satisfies condition (a) but does not satisfies (b);

(d) The derivative of the function from (c)

We will show next, that there are at most two valuesγ for which condition (a) is

satisfied. We notice that
∂f

∂γ
(0) = lim

γ→∞

∂f

∂γ
(γ) = ̺(m−1)σ2

V and that∂f

∂γ
(γ) is continuous

as a function ofγ. There are three cases to be analyzed. The first case is∂f

∂γ

(
m−2

2

)
> 0;

in this case,∂f

∂γ
(γ) > 0 for all postive real numbersγ. The second case is∂f

∂γ

(
m−2

2

)
= 0

and this takes place if̺ =
4σ4

0(m−2)m−2

σ2
V (σ2

0+σ2
V )mm

. In this caseγ = m−2
2

is the unique point which

satisfies condition (a). The third case is∂f

∂γ

(
m−2

2

)
< 0; in this case, there exist two real
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numbersγ1 < m−2
2

< γ2 such that∂f

∂γ
(γ1) = ∂f

∂γ
(γ2) = 0. If γ is in the interval[0, γ1],

the functionf(γ) is increasing, since its derivative is positive, on the interval [γ1, γ2], f

is decreasing, and on the interval[γ2,∞), f is increasing. This means that the function

f(γ) has two points of local minimum, one atγ = 0 and the second one atγ = γ2,

hence, in order to compute the minimum, one has to computef(0) andf(γ2) and take the

minimum between these two.

Assume that condition (a) is not satisfied, then this impliesthat the equation∂f

∂γ
(γ) =

0, has no solution, which corresponds to the case∂f

∂γ

(
m−2

2

)
> 0. We know that∂f

∂γ
(0) is

strictly positive and∂f

∂γ
(γ) is continuous inγ. It follows then, that∂f

∂γ
(0) > 0, for all

γ ≥ 0, which implies thatf is increasing forγ ≥ 0 andf(γ) ≥ f(0), for all positiveγ.

Assume that the condition (a) is satisfied, in this case we need to analyze∂f

∂γ

(
m−2

2

)
=

0 and ∂f

∂γ

(
m−2

2

)
> 0. Let ∂f

∂γ

(
m−2

2

)
= 0, it follows that ∂f

∂γ
(γ) ≥ 0 for all γ ≥ 0, which

implies thatf (γ) ≥ f(0) for all γ ≥ 0 and that zero is a global minimizer. Sinceγ = m−2
2

is the unique positive real number, which satisfies condition (a), we notice in this case that

condition (b) cannot be satisfied form ≥ 3.

We just need to discuss the case when condition (a) is satisfied with ∂f

∂γ

(
m−2

2

)
< 0.

By the analysis above, it follows that condition (a) is satisfied and that there existγ1

andγ2, the solutions of the equation∂f(γ)
∂γ

= 0, such thatγ1 < m−2
2

< γ2. Moreover,

condition (a) implies thatγ = 0 andγ = γ2 are points of local minimum for the function

f , whenγ ≥ 0, and one of these points is actually a global minimum. It is immediate that

f(0) = σ2
0, while f(γ2) is given below:

f(γ2) = σ2
0

(
1 − σ2

0

σ2
0 + σ2

V

(
γ2

γ2 + 1

)m−1(
1 − m − 1

γ2 + 1

))
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Sinceγ1 < m−2
2

< m − 2, only γ2 can satisfy both condition (a) and (b). Assume that,

besides condition (a), condition (b) is also satisfied, thenm < γ2 + 2. Condition (b)

implies thatf(γ2) < f(0), henceγ = γ2 is a global minimizer forf .

If condition (a) is satisfied, but condition (b) is not satisfied, thenm ≥ γ +2, which

implies thatf(γ2) ≥ f(0), henceγ = 0 is a global minimizer forf . In Figure 5.3 we

provide a few plots that clarify the analysis above. In Figure 5.3(a), the functionf(γ)

satisfies both conditions (a) and (b), while in Figure 5.3(c), the functionf(γ) satisfies

condition (a) but does not satisfy condition (b). In Figure 5.3(b) and (d), there are the

derivatives of the functions from Figure 5.3(a) and (c).

Let m = 2, then the derivative off , with respect toγ, is:

∂f

∂γ
(γ) = − σ4

0

(σ2
0 + σ2

V )

1

(1 + γ)2 + ̺σ2
V

We kow that lim
γ→∞

∂f

∂γ
(γ) = ̺σ2

V . The function 1
(1+γ)2

is decreasing forγ ≥ 0, hence if

∂f

∂γ
(0) ≥ 0, then the derivative off with respect toγ is always positive, which implies that

f is minimized whenγ = 0 and also condition (a) is never satisfied. If∂f

∂γ
(0) < 0, then

there exists a unique positiveγ such that,∂f

∂γ
(γ) = 0, which implies that the following

holds:

̺ =
σ4

0

(σ2
0 + σ2

V ) σ2
V

γm−2

(1 + γ)m

notice that this corresponds to condition (a). Since forγ = 0, the derivative is negative, it

is clear that theγ, which satisfies∂f(γ)
∂γ

= 0 is a point of minimum. The condition (b) is

always satisfied, since we are studying the casem = 2.�

Remark 5.3 The Lagrange multiplier of the constrained problem in Lemma5.1, for a
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fixedγ, has the value̺ =
σ4
0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m . This is consistent with conditions (a) and (b)

fromPart II of Theorem 5.1.

5.3 Two valued memoryless control

In this section, we show that, in general, affine functions are not optimal for Prob-

lem 5.1. The main result in this section is Theorem 5.2, wherewe show that two valued

control reaches a cost that is lower than what would be the cost for the optimal affine

control. The section ends with numerical results, illustrating that two valued control can

be better than the optimal affine strategy.

We proceed by defining the class of two-valued control strategies, along with its

associated cost.

Definition 5.3 Given positive real numbers{σ2
i }m

i=1, define the class of functionsFB
i :

R → {−1, 1} , i ∈ {0, 1, . . . , m − 1} as follows:

FB
i (x) = σi+1sgn(x), i ∈ {0, . . . , m − 1} (5.37)

where the functionsgn : R → {−1, 1} is the standard sign function.

Definition 5.4 Given positive real numbers{σ2
i }m

i=1, assume that the control strategies

for Problem 5.1 are obtained via the functions
{
FB

i

}m−1

i=0
, given in (5.37), as is follows:

U(k) = FB
k (Y (k)) , k ∈ {0, . . .m − 1} (5.38)

Consider the following cost:

CB({σ2
k}m

k=1, σ
2
0, σ

2
V )

def
= E

[
(X(m) − X(0))2

]
(5.39)
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obtained under the control law (5.38).

Lemma 5.4 Let the parameters in Problem 5.1 and the positive real numbers {σ2
i }m

i=1 be

given. Adopt the two valued control strategies from Definition 5.4. The following holds:

CB({σ2
k}m

k=1, σ
2
0, σ

2
V ) = σ2

0 + σ2
m

− 4
σmσ2

0√
2π(σ2

0 + σ2
V )

m−1∏

i=1

(2P (V (i) ≤ σi) − 1)

(5.40)

Proof: Before proving the claim in Lemma 5.4, one needs to prove the following.

P (U(k) = σk+1) =
1

2
, k ∈ {0, . . .m − 1}

The proof of the claim above is done by induction. Fork = 0, P (U(0) = σ1) =

P (Y (0) > 0) = 1
2
. Assume that the claim holds for0 ≤ k < m − 1.

P (U(k + 1) = σk+2)

= P (Y (k + 1) > 0) = P (U(k) + V (k + 1) > 0)

=
1

2
P (U(k) + V (k + 1) > 0|U(k) = σk+1)

+
1

2
P (U(k) + V (k + 1) > 0|U(k) = −σk+1)

=
1

2
P (V (k + 1) > −σk+1) +

1

2
P (V (k + 1) > σk+1) =

1

2

We remind to the reader thatU(m − 1) = X(m). We need to prove that:

E [X(m)|Y (m − k − 1) < 0] = −σm

m−1∏

i=m−k

(2P (V (i) ≤ σi) − 1)

E [X(m)|Y (m − k − 1) > 0] = σm

m−1∏

i=m−k

(2P (V (i) ≤ σi) − 1)
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for 1 ≤ k ≤ m. We prove this by induction. Fork = 1:

E [X(m)|Y (m − 2) < 0]

= σmP (X(m) = σm|Y (m − 2) < 0)

− σmP (X(m) = −σm|Y (m − 2) < 0)

= σmP (V (m − 1) > σm−1) − σmP (V (m − 1) < σm−1)

= −σm (2P (V (m − 1) < σm−1) − 1)

In the same way we show that:

E [X(m)|Y (m − 2) > 0] = σm (2P (V (m − 1) < σm−1) − 1)

Assume that the claim holds for alli, 1 ≤ i ≤ k. We need to prove it fork + 1.

E [X(m)|Y (m − k − 2) < 0]

= E [X(m)|Y (m − k − 1) < 0, Y (m − k − 2) < 0]

· P (Y (m − k − 1) < 0|Y (m − k − 2) < 0)

+ E [X(m)|Y (m − k − 1) > 0, Y (m − k − 2) < 0]

· P (Y (m − k − 1) > 0|Y (m − k − 2) < 0)

= E [X(m)|Y (m − k − 1) < 0]P (V (m − k − 1) < σm−k−1)

+ E [X(m)|Y (m − k − 1) > 0]P (V (m − k − 1) > σm−k−1)

= −σm

m−1∏

i=m−k

(2P (V (i) ≤ σi) − 1)P (V (m − k − 1) < σm−k−1)

+ σm

m−1∏

i=m−k

(2P (V (i) ≤ σi) − 1)P (V (m − k − 1) > σm−k−1)

= −σm

m−1∏

i=m−k−1

(2P (V (i) ≤ σi) − 1)
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In the same way, we show the induction step forE [X(m)|Y (m − k − 2) > 0].By the

way the functionsFB
i , i ∈ {0, . . . , m − 1} are defined, the following equalities are true:

E [X(m)|Y (k) < 0] =E [X(m)|Y (k) = −α]

=E [X(m)|U(k + 1) = −σk+1]

E [X(m)|Y (k) > 0] =E [X(m)|Y (k) = β]

=E [X(m)|U(k + 1) = σk+1]

where0 ≤ k ≤ m − 2 andα andβ are any postive real numbers. These equalities are

immediate sinceFB
k (x) = σksgn(x).

The cost function defined in the lemma is:

E
[
(X(0) − X(m))2] = σ2

0 + σ2
m − 2E [X(0)X(m)]

E [X(0)X(m)] = E [E [X(0)X(m)|X(0), V (0)]]

=

∫ ∞

−∞

∫ ∞

−∞

E [X(0)X(m)|X(0) = x0, V (0) = v0]

· 1

2π
√

σ2
V σ2

0

e
−

„

x2
0

2σ2
0
+

v2
0

2σ2
V

«

dx0dv0

=

∫ ∞

−∞

∫ −v0

−∞

x0E [X(m)|X(0) = x0, V (0) = v0]
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· 1

2π
√

σ2
V σ2

0

e
−

„

x2
0

2σ2
0
+

v2
0

2σ2
V

«

dx0dv0

+

∫ ∞

−∞

∫ ∞

−v0

x0E [X(m)|X(0) = x0, V (0) = v0]

· 1

2π
√

σ2
V σ2

0

e
−

„

x2
0

2σ2
0
+

v2
0

2σ2
V

«

dx0dv0

= −σm

m−1∏

i=1

(2P (V (i) ≤ σi) − 1)

∫ ∞

−∞

∫ −v0

−∞

x0
1

2π
√

σ2
V σ2

0

e
−

„

x2
0

2σ2
0
+

v2
0

2σ2
V

«

dx0dv0

+ σm

m−1∏

i=1

(2P (V (i) ≤ σi) − 1)

∫ ∞

−∞

∫ ∞

−v0

x0
1

2π
√

σ2
V σ2

0

e
−

„

x2
0

2σ2
0
+

v2
0

2σ2
V

«

dx0dv0

= 2σm

m−1∏

i=1

(2P (V (i) ≤ σi) − 1)
σ2

0√
2π(σ2

0 + σ2
V )

It follows that:

E
[
(X(0) − X(m))2] = σ2

0 + σ2
m

− 4σm

m−1∏

i=1

(
2P

(
V (i) ≤

√
σ2

i

)
− 1

)
σ2

0√
2π(σ2

0 + σ2
V )

�

The cost (5.40) in Lemma 5.4 can be minimized with respect toσm as follows:

C∗
B({σ2

k}m−1
k=1 , σ2

0 , σ
2
V )

def
= min

σm

CB

(
{σ2

k}m
k=1, σ

2
0, σ

2
V

)
(5.41)

Minimization of (5.40) with respect toσm leads to:

C∗
B

(
{σ2

k}m−1
k=1 , σ2

0, σ
2
V

)
= σ2

0 −
4

2π
σ2

0

m−1∏

i=1

(2P (V (i) ≤ σi) − 1)2 · σ2
0

σ2
0 + σ2

V

Theorem 5.2 Let all the parameters defining Problem 5.1 be given. There exists a posi-

tive real number̺ , an integerm and measurable nonlinear functions{Fi}m−1
i=0 such that:

J ({Fk}m−1
k=0 , ̺, σ2

0, σ
2
V ) < J ∗

A

(
m, ̺, σ2

0 , σ
2
V

)
(5.42)

150



whereJ ∗
A (m, ̺, σ2

0 , σ
2
V ), as defined in Theorem 5.1, is the optimal cost of Problem 5.1

subject to affine strategies of the form (5.14).

Proof: In order to prove Theorem 5.2, we will choose a positive real numberγ and an

integerm such that the following conditions hold: (i)

(
2Φ
(√

γ
)
− 1
)2(m−1)

(
γ

1+γ

)m−1 >
2π

4
and

(ii ) m < γ + 2. We denote byΦ(x) the cumulative distribution function of a normal

random variable with zero mean and unit variance.

For the chosen pair of parameters(γ, m) we will show thatC∗
A(m, γ, σ2

0, σ
2
V ) >

C∗
B

(
{γσ2

V }m−1
k=1 , σ2

0, σ
2
V

)
. We will choose̺ =

σ4
0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m , and the functions{Fk}m−1
k=0

from the class of function given in Definition 5.4, for which we selectσk =
√

γσV , k ∈

{1, . . . , m − 1} and chooseσm in order to minimize the cost defined in equation (5.41).

For this choice of nonlinear functions{Fk}m−1
k=0 we will prove thatJ ({Fk}m−1

k=0 , ̺, σ2
0, σ

2
V ) <

J ∗
A (m, ̺, σ2

0, σ
2
V ).

We need to prove that there exists a pair of parameters(γ, m) which satisfies the

conditions (i) and (ii ). We notice thatlim
γ→∞

(
γ

1 + γ

)γ+1

= e−1, lim
γ→∞

(2Φ(
√

γ) − 1)2(γ+1) =

1 ande > 2π
4

. Adoptm = ⌊γ + 1⌋ and then chooseγ large enough, and it follows that

both conditions (i) and (ii ) are satisfied for the pair(γ, m).

ChooseFk(x) =
√

γσ2
V sgn(x), k ∈ {0, . . .m − 2}, chooseFm−1(x) = σmsgn(x)

and letσm be the minimizer of the cost defined in (5.41) for whichσ2
k = γσ2

V , k ∈

{1, . . .m − 1}. It is clear that by this choice of functions, it holds that
∑m−2

k=0 E [U(k)2] =
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(m − 1)γσ2
V , while the costC∗

B

(
{γσ2

V }m−1
k=1 , σ2

0 , σ
2
V

)
becomes:

C∗
B

(
{γσ2

V }m−1
k=1 , σ2

0, σ
2
V

)

= σ2
0 −

4

2π
σ2

0

m−1∏

i=1

(2P (V (i) ≤ √
γσV ) − 1)2 σ2

0

σ2
0 + σ2

V

= σ2
0 −

4

2π

m−1∏

i=1

(
2P

(
V (i)

σV

≤ √
γ

)
− 1

)2
σ4

0

σ2
0 + σ2

V

= σ2
0 −

4

2π
(2Φ (

√
γ) − 1)2(m−1) σ4

0

σ2
0 + σ2

V

Since the pair(γ, m) satisfies conditions (i) and (ii ) it follows that:

σ2
0

(
1 − 4

2π
(2Φ (

√
γ) − 1)2(m−1) σ2

0

σ2
0 + σ2

V

)

< σ2
0

(
1 − σ2

0

σ2
0 + σ2

V

γm−1

(1 + γ)m−1

)
= C∗

A(m, γ, σ2
0, σ

2
V )

Adopt ̺ =
σ4
0

(σ2
0+σ2

V )σ2
V

γm−2

(1+γ)m . We note that with the̺ andm chosen above, the

conditions (a) and (b) of Theorem 5.1 are satisfied. Hence thecost of Problem 5.1 subject

to affine strategies of the form (5.14) is given by equation (5.36), with the optimumγ

being non-zero. Moreover, theγ chosen above, which together withm satisfies conditions

(i) and (ii ), is the optimal solution of the minimization problem from equation (5.36), for

the selected̺ andm. It follows that:

J ∗
A

(
m, ̺, σ2

0, σ
2
V

)
= C∗

A

(
m, γ, σ2

0, σ
2
V

)
+ ̺(m − 1)γσ2

V

> σ2
0 −

4

2π
σ2

0 (2Φ (
√

γ) − 1)2(m−1) σ2
0

σ2
0 + σ2

V

+ ̺(m − 1)γσ2
V = J ({Fk}m−1

k=0 , ̺, σ2
0, σ

2
V )

This shows that the cost obtained by nonlinear controls is less than the cost obtained
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by affine controls, hence the optimum of Problem 5.1 is reached in general by nonlinear

functions rather than affine functions.�

5.3.1 Numerical Results

The following cost will be used throughout this subsection:

JN

(
γ, m, ̺, σ2

0, σ
2
V

) def
= ̺(m − 1)γσ2

V

+ σ2
0 −

4

2π
(2Φ (

√
γ) − 1)2(m−1) σ4

0

σ2
0 + σ2

V

, γ ≥ 0

(5.43)

We notice thatJN (γ, m, ̺, σ2
0, σ

2
V ) is the cost associated with the two-valued control

strategy given in Definition 5.3, for whichσ2
i = γσ2

V , for k ∈ {1, . . . , m − 1} andσm is

chosen to minimize (5.41). LetγN
opt be an optimal solution formin

γ≥0
JN

(
γ, m, ̺, σ2

0, σ
2
V

)
,

andγL
opt be an optimal solution for (5.36).

In the proof of Theorem 5.2, we compared the optimal cost of Problem 5.1 subject

to affine strategies, i.e.J ∗
A

(
m, ̺, σ2

0, σ
2
V

)
with JN

(
γL

opt, m, ̺, σ2
0 , σ

2
V

)
. We notice that by

adoptingσ2
i = γN

optσ
2
V for k ∈ {1, . . . , m − 1} in Definition 5.3 with the appropriateσm

from equation (5.41), we arrive atJN

(
γN

opt, m, ̺, σ2
0, σ

2
V

)
≤ JN

(
γL

opt, m, ̺, σ2
0, σ

2
V

)
.

We now proceed to discussing the numerical results in Table 5.1. Subsequently,

we set the parametersσ2
0 andσ2

V to 1 and0.1, respectively. The numerical results from

Table 5.1 are structured as follows, the first two columns denote the parametersm, i.e.

the number of stages and̺, the third column gives the optimal value forγL
opt, the fourth

column gives the optimal cost for affine functionsJ ∗
A

(
m, ̺, σ2

0 , σ
2
V

)
, the fifth column

denotesγN
opt, while the sixth column is the costJ

(
γN

opt, m, ̺, σ2
0, σ

2
V

)
.

For m = 2, we have proved analytically that affine functions achieve the optimal
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cost, hence we chose not to include any corresponding numerical data in the table. For

m = 3 or m = 4, all our numerical experiments showed that the affine strategies are

better than nonlinear strategies, but we could not prove it analytically. Hence, form = 3

andm = 4, we do not know whether the optimal solution is affine. Form ≥ 5, for

some values ofρ, we were able to find nonlinear strategies that achieve smaller cost when

compared to the optimal affine.

This chapter investigates the design of a sequential linearquadratic Gaussian es-

timation system comprising of multiple decision stages. Our paradigm can also be cast

as the optimal control of a unit delay system in discrete-time driven by white Gaussian

noise, and subject to memoryless strategies over a finite time-horizon. We conclude from

our analysis given that, for certain expected squared errormeasures, optimal strategies

are linear for up to two stages and nonlinear for a sufficiently large number of stages.

Since our framework features a non-nested information pattern for two or more stages,

the existence of optimal linear strategies for our problem cannot be predicted via other

existing methods. Several problems remain open, such as determining if linear strategies

can be optimal for three or four stages, and devising systematic methods for designing

high performance strategies for the cases where linear solutions are not optimal.
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m ̺ γL
opt costLin γN

opt costNonlin Opt

3 0.42 3.03 0.74 3.17 0.84 L

3 0.21 5.00 0.58 4.47 0.68 L

3 0.06 10.77 0.37 6.72 0.52 L

4 0.32 3.00 0.90 3.45 0.94 L

4 0.14 5.89 0.68 5.12 0.71 L

4 0.06 10.21 0.50 6.69 0.57 L

5 0.24 0.00 1.00 3.85 0.98 NL

5 0.19 3.92 0.93 4.39 0.90 NL

5 0.10 6.75 0.75 5.69 0.72 NL

5 0.06 9.61 0.62 6.65 0.63 L

10 0.09 0.00 1.00 0.00 1.00 NL-L

10 0.06 0.00 1.00 6.44 0.87 NL

10 0.04 8.81 0.97 7.27 0.75 NL

10 0.02 15.63 0.76 8.61 0.61 NL

10 0.005 37.36 0.45 11.20 0.48 L

Table 5.1: Comparison between the optimal cost with affine functions and the cost with

discrete value functions. Here,costLin and costNonlin refer toJ ∗
A

(
m, ̺, σ2

0, σ
2
V

)
and

J
(
γN

opt, m, ̺, σ2
0, σ

2
V

)
, respectively.
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Chapter 6

Conclusions and Future Directions: Extension to More General Network

Topologies

6.1 General Network Topologies

We have showen in Chapter 2 we solve a distributed estimationproblem which con-

sists from a pre-processor or encoder and an estimator or a decoder, shown in Figure 1.1.

The preprocessor has perfect knowledge about a stochastic process and the decoder has

access only to the information which it receives from the decoder. Each time the encoder

sends information to the decoder it must pay a cost for communication. The encoder and

the decoder must jointly optimize a common cost, which consists from the estimation er-

ror and the communication cost. The problem which arises is when and what information

must be sent to the estimator. It was shown that the optimal policy to send sample to the

estimator is a threshold policy. In Chapter 3, we present some applications of the problem

presented in Chapter 2, from which we include general costs and noise distributions, noisy

observation at the pre-processor side, a quadratic controlproblem, a problem where we

consider packet drop with acknowledgement, infinite time horizon (the discounted cost

and the average cost) and the tandem problem. In Chapter 4, weshow that if we tackle the

problem described in Chapter 2, but we look at the multidimensional case, things can get

quite complicated. First, the method used for proving the linearity of the estimator fails.

156



Figure 6.1: Tree Topology
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Figure 6.2: Ring Topology
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Figure 6.3: Network
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If we consider a linear estimator (or equivalent, a symmetric policy at the pre-processor),

it is difficult to prove properties of the decision sets for time horizons bigger or equal

to three. Moreover, for the time horizon two, or at the penultimate stage, we found nu-

merically that the decision sets need not be convex. In Chapter 5, we present a problem

with multiple agents and noisy transmission links. In this case, we show that simple

affine strategies are not optimal, despite the fact that the problem has quadratic costs and

Gaussian noise. We show numerically that signalling strategies perform actually better.

moreover, we cannot compute the optimal strategies.

In Chapters 2 and 3 we show how to solve the two blocks problem,while in Chap-

ters 4 and 5, we show the limitations of the methods used in Chapters 2 and 3. The future

directions of these work are to look at general network topologies and performing dis-

tributed estimation and control over networks. In Fig. 6.1,we present a network with a

tree topology, where a pre-processor tracks a number of stochastic processes. The pre-

processor has to send information about these processes to the intermediate pre-processes

and will pay a communication cost. The intermediate pre-processors have to route these

information eventually to the estimators, which representthe leafs of the tree topology.

The estimators have to estimate the stochastic processes tracked by the root pre-processor.

The pre-processors and the estimators must jointly optimize a cost function, which con-

sists both from the communication costs and the estimation error. In Fig. 6.2, we present

a ring topology, where each node tracks a stochastic processand has an estimator, which

will try to estimate processes from other nodes. Just like inthe previous case, although not

depicted in the figure, for each transmission there is a communication cost, and the entire

network must jointly optimize a cost consisting from functions on the estimation error

160



and functions on the communication costs. The goal is to end up with general topologies

as in Fig. 6.3, where some of the nodes can just pass information through the network,

like P5 throughP9, or can be nodes that either track some process or estimate other pro-

cesses likeP1 throughP4 andE1 throughE4. For all these networks the transmission links

can be noisy links, i.e. the signal can be affected by transmission noise, like a Gaussian

addtive noise, or the information send through the links canbe lost, as in the packet drop

cases. The goal is to analyze all these networks having as base the results obtained in the

chapters 2, 3, 4 and 5.
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Appendix A

Appendix

A.1 Majorization Theory

Lemma A.1 If f andh are neat and even probability density functions, thenf ∗h is also

neat and even, where byf ∗ h we mean the convolution betweenf andh.

Proof: Sinceb is a distribution function, it implies that is also measurable. Letg : R → R

be defined as:

g(x) =





1, x ∈ [−α, α]

0, x /∈ [−α, α]

whereα is a positive real number. We notice thatg is an indicator function. We claim

thatf ∗ g is neat and even.

(f ∗ g)(x) =

∫ ∞

−∞

f(x − t)g(t)dt =

∫ α

−α

f(x − t)dt =

∫ α−x

−α−x

f(y)dy (A.1)

Since the functionf is neat and even, it is clear thatf ∗ g is neat and even from equa-

tion (A.1). The functionf ∗ g is neat and even also for the case wheng(x) = 1 on a

symmetric open interval(−α, α).

We need to prove the main claim of Lemma A.1. We do this by approximating the

functionb with a sum of functions of the type of functiong. Sinceb is neat and even it

follows thatb(0) ≥ b(x), for any real numberx. For a positive integer numbern, and
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positive integerk ≤ n, define the functionbn as follows:

bn(x) = b(0)
k

n
, b(0)

k

n
≤ b(x) < b(0)

k + 1

n
(A.2)

It follows thatbn(x) ≤ bn+1(x) for every real numberx and thatbn → b. Moreover, from

the monotone convergence theorem [14], it follows thatf ∗ bn → f ∗ b.

Sinceb is neat and even it follows that for every integern and integerk ≤ n,

there exists a positiveαn
k such thatb(x) ≥ b(0) k

n
on the intervalIn

k = [−αn
k , αn

k ] or

In
k = (−αn

k , αn
k) andb(x) < b(0) k

n
outsideIn

k . The functionbn can be written as follows:

bn(x) = b(0)
1

n

n∑

k=0

IIn
k
(x)

where byIIn
k

we denote the indicator function of the intervalIn
k .

f ∗ bn = b(0)
1

n

n∑

k=0

f ∗ IIn
k

It follows thatf ∗ bn is neat and even, hencef ∗ b is neat and even.�

Remark A.1 From the proof of Lemma A.1, it follows that the claim of LemmaA.1 holds

if f andb are any nonegative, even, quasiconcave and integrable functions.

We will state now two important inequalities, which are useful for this paper. The

first one is the Riesz’s rearrangement inequality:

Lemma A.2 (Riesz’s Rearrangement inequality [2])If f, g and h are nonnegative func-

tions onRn, then:

∫

Rn

f(x) (g ∗ h) (x)dx ≤
∫

Rn

fσ(x) (gσ ∗ hσ) (x)dx (A.3)

The second important inequality, which we need is the Hardy-Littlewood inequality

[3].
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Lemma A.3 (Hardy-Littlewood inequality [3]) Let f and g be two nonnegative mea-

surable functions defined on the real line, which vanish at infinity, then the following

holds:
∫

f(x)g(x)dx ≤
∫

fσ(x)gσ(x)dx (A.4)

We state and prove the following Lemmas, which are a supporting results for Lemma 2.2

in Subsection 2.4.1.

Lemma A.4 Let f : Rn → R be a symmetric and nonincreasing probability distribution

function. Then for any positiveκ ≤ 1, there exists a symmetric convex setK centered

around zero such that:

∫

K

f(x)dx = 1 − κ

and for any other setK ′ ⊂ Rn, for which:

∫

K′

f(x)dx = 1 − κ

the following holds:

fK ≻ fK′ (A.5)

Proof: Assume that there existsρ such that
∫
{x∈Rn:f(x)>ρ}

f(x)dx = 1 − κ, then let

K = {x ∈ Rn : f(x) > ρ}. Since,f is symmetric and nonincreasing, it follows thatK

is a symmetric set. Let any other setK′ such that
∫

K′ f(x)dx = 1 − κ. Choose any set

F′ ⊂ K′, if Ln(F′) ≥ Ln (K), letF ⊂ Rn be any measurable set, such thatLn(F) = L(F′)

andK ⊂ F, it follows that :

∫

F

fK(x)dx = 1 ≥
∫

F′

fK′(x)dx
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since bothfK andfK′ are probability distribution functions. IfLn(F′) ≤ Ln(K), then

choose any setF ⊂ K, such thatLn(F) = Ln(F′). Let F1 = F ∩ F
′, then by the way the

setK is defined, for any real numberx ∈ F′ \ F1 it holds thatf(x) ≤ ρ, while on the set

F \ F1, f(x) ≥ ρ.

∫

F

fK(x)dx =
1

1 − κ

∫

F

f(x)dx =
1

1 − κ

(∫

F1

f(x)dx +

∫

F\F1

f(x)dx

)

≥ 1

1 − κ

(∫

F1

f(x)dx +

∫

F\F1

ρdx

)

≥ 1

1 − κ

(∫

F1

f(x)dx +

∫

F′\F1

f(x)dx

)

=
1

1 − κ

∫

F′

f(x)dx =

∫

F′

fK′(x)dx

The second ineqaulity is due to the fact thatF \ F1 andF′ \ F1 have the same measure.

Assume that, there is no suchρ, such that
∫
{x∈Rn:f(x)>ρ}

f(x)dx = 1− κ. The inte-

gral
∫
{x∈Rn:f(x)>ρ}

f(x)dx is decreasing as a function ofρ and is also bounded. It follows

than that, there exist aρ such that
∫
{x∈Rn:f(x)>ρ}

f(x)dx < 1−κ and
∫
{x∈Rn:f(x)≥ρ}

f(x)dx ≥

1 − κ. Both the sets{x ∈ Rn : f(x) > ρ} and{x ∈ Rn : f(x) ≥ ρ} are symmetric and

convex and{x ∈ Rn : f(x) > ρ} ⊂ {x ∈ Rn : f(x) ≥ ρ}. Then we can find aK ⊂

{f(x) ≥ ρ} symmetric around the origin and convex such that
∫

K
f(x)dx = 1−κ. Using

the same type of arguments like in the first case we get thatfK ≻ fK′ for anyK′ ⊂ Rn

such that
∫

K′ f(x)dx = 1 − κ �

An immediate consequence of Lemma A.4 is the fact that if the probability distri-

bution functionf is defined on the real line, then the convex setK is a symmetric interval

centered around zero.

Lemma A.5 Let f, g : R → R be two probability distribution functions, such thatf is
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neat and symmetric andf ≻ g. Letκ be a real number such that0 < κ < 1. LetK be the

symmetric interval given by Lemma A.4 for the distributionf and the numberκ. Then for

any setK′ ⊂ R such that
∫

K′ g(x)dx = 1 − κ the following holds:

fK ≻ gK′ (A.6)

Proof: Fix K′ ∈ R. Choose a setF′ ∈ K′ with strictly positive Lebesgue measure. If

L(F′) ≥ L(K), chooseF any set withL(F) = L(F′), such thatK ⊂ F. It is clear in

this case that
∫

F
fK(x)dx = 1 ≥

∫
F′ gK′(x)dx. If L(F′) ≤ L(K), then becausef ≻ g,

there exists a setF′′ ∈ R, such thatL(F′′) = L(F′) and
∫

F′′ f(x)dx ≥
∫

F′ g(x)dx. Choose

K′′ a set which containsF′′ and
∫

K′′ f(x)dx = 1 − κ. By Lemma A.4,fK′′ ≺ fK, so it

follows that there exists a setF ⊂ K, with the same Lebesgue measure asF′′ such that

∫
F
f(x)dx ≥

∫
F′′ f(x)dx ≥

∫
F′ g(x)dx �

Lemma A.6 Letf : R → R be a probability distribution function and letκ be a positive

real number, less then one. Letλ : R → [0, 1] be a measurable positive function such that

∫
R

λ(x)f(x)dx = 1− κ. Then there exists a setK ∈ R such that,
∫

K
f(x)dx = 1− κ and

fK ≻ λ·f
1−κ

.

Remark A.2 Note that by the way they are definedfK and λ·f
1−κ

are probability distribu-

tion functions. Lemma A.6 states that for any probabilistictrimming can be majorized by

a deterministic trimming.

Proof: If existsρ such that
∫
{x∈R:f(x)>ρ}

f(x)dx = 1−κ, then letK = {x ∈ R : f(x) > ρ}.
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If no suchρ exists, just like in the proof of Lemma A.4, there exists aρ such that:

∫

{x∈R:f(x)>ρ}

f(x)dx < 1 − κ, and
∫

{x∈R:f(x)≥ρ}

f(x)dx ≥ 1 − κ

i.e., there exists a set of Lebesgue measure strictly positive, such thatf(x) = ρ. Choose

a setK′ = {x ∈ R : f(x) > ρ}. From the set{x ∈ R : f(x) = ρ}, choose a subsetK′′ of

measure
1−κ−

R

{x∈R:f(x)>ρ}
f(x)dx

ρ
. Let K = K′ ∪ K′′. It follows that

∫
K

f(x)dx = 1− κ and

by the way the setK is defined, it holds thatf(x) ≥ ρ, for all x ∈ K. Let F′ be a set in

R. If L(F′) ≥ L(K), chooseF such thatL(F′) = L(F) andK ⊂ F. Then the following

holds:

∫

F

fK(x)dx = 1 ≥
∫

F′

f(x)

1 − κ
λ(x)dx

If L(F′) ≤ L(K), let F1 = F′ ∩ K and letF2 ⊂ K \ F1 such thatL(F1 ∪ F2) = L(F′).

If x ∈ F1, f(x) ≥ λ(x)f(x), and ifx ∈ F2, f(x) ≥ ρ, and ifx ∈ F
′ \ F1, λ(x)f(x) ≤

f(x) ≤ ρ. It follows then:

∫

F1∪F2

fK(x)dx ≥
∫

F′

λ(x)
f(x)

1 − κ
dx

�

Lemma A.7 Let f, g : R → R be two probability distribution functions such thatf ≻ g

on R. Then, for any non zero constanta, define the following probability distribution

functions:

f̃(x) =
1

|a|f
(x

a

)

g̃(x) =
1

|a|g
(x

a

)
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The following holds:

f̃ ≻ g̃ (A.7)

Remark A.3 We notice that Lemma A.7 is well posed sincef̃ and g̃ are also probability

distribution functions. Iff is the probability distribution function of a random variable

X, thenf̃ is the probability distribution function of the random variableaX.

Proof: For a setA ⊂ R and for a non zero constantα, define the setαA =
{
x ∈ R : 1

α
x ∈ A

}
.

Assumea to be positive and letF′ be a set of positive and finite Lebesgue measure.

∫

F′

g̃(x)dx =

∫

1
a

F′

g(x)adx

sincef ≻ g, there exists a setF′′ with the same Lebesgue measure as1
a
F
′ such that:

∫

1
a

F′

g(x)adx ≤
∫

F′′

f(x)adx =

∫

aF′′

f̃(x)dx

PickF = aF′′. Clearly,F andF′ have the same Lebesgue measure, then it follows that:

∫

F′

g̃(x)dx ≤
∫

F

f̃(x)dx

which implies that̃g ≺ f̃ . Same arguments hold fora negative.�

From the Riesz’s rearrangement inequality, Hajek states and proves in [1] the fol-

lowing result:

Lemma A.8 [1, Page 619] Letf andg be a probability distribution function defined on

the real line, such that,f is neat and symmetric, andf ≻ g. Let h be a nonnegative,

symmetric and nonincreasing function. The following holds:

∫
h(x)g(x)dx ≤

∫
h(x)f(x)dx (A.8)
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In order to prove Lemma 2.4, we state the following Lemma.

Lemma A.9 Letf be a neat and even probability density function on the real line, Letg,

be a probability density function on the real line, such thatg ≺ f . Let h be a positive,

even and quasiconvex function. Then the following holds:

∫

R

h(x)f(x)dx ≤
∫

R

h(x − y)g(x)dx (A.9)

wherey is any real number.

Proof: Let c be a positive real number and define the functions:

hc(x) = c − min (c, h(x))

hc(x, y) = c − min (c, h(x − y))

for any real numbery. We notice that the functionhc is symmetric and non-increasing, it

is then immediate, thathc = hσ
c andhc = hσ

c (·, y) for all real numbersy. The following

inequalities are true:

∫

R

hc(x, y)g(x)dx ≤
∫

R

hc(x)gσ(x)dx ≤
∫

R

hc(x)f(x)dx

for anyy ∈ R. The first inequality follows from the Hardy-Littlewood inequality (A.3),

while the second inequality follows from Lemma A.8. It follows that:

∫

R

hc(x, y)g(x)dx ≤
∫

R

hc(x)f(x)dx ⇒
∫

R

(c − min (c, h(x − y))) g(x)dx ≤
∫

R

(c − min (c, h(x))) f(x)dx ⇒
∫

R

min (c, h(x − y)) g(x)dx ≥
∫

R

min (c, h(x)) f(x)dx

Taking the limit asc goes to infinity and using the monotone convergence theorem the

result follows.�
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A.2 Quasiconvex Lemma

Lemma A.10 Let h : R → R, be a measurable, bounded, even and quasiconvex func-

tion. LetW be a random variable with an even and quasiconcave probability distribution

function. Definēh : R → R, such that̄h
def
= E [h(x + W )], thenh̄ is a bounded, contin-

uous, even and quasiconvex function. If the functionh is also continuous then̄h is also

continuous.

Proof: Defineg : R × R → R:

g(x, C)
def
= E [C − min (C, h(x + W ))]

We will show that the functiong(x, C) is continuous inC for every fixed real numberx,

and for everyC the functiong(x, C) is even and quasiconcave inx. The functionh is

even and quasiconvex then, it follows that zero is a global minimizer ofh. For any real

numberC and any real numberx define the set:

D(x, C)
def
= {w ∈ R : h(x + w) ≤ C}

Sinceh is even and quasiconvex thenD(0, C) is a convex set and is symmetric around

zero, hence it is a symmetric interval it follows that:

D(0, C) =





∅, C ≤ h(0)

[−α(C), α(C)] or (−α(C), α(C)), h(0) < C < supx h(x)

(−∞,∞), supx h(x) ≤ C
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where by∅ we denote the empty set. Note that forh(0) < C < supx h(x), the setD(0, C)

is a symmetric interval, which can be either closed or open.

D(x, C) =





∅, C ≤ h(0)

[−α(C) − x, α(C) − x] or (−α(C) − x, α(C) − x), h(0) < C < supx h(x)

(−∞,∞), supx h(x) ≤ C

We will show that the functiong(x, C) is even and quasiconvex inx for any real

numberC. Let f : R → R, be the probability distribution function ofW . We can write

g(x, C):

g(x, C) = E [min(C, h(x + W ))] = C

∫ α(C)−x

−α(C)−x

f(w)dw

−
∫ α(C)−x

−α(C)−x

h(x + w)f(w)dw

For any positive real numberδ, any real numbersC andx, it holds that:

E [|g(C + δ, x + W)] − E [g(C, x + W)|] =

E [|δ + min(C + δ, h(x + W)) − min(C, h(x + W))|] ≤ 2δ

It follows that for any real numberx and any real numberC, for any positive real

numberǫ, chooseδ = ǫ
2
, then for any real number̄C ∈ (C − δ, C + δ), |g(x, C̄) −

g(x, C)| < ǫ, hence the functiong(x, C) is a continuous function inC for every real

numberx.

Since the functionh is even and quasiconvex, it follows that the functionC −

min(C, h(x)) is even and quasiconcave, i.e. is neat and even. Moreover, from the def-

171



inition of the setD(0, C), we notice that the functionC − min(C, h(x)) is nonnega-

tive, bounded and takes the value zero outside the setD(x, C). If C < supx h(x), then

the setD(0, C) is the empty set or a finite interval (open or closed), it follows that, if

C < supx h(x) the functionC − min(C, h(x)) is integrable. It holds that:

g(x, C) = E [C − min(h(x + W, C)] =

∫ ∞

−∞

(C − min(h(x + w, C))f(w)dw

=

∫ ∞

−∞

(C − min(h(x + w, C))f(−w)dw

=

∫ ∞

−∞

(C − min(h(x − η, C))f(η)dη

The first equality comes from the fact thatf is even, while the second inequality comes

from the change of variableη = −w. It follows from Lemma A.1 and Remark A.1 that

g(x, C) is a neat and even function for everyC < supx h(x). Sinceg(x, C) is continuous

in C it implies thatg(x, C) is neat and even for every realC and moreover the func-

tion E [min(C, h(x + W))] is even and quasiconvex. From the monotone convergence

theorem, it holds that:

h̄(x) = lim
C→∞

E [min(h(x + W), C)]

and the properties ofE [min(h(x + W), C)] in x are kept for̄h,i.e. h̄ is even and quasi-

convex.

Sinceh is bounded, it follows that̄h is bounded and we only need to prove the

continuity ofh̄. We are given thath is even and quasiconvex, which implies thath is non-

decreasing on[0,∞) and nonincreasing on(−∞, 0]. We are also given thath is bounded

and continuous, which implies thath is uniform continuous on the interval[0,∞) and

is also uniform continuous on the interval(−∞, 0]. It follows that the entire functionh
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is uniform continuous, i.e. for any real numberx, for any positive real numberǫ, there

exists a positive real numberδ, which does not depend onx, such that for any real number

y ∈ (x − δ, x + δ), it holds that|h(x) − h(y)| < ǫ. It follows that, for any real numberx

and for any real numbery ∈ (x − δ, x + δ), it holds that:

|E [h(x + w)] − E [h(y + w)] | = |
∫ ∞

−∞

h(x + w)f(w)dw −
∫ ∞

−∞

h(y + w)f(w)dw|

≤
∫ ∞

−∞

|h(x + w) − h(y + w)|f(w)dw ≤ ǫ

This implies that̄h is continuous.�
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