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sume that different nodes in the network can track perfemtlyith imperfectly some
stochastic processes, while other nodes in the network toeestimate these stochastic
processes. The nodes which can observe the stochastispescean send information
directly to the nodes which need to estimate the process@soomation can be sent to
intermediate nodes. When each transmission is performedtada communication is
paid. The goal of the network is to optimize jointly a cost @efhconsists both of a func-
tion of the estimation error and a function of the transnoissiost. We show here that for
some simple topologies the decision to send informatiom theenetwork is a threshold
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For the result dealing with simple topologies we have prawedresults using majoriza-
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Chapter 1
Introduction

1.1 Motivation

Decentralized systems appear in a wide number of applitasioch as Internet,
sensor networks, MANET (mobile as-hoc networks), robotiuslti-core CPUs, telecom-
munications, surveillance networks, control of autonosaerial or underwater vehicles
etc. Decentralized systems are made from multiple compgenahere each component
has total or partial information about the state of the systén centralized systems, if
these systems are not fully observable, the control has laagpact, the actual control
which alters the state of the system and the estimationthescontrol that alters the fu-
ture information about the state of the system. In decent@lsystems, the control has
one other function, the communication, i.e. the controt #iters the future information
that other components or agents have about the state ofshensyHence, in decentral-
ized systems we can talk about the triple aspect of contabliahcontrol, estimation and
communication. The term triple aspect of control was inticetl by P. Varayia. Even in
the case where in the network there are components whichpeafext information about
the state of the system, there is still the issue of what médion must send those agents
to other components. It theory at least, if the communicaismoiseless, they can send
the entire information, but since in practice the commutivcechannels are noisy and the

components have constrained computation capabilitiesugeful to analyze what infor-



mation is sufficient for the components with partial obsgoraof the system in order to
achieve the common goal of the network.

We analyze how distributed or decentralized estimationbeaperformed over net-
works, when there is a price to be paid whenever nodes in tiweornkecommunicate with
each other. The work here has application especially in ¢éftwark control systems. As-
sume that different nodes in the network can track perfemtlyith imperfectly some
stochastic processes, while other nodes in the network toeestimate these stochastic
processes. The nodes which can observe the stochastispescean send information
directly to the nodes which need to estimate the process@soomation can be sent to
intermediate nodes. When each transmission is performedtada communication is
paid. The goal of the network is to optimize jointly a cost @efhconsists both of a func-
tion of the estimation error and a function of the transnoissiost. We show here that for
some simple topologies the decision to send informatiom theenetwork is a threshold
policy, while the estimators are linear estimators whicersble with the Kalman-filter.
For the result dealing with simple topologies we have prawedresults using majoriza-
tion theory.

When the topologies become slightly more complicated, ftér@l policies be-
come more complex and it becomes more difficult to analyzé/aoally or to compute

numerically these optimal strategies.



1.2 Literature review

Multi-agent systems can be classified based on the objedtive agents as teams
or on the information available to the agents as static oadyn systems. Dynamic sys-
tems can be further decomposed in sequential and non-d&uedequential systems
can be decomposed in systems with classical informatiarctstres and non classical
information structures. The multi-agent systems as teamre wtudied first by Rad-
ner in [20], Marschak and Radner in [21], later in controlteyss by Witsenhausen in
[22] and [24], and Ho in [27] and [28], and others. The didiime between sequential
and non-sequential systems was given by Witsenhausen Jiaf23[25]. Witsenhausen
studied also the optimal design of non-sequential systenj24]. Properties of non-
sequential systems were studied by Andersland [31], Ataletisand Teneketzis [32] and
[33], Teneketzis [34] and Teneketzis and Andersland [33]e Tmportance of informa-
tion structures was first highlighted by Witsenhausen in.[ZBhe role of information
structures in specific teams problems was studied by Ho andir€f29], Chu in [30],
Yoshikawa in [36] and others.

Previous work has been done in the field of distributed esiomand in filtering.
We mention here the work of Hajek [1], which explores the mtation of paging and
registration policies in cellular networks. Motion is méekkas a discrete-time Markov
process, and minimization of the discounted, infinite-bami average cost is addressed.
Majorization theory and Rieszs rearrangement inequatigyused to show that jointly
optimal paging and registration policies are given for syetnn or Gaussian random

walk models by the nearest-location-first paging policy distance threshold registration



policies. An iterative algorithm is proposed and invedtgla which alternates between
paging policy optimization and registration policy opteation. This paper [1] refers only
to random walk or Gaussian random walk, while we are lookirlgnear systems driven
by Gaussian noise and we are using the square of the estmaatiar in computing the
cost.

In [7], the authors consider a nonlinear filtering problemaadiiffusion process,
when several sensors are available. A nonlinear filter camog number of these sensors
at each time, with each of the sensor having an associatédTdwes problem considered
in [7] is the optimal selection of a schedule of these senkora the available set, so
as to optimally estimate a function of the state at the fimakti This problem is more
general than what we are solving, but it is very difficult torgaute the optimal policies
in practice.

In [5], the authors consider a sequential estimation prabéth two decision mak-
ers, one agent makes sequential observation about theo$tatstochastic process and
decides whether to send information to the other agent,iwiitt estimate the state of
the underlying stochastic process. These agents have a@owinective of minimizing
a performance criterion, with the constraint that the oleagent can send information
to the estimator agent only a limited number of times. In {B§ authors assume that the
decision policies are threshold policies, while in our pape prove the optimality of the
threshold policies for similar problems.

The work in [8] is motivated by large-scale sensor networlerghdata collection
from all sensors is prohibitive. These sensors are part adteark control system in
which a controller can observe the sensors. The obsergadi@not fixed, the controller

4



can choose which sensors to observe and each choice hasassosiated with it. The
work in [8] looks mainly at the linear quadratic Gaussiankjpeon and also looks at a
problem similar to Problem 2.1, for which the authors founderically that the optimal
policy is a threshold policy.

In [9], the author presents an optimization problem dealit selecting one mea-
surement from many sensors, where each measurement hasaiatel cost. In [9] it is
shown that the problem of selecting the optimal strategyteaammansformed into a deter-
ministic control problem. The computation of the measunapelicy takes place offline
and the optimal strategy is adopted. In contrast to our tebe decisions analyzed in [9]
are taken in an off-line fashion. In [10], the paper consdeclass of problems known
as measurement adaptive problems, in which the controbisadole not only to the plant
but also the measurement subsystem. In the special caseaf 8ystems, quadratic cost,
and Gaussian random processes, the authors showed thptithezation of plant control
can be carried out independently of the measurement catiwhization. Moreover the
optimization of the measurement control can be done aphence the optimization of
the measurement subsystem is done off-line.

In [6], the control and the estimation are separated andghimation problem is
exactly the same problem that we address in this paper. Ttheralassume that estimator
policy is a linear estimator and show using dynamic programrthat the decision to send
a sample depends on the estimation error. The problem athlyZ6] deals also with
the multidimensional case, which we handle handle in Chaptin contrast to the work
in [6] we proved analytically that the state estimator iénfor the scalar case and that
there exists a threshold policy which is an optimal samptiagision policy.

5



In [17], [42], similar problems are discussed, in which mstiion is performed
with a single sensor and a single measurement and the guéstichen to take send a
measurement. The author could not prove the optimality efttineshold sampling, he
proved that the scheme is better than a deterministic sch&nather problem discussed
in [17] is similar to the one discussed in Chapter 2, i.e. #eltriggered sampling
scheme. Again the author did not prove the optimality of smiskheme, while we prove
its optimality in Chapter 2.

In [15], [16], the optimal design of multi-agent sequentedms is investigated, and
a methodology is presented to convert the search of a naggésiesign into a sequence
of nested optimization problems. This conversion is cadleguential decomposition and
it drastically simplifies the search of optimal solution fwoth finite and infinite horizon
problems.

In [18], it is considered a stochastic dynamic decision fmwbwhere at each step
two decision must be taken, the first one is what informatiooua the signal should be
sent, while the second one what control must be adopted. froiteahorizon first order
ARMA model, with Gaussian statistics and quadratic cogedon, the authors showed
that the optimal measurement strategy consists of tratisgithe innovation linearly,
which will imply that the optimal control law is also lineai.he authors show that for
higher order ARMA models, there exist a nonlinear desigh dgoerforms the optimal
affine design.

In [19], it is discussed the optimal controllers for linepradratic stochastic sys-
tems, where the measurement channels are no longer fixethdyuwill be a part of the

overall design. The authors show that, for the scalar cheeptimal measurement chan-

6



nel is linear and the optimal controller is also linear. e trector version however, it is
possible to find nonlinear design which outperforms therogtiinear design.

In [40, 44], the authors are looking at distributed estioraproblems and place the
Witsenhausen couterexample [26] within a broad class aciuhyadecision problems with
nonclassical information. In [51], a vector version of thés&nhausen counterexample is
presented. Moreover, it was reported in [43] that the diszd version of Witsenhausen’s
counter-example is NP-complete. This fact has motivatechtimerical studies in [45,
46, 47].

The work in [29, 30], considered the case where a linear in&tion pattern is de-
fined by a directed graph. Using the notion of partially néstéormation structure, the
authors of [29, 30] characterize when the optimal solutian be found, while bounds
are derived when the optimal is unknown. In [48], it is shohattf Witsenhausen Coun-
terexample is modified using an induced norm then the optimatirol is linear. In [50],
the authors show that linear sensing policies over Gaus$iannels might not be op-
timal in a distributed multi-sensor, single controller sago, for the minimization of a
quadratic cost function. This is in contrast with the cqoesding single-sensor problem,
which does admit an optimal linear solution. The work in [48dresses one follow-up
guestion listed in the paper by Witsenhausen, more spdbjfip#] discusses the con-
nections between partially nested structures, for whishkdr controllers are known to
be optimal, and quadratically invariant structures, forchithe optimal linear control is

known to be convex.
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Figure 1.1: The Two Blocks

1.3 Thesis Structure

In Chapter 2 we solve a distributed estimation problem wilaohsists from a
pre-processor or encoder and an estimator or a decodernshdvwigure 1.1. The pre-
processor has perfect knowledge about a stochastic praoesthe decoder has access
only to the information which it receives from the decodescktime the encoder sends
information to the decoder it must pay a cost for communicatiThe encoder and the
decoder must jointly optimize a common cost, which condrsis the estimation error
and the communication cost. The problem which arises is vamehwhat information
must be sent to the estimator. Using theory of majorizatddnif was shown that the
optimal policy to send sample to the estimator is a threspolity.

In Chapter 3, we present some applications of the problesepted in Chapter 2,
from which we include general costs and noise distributiorssy observation at the
pre-processor side, a quadratic control problem, a probié@re we consider packet
drop with acknowledgement, infinite time horizon probleting(discounted cost and the
average cost) and the tandem problem.

In Chapter 4, we show that if we tackle the problem describeghapter 2, but we



look at the multidimensional case, things can get quite dmwaied. First, the method
used for proving the linearity of the estimator fails. If wensider a linear estimator (or
equivalent, a symmetric policy at the pre-processor), diffscult to prove properties of
the decision sets for time horizons bigger or equal to thveseover, for the time horizon
two, or at the penultimate stage, we found numerically thatdecision sets need not be
CONvex.

In Chapter 5, we present a problem with multiple agents anslyrtcansmission
links. In this case, we show that simple affine strategiesnateoptimal, despite the
fact that the problem has quadratic costs and Gaussian. \Wbesahow numerically that
signalling strategies perform actually better.

In Chapters 2 and 3 we show how to solve the two blocks probldrie in Chap-
ters 4 and 5, we show the limitations of the methods used ip&hmha2 and 3.

In Chapter 6, we present future research directions, i&.the problems studied in
Chapters 2, 3, 4 and 5 can be applied to general network tgigslor to control problem

with communication costs.



Chapter 2
The Two Blocks Problem: A Majorization Theory Approach

2.1 Problem Formulation

We address the design of a finite horizon optimal state estimaystem featuring
two causal operators; a pre-procesBgy- and a remote estimatér, wherel' denotes the
time-horizon. At each time instant, the pre-processor wistgither an erasure symbol
or a real number, based on causal measurements of the safesiforder linear time-
invariant system driven by process noise. The estimatoc#asal access to the output of
the pre-processor and its output is denoted as state estillvatconsider an optimization
problem characterized by cost functions that combine tate ststimation error and a
communication cost. In our formulation, the communicatiost depends on the output
of the pre-processor, where we ascribe zero cost to thereragonbol and a pre-specified
positive constant otherwise. The state process, denot¥g,as given and the two causal
operatorsP, r and€ are to be jointly designed so as to minimize the given costtfan.

Most of this Section is dedicated to precisely formulatinglsan optimal estima-
tion problem. In subsection 2.1.1 we give a description efittiormation structure of our
framework, followed by subsections 2.1.2, where we givegiablem formulation. In
Section 2.2, we state the optimal solution of the problerdistliin this chapter, without
proof, while Section 2.4 is dedicated to presenting notfom® majorization theory and

to setting up the proof the optimality of the scheme preskmteSection 2.2. In Sec-

10



{Xk}%:o {Vk};g:o {Xk}gzo
Por E(Por)

Figure 2.1: Schematic representation of the distributéichesion system considered in
this chapter. It depicts the pre-procesdrr and the corresponding optimal estima-
tor £(Po.r), which produces the minimum mean squared error estimatleeoptocess

{Xi}_, givenin (2.5).

tion 2.5, we prove the optimality scheme presented in Se@i@. In Section 2.6, we
present a simulation example, where we show how the optiohatisn of the main prob-
lem from this chapter works. We also need to mention that ipelglices A.1 and A.2

we state and prove lemmas that are supporting results usaejtiout the chapter.

2.1.1 Preliminary Definitions and Information Pattern Dgg@n

We start by describing the three stochastic processes anaithclasses of causal

operators (pre-processor and estimator) that constitutproblem formulation.

Definition 2.1 (State ProcegsGiven a real constant, and a positive real constanat’,,
consider the following first order, linear time-invariansdrete-time scalar system driven

by process noise:

Xo ™ 2, (2.1)

X1 e aXy + Wy, k>0 (2.2)

where {W}T_ is an independent identically distributed (i.i.d.) Gawssizero mean

stochastic process with varianeg, andz, is a real number. The filtration generated by

11



{X;}_, is denoted as:

XY o (X;0<t<k) (2.3)

whereo (X;; 0 < t < k) is the smallest sigma algebra generated{B§;, 0 < ¢ < k}, for

all integersk.

Definition 2.2 (Pre-processor and remote link procegsonsider an erasure symbol de-
noted as¢ and a causal maf, r : (zo, ..., zx) — v, defined fork € {0,...,7} and
v, € RU{€&}. Hence, at each time instait the preprocessoP, r outputs either a
real number or the erasure symbol, based on past obsenstbthe state proces$}, r
generates a stochastic procef¥ . }7_, via the application of the operatdP, r to the
process{ X }7_, (See Figure 2.1). The mdR, r is a valid pre-processor if the following
two conditions hold: (1) The pre-processor transmits thieahstate x, at time zero, i.e.,
Vi, = zo. (2) The pre-processor is measurable in the sense that theeps{ V. }7_, is
adapted taY;.

The filtration generated byV; }7_ is denoted ag B, }7_, and it is obtained as:

B, o (Vi;0<t <k (2.4)

Remark 2.1 Notice that any finite vector of reals can be encoded into glsireal num-
ber via a suitable invertible transformation. Hence, willhdoss of generality, we can
also assume that the pre-processor can transmit either sovet real numbers or the

erasure symbol.

Definition 2.3 (Optimal estimate and optimal estimatpGiven a pre-processdp, r, we

consider the optimal estimator in the expected squaredeseh®se optimal estimate at

12



timek is denoted aX, and takes values:

def L [XkH'Ut}f:()} |f k Z 1
e (2.5)

whereE [X;|{v:}F_] represents the expectation of the stXtg conditioned on the ob-

served current and past outputs of the pre-proce$sgrt_, (see Figure 1). We us®(P, 7)

to denote th@ptimal estimatorassociated with a given pre-processor polfy; .

Notice that from Definition 2.2 we assume that the pre-preaealways transmits
the initial statex,. Hence, the initial estimate is set to satisfy = vy = 9. Such an
assumption is a key element that will allow us to prove thewgdity of a certain scheme,

via an inductive method. This will be discussed later on ictiSe 2.5.

Remark 2.2 It is important to note that all the information available tte estimator
E(Por) is also available at the pre-process®y, r. Hence, the pre-processé, » can
construct the state estima®e, by reproducing the estimation algorithm executed at the

optimal estimator.

2.1.2 The Two Blocks Problem and Main Results

In this subsection, we define the optimal estimation paraditat is central to this
chapter. We start by specifying the cost, which is used asrd onigerion throughout the

chapter, followed by the problem definition.

Definition 2.4 (Finite time horizon cost function)Given a valid pre-processopP

(Definition 2.2), a real constant, a positive integefl’, a positive real numbed less

13



than one and positive real constant$ andc, we define:

T
N2
Jor (a,00, ¢, Por) e Z d*'E (Xk — Xk) + cRy (2.6)
k=1 :

communication co:

where X, is the state of the system defined in (2.1)-(2%), is the optimal estimate

specified in Definition 2.3, ang,, is the following indicator function:

0 ifv,=¢
R, = , k>1 (2.7)

1 otherwise

Remark 2.3 (Cost does not depend oX,) Notice that because the plant (2.1)-(2.2) is
linear, the fact thatty, = z, holds (see Definition 2.3) implies, in view of Remark 2.2,
in particular, a is known at the estimator, that the homogenous part of thie stan

be reproduced at the estimator. Hence, the optimal estimailbincorporate such an
homogeneous term, thus subtracting it out from the estonatiror X, — X, for k& > 0.
This also implies that the cost (2.6) does not depend on thebgeneous term nor on the

initial condition X.
The following is the main problem addressed in this chapter.

Problem 2.1 Let a real constant, the variance of the process noisg and the initial
conditionz, be given. In addition, consider that a positive reah positive real number
d less then one and a positive integéare given, specifying the cost as in Definition 2.4.
Find:

Por € arg %ﬂn Jor(a, oty e, Por) (2.8)
0, T
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2.2 Optimal Solution to the Two Block Problem

In this section, we start by defining a particular choice dinestor (section 2.2.1)
and pre-processor (section 2.2.3), which we denote as Kalik@and symmetric thresh-
old policy, respectively. As we argue later on, in Theoreth 8uch estimator and pre-

processor are optimal for Problem 2.1.

2.2.1 A Kalman-like estimator

Definition 2.5 (Kalman-like estimato)y Given the process defined in (2.1)-(2.2) and a
pre-processofP, r, define the mag : (vy,...,v;) — 2z, for k in the set{0,...,T},
wherez; is computed as follows:

20 déf Zo (29)

azi_1 Ifv,=¢
2 = , withk >1 (2.10)

Uk otherwise

Remark 2.4 The Kalman-like filter generates the proce{s‘&,.ﬁ}fz0 via the operatorZ
applied to the processt}fzo. Notice that the pre-processor has access to the estimate

Z,. because it has access and full control of the input applied to

2.2.2 The SePr - of Admissible Pre-Processors

We proceed by defining a class of admissible pre-procesatnish is amenable

to the use of recursive methods for performance analysisaiiee in Remark 2.6 that
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there always exist an admissible pre-processor that is malsolution to Problem 2.1.
This implies that we incur no loss of generality in constiragour analysis to admissible
pre-processors.

The following Remark provides an equivalent characteionabf the class of ad-

missible pre-processors.

Remark 2.5 LetT € N and letP, 1 be given. TherP, r is admissible if and only if for

eachm € {0,...,T} there exists a ma@,,r : (zm, ..., zx) — v and a binary process
T .
{Tj}j:()'
rm =1 = Pyr(xg....,26) = Pmr(Tm, ..., Tk), Zgy.. ., 2y €ERE>m>q>0
(2.11)

Given an admissible pre-processBg r, later on we will also refer to the time-restricted
pre-processory P, v} _, according to Definition 2.6, or equivalently as implied by

(2.11).

Definition 2.6 (Admissible pre-processptet a horizonT larger than zero and a pre-
processor policyP, r be given. The pre-process®y - is admissible if there exist maps
Por t (T, xx) — v, With0 < m < T andk > m, that satisfies the following

recursion:

Algorithm P,

¢ (Initial step) Setk = m, r,,, = 1 and transmit the current state, i.e,,, = z,,.

e (Step A Setk = k + 1. If £ > T then terminate, otherwise execute Step B.

16



¢ (Step B Obtain the pre-processor output at tirady computing,,, r(zp,, . . ., Tx).
If Po1(Tm, - .., x,) = €thenset, = 0andv, = € (i.e. send the erasure symbol)

and go back to Step A. Otherwise execute algorifym.

End of Algorithm for P,,,

The class of all admissiblere-processors is denoted &Bs .

Remark 2.6 Given a positive time-horizof, there is no loss of generality in restrict-
ing our search for an optimal pre-processor to the Bet Indeed, let an optimal pre-
processor policyP; - be given. If a transmission takes place at some timg-,, = 1
holds) then the optimal output at the pre-processoriis= x, since, given that a real
number is transmitted, the choieg = x;, must be optimal because it leads to a perfect
estimatezr,, = z,,. Hence, given that,, = 1, by Markovianity we conclude that the
current and future output produced by the pre-procesSdi}7_ = will not depend on
the stateX;, for timesk prior to m. ConsequentlyP; - satisfies (2.11), and hence it is

admissible.

2.2.3 Symmetric threshold pre-processor

Definition 2.7 In order to simplify our notation, we define the following pess:

Y, “ X, — aZ; (2.12)
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Using Definitions 2.1 and 2.5, we find th{;lYk}Z:O can be rewritten as:
Yo=0 (2.13)

CLYk—i-Wk |f Rk =0
Y1 = (2.14)

W, if R, =1
Remark 2.7 Y, has an even probability density function, sirdg, has an even prob-
ability function. This fact make§Y,.}7_, a more convenient process to work with, in
comparison to{ X }7_,. This motivates its use in our analysis hereon, whenevesipos
ble. No loss of generality is incurred becauS€,.}7_, can be recovered frorfiX;}7_,,
and vice-versa, via the use ;. }7_,, which is common information at the pre-processor
and estimator (See Remark 2.4). In addition, notice thattst (2.6) can be re-written

in terms of{ Y }7_, as follows:
def &\ 2
jO,T (CL, 0"2/‘/, C, PO,T) éf Z dk_lE [(Yk - Yk) + CR[{| (215)
k=1

whereY, “ E (Y1 [{V.}r]. Akey fact here is tha¥, = X, — aZ;_, holds, leading

to the validity of the identitlY,, — Y}, = Xi — Xj.

Definition 2.8 Given a positive integer horizafi and an arbitrary sequence of positive
real numbers (thresholds) = {Tk}",le, for eachm in the set{0,..., T}, we define the

following algorithm fork > m, which we denote aS,, :

Algorithm S,,,

¢ (Initial step) Setk = m, r,, = 1 and transmit the current state, i.e.,, = x,,, or
equivalently sey,, = 0.

18



e (Step A)Increase the time countérby one. Ifk > T holds then terminate, other-

wise execute Step B.

e (Step B)If |yx| < 71 holds then set;, = 0, transmit the erasure symbol, i.e;, = &,

and return to Step A. lfy;| > 7 holds then setr = k£ and execute,, .

End of Algorithm S,,,

Definition 2.9 (Symmetric threshold poligyThe algorithmS, r, as in Definition 2.8, is

denoted as symmetric threshold pre-processut the class of all symmetric threshold policies

is denoted aS .

The following is the main result of this chapter

Theorem 2.1 Let the variance of the process noisg, the system’s dynamic constant
the communication cost the discount factod and the time horizofl” be given. There
exists a sequence of positive real numbers= {T,;*}Z:l, such that the corresponding
symmetric threshold polic¥; - is an optimal solution to (2.8) and the corresponding
optimal estimato€ (S; ) is Z. HereS; - and Z follow Definitions 2.9 and 2.5, respec-

tively.

Note: The proof of Theorem 2.1 is given in Section 2.5.

2.3 Auxiliary optimality results
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We start by defining the following class of path-dependeatgnocessor policies,
which is an extension of Definition 2.9 so as to allow timeyuag thresholds that de-
pend on past decisions. Such a class of admissible pregaacewill be used later in

Section 2.5, where we provide a proof for Theorem 2.1.

Definition 2.10 (Algorithm D,,, 1) Given a horizorY', consider that a sequence of (thresh-
old) functionsT X {Toilm <k <T,1 <m < T} with7,, : {0,1}"* - R, is
given. For everyn in the set{1,..., 7T}, we define the following algorithm, which we

denote ad,,

Algorithm D,,, -

e (Initial step) Setk = m, r,, = 1 and transmit the current state, i.e.,, = x,,, Or

equivalently sey,, = 0.

e (Step A)Increase the time countérby one. Ifk > T holds then terminate, other-

wise execute Step B.

o (Step B)If |yx| < T (T, ..., rx—1) holds then set; = 0, transmit the erasure
symbol, i.e.p, = €&, and return to Step A. x| > 7.k (7, - - ., rx—1) holds then

executeDy, 7.

End of Algorithm D,,, »

Recall thatr, throughr,_; represent past decisions by the pre-processor, where 1
indicates that the state is transmitted to the estimatomaget, whiler, = 0 implies that

an erasure symbol was sent.
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Definition 2.11 (Path-dependent symmetric threshold poljagiven a horizonl’, con-
sider that a sequence of (threshold) functign& {Toplm <k <T,1 <m <T}, with
Tk : {0,1}™% — R, is given. The path-dependent symmetric threshold pregssor

associated withZ” is implemented via the execution of the algoritBgy,, as specified

in Definition 2.10. Typically, we denote such an admissibéegocessor ad, . We
useD, 1 to denote the entire clasd path-dependent symmetric threshold pre-processors

with time horizonr .

The goal of this sectiors to provide the following two results that are crucial in

the proof of Theorem 2.1: In Proposition 2.1, we prove tha®if; is any given path-
dependent symmetric threshold pre-processor policy thenassociated optimal esti-
mator£(Dyr) is Z. In Lemma 2.1 we prove that if we optimize within the class of
path-dependent policies then the optimum is of the patepeddent type, as specified in
Definition 2.9. This fact might raise the question of whetBefinition 2.11 is needed.
The answer iyesbecause we adopt a constructive argument in the proof ofréhed.1

in Section 2.5, which uses Definition 2.11.

Proposition 2.1 Let D, be a pre-selected path-dependent symmetric thresholdypoli
(Definition 2.11), it holds that the optimal estimai®{D, ) is Z, as described in Defi-

nition 2.5.

Remark 2.8 Proposition 2.1 could be recast by stating that = Z, holds in the pres-

ence of path-dependent symmetric threshold pre-procgssor

Proof: (of Proposition 2.1) In order to simplify the proof, we defi{lﬁk}{zo as
the process quantifying the error incurred by adopting antéal-like estimatoZ (See

21



Definition 2.5), i.e. X, = Xy — Zy. More specifically,{f(k};;f:O can be equivalently

expressed as follows:

Xy =0 (2.16)
5 CLXk + Wk |f Rk =0
X1 = , 0<k<T-1 (2.17)
0 ifRy=1

The proof follows from the symmetry of all probability detysfunctions involvingX;

andV,. More specifically, under symmetric path-dependent tholespolicies the prob-
ability density function ofX,, given the past and current observatiging }r_, is even.
Hence, we conclude that[X,|{V,}_,] = 0, which implies thaK; % E[X,|{V,}k_ ] =

Z,. 1

2.3.1 Optimizing within the clasB;

Remark 2.9 If D, is a symmetric path-dependent threshold pre-processerpsdini-

tion 2.11) thenY, = 0 holds, leading to the following equality:

T
Jo,r (C% o €, DO,T) = Z d"'E [Yi + CRk] ; Do € Dr (2.18)
k=1

The process defined in (2.14) is a Markov Decision Process{Mihose state and
control areY, andR,, respectively. Hence the minimization of (2.18) with resie pre-
processor policie®, 1 in the class), can be cast as a dynamic program [13]. To do so,
we define the sequence of functiovisr : R — R,¢ € {1,...,7 + 1} which represent
the cost-to-go as observed by the pre-processor. Hempresents the horizon, while
t denotes the time at which the decision was taken, and themanguof the function
is the MDP stateY;. In order to simplify our notation, we adopt the conventibatt
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Vri1r(Yri1) = 0, yr+1 € R. Using dynamic programming, we can find the following

recursive equations for, r(v.), t € {1,...,T}:

Vir(y) < Ier?onl} Cor(ye,me), t €{1,.... T} (2.19)

T

whereC, r : R x {0,1} — R is defined as:

def c+ dE [Vt-i-l,T(Wt)] if Ty = 1
Cor(ye, 1) = (2.20)

yt2 +dFE [Vt-‘rl,T (Clyt + Wt)] if Ty = 0
From (2.20) it immediately follows that an optimal decisjaolicy r; at any timet
is given by:

L if Cor(ys, 1) < Cor(y:,0)
= (2.21)

0 if Cor(ye,0) < Comlye, 1)

Using the MDP given in Definition 2.7 and the value functiomsi equation (2.19),
we prove the following Lemma, which states thaithin the class of symmetric path-
dependent pre-processdiyg- (Definition 2.11) there exists an optimal pathdependent

symmetric threshold polic¥; » (Definition 2.9) for Problem 2.1.

Lemma 2.1 Let the parameters specifying Problem 2.1 be given, i.e. vériance of
the process noise?,, the system’s dynamic constantthe communication cost the
discount factord and the time horizof” are pre-selected. Consider Problem 2.1 with
the additional constraint that the pre-processor must bmefsymmetric path-dependent
typeDD; specified in Definition 2.11. There exists an optimal pattependensymmetric

threshold policyS; ;, as given in Definition 2.9, whose associated thresholdctiete
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{r;}I_, is given by a solution to the following equations:

Cor(r),0) =Cor(r, 1), te{l,...,T} (2.22)

Proof: From (2.21), we conclude that in order to prove this Lemma nlg need

to show that there exist thresholfts }7_, for which the following equivalences hold:

|yt| Z Tt* < CLT(yta ].) S Ct,T(yta O), t e {1, ey T} (223)

Indeed, if (2.23) holds then the optimal strategy in (2.2k) be implemented via a thresh-
old policy. In order to prove that there exist thresholds}?_, such that (2.23) holds, we

will use the following facts (A.1 thorugh A.4):

e (Fact A.1): For everyt in the set{1,...,T}, C:r(y:, 1) depends only on, i.e., it

is a time-dependent constant independeny; of
e (Fact A.2): It holds thatC; +-(0,0) < Cir(y, 1) fory, € R.

e (Fact A.3): For everyt in the set{l1,...,T} there exists a positive constamt
such thaCuT(yt, 0) > Ct,T(yta ].) andCt7T(—yt, 0) > CLT(_yty 1) hold for everyy,

satisfying|y,| > u,.

e (Fact A.4): It holds thatC; (v, 0) is a continuous, even, quasi-convex and un-

bounded function of, for everyt in the set{1, ..., T'}.

Facts A.1 and A.2 follow directly from (2.20), while Fact Af@llows from Fact
A.4, which requires a proof that we defer to a later stage.hi& point we assume that
Fact A.4 is valid, and we proceed by noticing that continaity’; (v, 0) with respect
to y;, as well as Facts A.2 and A.3, imply that the equations in2Rtave at least one
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Figure 2.2: lllustration suggesting that Facts A.1 throdgh. imply the existence of

thresholds for which equation (2.23) holds.

solution {7} }7_,. Moreover, from Facts A.1 through A.4 we can conclude thahsa
solution{r;}’_, guarantees that (2.23) is true (See Figure 2.2).

(Proof of Fact 4) Sincey? is an even, convex, unbounded and continuous function
of y;, from (2.20) we conclude that it suffices to prove by inductilbat), (y.) is even,
quasiconvex, bounded and continuous for €aicthe set{1, ..., T}.

SinceVri1 r(yr+1) = 0 holds by convention, the following is true:

Vrr(yr) = min (¢,y7),  yreR

HenceVrr(yr) is an even, quasiconvex, bounded and continuous functigp.adfising
Lemma A.10 in Appendix A.2, we conclude that[Vyr(ayr—; + Wr_1)] is also an
even, quasiconvex, bounded and continuous functiom-of, which implies that so is
Vr_1.r(yr—1). By induction it follows that; () is an even, quasiconvex, bounded and

continuous ofy,, for eacht in the set{1,...,7}.1

Remark 2.10 Lemma 2.1 shows that the optimal policy, which solves Prol@d under
the additional constraint that the pre-processor must bnefsymmetric path-dependent
type, is in fact a symmetric path-independent policy. Wetwamcompute the optimal

thresholds{r;},_, and for that we need the value functiofig, +},_,. The value func-
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tions can be computed recursively using equations (2.1€)(@r20) and the fact that
Vrsr(y) = 0forall y € R. From factsA.1 and A .4 in the proof of Lemma 2.1 and the
fact thatC, (v, 0) is strictly increasing fory, > 0 and strictly decreasing fog, < 0 for
all t € {1,...,T}, it follows that the optimal thresholds are given by the soluof the

equations:
yz +dE [Vt+1,T (ay + Wt)] =c+dE [Vt-l-l,T(Wt)] ) le {17 . 7T} (2.24)

Since the function%V;tT}Z:1 are even, quasiconvex, bounded and continuous, it follows
that the solution of the system of equation (2.24) is unifaace the optimal thresholds

{r:}}_, are unique.

2.4 Notation, Definitions and Basic Results for the Proofloédrem 2.1

This section is dedicated to introducing notation, defomié and basic results in ma-
jorization theory that will streamline our proof of Theor@x.. The proof of Theorem 2.1
is given in Section 2.5. In Subsection 2.4.1, we introducgdoanajorization theory and
state a few Lemmas, which are supporting results for thefbbdheorem 2.1. In Sub-
section 2.4.2, we introduce notation and we derive recesijuations for the time update

of certain conditional probability density functions ofenest.
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2.4.1 Basic Results, Notation and Definitions from Theor\/ajoriza-
tion

In [1], the authors define what a neat probability mass fonstis. We will adapt

this definition for probability density functions d&

Definition 2.12 (Neat pd) Let f : R — R be a probability density function. We say
that f is neat if f is quasiconcave and there exists a real numbseuch thatf is non-

decreasing on the interval-oo, b] and non-increasing ofb, co).

Remark 2.11 Throughout the chapter, we will use the useful fact that thevsolution of
two neat and even probability density functions is also aeateven. The complete proof

of this fact is given in Lemma A.1 in Appendix A.1.

Hajek gives in [1] the definition of symmetric non-increagfanction onR™. Since
we work only on the real line, it suffices to notice that a piwliey density function
f : R — R is symmetric non-increasing if and only if it is neat and evdance, without
loss of generality, in this chapter only usgmmetric non-increasintp qualify certain
probability density functions throughout the chapter.

Let A be a given Borel measurable subsefRpfwe denote its Lebesgue measure
by £ (A). If the Lebesgue measure &fis finite then the symmetric rearrangement\of
denoted byA?, is a symmetric closed interval centered around the origih lhebesgue
measureC (A):

L (A)

A”:{xER:mgT}
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Let f : R — R be a given non-negative function, we defiffg the symmetric

non-decreasing rearrangementfofs follows:

o de &
o) / Trocr ooy (2)dp (2.25)
0

whereZi.cr.r(z)>p3- : R — {0, 1} is the following indicator function:

def 1 ifzef{zeR: f(z) >p}°
I{zGR:f(z)>p}o (ZIZ') = , reR

0 otherwise
If fandg are two probability density functions dg&, then we say thaf majorizes

g, which we denote ag >~ ¢, provided that the following holds:

/ ¢°(x)dx < fo(z)dz, forall p >0 (2.26)
lz|<p lz|<p

One interpretation of the inequality in (2.26) is thAtnajorizesy, if and only if for
any Borel seff” C R with finite Lebesgue measure, there exists another Borél seiR

satisfyingC (F') = £ (F) and such that the following holds:

Aﬁ@ﬂxgéf@Mx

Given a probability density functiorf : R — R and a Borel seK, such that

Jx f(x)dz > 0, we define the restriction of to K as follows:

(G if r € K
e Ji f(x)dx
flx) &L (2.27)

0 otherwise

It is clear thatfx is also a probability density function.
The following Lemma is a supporting result for the proof ofebnem 2.1 given in
Section 2.5.
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Lemma?2.2 Let f,g : R — R be two probability density functions, such thjats neat
and even and’ > ¢. Letx be a real number in the interval € (0,1), and letA =
[—7, 7] be the symmetric closed interval such t[f_é; f(x)dx = 1 — k. For any function
h:R — [0, 1] satisfyingf, g()h(z)dz = 1 — &, the following holds:

h
fam 20 (2.28)
11—k

whereg - h : R — R is defined ag - h(z) & ¢(x)h(x), forz € R.

Proof: From Lemma A.6 given in Appendix A.1, we know that for any ftion / :
R — [0,1] satisfying [, g(x)h(x)dx = 1 — &, there exists a set’ C R, satisfying
[, 9(x)dz = 1 — &, such that the following holds:

g-h

11—k

QA’ — (2.29)

From Lemma A.5 given in Appendix A.1, we know that - ¢,. From equation (2.29)
and the fact thaf, > ga- holds, equation (2.28) followd

The following Lemma, which we state without proof, can berfduin [1]:

Lemma 2.3 [1, Lemma 6.7] Letf andg be two probability density functions @& with f
symmetric non-increasing arfd>- ¢. For a symmetric non-increasing probability density

functionh the following holds:
fxh>=gxh (2.30)

Lemma 2.4 Let f be a neat and even probability density function on the rewed.liLetg

be a probability density function on the real line satistyin< f. The following holds:

/szf(x)dx < /(x —y)?g(z)dx, yeR (2.31)

R
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Proof: The result follows by selecting(z) = 22 in Lemma A.9 found in Appendix A

Remark 2.12 Consider the conditions of Lemma 2.4. The fact that the ihadensity
function f is even implies thaf,, = f(x)dz = 0. Hence, if we selegt = [, zg(z)dz then
it follows from equation (2.31) that the variance jofs less than or equal to the variance

of g.

2.4.2 Conditional probabilities and conditional probdpitiensity func-
tions

Before proving Theorem 2.1, in this subsection we need toensafew remarks
and introduce more notation, which will streamline our grobhis subsection contains
two parts: We start by introducing the notation for certaanditional probability density
functions of interest, while in the second part we will derrecursive equations for the
time update of the conditional densities, and we will alstagba recursive expansion for

the cost associated with any given admissible pre-procesdicy Py 1.

Definition 2.13 Let a pre-processoP, r, implementing a decision policy as in Defini-
tion 2.2, be given. We define the following notation for cbadal probability densities,

which will streamline our proof of Theorem 2.1

1. Define the conditional probability density function¥f given that only erasure

symbols were transmitted up until tirkeas follows:

def
Y|k (y) = fYk|R1:o ..... R,=0 (y), yeR
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2. Define the conditional probability density functionf given that only erasure

symbols were transmitted up until tifke- 1 as follows:

def
Vk|k—1 (y) = fYk|R1:o ..... Rj_1=0 (y), yeR

Definition 2.14 We define the following streamlined notation for certainaidonal prob-

abilities of interest:

1. Define the probability that, under polic§, r, only erasure symbols have been

transmitted up until time:

wy | PRU=0.. Re=0) ifk=>1
Sk =

1 ifk=0

2. Define the conditional probability that, under poli®y r, the pre-processor trans-
mits the erasure symbol at timegiven that only erasure symbols have been trans-

mitted up until timet — 1.

def P(Rk:0|R1:O,,Rk_1:0) ifk>1

Sklk—1 =
S1 ifk=1

Definition 2.15 Let P, be a decision policy given as in Definition 2.2. Lebe a
positive integer and, be a real number. For a positive integér define the function
pr - R — [0, 1] as follows:

)Y PRL=0Y,=y,Ri=0,....,R_1=0), z€R (2.32)
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which is the probability that, at timé, the erasure symbol is transmitted, given that
Y. = y, wherey is any real number, and the fact that only erasure symbol leen

transmitted up until timé — 1.

Notation: For a random variabl® described by a probability density functign
and a real functior, we denote by [h(Y )], the expected value of the random variable

h(Y) under the probability density functiof

2.4.3 Time Evolution

Now, we describe how the conditional probability densitpdtions presented in
subsection 2.4.2 evolve in time, for a given poliy,. For a real numbe#, below we
define the conditional probability density function©Y, given that no observation was
received up until time:

a def
Vk|k(y) = faYk|R1:O ..... R;,=0 (y)

We denote by/\/ggv the probability density function oWy, for all £, i.e., the Gaus-
sian zero mean probability density with variangg, or more concretely\/agv(x) =

2

L__. > . Since the sequenddV,},_isi.i.d.,W;_, isalsoindependent df;}*~},

\/ ZWU%V

which implies that the following holds:
Velk-1 = Vi—1p—1 * Noz, (2.33)

Proposition 2.2 The conditional densities;,—; and v, are related via the following

time-recursion:

) _ %|k—1(y)Pk (y)

) Sklk—1 7 0,k > 1 (2.34)
Sklk—1

Vilk (Y
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Proof: In order to arrive at (2.34), we use Baye'’s rule to write:

Y| R1=¢,.. Ry=¢\Y P(Rk — O|R1 —0... Ry, — 0) Y, |R1=0,...R;_1=0 \Y

The recursion (2.34) follows from (2.35) by rewriting it acding to Definitions 2.13,
2.14and 2.15. Equation (2.35) holds onlfifR;, = 0|R; =0,...,Ry—1 = 0) = qp—1 #

.....

definedll

Definition 2.16 Given an admissible pre-processBg + and an integern € {0,...,7}
, we adopt the following definition for the partial cost cortemiifor the horizon{m +

1,..., T} under the assumption thaf, = 1:

N2
det Zz:mﬂ dF-mlE [(Yk - Yk) + CRk} fo<m<T
jm,T (CL, 0"2/1/, C, Pm,T) =

0 ifm="T
(2.36)
Remark 2.13 Given an integefn, we notice that the cost in (2.36) will not depend on the
value of the state at time:. This is so because, according to Definition 2.6, sifge
is admissible it holds that the current and futwetputof P,, » will not depend on the
current and past state observations. This Remark is an sxterof Remark 2.3, which

considered the case for = 0.

Proposition 2.3 Given an arbitrarily selected admissible pre-proces$rr, the finite
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horizon cost (2.6) can be expanded as:

Jo,T (C% Oy €, PO,T)
T N2
= Z d*! <E%k [(Yk — Yk) ] o+ (¢ + T (a, 0%, ¢, Per) ) su—1(l — §kk—1))
k=1

(2.37)

~\2] ae N\ 2
Here we use the notatiaf, [(Yk - Yk) } “g [(Yk - Yk) R1=0,....,R;, = 0},

wherevyy,,, is given in Definition 2.13.

Proof: We start by noticing that, by the total probability law, wenaaxpand the

cost as:

jO,T (CL, O-i2/V7 ¢, 7DO,T)

T
~ 2
_y (E{(Yk—Yk) Ry =0,....,R, =0/ P(Ry =0,...,R;, = 0) +
k=1

+ (C+ E [jk,T (C% U%/V,C,Pk,:r) R, =1,R;=0,...,Rp_1 = OD X

PRy=1R;=0,....Ry_, = 0)> (2.38)

We proceed by obtaining the following identities:

PRr,=1,R =0,....Rp1=0)=P Ry =0,...,Ry_, = 0) —
—P(R1:0,,Rk:O):P(R1:0,,Rk_1:0)—
(2.39)
— PRy =0R;1=0,...,R,_1 =0)P(R; =0,...,Ry_1 =0) =
= Ge—1(1 — Sgjr—1), E>1
Notice that, using standard probability theory, frém},_, we can computéqk‘k_l}zzl

and vice versa. Here, equation (2.39) is still valid fo 1, since we defineg,, = 1 and
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10 = 1. Finally, notice that from Remark 2.13, we conclude thedihg:

E [jk,T (CL, Ty €y Pk,T) Ry=1,R =0,...,Rp_; = 0} =TT (CL, Oy €y Pk,T)
(2.40)

The proof of this Proposition is complete once we substii&9) and (2.40) into (2.33

Definition 2.17 The following is a convenient definition for the optimal cost

e minp'm, ep —m jm,T (a7 0-12/V7 C’ Pm7T) ) T Z 1
J%,T (CL, 0"2/[/, C) “ o (2.41)
0, T=0

From Proposition 2.3, we can immediately state the follga@orollary:

Corollary 2.1 The following inequality holds for every admissible preqessorP,

jO,T (CL, U%/V? ¢, 7DO,T) Z

T 2
S (Em {(Yk =20 } S+ (e + T (a,09,0)) (1= <kk—1><k—1) (2.42)
k=1

2.5 Proof of Theorem 2.1

Ourstrategyto prove Theorem 2.1 is to show that for every admissiblegyposessor
policy Py r, there exists a path-dependent symmetric threshold p@ljcy which does
not underperforn®P, ». This fact, which we denote dsact B.1, leads to the following

conclusions:

e (Fact B.2): Lemma 2.1 (Section 2.3.1), in conjunction with Fact Briiplies that
an optimums; ;. for Problem 2.1 exists and that it is of the symmetric thrégho
typeS; (Definition 2.9).
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e (Fact B.3): From Fact B.2 and Proposition 2.1 (Section 2.3), we cateltihere
exists a symmetric threshold polic§j - and a Kalman-like estimataf (Defini-

tion 2.5) that are jointly optimal for Problem 2.1.

Proof: (of Theorem 2.1) Facts B.2 and B.3 constitute a proof for Taeo2.1. It
remains to prove the validity of Fact B.1.

(Proof of Fact B.1): Here we will use an inductive approach that is analogous to
the one used in [1, Lemma 6.5]. Our proof for Fact B.1 is orgaahin two parts. IfPart
I, we will prove Fact B.1 for the case when the time-horiZors one, while inPart 11,
we prove the general induction step.

Notation: According to the definitions of Section 2.4.2 , any given preeessor
has associated with it conditional probability densityd‘limns{mk};‘::1 and{ k-1 }Z:r
as well as conditional probabilitigs;, }_, and{gk‘k_l}zzl. Hence, we assume that the
path-dependent symmetric threshold poliey - to be constructed as part of this proof
- defines conditional probability density functio{ns/,(;“{:}Z:1 and{v,‘;k_l}zzl as well as
conditional probabilitiegsg},_, and{g,g|k_1}z:1.
Part I: Here we will prove Fact B.1 fof’ = 1. We will do so by constructing a

policy D , as follows:

1 if |’y1| > T
ro (2.43)

0 otherwise

wherer, is a threshold that we will select appropriately. Henceyéf dbsolute value af;
is less than or equal tg then the pre-processor transmits the erasure symbol vateer

it sendsz;. Consider that a polic, ; is given. We start by noticing that fo?, ; and
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Dg , it holds thatyy o = Yo = Noz, s while the cost associated with poli# ; is:

~ 2
j071 (CL, 0"2/‘/, C, 7)071) = E'Am1 |:<Y1 — Y1> :| S+ C(l — §1) (244)
whereY, = E,, [Y1]. We construct a desirablBg ; by selectingr; such that? =

¢1, which from (2.43) leads to a probability density functitjaifp1 that is neat and even.
Furthermore, Lemma 2.2 implies that, < Vi holds. From Lemma 2.4 we arrive at the

following inequality:
" \2 N2
Ey. [(Yl - Y1) ] <E,, {(Yl - Y1) } (2.45)
The cost associated with the poligy , is given by:
9 N 2
Joa (a, 09, ¢, D5) = B, l(Yl - Y?) } G +c(l—q) (2.46)
Finally, we conclude from (2.44), (2.45) and (2.46) that:
\70,1 (a7 012/V7 C, 730,1) Z \70,1 (CL, 0{2/1/7 C, D871) (247)

which leads to the desired conclusion th¥t, does not underperforf® ;.
Part II: (General induction step) Let 77 be a given horizon that is strictly larger
than one. Assume thaductive hypothesisthat Fact B.1 is valid for any horizdh less

than7.

We start by noticing that the validity of our inductive hypesis implies the follow-

ing facts:

e (Fact B.4): The inductive hypothesis in conjunction with Lemma 2. lies that

Problem 2.1 has an optimum for every horiZzbtess thari™’.

37



e (Fact B.5): The inductive hypothesis also implies that Problem 2 ihigglan opti-
mal pre-processor policy of the symmetric threshold typefifition 2.9), for every

horizonT less tharil™..

Hence, Fact B.5 implies that there exist,.; throughS;.; ., that satisfy the following:

TImri(a, 05, 6,8 pr) = min  Jpi(a, gy, 75m,T1) = J* i(a, 08y, c) 1<m<T!
7 P’nL,TI EPTlfrn (CL) 7
(2.48)
whereS* ., is of the symmetric threshold ty($g-:_,,, and (a) above follows by definition
from (2.41).
Now we proceed to showing that the general induction stegshdh order to do
so, we show that for any admissible poli® ,:, we can construct a path-dependent
symmetric threshold polic§; .., that does not underperfor®, .. Henceforth, assume

thatP, 7: is an arbitrarily chosen admissible policy.

The following is our algorithm fongjl:

Description of Algorithm for Df .,

¢ (Initial step) Setk = 0 and transmit the current state, i.e),= x, or equivalently

setyy, = 0.

e (Step A) Increase the time countér by one. Ifk > T holds then terminate,

otherwise execute Step B.

e (Step B) If |yx| < 72 holds then set;, = 0, transmit the erasure symbol, i.e.,
v, = €, and return to Step A. Ify;| > 7 holds then executs; ,.;, as defined in
(2.48).
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Where{rg}{il are appropriately chosen thresholds, as described next.

End of description of Algorithm for Df .,

Notice thatZ)‘O’,TI is a path-dependent symmetric threshold strategy (Defini10),
for which we can also conclude th&t, ., = S;, ,, holds forl <m < T".

In order to complete the specification’Dg’T, so that it does not underforfi, -,
we proceed by appropriately selecting the thresh{ﬂgﬁil.

(Selection of thresholds{T,g}f,fil) We proceed to describing how to choose the
threshold sequencer?},_, and what this choice implies. Notice thegt, = N,z and
that the Gaussian probability density function is neat aymdrsetric. Choose such
thatc? = ¢, it follows that the probability density functioff), is neat and even. From
equation (2.33), which describes how the conditional pbdity density functions evolve
in time, it holds thaty;, is neat and even. By further selectingsuch thaky, = <1,
it also follows thaty;, and~s, are neat and even. By repeated execution of this selec-
tion process, we can choose all the thresheftisuch thatgg“f_1 = Gr—1 forall kin
{1,...,T"}. These choices also imply thaf,, and~;, _, are neat and even for allin
{1,...,7"}. Sincecy);,_, = k-1 holds for allk in {1,..., 7"}, it follows thatcp = ¢
is satisfied for alk in {1,...,77}.

At this point, we know thatyo = 17, = N,z and that the Gaussian probability
density function/\/agv is neat and even. Hence, then from Lemma 2.2, we conclude that
Yp < e I also follows from Lemma A.7 in the Appendix A.1 and Lemm& #hat

Yo =< 75\1 holds. From the repeated application of this idea, it fodwat~y,, < yg‘k

forall kin {1,..., 77} and, in addition, sincey), is neat and even, it holds thaty =
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By [Yi]=0forallkin {1,...,T"}. Sinceyy < 77, holds andhy, is neat and even,

ol
k|k

Lemma 2.4 implies that the following is true:
N2 N2 ;
g [(Yk —Y;;> ] <E,, [(Y,c —Yk) } . ke{1,.... T (2.49)

The cost obtained by applying the pre-processor pdgkéycan be expressed us-

ing (2.37) as follows:

TI
~ 2
Jorr (a,0%, ¢, pg’T,) = de—l (szk [(Yk - Y,‘;) } Skt
k=1
(c+ Tnrr (a,0%,e. DY) (1 - >) (2.50)

Using (2.48), we can re-write (2.50) as follows:

TI

N 2

\707TI (a’ 0-12/1/7 C, Dg,TI) = Z dk_l (E'y;gk [(Yk — YZ) } gk)+
k=1

(C + Tt (a, T, C)) (1- §kk_1)§k_1> (2.51)

From inequality (2.42), which lower bounds the cost asgediwith any pre-processor

policy, equation (2.51) and equation (2.49), we concluaé th
Jorr (a, o, C, D&TI) < Jor! (a, o, C Posz) (2.52)

That we were able to construfly ., satisfying (2.52) for an arbitrarily chosen

admissible pre-process®y, 11 constitutes a proof for Fact Bl.

2.6 Simulation Example

In this section, we will show the results of simulation fooBlem 2.1, if we adopt
the optimal pre-processor and the optimal estimator. Wesidena = 1.5, 03, = 2,
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¢ = 3 andT = 220. With green line, we depict the proce¥s, with red line we depict
the procesd ;, which we define to b&, = X, — X, while with blue line we show the
thresholds,. First we notice that, converges, fact that will be discussed in Chapter 3 in
Problem 3.6, which is the infinite time horizon counterp&dRmblem 2.1. We notice that
as long asy,, is within the blue lines, i.e|Y| < 7 then the estimation error is less than
the threshold an&’;, = Y. On the other hand, ifYr| > 71 then the estimation error is
bigger than the threshold, hence the preprocessor sentts¢healue of the system to the

estimator, which implies thd¥, = 0.

i M
gl (y’\ I
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’ ‘ l'ﬂ [

y
| ’t

|
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|

0 50 100 150 200 250

Figure 2.3: Simulation results
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Chapter 3
Applications of Problem 2.1

3.1 Introduction

In this chapter, we will solve a few problems on which we wakuhe results and
the proofs from Chapter 2. We will show how to extend the rssidr Problem 2.1.
First, we will extend Problem 2.1 to more general costs, ngereeral noise distributions.
We will then deal with the problem where the pre-processemuasy observations. Prob-
lem 2.1 is an estimation problem, we will show then how to s@quadratic control prob-
lem with communication costs. We will solve then a similanfdem with Problem 2.1,
in which we will allow packet drop, i.e. the information séram the pre-processor to
the estimator can be lost. We will extend Problem 2.1 to ifigite horizon counterpart,
where we will deal with the infinite horizon discounted costiaverage cost. In the
end, we will solve a tandem problem, where the informatioth g sent over multiple
pre-processors.

In this chapter we will use similar notions for the pre-preser, estimator and the
processes from Chapter 2. We will use in general the defirstioom Chapter 2, but we

will also give new definitions, if needed.
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3.2 General Costs and General Noise Distributions

We define the state process:

Definition 3.1 (State Proce9sGiven a real constant, consider the following first order,

linear time-invariant discrete-time system driven by @sgnoise:

XQ déf To (3 1)

X1 e aXy + Wy, k>0 (3.2)

where {W;}7_, is an independent identically distributed (i.i.d.) zeroanestochastic
process with an even and quasiconcave probability densitgtionhy,, andx is a real

number.

We use the Definitions 2.2 and 2.3 for the pre-processor aidasr. In Defini-
tion 3.1, we relaxed the assumption from Definition 2.1 thatjirocess noisgW,},_,
is an i.i.d. process, Gaussian, zero mean with variaticeWe consider that the process
noise{Wk};f:O is an i.i.d. process, zero mean with an even and quasicopcakability
density function.

Consider the set of function(g; },_,, h; : R — R, foralli € {1,..., T}, such that
the functions{h,}’_, are continuous, even and quasiconvex.

Consider the following cost:

Definition 3.2 (Finite time horizon cost function for general cost and gerad function)
Given a valid pre-processdp, r (Definition 2.2), a real constant, a positive integef’,

a positive real numbed less than one, the probability density functiby, the set of
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functions{h,}._, and the positive constant we define:

T
Tor (.08, ¢.Por) LY B [ (Xe=Xi) + Ry (3.3)
k=1 communication co

where X, is the state of the system defined in (3.1)-(352), is the optimal estimate

specified in Definition 2.3, ani,, is the following indicator function:

o itvi=e¢
R, L k>1 (3.4)

1 otherwise
We define the following problem:

Problem 3.1 Let a real constant, the probability density functiohy, and the initial
conditionz be given. In addition, consider that a positive realthe set of functions

{hi}f:l and a positive integ€r” are given, specifying the cost as in Definition 3.2. Find:
Po,r € arg %ﬁn Joxr(a, o3y, ¢, Por) (3.5)
0,T

The following is the main result of this section

Theorem 3.1 Let the parameters specifying Problem 3.1 be given, i.e.r¢hl constant

a, the probability density functiony,, the communication cost the set of functions

{h;}]_, and the time horizofi” are pre-selected. There exists a sequence of positive real

numbersr* = {T,’;}Zzl, such that corresponding symmetric threshold poligy. is an
optimal solution to (3.5) and the corresponding optimalreator £(S; ;) is Z. Here

Sy 7 and Z follow Definitions 2.9 and 2.5 from Chapter 2, respectively.
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Proof: We note that in the proof of Theorem 2.1 we just needed thaptbeess
noiseW, have an even and quasiconcave probability density funetiohthe cost need
not be quadratic but an even, continuous and quasiconvexidumn il

In order to define the optimal thresholds, we need to definevéihee functions
Vir :R—R,fort e {1,7 +1}:

Ve (Yrsr) = 0,Vyri €R

(3.6)
Vit (y¢) = min (c + £ [Vt+1,T (W], he () + £ [Vt+1,T (ay: + Wy)])

An immediate application of Problem 3.1 is to choose thetions{hi};frz1 to be

guadratic functions as follows:
hi (x) = ba?, foralli € {1,...,T} (3.7)

whereb; are strictly positive real numbers for alE {1,...,7}. Hence the cost defined

in equation (3.3) becomes:
def — o\ 2
j07T (a, O'Iz/V, C, 7307T) éf Z E |f)k (Xk — Xk> + CR]@} (38)
k=1
Moreover, we can select the process nQWk}ZZO to be white, zero-mean and Gaussian,
but the variance oW, need not be the same for &ll For this noise and the cost defined in
equation (3.8) the optimal policy is a symmetric threshadalliqy, as stated in Theorem 3.1

with the optimal thresholds defined in equations (3.6), bypdidig /; () = b;x? for all

i € {1,...,T} and by taking the apprpriate statistics for the procesmdi@k}fzo.

3.3 Distributed Estimation with Observation Noise

The next application of Problem 2.1 is the situation wherewsider that the pre-
processor has noisy observation of the state process. \Mdefiile the state proce3§,,
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{Ni}izo

{Xk}zzo /L{Yk};{:o {Vk};épzo {Xk};épzo
(+) Po.r E(Por)

Figure 3.1: Schematic representation of the distributéichesion system considered in

Problem 3.2, where we consider observation noise at thpnmeessor side.

which will be the same as in Chapter 2, the observation ped¥gsnd the pre-processor.

The estimator will the the same as in Chapter 2 (Definition.2.3

Definition 3.3 (State Process for Estimation with Observation Nojs&iven a real con-
stanta, positive real constants?, and %, a real numberr,, consider the first order,

linear, time-invariant and discrete-time system driverpbgcess noise:

Xo Y 2, (3.9)

X “ Xy + Wy, k>0 (3.10)
def

Y, = X, + N, (3.11)

where the process noigdV,}> , is an i.i.d., Gaussian and zero mean stochastic process
with variances?, and the observation noigéN } 22, is ani.i.d., Gaussian and zero mean
stochastic process with varianeg,.

The filtration generated by{X,}}_,} is denoted as:

XY o (Xp0<t<k) (3.12)

whereo (X;; 0 < t < k) is the smallest sigma algebra generated by the random viasab

{{X:}t_}, for allintegersk € {0,...,T}.
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The filtration generated by{Y,}}_,} is denoted as:

Ve o (Y ;0<t<k) (3.13)

whereo (Y,; 0 < t < k) is the smallest sigma algebra generated by the random viasab

{{Y.}},}, forallintegersk € {0,...,T}.

Definition 3.4 (Pre-processor and remote link procggsonsider an erasure symbol de-
noted as¢ and a causal maf, r : (zo, ..., zx) — v, defined fork € {0,...,7} and

v € RU{€&}. Hence, at each time instaht P, 7 outputs a real number or the erasure
symbol, based on past observations of the observation ps@&ge- generates a stochas-

tic process{ V}7_, via the application of the operatd?, r to the proces$X; }7_, (See
Figure 3.1). The maf, r is a valid pre-processor if the following two conditions ¢hol

(1) The pre-processor transmits the initial statgeat time zero, i.eyy = zy (Put in other
words the estimator knows). (2) The pre-processor is measurable in the sense that the
process{V}7_, is adapted tq);.

The filtration generated b{V . }7_ is denoted ag5; }7_, and it is obtained as:

B, Y sV, 0<t<k) (3.14)

whereo (V;0 <t < k) is the smallest sigma algebra generated{®;, 0 < t < k}, for

all non-negative integers.
We define the cost just like in Definition 2.4, which repeaier clarity purposes.

Definition 3.5 (Finite time horizon cost function with observation nois€iven a valid
pre-processoP, ;- (Definition 3.4), a real constant, a positive integefl’, a positive real
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numberd less than one and positive real constams, o7 andc, we define:

T N 2
Jor (a,0%,0%.¢,Por) £ Y E {(Xk - Xk) + ch} (3.15)

k=1
where X, is the state of the system defined in (3.9)-(3.]2?),),is the optimal estimate

specified in Definition 2.3 (Chapter 2), alr}, is the following indicator function:

wy |0 V=
R, “ . k>1 (3.16)

1 otherwise

We will state now the main problem of this section and then wiegive the optimal

solution.

Problem 3.2 Let a real constant, the variance of the process noisg,, the variance of
the observation noise?, and the initial conditionz, be given. In addition, consider that
a positive reak;, a positive real numbed less then one and and a positive integeare

given, specifying the cost as in (3.15). Find:
P* € arg rrgn J(a, 0%, 0%, ¢, P) (3.17)

We define the optimal cost for the infinite horizon cost:

J* (a, Ovrs O c) def i%f J(a, 08, 0%, ¢,P)

We state now the theorem, which solves Problem 3.2:

Theorem 3.2 Let the parameters specifying Problem 3.2 be given, i.e.yv#riance of
the process noise?,, the variance of the observation nois&, the system’s dynamic
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constanta, the communication cost the discount factor/ and the time horizofi” are
pre-selected. There exists a sequence of positive real ensmb = {T,j};‘f:l, such that
the corresponding symmetric threshold pol&j;- is an optimal solution to (3.17) and
the corresponding optimal estimaté(S;; ) is Z. HereS;; - and Z follow Definitions 2.9

and 2.5, respectively.

Proof: In order to prove Theorem 3.2, we notice that the pre-prasg8an compute
the state estimatk,, as a function of the observatiorﬁYj}f:l. Due to the linearity of the
process and of the observatidg, is given by the usual Kalman filter. We notice tHét
computed at the estimator side are function$‘<25§}f:1. The variablesv, are functions
of the observation noiséYj}le. It follows that X, are functions of the observation

noise{Yj};‘:’:l. We can re-write the cost 3.15 as follows:

T

i N2
‘707T (a’ 012/V7 U]2V7 C, 7DO,T) - Z dk_lE (Xk: — Xk) —+ CR]{|
k=1 L

T [ - ~ AN\ 2
— Z d"E <Xk — X + Xp — Xk:) + CRk]
k=1 L

I
E

IE <Xk . Xk)z + ch} +dlE l(Xk _ Xkﬂ

B
Il
—

+ Qik‘lE [(Xk - Xk> (Xk - Xk>]
- ]; 41 [(Xk - Xk)z + ch} +dE l(xk - X,fﬂ

The cross ternE [(Xk — Xk,) (Xk — Xk)} disappears due to the orthogonality princi-

2

ple. The term¥ {(Xk — Xk) } cannot be affected in any way, hence we need to optimize

the cost:

XT: d"'E {(Xk — Xk)2 + ch}

k=1
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From the standard Kalman filtering, the proc&ssfollows the dynamics:
Xk+1 = af{k + W,

whereW,, is the innovation process from the standard Kalman filterilg note the that
innovation process is independent, zero-mean and Gaubsitahis not i.i.d.. Combining
this with the results from Problem 3.1, the result in Theo@&follows. Note that the

factord*~! can be replaced by any strictly positive real numiikr.

3.4 Control Problem with Communication Costs

Before we start actually to present the control problem, vile sslve a simple
estimation problem. We consider a process and a cost sitnitAe ones in Problem 2.1

from Chapter 2.

Definition 3.6 (State ProcegsGiven a real constant, and a positive real constant};,
consider the following first order, linear time-invarianisdrete-time system driven by

process noise:

XQ déf Zo (318)

X1 < aX), + Uy + Wy, k>0 (3.19)

where {W;}1_ is an independent identically distributed (i.i.d.) Gawssizero mean
stochastic process with varianeg, andx, is a real number. The filtration generated by
{X;}_, is denoted as:

XY o (Xp0<t<k) (3.20)
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whereo (X;;0 <t < k) is the smallest sigma algebra generated{B§;, 0 < t < k}, for
all integersk. For now, we just say that the random variabg are measurable with

respect tay,.

We note that since the random variablés are measurable with respectif, the
sigma algebra$X; },- , are well defined. We will give a precise definition of the pisge
{Uk}ro, later. We define the pre-processor and the estimator likeerDefinitions 2.2
and 2.3 from Chapter 2.

Let H : (vo,...,vx) — u; Wherew, € R andv; € R U {€&}. HenceH is a
deterministic map which takes the output of the pre-prameéshat is received by the
estimator) and maps it into a real number.

We define the proceqdJ, } -, to be the process generated by the riagpplied to
the procesg V. },-,. We notice that this is consistent with the Definition 3.6. ristaver,
we note that the proceqdJ, },-, is known both at the estimator and the pre-processor

side.

Definition 3.7 (Finite time horizon cost function)Given a valid pre-processopP,
(Definition 2.2), a real constant, the mappingH, a positive integefl’, a positive real

numberd less than one and positive real constam§s andc, we define:
def > \2
jO,T (CL, 0"2/‘/, C, PO,T) éf Z dk_lE [(Xk - Xk) + CR]{| (321)
k=1

whereX, is the state of the system defined in (3.18)-(3.)A§3<)Js the optimal estimate
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Figure 3.2: Schematic representation of the distributéichesion system considered in

Problem 3.3, where the estimator can influence the pra¥ess

specified in Definition 2.3, ang,, is the following indicator function:

w0 V=€
R, “ . k>1 (3.22)

1 otherwise

The following is the problem addressed in this section.

Problem 3.3 Let a real constant, the variance of the process noisg, the mapping+
and the initial conditionzy be given. In addition, consider that a positive reaa positive
real numberd less then one and a positive integéiare given, specifying the cost as in
Definition 3.7. We want to find an optimal soluti®tj - to the following optimization
problem:

PS,T € arg %lln jO,T(a'y 0{2/[/7 ¢, 7DO,T) (323)

We notice that this problem has just a slight modificationamgparison to Prob-
lem 2.1.

Similar to Definition 2.5, we define the following estimator:
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Definition 3.8 (Kalman-like estimatoy Given the process defined in (3.18)-(3.19) and a
pre-processofP, r, define the mag : (vy,...,v;) — 2z, for k in the set{0,...,T},

wherez,, is computed as follows:

20z, (3.24)
. azp—1 +up_y fo,=¢
P , withk > 1 (3.25)
Uk otherwise
Whereuk =H ('Uo, S ,Uk).

We define a process similar to the procé¥5s; },- , as follows:

Definition 3.9 We define the following process:

Y, Y x, - (aZp—1 +Ug_y) (3.26)

Using Definitions 3.6 and 3.8, we find th@Y ;. },_, can be rewritten as:
Y, =0 (3.27)

CLYk—i-Wk |f Rk =0
Yiq1 = (3.28)

W, if R, =1
We notice that the equations (3.28) is exactly as the equé2id4).
We can state now the optimal solution of Problem 3.3, whidhbeijust a corollary

of Theorem 2.1.

Corollary 3.1 Let the variance of the process nois§., the mappingH, the system’s
dynamic constant, the communication cost the discount facto# and the time horizon
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T be given. There exists a sequence of positive real numbefs{r,j}f:l, such that the
corresponding symmetric threshold poli§y - is an optimal solution to (3.23) and the
corresponding optimal estimatai(S; ) is Z. HereS; - and Z follow Definitions 2.9

and 3.8, respectively.

Proof: It follows from Remark 2.3, which states that initial conalit =, does not
influence the total cost since it can be subtracted at thenagir side. The same ar-
guments hold for the proced4dJ,},-, since it is known both at the estimator and the
pre-processol

We will proceed now to define a quadratic control problem veitmmunication
costs. We keep the Definition 3.6 for the state process anddfigition for the pre-
processor to be Definition 2.2. We need to define a contrallbich will generate the

process Ui}, _,.

Definition 3.10 (Controller and the Control ProcegsGiven a pre-processdp, r, con-
sider the mappin@or : ({vi}i_y) — wux which we call controller. The controller
generates the stochastic proceds k}fzo via the operatorC, r applied to the process
{Vi}}_,. Hence, the procesU, }7_, is adapted to the filtratiod A3 }7_, and it repre-

sents the output of the controller.

Remark 3.1 Just like in Remark 2.2, the pre-processor has all the in&girom which the
controller has. Hence, the pre-processy can construct the contrdl;, by reproduc-
ing the control algorithm executed at the controller.

We will define the performance criterion and the main probleam this section.
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{Xk};{:o {Vk};épzo
Plant Por

{U}izo

Figure 3.3: Schematic representation of the distributéichesion system considered in

Problem 3.4, where we have a quadratic control problem vathraunication costs.

Definition 3.11 (Finite time horizon control cost)Given a positive integef’, a mea-
surable pre-processoP, r (Definition 2.2), a controlleiC, » (Definition 3.10), a real

constantz and the positive real constant,, andc, we define:

T
Ir (a,0%, ¢, Por, Cor) = Z E[Xi, 1+ U + Ry (3.29)
k=0

where X, indicates the state of the process from Definition 3Jg, denotes the input

provided by the controllef, 1, E indicates expectation anld,, is defined as follows:

W | LV£E k>0
R, © (3.30)

0,Viy=¢, k>0

Problem 3.4 Let a real constant, the variance of the process noisg and the initial
conditionz, be given. In addition, consider that a positive reak given. We want to

find an optimal squtior(Po,T*, §7T) for the following optimization problem:

(Por:Cor) €arg  min - Jr (a, oty ¢ Por, Cor) (3.31)

Po,,Co, T

Here the pre-processdP, » and the estimato€, » must be optimized jointly so as to
minimize the cost function.
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Before, we state the main result of this section, we need fioela certain con-

troller.

Definition 3.12 (Scalar Discrete Riccati Equations) Given a real constantlefine the

sequence of real numbers:

def

pry1 = 1
P “r 4 a’priq — i t € {0 T} 5
t t+1 1‘|‘pt+1’ P
We notice that Definition 3.12 is the scalar version of thecRicequation.
Definition 3.13 Given a real constant, define the maﬁéf}, as follows:
(a) def k
Coz (vo, -y vk) = ug, {oif_g€ (RU{E}) k>0 (3.33)

and u,, is constructed using a supporting variabig which will have the role of state

estimate. We define_; =2 andz_; = 0, thenz;, andu,;, are defined as follows

. def Dy
k 14 pg

2, ke {0,...,T} (3.34)

where z;, follows the dynamics from Definition 3.8 ard, tT:ng was defined in equa-

tion (3.32).

We notice that in Definition 3.13 together with Definition 3.8 is a function ofz,
and z;, is a function ofvy, u,_; andz,_q, recursively it follows that both, andu, are
functions of the value$u, },_,, henceu,, is well defined.

We are ready now to state the main result from this section.

Theorem 3.3 Let the parameters specifying Problem 3.4 be given, i.e.yv#riance of
the process noise?,, the system’s dynamic constantthe communication cost and
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the time horiazori” are pre-selected. There exist a sequence of positive reabets

T= {Tk}",fzo, such that the associatesf andcéf‘} are an optimal solution to (3.31).

Proof: We will make some manipulation of the cost in equation (3.29)

T
Ir (a, 09, ¢,Por,Cor) = Y E[X; 1+ Uj + Ry
k=1

B

E XG4+ Up + piX; — piX + Ry |

e
Il

0

T
= kag + Z E [pk—HXi—i—l + Ui + Xi - kai + CRk]
k=0

T
=X+ > E [pr1@®X; + pea Up + UL + X} — piX} + cRy

k=0
T
+ Z E [2pp 410X Uy + 2pp 10X Wy + 2041 U Wi + pr i Wi
k=0
T p 2
=) E [ 1T X2 4 (pros + 1) U2 + 2pnaXe Uy + CRk]
— L1+ pk+1
T
+ X3 + Zpk+10'i2/V
k=0

M= I~ 1M

2

Pr414 A

E [’”71)@ (peyr + 1) U + 2pk+1anUk}
1+ prs

2 2 N2
B (- %) 4 o]
L+ pr

2 2
Pi1@

+
1+ prta

E {2 (Xz - Xz) X2 4 2pps1a <Xk - Xk) Uk}

e
Il

0

T
+ X3+ Z Prr107y
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T . 2
E ( aX + 1 U) }
pk+1 n 1 ZO { Pr+1 k (pk+1 ) k

Pr+1¢ -\
+N B (X —X) +cR]
Z [1+pk+1 g g g

T

+ pp X3 + meo%v
=0

In the equations above, the last two terms are constant rtegim (which can be only

Pr+1a
Dk+1 +

term can be minimized according to Corollary 3.1 and thelte§@Theorem 3.3 followdi

positive) can be made equal to zero by seleclihg= — X ., while the second

3.5 Distributed Estimation with Communication Costs anddéaDrops

Just like in Problem 2.1, we address the design of an optitatd sstimation system
featuring two blocks; a pre-processBs and a remote estimatér. The pre-processor
has causal access to the state of a first order, linear andriragant system driven by
Gaussian zero mean, white process noise and, at each titaatins outputs either an
erasure symbol or a real number into a communication chanfleé communication
channel acts as an erasure link and with some probabilignitdrop the packets received
from the pre-processor. The estimator has access to thetoaftphe channel and its
output is denoted as the state estimate. When the pre-gaydeansmits a real number,
the channel can drop this real number and the estimator @ag#live an erasure symbol.
If the channel sends to the estimator the erasure symbeladsif a real number, it will
give an acknowledgement to the pre-processor that it dagpereal number. Whenever
the pre-processor will transmit the erasure symbol, thenasbr will receive this erasure

symbol. The estimator cannot make the difference betweerasure symbol received

58



from the pre-processor or because the channel lost he packet

We define first the channel process.

Definition 3.14 Let p be a positive real number less then one. We define the channel

process to bdCy } .-, as follows:

e {C;},—, is a Bernoulli process with parameter(i.e. P (C, =1) = p, for all

integerest bigger or equal to one.)

We will define for clarity purposes the process, which willda definition like in

Chapter 2.

Definition 3.15 (State Process for EstimatigriGiven a real constant, a positive real
constantaa,, a real numberzq, consider the following first order, linear, time-invarian

and discrete-time system driven by process noise:

XO d;f Zo (335)

Xkt d;f aXy + Wy, k>0 (336)

where the process noigdV,}>° , is an i.i.d., Gaussian and zero mean stochastic process
with variances?, .

The filtration generated b{{X,}}_,, {C;}}_,} is denoted as:

XY (X 0<t <k ClO<t<k) (3.37)
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whereo (X;;0 <t < k;C;;0 <t < k;) is the smallest sigma algebra generated by the
random variable {X;}}_,, {C:}i_, }, for all integersk € {0,...,T}.

The filtration generated by{X,}}_,, {C.}}=, } is denoted byt;:

XP Y (X 0<t <k Cr0<t<k—1;), k>0 (3.38)

whereo (X;;0 <t < k; Cy;;0 <t < k;) is the smallest sigma algebra generated by ran-

dom variables{ {X,}_,, {C,};=; }, for all integersk € {0,...,T}.

Definition 3.16 (Estimation Pre-processQrConsider an erasure symbol denoted®&s
and a causal mafP, r : (xo,..., %k, Co, ..., Ck—1) — Ui, defined fork € {1,...,T},
zr € R, ¢, € {0,1} and?, € R U {€&}. Hence, at each time instaht P, r outputs a
real number or an erasure symbol, based on past observatbtise process{Xj};?:O
and and{Cj}f;Ol. P, generates a stochastic procef¥,}7_, via the application of
the operatorP, r to the processe§X,.}7_, and {Cj};tol and we note that the random
variable V,, is measurable with respect to thealgebraX”. The pre-processdP, r is

valid if at time zerop, = x

Definition 3.17 (Remote link procegsThe remote link process is denoted @, }7_,
and it takes values iR | J{ €}, where€ signifies erasure (See Definition 3.16). Given a
real constant, the positive real constants,, =, and a pre-processoP, r, the process
{V}I_, is adapted to{ X }7_, and it represents the input received by the estimé&tor

via the following relationship:

wr | Ve Ci=1, k>0
V, = (3.39)

¢ Cy=0, k>0
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Hence, at each time instait the pre-processor outputs a real number or an erasure
symbol, based on the past observations of the state procestha channel process. If
the channel process, = 1 at the current time timé then the output of the preprocessor
will be received by the estimator, otherwise the estimaibireceive an erasure symbol.
We notice that the estimator receives the initial conditnsince we se€, = 1. The
filtration generated by{ V. }7_, is denoted agV; }/_, and it is obtained as:

Vi @ o (Vi0<t<k) (3.40)

whereo (V;;0 <t < k) is the smallest sigma algebra generated{dy;,, 0 < ¢ < k}, for

all integersk € {0,...,T}.

Definition 3.18 (Optimal estimate and optimal estimatpGiven a pre-processdp, r,
we consider optimal estimators in the expected squaredesghese optimal estimate at

timek is denoted a¥X, and is expressed as follows:

— E[Xi{Vih,] ifk>1
e (3.41)

whereE [X,|{V,}}_,] represents the expectation of the st&teconditioned on current

and past information received by the estima{df;}¥ ,. We use€ (P, ) to denote the

optimal estimatorfor the given pre-processor polidy »

Note: The estimator given in Definition 3.18 is the same with the given in

Definition 2.3.

Definition 3.19 (Finite time horizon cost function)Given a positive integel’, a mea-
surable pre-processdP, r (Definition 3.16), a real constarnt, a positive real constant
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less than or equal to one and positive real constajfsandc, we define:
def o o\ 2
Jor (a, 03, p, ¢, Por) = Z E |:<Xk - Xk) + CRk} (3.42)
k=1

whereX, is the state of the system defined in (3.35)-(3.369,is the optimal estimate

specified in Definition 2.3, ang,, is the communication cost defined in (3.43).

0 ifVy=¢
R, & , E>1 (3.43)

1 ifVy#£¢
We define the proces{ik}fzo as follows:
L. = R, Cy, (3.44)

It follows that L, = 0 either if the pre-processor sends the erasure symbol, teif t
channel drops the packet aibg = 1 if the pre-processor sends a real number and the
channel does not drop the packet. Hence the prdcgss zero if the estimator receives
an erasure symbol and is equal to one if the estimator receiveal number. Since
Co, = 1 andV, = X,, it follows thatL, = 1, hence the estimator knows the initial

condition of the system described in (3.35)-(3.36)

Remark 3.2 (Cost does not depend oK,). Just like in the Remark 2.3, notice that
because the plant (3.35)-(3.36) is linear, the fact that , holds (see Definition 3.18)
implies that the homogenous part of the state can be repextiatthe estimator. Hence,
the optimal estimator will include such an homogeneous téras subtracting it out from
the estimation erroiX;, — X, for k& > 0. This also implies that the cost (3.42) does not

depend on the homogeneous term nor on the initial condXign
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Problem 3.5 Let a real constant, the variance of the process noisg, the initial con-
dition xy and the parametep of the channel process be given. In addition, consider that
a positive realc is given. We want to find an optimal soluti@fy . for the following

optimization problem:

Py € arg glin Jo,r (a, Oy Dy Cy PO,T) (3.45)

0,T

3.5.1 A Kalman-like filter

Definition 3.20 (Kalman-like estimatoy Given the process defined in (3.35)-(3.36) and
a pre-processofP, r define the may£ : (v, ..., vx) — 2z, for k in the set{0, ..., T},
wherez,, is computed as follows:

20 2y (3.46)

dep | @51 ifv, =¢
2 = ., withk > 1 (3.47)
Vg if Vg 7& ¢
Remark 3.3 Notice that the pre-processor has access to the estidiateecause it has

access and full control of the input applied £

Remark 3.4 Notice that Definition 3.20 is identical with Definition 2kt we must point
that v, has different meanings in these two definitions. In Definifidb, v, is the output

of the pre-processor , while in Definition 3.28js the output of the channel.

3.5.2 The SeP; - of Admissible Pre-Processors

We proceed by defining a class of pre-processors, which isiabhe to the use of
recursive methods for perfomance analysis. If a pre-psmreselongs to such a class
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then we denote it as admissible, and we argue in Remark 3 @@ always exist an
admissble pre-processor that is an optimal solution tolBnol3.5. This implies that we

incur no loss of generality in constraining our analysisdmasible pre-processors.

Definition 3.21 (Admissible pre-processpi_et a horizonT' larger than zero, a pre-
processor policyP, r and a mapF,r be given. The pre-process®,  is admissible
if there exists map®,, 7 : (Tm,- .., Tk, Cmy -, k1) — U, With0 < m < T and

k > m, such thatP, ;- can be specified recursively as follows:

__Algorithm for P, »

¢ (Initial step) Setk = m, [, = 1 and transmit the current state, i.&,,, = =, and

the channel will deliver the packet, i.e, = 1, which implies that,, = 1.

e (Step A Increase the countéer by one. Ifk > T holds then terminate, otherwise

execute Step B.

e (Step B Obtain the pre-processor output at tiheia oy, = P, 1(Tm, - - - s Thy Cony -+ - 5 Ch—1)-
If 0, = €& then setr, = 0 which impliesl, = 0 and go back to Step A. f, # &

andifc, = 0, go to step A, i, # € and ifc;, = 1 then execute algorithri;, 7.

End of Algorithm for P,,,

The class of all admissiblere-processors is denoted Bs.

The following Remark provides an equivalent characteionabf the class of ad-

missible pre-processors.
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Remark 3.5 Let a horizonI" larger than zero and a pre-processor poligy ;- be given.
The pre-processdP, r is admissible if and only if for eaclw € {1,...,T} there exists

amapP,r: (Tm,-- -, Ths Cm, - - -, Ck—1) — U SUCh that the following holds:

lm =1 = Pyr(xg, ..., 05, Cqp...,Cp1) =

7Dm,T(xma oy Tl Cy - - -y Ck’—l)7
(3.48)
Zgy.., Tk €ER, ey, 1 € {0, 1}
k>m2>qg>0
Given an admissible pre-processpg r, later on we will also refer to the time-restricted

pre-processorgP,, r}1 _, according to Definition 3.21, or equivalently as implied by

(3.48).

Remark 3.6 Given a positive time-horizof, there is no loss of generality in constrain-
ing our search for optimal an pre-processor to the Bet Indeed, let an optimal pre-
processor policyP; - be given. If a transmission takes place at some timg-,, = 1
holds) then the optimal output at the pre-processod,is= z. If the transmission is
successful (i.ec, = 1), it holds thatv, = 0, = x;. Since, given that a real number is
transmitted, the choicé, = x;, must be optimal because it leads to a perfect estimate
T, = x,. Hence, given that, = 1 (i.e. r,,—1, ¢,, = 1), by Markovianity we con-
clude that the current and future values produced by thqqmmessor{\?k}f:m will not

depend on observations prior to. ConsequentlyP; . satisfies (3.48), and hence it is

admissible.
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3.5.3 Symmetric threshold pre-processor

Definition 3.22 In order to simplify our notation, we define the following pess:

Y, “ X, - aZ; (3.49)

Using Definitions 3.15 and 3.20, we find tHa@ ;. },_, can be rewritten as:
Y,=0 (3.50)

Yir1 = (3.51)

W, if L, =1
Remark 3.7 We notice that the proce$¥ ;. } is defined in a similar way in (3.28) or (2.14).
This remark is the same as Remark 2.7 and we repeat it herdgiatyqourposes.Y, has
an even probability density function. This fact ma{<¥$3}f:0 a more convenient process
to work with, in comparison t¢X,.}7_,, which motivates its use in our analysis hereon,
whenever possible. No loss of generality is incurred beed¥s, }7_, can be recovered
from {X,.}7_,, and vice-versa, via the use §Z;}?_,, which is common information at
the pre-processor and estimator (See Remark 2.4 or Rem@ykiB.addition, notice that

the cost (3.42) can be re-written in terms{af; }7_, as follows:
def o\ 2
Jor (a, 03, p.¢, Por) =) Z E |:<Yk: - Yk) + CRk} (3.52)
k=1
whereY, “ E [YL[{V:}5,]. Akey fact here is tha¥, = X, — aZ;_, holds, leading
to the validity of the identityy ), — Y, = X, — X.
Definition 3.23 Given positive integer horizofi and an arbitrary sequence of positive
real numbers (thresholds) = {Tk}le, for eachm in the set{0, ..., T}, we define the

following algorithm fork > m, which we denote aS,, :
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__Algorithm S, »

¢ (Initial step) Setk = m, [, =1 (i.e.r,, = 1 and¢,, = 1) and transmit the current

state, i.e.p,, = x,, or equivalently sey,, = 0.

e (Step A)Increase the time countérby one. Ifk > T holds then terminate, other-

wise execute Step B.

e (Step B)If |yx| < 71 holds then set;, = 0, transmit the erasure symbol, i.e.,
O = € = v, and return to Step A. x| > 7 holds and ife, = 0 return to Step

A, if |yx| > 7, holds and ifc, = 1 then setn = k and executs,,, 7.

End of Algorithm S,,,

Definition 3.24 (Symmetric threshold poligyThe algorithmS, r, as in Definition 3.23,

is denoted as symmetric threshold pre-processkine pre-processa$, r is admissible

and the class of all symmetric threshold policieslenoted a§.

Theorem 3.4 Let the parameters specifying Problem 3.5 be given, i.e.yv#riance of
the process noisey;,, the system’s dynamic constantthe communication cost the
parameter of the channel process, and the time horiZoare pre-selected. There exists
a sequence of positive real numbets= {r;;}le, such that the corresponding symmet-
ric threshold policyS; ;- is an optimal solution to (3.45) and the corresponding optim

estimator€(S; 7) is Z. HereS; » and Z follow Definitions 3.24 and 3.20, respectively.
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3.5.4 Optimizing within the clasBy

We start by defining the following class of path-dependeatgnocessor policies,
which is an extension of Definition 3.24 so as to allow timeywzg thresholds that depend
on past decisions. Such a class of pre-processors will ket latsr when we provide a

proof for Theorem 3.4.

Definition 3.25 (Algorithm D,,, ) Given a horizorY', consider that a sequence of (thresh-
old) functionsT «f {Toilm <k <T,1 <m < T} with7,; : {0, 1}"* - R, is
given. Given a selection of the threshold functi@ngor everym in the set{1,..., T},

we define the following algorithm fdr > m, which we denote &B,,, 7

_Algorithm D,,, 1

e (Initial step) Setk = m, [, =1 (i.e.r,, = 1 and¢,, = 1) and transmit the current
state which will be received by the estimator, i®,, = v,, = x,, or equivalently

sety,, = 0.

e (Step A)Increase the time countérby one. Ifk > T holds then terminate, other-

wise execute Step B.

o (Step B)If |yx| < Toni(lm,- .., lk—1) holds then set, = 0, transmit the erasure
symbol, i.e.p, = v = €&, and return to Step A. x| > Tk (lm, - - -, lk—1) @nd if
¢ = 0, thenv, = € and return to Step A, ifyx| > 7ok (L, - - -, li—1) @and ife, = 1

hold then execut®;, .

End of Algorithm D,,, »
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Recall thatl, throughl,_; represent past information received by the estimator, eher
I, = 1 indicates that the state is received at the estimator at fimehile [, = 0 implies

that an erasure was received.

Definition 3.26 (Path-dependent symmetric threshold poljdgiven an horizorf’, con-
sider that a sequence of (threshold) functign& {Toplm <k <T,1 <m <T}, with
Tk - {0,1}™% — R, is given. The path-dependent symmetric threshold pregssor

associated witly” is implemented via the execution of the algoritBay, as specified in

Definition 3.25. We denote such an admissible pre-processdr, ;. We useD r to
denote the entire classf path-dependent symmetric threshold pre-processots timite

horizonT'.

The goal of this sectiois to provide the following two results that are crutial in

the proof of Theorem 3.4: In Proposition 3.1, we prove th&®jf, is any given path-
dependent symmetric threshold pre-processor policy thems$sociated optimal estima-
tor £(Po.r) is Z. In Lemma 3.1 we prove that if we optimize within the class afip
dependent policies then the optimum is of the path-indepeinype specified in Defini-
tion 3.24. This fact might raise the question of whether Defin 3.26 is needed. The
answer isyesbecause we adopt a constructive argument in the proof ofréhe8.4 in

Subsection 3.5.7, which will make use of Definition 3.26.

Proposition 3.1 Let P, r be a pre-selected path-dependent symmetric thresholdypoli
(Definition 3.26), it holds that the optimal estimato{?, r) is Z, as described in Defini-

tion 3.20.
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Remark 3.8 Proposition 3.1 could be recast by stating tB&t = Z, holds in the pres-

ence of path-dependent symmetric threshold pre-procgssor

Proof (of Proposition 3.1) In order to simplify the proof, we defi{]ﬁk}{zo as the
process quantifying the error incurred by adopting a Kakhikenestimator (See Defini-
tion 3.20), i.e. X, = Xi—Z;.. More spemflcally{Xk} _, can be equivalently expressed
as follows:

Xy =0 (3.53)

5 aXt + Wt |f Lt = O
X1 = (3.54)

0 if L, =1
The proof follows from the symmetry of all probability detysfunctions involvingX
andV,. More specifically, under symmetric path-dependent thotespolicies the prob-
ability density function ofX,, given the past and current observatigiVg, };_, is even.
Hence, we conclude th&t[X,|{V}._,] = 0, which implies thaX wf EX{Vi}i_] =

Z,.1

Remark 3.9 If D, 1 is a symmetric path-dependent threshold pre-processer{sdini-

tion 3.26) thenY, = 0 holds, leading to the following equality:

T
Jor (a.0%.p.c, Dor) =Y E[Y:> + cRy]
P (3.55)

Dyr € Dy
The process defined in (3.51) is a Markov Decision ProcessfMihose state and
control areY,, andRy, respectively. Hence the minimization of (3.55) with resp®
pre-processor policieP, r in the classD; can be cast as a dynamic program [13]. To
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do so, we define the sequence of functidhg : R — R, ¢ € {1,1,...,7 + 1} which
represent the cost-to-go as observed by the pre-procéssi@? represents the horizon,
while ¢t denotes that the decision at tim&vas taken, and the argument of the function
is the MDP statéy,;, as seen by the pre-processor. In order to simplify our iwotatve

adopt the convention thatr.; 7 (yr41) = 0, yr+1 € R. Using dynamic programming,

we can find the following recursive equations rr(v:), t € {1,...,T}:
de .
Vi (yr) ) rer?onl} Cor(ye,me), te{l,....,T} (3.56)

whereC, r : R x {0,1} — R is defined as:

Cor(yi, 1) 2 ¢+ pE V1.0 (Wy)]

+ (1 —p) (%2 + E Vi1 (ay: + Wt)]) (3.57)

Cer(yt,0) Yyl + E Vi1, (ayy + W)

From (3.57) itimmediately follows that an optimal decisjulicy r; at any timef
is given by:

1 if Ct7T(yt, 1) S Ct,T(ytv O)
.= (3.58)

0 if Cor(yi,0) < Corlye, 1)

We state the next Proposition, which will state propertiethe functionsy; - for

te{l,...,T+1}:

Proposition 3.2 There exist function¥, : R — R, ¢t € {1,...,T + 1} and positive

real numbers{m{} " such that:
Ver(ye) =miy; + Vor(y) (3.59)
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whereV, r(y:), t € {1,...,T + 1} are defined in equation 3.56. Moreover, the functions

Vir:R—R, te{l,...,T+ 1} are even, quasi-convex, continuous and bounded.

Proof: Define the sequence of positive numbémf}j:ll as follows:

(3.60)
mi = (1—p) (1 +a*mi,), te{l,....T}

Define the function®), - R — R, t € {1,...,T + 1} as follows:

~. def
Vryir(yri) = 0

~ de ~
Vt,T(yt) = mtT+1Ui2/V + (1 - p)E [Vt-i-l,T (&yt + Wt)]

+ min (C +pE [f}t+1,T (Wtﬂ ,Ap(L+ a®mf)yf +pE |:1>t+1,T (ay: + Wt)D ;
te{l,....,T}

(3.61)
We will show that the function¥,  : R — R, t € {1,...,T + 1} defined in equa-

tions (3.61) and the sequence of positive numt{en%}f:ll defined in equations (3.60)

satisfy equations (3.59).

The functionVr_y 7(yr—1) = min (¢, py2_,) is bounded. By induction, it follows
that the function§it,T, te€{l,...,T+ 1} are bounded.

We prove equation (3.59) by induction:
Vrr(yr) = min (c+ (1 - p)yz, y7)
= (1 - p)yr? + min (c, py2)
= miy; + Vrr(yr)
We can compute the functiabl V7.7 (ayr—1 + Wr_1)]:
EVrr(ayr + Wp)] = (1 —p)a*ys + (1 —p)ogy + E [f}T,T (ayr + WT)]
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We note that the functio® [Vr 1 (ayr + Wr)] is well defined for all real numberngr,

becausé’; r is bounded henc& |Vr 1 (ayr + Wr)| exists for all real numberg.
Assume thatV, r (y,) satisfies equation (3.59) for all ¢ {t+1,...,7+ 1},

which implies that the function&' [Vi 11 (ayx, + Wy)], k € {t,...,T} are well de-

fined for all real numberg,, since:

E Veprr (ay, + Wi)] = my,ayi +mi o9, + E [f}k—H,T (ayr + Wk)] , kedt,.... T}

In order to prove equation (3.59) forwe use equations (3.56) and (3.57) :

Vi r(y:) = min (C +pE Vi (Wi + (1 —p) (ytz + E Vi (ay: + Wt)]) ;
Y + E Veprr (aye + W)
= (L=p) (47 + E Visr.r (aye + Wy)])
+ min (c + pE Vipir(Wy)],p (%2 + E Vi1 (ay: + Wt)]))
=(1=pyi + (1 —pa*miy’+ (1 —ploj, +(1—pE [f}t—H,T (ay: + W)
+ min <c + pmiop + pE []}t+1,T (Wt)] ;
py; + pmi,a’y; + pmiy o + pE []}t—i-l,T (ay: + Wt)} )
=(1—p) (1+a*m{,)y; + mf, o0 +(1—pE [)ZH,T (ay, + Wt)] +
min (C +pE [f}t—i-l,T (Wt)} ,DY; + pmi . a°y; + pE [f}t+1,T (ay, + Wt)D
=m] y; + Vir(y) n
Using the MDP given in Definition 3.22 and the value functitmsn equation (3.56),
we prove the following Lemma, which states thaithin the class of symmetric path-
dependent pre-processdis- (Definition 3.26) there exists an optimal pathdependent

symmetric threshold polic¥; ;- (Definition 3.24) for Problem 3.5.

73



Lemma 3.1 Let the parameters specifying Problem 3.5 be given, i.e.y#ltiance of the
process noise?,, the system’s dynamic constanthe communication costthe channel
process parameter and the time horizofi” are pre-selected. Consider Problem 3.5 with
the additional constraint that the pre-processor must bnefsymmetric path-dependent
typeDD specified in Definition 3.26. There exists an optimal pattependensymmetric
threshold policyS; r, as given in Definition 3.24, whose associated thresholecteh

{r;}I_, is given by a solution to the following equations:
Ct’T(Tt*,O) :Ct,T(Tt*al)a t e {]_,,T} (362)

Proof: From (3.58), we conclude that in order to prove this Lemma wlg need

to show that there exist thresholfts' }/_, such that the following equivalences hold:
|yt| Z Tt* < CLT(yt: 1) S Ct,T(yta O), t e {1, ey T} (363)

Indeed, if (3.63) holds then the optimal strategy in (3.58) be implemented via a thresh-
old policy. In order to prove that there exist thresholds}?_, such that (3.63) holds, we

will use the following facts (A.1 thorugh A.4):

e (Fact A.1): For everyt in the set{1,...,T}, C.r(y:, 1) depends only on, i.e., it

is time-dependent constant independeny; of
e (Fact A.2): It holds thatC; +-(0,0) < Cir(y, 1) fory, € R.

e (Fact A.3): For everyt in the set{1,...,T} there exists a positive constamt
SUCh thaCuT(yt, 0) > Ct,T(yta ].) andCt7T(—yt, 0) > CLT(_yty 1) hOId fOf everyyt

satisfying|y,| > u,.
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Ct,T(yt> 0)

Ct,T(yt> 1)

ok * Yt
7 0 T

Figure 3.4: lllustration suggesting that Facts A.1 throdgh. imply the existence of

thresholds for Problem 3.5, where we allow packet drop wetowledgement.

e (Fact A.4): It holds thatC; r(y:, 0) is a continuous, even, quasi-convex and un-

bounded function of,, for everyt in the set{1,...,T'}.

Facts A.1 and A.3 follow immediately from Fact A.4, which vé@s a proof that we defer

to a later stage. Fact A.2 also follows from Fact A.4 and fr@2Q@), which implies that
C:7(0,0) < C;r(0,1). At this point we assume that Fact A.4 is valid, and we proceed
by noticing that continuity o€, r(y;, 0) with respect tay;, as well as Facts A.2 and A.3,
imply that the equations in (2.22) have at least one soluthddareover, from Facts A.1
through A.4 we can conclude that such a solution guarantess(3.63) is true (See
Figure 3.4).

(Proof of Fact 4) It follows from Proposition 3.2H

3.5.5 Conditional probabilities and conditional probapitiensity func-
tions

Before proving Theorem 3.4, in this subsection we need toensafew remarks
and introduce more notation, which will streamline our grobhis subsection contains

two parts: We start by introducing the notation for certaanditional probability density
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functions of interest, while in the second part we will derrecursive equations for the
time update of the conditional densities, and we will alstagba recursive expansion for

the cost associated with any given admissible pre-procesdicy Py 1.

Definition 3.27 Let a pre-processoP, r, implementing a decision policy as in Defini-
tion 3.16, be given. We define the following notation for ¢comaal probability densities,

which will streamline our proof of Theorem 3.4:

1. Define the conditional probability density function¥f given that only erasure

symbols were received by the estimator up until tinae follows:
def
Vele () = fypma=o,.. L0 (¥),  YER

2. Define the conditional probability density functionf given that only erasure

symbols were received up until tirfke- 1 as follows:
def
Ve|k—1 (y) = fYk|L1:O ..... L;_1=0 (y) ) yeR

Definition 3.28 We define the following streamlined notation for certainaional prob-

abilities of interest:

1. Define the probability that, under polidy, r, only erasure symbols have been re-

ceived up until timet:

o
£
I

0,....,Lp,=0) ifk>1

1 ifk=0
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2. Define the conditional probability that, under poliy r, the pre-processor trans-
mits the erasure symbol at tinke given that only erasure symbols have been re-

ceived up until time: — 1.

s PR, =0), ifk=1

Sklk—1 =
P(Rk:O|L1 =0,...,Ly_ :0), ow

Definition 3.29 Let P, r be a decision policy given as in Definition 3.16. liebe a
positive integer and; be a real number. For a positive integér define the function

pr : R — [0, 1] as follows:

pe() PRy =0[Y, =y, Ly =0,... Ly =0), (3.64)

wherey € R. The functiorp, (v) is the probability that, at timé, the erasure symbol is
transmitted, given thaY, = y, wherey is any real number, and the fact that only erasure

symbols have been received up until tilme 1.

3.5.6 Time Evolution

Now, we describe how the conditional probability densitpdtions presented in
subsection 3.5.5 evolve in time, for a given poliByr. For a real numbed, define the
conditional probability density function afY, given that no observation was received

up until timek under the decision polic®, :

a def
Vi) = favimi=o,. Ly=o (Y)

We denote by/\/agv the probability density function oWy, for all £, i.e., the Gaus-
sian zero mean probability density with varianeg, or more concretely\fggv (x) =
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L__¢ . Since the sequenddV,},_ isi.i.d., W is also independent dfv;}1_,

A/ 27r0€v

which implies that the following holds:
Velk—1 = Vi—1jk—1 * No2, (3.65)

Proposition 3.3 The conditional densities;,—, and -, are related via the following

time-recursion:

_ k-1 (@)pe(2) + (1= p) (1 — pe(y) Vi1 (y)

Velk(y) :
Skje—1 + (1 = Sppp—1)(1 — p) (3.66)
Skik—1 + (1 = Gp—1)(1 —p) #0, k>1
Proof: In order to arrive at (3.66), we use Baye'’s rule to write:
P(Lk = 0|Yk :y,LQ = 0,...,Lk_1 :0)
fYk\LO:O ..... L,=0 (y) = P (Lk: — O|L0 — 0, . Lp,— 0) fYk\LO:O ..... Li_1=0 (y)
(3.67)

The recursion (3.66) follows from (3.67) and by rewritingdécording to Definitions 3.27,

3.28 and 3.29. Equation (3.67) holds onlyif, 1 + (1 — ¢x—1)(1 — p) # 0, otherwise

.....

Definition 3.30 Given an admissible pre-processBs - and an integern € {0,7'} , we
adopt the following definition for the partial cost compufed the horizon{m, ..., T}

under the assumption thgt = 1:

T
T (a.0%.p,¢. Pur) 2 3" B [(Yk )+ ch] f0<m<T (3.68)

k=m+1

If m < 0orm > T we define7,,r (a, 0%, p, ¢, Prnr) to be equal to zero.

Remark 3.10 Given an integefn, we notice that the cost in (3.68) will not depend on the
value of the state at time:. This is so beause, according to Definition 3.21, sifge
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is admissible it holds that the current and futwetputof P,, » will not depend on the
current and past state observations. This Remark is an sxterof Remark 3.2, which

considered the case for = 0.

Proposition 3.4 Given an arbitrarily selected admissible pre-proces$rr, the finite

horizon cost (3.42) can be expanded as:

jO,T (CL, 0-{2/[/71)7 & 7)O,T)

; ((E’ykk |:(Yk - Yk> 2} + o j((ll__pg);?fl—)l(l — p)) Sk|k (3.69)

1

+ (C + Tk (a, 051/,]% & Pk,T)) (%—1 - (gk\k—l + (1 = Gre—1)(1 — p)) %—1))

~ \2] ge N2
Here we use the notatioﬁw [(Yk — Yk) } def E [(Yk — Yk) ILi =0,...,Ly = 0},

wherevy,,, is given in Definition 3.27.

Proof: We start by noticing that, by the total probability law, wenaaxpand the

cost as:

Jo,T (C% Oty €, PO,T)
T N2
:Z((E {(Yk—Yk> L, =0,....,Ly=0

+CP(Rk:1|L1:0,,LkZO))P(LQZO,,LkZO)

(3.70)
+CP(Lk:1,L1:0,...,Lk_1:0)
+FE [jk,T (a70[2/V7p7 ¢, PO,T) |Lk’ = 17L1 = 07 .- '7Lk—1 = 0}

-P(Lkzl,Ll:0,...,Lk_1:0)>
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We proceed by obtaining the following identities: We areeiested in computing the
following conditional probabilities:
PL=1Ly=0,..., Ly, =0)=
=P(L;=0,...,L,_;=0)—P(L; =0,...,L, =0)
=P(L;=0,...,Ly_; =0) (3.71)
— P(Lp,=0|L;=0,...,.Ly 1 =0)P(L;=0,..., Ly = 0)
= G1 — (Skp—1 + (1 — Gp—1)(1 = p)) Sk
PRy =1L, =0,...,L; =0)

:P(Rk:”Lk_l:O,,Ll:O)

P(L,=0R,=1,L;_;=0,...,L; =0) (3.72)

P(Ly=0Ly;=0,...,L =0)
_ (1-p)- Sk|k—1
Skjk—1 + (1 = Sep—1)(1 — p)
Notice that, using standard probability theory, frém},_, we can computéqk‘k_l}zzl

and vice versa. Here, equations (3.71) and (3.72) are alidl for £ = 1, since we defined

s = 1 andgp = ¢;. Finally, notice that from Remark 3.10, we conclude thedihg:

E [jk,T (C% Ty Ds €, Pk,T) Ly =1,L; =0,...,Ly_1 = 0} =Ter (C% Ty Ds €, Pk,T)
(3.73)

The proof of this Proposition is complete once we substi{8té1l), (3.72) and (3.73)

into (3.70).1

Definition 3.31 The following is a convenient definition for optimal cost:

Tz (a,0%,p,¢) E min T 1 (a,0%,p, ¢, Ponr) (3.74)

m, T

whereT > 1. If T = 0, we set7’, ; (a, %, p,¢) 2 0.
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From Proposition 3.4, we can immediately state the follga@orollary:
Corollary 3.2 The following inequality holds for every admissible preqessorP,
Jor (a,00,.p.¢, Por)
<<EM {<Yk - Ykﬂ i Shlk—1 j<(11_—p<)kngl_)l(1 - P)) Sk (3.75)

+ (c+ Tir (a. 03, p,¢)) (k-1 — (Skp—1 + (1 = hp—1)(1 — p)) §k—1)>

>

T
k=

1

3.5.7 Proof of Theorem 3.4

Before proceeding with the actual proof of Theorem 3.4, vadestemma 3.2,
which is a supporting result for the proof Theorem 3.4 anemrds$ existing results from
majorization theory (See Section 2.4.1). Before statingira 3.2, we need the following

definition.

Definition 3.32 Given a probability density functiofi: R — R and a Borel seK, such
that [, f(x)dz > 0, and a positive real constapt< 1 we define the probability density

function fx» as follows:

f(x) K
def T F@dat(1—p) Jog F@dz> T €
felz) = . e
(1-p)f(z) T ¢ K

T T @ o+ (1-p) Jarg F@)da

It is clear thatf% is also a probability density function.

Lemma 3.2 Let f,g : R — R be two probability density functions, such thjats neat
and even and - g. Letx be a real number in the interval € (0,1) and letp be a

real number such that € (0,1]. LetA = [—7, 7] be the symmetric interval, such that
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J7_f(z)dz =1 — k. For any functiom: : R — [0, 1] satisfying; g(z)h(z)dz =1 — &,
the following holds:

p. 9 h+(A—p(A-1)-g
fa -+ (1 —-pk

(3.76)

Proof: LetF € R be a Borel set withC (F) < oco. Sincef is even and quasiconcave,

it holds that,f(z) < f (“2), = € F\ [-52 50] and f(2) = f (), = €

[_@7 @} \ F. It follows that:

L(F)

/F f(x)dz < /_ P fa)de (3.77)

LE)
2

Sincef - g, and letF € R be a Borel set witlC (F) < co we obtain that:

L£E)
2

/F g(z)dz < /_ Ly, T (3.78)

We need to analyze two cases. The first case is wh@) < £ (A) = 27, which implies

= /]Fh(x)g(x)dx+/(1 — h(z)) g(x)dx (3.79)

F

zéh@w@mx+/krﬂnu—h@»mwm

F
The second case is wheh(F) > £ (A) = 27, which implies that") > 7.

£®)
2

[ r@ie= [ s [ s

+ / 7 fa)de > / h(z)g(a)de + / (1 = h(z)) g(x)dz

F F

We know that[”_ f(z)de =1 — k > [; h(z)g(x)dz. If we have that:
£

/_—T f(x)dx +/ f(z)dz > /(1 — h(z)) g(z)dx

2 . .
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It holds then that:

| e+ 0-p) ( / L flaia+ | & f(:c)d:c>

> /Fh(:c)g(:c)dx—l— (1 —p>/(1 — h(z)) g(x)dz

F

(3.80)

If we have that:

L{E)

/_:_m f(z)dx +/T i flx)dx < /F(l — h(z)) g(z)dx

Then the following holds:

It follows that:

L{E)
2

JREZE e ( / ( flada+ | f(:c)d:c>

> /Fh(x)g(m)dm—l— (1 —p)/(l — h(z)) g(x)dz

F

(3.81)

Multiplying the inequalities (3.79), (3.81) and (3.81) pyﬁl—)ﬁ and using Def-

+(1-p

inition 3.32, we obtain that for any Borel sBtwith £ (IF), there exists a set, i.e. the

interval [—@, @], such that:

LE)
2

P g(@)h(z) + (1 — p)(1 — h(z))g(x)
e A (T) 2/F T dx (3.82)

Equation (3.82) implies that:

p 9-h+(A—p(A—-h)-g
Jur l—k+(1-pk
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Our proof strategy is to show that for every pre-processor poly, there exists
a symmetric path-dependent threshold polig§;. which does not underperforf® r,
when evaluated according to Problem 3.5. This fact, whicldareote as-act B.1, leads

to the following conclusions:

e (Fact B.2): Lemma 3.1, in conjunction with Fact B.1, implies that atimpm for

Problem 3.5 exists and that it is of the symmetric threshgpe (Definition 3.24).

e (FactB.3): From Fact B.2 and Proposition 3.1, we conclude that symaotsiresh-
old policies (Definition 3.24) and Kalman-like estimatde(inition 3.20) are jointly

optimal for Problem 3.5.

Proof of Theorem 3.4:

We prove Theorem 3.4 by induction. L&} be an arbitrary admissible policy,
given in Definition 3.21, for this policy we will construct gremetric path-dependent pol-
icy Dg  given in Definition 3.25, which does not underperfafy)r. Hence it is enough
to search the optimum admissible poliy ;- for Problem 3.5 only on the set of symmet-
ric path-dependent policies. The optimal symmetric papehdent pre-processor policy

is given in Lemma 3.1 and it is actually a symmetric path-petedenpolicy.

Let T, the time horizon be equal to one. The pre-processor pahicy defines
the conditional probabilities |y, <;; from Definiton 3.28 and the conditional probability

density functionsy;o(y) and~,;(y) from Definition 3.27. The cost associated with the
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pre-processor polic, ; is given in Proposition 3.69:
jo,1 (07 UEV,Z% ) 730,1)
o\ (1 = p)sip )
=|FE Y, -Y + 3.83
( i K ' 1) } o+ (a0 —p)" (3.83)

+c (50— (s0 + (1 = sy0)(1 = p)) )

We need to construct a path-depedent pre-processor palicgince the time hori-
zon T is equal to one, we just need to select one threshold. Hege,is given in
Definition 3.25, i.e. ifly;| < 7o.1(lo) transmit the erasure symbol, otherwise transmit the
true value of the systerX;. Notice thatl, was set from the beginning to be equal to one,
i.e. the estimator knows the valuexqf. The pre-processor polidy; » has associated the
conditional probability density functionﬁ%(y) andyﬁ1 (y) from Definition 3.27 and the
conditional probabilitiesﬁ’o, gﬁ’l from Definiton 3.28. Choose the threshdlg, (1) such
thatgﬁ0 = ¢y It follows immediately thatﬁ1 = i1 The cost associated withy , is

given in Proposition 3.69:

\70,1 (a7 O-I%I/'u b, ¢, Dg,l)

B )2 c(1 —p)sip )
= (EJ%D1 |i<Y1 Yl) } + " I (1 — §1|0)(1 _p) S1a (384)

+c (0= (qap + (1 = j0)(1 = p)) )

We have used the fact th@ﬁo = G1j0 andgﬁ’1 = G-

We notice that%D'O(y) = mp(y) = Nz (y). From Lemma 3.2 it follows that
i is neat and even and thaf), - ~i;. Sincey{}, is neat and even, it follows that
Y, = E,p [Y1] = 0, and from Lemma 2.4 it follows thak,, , {(Yl _ ?1>2} >

E o {(Yl — Y1>2} , hence:

M1

jO,l (a7 012/V7p7 & 7)0,1) > jo,l (CL, 0-{2/1/71)7 C, Dg,l)
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Hence forT = 1, for any pre-processor polic$,; there exists a symmetric path-
dependent threshold polickg ,, which does not underperform, ;. It follows from
Lemma 3.1 that there exists an optimal policy, which is a sytnim path-independent
threshold policy.

Assume that for all time horizons in the sft, ..., 7 — 1}, the claim of Theo-
rem 3.4 is true, i.e. Problem 3.5 has an optimal policy, wh&l symmetric, path-
independent threshold policy. We need to show the claimHertime horizon equal to
T. Let’Py 1 be an arbitrary policy, this policy defines the conditionadabilitiescy; 1,
se/x from Definiton 3.28 and the conditional probability dendiinctions~,—1(y) and
Yek(y) from Definition 3.27, fork € {1,...,7}. We need to construct the symmetric
path-dependent threshold poligy; ;.. First we choosQTk}Zz1 positive real numbers,

and then we constru@ ;- as follows:

____Description of Algorithm Dy,

e (Initial step) Setk = 0,1y, = 1 (i.e. 1o = 1 and¢y, = 1) and transmit the current

state which will be received by the estimator, i®®.= vy = z or equivalently set

yo = 0.

e (Step A) Increase the time countér by one. Ifk > T holds then terminate,

otherwise execute Step B.

e (Step B) If |yx| < 7x holds then set;,, = 0, transmit the erasure symbol, i.e.,
o = v = €&, and return to Step A. Ify,| > 7, and if¢, = 0, thenv, = € and

return to Step A, ify,| > 7 and ifc;, = 1 hold then executs;; .
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__End of description of Algorithm Dy,

We remind to the reader th&¥, ;. is the optimal symmetric threshold policy, if the
initial time is k£ and the final time i§", or better said the time horizonTs— k. According
to Lemma 3.1; - is path-independent, and by the induction step, this padigptimal
among all admissible policies. Hence the poli2§, can be described as follows, if
Y| < 7, transmit the erasure symbol,|i¥;| > 7, send the true state of the process, if
the channel sends the true state safely then adopt the éptotnay from that point on.
The policyD§ - defines the conditional probabilitieg, ,, </}, from Definiton 3.28 and
the conditional probability density functiom%)‘,g_l(y) andy,ﬁk(y) from Definition 3.27,
for k € {1,...,T}. Choose the thresholiT;},_, such thatsh, |, = Gue—1 for all
k€ {1,...,T}, which implies that}, =, forallk € {1,...,T}.

The cost associated with the polig} ;- is given by Proposition 3.69:

2
\70,T a, 0w, p,C, DS,T)

g((ﬂy& [(Y’“ B Y’fﬂ " o +C((11_—p<);|z|i_)l(1 - p)) Sk

1

+

(¢ + T (a.0%,0,¢, DY p)) (k-1 — (Sepe—1 + (1 — 1) (1 — p)) <k—1)>

> (e [ (0w e

k=1

+ (c+ Tir (@03, p.¢)) (-1 — (Sklp—1 + (1 = p—1)(1 — p)) §k—1)>

We notice thaty{,(y) = mio(y) = N,z (y). From Lemma 3.2 it follows that),
is neat and even and thaﬁ1 > 711- From equation (3.65) and Lemma 2.3, we have
that 75‘71 = 721, @gain using Lemma 3.2 it follows tha;g?2 is neat and even and that
721?2 > 72)2. By an induction argument we conclude tFyéj,C is neat and even for all €

87



{1,...,T} and thaty?, = i forallk € {1,...,T}. It follows thatY, = Eyp [Yi] =

v

N 2
0forall k£ € {1,...,7}, and from Lemma 2.4 it follows that., , [(Yk - Yk> }

~ 2
E o {(Yk — Yk> } forall k € {1,...,7}. Using Corollary 3.2 we obtain that:

Vilk

\70,T <a7 012/1/7 D, ¢, D87T) S \70,T (a7 012/1/7 D, C, 7DO,T)

3.6 Infinite Horizon - Discounted Cost Problem

We will look now at the infinite horizon counterpart of Proinle.1. For this we
first extend naturally the definitions for the procé§s(Definition 3.1), the pre-processor
(Definition 2.2), the pre-processor algorithms (Definisdh6, 2.8 and 2.10) by letting
the time-horizorl” go to infinity.

We define the following cost:

° N2
T (a.0%.¢,P) L d'E (Xk _ Xk) + Ry (3.85)
k=1 communication co

We state now the infinite horizon counter part of Problem 2.1:

Problem 3.6 Let a real constant, the variance of the process noisg and the initial
conditionz, be given. In addition, consider that a positive reaand a positive real
numberd less then one specifying the cost as in (3.85). We want to findpéimal

solution’P* to the following optimization problem:

P* = arg min J(a,a3,¢,P) (3.86)
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We define the optimal cost for the infinite horizon cost:

I (a,08.¢) < inf T (a0, P)

We state now the theorem, which solves Problem 3.6:

Theorem 3.5 Let the parameters specifying Problem 3.6 be given, i.e.yv#riance of
the process noise?,, the system’s dynamic constantthe communication cost the
discount factord and the time horizof” are pre-selected. There exists a positive real
numberr and the sequence of positive real numbers= {7;}~ , with 7, = 7 for alll
integersk, such that the corresponding symmetric threshold pafigy, is an optimal
solution to (3.86) and the corresponding optimal estim&s$; ) is Z. HereS; - and

Z follow Definitions 2.9 and 2.5, respectively.

Proof: For the infinite time horizon, choose a horiZzérand adopt the following

policy:
o if the current timet is less thar¥” choose the optimal policy for time horizdr
e if the current time is greater thafi’ choose to transmit the current stag.

We note that for the infinite horizon case, this policy migbt he optimal, hence

we obtain the following inequalities:

dT_l
jOﬂ:T<a7 012/V7 C) S j*(a7 U%/V? C) S \70*,T<a7 012/V7 C) + cl —d (387)
Noting thatd < 1, taking the limit asl” goes to infinity it follows that:
jllm jOfT(av 012/Vv C) = j*(av U%/Vv C) (388)
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Since there exists a symmetric threshold policy, which tsogl for the finite hori-
zon case, it follows that the policy chosen to prove equat(B87) and (3.88) is a thresh-
old policy. Hence, for every positive numbethere exists a threshold policy applied to
the estimation error which gives a cost less t#fia, o, ¢) + €. It is enough to show
that it exists an optimal threshold policy for the infiniterizon case.

Just like in the finite horizon case, for the infinite horizase, we can restrict the
estimator to be linear estimatérgiven in Definition 2.5. The pre-processor can observe
the estimation erraK;, — aZ;_1, which follows the dynamics given in Definition 2.7. The

infinite horizon cost can be rewritten in terms¥Yf as follows:

[e.e]

T (a,0,¢,P) = d*" (E[Y} + cRy)) (3.89)
k=1

Just like in the finite horizon case, we need to solve a Markeviglon Process
problem, with the dynamics given in equation (2.14). We rteetefine the value function
for this problem. We define the value functidh: R — R, where for a real numbey,

V(y) is the cost-to-go when the initial estimation error is edoal. It holds that:

dT—l

Vor(y) < V(y) < Vor(y) + ‘T4 (3.90)
similar as in equation (3.87). It follows from equation @) %that:
V(y) = lim Vor(y) (3.91)

Moreover the limitin equation (3.91) in uniform gnwhich follows from equation (3.90).
Hence the properties of, ;- are inherited by, i.e. V is an even, bounded, continuous

and quasiconcave function, aidsatisfies the optimality equation:

V(y) = min (c +dEV (W), > + E [V (ay + W)]) (3.92)
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From equation (3.92), it follows that there exist a uniqueesholdr, which gives the

optimal policy andr is the solution of the equation:

v+ EV(ay+ W) =c+dE[V (W) (3.93)

3.7 Infinite Horizon - Average Cost Problem

We will look now at the infinite horizon average counterpdrPooblem 2.1. For
this we first extend naturally the definitions for the proc¥ss(Definition 3.1), the pre-
processor (Definition 2.2), the pre-processor algorithdefifitions 2.6, 2.8 and 2.10) by
letting the time-horizoA” go to infinity.

For this we define the following cost:

N2
Zgzl E |:<Xk — Xk> + CRk}
Tavg (a, o, C, 77) “/ Nim sup

3.94
T—o00 T ( )

We state now the infinite horizon average cost counter patablem 2.1:

Problem 3.7 Let a real constant, the variance of the process noisg and the initial
conditionz, be given. In addition, consider that a positive reapecifying the cost as

in (3.94). We want to find an optimal soluti@t to the following optimization problem:
P* = arg min Tavg(a, 05, ¢, P) (3.95)
We define the optimal cost for the infinite horizon average:cos

def .
Tvg (a,00,¢) lef 1%f Tavg(a, 05, ¢, P)
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We state now the theorem, which solves Problem 3.7:

Theorem 3.6 Let the parameters specifying Problem 3.7 be given, i.e.yv#riance of
the process noise?,, the system’s dynamic constanthe communication costand the
time horizonI” are pre-selected. There exists a positive real numband the sequence
of positive real numbers* = {7}~ ,, with 7, = 7 for all integersk, such that the
corresponding symmetric threshold poli§y ., is an optimal solution to (3.95) and the
corresponding optimal estimatai(S; ) is Z. HereS; ;- and Z follow Definitions 2.9

and 2.5, respectively.

Proof: We can show that the optimal estimator is linear, using tineesgechnique like

in the proof of Theorem 2.1. Just like in the finite horizonecage can restrict the
estimator to be linear estimatérgiven in Definition 2.5. The pre-processor can observe
the estimation erraX; —aZ,_1, which follows the dynamics given in Definition 2.7. The

infinite horizon cost can be rewritten in terms¥f as follows:

, ST (E[Y2+ cRy))
Tuvg(a, 08, ¢, P) =11rTnj£p k=1 T’“

(3.96)
Both in the finite horizon case and infinite horizon case (tisealinted cost) we
notice that, we always send a real numbe¥i{f > c. This follows from the dynamic
programming equations. After the real number is sent by theppocessor the process
given in Definition 2.7 is reset to zero. Just analyzing th&t ao (3.96), we notice that,
the pre-processor needs to sen¥{f > c¢. We can restrict ourselves to the policies, for
which the pre-processor will transmit the state of the psecéY? > c. Hence, at each
time, if the pre-processor sends¥if > ¢, there exist® > 0 such that with a probability

greater or equal tp, the pre-processor sends a real number the next time.
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There are two cases to be analyzed. First case is whgn < Y, < /¢, then
based on the policy adopted by the pre-processor the neatvgilabe eitheraY, + W,
or W;. We need to verify when-\/c < aY, + W, < /c. It follows that, if W, €
(—o0, —v/c(1+]a]))U(ve(l 4+ |a]),00) then—y/c > aYr+WioraY,+ Wy, > /c.
Hence, the probability can be taken to b8 (W, € (—oo, —v/c (1 + |a])) U (v/c (1 + |a]) , o0)).
The second case is whél ;| > /¢, then if W, € (—oo, —+/c) U (y/¢, 0),
Y41 > /¢, which implies that the pre-processor needs to send a reabeu Hence
we can take = P (W, € (—oo, —/c (1 + |a|)) U (ve (1 + |a]), 00)).
It follows that, the infinite horizon average cost problers ha optimal policy given

by the dynamic programming inequality:
h(y) + Joug(a, 0y, ¢) = min (¢ + E [h(W)],y* + E[h (ay + W)]) (3.97)

whereh : R — R is the value functionW is a generic random variable, Gaussian, zero
mean with variance?,. Moreover, there exists an increasing subsequédgk - |, such

that,0 < d; < 1, for all integerst and:

lim dy = 1 (3.98)

k—o0
Let V, be the value function of the infinite time horizon problemhwitiscounted cost,
given in Problem 3.6 and Theorem 3.5, with the dynamic’s taonts, the communication
costc, the variance of the process noisg and discount factot,. Then the value

function for the average cost problem is given by the follogvimit:

h(y) = lim (1 — di.) (Vi(y) — Vi(0)) (3.99)

k—o0
From equation (3.99), we notice that the functiofy) is even and quasiconvex,
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hence there exists a threshelduch that:

Y+ Eh(ay+ W) <c+ER(W)] < |y <7 (3.100)

3.8 Tandem Networks

We address the design of an optimal state estimation systaturing three blocks;
two pre-processoP; - andP; - and an estimataf. The pre-processd?; » has causal
access to the state of a first order, linear and time-invesigiem driven by Gaussian zero
mean, white process noise and, at each time instant, it taugolerasure symbol or a real
number. The pre-procesSBﬁvT has causal access to the output of the pre-proc@}gar
and it outputs a real number or an erasure symbol. The estithas causal access to the
output of the pre-process@rg,T and its output is denoted as state estimate. We consider
an optimization problem characterized by cost functiorsd ttepends on both the state
estimation error and the communication cost. In our forrnote the communication cost
is a function of the output of the pre-processors, if erasyrabols are sent is assigned
a zero cost and a pre-specified positive constants otherlmiseir formulation, the state
processes, denoted X5, is given and the three causal operatBys-, Pj and& are to

be jointly designed so as to minimize the given cost function

Definition 3.33 (State ProcegsGiven a real constant, a real number:, and a positive
real constani$,, consider the following first order, linear, time-invariaand discrete-

time system driven by process noise:
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Xo % 2, (3.101)

X1 “ aX, + Wy, k>0 (3.102)

where{W,}22, is white, Gaussian and zero mean stochastic processes aiitnees

o%,. The filtration generated b{/X;.}5°, is denoted as

XY o (Xp0<t<k) (3.103)

whereo (X4; 0 <t < k) is the smallest sigma algebra generatedXyfor all integerst.

Definition 3.34 (First pre-processor and first remote link procesSonsider an erasure
symbol denoted ag and a causal pre-process@ r : (o, ..., z;) — v}, defined for
k € {0,...,T}andv} € RU{€&}. Hence, at each time instahtthe preprocessor outputs
a real number or the erasure symbol, based on past obsenstib the state process.
Notice that a pre-processor generates a stochastic prof®sg;_, via the application
of the operatorP,  to the proces{X,}’_,. The mapP,r is a valid pre-processor if
the following two conditions hold: (1) The pre-processamnsmits the initial state, at
time zero, i.e.y} = . (2) The pre-processor is measurable in the sense that theeps
{Vi}I_, is adapted toY;.

The filtration generated byV;}7_ is denoted a3} }}_, and it is obtained as:

BL Y o (VL0 <t<k) (3.104)

wheres (V};0 < t < k) is the smallest sigma algebra generated 8, 0 < ¢ < k}, for
all non-negative integers.
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Note: Definition 3.34 is the same as Definition 2.2.

Definition 3.35 (Second pre-processor and second remote link propédsnsider an
erasure symbol denoted &and a causal magP;; : (vg,...,v;) — v3, defined for
ke {0,...,T} andv} € RU{¢} fori € {0,...,k} andv} € RU {¢}. Hence, at
each time instant, 77§7T outputs a real number or the erasure symbol, based on past
observations of the state procesB; ,, generates a stochastic procef¥; };_, via the
application of the operatoP; ;. to the proces{V, }/_,. The mapP; ; is a valid pre-
processor if the following two conditions hold: (1) The p@cessor transmits the initial
statev] at time zero, i.e.y? = v}. (2) The pre-processor is measurable in the sense that
the proces§ Vi}]_, is adapted td53;.

The filtration generated byVi}7_ is denoted a3} }/_, and it is obtained as:
BYs(Vio<i<k) (3.105)

wheres (VZ;0 < t < k) is the smallest sigma algebra generatedB?, 0 < ¢ < k}, for

all non-negative integers.

Definition 3.36 (Optimal estimate and optimal estimatpGiven the pre-processo@h{T
and P&T, we consider optimal estimators in the expected squareskesehose optimal

estimate at timé is denoted aX, and is expressed as follows:

e | B Xl{viti,] ifk>1
s (3.106)

where E [X;|{v,}}_,] represents the expectation of the st3tg conditioned on the ob-

served current and past outputs of the second pre-procéssf_,. We use€ (P; ., P; 1)
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to denote theptimal estimatorassociated with a given pre-processor policieﬁr and
Pir.

Notice that from Definitions 3.34 and 3.35 we assume that teg@mcessors al-
ways transmits the initial state,. Hence, the initial estimate is set to satisfy= v =

Remark 3.11 It is important to note that the pre-process‘l?g,T has more information
than the estimator and the pre-procesﬂgl;T, which implies that the pre-procesSl?g,T

can reproduce all computation performed at the estim&tand the pre-processd?g,T.
We define the following cost:

Definition 3.37 (Cost function fininte time horizon)Given measurable pre-processors
(Definition 3.34 and 3.35) , an estimator (Definition 3.36)eal constantz, a positive
real numberd less than one, a positive real constaijt, a positive integef’ and positive
real numbers:;; andc,, we define:
T 2
Jor (a, 0%, c1,¢2, Py, Por) = Z d*'E [(Xk - Xk> + Ry, + c2Pk} (3.107)
k=1

whereR,; andP,, are defined as follows:

p

0 ifvi=¢
def
R, = , k>0 (3.108)
1 otherwise
\
.
0 ifvi=¢
def
P, = , k>0 (3.109)
1 otherwise
\
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Problem 3.8 Let a real constant and the variance of the process noisg, that com-
pletely specify the state proce§X; }° ,, be given. In addition, consider that positive
realsc; andc,, the integerl” and a positive real numbet < 1 are given. We want to find

an optimal solutior(P&*T, P&*T) to the following optimization problem:

min  Jor (a, 09, c1, ¢2, Py Par) (3.110)
(PorPir)
Definition 3.38 Consider the ma@3 ;. : (vg, ..., vi) — v2, with given by:
P2 L1 1y def 1
Por i (vgs--,v5) = U (3.111)

Theorem 3.7 Let the parameters specifying Problem 3.8 be given, i.e.yv#riance of
the process noise?,, the system’s dynamic constanthe integefT’, the communication
costsc; and ¢,, and the discount factad are pre-selected. There exists a sequence of
positive real numbers* = {Tg}le, such that the corresponding symmetric threshold
policy S; - and theﬁg,T is an optimal solution to (3.110) and the corresponding i
estimatore (S ., P2 1) is Z. HereS; ., P2, and 2 follow Definitions 2.9, 3.38 and 2.5,

respectively.

Remark 3.12 The second pre-processor just passes the information fin@nfirtst pre-
processor to the estimator and then Problem 3.8 reducesdbl®m 2.1 with the commu-

nication coste; + cs.

Proof: We will show that Remark 3.12 is true, by proving that for eaelr of

pre-processor policie§P] ., P3 ) there exists another pa@S&T, 75§7T> such that:

2 1 2 2 1 N2
\707T (aa 0w, C1, Ca, 7DO,Ta P(LT) Z \70,T <a'7 Ow,C1, Co, SO,Tv PQT) (3112)
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First consider an arbitrary pa(rPg’T,P&T). We can assume, using Remark 2.1,
that whenever each of the pre-processor transmits a redbemitihey can transmit the
entire history of the process,, (for P; ;) or the proces¥; (for 75 ;).

We perform analysis on sample paths. Assume that there aBs (Wherngj
transmits twice a real number (or more that twice), bef@fe transmits a real number.
Consider the policiesP; ;. and P2 and for the estimator we pick(Pg .z, P2,) (we
do not pickE(P; 1, P3 ), which is optimal for(Pg ., P ). We defineP? ;. to perform
exactly likePg ., except for the cases where it transmits more consecutiwbers before
consecutive numbers befof , transmits. We restricfﬁaT to send only the first time
P§r used to send. Notice from Remark 3.11 tf®t, has all the information available
to P§7T, hence the decision c?P&T depends only on the proce3s,. We also adopt
75§7T = Py Itis clear that in this case the output of the estimatorfigse two cases
are the same, hence the estimation cost is the same, butrtirawacation cost for the

choice(Py ., P2,) is smaller, hence:
2 1 2 2 Pl D2
jO,T (CL, UW? 017 027 7D()J"? 7D(],T) 2 jO,T (a7 O-Wa Cl7 027 P(LT? PQT)

Hence, we can assume thia} » does not transmit, twice (or more) a real number
beforeP;  transmits a real number.

Assume that there are cases Wﬁ%{} transmits twice a real number (or more that
twice), beforeP; ;. transmits a real number. Consider the poIicﬂ@(;fT and7502,T and for
the estimator we pic (P}, P2,) (we do not picke (P;.4, P2 ), which is optimal for
(Per.Pir)). We defineP; . to perform exactly likeP; ., except for the cases where

it transmits more consecutive numbers befBfg. transmits. We aIIovV501,T to transmit
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only the last timeP&T was supposed to transmit. Notice from Remark 3.11 ?ga,t
has all the information available ®; ;,, henceP; . knows whatP; ;. has to do, and we
need to definé%T so it transmits at the same times7$,. In this case the output of
the estimators are the same, hence the estimation costdartie but the communication

cost for the choic¢P; -, P2 ) is smaller, hence:
2 1 2 2 Dl D2
jO,T (CL, Ow,C1,Ca, 7DO7T7 7DO,T) Z jO,T (aa 0w, C1, C2, 7DO,Tv 7D()7T>

We established the face that for each transmissioR gf there is a transmission
from POQ,T. We only need to establish the fact that they transmit in #meestime. Clearly,
because of the cases discussed abBye,transmits beforé>; .. Assume that at timé,
P&E transmits, and the corresponding transmissioﬁ&ajt takes place at, > k. Let
75§7T = 7502,T. Clearly, the communication costs are the same, but in tier lease the

estimation error is smaller, hence:
2 1 2 2 1 52
Jo.r (C% Ow, C1s 027730,% PO,T) = Jor (a7 Ow, €1, C2, PO,T77DO,T>

The result of Theorem 3.7 follows then from Theorem M1.
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Chapter 4
Multidimensional Counterpart of Problem 2.1

4.1 Introduction

We address the design of an optimal state estimation systataring two blocks;

a pre-processdP and a remote estimatdr. The pre-processor has causal access to ob-
servation of the state of a first order, linear and time-imrdrsystem driven by Gaussian
zero mean, white process noise and, at each time instaotputs either an erasure sym-
bol or a real finite dimensional vector. The estimator hasabhaccess to the output of
the pre-processor and its output is denoted as state estillvatconsider an optimization
problem characterized by cost functions that depends dmthetstate estimation error
and the communication cost. In our formulation, the comroation cost is a function of
the output of the pre-processor, where to the erasure syimlaskigned zero cost and a
pre-specified positive constant otherwise. In our formafgtthe state process, denoted
asX, and the two causal operatdPsand€ are to be jointly designed so as to minimize

the given cost function.

Remark 4.1 We note that the problem described in this chapter is theidmiénsional
counterpart of Problem 2.1 presented in Chapter 2. Mostetdéfinitions in this chapter

are similar to the definitions from Chapter 2, but we will rapthem for clarity purposes.
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{Xk};{:o {Vk};épzo {Xk};épzo
Por E(Por)

Figure 4.1: Schematic representation of the distributéichesion system considered in

Problem 4.1, which is the multidimensional counterpart@iffem 2.1 in Chapter 2.

4.1.1 Preliminary Definitions and Information Pattern Dgsn

We start by describing the three stochastic processes anaithclasses of causal

operators (pre-processor and estimator) that constitutproblem formulation.

Definition 4.1 (State ProcegsGiven a positive integet greater or equal to two, a real
square matrixA of dimensiom x n, and a positive definite matriXy, of dimension
n x n, consider the following first order, linear time-invariagiscrete-time system driven

by process noise:

Xo % 2, (4.1)

X © AX, + W, k>0 (4.2)

where {W,}T_ is an independent identically distributed (i.i.d.) Gawssizero mean
stochastic process with varianggy andz is a real vector of dimension. The filtration

generated by X, }7_, is denoted as:
def
X = o (X;;0<t<k) (4.3)

whereo (X;; 0 < t < k) is the smallest sigma algebra generated{B§;, 0 < ¢ < k}, for

all integersk.
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Definition 4.2 (Pre-processor and remote link procggsonsider an erasure symbol de-
noted as¢ and a causal maP,r : (xo,...,x;) — v (pre-processor), defined for
k € {0,...,T} andv, € R™ U {€&}. Hence, at each time instahf P, r outputs either
a real number or the erasure symbol, based on past obsensatb the state process.
The mapP, r generates a stochastic proceS€,.}7_, via the application of the operator
Po.r to the procesg X, }7_, (See Figure 4.1). The map, 7 is a valid pre-processor if
the following two conditions hold: (1) The pre-processamnsmits the initial state, at
time zero, i.e.V, = . (2) Py is measurable in the sense that the procges}/_, is
adapted taY;.

The filtration generated b{V}7_ is denoted ag 5, }7_, and it is obtained as:
def
By = o(Vi0<t<k) (4.4)

Remark 4.2 Notice that any finite vector of real numbers can be encodexdrsingle
real vector of dimension via a suitable invertible transformation. Hence, withoos$
of generality, we can also assume that the pre-processotreasmit either a vector of

real numbers of dimensianor the erasure symbol.

Definition 4.3 (Optimal estimate and optimal estimatpGiven a valid pre-processor
Po,r, we consider optimal estimator in the expected squarecesghsse optimal estimate

at timek is denoted a¥X, and is expressed as follows:

E [Xk|{vt}§:0} if k>1
T (4.5)

where E [X;|{v,}}_,] represents the expectation of the stitg conditioned on the ob-

served current and past outputs of the pre-proce$sgr’_, (see Figure 4.1). We us& P, 1)
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to denote th@ptimal estimatorassociated with a given pre-processor poliy; .

Notice that from Definition 4.2 we assume that the pre-preaealways transmits
the initial statery. Hence, the initial estimate is set to satisfy = vy = zo. Such an
assumption is a key element that will allow us to prove théaglity of a certain scheme,

via an inductive method.

Remark 4.3 Remark 2.2 is repeated here for emphasis. All the informadiailable
at the estimatoi€ (P, ) is also available at the pre-processé, r. Hence, the pre-
processorP,  can construct the state estimaXa, by reproducing the estimation algo-

rithm executed at the optimal estimator.

Remark 4.4 The definitions in this chapter are very similar to the defomis from Chap-
ter 2. This is natural since in these definitions we madeslittl no use of the dimension

of the system defined in equations 4.1 and 4.2.

4.1.2 The Two Blocks Problem - The Multi Dimensional Case

In this subsection, we define the estimation paradigm thagnsral to this chapter.
We start by specifying the cost, which is used as a meritrasitehroughout the chapter,

followed by the problem definition.

Definition 4.4 (Finite time horizon cost function)Given a valid pre-processoP
(Definition 4.2), a real square matriA of dimensionn x n, a positive integefl’, a

positive real numbed < 1 and positive definite real matrix,, and a nonnegative real
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numbere, we define:

T
e $ T $
Tor (A, Zw, e, Por) Z Y d1E (Xk - Xk> (Xk - Xk) + Ry
~~
k=1 communication co
(4.6)
where X, is the state of the system defined in (4.1)-(4%), is the optimal estimate

specified in Definition 4.3, ang,, is the following indicator function:

|0 ifve=¢
R, < : E>1 (4.7)

1 otherwise

Remark 4.5 (Cost does not depend aX,) This remark is similar with the Remark 2.3
from Chapter 2. Notice that because the plant (4.1)-(4.2nisar, the equalityty = xq
(see Definition 4.3), implies, in view of Remark 4.3, in marr A is known at the esti-
mator, that the homogenous part of the state can be repratlatthe estimator. Hence,
the optimal estimator will incorporate such an homogendeus, thus subtracting it out
from the estimation erroK, — X, for & > 0. This also implies that the cost (4.6) does

not depend on the homogeneous term nor on the initial camiXi,.
The following is the main problem addressed in this chapter.

Problem 4.1 Let be an integer. greater than one, real square matrix of dimension
n x n, the variance of the process noisk, and the initial conditionz, be given. In
addition, consider that a positive real a positive real numbed less then one and a

positive integefl’ are given, specifying the cost as in Definition 4.4. Find:

Por € arg win Jor(a, 0, ¢, Porr) (4.8)
0,7
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4.2 Optimal Symmetric Solution to the Two Blocks Problem

In this section, we start by defining a particular choice dinestor (section 4.2.1)
and pre-processor (section 4.2.3), which we denote as Kalik@and symmetric policy,
respectively. As we argue later on, in Conjecture 4.1, sstimator and pre-processor
are optimal for Problem 4.1, if we restrict ourselves to tlass of policies, to be defined

in Section 4.2.3.

4.2.1 A Kalman-like estimator

Definition 4.5 (Kalman-like estimato)y Given the process defined in (4.1)-(4.2) and a
pre-processofP, r, define the mag : (vy,...,vx) — 2z, for k in the set{0,...,T},
wherez,, is computed as follows:

20 déf To (4 9)

def Azk_l if Vg = ¢
2 . withk > 1 (4.10)

Uk otherwise

Remark 4.6 The Kalman-like filter generates the proce{é&sk}gzo via the operatorZ
applied to the processt}fzo. Notice that the pre-processor has access to the estimate

Z,. because it has access and full control of the input applied to

4.2.2 The SePr - of Admissible Pre-Processors

We proceed by defining a class of admissible pre-procesatiish is amenable
to the use of recursive methods for performance analysisaigiee in Remark 4.8 that

106



there always exist an admissible pre-processor that is malsolution to Problem 4.1.
This implies that we incur no loss of generality in constiragour analysis to admissible
pre-processors.

The following Remark provides an equivalent characteionabf the class of ad-

missible pre-processors.

Remark 4.7 LetT € N and letP, 1 be given. TherP, 1 is admissible if and only if for
eachm € {0,...,T} there exists a ma@,,r : (zm, ..., zx) — v and a binary process

{r;}"_,, such that the following holds:

Tm=1 = Pyr(tqy. . 2k) = Pur(Tm,...,xk), Zgyoo o, T ER" E>m>¢>0
(4.11)

Given an admissible pre-processBg r, later on we will also refer to the time-restricted

pre-processory P, v} _, according to Definition 4.6, or equivalently as implied by

(4.11).

Definition 4.6 (Admissible pre-processptet a horizonT larger than zero and a pre-
processor policyP, r be given. The pre-process®y  is admissible if there exist maps
Pt (T, x5) — v, With0 < m < T andk > m that satisfies the following

recursion:

Pm,T

¢ (Initial step) Setk = m, r,,, = 1 and transmit the current state, i.e,,, = z,,.

e (Step A Setk = k + 1. If £ > T holds then terminate, otherwise execute Step B.
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¢ (Step B Obtain the pre-processor output at tirady computing,,, r(zp,, . . ., Tx).
If Poo1(Tm,...,x,) = € then setr, = 0 andv, = € and go back to Step A. If

Pt (T, - .., 21) # € then execute algorithrRy, 7.

End of Algorithm for P,,,

The class of all admissiblere-processors is denoted &Bs .

Remark 4.8 Given a positive time-horizof, there is no loss of generality in restrict-
ing our search for an optimal pre-processor to the Bet Indeed, let an optimal pre-
processor policyP; - be given. If a transmission takes place at some timg-,, = 1
holds) then the optimal output at the pre-processaris= x;. Since, given that a real
number is transmitted, the choieg = x;, must be optimal because it leads to a perfect
estimatezr,, = z,,. Hence, given that,, = 1, by Markovianity we conclude that the
current and future output produced by the pre-procesSdy,}7_ = will not depend on
the stateX;, for timesk prior to m. ConsequentlyP; - satisfies (4.11), and hence it is

admissible.

4.2.3 Symmetric threshold pre-processor

Definition 4.7 In order to simplify our notation, we define the following pess:

Y, Y X, — AZy (4.12)
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Using Definitions 4.1 and 4.5, we find th{;lYk}Z:O can be rewritten as:

Y, =0 (4.13)

AY, + W, ifR,=0
Y1 = (4.14)

W, if R, =1
Remark 4.9 Y, has an even probability density function, sindg, has an even proba-
bility density function. This fact mak¢¥; }7_, a more convenient process to work with,
in comparison to{ X, }7_,. This motivates its use in our analysis hereon, whenever pos
sible. No loss of generality is incurred becay3é, }7_, can be recovered frofiX; }7_,,
and vice-versa, via the use ;. }7_,, which is common information at the pre-processor
and estimator (See Remark 4.6). In addition, notice thattst (4.6) can be re-written

in terms of{ Y }7_, as follows:
def -\ T -
Jor (A, Zw, ¢, Por) = Z d"'E {(Yk - Yk) <Yk - Yk;) + Csz] (4.15)
k=1

whereY, “ E [Y1[{V:}i,]. Akey fact here is tha¥, = X, — AZ;_; holds, leading

to the validity of the identityy ), — Y = X, — X.

We found that solving Problem 4.1 is quite difficult, hencemirestrict the search
for the optimal policies, only to a class of policies, whick will name symmetric poli-
cies. Towards defining the symmetric policies and the optsakution within this class

of policies we first define a class of sets and functions. W Isyadefining the star sets.

Definition 4.8 LetK C R" be Lebesgue measurable. We say thas a symmetric star

set if the following hold:
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e The sefK is symmetric, i.e. it: € K, then—z € K;

e The sefK is a star set, i.e. if: € K, thenax € K, for every real numbet € [0, 1].

Definition 4.9 Let f : R™ — R be an even nonnegative function. We say yhesta star

function if the level sets gf are star sets (Definition 4.8).

Next, we extend the definition of central convex unimodatrdiation from [38] to

nonnegative functions.
Definition 4.10 Let M be a positive real number. Let:

e {alg,a > 0,K C R", symmetric, compact and convesuch thain L (K) < M}

(4.16)
where£ (K) is the Lebegue measue We say that a nonnegative functign R — R
is central convex unimodal if there exists > 0, such thatf € Co{C,,}, where Co{Cy,}

is the closure £ (R™) topology) of the convex hull generated®y.
We denote by the set of central convex unimodal functions.

Remark 4.10 We note tha€,, in Definition 4.10 is the set of indicator functions of sym-
metric, compact and convex sets, scaled by positive reabatsysuch that iff € C,,,
then it holds that/,,, f(z)dz < M. It follows that if f € Co{Cy}, thenf can be ap-
proximated (inL (R™) sense) by linear positive combinations of indicator fuorasi of

symmetric, compact and convex sets. Moreover, it holdsfthat(z)dz < M.

Remark 4.11 The central convex unimodal functions are star functioas (3efinition 4.9).
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The following lemma from [38] will give some insight aboutetimain problem
from this chapter.

Note: By f * g we mean the convolution betwegrandg.

Lemma 4.l Let f and g be two central convex unimodal functions, thén ¢ is also

central convex unimodal.

Proof: Sincef andg are central convex unimodal, it follows from Remark 4.10,
that there exisf\/; and M, such thatf,, f(z)dz < M; and [;, g(z)dz < M, then it
follows that f « g is well defined and[,, f * g(z)dz < M;M,. LetK,; andK, be two
symmetric, compact and convex sets. Let’'s assumefthatly, andg = Ix,. It follows
that f % g is even and quasiconcave from [37]. Since an integrabley amd quasicon-
cave function can be approximated r{R"™) sense) by a positive linear combination of
convex, compact symmetric sets, the lemma is proved foiptriscular case.

Now let f and g be arbitrary central convex unimodal functions. Théand g
can be approximated by positive linear combinations ofdatdir functions of symmetric,
compact and convex sets, thén g is a linear combination of integrable, even and quasi-
convex functions, hence it is central convex unimodal. libfes that for general central
convex unimodal functiong andg, f * g is central convex unimod#.

Next, we extend the definition of monotone unimodal distiidoufrom [38] to non-

negative functions.

Definition 4.11 Let M be a positive real number. We defiia1,, to be the set of func-

tions as follows:

CMy = {f :R" - R, s.t. f(z) >0, Vo € R", / f(x)dx < M} (4.17)

n
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such that [, f(y)dy is non-increasing as a function af, for a € [0, c0), for all
x € R™ and all setsdD C R", whereD is compact, convex and symmetricflE CM,,

for some real numbed/, then we say that is monotone unimodal.

We denote by’ M the set of monotone unimodal functions. The following resul

from [38], which will be used later.

Lemma 4.2 Let f be a monotone unimodal function anthe a central convex unimodal,

thenf x g is a monotone unimodal function.
We define yet another class of functions related to Defirstibd0 and 4.11.
Definition 4.12 We define€ L to be the set of functions as follows:
CL={f:R"—=R, s.t. f(z) >0, Vr € R"} (4.18)

such that/”_ f(ax + By)dg is non-increasing as a function ef for « € [0, c0), for all

7> 0andforallz, y € R".
Lemma 4.3 It holds thatC ¢ CM c CL

Proof See [38].0
We now define a class of symmetric pre-processor policiesreafeict the search

to the optimal pre-processor policy to the class of poligigen in Definition 4.14 .

Definition 4.13 (Algorithm D,, ) Given a horizoril’, consider a sequence of set func-
tionsT {Tourlm <k <T,1 <m < T}, withZ,,; : {0,1} % — B(R") such that
Tk (T, - - ., Tk—1) IS @ symmetric setiR” for all r,,,, ..., 1 € {0, 1}, is given, where
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B (R™) denotes the Boret-algebra generated b™. For everym in the set{1,...,T},

we define the following algorithm, which we denotedgs;:

Algorithm D,,,

¢ (Initial step) Setk = m, r,, = 1 and transmit the current state, i.e.,, = x,,, or

equivalently sey,, = 0.

e (Step A)Increase the time countérby one. Ifk > T holds then terminate, other-

wise execute Step B.

o (Step B)If yx. € Tp i (m, - - -, Tk—1) (@ISO—yx € Ty i (rims - - ., 7x—1) from symme-
try) holds then set, = 0, transmit the erasure symbol, i.e;, = &, and return to

Step A. Otherwise execu®, ;.

End of Algorithm D,,,

Recall thatr, throughr,_; represent past decisions by the pre-processor, where 1
indicates that the state is transmitted to the estimatomag¢t, whiler, = 0 implies that

an erasure symbol was sent.

Definition 4.14 (Symmetric policy Given a horizor?’, consider that a sequence of func-
tionsT % {Tilm <k <T,1 <m < T}, with7,,; : {0,1}™% — B(R"), is given.

The symmetric pre-processor associated Witls implemented via the execution of the algorithgy,,

as specified in Definition 4.13. We denote such an admissiélprmpcessor ad, . We

useD, r to denote the entire clasd symmetric pre-processors with time horizbn
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We will define a special class of the symmetric pre-procepsticy, namely, the

ones which are path-independent.

Definition 4.15 Given a positive integer horizdhiand an arbitrary sequence of symmet-
ric star setsr = {T,},_,, Tx € B(R"), for eachm in the set{0, ..., T}, we define the

following algorithm fork > m, which we denote aS,, :

Algorithm S,,,

e (Initial step) Setk = m, r,, = 1 and transmit the current state, i.e.,, = x,,, Or

equivalently sey,, = 0.

e (Step A)Increase the time countérby one. Ifk > T holds then terminate, other-

wise execute Step B.

e (Step B)If y, € Ty(also—y, € Ty) holds then set;, = 0, transmit the erasure
symbol, i.e.p, = &, and return to Step A. If ¢ Ty holds then set» = &k and

executeS,, 7.

End of Algorithm S,,,

We note from Definitions 4.13 and 4.15 that the differencéaéen the Algorithms
D,,r andS,, 1 are the facts that in Definition 4.15, the s&jsdo not depend on the past

decisions and are symmetric star sets.

Definition 4.16 (Symmetric threshold poligyThe algorithmS, r, as in Definition 4.15,

is denoted as symmetric threshold pre-processatthe class of all symmetric threshold policies

is denoted aS .
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The Problem 4.1 proved to be quite difficult to solve even ifrestrict the search of the
optimal policies to the symmetric policies. since we do maiw how to prove the general
result, we just state a conjecture, which we believe to beecarWe were able to prove

the conjecture only fof” € {1,2}

Conjecture 4.1 Let the dimension, the variance of the process noisg,, the system’s
dynamic matrixA, the communication costthe discount factod and the time horizofi’
be given. There exists a sequence of star sets {Tz}le, such that the corresponding

symmetric threshold polic§; ;- is an optimal solution to:

Sor €arg_min  Jor(A, Xw,c, Por) (4.19)

Po,r€Do, T

and the corresponding optimal estimat®(S; ;) is Z. HereS; ,» and Z follow Defini-

tions 4.15 and 4.5, respectively.

4.3 Auxiliary optimality results

Proposition 4.1 Let D, be a pre-selected path-dependent symmetric thresholdypoli
(Definition 4.14), it holds that the optimal estima®{D, ) is Z, as described in Defi-

nition 4.5.

Remark 4.12 Proposition 4.1 could be recast by stating trﬁk = 7, holds in the

presence of path-dependent symmetric threshold pre-psocs.

Proof: (of Proposition 4.1) In order to simplify the proof, we defi{lﬁk}{zo as

the process quantifying the error incurred by adopting antéal-like estimatoZ (See
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= X, — Z. More specifically{X;}7_, can be equivalently

Definition 4.5), i.e. X,
expressed as follows:

Xo=0 (4.20)

i AX, + W, ifRy, =0
Xjp1 = , 0<k<T-1 (4.21)

0 if Ry =1
The proof follows from the symmetry of all probability detysfunctions involvingX
andV,. More specifically, under symmetric policies the probapitlensity function of
X, given the past and current observatigig }_,, is even. Hence, we conclude that

E[X|{V:}£,] = 0, which implies thatX, & E[X,[{V,}r ] = Z;. ®

4.3.1 Optimizing within the clasBr

Remark 4.13 If D, 1 is a symmetric path-dependent threshold pre-processer [sdi-

nition 4.14) therlY,, = 0 holds, leading to the following equality:
T
Jor (A, Sw, e, Dox) =Y d*'E[Y[Yy+ Ry, Doy €Dy (4.22)
k=1
The process defined in (4.14) is a Markov Decision Process{Mihose state and
control areY,, andRy, respectively. Hence the minimization of (4.22) with resp®
pre-processor policieP, r in the classD; can be cast as a dynamic program [13]. To
do so, we define the sequence of functidhg : R* — R, ¢t € {1,...,7 + 1} which
represent the cost-to-go as observed by the pre-procéssia@T represents the horizon,

while ¢ denotes the time at which the decision was taken, and thenangfof the function

is the MDP stateY,. In order to simplify our notation, we adopt the conventibatt
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Vri1r(Yri1) «f 0, yr11 € R™. Using dynamic programming, we can find the following

recursive equations for, r(v.), t € {1,...,T}:

Vir(y) < Ier?onl} Cor(ye,me), t €{1,.... T} (4.23)

T

whereC, r : R* x {0,1} — R is defined as:

def c+ dE [Vt+17T(Wt)] |f Ty = 1
Ct,T(yt, Tt) = (4-24)

yéryt +dFE [Vt-‘rl,T (Ayt + Wt)] if Ty = 0
From (4.24) it immediately follows that an optimal decisjaolicy r; at any timet
is given by:

L if Cor(ys, 1) < Cor(ye,0)
= (4.25)

0 if Cor(ye,0) < Comlye, 1)

Using the MDP given in Definition 4.7 and the value functiomsi equation (4.23),
we discuss the following Remark, which states that if Cajex4.1 is truewithin the
class of symmetric pre-processdig (Definition 4.14) there exists an optimal path-

independensymmetric threshold policg;  (Definition 4.16) for Problem 4.1.

Remark 4.14 Let the dimension of the systemthe variance of the process noisg,,
the system’s dynamic matrix, the communication cost the discount factod and the
time horizorl” be given. Consider Problem 4.1 with the additional consirthat the pre-
processor must be of the symmetric tfjpespecified in Definition 4.14. If Conjecture 4.1
is correct, then there exists an optimal patitependensymmetric threshold polic§j .,

as given in Definition 4.16, and the associated star $&ts};_, have the boundaries
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given by the solution to the following equations:

Ct,T(ym O) = Ct,T(yt; 1), t - {1, e ,T} (426)

From (4.25), we conclude that in order to show that Conjectud is true, we
only need to show that there exist symmetric star $&g7_, for which the following

equivalences hold:

Yt ¢ T;fk — Ct,T(yt7 1) < Ct,T<yt7 0)7 te {17 s 7T} (427)

Indeed, if (4.27) holds then the optimal strategy in (4.25) be implemented via a thresh-
old policy. Similar to the scalar case from Chapter 2, we usk the following facts (A.1

thorugh A.4):

e (Fact A.1): For everyt in the set{1,...,T}, C.r(y, 1) depends only on, i.e., it

is a time-dependent constant independeny; of
e (Fact A.2): It holds thatC; +-(0,0) < C; (v, 1) for y, € R™.

e (Fact A.3): For everyt in the set{1,...,T} there exists a symmetric star dét
such that; r(y:,0) > Crr(y:, 1) andCe 7 (—y:, 0) > Cer(—yt, 1) hold for everyy,

satisfyingy, ¢ U,.

e (FactA.4): It holds that for every positive constait, the functionV/ —min (M, C; r(y:, 0))
is a continuous, and belongs to the functionGE&t given in Definition 4.12 , for

every set inthe set{1,...,T}.

Facts A.1 and A.2 follow directly from (4.24), while Fact Af@llows from Fact
A.4. The only difficulty is to prove Fact A.4, which we will digss later. At this point
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we assume that Fact A.4 is valid, and we proceed by noticiatgctntinuity ofC; (v, 0)
with respect tay;, as well as Facts A.2 and A.3, imply that the equations inA4have at
least one solutioAT; }7_,. Moreover, from Facts A.1 through A.4 we can conclude that
such a solutio T }7_, guarantees that (4.27) is true.

(Discussion of Fact 4)Sincey/y, is an even, convex, unbounded and continuous
function ofy;, from (2.20) we conclude that it suffices to prove by inducticat); 7(y:)
is even bounded, continuous and belong to the set of furetidn for eacht in the set
{1,...,T}.

SinceVr.1 r(yr+1) = 0 holds by convention, the following is true:

Vrr(yr) = min (c,yfyr),  yr€R

From equation (4.24), it follows th& r = yLyr. Hence Fact A.4 holds trivially.
It follows then, that/r 1 (yr) is an even, quasiconvex, bounded and continuous function

of y. It follows that the function:

g(yr) =c—Vrr(yr)

IS an even, continuous, bounded and quasiconcave funatibmas a compact support

(which implies that it is integrable). It follows from Lemmdal that the function:
Elg(Ayr—1 +Wr_y)]| =c— E Vrr (Ayr_1 + Wp_)]

is an even, continuous, bounded and monotone unimodaliéumctt follows that the

decision set for:

min (C + FE [VT,T (WT—I)] ,y%_lyT_l + F [VT,T (AyT_l + WT—I)]) (428)

119



is a unique star set. We notice that the expression in equia8) is in facr_1 1 (yr—1).
The question is, whethéir_; + (yr—1) iS monotone unimodal. If this is the case then we

can conclude that the decision set:
min (C + F [VT—LT (WT—I)] ,y%_zyT_g + FE [VT—l,T (AyT_z + WT—I)]) (429)

is a symmetric star set.
We were able to prove that the functiobs, for ¢t € {1,7 + 1} are monotone

unimodal if it holds that, for any monotone unimodal funatitx
g(x) = max(f(x),C)—C (4.30)

is monotone unimodal, for any positive real numberThis latter question, however, is

open.

4.4 Decision Sets Need NOT Be Convex

The results from Chapter 2 tell that for the scalar probldme, decision sets are
symmetric intervals. One immediate thought would be to khktthe decision sets in
the multidimensional case are symmetric convex sets. |h {ié author investigates the
policies associated to Problem 4.1, by looking only at sytnimeonvex sets. In this
section, we present a simple numerical example where we staithe symmetric con-
vex sets are not optimal for Problem 4.1, even if we restucselves only to symmetric
policies.

LetXy =1, A = diag(1,7),T = 2 andd = 0.99.

Notice that in the provious section, we have already prowedfor 7' = 2, the
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decision sets are star sets. We will show here, in the figuelesithe value function; -

and the decision set far = 2.

Figure 4.2: The value functioy, , on the sef—2.5,2.5] x [—2.5,2.5]

In the figures below, we show the decision set at timel.

Figure 4.3: The sél; on[—2.5,2.5] x [—2.5,2.5]

It can be clearly seen, especially in Figure 4.3 that th&l'sé$ not a convex set.
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Chapter 5
Basic Network Topologies with Noisy Transmission Links

5.1 Introduction

In this chapter, we will approach an estimation problem witmmunication cost,
but the cost will be different than in the previous chaptdrschapters 2, 3 and 4, the
cost is taken to be a positive constant, while in this chagtercommunication costs will
have the meaning of transmission power and will be the seowmdent of the random
variables, which represent the signal send over a commiiprndank. Moreover, we will
study systems, which consists from more than two agents adilvanalyze how this
fact will affect the optimal policies and we will also looktaansmission noise which will
affect the communication. In this chapter, we investigatetio| strategies for a scalar,
one-step delay system in discrete time, i.e., the stateeofyistem is the input delayed
by one time unit. In contrast with classical approaches biee control action must be a
memoryless function of the output of the plant, which casdise current state corrupted
by measurement noise. We adopt a first order state-spacesespation for the delay
system, where the initial state is a Gaussian random varialol addition, we assume
that the measurement noise is drawn from a white and Gaugsiaass with zero mean
and constant variance. Performance evaluation is cardédia a finite-time quadratic
cost that combines the second moment of the control signélttee second moment of

the difference between the initial state and the state afinlétime. We show that if
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the time-horizon is one or two then the optimal control isnedir function of the plant’s
output, while for a sufficiently large horizon a control tagion only two values will
outperform the optimal affine solution.

Consider the following discrete-time delay system:

X(k+1) = U(k), k>0 (5.1)

Y (k) = X(k) + V(k), k>0 (5.2)

whereV (k), U(k), X (k), andY (k) take values on the reals, and they represent the mea-
surement noise, input, state, and output of the plant, odispdy. In addition, we assume
that the initial stateX (0) is a Gaussian random variable, with zero mean and variance
oi. The measurement noi$® (k) }2, is white, Gaussian, zero mean and with constant
variance given by?.. We also assume that the noigé(k)},-, and X (0) are mutually

independent. In this chapter, we will investigate the follay problem:

Problem 5.1 Leto? ando? be pre-selected positive constants representing the negia
of X(0) andV (k), for all £ € {0,...,m — 1} andm be a given integer denoting the
length of an optimization horizon. Consider that the systiescribed by (5.1)-(5.2) ac-

cepts a control strategy of the following form:

Uk) = Fo(Y(R)), k€ {0,...,m— 1} (5.3)

where, for eacht in the set{0,...,m — 1}, 7, : R — R is a Lebesgue measurable

function. Given a positive real parameterwe wish to determine Lebesgue measurable
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functions{F; }7*-;' that minimize the following cost:

TUFSEL 0.02,02) < E[(X (m) — X(0))?]

m—2 (5.4)

In Figure 5.1, we present a graphic interpretation of ProlBel. Notice that Problem 5.1
can be viewed as an optimal control problem aimed at the defig memory element
capable of storind( (0). The memory element must be constructed using a one-steyp del
and memoryless component$;}7"', which are used in a feedback configuration. In
addition, the memoryless control has access to noisy measunts of the delay’s state.
Minimizing the cost function defined in (5.4) amounts to fimglithe minimal energy
memoryless control that leads to the optimal recover¥ f) from Y (m — 1), in a mean
square sense.

The following is the organization of this chapter (introtdan not included):

e In Section 5.2 we derive the optimal solution to Problem 5.1, subject ®o¢bn-
straint that the feedback mapg; };"-,' are affine. We also show thatif is one or

two then affine solutions are optimal over all feedback maps.

e In Section 5.3 we adopt a class of functiofs7, } "~ that take on only two values
for each stegk. Givens? ando?, we show that there exista for which the two
valued strategy outperforms the optimal affine control ardprovide numerical

examples, and in the end we discuss conclusions and op&sissu
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Figure 5.1: Graphical interpretation to Problem 5.1.

5.2 Optimal affine memoryless control

In this section, we solve Problem 5.1 under the constraattte functiond 7. } '

are affine. In particular, we adopt the following steps:

We start this section by defining an auxiliary problem (Peobl5.2), in which
we adopt the cosE [(X(0) — X(m))2] subject to an upper bound constraint on

"2 E[U(k)?], whereX (k) andU (k) are as defined in Problem 5.1;

Proposition 5.1 below solves Problem 5.2, for two stagesH 2), for the special

case where the initial noise is set to zevg({) = 0);

In Lemma 5.1 below, we find the optimal solution to Problem Subject to affine

memoryless control strategies;

In Proposition 5.2 below, we give the optimal solution of e 5.2, for two

stagegm = 2), and we show that the optimal memoryless policy is affine;

The main result of the section is given in Theorem 5.1, in Whiee optimal cost of

Problem 5.1 is computed subject to affine memoryless costralegies.

Problem 5.2 Leto? andoi be pre-selected positive constants representing the negia

of X(0) andV'(k), for all £ € {0,...,m — 1} andm be a given integer denoting the
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length of an optimization horizon. Consider that the systiescribed by (5.1)-(5.2) ac-

cepts a control strategy of the following form:
Uk) =Fp(Y(k)), ke {0,...,m—1} (5.5)

where, for eacht in the set{0,...,m — 1}, 7, : R — R is a Lebesgue measurable
function. Given a positive real parametgrwe wish to determine Lebesgue measurable

functions{F, };*-;' that minimize the following cost:

CH{FN o2, 08) E (X (m) — X(0))?] (5.6)
S.t. Z_ E[U(k)*] < (m —1)opy (5.7)
k=0

Using standard Lagrangian relaxation [39], it is readilyified that there exists a positive
real numbel, such that the optimal solution of Problem 5.2, is also amugdtsolution

of the problem.

min | E[(X(m) ~ X(0)] + 0y EU(K?
{Fr}io k=0

with X (0), X (m) andU (k) defined as in Problem 5.2, whesés the Lagrange multiplier
associated with the constrait; > E[U(k)?] < (m — 1)o?~. Hence, using Lagrangian
relaxation we can recover Problem 5.1. We will show later iedrem 5.1, that, sub-
ject to affine memoryless control and under some additiomadiitions, Problem 5.1 and
Problem 5.2 share an optimal solution. We introduce Prolietrbecause it will aid in
the solution of Problem 5.1, subject to affine memorylessrobn

The following proposition is an important supporting régaf this section. It pro-

vides a solution to Problem 5.2, for the particular case,re/he is two and the initial
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noise is set to zerd{(0) = 0). Our proof uses a result in [40], where a similar problem

was analyzed. In Figure 5.2, we present an alternativepretation of Proposition 5.1.
W

X Z(0 Z(1
Go v ) G 2

Figure 5.2: Graphical interpretation to Proposition 5.1.

Proposition 5.1 Given strictly positive real numberg; and o3, let X and W be zero
mean Gaussian independent random variables with variaricand o3, respectively.

For a positive real numbes?, define the optimal cost:

« def . . 2
J = 3351E (X —Z(1))°] (5.8)
stE[Z(0)’] <o (5.9)

where Z(0) and Z(1) are random variables defined &(0) < g, (X) and Z(1) &

G1 (Z(0) + W) respectively, andj, and G, are Lebesgue measurable functions. The
following holds:
2
* 2 a

and the functiong;; and Gy, which minimize the cost, are linear and given by:

% o % ox 0O

Proof: Using standard optimization techniques (e.g. page 24391),[8ve can verify

that there exists a positive real numbersuch that the problem in the statement of the
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proposition, shares an optimal solution with the problem.

min £ (X — Z(1))*] + nE [Z(0)?] (5.10)

whereX, Z(0), Z(1) andgG, andg, are defined in the statement of the Proposition and the
positive numbey is the Lagrange multiplier associated with the constraing (0)?] <

o%. Basar and Bansal proved in [40], that an optimal solutio(bcf0) is given by linear

Gy andg;. This implies that there exists a linear optimal solution(&8)-(5.9), hence

it suffices to consideg;(z) = ax andg;(xz) = bz, wherea andb are real numbers.
Equivalently, we can consider th&{0) = «X andZ(1) = abX + bWW. The problem in

the statement of the Proposition becomes:

min B [((1 — ab) X — bW)?]

a,b

s.t. £ [azXﬂ < g2

Knowing that the variance ok is %, the variance ofV is o7, and thatX andW are

independent, the problem becomes:

mibn(l —ab)’o% + V2o,

(5.11)

S.t. a2a§( < o?
By the first order necessary condition (page 243 in [39]){tieroptimale* andb*, there

exist a nonnegative real numbesuch that:
— 20" (1 — a*b*)o% + 2\a* 0% =0 (5.12)
—2a*(1 — a*b*)o% + 2b* 07, =0 (5.13)
Let us assume that= 0. If X takes the value zero, then, from (5.12), it follows that

b* =0o0r1—a*b* =0.If b* = 0, from (5.13), it follows that.* = 0. If 1 —a*b* = 0, then
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it follows thatb* = 0, which contradicts the condition that— «*b* = 0. This implies
that, if the optimal\ is equal to zero, thea* = b* = 0 and the optimal cost ig* = 0%.
Let us assume that # 0, then the constraint from equations (5.11) is active, which

implies that* = S-ora”=——.Lleta" = *, then, from equation (5.13)F = -9

2 2
oc+oy,

In the same way, we show that,df = — thend* = —-25-. In both these cases
w

J* = o% <1 — ﬁ) < 0%. The value of the cost when= b = 0 is 0%, hence, the

constraintin (5.11) is active and the optimal solution igegibya* = pee andb* = X9

2 2
o +0W

orbya* = — andb* = — X%

T 52452 "
0+0W

Therefore the functions:

Gi(z) =+ 2z and Gi(z) = X7

2 2 L
ox o+ oy

are the optimal solution to (5.8)-(5.9) and the optimal ¢gist

Lemma 5.1 describes the solution of Problem 5.2, subjecftfimeamemoryless
policies. Before stating Lemma 5.1, we define a class of affiemoryless strategies of

interest.

Definition 5.1 Let all parameters defining Problem 5.2 be given. Let the reathbers
{(A(k)}7—, and{B(k)}/~, be given. Define the class of affine memoryless strategies as

follows:

Uk) @ \k)Y (k) + B8(k), k€ {0,...,m—1} (5.14)

(5.15)
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In view of equation (5.1) a direct consequence of (5.14) isa¢ign (5.16) below
(setk =m —1).

X(m) Y Am - 1Y (m—1)+ B(m—1) (5.16)

Consider the following cost:

Ca (PR 1B o3, 08) < B(X(m) = X(0)7)  (B17D)
which must be computed with the control (5.14) applied t@)%5.2).

Definition 5.2 Given real a positive constant define the following optimal cost:

* de : m— m—
Ch (m,, o2, 0‘2/) e min ~ Cy ({)\(k‘)}k:(]l, {B(k)}=, o0, 0‘2/) (5.18a)
{(A®),B(R) L,

m—2
st. Y E[UK)’] < (m— 1)o7 (5.18b)
k=0
whereU (k), k € {0,...,m — 2} are defined in equation (5.14).

Lemma 5.1 Let all parameters defining Problem 5.2 be given and,lbe a positive real
number. Adopt an affine memoryless control strategy, asngivequation (5.14). The

following holds:

m—1

2
Cy (m,v,02,08) = of <1 __% 7 ) 5.19
A( 7,00 V) 0 Ug+g‘2/ (1+’Y)m_1 ( )

and the optimum is reached by selecting the following affinetfons:

B(k) =0,k e {0...m—1} (5.20)
I

A(0) = o (5.21)
_ 2 _

A(k) = T ke{l...m—2} (5.22)

m—1
o2 ~ > o2
Am —1) = |5 -9 5.23
(m=1) o8 + o <7+1) Yo + oF ( )
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Before we prove Lemma 5.1, we need to state and prove two stigpoesults.

Lemma 5.2 Let all parameters and cost function defining Lemma 5.1 bergivGiven

the positive numbergs?}™" ", ' define the optimal cost:

C, <m UO,O'V,{ 2} ) = min Ca ({)\( ) e 017{6( ) o 7‘737‘7\2/)

(CNONIO)) Jiars
(5.24)
st. E[Uk)) =044, ke{0...m—2} (5.25)
Then the following holds:
m-l o
i (mad i) - (1-T5%%) =
2 2 o
EX ()= ot IT 2570
and the optimum is reached by selecting the following affinetfons:
B(k)=0,kc{0...m—1} (5.27)
Ak) = 2‘7’%“2, ke{0...m—2} (5.28)
op + oy
Am—1) = ﬁ \/ % \/ % (5.29)
palie 02-2 + 0‘2/ afn_l + O'%/

Proof: We notice that the affine functions at each step with {0,...m — 2} act only
as scale factors. Because of linearity the values of\ttig’s & € {0,...m — 2} appear
immediately the way they are written in equation (5.28)n — 1) can be computed using
the fact that”(m—1) is Gaussian, henc€(m) = E[X (0)|Y (m—1)], and with the values
of 5(k) = 0, Vk. Note that the values of(k) are not unique. It is straightforward to show
that if we take a even number of parametefs), whenj(k) = 0 and flip their sign the
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value of the cost, given in the statement of the theorem, irsthe same. However, the
values for(k) are unique, i.e. if there exists at least one index {0, ..., m — 1} such
thatb(k) # 0, then the cost will be larger than the one from equation (5.26

First we will show that the optimak(k) # 0, for all £ € {0,...,m — 1}, then

we will prove by induction that the costs ({\(k)})', {B(k)}i, 02, 0%) is lower

bounded byo? (1 Tt ngfazv) from equation (5.26) for al\(k) and 5(k), k €
{0,...,m — 1} which satisfy the constraint from equation (5.25). Then,shew that
the cost from equation (5.26) can be reached by selectingatues for\(k) and 5(k)
from equations (5.28), (5.29) and (5.27). Finally, we whibgv that the optimal values for
B(k), forall k € {0,...,m — 1} are always zero. We process now through these three
steps.

We first show that for a generah, there is nok € {0,...,m — 1} for which
A(k) = 0. Assume that exists suchkathenU (k) = 3(k), which will be just a constant,

and all theY' (1), ! > k will be independent o (0), which will make X (m) independent

of X (0). Hence, the cost function becomes:
E[(X(0) = X(m))*] = E[X(0)*] + E[X (m)’] > 09

but the values oA (k) and3(k) from equations (5.28), (5.29) and (5.27) satisfy the con-
straints from equation (5.25) and have the associatedmstdquation (5.26) which less
theno?, hence we conclude that the optimdk), £ € {0,...,m — 1} are always non
zero. Since we showed that the optimal valuesXgr) are non-zero we will consider

from this point on thai (k) # 0 forall & € {0,...,m — 1}.
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Second, we show that the cost from equation (5.26) can béedday selecting
the values for\(k) and 5(k) from equations (5.28), (5.29) and (5.27). It is a standard
computation to show that the lemma hold far = 1 and form = 2. Form = 1,
X(1) = E[X(0)]Y(0)], due to the Gaussianity of (0) and the noise, and the result is
immediate. The results fon = 2 are found also in the proof for Proposition 5.2. Assume
that the claim holds fom > 2. We need to prove that it holds also far+ 1. Let it be
them + 1 stage problem. LeX (m) the best affine estimator of (0) givenY (m — 1).

By the properties of the affine estimato¥gm) is an affine function o’ (m — 1) and
E[X(m)] = E[X(0)] = 0. Since all thex(k) # 0,k € {0...m — 2} it follows that
X (m) is an invertible affine function o¥ (m — 1). This means thak (m), being an
affine function ofY (m — 1), is an affine function Of§~((m). Using the orthogonality

principle we can write the cost:

E[(X(0) = X(m +1))%]
= B[(X(0) — X(m) + X (m) — X (m + 1))

= B[(X(0) — X(m))¥] + E |(X(m) — X(m + 1))2
+2B[(X(0) — X (m))(X(m) — X (m + 1))]
= E[(X(0) — X(m))?] + B[(X(m) — X (m + 1))?

The valueE[(X (m) — X (m + 1))?] can be bounded from below using Proposition 5.1,
sinceX (m) is an affine function of (m) and E[X (m)?] = 2. We know thatX (m) is

the best affine estimator of (0) givenY (m — 1). Then using the orthogonality principle
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we obtain:

Looking back at the initial cost:

E[(X(0) = X(m +1))*]

The first inequality takes place due to the fact thdtn) is an affine function ofX (m)
andE[X?(m)] = o2, so the second term can be lower bounded using 5.1 and thedseco
inequality appears due to the induction. Both inequaliteasbe reached with equality by
selecting the parametek$k), k& € {0,...m — 2} andg(k), k € {0,...m — 2} for them
stage problem and the values form — 1), A(m), B(m — 1), 8(m) and E[X (m + 1)?]
follow from 5.1.
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Third and finally, we show that the optimal valug$), for all k € {0,...,m — 1}
are always zero. We will rewrite for the reader convenieheedquation which govern

the system when we adopt affine control strategies:

X(k+1) =U(k), k>0
Yk) = X(k)+V(k), k>0
UKk) = AER)Y(K) + 6(k), k>0

Adopt \(k) and G(k), for & € {0,...,m — 2} such that the constraints from equa-
tion (5.25) are satisfied. Since we are trying to minimizectbst function® [(X (0) — X(m))z] :
we let X' (m) to be:

X(m) = E[X(0)]Y(m —1)]

SinceX (0) andV (k), k € {0,...,m — 1} are Gaussian random variables and are mu-
tually independent, it follow thak () is an affine function ob"(m — 1). We can write

U(k) as follows:

0 =T[0X0 + XV A0 + 0 [[A0) +6k) (630

The real numbers(k) andg(k), for & € {0,...,m — 2} are chose such that the

constraint from equation (5.25) is satisfied, hence it htids
E[U*(k)] = 07,1, ke{0,...,m—2}
Define the positive real numbefs?};," as follows:

o d
Uz éfE

k 2
<HA(¢)X(O)+ZV(k)HA(j)> } ., ke{l,...,m-1} (5.31)

i=0 j=i
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SinceX (0) andV (k) , for all k£ € {0,m — 2} are zero mean random variables, it

follows thats? < o forall k € {1,...,m — 1}. We find immediately that:

g
)\(0>2_ 1
o8 + 0% (5.32)
~2 "
o
k)? = k! ke{l,...,m—2
)‘() 5']%—‘—0"2/’ 6{7 7m }

Since we are computing’ (m) = E [X(0)|Y (m — 1)], from standard estimation

theory we obtain:

A(m—1) =0} 2H 1+S‘3

m—3

Bm— 1) = 2“ +Uv< bi Hw)w(m—z))

=0 j=t

BI(X(0) - X(m)] = of - o L0 20

Using equation (5.32) we obtain:

(5.33)

( ﬁ;a Mv)

where the inequality appears due to the fact #fat< o7, forall k € {1,...,m — 1}
and because the functioff is strictly increasing for positive real numbers Let

k = inf {k <m —2:b(k) # 0}, it follows that 52

F k+l’ then the inequality from

equation (5.33) will become strict, hengg:) = 0 for all £ € {0,...,m — 2} , which
implies thatb(m —1) =0.

The Lemma 5.3 below is a supporting result for Lemma 5.1

Lemma 5.3 Let{«;};_, be positive real numbers. Consider the following cost fianct

o) < Il 7=
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Given a positive real number P, define the following optinueitc

¢ max C({ai},)

{ai}lzl

Z?:l o <P
S.t.

a,20,z€{1,n}

Then the following hold:

. )

(1+5)"

P
=—iedl,...,
aj = —ie{l....n}

where{«;}"_, are the optimal values dfw; }}_, for which the problem is solved.

Proof: First we show that the optimization problem is equivalernthi following prob-

lem:

max C' ({as}i,)
{oitiy

Z?:l a; < P
S.t.
a, >eie{l,...n}
for somee > 0.

The cost function is positive for any choice of positive > 0 and is zero if exist an

integeri s.t. a; = 0. Choose anyy; > 0 such that)_; , o; < P. For this choice,

o T ay,
let [, -2~ = € > 0. Then for anyk € {1,...,n}, < <
Hz:lawl € y { n} gai—l—l_oale_ak
Chooser = £, then ifay, < ¢, then[[[_, ;5 < € no matter of the values of the other

a;, 1 € {l,....,k—=1,k+1,...,n}. This shows that the first problem and the second

problem are equivalent. Moreover it shows that for the séqmoblem, the inequality
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constraintsy;, @ € {1,...n} are inactive. Then the second problem can be solved by

solving the equivalent problem:

n o
max lo
{ai}i, gg a; +1

D i <P
S.t.

a;, >ei€{l,...n}

which is the same with:

ma lo

i=1 =
2l <P
S.t.
a, >eie{l,...n}

We note that the optimization function is strictly concavetbe maximization domain
and the inequality constraints are affine functions, whigans that values fofa;};,
which reach the maximum are unique. From the argument of tédqus problem the
inequality constraintey; > €,i € {1,...n} are inactive, so the Lagrange multipliers
associated with these constraints are 0. /Lbe the Lagrange multiplier associated with
the remaining inequality constraint. Then for the optinticaa problem the first order

optimality conditions can be written:

a Z?:l log a?il
80%

+pu=0ke{l,...n}

which is after differentiation:

1 1

O o+ 1

+pu=0ke{l,...n}

First we note thaj: < 0 and that the inequality constraint is active. Thencan be

—14,/1-2

written as a function ofi: ay, = " We obtain that they, k € {1,...n} are
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P
equal and¢;, = — and the result follow#l
n

Proof of Lemma 5.1The initial optimization problem:

i (m,y,02,02) Y min Ry ABR) Y 03, 0
A( 0 V) () B} ( k=0 k=00 V)
m—2
sty E[Uk)] < (m—1)yoy,
k=0

is equivalent to the following optimization problem:

Ci (m, v, 05, 0v) def mlg C (m, o3, 07, {02} )
{2},
StZa < (m —1)yop

Taking into consideration that;’s are the variances of some random variables, hence
they must be positive, the results of Lemma 5.1 follow disefiom Lemma 5.2 and
Lemma 5.38

The following proposition, in conjunction with Lemma 5. hsvs that affine strate-

gies are optimal for the two stage version of Problem 5.2.

Proposition 5.2 Let all the parameters defining Problem 5.2 be given and aedinait
m = 2. Given a positive real constant, let 7, be a Lebesgue measurable function

satisfyingF[U(0)?] < yo?. The following holds:
B[(X(2) - X(0))°] > C4 (2,7, 05, 07) (5.34)

whereC(2,v, 02, o%) is given by (5.19).
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~ 2
Proof: Let X (1) = E[X(0)]Y(0)] = LY(O). The cost can be written as follows:
og + o

(5.35a)
= E[(X(2) — X(1))%] + E[(X(1) — X(0))?
+2B[(X(2) - X(1)(X(1) - X(0))]
= Bl(X(2) — X(1))} + E[(X(1) — X(0))?]

) s (5.35b)
= E[(X@) - X))+ 2

We note thatX (1) is a linear function o (0), which means that (0) can be written as a
linear function ofX (1) and alsaX (1) = U(0) is a function ofX (1). The variableX (2)

is a function ofY (0) and V(1), hence, it follows thatX (2) is a function of X (1) and
V(1). The noisé/ (1) is independent ok (0) andV'(0), hence it follows that the equality
between equations (5.35a) and (5.35b) is valid, becausgrdiss term is zero due to the
orthogonality principle. Moreover, we can use Propositah, by IettingX’(l) take the
place of X, X (1) the place ofZ(0), X(2) the place ofZ(1) andV (1) the place ofiV/,

leading to the following lower bound ofi[(X (2) — X (1))2:

4 2 2 9
99 .l 009y
~ 02 402 ol + o 02 + o?

v 0 v vy 0 Vv

=02 |1— % T :C*(2702U2)I
0 Ug+0‘2/1+’y A sy YooYV

Remark 5.1 As shown in Lemma 5.1, inequality (5.34) can become an d¢gbgladopt-

ing U(0) = i Y(0) and X (2) = \/ %, 2 /7 _y(1). Hence, optimal

0(2) +0%/ 0(2) +0%/ y+1 70‘2/ +oi
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feedback strategies for Problem 5.2, with= 2, are given by:

2
%7
2 2
oy + oy

or v or
Fi(z) ==+ 0 0

The optimal strategie$;; and F; can be derived also from Proposition 5.1.

T

Fi(x) ==+

The following Theorem gives the optimal solution of ProblBri subject to affine

memoryless control.

Theorem 5.1 Part I. Let all parameters defining Problem 5.1 be given, witHarger
than or equal to two. We denote ¥; (m, o, 02, o) the optimal cost of Problem 5.1

subject to affine strategies of the form (5.14). The follgvaguality holds:
Ti (m.0.08,0%) = min [C5 (m,7.08.08) + (m = Derot]  (5.36)

whereC? (m, v, o2, 0% ) is given by (5.19).

N . o . o o—é ,Y7rL72
Part Il. Consider the following conditions: (&) = (ot )o T and (b)
m < v+ 2. Givenp andm, if there exists a positive real numberfor which the
conditions (a) and (b) hold, then is an optimal solution of (5.36). If no suehexists,

theny = 0 is an optimal solution of (5.36).

Remark 5.2 For a fixed value op and for large enougln, the optimal solution of (5.36)
is v equal to zero. That is, if the number of stages is large enptingdm the optimal affine
solution is to adoptF, = 0 for k € {0,...,m — 2} and then it follows that the optimal

Fm—1is also zero.
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Proof: Using Lagrange relaxation [39], there exists a postive neahber~, such that
Problem 5.1 subject to affine strategies of the form (5.14resh an optimal solution
with the problem defined in Lemma 5.1, for this particular Using the results from
Lemma5.1Part | of Theorem 5.1 follows.

In order to provePart Il of the Theorem, we need to define the following function:

def x
f(0) = ¢y (m,v,05,07) + olm — 1)yop

The functionf () is the function to be minimized in equation (5.36). We wilbshthat
there are at most two valuedor which condition (a) is satisfied and the larger of the two
is a point of local minima. We will show that if conditions (@)d (b) hold, then the local
minima identified by condition (a) is in fact a point of glolmainima. If either condition
(a) or condition (b) fails for every positivethen zero is the global optimum.

We proceed with caser > 3, while the treatment for the case whene= 2 is left
at the end of the proof. Let, the number of stages be greater than or equal to three.
We will show that for a fixedn and g, there are at most two points which can satisfy
condition (a).

In order to find the minimum of (), we take the derivative of () with respect

to v and, using equation (5.19), we obtain:

of v _ . 7 Y 2

The fact that the derivative of with respect toy satisfies condition (a) is equivalent

to g—f;(y) = 0. The function(;%)i has a single stationary point, which is a point of

maximum atmT‘Q, for v+ > 0. This implies thatg—f(y) has a single point of minimum
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at =2 and moreoveP— is strictly decreasing foty < m— and strictly increasing for

m—2
V25
(@) (b)
1.1 0.1
1 | 0.05
?\
G S
= 09y = 0 |
- | © |
0.8 | -0.05 | |
| | | |
0.7 -0.1
0v1 5 72 10 15 20 071 5 772 10 15 20
v Y
(© (d)
1.15 0.1
0.05
. 1.1 e
< = 0
g “ \ |
1.05 © | |
| -0.05 | |
| | |
1 -0.1
0o 71t 2 72 4 6 0 Y1 2 72 4 6
vy Y

Figure 5.3: (a) The functiofi() satisfies conditions (a) and (b); (b) The derivative of the
function from (a); (c) The functiorf(+) satisfies condition (a) but does not satisfies (b);

(d) The derivative of the function from (c)

We will show next, that there are at most two value®r which condition (a) is
satisfied. We notice thaéé = lim ==(y) = o(m—1)0;, and thal%(y) is continuous
as a function ofy. There are three cases to be analyzed. The first c%e(%;ﬁ) > 0;

in this case,g—ﬁ(y) > 0 for all postive real numbers. The second case % (22) =0

4og(m—2)""
ot (o"“’v)m

satisfies condition (a). The third cas%yé(mT‘?) < 0; in this case, there exist two real

and this takes place if = — In this casey = "= 2 is the unique point which
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numbersy; < 22 < 7, such thats (v;) = 3L(7) = 0. If v is in the intervall0, 7],
the functionf(+) is increasing, since its derivative is positive, on therivae[y;, v-, f
is decreasing, and on the interya}, oo), f is increasing. This means that the function
f(v) has two points of local minimum, one at= 0 and the second one at = 7,
hence, in order to compute the minimum, one has to comfieand f (,) and take the
minimum between these two.

Assume that condition (a) is not satisfied, then this imghasthe equatioé%(y) =
0, has no solution, which corresponds to the c%gs(amT‘z) > 0. We know thatg—f(o) is
strictly positive and%(v) is continuous iny. It follows then, thatg—{:(o) > 0, for all
v > 0, which implies thatf is increasing fory > 0 and f(y) > f(0), for all positive-.

Assume that the condition (a) is satisfied, in this case wd maanalyz%f: (2) =
0and$l (72) > 0. Let 3L (m52) = 0, it follows that§f (v) > 0 for all v > 0, which
implies thatf (v) > f(0) forall v > 0 and that zero is a global minimizer. Singe- ’”7‘2
is the unique positive real number, which satisfies condlit&), we notice in this case that
condition (b) cannot be satisfied for > 3.

We just need to discuss the case when condition (a) is sdltisfta g—ﬁ (2) <0.
By the analysis above, it follows that condition (a) is da&s and that there exist;
and~s,, the solutions of the equatio?:% = 0, such thaty; < 252 < ~,. Moreover,
condition (a) implies thay = 0 andy = ~, are points of local minimum for the function

f, wheny > 0, and one of these points is actually a global minimum. It isediate that

f(0) = o2, while f(v2) is given below:

2 m—1
9 o Y2 m—1
J(e) = o ( og + oy (724-1) ( V2+1)>
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Sincey; < mT‘z < m — 2, only v, can satisfy both condition (a) and (b). Assume that,
besides condition (a), condition (b) is also satisfied, therc v, + 2. Condition (b)
implies thatf(y2) < f(0), hencey = ~, is a global minimizer forf.

If condition (@) is satisfied, but condition (b) is not satsfithernmn > ~ + 2, which
implies thatf(y2) > f(0), hencey = 0 is a global minimizer forf. In Figure 5.3 we
provide a few plots that clarify the analysis above. In F@g&r3(a), the functiorf(~)
satisfies both conditions (a) and (b), while in Figure 5.3te® functionf(~) satisfies
condition (a) but does not satisfy condition (b). In Figur8(b) and (d), there are the
derivatives of the functions from Figure 5.3(a) and (c).

Letm = 2, then the derivative of, with respect toy, is:

of or 1 9
A ey 1+y°
We kow that lim g(v) = ga‘%. The function—; is decreasing foty > 0, hence if
y—00 a’}/ (1+7)

g—{;(o) > 0, then the derivative of with respect toy is always positive, which implies that

f is minimized wheny = 0 and also condition (a) is never satisfied%;gf(o) < 0, then
there exists a unique positivesuch that,g—fé(y) = 0, which implies that the following

holds:

4 m—2
09 Y

ot +od)od (1+~)"

T

notice that this corresponds to condition (a). Sinceyfer 0, the derivative is negative, it
is clear that they, which satisfiesag% = 0 is a point of minimum. The condition (b) is

always satisfied, since we are studying the case 2.1

Remark 5.3 The Lagrange multiplier of the constrained problem in Lentrh for a
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0—‘01 ,\/m72
og—i-o%/)o%/ (4+y™:

fixed~, has the value = ( This is consistent with conditions (a) and (b)

fromPart Il of Theorem 5.1.

5.3 Two valued memoryless control

In this section, we show that, in general, affine functioresraot optimal for Prob-
lem 5.1. The main result in this section is Theorem 5.2, winexeshow that two valued
control reaches a cost that is lower than what would be thefooshe optimal affine
control. The section ends with numerical results, illustgathat two valued control can
be better than the optimal affine strategy.

We proceed by defining the class of two-valued control ggrase along with its

associated cost.

Definition 5.3 Given positive real numberss?}" |, define the class of functiors” :

R — {-1,1}, i € {0,1,...,m — 1} as follows:

FB(x) = oi18gn(x),i € {0,...,m — 1} (5.37)

7

where the functiorgn : R — {—1, 1} is the standard sign function.

Definition 5.4 Given positive real numberss?}"" |, assume that the control strategies

for Problem 5.1 are obtained via the functio{l_%"f}:'i;l, given in (5.37), as is follows:
Ulk)=F2 (Y (k)), ke{o,...m—1} (5.38)

Consider the following cost:

Co({o}iy 02, 0%) € E[(X(m) - X(0))?] (5.39)
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obtained under the control law (5.38).

Lemma 5.4 Let the parameters in Problem 5.1 and the positive real numpe’}" | be

given. Adopt the two valued control strategies from Debni%.4. The following holds:

Co({oi}ity, 05, 0v) = 05 + 0y,

. ome (5.40)
—4 2P(V(i) < 0i) — 1)

Proof: Before proving the claim in Lemma 5.4, one needs to provedhewing.
1
P(U(k) = ogy1) = 3 ke{0,...m—1}

The proof of the claim above is done by induction. For= 0, P (U(0) =0,) =

P (Y (0) > 0) = 1. Assume that the claim holds for< k < m — 1.

PU(k+1) = 0010)
—P(Y(k+1)>0)=PUK) +V(k+1)>0)
_ %P (Uk) +V(k+1) > 0[U(k) = 0ps1)

+ %P (U(k) +V(k+1) > 0|U(k) = —0k41)

1 1 1
= 5P (V(k+1)> —0x) + 5P (V(k+1) > 0p41) = 5

We remind to the reader that(m — 1) = X (m). We need to prove that:

EXm)|[Y(m—k—1) <0] = amni"[ i) <o) —1)
i=m—k
E[X(m)[Y(m—k —1) > 0] = o—m‘ 2P (V(i) < o) — 1)
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for 1 < k£ < m. We prove this by induction. Fdr = 1:
E[X(m)|Y(m —2) < 0]
=0, P (X(m) =0,|Y(m—2)<0)
— 0, P (X(m) = —0,Y(m —2) <0)
=0, P(Vim—=1)>0,-1) —0nP(V(m—1) < opn_1)
=—0, QP(V(im—=1)<o0,-1)—1)
In the same way we show that:
EXm)Y(m—=2)>0=0, 2P(V(m—1)<o,_1)—1)
Assume that the claim holds for dll1 < i < k. We need to prove it fok + 1.
EX(m)|Y(m—k—2)<0]
=E[X(m)|Y(m—-k—-1)<0,Y(m—Fk—2) <0
P(Y(m—k—1)<0|]Y(m—k—2)<0)
+EXm)Y(m—k—-1)>0,Y(m—k—2) <0
P(Y(m—k—1)>0|Y(m—k—2)<0)

—EXm)|Y(m—k—1) <0 P(V(m—k—1) < ops_1)

FEX(m)|Y(m—k—1)>0P(V(m—k—1)> ops_1)

= —0m 2P(V(i) <o) —1)P(V(m—Fk—1) < opm_j_1)
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In the same way, we show the induction step fofX (m)|Y (m — k — 2) > 0].By the

way the functionst?, i € {0,...,m — 1} are defined, the following equalities are true:

7

E[X(m)|Y (k) < 0] =E [X(m)|Y (k) = —0]
—E[X(m)|U(k +1) = —o011]
E[X(m)[Y (k) > 0] =E[X (m)[Y (k) = 5]

=E[X(m)|U(k+1) = 0k11]

where0 < k£ < m — 2 anda and g are any postive real numbers. These equalities are
immediate sinceF?(x) = oisgn(x).

The cost function defined in the lemma is:

E [(X(0) = X (m))’] = of + 07, — 2B [X (0)X (m))

E[X(0)X(m)] = E[E[X(0)X (m)]|X(0), V(0)]

X(
_ / ” / " BX(0)X(m) X (0) = 70, V(0) = wo]

[e.9]

2 2
1 (0 4 v

20%’ ) dﬂ?od’Uo

_ / ” / B (X (m)| X(0) = 20, V(0) = v)

o0 v —00
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[e's) —g 1 _( z{ 1;8 )
59,2 2
/ / To——=5=¢ 20 27v /) dxodug
—00 J—o0 2w/ 0y,0§

g g
202+202
To——F/— 0 v dl’od’l}o
—g 27r O’VO’O

2
09

27 (o8 + o)

It follows that:

E[(X(0) = X(m))’] = 0§ + o7,

- 40mﬁ (2P (V@ = \/;) - 1) 2w<§§ o

The cost (5.40) in Lemma 5.4 can be minimized with respeet,t@s follows:

* de . m
C ({Uk}k 1 7007 0\2/) :f Iglrlnn CB ({Ulz}kzlv Ug? 0\2/) (5-41)

Minimization of (5.40) with respect to,, leads to:

2

2 g
Ch ({Uk}k 1 70070‘2/) = UO Ug H 2P(V(i) <o;) —1)" 2 ‘ 2
oy + oy

Theorem 5.2 Let all the parameters defining Problem 5.1 be given. Theist®a posi-

tive real numbep, an integern and measurable nonlinear functiof&; }7 " such that:

T {Fi i 0 , 0, (70, UV) < Jx (m, 0, ag, U%/) (5.42)
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where 7 (m, o, 02, 0%), as defined in Theorem 5.1, is the optimal cost of Problem 5.1

subject to affine strategies of the form (5.14).

Proof: In order to prove Theorem 5.2, we will choose a positive reshbery and an

2P _1 2(m—1)
CING R

(il)m < v + 2. We denote byd(x) the cumulative distribution function of a normal

integerm such that the following conditions hold) (

random variable with zero mean and unit variance.

For the chosen pair of parametdrs m) we will show thatC’ (m, v, o5, 07) >

Ué ,Y’HL 2

Cy; ({vov i, o, ov ). We will choosep = (ot )o7 (7 )7,L,andthefunct|on$]-“k}

from the class of function given in Definition 5.4, for whictewelect, = \/yov, k €
{1,...,m — 1} and choose,, in order to minimize the cost defined in equation (5.41).
For this choice of nonlinear functiods;. } 7~ we will prove that7 ({7, }7, 0, 03, 0%) <
Ji(m, 0,08, 0%).

We need to prove that there exists a pair of paramétgrs.) which satisfies the
conditions {) and {i). We notice thaglrgo (%)VH =e 7lgglo (29(\/7) — 1)20+Y =
lande > <f. Adoptm = |v + 1] and then choose large enough, and it follows that
both conditionsi} and (i) are satisfied for the pairy, m).

ChooseFy(r) = \/yoisgn(x), k € {0,...m — 2}, chooseF,, ,(z) = o,,s59n(x)
and leto,, be the minimizer of the cost defined in (5.41) for which = o, k €

{1,...m — 1}. Itis clear that by this choice of functions, it holds thaf"-” E [U(k)?] =
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(m — 1)yo%, while the costy, ({yoi }7-', 03, 0% ) becomes:

C* ({VO’V}k 1 70370\2/)

—_

m

=0~ oo [] 2P (V) < yiov) — 1

2

2
o UO+UV

i A (o (10 < ) )

2
(70 + oy

1=

_ 2
= 0y

Cor
4 oy
2

Since the paif~, m) satisfies conditiond)and {i) it follows that:

2 4 2(m—1) US
of (1= 3= (20 (y7) - 1) 20

oy + oy

2 m—1
<ot (1- 5251 = Cy(m, 7,02, 0%)
o + o (14 )1

m—2

ol
Adopt 0= (084—0(12/)0%/ (1+y)™"

We note that with the andm chosen above, the
conditions (a) and (b) of Theorem 5.1 are satisfied. Hencedbkeof Problem 5.1 subject
to affine strategies of the form (5.14) is given by equatio3§h with the optimumy
being non-zero. Moreover, thechosen above, which together withsatisfies conditions
(i) and {i), is the optimal solution of the minimization problem fromuation (5.36), for
the selecte@ andm. It follows that:

T4 (m, 0,05, 07) = C (m,v,05,0%) + o(m — 1)yoy;

2
09

4 m—
> 02 — %o—g (20 (/) — 1)*" Y )
0 \%4

+ o(m — 1)70\2/ = ({Fk}k 09 0070\2/)

This shows that the cost obtained by nonlinear controlsstiean the cost obtained
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by affine controls, hence the optimum of Problem 5.1 is red@hgeneral by nonlinear

functions rather than affine functioril.

5.3.1 Numerical Results

The following cost will be used throughout this subsection:

de
TIn (v.m, 0,08,0%) < o(m — 1)y0%
A A (5.43)
2 2(m—-1) O
— — (20 —1 >0
+UO 27‘(‘( (ﬁ) ) 08“_0\2/’7_

We notice that7y (v, m, o, 03, 0% ) is the cost associated with the two-valued control
strategy given in Definition 5.3, for whick? = ~vo?, fork € {1,...,m — 1} ando,, is
chosen to minimize (5.41). Let}, be an optimal solution fou%ig In (v,m, 0,05,0%),
and~/, be an optimal solution for (5.36).

In the proof of Theorem 5.2, we compared the optimal cost obem 5.1 subject
to affine strategies, i.e7; (m, 0,0, 07,) With T (7%, m, 0,05, 01,). We notice that by
adoptings; = vJ,01 for k € {1,...,m — 1} in Definition 5.3 with the appropriate,,
from equation (5.41), we arrive gy (7.5, m, 0,05,0%) < In (Voy, ™, 0,05, 07,).

We now proceed to discussing the numerical results in Taldle Subsequently,
we set the parameter§ ando? to 1 and0.1, respectively. The numerical results from
Table 5.1 are structured as follows, the first two columnotiethe parameters., i.e.
the number of stages and the third column gives the optimal value f@j’pt, the fourth
column gives the optimal cost for affine functiogs (m, 0, o—g,aa), the fifth column
denotes)?,, while the sixth column is the cost (+)),. m, 0,03, 0%,).

Form = 2, we have proved analytically that affine functions achidwe dptimal
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cost, hence we chose not to include any corresponding ncahelata in the table. For
m = 3 orm = 4, all our numerical experiments showed that the affine gjraseare
better than nonlinear strategies, but we could not provedtyically. Hence, fom = 3
andm = 4, we do not know whether the optimal solution is affine. kor> 5, for
some values of, we were able to find nonlinear strategies that achieve snmaikt when
compared to the optimal affine.

This chapter investigates the design of a sequential liggadratic Gaussian es-
timation system comprising of multiple decision stagesr @aradigm can also be cast
as the optimal control of a unit delay system in discreteetiiniven by white Gaussian
noise, and subject to memoryless strategies over a finigeionizon. We conclude from
our analysis given that, for certain expected squared eneasures, optimal strategies
are linear for up to two stages and nonlinear for a sufficjelatitge number of stages.
Since our framework features a non-nested informatiorepafor two or more stages,
the existence of optimal linear strategies for our problemnot be predicted via other
existing methods. Several problems remain open, such aswieing if linear strategies
can be optimal for three or four stages, and devising systemmethods for designing

high performance strategies for the cases where lineati@afuare not optimal.
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m 4 ’ygpt cost Lin ’yfi\;[;t COSt Nontin Opt

3| 042 | 3.03 0.74 | 3.17 0.84 L

3| 0.21 | 5.00 0.58 | 4.47 0.68 L

3| 0.06 | 10.77 0.37 | 6.72 0.52 L

41 032| 3.00 0.90 | 3.45 0.94 L

4 | 0.14 | 5.89 0.68 | 5.12 0.71 L

4 | 0.06 | 10.21 0.50 | 6.69 0.57 L

51 0.24 | 0.00 1.00 | 3.85 0.98 NL

51| 019 3.92 0.93 | 4.39 0.90 NL

51 010 | 6.75 0.75 | 5.69 0.72 NL

5| 0.06 | 9.61 0.62 | 6.65 0.63 L

10| 0.09 | 0.00 1.00 | 0.00 1.00 | NL-L

10| 0.06 | 0.00 1.00 | 6.44 0.87 NL

10| 0.04 | 8.81 097 | 7.27 0.75 NL

10| 0.02 | 15.63 0.76 | 8.61 0.61 NL

10| 0.005| 37.36  0.45 | 11.20 0.48 L

Table 5.1: Comparison between the optimal cost with affimetions and the cost with
discrete value functions. Herepst;, and costyoni, refer to J; (m, 0, o—g,o—%/) and

T (vl m. 0,03, 0%, respectively.
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Chapter 6
Conclusions and Future Directions: Extension to More Garéetwork
Topologies

6.1 General Network Topologies

We have showen in Chapter 2 we solve a distributed estimptmriem which con-
sists from a pre-processor or encoder and an estimator araalele shown in Figure 1.1.
The preprocessor has perfect knowledge about a stochastiegs and the decoder has
access only to the information which it receives from theodiee. Each time the encoder
sends information to the decoder it must pay a cost for conication. The encoder and
the decoder must jointly optimize a common cost, which ciegrom the estimation er-
ror and the communication cost. The problem which ariseqiensand what information
must be sent to the estimator. It was shown that the optinadypim send sample to the
estimator is a threshold policy. In Chapter 3, we presenesapplications of the problem
presented in Chapter 2, from which we include general costsaise distributions, noisy
observation at the pre-processor side, a quadratic cgmoblem, a problem where we
consider packet drop with acknowledgement, infinite timgzom (the discounted cost
and the average cost) and the tandem problem. In Chapterghamethat if we tackle the
problem described in Chapter 2, but we look at the multidisr@mal case, things can get

quite complicated. First, the method used for proving thedrity of the estimator fails.
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Figure 6.1: Tree Topology
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Figure 6.2: Ring Topology
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Figure 6.3: Network
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If we consider a linear estimator (or equivalent, a symrogtaolicy at the pre-processor),
it is difficult to prove properties of the decision sets foné horizons bigger or equal
to three. Moreover, for the time horizon two, or at the pamadte stage, we found nu-
merically that the decision sets need not be convex. In @nhd&ptwe present a problem
with multiple agents and noisy transmission links. In these, we show that simple
affine strategies are not optimal, despite the fact that tblelpm has quadratic costs and
Gaussian noise. We show numerically that signalling siraseperform actually better.
moreover, we cannot compute the optimal strategies.

In Chapters 2 and 3 we show how to solve the two blocks probidriie in Chap-
ters 4 and 5, we show the limitations of the methods used ipteéh&2 and 3. The future
directions of these work are to look at general network togigs and performing dis-
tributed estimation and control over networks. In Fig. 6vé, present a network with a
tree topology, where a pre-processor tracks a number ofiastic processes. The pre-
processor has to send information about these processesitad¢rmediate pre-processes
and will pay a communication cost. The intermediate presgssors have to route these
information eventually to the estimators, which repregbatleafs of the tree topology.
The estimators have to estimate the stochastic proceas&sdrby the root pre-processor.
The pre-processors and the estimators must jointly opéirizost function, which con-
sists both from the communication costs and the estimatiam.én Fig. 6.2, we present
a ring topology, where each node tracks a stochastic precekbas an estimator, which
will try to estimate processes from other nodes. Just likkeéprevious case, although not
depicted in the figure, for each transmission there is a comcation cost, and the entire
network must jointly optimize a cost consisting from fulcis on the estimation error
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and functions on the communication costs. The goal is to enalith general topologies
as in Fig. 6.3, where some of the nodes can just pass infam#trough the network,
like P5 throughPy, or can be nodes that either track some process or estintegemb-
cesses likéP; throughP, and&; throughé,. For all these networks the transmission links
can be noisy links, i.e. the signal can be affected by trassionm noise, like a Gaussian
addtive noise, or the information send through the linkskmatost, as in the packet drop
cases. The goal is to analyze all these networks having asiasesults obtained in the

chapters 2, 3, 4 and 5.
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Appendix A
Appendix

A.1 Majorization Theory

Lemma A.1 If f andh are neat and even probability density functions, thier is also

neat and even, where by« h we mean the convolution betwegand h.

Proof: Sincebis a distribution function, itimplies that is also measueatetg : R — R

be defined as:

1,z € [—a,q
g(x) =
0,z ¢ [—a,q]
whereq is a positive real number. We notice thats an indicator function. We claim

that f x ¢ is neat and even.

xT

(f % 9)(@) = / " o — gyt = / " fe— )i = / iy A

Since the functiory is neat and even, it is clear thét« g is neat and even from equa-
tion (A.1). The functionf * g is neat and even also for the case why¢n) = 1 on a
symmetric open interval-o, «).

We need to prove the main claim of Lemma A.1. We do this by axprating the
functionb with a sum of functions of the type of functign Sinceb is neat and even it

follows thatb(0) > b(x), for any real numbeg. For a positive integer number, and
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positive integek < n, define the function,, as follows:

bo(z) = b(O)%, b(0)" < b() < b(o) L

n n

(A.2)

It follows thatb,,(z) < b,.:(x) for every real number and that,, — b. Moreover, from
the monotone convergence theorem [14], it follows thath,, — f * b.

Sinceb is neat and even it follows that for every integerand integerk < n,
there exists a positive] such thath(z) > b(0)% on the intervall} = [—af,a}] or

I¢ = (—ap, of) andb(z) < b(0)£ outsidel}. The functionb, can be written as follows:

bulir) = b(0) > Ty ()

where bﬂﬂz we denote the indicator function of the interZal

1 n
fxb, = b(O)EkZ:Of*IHZ
It follows that f * b,, is neat and even, hengex b is neat and everll

Remark A.1 From the proof of Lemma A.1, it follows that the claim of Lenfxiaholds

if f andb are any nonegative, even, quasiconcave and integrableifumsc

We will state now two important inequalities, which are wsdér this paper. The

first one is the Riesz’s rearrangement inequality:

Lemma A.2 (Riesz’s Rearrangement inequality [2])If f, g and h are nonnegative func-

tions onR", then:

() (g h) (x)de < [ f7(x) (g7 h7) (x)dx (A.3)

Rn Rn
The second important inequality, which we need is the Hauithlewood inequality
[3].
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Lemma A.3 (Hardy-Littlewood inequality [3]) Let f and g be two nonnegative mea-
surable functions defined on the real line, which vanish &nity, then the following

holds:

/ f(@)g(x)dz < / 17 (2)g° (@) da (A.4)

We state and prove the following Lemmas, which are a suppprésults for Lemma 2.2

in Subsection 2.4.1.

LemmaA.4 Letf : R" — R be a symmetric and nonincreasing probability distribution
function. Then for any positive < 1, there exists a symmetric convex Ketentered

around zero such that:

/ fle)de =1—k
K
and for any other sek’” C R™, for which:

flz)de =1—k

KI

the following holds:

Jx = fr (A.5)

Proof: Assume that there exisgssuch thatf{zeRn:f(wbp} f(z)dz = 1 — k, then let
K = {z e R": f(x) > p}. Since,f is symmetric and nonincreasing, it follows thit
is a symmetric set. Let any other $tsuch thatf,, f(z)dz = 1 — x. Choose any set
F c K, if L"(F") > L™ (K), letF C R™ be any measurable set, such tGatF) = L(IF’)

andK c F, it follows that :
/fK(x)dx =1> fx (z)dz
F T
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since bothfx and fx, are probability distribution functions. I£"(F') < £"(K), then
choose any sét C K, such thatC"(F) = £"(F’). LetF, = F N[, then by the way the

setK is defined, for any real numbere F’ \ [, it holds thatf(x) < p, while on the set

FA\Fy, f(z) = p.

1—x 11—k

1
> T < X f(a:)olx%—/]F\]F1 pdx)

! ( RS f(g:)dg:)

/F fe(z)de = : /F flx)de = ! < 8 flz)dz + f(x)dx)

F\F,

v

11—k

_ f(z)dx = 8 fx (z)dz

1—«x F

F/\F,

The second ineqaulity is due to the fact that F; andF’ \ [F; have the same measure.

Assume that, there is no sughsuch thatf{meRn:f(m»p} f(z)dx =1 — k. The inte-
gral f{xER”:f(x)>p} f(z)dz is decreasing as a function pfind is also bounded. It follows
than that, there existasuchthalf,, p.. ..y f(@)dz <1—randf . o f(z)de >
1 — k. Both the setdx € R" : f(x) > p} and{x € R" : f(x) > p} are symmetric and
convex and{z € R" : f(x) > p} C {z € R": f(x) > p}. Then we can find K C
{f(z) > p} symmetric around the origin and convex such thaf (z)dz = 1 — . Using
the same type of arguments like in the first case we getfthat fx for any K’ ¢ R"
such thatf,, f(z)dz =1—x B

An immediate consequence of Lemma A.4 is the fact that if todability distri-
bution functionf is defined on the real line, then the convexl§es a symmetric interval

centered around zero.

LemmaA.5 Let f,g : R — R be two probability distribution functions, such thats
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neat and symmetric anfl>- g. Letx be a real number such that< « < 1. LetK be the
symmetric interval given by Lemma A.4 for the distributfcend the numbes. Then for

any setk’ C R such thatf, g(z)dz = 1 — & the following holds:
Jx = gxr (A.6)

Proof: Fix K’ € R. Choose a sdéf’ € K’ with strictly positive Lebesgue measure. If
L(F") > L(K), chooseF any set withL(F) = L(F’), such thatK C F. Itis clear in
this case thaff, fx(z)dz = 1 > [, g (x)dz. If L(F') < L(K), then becaus¢ >~ g,
there exists a s&” € R, such thai’(F”) = L(F’) and [, f(z)dz > [, g(x)dz. Choose
K" a set which containB” and [, f(z)dz = 1 — k. By Lemma A4,fx» < fx, SO it
follows that there exists a s&t C K, with the same Lebesgue measuréfésuch that

Je f@)dx > [o, f(x)de >[5, g(z)dz B

LemmaA.6 Let f : R — R be a probability distribution function and letbe a positive
real number, less then one. Let R — [0, 1] be a measurable positive function such that

Jg M) f(x)dz = 1 — k. Then there exists a skt € R such that,[, f(z)dz =1 — s and

A
f = L.

Remark A.2 Note that by the way they are defingdand % are probability distribu-
tion functions. Lemma A.6 states that for any probabilistraming can be majorized by

a deterministic trimming.

Proof: Ifexistspsuchthatf, p (., f(z)dz = 1-k, thenlelK = {z € R : f(z) > p}.
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If no suchp exists, just like in the proof of Lemma A.4, there exists such that:

/ f(z)dx <1—k, and flx)de >1—k
{z€R:f(2)>p} {zeR:f(z)>p}

i.e., there exists a set of Lebesgue measure strictly pesgich thaf (x) = p. Choose

asetk’ = {x € R: f(x) > p}. Fromthe se{x € R: f(z) = p}, choose a subsé&t” of

measurel_ﬁ_f{””ERﬁf[fzb” J@® | etk = K UK. It follows that [, f(z)dz = 1— r and
by the way the seK is defined, it holds thaf(x) > p, for allz € K. LetF’ be a setin
R. If L(F") > L(K), chooséF such thatC(F') = £(F) andK C F. Then the following

holds:

f(z)

— KR

/F fewe =12 [ L

If L(F') < L(K), letF, = FFNK and letF, C K\ F; such thatC(F, U Fy) = L(F).
If z € Fy, f(z) > ANz)f(x), and ifz € Fy, f(z) > p, and ifx € F'\ Fy, A(z) f(x) <

f(z) < p. It follows then:

/IFMF2 fx(z)dx > / Az) if(—xldx

LemmaA.7 Let f,g : R — R be two probability distribution functions such that- ¢

onR. Then, for any non zero constamt define the following probability distribution

functions:
fla) =17 (%)
g(x) = ﬁg (g)



The following holds:
f=3 (A7)

Remark A.3 We notice that Lemma A.7 is well posed sirficend § are also probability
distribution functions. Iff is the probability distribution function of a random variab

X, thenf is the probability distribution function of the random vabie a X .

Proof: Forasef\ C R and for anon zero constamtdefine the setA = {x ceR:1lre A}.

«

Assumex to be positive and Ief’ be a set of positive and finite Lebesgue measure.

/ §lw)de = / glaada

a

sincef = g, there exists a s@&” with the same Lebesgue measuréC;ESsuch that:

/1F/ g(x)adr < g (x)adx = f(x)dx

a]F//

a

PickF = aF”. Clearly,F andF’ have the same Lebesgue measure, then it follows that:

/]Flg(x)dxg/]l?f(x)dx

which implies thaj < f. Same arguments hold famegativell
From the Riesz’s rearrangement inequality, Hajek statdspaoves in [1] the fol-

lowing result:

Lemma A.8 [1, Page 619] Letf and g be a probability distribution function defined on
the real line, such thatf is neat and symmetric, anfl = ¢g. Leth be a nonnegative,

symmetric and nonincreasing function. The following holds

/ h(x)g(x)dz < / h(z)f (v)da (A8)
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In order to prove Lemma 2.4, we state the following Lemma.

Lemma A.9 Let f be a neat and even probability density function on the reed, |Letg,
be a probability density function on the real line, such thak f. Leth be a positive,

even and quasiconvex function. Then the following holds:

/R hz)f(x)de < / Wz — y)g(x)da (A.9)

R

wherey is any real number.
Proof: Let c be a positive real number and define the functions:

he(x) = ¢ — min (¢, h(x))

he(z,y) = ¢ — min (¢, h(x — y))

for any real numbey. We notice that the functioh, is symmetric and non-increasing, it
is then immediate, that. = h? andh,. = h9(-,y) for all real numbersg. The following

inequalities are true:

/R helw, y)g(@)dz < / hel(2)g” (x)de < / hel() f (2)dz

R

for anyy € R. The first inequality follows from the Hardy-Littlewood igeality (A.3),

while the second inequality follows from Lemma A.8. It folle that:

/R helz, y)g(x)dz < / hela) f(2)da =

R

/R (¢ —min (¢, h(x —y))) g(x)dz < / (¢ — min (¢, h(x))) f(x)dx =

R
/min (¢, h(z —y))g(x)dx > / min (¢, h(x)) f(x)dx
R R
Taking the limit asc goes to infinity and using the monotone convergence thednem t
result follows.H
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A.2 Quasiconvex Lemma

LemmaA.10 Leth : R — R, be a measurable, bounded, even and quasiconvex func-
tion. Letl¥ be a random variable with an even and quasiconcave proligliistribution
function. Defings : R — R, such thatv Y E [h(x + )], thenh is a bounded, contin-
uous, even and quasiconvex function. If the functios also continuous theh is also

continuous.

Proof: Defineg: R xR — R:

9(2,0) ™ B[C — min (C, h(z + W))]

We will show that the functio(z, C') is continuous irC' for every fixed real number,
and for everyC the functiong(z, C') is even and quasiconcavein The functionh is
even and quasiconvex then, it follows that zero is a globaimmzer of h. For any real

numberC' and any real number define the set:
D(z,C) ™ {weR: h(z+w) < C}

Sinceh is even and quasiconvex thén0, C') is a convex set and is symmetric around

zero, hence it is a symmetric interval it follows that:

p

0, C < h(0)

D(0,C) [—a(C), a(C)] or (—a(C), a(C)), h(0) < C < sup, h(z)

<—O0,00), Sup, h(.T) <C
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where byl) we denote the empty set. Note thatfgf) < C' < sup, h(z), the setD(0, C)

is a symmetric interval, which can be either closed or open.

0, C < h(0)
D(z,C) = [—a(C) — z,a(C) — 7] of (—a(C) — z,a(C) — z), h(0) < C < sup, h(z)
(=00, 00), sup, h(z) < C

We will show that the functiow(z, C') is even and quasiconvex infor any real

numberC'. Let f : R — R, be the probability distribution function d#”. We can write

9(z, C):
a(C)—z
g(x,C) = E [min(C, h(x + W))] = C'/ f(w)dw
—a(C)—x

a(C)—z
- / Bz + w) f (w)dw

—a(C)—z

For any positive real numbér any real number§€’ andz, it holds that:

Ellg(C+ 6,2+ W) - E[g(Ciz+W)|] =

El|6 + min(C + §, h(x + W)) — min(C, h(z + W))|] < 20

It follows that for any real number and any real number, for any positive real

numbere, choosed = <, then for any real numbet € (C —6,C +9), |g(x,C) —

5
g(z,C)| < ¢, hence the functiog(z,C) is a continuous function i’ for every real
numberz.

Since the functiom is even and quasiconvex, it follows that the function—

min(C, h(x)) is even and quasiconcave, i.e. is neat and even. Moreower,tfie def-
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inition of the setD(0, C'), we notice that the functiod’ — min(C, h(z)) is nonnega-
tive, bounded and takes the value zero outside thésetC). If C' < sup, h(zx), then
the setD(0, C) is the empty set or a finite interval (open or closed), it fekathat, if

C < sup, h(z) the functionC' — min(C, h(z)) is integrable. It holds that:

g(z,C) = E[C —min(h(z + W,C)] = /OO (C —min(h(z +w,C)) f(w)dw

—00

= /_OO (C —min(h(x + w,C)) f(—w)dw

[e.9]

- /_OO (C —min(h(z —n,C)) f(n)dn

The first equality comes from the fact thais even, while the second inequality comes
from the change of variable = —w. It follows from Lemma A.1 and Remark A.1 that
g(z,C) is a neat and even function for every< sup, h(x). Sinceg(x, C') is continuous

in C' it implies thatg(z, C) is neat and even for every re@l and moreover the func-
tion £ [min(C, h(z + W))] is even and quasiconvex. From the monotone convergence

theorem, it holds that:

h(z) = lim FE [min(h(x + W), C)]

C—o0

and the properties of [min(h(x + W), C)] in = are kept forh,i.e. h is even and quasi-
CONnvex.

Sinceh is bounded, it follows that is bounded and we only need to prove the
continuity of . We are given that is even and quasiconvex, which implies thas non-
decreasing off), co) and nonincreasing ofx-co, 0]. We are also given thatis bounded
and continuous, which implies thatis uniform continuous on the intervé, oo) and
is also uniform continuous on the internatoo, 0]. It follows that the entire functionh

172



is uniform continuous, i.e. for any real numberfor any positive real numbet, there
exists a positive real numbérwhich does not depend an such that for any real number
y € (x — 6,z +6), itholds thath(z) — h(y)| < e. It follows that, for any real number

and for any real number € (z — §,z + ), it holds that:

|Ew@+wﬂ—Ew@+wnhw[fh@+wﬁWMw—/’h@+wﬁ@ﬂM

—0o0

< [ b+ )~ by + )| f(w)du <

[e.e]

This implies that is continuoudli
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