
 
 

 

ABSTRACT 

Title of Document: POLYMER-IONIC LIQUID HYBRID ELECTROLYTES 
FOR LITHIUM BATTERIES 

 
 Aaron Steven Fisher, Ph.D., 2012 

Directed By: Professor Peter Kofinas, Fischell Dept. of Bioengineering 

Intellectual Merit: 

The goal of this dissertation is to investigate the electrochemical properties and 

microstructure of thin film polymer electrolytes with enhanced electrochemical performance. 

Solid electrolyte architectures have been produced by blending novel room temperature ionic 

liquid (RTIL) chemistries with ionically conductive polymer matrices. A variety of 

microstructure and electrical characterization tools have been employed to understand the hybrid 

electrolyte's performance.  

 Lithium-ion batteries are limited because of the safety of the electrolyte.  The current 

generation of batteries uses organic solvents to conduct lithium between the electrodes.  

Occasionally, the low boiling point and high combustibility of these solvents lead to pressure 

build ups and fires within cells.  Additionally, there are issues with electrolyte loss and decreased 

performance that must be accounted for in daily use.  Thus, interest in replacing this system with 

a solid polymer electrolyte that can match the properties of an organic solvent is of great interest 

in battery research.  However, a polymer electrolyte by itself is incapable of meeting the 

performance characteristics, and thus by adding an RTIL it has met the necessary threshold 

values. 

 With the development of the novel sulfur based ionic liquid compounds, improved 

performance characteristics were realized for the polymer electrolyte.  The synthesized RTILs 



 
 

were blended with ionically conductive polymer matrices (polyethylene oxide (PEO) or block 

copolymers of PEO) to produce solid electrolytes. Such shape-conforming materials could be 

lead to unique battery morphologies, but more importantly the safety of these new batteries will 

greatly exceeds those based on traditional organic carbonate electrolytes.   

Broader Impacts: 

 The broader impact of this research is that it will ultimately help push forward an 

attractive alternative to carbonate based liquid electrolyte systems.  Development of these 

alternatives has been slow; however bypassing the current commercial options will lead to not 

only safer and more powerful batteries.  The polymer electrolyte system offers flexibility in both 

mechanical properties and product design.  In due course, this will lead to batteries unlike any 

currently available on the market.  RTILs offer quite an attractive option and the electrochemical 

understanding of novel architectures based upon sulfur will lead to further potential uses for 

these compounds. 
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I. Introduction	

 The goal of this dissertation was to develop and characterize novel polymer 

electrolytes for lithium batteries.  These novel thin film electrolytes consist of 

poly(ethylene oxide) (PEO)-based homopolymers and block copolymers blended with 

sulfur based room temperature ionic liquids (RTIL). In pursuit of this new RTIL 

compounds have been synthesized and characterized by nuclear magnetic resonance and 

mass spectrometry.  Following this, solution casting of the polymer electrolyte resulted in 

a flexible material with elevated ionic conductivity and high lithium ion transference 

(fraction of current due to lithium ion movement).  Differential scanning calorimetry was 

taken to characterize the solid electrolyte’s response to variations in operating 

temperature.  For the hybrid solid electrolyte, impedance spectroscopy, galvanostatic and 

potentiostatic measurements were performed to assess ion conduction, cell stability, and 

the electrode/electrolyte interface. Additionally charge-discharge curves measurements 

were undertaken to demonstrate the cycling performance of battery test cells constructed 

using the solid polymer electrolyte.  
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II. Background	

1. Significance	&	Innovation	

Batteries have become ubiquitous elements in society powering both small and 

large devices.  As portable devices have followed Moore's Law, whereby processing 

power doubles every two years, batteries have lagged significantly behind this 

exponential growth increasing at ~1% a year.1-3 This has resulted in a slew of problems 

whereby devices need to simultaneously become more efficient while improving in 

performance to maintain current standards of battery life.  The demands of greater 

capacity and power along with the push for smaller devices have exposed the limitations 

of current battery technology.  Besides the need for small scale there is also a large 

interest in batteries as energy storage elements in the smart grid.  Storing energy in the 

grid and deploying it to match demand is necessary to make inconsistent renewable 

energy sources viable grid power supplies.  The varied demands for energy storage in the 

near future explains the large growth expected in the battery sector for the foreseeable 

future.4 

The focus on higher energy and power densities has driven battery manufacturers 

to largely neglect the safety of the battery, the device and ultimately the consumer.  When 

considering future device development, it is important to not be limited in design and 

safety by a component as bulky as the battery.  While improvements in the electrode 

would ultimately make the battery more energy efficient, requiring less active material; 

safety and shape are still largely controlled by the electrolyte.  Current electrolyte 

technology consists of organic carbonate based liquids, and is limited in terms of 

operating temperature and voltage.  Solid polymer electrolytes have superior voltage, 
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temperature and mechanical stability, but there is a large trade off with conductivity.  It is 

possible to improve these properties by blending the polymer electrolytes with ionic 

liquids.  Ionic liquids similarly possess good temperature and voltage stability while 

having appreciable conductivity, but lack mechanical stability.  By combining the 

polymer electrolyte with ionic liquids it is believed that the hybrid system will possess all 

the desired properties and be conductive enough to be useful as a battery.  The current 

polymer-ionic liquid systems are limited by problems with the ionic liquid, and it is 

hoped that the development of novel ionic liquids chemistries, based on second period 

elements, will permit innovation beyond the current systems.  Ionic liquid research has 

largely been artificially limited to nitrogen-based architectures.  Sulfur based 

architectures promise to provide superior electrical properties, which ultimately will 

allow these hybrid polymer ionic liquid electrolytes to become the next generation of 

solid electrolytes.  

2. Lithium‐Ion	Batteries	

Over the past 150 years the development of rechargeable batteries has progressed 

at a slow pace relative to other technologies.  Since the lead-acid batteries discovery in 

1859 (which is still in widespread use because of its low temperature performance), 

nickel cadmium and nickel metal hydride have become the leading edge of battery 

chemistry only to be replaced by lithium ion batteries.  Lithium ion has supplanted all of 

these chemistries because it has the highest energy density; lithium has a high 

electrochemical potential (-3.04 V vs. standard hydrogen electrode, SHE) and is the 

lightest metal (ρ= 0.534 g/cm3)2,5 available. 
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Batteries depend on the exclusive conduction of ions to generate external 

electrical current.  Within the battery, the anode and cathode must be electrically 

conducting and capable of reversibly intercalating lithium ions, while the electrolyte must 

be solely ionically conducting. Current Li-ion battery setups consist of a liquid electrolyte 

containing a plastic separator situated between the electrodes.  In previous generations of 

lithium ion batteries the plastic was a thin electrochemically inert layer meant to prevent 

dendrite growth.  The upcoming generation of lithium-ion batteries has replaced the inert 

polymers with gelled polymers that provide greater mechanical stability. However, all of 

these commercialized systems still use organic liquid electrolytes to achieve the required 

electrical properties.6 

An electrolyte is a complex material that has many requirements for successful 

operation in a lithium ion battery.  The ideal electrolyte has all of the following 

properties: 7 

1) A large electrochemical stability window. Should an electrode's operating 

potential exist outside of the kinetic or equilibrium stability it must have the 

ability to rapidly form a passivating solid electrolyte interphase (SEI). 

2) Maintenance of the contact between electrode and electrolyte despite 

volumetric changes that occur during cycling. 

3) A Li+ conductivity σLi>10-4 S/cm at operational temperature. 

4) An electronic conductivity σe<10-10 S/cm. 

5) A lithium transference number (fraction of total current due to Li+) close to 

unity. 

6) Chemical stability over ambient and operational temperatures. 
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7) Safe material, e.g., high flash point preferably non-combustible. 

8) Low toxicity and low cost. 

The low boiling point organic liquids currently use lead to problems with 

electrolyte loss, and in turn decreased performance over time. Dendrite formation is 

another problem in liquid electrolytes leading to limited cycling and eventually short 

circuiting the battery.6,8-10 Additionally, each battery must be wrapped in several 

packaging layers that separate the battery from the user as well as the environment, and 

limits the internal vapor pressure to safe levels.11,12 When considering the scaling down 

of a battery for miniature devices the packaging layers and precautions do not scale at a 

similar rate, which ultimately lead to decreases in the battery properties per unit weight 

and volume.2  Such material limitations have driven academic and industrial research in 

solid electrolytes, whereby the safety profile would be improved allowing for a reduction 

in safety precautions built into the battery.  Another advantage of switching to solid 

electrolytes, is that future battery architectures would not be limited to simple shapes.2  

Lastly, solid electrolytes offer a distinct advantage in processing, allowing the assembly 

to be streamlined.9 The ease of processing a polymer electrolyte would allow the 

production of thin film flexible batteries that could be wound into coils or processed as 

coatings and sheets.  

3. Solid	Electrolytes	

Among solid electrolytes, polymers offer the advantages of being robust, 

lightweight, non-combustible, shape conforming and moldable allowing them to meet the 

requirements of diverse applications. Also due to their solid-like nature, polymer 

electrolytes are expected to be less reactive than their liquid electrolyte counterparts, and 
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thus more stable towards lithium.13 For polymer electrolytes to be commercially useful, it 

is necessary that they exhibit appreciable room temperature ionic conductivities while 

functioning as the separator. In addition, it is also important that the polymer have good 

cycle life and sufficient mechanical and thermal strength to endure internal pressure and 

temperature variations during battery performance.  A polymer electrolyte exhibiting all 

of these properties is ideal; however, further research is necessary to develop a system 

with these properties.   

 The transition to dry electrolytes has not been smooth.  Ionic conductivity 

becomes a large issue as solids inherently are more resistive than their liquid 

counterparts. The successful polymer electrolyte or active part of a copolymer exhibits 

three essential characteristics: atoms or functional groups that can coordinate to cations, a 

suitable distance between coordinating sites and low barriers to bond rotation and 

segmental motion.9 PEO has been found to be the best lithium ion conductor as a solid 

electrolyte as it fulfills the criteria outlined above.  Its room temperature conductivity is 

on the order of 10-6 S/cm, but varies greatly with the choice of lithium salt.14,15  It also has 

the appropriate chain spacing of 2 carbons between oxygen atoms to be conductive; 

spacing the oxygen's either 1 or 3 units apart results in lower ionic conductivity.9 The 

limiting factor with PEO though is its semi-crystalline nature at room temperature.  As 

segmental movement is important for ionic conduction, a polymer electrolyte displays its 

best conductivity above its glass transition temperature, Tg. This remains a large problem 

with PEO as there is a noticeable increase in conductivity above its Tg. Polyacrylonitrile 

(PAN) has been cited as a possible alternative to PEO having greater ionic conductivity at 
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room temperature.16 However, this comes at the cost of decreased interfacial stability 

against lithium, which ultimately limits the use of PAN as a lithium electrolyte.17   

 Several options have been explored to increase the conductivity of the solid 

electrolyte system: addition of ceramic components, modifying the PEO to favor the 

amorphous phase and lowering the Tg by addition of plasticizers.   

 Forming polymer composites by the addition of ceramic particles (e.g. TiO2, 

fumed silica, zeolites, etc.) increases their measured conductivity by approximately one 

order of magnitude.14  Although poorly understood, this increase in conductivity is 

believed to be a result of the decrease in crystallinity induced by the addition of this 

second phase.18  In addition to this, these composite polymer electrolytes have increased 

mechanical strength19 and increased interfacial stability20.  While composite polymer 

electrolytes are promising, they still are not sufficient in terms of conductivity to match 

organic liquids, and the ultimate polymer electrolyte solution may need to incorporate 

ceramic fillers to be commercially successful.7 

 The formation of copolymers, where one block is PEO, is of great interest 

because it can alter the morphology of the PEO to favor an amorphous state.  Ultimately 

it is important that this second block provide beneficial properties to the electrolyte.  Into 

this category falls previous research in the Kofinas group whereby PEO is blocked with a 

lithiated copolymer21-23 of PMMA, which has demonstrated moderate lithium ionic 

conductivity.14 Work in Balsara’s lab and subsequently his startup venture SEEO 

involves blocking the PEO with polystyrene, which is used to disrupt the crystalline PEO 

phases, and has demonstrated good conductivity at temperatures between the glass 

transition temperature of the two blocks.24  Allcock25 has also proposed a phosphazene 
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polymer, called poly-[bis((methoxyethoxy)ethoxy)phosphazene] (MEEP), which has 

demonstrated superior conductivity as compared to homopolymer PEO.  Its backbone 

consists of a series of repeating (-P=N-) units, off of which ethylene oxide units of 

varying length are attached; it can be thought of as an inert scaffold onto which short 

pendant PEO chains are attached.  However, the poor mechanical properties and arduous 

synthesis process has made this a less attractive option than other solid polymer 

electrolyte systems.26  While promising, none of the gains begotten alone by these PEO 

copolymer systems has been sufficient to lead to commercialization. 

 The addition of plasticizer lowers the Tg, increasing the conductivity while still 

maintaining the mechanical properties at a given temperature.27 Ideally a plasticizer 

added to PEO increases the conductivity while not harming the electrochemical or 

mechanical stability.  This has led to a great interest in gel polymer electrolytes where the 

polymer system is mixed with the carbonate solvents used in commercial systems.  These 

carbonate plasticized systems have demonstrated conductivity >10-3 S/cm.28  In these 

cases the polymer is not viewed as a conductive platform but rather as a matrix 

(poly(vinylidene fluoride [PVdF] is a common example).  Gelled PEO systems have 

demonstrated elevated conductivity as a solid electrolyte exceeding 10-4 S/cm. These 

systems gains are offset by their lesser mechanical properties and are plagued by many of 

the same safety issues of the aforementioned organic solvents.  Thus it is of great interest 

to researchers to find polymeric electrolytes that take advantages of the gains by choosing 

an appropriate plasticizer that does not have the same drawbacks as the organic solvents.   

 Another type of solid electrolyte fundamentally different from polymer 

electrolytes are those based upon ceramics and glasses.  They are single ion conductors 
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and have lithium conductivities that are on the order of 10-4 S/cm.29 A common choice for 

solid electrolytes are those based upon lithium phosphorous oxynitrides (LiPON) and 

Li2S.30 These systems have demonstrated long life cycles and wide electrochemical 

stability windows.  However, they are limited in their ability to form stable interfaces 

with the electrodes that do not change volume; this has restricted their use to thin film 

batteries.7 They are also limited as to what temperatures they have appreciable 

conductivity, with ongoing research aimed at lowering this temperature.  A unique way to 

overcome and also at using 2 electrolyte systems such that the ceramic is only a thin layer 

protecting the anode.31  

4. 	Ionic	Liquid	Electrolytes	

Most salts are solids at room temperature and do not melt until they are at greatly 

elevated temperatures.  (NaCl ~ 800 °C).  Room temperature ionic liquids (referred 

henceforth as RTILs or ionic liquids, ILs) though are a select group of salts whose anion 

and cation are strongly coordinated but cannot form a crystalline structure due to van der 

Waals interactions.  RTILs are formally defined as a salt that at temperatures below 

100°C is a liquid.  Common cationic scaffolds for ionic liquids consist of quaternary 

nitrogen and phosphorous or ternary sulfur.  Nitrogen has the most varied architectures 

available, where imidazolium, pyrrolidinium, pyridinium, piperidinium ring structures are 

all commonly used ILs besides the tetra-substituted ammonium ion.  Instability in 

charged oxygen species explains their absence from academic literature.  The anionic 

structures are the conjugate Lewis bases of strong acids, common examples are the 

halides, fluorinated compounds, and sulfonated imides.  As compared to the list of 

common electrolytes (Table 1), ionic liquids possess a number of beneficial 
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characteristics.  They have high conductivity (0.1-20 mS/cm), low to nonexistent vapor 

pressures, high thermal and electrical stabilities, and are not combustible. 32-35  However, 

they are viscous, air and moisture sensitive, and several IL scaffolds have compatibility 

issues with lithium and the layers of graphitic carbon. 

Table II-1 Nonaqueous electrolytes for Li-Ion batteries7 

 

Ionic liquids are considered tunable solvents, as the anion and cation can be 

chosen to control the macro-properties of the electrolyte.  Given the drawbacks of ILs 

discussed above, there have been limitations among the usable anions and cations 

architectures.  With conductivity and electrochemical stability window as the general 

guiding factors, the most attractive RTIL scaffolds for electrolyte use have been 1-ethyl-

3-methyl-imidzaolium36 and either 1-butyl-1-methyl pyrrolidinium or 1-methyl-1-propyl-

pyrrolidinium.37 The imidazolium architecture has the highest conductivity and thus 

makes it an ideal starting point for development of an electrolyte.  However, this same 

scaffold has encountered problems with its stability at low voltages38,39 and its 
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intercalation into the graphite anode resulting in exfoliation and rapid capacity fade.40  

Both scaffolds continue to be used, but for the electrolyte in lithium ion batteries, 

pyrrolidinium is preferred.   

Among anions the dicyanamide architecture has the highest conductivity, but it is 

reactive to lithium, which makes it unusable as an anion. Halides do not possess 

sufficient stability and undergo anodic oxidation at low potentials.34  Other anions with 

high conductivity values are [BF4]
- and [PF6]

-, however these anions decay at elevated 

temperatures, are reactive with water, and do not possess sufficient electrochemical 

stability.  Thus the focus of research for the anion has centered around imide41 and 

triflate35 architectures.  Among these archetypes, the sulfonyl based imide 

bis(triflouromethylsulfonyl) imide (TFSI) has demonstrated appropriate thermal and 

electrical properties.  Recent interest though has been on the bis(fluorosulfonyl) imide 

(FSI) anion, which has demonstrated the ability to reversibly form an SEI film.42  

However, due to difficulty of FSI production, its footprint in literature is minimal. 

Use of ILs as electrolytes in academic settings has shown promising results with 

the cycled capacity, being close to that delivered by commercialized organic solvents.39  

However given its limitations, especially their high cost, IL based systems have not 

supplanted organic electrolytes in commercial systems.  Neat ILs do not contain lithium 

ions, so for their use as an electrolyte, a lithium salt must be added.  However, upon 

addition of the lithium salt the viscosity increases and the conductivity decreases.35 In the 

interest of understanding the complex microscale processes occurring in a battery, 

research has generally matched the anion of the ionic liquid and the salt. Within ionic 

liquids, conductivity and viscosity have a strong inverse relationship that follows the 
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Vogel-Tammann-Fulcher equation.7,43 While adding lithium salts ultimately reduces 

conductivity, low salt concentrations in RTIL solutions have adverse effects upon the 

lithium transference number, inherently limiting the capacity that can be delivered with 

each cycle. 44,45 Another problem with ionic liquids is their anodic limit.  The highly 

reducing potential of lithium can itself induce breakdown or cause the graphite planes 

themselves to demonstrate catalytic properties.  To combat this ethylene carbonate, which 

forms a stable SEI below 1 V vs. Li/Li+, can be added.  However, this is 

counterproductive unless significant improvement over the commercialized carbonate 

solution technology is realized.  Given the plethora of attractive properties and the variety 

of RTILs, great research interest exists in their use as both an additive and the solvent in 

the electrolyte of a lithium ion battery. 

Research into ionic liquids has been largely limited to nitrogen based 

architectures despite proof of concept with phosphorous, sulfur and even oxygen based 

anions.46  On top of this, recent literature has shown that phosphorous47,48 and sulfur49,50 

based ILs possess superior electrochemical properties (wider ESW and higher 

conductivities) relative to their nitrogen counterparts. Oxonium cations have proven to be 

rather unstable and while it would be viewed as the most compatible with the PEO 

backbone concerns over its chemical stability limit its research promise.  As ILs are 

designable additives it is possible to selectively modify them using knowledge taken from 

nitrogen ILs and polymer electrolytes to create a better IL.    

5. Polymer	Electrolytes	Containing	Ionic	Liquids	

PEO has conductivity problems at low temperatures because of its semi-

crystalline nature.  Thus research into PEO has focused on energetically favoring the 
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amorphous phase by inclusion of a secondary block22, by lower molecular weight 

polymers, by ceramic particles or by RTILs.  Because of the attractive properties of 

RTILs (incombustible, high electrochemical stability) recent research has focused upon 

incorporating these additives into polymer electrolyte systems.  

Shin et al.51 have shown that adding RTILs to poly(ethylene oxide) (PEO) results 

in a marked increase in ionic conductivity.  Ranging the concentrations between 0.66-

3.24:1 IL: lithium salt (lithium salt used is LiTFSI), the conductivity can be increased 

between 1 and 2 orders of magnitude (the polymer salt ratio was held constant at 20:1).   

However the upper limit of conductivity achievable in the polymer electrolyte is still one 

order less than the conductivity of the neat ionic liquid.  It is also apparent that as the 

temperature is varied for a given electrolyte there is a change in the slope of the 

conductivity curve occurring at 60°C, which roughly corresponds to the Tg of PEO.  Shin 

states that it is probably due to the melting of the PEO chains, indicating that the Li+ ions 

are still interacting with the ether oxygens.  This is in agreement with what is seen with 

polymer electrolytes containing carbonate solvents, where the preferred method of Li+ 

conduction is through the polymer chains.2,52     

An important part of any electrolyte system is the electrochemical stability 

window (ESW), which is a measure of the overall stability of the electrolyte.  The 

combination of these two components actually results in an electrolyte that has a 

breakdown voltage >5.5 V against lithium.  This is ideal moving forward as it is 

functional for not only the current generation of cathodes, but also for the next generation 

of high voltage cathodes in development now that operate outside of the stability window 

for the current electrolyte systems. 
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The large ratio of ionic liquid to polymer in Shin's optimized electrolyte though 

has adverse effects upon the transference number, inherently limiting the capacity that 

can be delivered by lithium with each cycle.44,45 In the polymer electrolyte without ionic 

liquid, the experimental value of 0.3 falls short of the expected value of 0.5.44   And, 

Shin33 attributes the deviation at high IL concentrations to the availability of an 

alternative lithium conduction pathway.  However, their reasoning is a gross 

generalization of the solid solution kinetics in a solid polymer electrolyte, leading to 

deviations at most ratios for the electrolyte.  This is not surprising as debate exists in the 

literature among the nature of the transference number and its thermodynamic basis.53 

The polymer electrolyte used by Shin has a charge efficiency of ~99.9%.  The 

0.1% fade per cycle is an intrinsic property of the vanadium oxide cathode used and 

indicates the electrolyte is working as expected and not causing irreversible changes that 

diminish the capacity of the battery.54  The only disappointing data for the polymer 

electrolyte/IL system is that a discharge rate of C/10 (C is defined as the current needed 

to fully charge/discharge a battery in 1 hour, i.e. 2C = 1/2 hour, C/10 = 10 hrs.) draws 

current too quickly out of the battery.  While it is unlikely, it is hoped that a battery can 

function at high C rates allowing it to generate higher power. 
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III. Overview	of	Research	Activities	

1. Electrolyte	Component	Selection	

Prudent selection of the materials to be used in the electrolyte is nearly as 

important as the data returned from the testing.  In the following section, details will be 

given about the materials used to prepare the electrolyte.  As a reference all chemical 

structures are pictured in Figure III-1. 
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Figure III-1 Chemical structures of compounds to be used during the doctoral 

research 

a. Polymer	

Two polymer matrices were chosen to develop the electrolyte: homopolymer PEO 

and PEO blocked with lithiated PMAA.  Because IL and Li salt need to be entrapped in 

the polymer scaffold while still maintaining mechanical stability high molecular weights 

were chosen.  Given that chain mobility is important for lithium ion conduction55, the 

lower molecular weight PEO may be preferred.  There is some concern about the 
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polymer's polydispersity, but it is believed that its impact upon the observed electrical 

properties will be minimal.  In regards to this Bruce56 has shown that higher degrees of 

polydispersity possess greater conductivity because of the varying lengths of tunnels 

permitting overlap of the chains.  Homopolymer PEO of Mw 300k was chosen for this 

research.   

Ultimately, the polymer scaffold will be changed to look into block copolymer 

matrices.  The motivation of this work comes from the doctoral research of Ayan 

Ghosh21,22,57, who used lithiated poly(methyl methacrylate) blocked with PEO  His 

research largely focused on solid block copolymer systems (with a lithium borate based 

salt) which demonstrated high transference numbers (close to unity).  However, 

insufficient conductivity limited this system and it is believed that the addition of IL to 

his system could overcome this problem.  For this work a block copolymer with an 

overall Mw of 30k will be used (27k PEO-3k PMAALi).  The lithiation is done by 

reacting PEO-b-PMAA with equimolar LiOH in an appropriate solvent; the Li+ replaces 

the H+.  This is slightly different than Ayan’s polymer system as the purchased polymer 

is methyl acrylic acid and not methyl methacrylate.  This change allows for complete 

lithiation of the minor block without having to first remove the methacrylate group. 

b. Lithium	Salt	

 There are two sets of salts of particular interest to the research as the source of 

lithium ions for the electrolyte.  The first salt under consideration is LiTFSI, which has 

been chosen because of its bulky counterion.  It has been extensively studied and will 

provide a good comparison point to reference literature.  The second set of salts to be 

tested consists of both commercial and experimental anions.  The commercial 
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possibilities are PF6 and ClO4, while the experimental possibilities are bisoxalato borate 

(BOB) and bis(perfluoroethyl sulfonyl) imide (BETI).  Relative to a TFSI based system, 

the PF6 anion has both benefits such as its high conductivity and price, but also 

drawbacks such as its moisture and temperature stability.6,58  Numerous other anions exist 

that exhibit good lithium conductivity in solid polymer electrolytes including 

bis(perfluoroethyl sulfonyl) imide (BETI) and bis(oxalato) borate (BOB) and ClO4.
59   

c. Ionic	Liquid	

At the outset of the project it was hoped that there would be enough time to 

investigate both diethyl sulfone and tetrahyrdothiophene based architectures.  Different 

length pendant alkyl groups of 1-4 carbons would then be attached to these architectures.  

While this work was largely successful in creating the TFSI based ILs the sheer number 

of possibilities limited us to the most readily available triethyl sulfonium based cation.  

However, because of its simplicity and ability to further this research the synthesis 

process is disclosed in Scheme III-2.  The synthesis begins by mixing the chosen 

architecture with the appropriate length 1-iodoalkane in dry acetone under inert 

atmosphere.  For BETI and TFSI, the iodine anion is then exchanged for BETI - or TFSI 

via an anion exchange with the conjugate alkali cation which then is separated via an 

organic extraction with dichloromethane (DCM).  In the case of ClO4
-, PF6

- or BOB the 

iodide form was first converted to the hydroxide by use of AgNO3 and NaOH.  The 

appropriate conjugate acid of the anion is then added resulting in the desired IL.  BOB 

which does use the acid first has to be synthesized in-situ and is discussed in further 

detail in Section V.2.b.  For all ILs the absence of iodine was confirmed via qualitative 

testing of the DCM layer with a 1% solution of AgNO3 in ethanol.  The commonality of 
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anions between the lithium salt and the ionic liquid was intentional and helped to 

minimize the number of charged species to be investigated.  The ionic liquids were then 

dried under high vacuum before being transferred for storage in our MBRAUN 

Labmaster 100 argon glove box. 
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Scheme III-2 Sample reaction scheme for synthesis of ionic liquid 

d. Polymer	Electrolyte	Synthesis	

 The polymer electrolytes are synthesized in the glove box under argon.  First all 

of the components are weighed and placed into a PTFE capped glass dram vial (total 

component weight ~200 mg). Then tetrahydrofuran (THF) or dimethylformamide (DMF) 

(anion dependent) and a micro sized stir bar were added to allow the solution to become 

well mixed.  During the stirring process the solutions were elevated slightly to ~35°C 

(THF) or ~60 C to allow all components to go into solution.  The solutions were then 

brought back to room temperature before being cast into shallow depressions on a Bytac 

sheet.  The solutions were allowed to dry, before being heated to ~50-60 °C (THF) or 80 

°C (DMF) to turn the electrolytes into melts and ensure all solvent has evaporated.  The 

electrolytes were then brought back to room temperature and stored under argon until 

they are needed. This process results in electrolytes ~2 cm x 6 cm with a thickness on the 

order of hundreds of microns.  The process can be scaled by using more solution and by 

enlarging the casting area.  Phase separation (due to high salt/IL concentrations), if 

present within the as-cast hybrid electrolyte film, could be observed with the naked eye.  
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2. Ionic	Liquid	Analytical	Tests	

e. Differential	Scanning	Calorimetry	(DSC)	

 DSC allows for greater understanding of the phase behaviors of the ILs, which 

ultimately play into the observed properties.  Ionic liquids have a tendency to supercool 

because of the rapid increase in viscosity that occurs as the temperature is decreased.  It is 

important to understand the location of these metastable regions so that they are 

kinetically avoided since they can be quite large with these compounds.  Hermetically 

sealed pans, assembled in an argon glove box to avoid contamination with air and 

moisture, were used.  A heat/cool/heat cycle was used to get the thermogram traces as it 

eliminates the thermal history of the IL. 

f. Nuclear	Magnetic	Resonance	(NMR)	

 NMR of the 1H, 13C, and 19F nuclei are used to unambiguously identify a 

compound's connectivity, based upon chemical shifts and splitting patterns.  For novel 

compounds this is necessary for publication, and for previously synthesized compounds it 

allows comparison to published literature.  The solvent used was deuterated methanol, 

because of its high polarity.  19F spectra were referenced to trifluoroacetic acid. 

g. Mass	Spectrometry	(MS)	

 Similar to NMR, MS allows identification of compounds based upon its 

mass/charge (m/z) ratio.  For new compounds this is necessary for publication, and for 

previously synthesized compounds they are referenced to published literature.  The MS 

was run at the UMD facility in both ESI+ and ESI- mode to see the anion and cation, 



20 
 

respectively.  Presence of the peaks at the corresponding m/z ratio will permit 

identification of a given compound. 

h. Conductivity	

 The general principle behind impedance spectroscopy is that the application of a 

small perturbation results in an electrochemical response.  This response is then fit to a 

model circuit allowing for determination of its electrical properties.  For neat ILs, the 

equivalent circuit is generally modeled as shown in Scheme III-3, which consists of 

resistor and capacitor in parallel all of which is in series to another resistor.  Rb, bulk 

resistance, models the diffusion of charged species through the electrolyte, while Rp, 

polarization resistance, and Cdl, double layer capacitance jointly model the interface's 

electrical properties.   

For the ionic liquids systems, a symmetric 2 probe system was used; the AC 

amplitude for the tests is 10 mV and the frequency is swept from 1 MHz to 1 Hz.  The 

bulk resistance is the high frequency x-intercept, which is then plugged into equation 1.  

This measurement serves as a baseline for optimal conductivity of the system, as it is 

expected that the full hybrid electrolyte system will be less conductive than the neat IL.  

As ILs are very sensitive to water all measurements were conducted under an inert 

atmosphere in a glove box. 
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Scheme III-3 Model electrical circuit 

3. Analytical	Tests	of	the	Polymer	Electrolyte	

a. Differential	Scanning	Calorimetry	

 The principles of the DSC performed on the electrolyte are similar to DSC 

performed on the pure IL.  Assembly of hermetically sealed pans similarly occurred in 

the argon glove box.  The knowledge of the temperature characteristics, specifically the 

glass transition temperature and melting point, are important for comparison to the 

observed electrical properties and to understanding the mechanical properties of the 

electrolyte. 

b. General	Cell	Construction	

 The cell as depicted in Figure III-4 was assembled in an argon filled glove box 

devoid of moisture, oxygen and nitrogen.  The image depicts a sample cell that is 

exploded to clearly show the components from one side of the casing to the other.  Before 

being removed for testing the cells will be crimped such that they are air tight and 

removed for testing on a frequency response analyzer.  Prior to testing the cells were 

annealed at 70 °C for 3-4 hrs. to promote contact between the electrolyte and the 

electrodes.  The composition of the electrode is different depending on the type of test 
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that is performed.  Based upon the construction method of coin cells and the need to keep 

them airtight, all testing is done with a two probe set-up. 

 

Figure III-4 Exploded view of the contents of a coin cell used for this research 

c. Conductivity	

 The AC impedance of the hybrid polymer electrolyte operates on the same 

principle as the conductivity measurements of the ionic liquid.  The cells are constructed 

with two symmetric blocking stainless steel electrodes (total electrode thickness 1.5 mm).   

It is then possible to discern the bulk and interfacial resistance by using a small amplitude 

AC current (10 mV).  A semi-circle is then fit to the high frequency region of the Nyquist 

plot by the program ZView.  The value of the lower frequency intercept is then fit into 

Equation 1 as the resistance, giving the conductivity value of a given electrolyte.  To 

provide statistical significance to the data, cell compositions are run in triplicate.  Debate 

exists in literature about the minimum ionic conductivity useful for commercial 

electrolytes, but the accepted threshold ranges between 10-3-10-4 S/cm. 
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d. Electrochemical	Stability	Window	

The ideal electrolyte will have an ESW that is slightly larger than the theoretical 

potentials of the electrode.  However, the current generation of carbonate electrolytes is 

stable to ~4.3 V and is not stable below 1 V (see Figure III-57).  However the selection of 

certain carbonate electrolytes allows for the formation of an SEI film, which prevents 

electrolyte breakdown below 1 V.  While formation of this film does sacrifice some of 

the solvent and the cell's deliverable power, it ultimately allows the cell to operate over a 

wider voltage range.  Polymer electrolytes have demonstrated stabilities that exceed 5 

volts against Li/Li+ and ionic liquids, are an ideal additive because they are known to 

have ESW >6V.46 

 

Figure III-5 Common electrode potentials and capacities plotted over the ESW of a 

carbonate solution7 

σ- conductivity (S/cm) 
t- thickness (cm) 
R- measured resistance (Ω) 
A- area (cm2) 
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To perform an ESW test (also called linear sweep voltammetry) a coin cell is 

constructed whereby one electrode is the reference electrode (lithium) and the other is a 

blocking electrode (stainless steel, platinum or aluminum).  Three counter electrodes 

were investigated because of differing electrochemical stabilities and concerns of this 

facts impact on the data.  For the testing, the voltage is set to 3 V and then stepped at the 

rate of 1 mV/s to 6.5 V against the Li reference.  At the point where the derivative of the 

current density first changes, the electrolyte is assumed to have begun to break down.  To 

confirm this, the scan was run repeatedly in a cyclic voltammetry experiment involving 

forward and backward scans to the set points.  This allowed for confirmation of 

electrolyte stability at high voltages.   

e. Overvoltage	studies	

 AC impedance and transference generally lead to good understanding of the bulk 

properties of the electrolyte, but most battery issues occur at the interface between the 

electrolyte and electrode.  Given the extraordinary amount of time to conduct cycling 

tests and the innumerable side reactions it is more efficient to simply test the overvoltage 

of an electrolyte.  Stability of this interface is important to long cycle life and capacity 

retention both key metrics of a full battery cell.   

 Lithium plating and stripping tests are conducted by applying a current of 0.1 mA/ 

cm2 and reversing the polarity each hour.  The cell's overvoltage at the end of each cycle 

of current is measured and reported as the overvoltage for that cycle.  The ideal voltage 

profile is constant at a minimal value over each hour time period, and is constant from 

cycle to cycle.  This is ideal as it minimizes the cell potential loss to promoting ionic 

movement across the interface.  This cell is constructed with two lithium electrodes.  
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Cycling is run at an elevated temperature as long as needed with intermittent breaks for 

impedance spectroscopy.  The impedance scans give great insight into the changes of the 

resistance of the electrolyte and the interface as lithium is reversibly moved across it.  

f. Transference	Number	

 The transference number is a measure of the fraction of total current (σ) that is 

due to Li+ ions, wherein each ion’s conductivity is multiplied by its charge (q) (Equation 

2).  It is determined, as per Bruce and Vincent53,60, by potentiostatic measurements of two 

lithium metal electrodes and obtained by dividing the steady state (superscript e) current 

by the initial (superscript o) current while accounting for the change in resistance 

between the steady and initial states (Equation 2).  Roughly the transference number 

corresponds to the ability of each ion to diffuse through the electrolyte membrane and 

depends on the relative concentration of each ionic species.  TLi+ is a good measure of the 

concentration gradient that develops in the electrolyte system.  As this gradient becomes 

more steep it ultimately harms the delivered capacity as it inhibits the transport of Li+ 

ions.61  The ideal value of TLi+ is unity, but given the complex nature of the solid 

electrolytes this is expected to be between 0.2 and 0.5.  The potentiostatic measurements 

will be run at 10 mV for 24 hrs, where the system is assumed to be at equilibrium by 

observing a linear response in I over time. 
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g. Restricted	Diffusion	

The mobility of ions in the electrolyte is essential for conduction of current.  

However, this generation of current needs to be controlled such that cell discharge occurs 

in a controlled manner only when connected to an external circuit.  Current interrupt 

tests, as developed by Newman62, are able to measure the movement of ions.  First, a 

current density of 0.1 mA/cm2 is applied across the symmetrical lithium cell for 15 

minutes.  Then the current to the cell was turned off and the potential of the cell is 

monitored as it returned to open circuit.  By then fitting a line to the plot in the change of 

the open circuit potential as in Equation 3 (Ds is the salt diffusion coefficient and L is the 

distance between the electrodes) the Ds can be determined. 

slopeൌ‐ݏܦߨ
2
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h. Cell	Cycling	

 It is important to check that the electrolyte does not interfere with the normal 

capacity fade of the electrode.  In a battery system the capacity fade is a result of 2 

processes: one, irreversible volume changes that interfere with the physical contact 

between interfaces and two, the irreversible loss of lithium ions at the interface or in the 

electrodes themselves.  Constant current cycling, whereby the cell is considered fully 

charged or discharged at a threshold voltage, is limited by the C rate.  The C rate which is 

defined as the time in hours it takes to fully charge or discharge, i.e. C/2 = 2 hours to full 

charge or 4C = one quarter of an hour to full charge.  Lower C rates to a point result in 

higher capacities, but worse cycle life.  A full range of rates will be tested yielding 

invaluable information on the current limitations of the electrolyte.  The cells will be set 
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up with commercial cathode materials, such as LiCoO2 or LiFePO4, and cycled against 

lithium showcasing the impact upon capacity of the electrolyte.  While graphitic carbon is 

generally used as an anode material, its edges have catalytic properties which do not 

allow for intercalation of lithium.  However, Li4Ti5O12 a more stable anode material at 

1.5 V was also tested in a half-cell configuration to further showcase the electrolyte.   
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IV. S2TFSI	in	PEO‐based	Polymer	Electrolytes	

1. Introduction	

Battery technology has been unable to become more powerful, while still 

remaining safe to the end consumer.  To accomplish this a new generation of electrolytes 

will need to be developed that replaces organic carbonate based electrolytes.6  Solid 

polymer electrolytes are an alternative to liquid combustible systems because they 

possess superior voltage, temperature and mechanical stability.  These benefits though 

come with a large trade off with conductivity.6,8-10,15  Poly(ethylene oxide) (PEO) has 

conductivity problems at ambient temperatures because of its semi-crystalline nature.  

Thus, it has become a research focus to energetically favor the amorphous phase by 

inclusion of a secondary block copolymer22, lower molecular weight polymers63, ceramic 

particles64,65, carbonate solvents28 or ionic liquids (ILs).33,51,66  ILs are attractive additives 

because they are tunable systems that possess wide temperature and voltage stability 

while having appreciable conductivity without compromising safety.   

ILs are considered tunable solvents, as the anion and cation can be chosen to 

control the macro-properties of the electrolyte.  Of the most commonly used IL 

architectures, the imidazolium architecture36 has the highest conductivity and thus makes 

it an ideal starting point for the development of an electrolyte.  However, this same 

scaffold has encountered problems with its stability at low voltages and its intercalation 

into the graphite anode resulting in exfoliation and rapid capacity fade.38,39  Pyrrolidinium 

architectures37 have been investigated because they possess high native ionic conductivity 

values.  However, because they are poor solvents of lithium they demonstrate limited 

lithium conductivity values.  By combining the polymer electrolyte with ILs, a hybrid 
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system can be constructed that will meet the performance standards for a battery 

electrolyte while still maintaining adequate mechanical properties as a solid.7   

Shin et al.51 have shown that adding 1-butyl-1-methyl pyrrolidinium TFSI to PEO 

results in a marked increase in ionic conductivity between 1 and 2 orders of magnitude.  

However the upper limit of conductivity achievable in the polymer electrolyte is still one 

order less than the conductivity of the neat ionic liquid.  Additionally the large ratio of 

ionic liquid to polymer in Shin's optimized electrolyte has adverse effects upon the 

transference number, inherently limiting the capacity that can be delivered by lithium 

with each cycle.44,45 This led to interest in novel IL scaffolds that would overcome these 

observed limitations while mimicking the preferred method of Li+ conduction through the 

polymer chains.2,52  Research into sulfur and phosphorous based systems has 

demonstrated superior electrochemical stability and conductivity values relative to 

nitrogen based architectures.47,49   

Electrolyte research involving ILs has been largely limited to nitrogen based 

architectures.  However, sulfur based architectures promise to provide superior electrical 

properties, which ultimately will allow these hybrid polymer ionic liquid electrolytes to 

become the next generation of solid electrolytes. The current polymer-ionic liquid 

systems are limited by problems with the ionic liquid, and it is hoped that the 

incorporation of novel ionic liquids chemistries, based on sulfur, will permit innovation 

beyond the current systems.  Our research has focused on the development of hybrid 

electrolyte structures that blend sulfur based cations with PEO for improved performance 

as electrolytes in lithium batteries.  We report on the mechanical and electrochemical 

characterization of this system.    
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2. Experimental	

a. Materials	

LiTFSI (LiN(SO2CF3)2), and lithium, aluminum and platinum foil were purchased from 

Aldrich and used as received.  Poly(ethylene oxide) (Mw 300k) and triethyl sulfide iodide 

were purchased from Alfa Aesar and used as received.   

b. RTIL	preparation	

S2TFSI (S(CH2CH3)3 TFSI) was synthesized according to previous literature.67  Briefly, 

S2I was stirred with LiTFSI (10% stoichiometric excess) in DI H2O for 4h.  The IL was 

then diluted with dichloromethane and washed 5x with water until no precipitate formed 

by AgNO3. The organic layer was then dried under high vacuum at 60°C for 24h.  

Characterization was performed by NMR on a Bruker AV-400 high resolution NMR. 1H, 

13C and 19F (TFA capillary reference) were performed in deuterated methanol. Mass 

spectroscopy measurements were performed on a JEOL AccuTOF-CS ESI-TOF mass 

spectrometer. ESI+/ESI- modes were looked at over the m/z range of 80-500.  1H: 3.3341 

(q, J= 7.4 Hz, 6 H), 1.4694 (t, J= 7.4 Hz, 9 H); 13C: 120.213, 32.681, 7.961; 19F: 41.41.  

ESI+: 119.03285, ESI-: 279.92384. 

c. Electrolyte	Preparation	

The electrolyte films of different composition were solution cast from tetrahydrofuran 

onto Bytac molds in an MBRAUN Labmaster 100 argon glove box.  The resultant films 

were dried for several days at 50°C, before being placed into CR2032 coin cell 

enclosures for electrolyte testing. All constructed cells are annealed for 3 hrs. at 50 °C 

prior to any electrochemical testing. 
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d. Electrode	Preparation	

 Cathodes were prepared by mixing 80 % LiFePO4, 10 % carbon black and 10 % 

PEO by weight in DMF.  The paste was ball milled for 30 mins before being spread onto 

aluminum foil and dried in a 100 °C oven.  Discs were punched out and weighed before 

being placed into a glove box for assembly.  

e. Electrolyte	Characterization	

Differential scanning calorimetry (DSC) measurements were performed on a TA 

Instruments Q100 differential scanning calorimeter. Samples were hermetically sealed in 

Al pans under Ar prior to measurements. Samples were run using a heat/cool/heat method 

to erase thermal history at a heating rate of 10°C/min and a cooling rate of 5°C/min from 

-50°C to 120°C.  

 Conductivity measurements for electrolytes were performed in a 

SS/electrolyte/SS coin cell set up on a Solartron 1287A/1255B platform over the 

frequency range 1 MHz to 1 Hz.  Testing parameters were controlled by the associated 

CorrWare and ZPlot software, while data analysis was performed using CorrView, 

ZView and Origins 8.  All temperature testing was done in a RevSci IncuFridge with 

±0.5°C temperature accuracy. 

 Raman spectroscopy was performed on a Horiba Yvon LabRam ARAMIS using a 

100x objective, a 600 gr/mm grating, a 100 μm hole, a 100 μm slit, a D 0.3 filter and a 

633 nm HeNe laser. 

 Cyclic voltammetry was performed on an Arbin BT2000 to determine the 

cyclability of the electrolyte.  Tested cells were cycled 500 times at room temperature at 

rate of 5 mV/s.   Pt/electrolyte/Li cells were cycled from 2.5 V to 4.7 V vs. Li/Li+ 
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reference; Al/electrolyte/Li were cycled from 2.5 V to 5.0 V vs. Li/Li+ reference.  The 

half-cell potential for Li/Li+, which is used as the reference for all voltammetry 

measurements, is ~3.04 V relative to the NHE. 

 Lithium stripping-plating experiments were performed on the Solartron set-up to 

determine the interfacial stability and reversibility of the electrolyte material.  The 

electrolyte was sandwiched between two lithium electrodes.  A current density of 0.1 

mA/cm2 was applied to the film and was reversed every hour.  100 cycles, each 

consisting of 1 hr. positive current and 1 hr. negative, were applied to the cell at 45 °C.  

Impedance spectroscopy was periodically conducted to monitor development of 

resistance at the interface during the galvanostatic cycling.   

 The cathode half cells were cycled on an ArbinBT2000 (Arbin Instruments, TX, 

USA) between 2.5-4.0 V.  The applied current for both the charge and discharge was 0.01 

mA/cm2; 10 cycles were completed.  Cells rested for 1 minute between charging and 

discharging.  Cell temperature was maintained at 40 °C by use of a RevSci Incubator.  

Cells were equilibrated for 1 hour prior to testing. 

3. Results	and	Discussion	

 Sulfur based ILs were selected because of their high initial conductivity and wide 

electrochemical stability.  Among possible cation scaffolds triethyl sulfonium was chosen 

for its structural similarity to PEO, as it possess a thioethylene moiety (C-C-S).  As a 

well-known lithium ion conductor, PEO with its backbone of repetitive oxyethylene (C-

C-O) sequences allows lithium to be coordinated to oxygen units as it moves along the 

voltage gradient.  This association between the polymer backbone and IL is believed to 

favor lithium as the dominant charge carrier in the electrolyte. Additionally, the IL would 
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plasticize the high molecular weight PEO allowing for increased chain mobility at low 

temperatures.  The anion was selected to allow for elevated temperature applications, and 

also for the common anion effect with the lithium salt.  This led to the widely available 

TFSI anion, which is only limited because of its instability at high voltages against 

aluminum.  The electrolyte is formed by solution casting to create a homogenous film.  

Four ratios of ionic liquid were evaluated, with constant ratio of polymer to salt to 

measure the observed properties.  The ratio of PEO to lithium salt was selected from a 

literature survey, leading us to an O/Li+ of 20:1.51,68  The IL ratio was selected to give a 

broad base without compromising the ability to form thin films.  The molar ratios tested 

were 20 PEO : 1 LiTFSI : x S2TFSI, where x=0, 0.5, 1.0, and 1.5.  Henceforth the 

electrolytes are referenced by the molar ratio of IL, as IL-x. 

Confocal	Raman	Spectroscopy	

 After drying, the films formed opaque free standing solid membranes (Figure IV-

1), which are strong enough to be rolled and manipulated by hand.  Raman spectroscopy 

was performed on the hybrid solid electrolyte to confirm its homogeneity. Each 

component's spectrum was individually taken before rastering the laser beam over a 50 

μm square.  The spectra of IL-1.0 can be seen in Figure IV-2 with the relevant integration 

areas highlighted (Green: LiTFSI 712-769 cm-1, Red: PEO 820-886 cm-1, Blue: S2TFSI 

2920-2979 cm-1).  The color intensity in Figure IV-3(a), (b) and (c) corresponds to the 

integral of the chosen area (darker=greater) with Figure IV-3(d) corresponding to the 

overlay of the three color images.  The small changes in the depth of color are believed to 

be largely the result of the imaging of a dimpled surface, which ultimately affected our 

ability to focus the beam light in a constant xy-plane over the entire sample.  The casting 
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technique results in as-cast films having a variable thickness when observed under a 

microscope.  However, during electrochemical testing this limitation is handled during 

the annealing process, wherein pressure and temperature are applied to generate uniform 

contact between the electrode and the electrolyte.  Additionally, minor color variations 

are observed due to the difficulty in selecting peak regions, as there was generally little 

buffer between peaks of interest and overlapping peaks from other components.  The 

coloring of the overlaid graphs is consistent over the imaged area confirming the 

homogeneity on the microscale of the electrolyte. 

  

Figure IV-1 Pictures of thin film solid electrolyte in Ar atmosphere.  Electrolyte is 

~5 cm. x 2cm. 
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Figure IV-2 Raman spectra of IL-1.0 hybrid polymer electrolyte. Indicated areas 

are as follows Green: LiTFSI 712-769 cm-1 Red: PEO 820-886 cm-1 Blue: S2TFSI 

2920-2979 cm-1. 
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Figure IV-3 Confocal Raman Spectroscopy of 50 μm. square.  Intensity indicates 

area under the peak.  a) PEO 820-886 cm-1 b) S2TFSI 2920-2979 cm-1 c) LiTFSI 

712-769 cm-1 d) component overlay. 

Differential	Scanning	Calorimetry	

 Conductivity is a function of temperature, especially in polymer electrolyte 

wherein chain mobility is largely responsible for conduction of ions.  DSC was 

performed on the electrolyte to observe any thermal hysteresis over operational 

temperature.  Figure IV-4 shows the relevant portion of the cooling and heating cycles of 

the electrolytes; no peaks were observed outside this region.  With increasing 

concentration of additives, the transition temperatures decrease leading to polymer blends 

that are amorphous at room temperature.  This is preferred because lithium ion 

conductivity in PEO depends on polymer chain mobility.  The large hysteresis can be 

shown in each of the tested formulations as there is a 20-30 °C difference between the 
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heating and cooling transition temperatures.  These differences remained large despite 

slower heating and cooling rates.  The large superheating and cooling effects is believed 

to be a result of the ionic liquid as this phenomenon is typically seen in the DSC of neat 

ILs.  It is also of note that the IL-1.0 and IL-1.5 formulation are solid at room 

temperature, despite the thermograms indicating the hybrid electrolyte is in a region 

between its freezing point and melting point.  Lastly with increasing ionic liquid 

concentration the transition peaks become broader.  The trend in the thermograms 

confirms the increased presence of the amorphous lithium conducting phase at lower 

temperature.  The dry nature of our electrolyte is further confirmed with the absence of 

water peaks at either 0 or 100 °C. 
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Figure IV-4 Selected portion of thermograms from indicated electrolyte mixtures.   

Heating rate was 10 C/min and cooling rate was 5 C/min in a heat/cool/heat 

format with endpoints of -50 C and 120 C.  Each thermogram is offset 3 W/g, and 

each tick mark on the y-axis is 1 W/g. Ratio is moles of 20 PEO: 1 LiTFSI : x 

S2TFSI, where x is indicated in the figure. 

Ionic	Conductivity	

 With this difference between heating and cooling cycles we chose to measure the 

AC impedance while both heating and cooling our samples. The cooling cycle can be 

seen in Figure IV-5(a) of a SS/electrolyte/SS set-up.  At 25°C IL-1.5 has sufficient ionic 

conductivity (>0.1 mS/cm) to be useful in battery applications.  At 35 °C the conductivity 
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of the optimum system is 0.640 mS/cm.  This temperature is of great interest because it is 

close to the temperature of the human body, wherein the safety of electrolyte systems 

limits the deployment of medical devices.  When comparing the conductivity data to each 

electrolyte's thermogram, a jump in conductivity is observed at the melting temperature, 

which corresponds to the transition from semicrystalline to melt in the polymer matrix.  

On either side of this point the conductivity increases linearly over inverse T, however, at 

this temperature the value of this slope changes resulting in smaller increases in 

conductivity over continued temperature increases. 
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Figure IV-5 (a) Conductivity over varied temperature for selected electrolyte over 

the cooling cycle.  Ratio is moles of 20 PEO: 1 LiTFSI: x S2TFSI. (b) Effect of 

thermal history on measured conductivity of IL-1.5 electrolyte.  
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 At low temperatures the addition of IL results in a roughly 3 order of magnitude 

increase in ionic conductivity, which at higher temperatures diminishes to roughly 1 

order of magnitude.  This decrease in gain seen by adding IL over increased temperature 

is believed to be the result of greater reliance on enhanced chain mobility, which leads to 

greater ionic conductivity in the IL-0 electrolyte.  Chain mobility of the PEO systems is 

largely dependent on the absence of crystalline regions, which occurs above the transition 

determined from DSC, which is confirmed by the conductivity data.  Additionally greater 

IL concentrations result in diminished increases in conductivity, as seen by the close 

overlap of IL-1.0 and IL-1.5. This is an agreement with previous hybrid polymer 

electrolyte systems, whereby the ionic conductivity asymptotically approached that of the 

pure IL.33   

The observed ionic conductivity values exceeded those of the comparison 

pyrrolidinium system with significantly less IL.  For comparison, the system closest to 

IL-1.5 (x=1.73), reaches 0.1 mS/cm at ~20°C, a 5°C cooler than our optimal conductivity 

system33.  At slightly elevated temperatures the difference in conductivity between the 

pyrrolidinium and triethyl sulfonium is diminished, but the sulfur based system still 

maintains improved conductivity.  Given the numerous constraints applied to selecting an 

electrolyte system7, the confirmation of our hypothesis that triethyl sulfonium based 

systems mimic the polymer, bodes well for increased performance by using our hybrid 

solid polymer electrolyte.  

 Figure IV-5(b) is an isolation of IL-1.5 for the heating and cooling cycles.  All 

data points overlap except for 35°C, which is markedly different (0.640 mS/cm (cooling) 

to 0.295 mS/cm (heating)).  This correlates with the transition temperature determined 
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from DSC (38.40°C).  As expected for the cooling curve which approaches the transition 

from the melt, the electrolyte is able to supercool until it undergoes a transition prior to 

the temperature point collected at 25°C.  The heating curve peak occurs at a higher 

temperature and thus the order of magnitude increase in conductivity associated with the 

transition is not seen until the 45°C temperature point.  Considering this, great care was 

taken to equilibrate cells above room temperature for extended periods of time before 

cycling. 

Cathodic	Stability	

 Electrolytes in lithium batteries, besides being thermally stable lithium ion 

conductors, need to possess sufficiently wide reversible electrochemical stability against 

Li/Li+. Stability to the cathode (cathodic stability) should meet or exceed the potential of 

current carbonate based electrolytes. Stability to the anode (anodic stability) should allow 

for the utilization of low voltage anodes by formation of a stable solid-electrolyte 

interphase (SEI).   

 Reversible cathodic stability in the IL-1.0 electrolyte was attained using cyclic 

voltammetry of a Li/electrolyte/Pt cell, cycled from 2.5 to 4.7 vs. Li/Li+ for 500 cycles.  

Platinum was initially used as the counter electrode due to documented concerns in the 

literature of instability of the TFSI- anion against Al.69 In Figure IV-6(a) selected cycles 

show the reversible stability of the electrolyte that exceeds 4.5 V.  In cycle 1 there is a 

clear breakdown near the upper voltage limit, which diminishes in magnitude with further 

cycling.  After the first forward sweep there is a clear decrease in the current density, 

which is the result of increased resistance.  The ability of the hybrid electrolyte to achieve 
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high voltages against lithium is confirmed, ultimately presenting further ability for the 

development of high power lithium batteries that rely on high voltage cathodes. 

Figure IV-6 (a) Cyclic voltammetry of Li/IL-1.0/Pt cell.  The voltage was cycled 

from 2.5 to 4.7 V vs. Li/Li+ at a rate of 5 mV/s at rt.    The current remains relatively 

constant over the whole voltage range until the upper cathodic limit.  Minimal 

decrease in current is observed from the 1st to 500th cycle.  (b) Cyclic voltammetry of 

a Li/IL-1.0/Al cell.  The voltage was cycled from 2.5 to 5.0 V vs. Li/Li+ at a rate of 5 

mV/s at rt.     
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 In addition to testing our electrolyte system with a Pt counter electrode we 

decided to investigate its stability against aluminum in the interest of commercial 

viability. Aluminum is nearly ubiquitously used as the cathodic current collector thus the 

electrolyte needs to be characterized against it.  In Figure IV-6(b) IL-1.0 is cycled from 
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2.5 to 5 V against Li/Li+ for 500 cycles.  Over the entire cycling process there was 

minimal current decay indicating stability against high voltage commercial cathodes.  

The electrolyte as formulated does in fact appear to have promise for 5 V cathode 

systems.  Further electrolyte testing conducted after completion of this test (not pictured) 

does indicate electrolyte stability that would provide a buffer zone above cathodes with a 

5 V discharge potential.   

Overvoltage	

 To document the long term stability of the IL-1.0 electrolyte against lithium, 

galvanostatic cycling was conducted that involves aggressively stripping and plating 

lithium.  A current density of 0.1 mA/cm2 was reversed every hour for 100 cycles at 45 

°C with intermittent testing of the conductivity via impedance spectroscopy.  Selected 

cycles can be seen in Figure IV-7(a), which shows that the electrolyte has a delayed 

response to the current.  Initially the plateau region takes over 30 minutes to achieve.  

Over the first 20 cycles this time reduces by half and the cell is able to reach steady state 

in ~15 minutes.  

 The overvoltage at the end of each half-cycle is plotted in Figure IV-7(b).  There 

is an initial decrease in the value followed by a constant value for the succeeding 20 

cycles.  This constant period is then followed by a steady increase in the overvoltage for 

each successive cycle, until the completion of the test.  This steady growth of the 

resistance in the electrolyte is attributed to the increase in thickness of the SEI layer as 

determined by impedance spectroscopy.  The Coloumbic efficiency of the plating and 

stripping cycles were evaluated to determine the reversibility of lithium transport.  The 

first cycle has an efficiency of 91.1%, which is believed to be the result of the 
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development of SEI layer.  In the 2nd cycle this efficiency quickly jumps to 98.3% and 

remains close to 98% for the remainder of the 100 cycles.   

Figure IV-7 (a) Measurement of IL-1.0 overpotential as a function of time.  Cycle 

number is as indicated in the legend.  (b) Value of overpotential of the electrode-

electrolyte interface at the end of each 2 hr. cycle (1 hr. charged followed by 1 hr. 

discharge both at 0.1 mA/cm2) as a function of cycle number.  Testing was 

conducted at 45 °C.  
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 The selected impedance scans (Figure IV-8) show a constantly increasing low 

frequency intercept of the electrolyte.  The Nyquist plots from Figure IV-8 were then 

modeled using an equivalent circuit consisting of the electrolyte resistance (Re) in series 

to a parallel circuit element that branches into, the double layer capacitance (Cdl) and the 
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resistance to charge transfer (Rct).  The calculated values from using this model circuit are 

displayed in Table 1.  The Cdl and the Re change minimally over the 100 cycles.  

However, the Rct more than doubles from the fresh cell to the 100th cycle.  This is taken 

to mean the interface layer is gradually increasing in resistance, which is believed to be 

the result of incomplete dissolution of the interface upon reversal of the current's polarity 

leading to an SEI of constantly increasing thickness.  This is corroborated by the 

increasing plateau voltage and the compounding of imperfect coulombic efficiency.  

Given the constant nature of Re relative to Rct the bulk electrolyte remains largely 

unaffected by the current decay that is occurring at the electrode-electrolyte interface.  

Lastly the long term cycling stability of the hybrid electrolyte system confirms 

suppression of dendrite growth.  Although the interface needs to be slightly modified so 

that it reaches a steady state; the ability to deploy batteries containing metallic lithium 

would result in a large boost in capacity.  

 

Figure IV-8 Nyquist plot of electrolyte during overvoltage study.  Frequency range 

is 1 MHz to 1 Hz. 
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Table IV-1 Resistance and capacitance of equivalent circuit elements from the 

impedance scans after stated stripping/plating step.  The semicircles were modeled 

as a circuit containing the electrolyte resistance in series to an RC circuit 

Cycle  0  5  10  25  50  75  100 

Re (Ω)  136.61  118.84  112.71  108.65  115.57  124.13  133 

Rct (Ω)  1300.6  1445  1576.6  1812.3  2179  2533.7  2822.2 

Cdl (F)  3.58E‐07  3.16E‐07 3.08E‐07  3.06E‐07 3.08E‐07  3.07E‐07  3.06E‐07 

Half‐Cell	Cycling	

 Given the elevated conductivity values and wide electrochemical stability of the 

electrolyte, research was undertaken to test the electrolyte system against common 

cathodes and anodes in half-cell based systems.  As an early proof of concept the low 

voltage cathode material LiFePO4 was investigated.  Lithium was used as the anode, as 

no matching of capacity needs to occur, since its capacity greatly exceeds that of any 

other active material.  Also, there are no intercalation kinetics for the anode because 

lithium only has to be plated on the surface; making the data easier to interpret.  And 

lastly, if there was long term stability as evidenced by no dendrite growth, the use of 

lithium could be even considered a full lithium cell as opposed to a half Li-ion cell.   

 The assembled cathodes were 80 % active material, 10 % carbon black and 10 % 

PEO binder.  PEO was chosen over PVdF or CMC based binders as it is a natural Li+ 

conductor and it could anneal with the electrolyte. Ideally the electrolyte itself could be 

used as a binder and lithium conductor, but dry room facilities were unavailable.  This led 

to some concern over the ability of LiFePO4 particles to interface with the lithium 

conducting electrolyte.  Additionally the experimental set up with the coin cells limits the 

amount of cathode material in contact with the electrolyte. Because the PTFE washer 
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limits the surface area, it is possible that ion path lengths are significantly longer than the 

cell is thick.  This is also believed to negatively affect the observed voltage as 

intraelectrode ion movement is disfavored.  Ongoing incomplete cycling has shown that 

with elevated temperature, where PEO is a more effective Li+ conductor, these effects are 

marginalized. With these two points in mind there was some difficulty in calculating the 

amount of available active material.  A quick calculation is made assuming all active 

material can be delithiated/lithiated as well as a normalized value.  The values are 

normalized to the second charging process as this accounts for irreversible capacity loss 

due to formation of the interfaces.  

The curves of voltage vs. capacity of a Li/electrolyte/ LiFePO4 cell can be seen in 

Figure IV-9a.  The numerical values are depicted in Figure IV-3b, along with the 

coloumbic efficiency.  The cells were cycled galvanostatically at 0.01 mA/cm2 between 

2.5 and 4.0 V.  The first noticeable feature is the large decrease in capacity during the 

initial cycling.  Between the first and second charge and discharges there is capacity 

retention of 67 % and 48 % respectively.  This large decay was unexpected considering 

the wide electrochemical stability and low current used.  If all active material is assumed 

accessible the first charge capacity is 71.20 mAh/g while the first discharge capacity is 

48.03 mAh/g.  However, if only the active material in direct contact with the electrolyte 

is counted the capacity of both the charge and discharge cycles exceeds 140 mAh/g.  This 

factor has led us to also calculate capacity as a relative function of the second cycle. 
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Figure IV-9 a) Selected charge/discharge curves of a Li/electrolyte/ LiFePO4 cell.  

Cycling was conducted at 0.01 mA/cm2 from 2.5 to 4.0 V.  Testing was conducted at 

40 °C. b) End capacity of the first 10 cycles for the cell (charge (■) discharge (■)).  

Capacity values were calculated assuming all active material was available, which 

given the low values is not expected to be available amount.  Coloumbic efficiency 

(○) was determined by comparing the discharge capacity over the charge capacity 

for a given cycle. 

 

a 



52 
 

 

The delithiation of the LiFePO4 during the first cycle occurs in two phases.  The 

first has an overpotential of 50-100 mV relative to the normal plateau region around 3.4 

V.  However, after it has reached the end of this phase there is a second phase with a 

gradual increase in voltage until the cut-off at 4 V is reached.  This second region is 

indicative of the additional energy needed to move lithium within the electrode material 

to the electrode-electrolyte interface where it can then move to the anode.  During the 

first discharging cycle this first phase is nearly the entire observed capacity.  The second 

phase is significantly smaller and may be a function of the greater driving force needed to 

lithiate active material not in contact with the electrolyte.  The plateau similarly occurs at 

an overpotential of 50-100 mV, which is the energy loss as the Li ions cross the interface. 

Over increased cycling the overpotential of this plateau region increases relative to the 

b 
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normal potential of lithiation/delithiation, which has been observed in prior research.70  

The second phase observed during charging also decreases with cycling as a fraction of 

the total capacity.  Ongoing research shows that this second phase can also be minimized 

with increased cycling temperature. This is believed to be a result of the net flow of 

lithium out of LiFePO4 not in contact with the electrolyte.    

The capacity fading seen in Figure IV-9b quickly levels off in the 3rd cycle for 

both charge and discharge curves.  The charge capacity levels off at ~75 % of the second 

cycle, while the discharge capacity levels off at ~49 %.  Plotted out to the 10th cycle a 

plateau can be seen when looking at the charge and discharge capacities. This is ideal and 

largely indicates that stability has been achieved between the electrolyte and the 

electrode, which would be ideal for large number of cycles. Further research of this 

cycling should be able to show a continuing trend in capacity for this safe electrolyte.  

Looking closer at the capacities there is greater variation in the charging capacity as 

opposed to the discharging capacity.  The stability of the discharge, wherein Li is put into 

the FePO4, is likely due to the repeated accessing of the most readily available particles 

closest to the electrolyte-electrode interface.  This repeated accessing of a limited number 

of localized particles can be seen by the close overlaying of the discharge curves.  The 

greater instability of the final values for the charging curves is believed to the result of 

progressive delithiation of active material further from the interface with the electrolyte.  

The sloping nature of the curve does not normally exist for LiFePO4; typically it 

undergoes a phase transformation whereby most of the capacity is delivered at 3.4 V.  

However, in these charge curves there is a large sloping region, similar to what is seen in 

LiCoO2, accounting for a good portion of the capacity.  This indicates the need for 
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marginally increasing voltage to promote lithium movement in the electrode.  The 

inconsistency is the result of difficult intraelectrode kinetics and is believed could be 

diminished with lower current densities or with increased temperature. 

In Figure IV-9b the coulombic efficiency is graphically shown.  After the initial 

decay during the first 2 cycles the coulombic efficiency varies widely between 0.58 and 

0.74 with an average efficiency of 0.70.  However, this loss within a given cycle is not 

accompanied by an absolute decay in capacity of the cell.  This observed phenomenon, 

called slipping, is believed to be the result of a poorly designed cell set-up.  As there is a 

large amount of active material not in contact with electrolyte the ability of lithium ions 

to diffuse through the cathode material becomes an issue.  Ultimately, access to these 

regions is easier during delithiation than lithiation and thus resulting in the observed 

slipping.  A redesign of the testing cell is needed to determine whether the slipping is the 

result of the electrolyte or cell set-up. 

4. Conclusions 

 Polymer electrolyte systems present a unique opportunity for the future of lithium 

batteries.  The solid sulfur based IL hybrid electrolyte system developed maintains many 

of the pure polymer systems ideal properties while improving its low temperature 

conductivity over previously investigated IL chemistries.  Our casting procedure yields 

homogenous freestanding films that would ultimately be able to withstand many of the 

processing steps for a commercial battery system.  The hybrid electrolyte has 

demonstrated sufficient ionic conductivity (0.120 mS/cm) at 25°C, and 1.18 mS/cm at 

45°C.  At the temperature of the human body, ionic conductivity of the hybrid electrolyte 

system is ~1 mS/cm, ultimately boding well for the development of a safer battery for 
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biological purposes. The hybrid electrolyte demonstrated progress towards an electrolyte 

that will work for higher voltage and higher capacity lithium battery systems.  The 

system possesses reversible cathodic stability exceeding 4.5 V and long term cycling 

stability against metallic lithium.   

 Cell testing was undertaken to characterize the cycling performance. A large 

decay in initial capacity was observed that quickly leveled off.  Normalized to the 

capacity of the second charge cycle the charge capacity stabilized at ~0.75 and the 

discharge capacity at ~0.49, while the coulombic efficiency of a given cell averaged 70% 

after the initial decay period.  Given the stabilization of the cycling data, long term 

stability for the electrolyte in a battery set-up is predicted.  However, current testing setup 

is insufficient and has led to a number of factors that limits understanding the faults of the 

electrolyte relative to the experimental protocol.  Development of a solid polymer 

electrolyte for lithium battery applications is still a ways away from commercial 

deployment.  The safety profile of carbonate based electrolyte though is insufficient and 

merits the continued research of safe solid polymer electrolyte systems. 
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V. Effect	of	Anion	on	PEO‐based	Polymer	Electrolytes	

1. 	Introduction	

Lithium is the premier chemistry for high energy and power density batteries.  

However, its widespread deployment in batteries has been limited due to safety.  

Complete cells have had a propensity to overheat and combust.  The development of a 

new generation of electrolytes that replaces organic carbonate based electrolytes would 

ultimately lead to the goal of safer batteries.6  The progress in developing polymer 

electrolytes, which possess superior voltage, temperature and mechanical stability, has 

been stalled due to low conductivity. 6,8,9 The commercial focus of polymer electrolytes 

has been largely relegated to polymer gel electrolytes, which does not avoid the 

combustible carbonate solutions.28  Although, it is possible to elevate the conductivity of 

a solid polymer electrolyte while still avoiding the use of combustible components.  

Ionic liquids (ILs) have been used successfully to overcome the limited 

conductivity of polymer matrices because they possess ideal electrochemical properties; 

namely high conductivity, electrochemical stability, and no volatility.  When 

incorporated into poly(ethylene oxide) (PEO) based polymer matrices they have been 

shown to elevate the ionic conductivity of the electrolyte several orders of 

magnitude.33,51,66  Of the most commonly used IL architectures for electrochemical 

purposes, the imidazolium architecture36 has the highest conductivity and thus makes it 

an ideal starting point for the development of an electrolyte.  However, this same scaffold 

has encountered problems with its stability at low voltages and its intercalation into the 

graphite anode has resulted in exfoliation and rapid capacity fade.38,39  In recognition of 

this Shin et al. 51 have shown that adding 1-butyl-1-methyl pyrrolidinium 
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bis(trifluoromethane sulfonyl) imide (TFSI) to PEO leads to a marked increase in ionic 

conductivity of 2 orders of magnitude for the highest tested concentrations (molar ratio of 

20 PEO: 1 LiTFSI: 3.24 IL).  However, the large ratio of ionic liquid to polymer in Shin's 

optimized electrolyte has adverse effects upon the lithium transference number, 

inherently limiting the capacity that can be delivered by lithium with each cycle.44,45  

The success of IL additives spurred interest in novel IL scaffolds that would 

overcome such observed limitations while mimicking the preferred method of Li+ 

conduction through the polymer chains.2,52  Prior research into sulfur based IL systems 

has demonstrated promising electrochemical stability and conductivity values. 41,49  

Motivated by this, our previous work centered on the development of triethyl sulfonium 

TFSI.70  A flexible and mechanically stable electrolyte was characterized.  The PEO 

based solid polymer electrolyte was able to demonstrate ionic conductivity of 0.120 

mS/cm at room temperature and ~0.7 mS/cm at 40 °C (molar ratio of 20 PEO:1 LiTFSI: 

1 IL).  This elevated conductivity of the electrolyte was accompanied by reversible 

stability against both lithium and at voltages exceeding 4.5 V vs. Li/Li+.   

Lingering concerns about the reactivity of TFSI with aluminum motivated our 

research to investigate different anions which possess similar electrochemical properties 

without reactivity to aluminum.6  Among all possible anions, those for lithium batteries 

are chosen for their ability to dissociate completely from the lithium ions allowing for 

single ion movement.  There are several salts that meet this basic criterion, although the 

prevailing commercial choice has been LiPF6 due to its combination of stability and 

conductivity.  Relative to a TFSI based system, the PF6 anion has benefits such as its high 

conductivity and price and drawbacks such as its moisture and temperature stability.6,58  
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Numerous other anions exist that exhibit good lithium conductivity in solid polymer 

electrolytes including bis(perfluoroethyl sulfonyl) imide (BETI) and bis(oxalato) borate 

(BOB) and ClO4.
59   

Since no single anion possesses all the ideal characteristics related to conductivity 

and stability, we replaced all of the anions in the system with both experimental and 

commercial anions using the triethyl sulfonium cation as our starting point.  This 

fundamental change in the chemistry of the electrolyte was investigated with the intention 

of demonstrating an improvement over our previous sulfur based IL polymer electrolyte 

system, while also adding stability to aluminum current collectors. Herein, we report on 

the electrochemical characterization of the different formulations of our solid polymer 

electrolyte systems.    

2. Experimental	

a. Materials	

LiTFSI (LiN(SO2CF3)2), lithium foil, AgNO3, HClO4 (70%) HPF6 (65%), LiTFSI, 

LiClO4, and LiPF6 were used as received from Aldrich.  Poly(ethylene oxide) (Mw 300k), 

triethyl sulfonium iodide (97%) (S2I), boric acid (99%), and oxalic acid (10% aqueous 

solution) were used as received from Alfa-Aesar. LiBOB was used as received from 

Chemetall.  An aqueous solution of LiBETI was prepared with HBETI (Synquest 

Laboratories) and LiOH. 

b. RTIL	preparation	

S2OH: Procedure adapted from Golding et al.71 Equimolar amounts of AgNO3 (2010 mg, 

1.83 mmol) and NaOH (473.1 mg, 11.83 mmol) were mixed in 10 mL of water to form 
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AgOH. The resulting solution was sonicated and vacuum filtered to obtain AgOH as a 

brown solid.  Quantitative yield was assumed and the silver hydroxide was combined 

with S2I (2000mg, 7.89 mmol) in 10 ml of water and allowed to stir for 1h. The solution 

was then vacuum filtered and dried to produce an orange-brown liquid. 

S2BOB:  Procedure adapted from Vijayaraghavan and MacFarlane72  A flask was charged 

with one equivalent each of S2OH (7.89 mmol, 1074 mg) and of boric acid (487.8 mg, 

7.89 mmol) and two equivalents of oxalic acid (1420 mg, 15.78 mmol) and allowed to 

stir under vacuum for 2h until dry. 80.9% of a white solid was yielded. 1H: 3.317 (q, J= 

7.4 Hz, 6H), 1.444 (t, J= 7.4 Hz, 9H). 13C: 33.80, 9.02. ESI+: 119.0999, ESI-: 186.9554. 

S2PF6: S2OH (1074 mg, 7.89 mmol) was added to aqueous solution of HPF6 (1346 mg, 

9.22 mmol, 15% stoichiometric excess) and stirred under vacuum for 2h. The product 

was then filtered and washed with acetone. A clear liquid was isolated after drying under 

vacuum for 2h at 20.2% yield. 1H: 3.337 (q, J= 7.4 Hz, 6H), 1.467 (t, J= 7.4 Hz, 9H). 13C:  

33.75, 9.06. ESI+: 119.0910, ESI-: 144.9635. 

S2ClO4: S2OH (1074 mg, 7.89 mmol) was added to an equimolar aqueous solution of 

HClO4 (1132 mg, 7.89 mmol) and stirred under vacuum for 2h. The mixture was allowed 

to stir for 24h while drying under high vacuum. 82.8% S2ClO4 was yielded as a copper 

colored solid. 1H: 3.35 (q, J= 8 Hz, 6H), 1.47 (t, J= 8 Hz, 9H), 13C: 33.80, 9.09. ESI+: 

119.0897, ESI-: 98.9519, 100.94890 (large splitting due to 35Cl and 37Cl isotopes).  

S2BETI and S2TFSI Prepared as per our previous publication 70 86.5% was yielded for 

S2BETI and 54.0% was yielded for S2TFSI, both as yellow liquids. S2BETI: 1H: 3.43 (q, 

J= 8 Hz, 6H), 1.56 (t, J= 8 Hz, 9H), 13C: 33.77, 9.03, ESI+: 91.0637, 119.0990 ESI-: 
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379.91528. S2TFSI: 1H: 3.372 (q, J= 7.6 Hz, 6H), 1.516 (t, J= 7.4 Hz, 9H), 13C: 33.78, 

9.06, ESI+: 119.0975, ESI-: 279.9238. 

c. Electrolyte	Preparation	

All electrolytes were assembled in the molar ratio of 20 PEO : 1 LiX: 1: S2X, where X is 

the anion of interest.  Low molar ratios are ideal for synthesis of solid thin-film 

electrolytes; greater concentrations of IL result in poor film properties.  The weight 

percent of IL ranges from 18% to 28% depending on the anion.  The electrolyte films of 

different composition were solution cast from tetrahydrofuran (TFSI, BETI, and BOB), 

dimethylformamide (PF6) or acetonitrile (ClO4) onto Bytac molds in an MBRAUN 

Labmaster 100 argon glove box.  The resultant films were dried for several days at 60 °C, 

before being placed into CR2032 coin cell enclosures for electrolyte testing.  

d. Electrolyte	Characterization	

 Differential scanning calorimetry (DSC) measurements were performed on a TA 

Instruments Q100 differential scanning calorimeter. Samples were hermetically sealed in 

Al pans under Ar prior to measurements, which were run using a heat/cool/heat method 

to erase thermal history at a heating rate of 10 °C/min and a cooling rate of 5 °C/min 

from -50 °C to 120 °C.  

 Conductivity measurements for electrolytes were performed in a 

SS/electrolyte/SS coin cell set up on a Solartron 1287A/1255B platform over the 

frequency range 1 MHz to 1 Hz.  Testing parameters were controlled by the associated 

CorrWare and ZPlot software, while data analysis was performed using CorrView, 

ZView and Origins 8.  All temperature testing was done in a RevSci IncuFridge with 
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±0.5 °C temperature accuracy allowing 45 mins to equilibrate at each temperature.  Prior 

to testing constructed cells were annealed for 3 hrs. at 50 °C. 

 Transference measurements were performed in a Li/electrolyte/Li coin cell set on 

the Solartron setup.  A potential of 10 mV was applied across each cell until steady state 

current reached. All tests were run at 40 °C except for ClO4, which was run at 50 °C after 

allowing for 1 hour of temperature equilibration.  Impedance spectroscopy was conducted 

before and after steady state to determine resistance of the electrolyte. 

 Linear sweep voltammetry was performed on Li/electrolyte/SS cells.   Cells were 

stepped at 1 mV/sec from 2.5 V vs. Li/Li+ reference to 6.5 V vs. Li/Li+ reference, and 

breakdown was determined by the first change in derivative.  

 Overvoltage experiments were performed on the Solartron set-up to determine the 

interfacial stability and reversibility of the electrolyte material.  The electrolyte was 

sandwiched between two lithium electrodes.  A current density of 0.1 mA/cm2 was 

applied to the film and was reversed every hour.  25 cycles, each consisting of 1 hr. 

positive current and 1 hr. negative, were applied to the cell at 55 °C.  All cells were 

annealed for 1 hour at 55 °C prior to testing.  Impedance spectroscopy was periodically 

conducted to monitor development of resistances at the interface during the galvanostatic 

cycling.   

3. Results	and	Discussion	

 The effect of the anion on the electrochemical properties of polymer electrolytes 

has been a source of ongoing research.  With this in mind, it was of tantamount 

importance to characterize the effect of the anion on the observed electrolyte properties.  

As a comparison to previous work TFSI was used as the baseline to compare ClO4, BOB, 
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BETI and PF6.  Given the novel nature of some of the triethyl sulfonium based ILs, DSC 

was first performed to characterize the thermal properties.  Elevated temperatures are 

crucial for promoting conductivity to threshold values in solid polymer electrolytes.  

Additionally, the physical state of the IL is important as not all of the anions are liquids at 

room temperature.  The DSC thermograms are also seen to closely mirror the ionic 

conductivity values determined from AC impedance in the full electrolyte system.  

Differential Scanning Calorimetry of Ionic Liquid 

 The studied pure ILs underwent numerous transitions (Table V-1).  The largest 

peak was taken to be either the melting or freezing point of the neat IL.  All other 

transitions tabulated by whether they occurred during the heating or cooling cycle 

because of the large hysteresis.  S2TFSI and S2BETI had the lowest transition 

temperatures and are both liquids at room temperature.  TFSI and BETI are both imide 

based architectures, which have been promising anions for ionic liquid development. 

S2BOB was a low melting point solid; at the slightly elevated temperatures of interest, it 

is a liquid.  It was also the only ionic liquid to undergo a 2nd order phase change.  The 

absence of its freezing point is believed to the result of the slow kinetics of 

crystallization.  S2ClO4 is a solid up to ~100 °C, barely allowing it to be considered an 

ionic liquid.  This ability of S2ClO4 to crystallize is strongly believed to be the source of 

its low ionic conductivity in the solid polymer electrolyte.  S2PF6 was also isolated as a 

solid, but with a significantly lower melting point.  All of the pure ILs tested had 

observable hysteresis between the observed transition in the heating and cooling cycle. 
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Table V-1 DSC peaks of the neat ionic liquids  

 First Order Transitions Tg 
Anion Freezing Melting Cooling Heating  
BOB  47.19  62.24 -47.41 -34.2

ClO4 98.72 104.14 69.90, 49.56 71.26, 79.62   
PF6 34.1 69.75 2.16, -6.26    

BETI -23.55 13.06     
TFSI -30.79 -34.29  -11.83, -7.18   

Ionic	Conductivity	

 The ionic conductivity of the solid polymer electrolytes during cooling can be 

seen in Figure V-1.  Each anion demonstrates varying ionic conductivity over the 

measured temperature range.  The lower limit of conductivity is approximately 

physiological temperature for all anions except for ClO4 which drops from 0.21 mS/cm at 

55 °C to 0.017 mS/cm at 45 °C.  At 45 °C all five of the solid polymer electrolytes have 

sufficient conductivity to be functional in a lithium battery system.  At 45 °C the ionic 

conductivity of BOB is 0.229 mS/cm, BETI 0.415 mS/cm, PF6 0.210 mS/cm, ClO4 0.017 

mS/cm, TFSI 0.828 mS/cm.  At this slightly elevated temperature all of the anion 

systems, except ClO4, show ionic conductivity >0.1 mS/cm, which is necessary for 

higher current applications.  When values drop below this threshold, the polymer 

electrolytes have been shown ineffective at conducting lithium ions.   
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Figure V-1 Ionic conductivity of the solid polymer electrolytes determined by AC 

impedance spectroscopy upon cooling of the SS/electrolyte/SS cells from 65 °C. 

Differential Scanning Calorimetry of the Electrolyte	

 The conductivity is intimately related to the transition temperature observed 

during DSC (Table V-2 Figure V-2).  The freezing and melting points are tabulated 

separately because of the large thermal hysteresis observed in the polymer electrolytes.  

The transition from semicrystalline to amorphous, allows for the PEO chains to move 

past each other without the inhibition of long range ordering.  This ultimately allows PEO 

to reversibly coordinate to ions, permitting their conduction down electrical and 

concentration gradients.  This phase transition in the electrolyte manifests itself as an 

endothermic peak.  Comparing the relative transition temperatures of all the anions shows 
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a strong correlation with the relative ordering of each anion's conductivity of the polymer 

electrolyte. TFSI had the lowest transition at 13.53 °C, and over the studied temperature 

range maintained the highest conductivity values.  BETI had a similar transition 

temperature of 15.98 °C, and possessed the second highest ionic conductivity values.  

The DSC values of the other three anions, suggest that BOB should be third, followed by 

ClO4, with PF6 lowest.  The conductivity values did not follow this trend as ClO4 

generally demonstrated the lowest conductivity.  Between BOB and PF6, the latter 

generally maintained a higher conductivity despite having a higher transition 

temperature.  This disagreement with the relationship between DSC and conductivity is 

hypothesized to be the result of the unfavorable movement of ions in the IL itself. 

Elevated melting points limit ionic mobility because of the association of microscopic 

crystalline domains, which ultimately lowers the observed ionic conductivity values.  It is 

also of note that ionic conductivity values are measured not the lithium conductivity.  The 

difference between these numbers could falsely indicate movement of the anion and not 

the lithium cation.   

Table V-2 DSC peaks of the electrolyte  

Anion Cooling Heating
BOB 24.66 44.18 
ClO4 30.63 42.9 
PF6 35.28 48.01 

BETI 15.98 39.97 
TFSI 13.53 41.87 
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Figure V-2 Selected portion of thermograms from the electrolyte based on the 

indicated anion.   The formulation is the molar ratio 20 PEO: 1 LiX : 1 S2X, where 

X is indicated in the legend. The heating rate was 10 C/min and cooling rate was 5 

C/min in a heat/cool/heat format with endpoints of -50 C and 120 C. 

All of the trend lines for ionic conductivity show a discontinuity on either side of 

the transition temperature observed by DSC.  At high temperature the gain from 

increased temperature is minimal.  At low temperatures the gain in conductivity over 

temperature is significant.  This region of steeper slopes however, has not shown enough 

conductivity to be a functional lithium electrolyte.  Ordinal ranking of the ionic 
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conductivities of the anions shows that TFSI and BETI have the best ionic conductivity 

over the observed temperature range, while ClO4 possessed the worst ionic conductivity. 

Transference	

 The other important element of conductivity is the determination of which ionic 

species are the charge carriers.  To accomplish this we followed the procedure outlined 

by Evans et al.60, whereby a small voltage is applied until steady state current is attained.  

Equation 2 is used to calculate the lithium transference number (TLi+), with the 

resistances in the equation measured by impedance spectroscopy.  This value between 0 

and 1 is a measure of what fraction of the total current is due to the movement of a given 

species.  TLi+ vary widely depending on the electrolyte as well as the testing method but 

are typically below 0.5.73  Polymer systems range from ~0.1 to 0.5 while ionic liquid 

systems with a larger number of charged species typically range from ~0.1 to 0.3.35,44  

The TLi+ values for the different anions can be seen in Figure V-3.   

T୐୧శ ൌ
୍౛ሺ∆୚ି୍౥ୖ౥ሻ

୍౥ሺ∆୚ି୍౛ୖ౛ሻ
 (2)  

 The TLi+ values for the studied solid polymer electrolytes range from ~0.2 to 0.3.  

These numbers are on the high end of the range for IL based electrolyte systems.  And 

although the transference numbers are below average for polymer systems with only 

lithium salts, the researched polymer/IL/Li salt hybrid electrolytes demonstrate 

significantly higher conductivity.  BETI demonstrates the highest TLi+ at 0.31.  The 

lowest values are for ClO4 and PF6, which are 0.21 and 0.23, respectively.  Ranging 

between these two values were the measured TLi+ of BOB and BETI which are 0.29 and 
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0.27 respectively. It is of note with ClO4 that due to low ionic conductivity its 

transference measurements were conducted at 50 °C, while all other anions were run at 

40 °C.  This can be easily explained from Figure V-3 where the conductivity of ClO4 

based systems lags significantly behind other anion systems at a given temperature. 

 

Figure V-3 Lithium transference number of the solid polymer electrolytes.  TLi+ was 

determined using the potentiostatic measurement conducted at 40 °C for all anions 

except ClO4, which was run at 50 °C.  Molar volume from Table V-3 is overlaid to 

show relationship between volume and TLi+. 

 Given the interest in having electrolytes which are single Li+ conductor, it was of 

great interest to understand the differences between the anions.  Table V-3, which 

contains the molar volumes of the anions, shows that a trend is readily apparent.74 Larger 

volumes correspond to larger TLi+.  Categorically separating the volumes into small (~60-



69 
 

70 Å3) medium (~145 Å3) and large (~200 Å3) anions matches the observed TLi+ (Figure 

V-3).  This relationship between size and ion mobility can be explained in a straight 

forward manner by the ability of small ions to move with greater ease through the dense 

polymer matrix.  Large molar volumes require more concerted movements of the 

polymer chains to allow movement of the ions.  While this thinking suggests it would be 

possible to generate a single lithium ion conductor by increasing the size of the 

counterion, it obfuscates the duality of conductivity in polymer systems.  By increasing 

the volume of the counterion, ultimately the local environment around Li+ is significantly 

altered, such that all ion movement is limited, resulting in a carefully balanced tradeoff 

between TLi+ and conductivity.75   

Table V-3 Volume of anion as determined by molinspiration program.74 

Anion Volume Å3 
BOB 143.665 
ClO4 56.546 
PF6 72.615 

BETI 200.377 
TFSI 147.645 

Cathodic	Stability	

 The stability of the electrolyte to the cathode, herein referred to as cathodic 

stability, is critical for the development of high voltage cells.  Some olivine and spinel 

type cathode systems have voltage plateaus well above 4 V vs. Li/Li+, which leads to 

premature decay with carbonate based electrolyte systems.  Solid polymer electrolytes 

with ILs generally are able to meet these higher stability windows with cathodic 

stabilities exceeding 5 V vs. Li/Li+.51  The incorporation of ILs is expected to have little 

impact upon this value, as sulfur based ILs have demonstrated wide ESWs.   
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 To determine the limit for cathodic stability linear sweep voltammetry was 

undertaken from a voltage well within operational range (2.5 V vs. Li/Li+) to one 

exceeding operational stability (6.5 V vs. Li/Li+).  Upon the first large change in 

derivative of current, breakdown of the electrolyte was assumed such that the electrolyte 

would no longer be able to electrochemically function as a lithium conductor.  While 

other counter electrodes besides stainless steel were investigated they have been unable to 

yield satisfactory results.  However half-cell assemblies with LiFePO4 and LiCoO2 have 

shown stability over cycling.76  Thus it is believed that the results are reflective of the 

breakdown of the electrolyte under operating conditions.  Figure V-4, shows the 

measured breakdown voltage for each electrolyte formulation.  All the solid polymer 

electrolytes displayed sufficient stability to be useful in the currently commercialized 

cathodes, LiFePO4 and LiCoO2.  With all cathodes it is necessary to provide a buffer 

region above the fully charged potential ensuring that all energy is stored reversibly in the 

electrode.  The next generation of high voltage cathodes ranges up to 5 V vs. Li/Li+, and 

thus requires cathodic stability of the electrolyte to exceed this value.  The ClO4 based 

system demonstrated stability up to 5.37 V, which is promising for future work on high 

power batteries.  The imide based chemistries, BETI and TFSI, demonstrated stabilities 

of 5.00 and 4.97 V respectively.  This figure of merit is promising for most experimental 

cathode systems, but is tempered by concern for stability to aluminum which is used as 

the cathode's current collector.  BOB and PF6, which have cathodic stabilities of 4.56 and 

4.63 respectively, only offer promise for electrodes that have been already 

commercialized and other lower voltage experimental cathodes.  While LiPF6 is 

investigated in high voltage systems, the observed failure is believed to be the result of 
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testing at elevated temperature, which is necessary for lithium conduction.  Given the 

high stability of several of these anion polymer electrolyte systems there are a number of 

possibilities to develop high voltage lithium battery systems. 

 

Figure V-4 Cathodic stability of the solid polymer electrolytes.  Breakdown was 

determined by first change in the derivative of the potential upon sweeping a 

SS/electrolyte/Li cell from 2.5 to 6.5 V vs. Li/Li+.  Cells were run at 25 °C.  

Overvoltage	

 Overvoltage studies measure a cell's stability to lithium and the energy required to 

move a lithium ion from the bulk electrolyte onto the surface of an electrode.  Over 

extended cycling the energy expended in moving lithium ions should be minimal and 
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constant.  To confirm this aggressive cycling was undertaken to characterize the effect of 

the different anions on the electrolyte.  Testing was conducted at 55 °C to allow for 

comparison between all of the anions; several were more conductive at lower 

temperatures.   

 In Figure V-5a, the end voltage over 25 cycles can be seen for each anion.  The 

most salient observation is the low end voltage and its constant nature for the TFSI anion 

relative to the other anions.  Low absolute overvoltages are critical for the electrolyte as it 

is a measure of the energy lost in the cell at the interface, which ultimately detracts from 

the voltage a single cell is able to deliver.  This indicates the ideal ability of the TFSI 

based electrolyte to transport lithium ions effectively through the bulk and across a stable 

interface.  BETI, BOB and ClO4 all demonstrated decreasing end voltage values over the 

cycling.  This is believed to be the result of the slow kinetics of the solid polymer 

electrolyte in chain rearrangement to permit bulk and interfacial conductivity.  After the 

initial decline BOB and ClO4 reach a plateau, this plateau lasts for the duration of the test.  

Lastly, with PF6 a sizable increase in the end voltage values can be seen.  Given the 

elevated temperature at which this cycling is conducted it is believed that the PF6 anion is 

decaying.  Evaluating the end voltages over 25 cycles for the anions and their long term 

stability, a ranking can be established which indicates that TFSI is the best anion tested, 

while PF6 or BETI is the worst.  
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Figure V-5 Value of overpotential at the end of each 2 h cycle for symmetrical 

Li/electrolyte/Li cells. b. Overpotential as a function of time during the 25th cycle 

for the indicated ionic liquid.  Each cycle was1 h negative current followed by 1 h 

positive current both at 0.1 mA/cm2. Testing was conducted at 55 °C. 

 



74 
 

 

 In evaluating the overvoltage it is important that the data for a given cycle 

demonstrate a plateau, which indicates that no additional resistance is accumulating in the 

interface as lithium is plated after formation of the concentration gradient.  The voltage 

profile for the 25th cycle of each electrolyte tested at 55 °C is shown in Figure V-5b.  To 

measure the stability of the plateau region over each hour segment the time at which the 

voltage reached 90% of the end overpotential was recorded.  From the overvoltage test it 

appears that some electrolytes more accurately fit the desired results.  BETI and PF6, 

which do not demonstrate a stable plateau region, reached the 90% threshold at 64.7% 

and 85.4% of full time respectively.  Conversely, ClO4 which demonstrated the most 

stable plateau among tested anions reached the 90% threshold at 21.7% of full time.  

TFSI which demonstrated the lowest absolute potential reached the 90% threshold at 

30.3% of full time.  BOB the 3rd most stable reached the 90% threshold at 39.3% of full 
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time.  Taken in conjunction with the change in voltage over time, TFSI demonstrates the 

most ideal overvoltage properties of all tested anions in the solid polymer electrolyte.   

 Interspersed every 5 cycles during the overvoltage cycling, impedance 

spectroscopy was conducted to monitor the resistance of each electrolyte composition.  

To model the electrolyte and the corresponding interface with the lithium electrode, a 

model circuit consisting of three elements was used.  The three components: the bulk 

electrolyte (Rb), the solid-electrolyte interphase (RSEI and CPESEI), and the charge transfer 

(RCT and CCT) can be seen in Figure V-6a.  The model circuit, while a simplification of 

the complex electrochemical movement occurring in the electrolyte, fits closely to the 

Nyquist plots.  

Figure V-6 a. Equivalent circuit used to model the electrolyte during overvoltage 

cycling b bulk resistance of each anion formulation during the overvoltage cycling c. 

the resistance of the SEI film d. the resistance due to charge transfer.  To highlight 

the low resistance of the charge transfer there is a gap in the y-axis values.  The 

electrolyte tested had a thickness of 0.0254 cm and a cross sectional area of 0.217 

cm2. 
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 The change in resistance over the cycling is plotted in Figures V-6b-d (b-

electrolyte resistance, c- resistance of the SEI, d- charge transfer resistance).  The bulk 

resistance of the electrolyte is generally the lowest value for a given anion.  Over the 

duration of the testing all anion chemistries showed a decrease in Rb.  With the systems 

this initial decrease is believed to be related to the relaxation of the polymer chains, 

which facilities ion movement.  Only for the PF6 system did this decrease appear to 

extend beyond the 1st time point.  If as proposed at higher temperatures PF6 is degrading, 

there would in fact be additional charge carriers.  If correct, this would indicate that a 

decreasing portion of the ionic conductivity for PF6 is Li+. 

 The resistance of the SEI develops quickly during the first few cycles and then 

remains constant for BETI, PF6 and TFSI.  ClO4 shows a constant increase in resistance 

over the cycling, which is not exhibited by the end voltages which remain constant over 
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the cycling.  The constant increase in the SEI against lithium electrodes points to 

instability in the interface; this however must be related to a non-essential component to 

lithium transport.  BOB, which has the most resistive SEI, demonstrates an initial drop in 

the interface followed by a gradual increase over cycling.  Given that BOB is known to 

form resistive interfaces6, its relative position is unsurprising.  For the constant 

resistances the formation of a stable SEI bodes well for their usage in lithium battery 

systems. 

 The Rct of the electrolyte systems are generally fairly small relative to the RSEI.  

For all anion systems except BETI the values are < 250 Ω and remain largely constant 

over the testing.  BETI however, had markedly high Rct, which is increasing over the 

cycling.  As no other negative charge carriers are present such a large difference between 

BETI and the other anions can be easily attributed to the difficulty in arranging such a 

bulky anion at the interface.  This difference is especially clear when comparing the two 

imide based anions; the RSEI appears similar between the two systems, while the Rct are 

more than an order of magnitude apart. On the whole the TFSI-based solid electrolyte 

system demonstrated the lowest resistances for any system.  All except for BETI were 

dominated by the RSEI, which points towards needing further work developing and 

characterizing the interface.   

4. Conclusions 

The development of solid polymer electrolytes has been hindered by their ability 

to demonstrate conductivity at close to ambient temperatures without compromising the 

main benefits of a polymer-based system.  Our previous work demonstrated the real 

possibility of using triethyl sulfonium TFSI as an additive to accomplish this goal.  
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Concern over the stability of TFSI led to the pursuit of alternative electrolyte 

formulations that replaced the TFSI anion.  In substituting the TFSI anions there was a 

sizable decrease in ionic conductivity, which became less significant at higher 

temperatures.  All systems, ClO4 excepted, cross the threshold value of 0.1 mS/cm at ~40 

°C, from lowest to highest temperature: TFSI, BETI, PF6 and BOB. ClO4 meets this 

conductivity threshold above 50°C.  Lithium transference for these solid polymer systems 

ranged from 0.21 to 0.31, and is directly correlated to the size of the anion.  The largest 

anion BETI demonstrated the highest TLi+ while the smallest anions of ClO4 and PF6 

demonstrated the lowest TLi+.  Solid polymer electrolyte systems generally demonstrate 

wide electrochemical stability windows, which would ultimately be useful for the next 

generation of high voltage cathode materials.  The tested anion formulations all 

demonstrated cathodic stability sufficient to be used with the commercial cathodes of 

LiCoO2 and LiFePO4.  BETI, TFSI and ClO4 demonstrated sufficient stability to be 

useful in 5 V cathode systems, which would allow for more power and voltage from each 

lithium battery cell.  Anodic stability and low lithium plating voltages was confirmed for 

the varied anion system.  BOB, ClO4 and TFSI have demonstrated reasonable voltages 

that are stable over cycling.  The voltage that is observed for lithium plating is strongly 

dependent upon the formation of the SEI of the electrolyte.  Herein a series of hybrid 

solid polymer electrolytes containing sulfur based ILs was characterized that demonstrate 

potential use for safer high power biomedical applications. 
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VI. Ionic	Liquids	in	Block	Copolymer	Electrolytes	

1. Introduction	

 Electrolytes in lithium batteries have become a topic of great interest as scientists 

and engineers recognize that the electrolyte in lithium batteries limits many of the 

measured figures of merit in a battery.6,8,9  Electrolytes impact performance largely 

through the stability window, which limits cathode choice and the necessity of solid-

electrolyte interphase (SEI) formation that affects the lifetime of a cell.  Additionally, the 

safety issues of the battery are largely a result of the combustible nature of the liquid 

carbonates.  To overcome the safety problems of electrolytes consisting of small volatile 

organic molecules, there has been much interest in solid polymer electrolytes (SPE).  The 

limiting factor to SPE has been conductivity; many proposed solutions have merely 

resorted to combining the polymer with the traditional liquid carbonates.   

Ionic liquids (ILs) have been used successfully to overcome the limited 

conductivity of polymer matrices because they possess ideal electrochemical properties 

namely high conductivity, electrochemical stability, and no volatility.  When 

incorporated into poly(ethylene oxide) (PEO) based polymer matrices they have been 

shown to elevate the ionic conductivity of the electrolyte several orders of 

magnitude.33,51,66  Shin et al.51 have shown that adding 1-butyl-1-methyl pyrrolidinium 

bis(trifluoromethane sulfonyl) imide (TFSI) to PEO leads to a marked increase in ionic 

conductivity of 2 orders of magnitude for the highest tested concentrations (molar ratio of 

20 PEO: 1 LiTFSI: 3.24 IL).  This conductivity increase though is accompanied by a 

decrease in the lithium transference number (TLi+, the fraction of total current observed 
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due to movement of lithium ions). A low TLi+ inherently limits the capacity that can be 

delivered by lithium within each cycle.44,45  

The success of IL additives spurred interest in novel sulfur based IL scaffolds that 

would overcome observed limitations while mimicking the preferred method of Li+ 

conduction through the polymer chains.2,41,52  Our previous work demonstrated the 

possibility of using triethylsulfonium TFSI as an additive to accomplish this goal.70  A 

flexible and mechanically stable electrolyte was characterized, with ionic conductivity of 

0.120 mS/cm at 25 °C and ~0.70 mS/cm at 40 °C (molar ratio of 20 PEO:1 LiTFSI: 1 IL).  

This elevated conductivity of the electrolyte was accompanied by reversible stability 

against both lithium and at voltages exceeding 4.5 V vs. Li/Li+.   

Lingering concerns about the reactivity of TFSI with aluminum motivated our 

research to investigate different anions, which possess similar electrochemical properties 

without reactivity to aluminum.6 In substituting the TFSI anions there was a sizable 

decrease in ionic conductivity, which became less significant at higher temperatures. The 

tested anion formulations all demonstrated electrochemical stability sufficient for use 

with commercial electrodes.  Among the tested anions TFSI had the best properties, and 

was closely followed by the bisoxalatoborate (BOB) and ClO4 based systems.  However, 

the measured lithium transference was inferior to salt in polymer electrolytes and ranged 

from 0.21 to 0.31. 

In previous work we demonstrated the development of a lithiated block 

copolymer electrolyte (BCP).21,22  The system consisted of a diblock of PEO and partially 

lithiated poly(methacrylic acid) blocks which demonstrated extraordinarily high lithium 

transference numbers.  Most liquid electrolytes have TLi+ values ranging from 0.3-0.5; 
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this BCP system had TLi+ values ranging from 0.7-0.9. 2  High TLi+ values are ideal 

because it means that there is less parasitic current and less build-up of charge at the 

interface.  Given its wide electrochemical stability this block copolymer system was only 

limited by its low ionic conductivity values. 

Combining the high conductivity and low transference values for the PEO-IL 

system and the low conductivity and high transference values for the BCP system into 

one hybrid electrolyte system was of great interest.  This novel system should it contain 

the ideal properties of each system would be a successful SPE for use in lithium batteries.  

Herein, we report on the thermal, mechanical and electrochemical properties of a novel 

hybrid block copolymer-ionic liquid solid polymer electrolyte. 

2. Experimental	

a. Materials	

 Lithium foil and AgNO3 were used as received from Aldrich.  Triethyl sulfonium 

iodide (97%) (S2I), boric acid (99%), and oxalic acid (10% aqueous solution) were used 

as received from Alfa-Aesar. LiBOB was used as received from Chemetall.  

Poly(ethylene oxide-b-methacrylic acid) (27k-b-3k), which is synthesized by hydrolyzing 

the t-butyl acrylate block of a poly(ethylene oxide–b-butylacrylate) precursor, was used 

as received from Polymer Source. 

b. Materials	Synthesis	

 As per our previous work77 S2BOB was synthesized. 80.9% of a white solid was 

yielded. 1H: 3.317 (q, J= 7.4 Hz, 6H), 1.444 (t, J= 7.4 Hz, 9H). 13C: 33.80, 9.02. ESI+: 

119.0999, ESI-: 186.9554. 
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 The lithiated block copolymer was adapted from Ghosh et al.57  The starting 

polymer is slightly different as we started with the acrylic acid as opposed to the 

methacrylate.  This eliminated the need to hydrolyze the ester group, and allowed for 

complete lithiation of the minor block.  Equimolar LiOH in water to methacrylic acid 

moiety was used.  The polymer was then extensively dried to have quantitative yield.    

c. Electrolyte	Preparation	

All electrolytes were assembled in the molar ratio of x PEO : y LiBOB: z S2BOB 

(Figure VI-1), where the reported ratio of PEO refers to only the PEO block not the 

whole polymer.  The electrolyte films of different composition were solution cast from 

dimethylformamide onto Bytac molds in an MBRAUN Labmaster 100 argon glove box.  

The resultant films were dried for several days at 80 °C, before being placed into CR2032 

coin cell enclosures for electrolyte testing.  

 

Figure VI-1 Compounds used to make the solid polymer electrolyte.  All ratios cited 

in this paper are of the molar formula x PEO : y LiBOB : z S2BOB. 
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d. Electrolyte	Characterization	

 Differential scanning calorimetry (DSC) measurements were performed on a TA 

Instruments Q100 differential scanning calorimeter. Samples were hermetically sealed in 

Al pans under Ar prior to measurements, which were run using a heat/cool/heat method 

to erase thermal history at a heating rate of 10 °C min-1 and a cooling rate of 5 °C min-1 

from -50 °C to 120 °C.  Transmission electron microscopy was carried out on a JEM 

2100 LaB6 TEM with an accelerating voltage of 200 kV on as-cast films on a Cu grid. 

 Conductivity measurements for electrolytes were performed in a stainless steel 

(SS)/electrolyte/SS coin cell set up on a Solartron 1287A/1255B platform and scanned 

over the frequency range 1 MHz-1 Hz.  Testing parameters were controlled by the 

associated CorrWare and ZPlot software, while data was processed using CorrView, 

ZView and Origins 8.  All temperature testing was completed in a RevSci IncuFridge 

with ±0.5 °C temperature accuracy allowing 45 mins to equilibrate at each temperature.  

Prior to testing constructed cells were annealed for 3 hrs. at 70 °C. 

 Transference measurements were performed on a Li/electrolyte/Li coin cell set on 

the Solartron setup.  A potential of 10 mV was applied across each cell until steady state 

current was reached. All tests were run at the indicated temperature after allowing for 1 

hour of temperature equilibration.  Impedance spectroscopy was conducted before and 

after steady state to determine resistance of the electrolyte. Using the change in resistance 

and current from initial to steady state we calculated the TLi+ as in Evans et al. 60 

  Linear sweep voltammetry was performed on Li/electrolyte/Pt cells.   Cells were 

stepped at 1 mV/sec from 2.5 V vs. Li/Li+ reference to 6.0 V vs. Li/Li+ reference, and 

breakdown was determined by the first change in derivative.  
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As per the work of Newman62, current interrupt tests were performed by first 

applying a current density of 0.1 mA/cm2 for 15 minutes.  The current to the cell was 

turned off and the potential of the cell was monitored as it returned to open circuit.  The 

diffusion coefficient was then determined by fitting a line to this curve. 

 Overvoltage experiments were run on the Solartron set-up to determine the 

interfacial stability and reversibility of lithium deposition in the electrolyte material.  The 

electrolyte was sandwiched between two lithium electrodes.  A current density of 0.1 

mA/cm2 was applied to the film and was reversed every hour.  100 cycles, each 

consisting of 1 hr. positive current and 1 hr. negative, were applied to the cell at 40 °C.  

All cells were annealed for 1 hour at 40 °C prior to testing.  Impedance spectroscopy was 

periodically conducted to monitor development of resistances during the galvanostatic 

cycling.    

3. Results	and	Discussion	

The BCP-IL electrolyte as cast is shown in Figure VI-2.  It is a transparent film 

that is both strong and flexible.  The current drop casting method results in film thickness 

on the order of hundreds of microns.  Work with other desired anions, such as TFSI, did 

not result in films because their plasticizing effect was too great.   TEM imaging of the 

BCP-IL system was then performed, and is shown in Figure VI-3.  Previous work on a 

similar BCP without IL showed high contrast domains of lithium aggregates that 

precipitate out of the BCP matrix.  The natural contrast of the lithium rich domains is due 

to the breakdown of BOB in the presence of moisture during transfer to the TEM, as per 

the work of Yang et al.78 These spherical domains ranged in size from ~2-4 nm.  This 

BCP-IL system showed lithium rich domains of the same size, but fewer in number 
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density.  This is expected as in the previous non-IL containing BCP system the 

concentration of lithium salt was over six-fold times greater.22  

 

Figure VI-2 Visual image of the solid block copolymer showing the flexible 

transparent nature of the as-cast film.  The film ratio is 20 PEO of the BCP : 1 

LiBOB : 0.1 S2BOB.   
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Figure VI-3 TEM of the as-cast 20 PEO : 1 LiBOB  : 0.1 S2BOB BCP-IL electrolyte.  

Dark regions are lithium aggregates that have precipitated from the polymer 

matrix. 

Differential	Scanning	Calorimetry	

Given the inverse relationship between the crystallinity of the PEO domains and 

its conduction mechanism, all of the electrolytes were characterized by DSC.79  

Hermetically sealed pans were prepared under argon to ensure no moisture would 

interfere with the test results.  Because all of the heating cycles showed an endothermic 

peak at 33.5 °C, and all of the cooling cycles showed a exothermic peak at 32.5 °C only 

the exemplar DSC curve of 20:1:0.5 is shown in Figure VI-4.  The slight difference in 

peak shape between the heating and cooling is due to the differences in the temperature 

ramp rates.  The transition of the neat IL (47.2 °C) and the lithium salt is well above the 

observed peak.  Thus, the observed peaks are due solely to the melting transition of the 

polymer electrolyte whose crystallinity has already been reduced due to the presence of 
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the IL.  The depressed nature of the transition temperature bodes well for the utility of 

this electrolyte in biomedical devices because it occurs below physiological temperature. 

 

Figure VI-4 DSC of the 20 PEO : 1 LiBOB :0.5 S2BOB system.  A heat/cool/heat 

cycle was followed between -50 and 120 °C with a cooling rate of 5°C/min and a 

heating rate of 10°C/min.  There were no peaks outside of this range.  

Ionic	Conductivity	

The ionic conductivity values of the electrolyte were taken using impedance 

spectroscopy.  The low frequency intercept was taken to be the resistance and from this 

value ionic conductivity values were determined.  Selected ratios can be seen in Figure 

VI-5a, with an expanded view of the higher conductivity electrolytes in Figure VI-5b. 
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The maximum conductivity values at each temperature for the optimal ratio is as follows 

25 °C: 0.017 mS/cm , 37 °C: 0.048 mS/cm, 50 °C: 0.107 mS/cm and 65 °C: 0.206 mS/cm 

Figure VI-5 (a) Ionic conductivity of the solid polymer electrolytes determined by 

AC impedance spectroscopy upon cooling of the SS/electrolyte/SS cells from 65 °C. 

(b) Enlargement of the previous graph showing the region of high conductivity. 

Molar ratios are x PEO : y LiBOB : z S2BOB. 

 

a) 
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Given that all electrolytes exhibited similar transition temperatures in DSC, only a 

small variation in conductivity values was expected.70 This trend was not observed, 

instead wide variability in the conductivity values was observed.  The electrolytes can 

visually be grouped into two groups: one of elevated conductivity and one of lower 

conductivity.  The group with elevated conductivity consists of electrolyte with low 

concentration of LiBOB salt.  The group with depressed conductivity consists of 

electrolyte with more concentrated salt.  This latter high salt concentration BCP-IL was 

originally of great interest because the optimal formulation of the BCP containing no IL 

tended towards high salt concentrations.22 The conductivity values for this group was 

lower than the BCP system containing no IL.  Additionally worse mechanical properties 

b) 
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were observed in these systems relative to the both the previous formulations and those 

with lower salt concentrations.    

 The high conductivity BCP-IL electrolytes with lower salt concentrations 

exhibited elevated ionic conductivity, in addition to pliability and transparency (Figure 

VI-2).  At temperatures below 40 °C these more dilute electrolytes exhibited superior 

conductivity relative to the previous BCP containing no IL system, with larger 

differences at lower temperatures.  These ionic conductivity values indicate success in 

continuing to improve movement of ions in solid polymer systems.  At 50 °C the 

minimum threshold for ionic conductivity of 0.1 mS/cm is met, however experimentally 

useful Li+ conductivity has been attained at 35 °C.  While not ideal, the slight elevation in 

temperature required for useful conductivity is readily obtained in medically implanted 

systems and other specialized applications.   

 The conductivity plots were fit to the Arrhenius equation to compare this BCP-IL 

electrolyte system with its two predecessor systems, the pure BCP and the homopolymer 

PEO-IL electrolyte systems.  The parameters are tabulated in Table VI-1 from fitting the 

temperature regime above the phase transition to the Arrhenius equation.  The BCP-IL 

had activation energies between 51.6 kJ/mol and 58.7 kJ/mol.  This is much closer to the 

PEO-IL system value of 47.0 kJ/mol than the BCP containing no IL systems which had 

activation energies of 71.2 kJ/mol and 86.1 kJ/mol.  This lower value indicates less 

temperature dependence for ionic conduction.  Additionally, the IL appears to have an 

advantageous effect on ion mobility promoting movement by decreasing the energy 

threshold. Overall the large change in activation energy between electrolyte with and 

without IL points to differing methods of ionic conduction.  
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Table VI-1. Fitting parameters to the Arrhenius for the high temperature region.  

BCP-IL data is from this paper, the BCP containing no IL data is from Ghosh and 

Kofinas22 and the PEO-IL data is from Fisher et al.77  Ea is the activation energy and 

A is the pre-exponential factor. 

Ratio Ea (kJ/mol) A (x10-4 S/cm) 

20:1:1 54.56 4.95 
20:1:0.5 51.59 1.80 
20:1:0.1 53.35 2.74 
30:1:0.5 58.68 28.6 
3:1:0 22 71.23 451 
2:1:0 22 86.11 38100 

PEO 20:1:1 77 47.04 1.24 
Transference	

Given the high transference of the BCP containing no IL electrolyte , elevated 

TLi+ values were expected.22 The values for the concentrations of 30:1:0.5, 20:1:0.5 and 

20:1:0.1 at 40 °C and 60 °C are plotted in Figure VI-6.  The minimal IL concentrations 

(20:1:0.1) resulted in measured TLi+ values of 0.40 at 40 °C and 0.30 at 60 °C.  Higher IL 

concentrations resulted in TLi+ values that ranged from 0.15 to 0.22. For a given 

concentration TLi+ decreased with increasing temperature.  The observed phenomenon is 

the result of increased ionic mobility of the larger ions in the system due to increased 

chain mobility with higher temperatures.  The system with increased TLi+ (20:1:0.1) is 

significant because it exceeded the values attained for the PEO-IL based electrolyte, 

while the higher concentrations all measured similar to the PEO-IL systems.77 The 

attained values were depressed relative to the BCP containing no IL, due to the 

deleterious presence of other small ion species.  The positively charged lithium based 

aggregates in the minor block of the BCP entrap free anions thereby increasing the 
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fraction of free Li+ relative to all free ions.  In the BCP without IL system the only cation 

present was Li+ which results in higher TLi+ values relative to the BCP-IL system because 

it contains triethylsulfonium cations, which are not attracted to the aggregates.  Given the 

different slopes (activation energies) of the conductivity plots for both the BCP-IL and 

the BCP containing no IL electrolytes, the inverse relationship between ion concentration 

and TLi+ can be attributed to the presence of an additional ionic conduction pathway 

involving the IL.  The improvement in TLi+ while still maintaining high ionic 

conductivity shows that the BCP-IL system has promise as a solid electrolyte for lithium 

batteries.  

 

Figure VI-6 Measured lithium transference values for the BCP-IL system run at the 

indicated temperature. Molar ratios are x PEO : y LiBOB : z S2BOB. 
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Diffusion	 	

The salt diffusion coefficient (Ds) is indicative of the ability of ions to move 

through the polymer electrolyte system.  The relationship between diffusion and 

transference number has been shown by Edman80 to be intimately intertwined with the 

lithium concentration, higher concentrations result in greater TLi+ values. The Ds values 

from the current interrupt experiments are shown in Table VI-2.  The measured Ds values 

are all on the order of 10-7 cm2/s.  Comparing the determined values to literature shows 

that the BCP-IL system possesses elevated diffusion coefficients relative to PEO salt 

systems, (~10-8 cm2/s).81,82 Given the addition of IL these numbers indicate increased 

ease of ionic conduction, which is seen from the AC impedance of the BCP-IL 

electrolyte.  With increased temperature there is a marginal increase in diffusion 

coefficients of the solid polymer electrolyte.   

Table VI-2 Measured salt diffusion coefficients by the current interrupt method.62,80  

Ratio 40 °C (x107 cm2/s) 60 °C (x107 cm2/s) 
20:1:0.5 1.62±0.05 2.79±0.02 
30:1:0.5 1.80±0.10 2.83±0.26 

     

Electrochemical	Stability	

 The polymer electrolyte was also investigated as to its stability at high voltages 

vs. Li/Li+.   A sweep of the voltage from 2.5 to 6.0 V was conducted with a lithium 

reference and a platinum counter electrode.  The cathodic stability (resistance to 

reduction) was measured to be 4.44 ± 0.07 V vs. Li/Li+.  This value is comparable to 

carbonate based liquid electrolytes, but being a polymer based system it is thermally 

safer.  For comparison to previous work the counter electrode was changed to stainless 
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steel, which is not stable at high voltages.  The values returned were significantly higher, 

around 4.7 V.  The BCP containing no IL electrolyte showed stability against SS of 5 V, 

while the system using the homopolymer PEO-IL electrolyte showed stability of ~4.5 V 

against SS.  This indicates that the decreased stability is likely the result of the ionic 

liquid.  It does appear that the block copolymer matrix does add stability to the IL 

containing electrolytes because the comparable value has marginally more stability.  The 

constructed hybrid system possesses sufficient stability to be useful for all 

commercialized cathode materials. 

 Electrolyte stability at low potentials towards metallic lithium is critical in an 

electrolyte for lithium batteries.  To measure this, galvanostatic cycling was undertaken 

on a symmetrical lithium cell with the 20:1:0.1 electrolyte at 40 °C.  Ideally a constant 

potential would be measured indicating stability at the interface.  In Figure VI-7a the 

profiles of selected overvoltage cycles can be seen.  Upon initial visual inspection the 

profiles demonstrate a stable plateau that is reached quickly.  However, with continued 

cycling the profile does start to deviate more from ideal, which given further electrolyte 

optimization could be reduced.  Though, when compared to previous cycling21,77 the 

potentials of this hybrid block copolymer system is lower than either of the two previous 

systems.  Simply, this test demonstrates good mobility of lithium ions through the BCP-

IL bulk and across the interface to the electrode where they are reduced back to lithium.   
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Figure VI-7 (a) Overpotential as a function of time for selected cycles of the 20 PEO 

: 1 LiBOB : 0.1 S2BOB BCP-IL system. Each cycle consisted of 1 hour of positive 

and negative current at a rate of 0.1 mA/cm2 while at 40 °C.  (b) ■ final values of the 

average overpotential as plotted against cycle. ○ are calculated from the resistance 

determined by the intermittent AC impedance scans. (c) The resistances as plotted 

against cycle were determined from fitting the AC impedance scans to a 3 element 

equivalent circuit.  RS- bulk or series resistance, RCT-charge transfer resistance, 

RSEI- resistance of the SEI. 
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To provide numerical insight into the overvoltage analysis the percent of time it 

takes to reach the defined percentage of the final overpotential value is tabulated in Table 

VI-3.  Throughout the testing, the cell reached the 90% threshold, early and in some cases 

instantaneously.  This indicates that the increase in overpotential within a given cycle is 

minimal.  This observation shows stability of the interface towards single direction ion 

movement on a short timescale.  Using the higher threshold values of 95% and 99% it 

becomes clear that the stability could be improved within a given cycle.  The time to the 

threshold value decreases to a minimum over the first 10 cycles, before steadily 

increasing until the 100th cycle.  The initial decrease in the time taken to reach the 

thresholds is likely the result of more energetically favored arrangements of the polymer 

at the interface.  The shift over extended cycling towards longer times to reach the 

threshold indicates the disappearance of the ideal plateau, which is clearly observable 

when comparing the 100th cycle to earlier cycles.  This BCP-IL electrolyte formulation 

possess superior properties for lithium stripping and plating, which upon further 

optimization is expected to show greater long term stability. 
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Table VI-3 Fraction of full time it took for the overpotential value to reach the 

specified % of the final overpotential value.  For example, during the 100th cycle 

with negative polarity to the current it took 3.36% of the hour for the measured 

overpotential to reach 90% of the final overpotential. 

Cycle
90% 95% 99% 

- + - + - + 
1 0.00% 0.00% 1.09% 10.90% 56.71% 66.40%
5 0.00% 0.00% 19.11% 2.34% 65.92% 27.39%
10 0.62% 0.00% 10.22% 0.92% 38.56% 16.64%
25 1.31% 0.00% 15.42% 6.18% 62.80% 44.44%
50 1.67% 0.00% 15.32% 7.58% 62.79% 54.73%
100 3.36% 3.61% 21.33% 31.46% 82.24% 83.30%

 

 In Figure VI-7b the final overpotential value is plotted against the cycle number.  

There is a small initial increase, but the final value stays fairly constant below 17 mV 

until around the 60th cycle.  From this point until the 100th cycle a small rise of ~3 mV 

can be seen in the final overpotential value.  This indicates a slow, gradual decay of the 

electrolyte at the interface with lithium.  While not ideal, the wide potential ranges in 

which a lithium electrolyte operates leads to observable decay over long periods of time 

and aggressive cycling.  The overall small increase from the beginning of the test 

indicates long-term stability without the potential for cell failure due to lithium dendrite 

growth. 

 AC impedance scans were intermittently conducted during the overvoltage testing 

to monitor the development of resistance in the electrolyte.  The plots were then fit to an 

equivalent circuit consisting of a bulk resistance, a charge transfer element (resistor and 

capacitor in parallel) and the SEI (resistor and constant phase element in parallel).  The 
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resistances are plotted against cycle number in Figure VI-7c.  Initially the bulk resistance 

and the SEI resistance are the highest.  As cycling progressed though the bulk resistance 

of the electrolyte decreased.  This is likely the result of more favorable arrangement of 

the polymer chains to promote ionic movement.  Conversely, the SEI and charge transfer 

resistances increase over the cycling period.  By the 100th cycle, the SEI dominates the 

other two values and is the largest factor in the aforementioned increase in the final 

overpotential values.  For comparison, all of the resistances were summed and then 

plugged into Ohm's law to get a voltage to compare to the end values from Figure VI-7b 

(○).  These values matched the trend of the final values, but were systemically off by 3%.  

Upon cell disassembly the area was found to be slightly enlarged, which resulted in 

smaller than actual resistances accounting for the difference.  The AC impedance data 

indicates that further annealing at the outset of cycling would likely improve initial 

overvoltage, and the SEI remains the largest impediment to stable long term cycling of 

lithium batteries.   

4. Conclusions	

The development of a solid polymer electrolyte holds great promise for increasing 

the safety of lithium batteries.  Building upon earlier work we combined our 

triethylsulfonium BOB ionic liquid with our PEO-PMAALi block copolymer in the 

hopes of creating a superior polymer electrolyte.  The conductivity of the BCP-IL system 

was marginally higher than the original BCP containing no IL below 40 °C.  At 40 °C the 

conductivity was 0.059 mS/cm and at 65 °C the conductivity was 0.206 mS/cm.  The 

BCP-IL electrolyte demonstrated superior TLi+ values to the homopolymer PEO-IL 

system of ~0.40, and had Ds of ~2x10-7 cm2/s.  The increase in lithium mobility with the 
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BCP matrix holds great promise for the development of a solid polymer electrolyte. The 

cathodic stability was found to be slightly depressed but still high enough for utility with 

all commercial cathodes.  The ability of this electrolyte to reversibly strip and plate 

lithium was confirmed.  Over 100 cycles it showed only a marginal increase in plating 

potential, from 16.2 mV to 20.6 mV.   
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VII. Zwitterionic	Liquid	

1. Introduction	

Electrolytes for lithium batteries must possess a number of ideal characteristics.6,7  

However, since no single chemical has all the ideal properties additives are generally 

used to get at these ideal electrochemical properties.  In liquid electrolytes additives are 

predominantly chosen to aid in formation of the solid electrolyte interphase (SEI), to 

confer stability at high voltages or to suppress flammability and thermal issues.6  Polymer 

electrolytes though are chosen as a starting point because many of these aforementioned 

issues are resolved by switching to a polymer.  However, in polymer electrolytes 

additives are chosen to increase conductivity.  Without involving combustible liquids, 

research on these additives has predominantly focused on ionic liquids and ceramics.28,33  

While both additives result in improved properties, none makes the polymer electrolyte 

sufficient for use in a lithium battery system.   

IL additives have improved the ionic conductivity values of polymer systems, 

however they have decreased the lithium transference (fraction of total observed current 

due to lithium).51  ILs were selected because of their versatility of structure resulting in 

widely varying electrochemical properties.  Our previous work has shown greatly 

increased conductivity with triethyl sulfonium based ILs.70,77 This cation scaffold was 

selected for because of its similarity to PEO and its oxyethylene units which are lithium 

conductors.  However, this system was similarly accompanied by diminished lithium 

transference.  Given the possibilities with ILs the development of future additives need 

not be limited.  This designer additive would serve a two-fold purpose in a solid polymer 
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electrolyte helping to not only increase conductivity, but lithium conductivity as well 

without compromising the benefits of using a polymer based system. 

The inclusion of additional Li+ results in higher transference numbers.80  In 

previous work in our group we synthesized a block copolymer with a lithiated block that 

resulted in elevated lithium transference.21,22  This however did not have sufficient ionic 

conductivity to be useful as an electrolyte at 40°C.  Further increasing lithium 

concentration to having an ionomer further pushes the transference closer to unity whilst 

further lowering the ionic conductivity.75 A research thrust for additives needs to 

encompass the need for higher lithium concentrations without compromising the 

structural integrity of the solid polymer film.   

Zwitterions are molecules that contain atoms with both a positive and a negative 

charge.  They have been investigated for electrochemical cells because they contain both 

positive and negative charges meaning they do not move in an applied electrical field.83-85  

These systems, when used in conjunction with lithium salts, have shown increased 

lithium diffusion and peak current while decreasing the effect of the SEI.  These results 

are postulated to be the result of either shielding of the ion-ion pairs or the availability of 

an additional conductivity pathway.  Given the improvements of zwitterionic liquids used 

as electrolyte additives this provides a template for future development.   

With this in mind we set out to synthesize an IL that combined the ideal 

conductivity with the presence of increased Li+.  This zwitterionic liquid could 

simultaneously plasticize the polymer matrix for increased ionic conductivity and 

increase lithium ion concentration resulting in higher transference values.  In this article, 

we report on the synthesis of the novel diethylsulfonium carboxylate based zwitterionic 
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liquid.  It is incorporated into a polymer electrolyte and its electrochemical properties as 

an additive for a lithium battery are evaluated.   

2. Experimental	

a. Materials	

LiTFSI (LiN(SO2CF3)2), diethyl sulfide, iodoacteic acid and lithium foil were used as 

received from Aldrich.  Poly(ethylene oxide) (Mw 300k) was used as received from Alfa-

Aesar. LiBOB was used as received from Chemetall.  Characterization was performed by 

NMR on a Bruker AV-400 high resolution NMR. 1H and 13C were performed in 

deuterated methanol. Mass spectroscopy measurements were performed on a JEOL 

AccuTOF-CS ESI-TOF mass spectrometer. ESI+/ESI- modes were looked at over the 

m/z range of 80-500. 

b. RTIL	preparation	

Carboxymethyl diethyl sulfonium cation synthesis: Equimolar amounts of diethyl sulfide 

(4.900 g, 53.24 mmol) and iodoacetic acid (10 g, 53.24 mmol) were mixed in 20 mL of 

dry acetone and allowed to stir for 3 days before being dried.  A viscous dark red product 

was returned in 86.9% yield, which was then partitioned before being carried through to 

the next step. 

Lithiation: S22(CH2COOH)I (6.476 g, 23.45 mmol) was stirred with equimolar LiOH (0.573 

g, 23.45 mmol) and LiTFSI (6.732 g, 23.45 mmol) in water for 2 hours.  The aqueous 

solution was first washed with DCM and only the aqueous solution was kept.  The 

solution was then dried and dissolved into acetone then washed with DCM again.  A 

purple viscous liquid was isolated after drying the acetone phase resulting in a recovered 
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yield of 6.30 g corresponding to 61.7% yield. 1H: 4.085 (s, 2 H), 3.384 (q, J=7.4 Hz, 4H), 

1.465 (t, J= 7.4 Hz, 6H). 13C: 168.09, 44.79, 34.75, 9.35. ESI+: 149.08252, ESI-: 

279.91005.  Elemental analysis results as conducted by Galbraith Laboratories: C: 25.5%, 

H: 4.29%, O: 11.34%, Li: 2.46%, S- 11.37%, I- 44.99% (sample contained H2O and 

LiOH impurities). 

c. Electrolyte	Preparation	

All electrolytes were assembled in the molar ratio of x PEO : y LiBOB: z 

S22(CH2COOLi)TFSI (Figure VII-1).  The electrolyte films of different composition were 

solution cast from dimethylformamide onto Bytac molds in an MBRAUN Labmaster 100 

argon glove box.  The resultant films were dried for several days at 80 °C, before being 

placed into CR2032 coin cell enclosures for electrolyte testing.  

 

Figure VII-1 Compounds used to make the solid polymer electrolyte.  All ratios 

cited in this paper are of the molar formula x PEO : y LiBOB : z IL. 

d. Electrolyte	Characterization	

 Conductivity measurements for electrolytes were performed in a stainless steel 

(SS)/electrolyte/SS coin cell set up on a Solartron 1287A/1255B platform over the 
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frequency range 1 MHz to 1 Hz.  Testing parameters were controlled by the associated 

CorrWare and ZPlot software, while data was processed using CorrView, ZView and 

Origins 8.  All temperature testing was completed in a RevSci IncuFridge with ±0.5 °C 

temperature accuracy allowing 45 mins to equilibrate at each temperature.  Prior to 

testing constructed cells were annealed for 3 hrs. at 70 °C. 

3. Results	and	Discussion	

The zwitterionic liquid was solution cast resulting in a thin polymer film similar 

in characteristics to previous work on the PEO-based systems.70,77 Given the novel nature 

of these additives the first characterization test was to see the effects of the zwitterionic 

liquid on ionic conductivity. Ionic conductivity of the electrolytes during the cooling 

process is plotted in Figure VII-2, where the ratio is x PEO: y LiBOB: z IL.  Among the 

ratios, the formulations with higher ionic concentrations generally exhibited higher 

conductivities. The best system over nearly the entire measured temperature range was 

20:0.5:1, even beating the more ionically rich 20:1:1 system.  The higher lithium salt 

concentration of this latter system depressed the overall conductivity at temperatures 

above 25 °C.  The conductivity values of 20:0.5:1 are as follows: at 65°C: 0.67 mS/cm, at 

40°C: 0.15 mS/cm and at 25°C: 0.017 mS/cm.   Remarkably, the systems with only the 

zwitterionic liquids also showed high conductivity.  The 20:0:1.0 system exceeded 0.1 

mS/cm conductivity at 43°C which means it could be useful for biomedical applications. 
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Figure VII-2 Ionic conductivity of the solid polymer electrolytes determined by AC 

impedance spectroscopy upon cooling of the SS/electrolyte/SS cells from 65 °C.  

Ratios are x PEO : y LiBOB : z S22(CH2COO-Li+) TFSI 

The effect of the zwitterionic system (20:0.5:1.0) was benchmarked against the 

penultimate PEO-IL system of 20 PEO: 1 LiTFSI: 1.5 S2TFSI.70  At 25 °C the PEO-IL 

was 0.12 mS/cm compared with 0.017 mS/cm for the zwitterionic liquid.  The difference 

is nearly tenfold between the two systems; however, at this temperature neither ionic 

liquid was able to sufficiently enable the movement of lithium ions.  At 40 °C the PEO-

IL system is ~0.7 mS/cm, whereas the zwitterionic liquid was 0.15 mS/cm.  This decrease 

to between a four- and five-fold difference is likely due to the increased reliance of ionic 

conduction on PEO segmental motion.  This pathway becomes available because of the 
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plasticizing effect of the additive.  The difference multiple decreases further between the 

two systems at 65 °C; PEO-IL is 2.25 mS/cm compared with 0.67 mS/cm for the 

zwitterionic liquid.  Given the difference in ionic conductivity values between the two 

systems, the plasticizing effect of the zwitterionic liquid is inferior to S2TFSI.  The 

plasticization is important because this is what enables PEO chain movement and 

ultimately lithium ion conduction through the electrolyte.   

 When comparing the electrolyte systems it is important to look at the trend lines 

when fit to the curves using the Arrhenius equation.  All of the tested ratios have distinct 

slopes of the trend lines below 50°C indicating differing activation energies and likely 

slightly differing molecular interactions leading to ionic transport.  The linear relationship 

in this temperature range shows that for each marginal increase in temperature more ions 

become available to be moved.  Given the differences in electrolyte composition there is 

a clear impact of the IL and the salt controlling not only the number of ions but by which 

pathway as well. Above 50°C each line shows a clear change in slope indicating the 

presence of an alternative conductivity mechanism. Comparing different composition, the 

slopes at this high temperature are more parallel to one another indicating that the 

conductivity mechanism is similar; the absolute values of conductivity differs through 

because of differing ionic concentrations. When contrasted to the PEO-IL system70 there 

is similar slope in the high temperature regime, but a steeper slope in the low temperature 

regime.  As previously discussed the similarity in slope in the high temperature regime 

likely indicates the predominance of conduction via PEO segmental motion.  For the low 

temperature regime, the varying slopes likely points to the different effect on 

plasticization of the zwitterionic liquid when compared to triethyl sulfonium.  The higher 
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charge density of the zwitterion likely inhibits the favorable plasticizing behavior 

witnessed with triethyl sulfonium based ionic liquids. 

4. Conclusion	

Zwitterionic liquids are a unique opportunity where an IL can serve two purposes 

in a solid polymer electrolyte system.  In this set-up it serves to both plasticize the 

polymer chains and acts as a source of lithium.  When combined with PEO pliable thin 

films are formed that can be tested as lithium electrolytes.  The ionic conductivities were 

measured showing appreciable conductivity for selected systems above 35 °C.  The 

highest conductivities were returned for the 20:0.5:1.0 system above room temperature.  

This preliminary data shows a marginal increase in conductivity. However, many more 

tests are needed to see the suitability of the zwitterionic liquid as an electrolyte additive.  

Given its inactivity in an applied electrical field strong preference for lithium ion 

conduction is expected.  The complex chemistry of this additive though may adversely 

affect stability at high potentials.  Continued characterization work is expected though to 

confirm these hypotheses and possibly provide insight into future novel electrolyte 

additive development.     

    	



110 
 

VIII. Future	Directions	

 Through the four generations of electrolyte systems, the plausibility of a lithium 

battery system using a solid electrolyte has been shown.  The increased safety realized by 

switching away from organic carbonates is the real driver behind this work.  The next 

step in the development of this electrolyte is to scale up electrolyte production.  This 

larger quantity of electrolyte would enable cell cycling and cell safety testing which 

would validate many of the claims of increased safety without compromising 

performance.  Furthermore, construction of numerous pouch cells would easily showcase 

the increased flexibility and pliability.  Upon validation of the energy density deliverable 

from a battery no change is expected over lithium batteries with liquid electrolytes 

because of a fairly equal replacement between the separator and the hybrid solid polymer 

electrolyte film.  However, because elemental lithium will be used in place of graphite a 

large increase in volumetric and gravimetric energy density per unit of active material 

will occur.  Power density though is expected to decrease as a function of lower currents.  

Additionally, the energy and power densities of a full battery will be increased because 

the steel casing of these safer batteries can be replaced with a thin laminating film.  

Because these components do not scale when miniaturizing the battery and thus much 

greater benefits will be seen with smaller cells.  The difficulty in this step though lies in 

acquiring the necessary pieces of equipment and more than likely a dry room.  The 

capital investment is the barrier at this stage to the further development of the electrolyte 

for lithium batteries. 

 From an academic perspective there are a number of avenues to pursue that could 

improve the properties of the electrolyte.  At the outset of the research a whole family of 
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sulfur based ionic liquids was synthesized, but ultimately never tested.  It would be 

interesting to evaluate the diethyl sulfonium and tetrahydrothiophene based ionic liquids.  

Properties within a class of ionic liquids are interesting and sometimes unexpected, as 

with the ideal carbon chain lengths for pyrrolidinium of one and four.86  There is also 

some work that can be done on the MW of the polymer as well as each block and its 

effect on the electrochemical properties.  I do not believe though that there is much more 

room to investigate different polymer matrices, as this area is largely limited by the 

difficulty in working with lithium ions.  Lastly some work can be done to increase 

mechanical strength at higher temperatures.  It may be possible to increase mechanical 

strength by blocking a third polymer, by blending another polymer, or by incorporating 

hard ceramic particles.  Inert polymers with high temperature stability such as 

polystyrene or polydimethylsiloxane may be the solution. 

 Given the success of the electrolyte it is important to optimize all components of 

the lithium battery.  The electrodes used to do preliminary testing were limited to 

simplistic translations of formulations used with liquid carbonate based electrolytes.  

Future work would likely increase the ratio of polymer used as binder or use the polymer 

electrolyte as binder.  Given the limited conductivity of polymers relative to liquids 

increasing the ratio from 10% towards 30% would likely increase the energy per unit 

weight of the active material.  Additionally, the use of non-commercial cathode systems, 

such as sulfur, would show improvement of the polymer battery relative to liquids.  

Sulfur is limited because of the dissolution of polysulfides into the electrolyte; a polymer 

already containing sulfur IL might inhibit this process demonstrating actual capacity 

much closer to theoretical than previously achieved.   
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Lastly I believe there is further room to investigate the molecular interactions in 

the electrolyte.  Using more in depth NMR and other analytical techniques would yield 

further information about how the ions move and interact with the polymer matrix. Magic 

angle spinning is able to directly determine each ion species diffusion and conductivity.  

This information would result in greater detail on not only the current system but also 

insight into the design of future electrolytes that more strongly favor lithium conduction. 

Additionally, work on femtosecond laser pulses as done in Robert Kostecki’s lab at 

Lawrence Berkeley Lab would be useful in probing the SEI.87  This research would allow 

for precise depth profiling of the SEI leading to a better understanding of the 

interpenetration of the polymer into the electrode and possibly lead to ways to continue to 

improve this limiting factor in deployment of a solid polymer electrolyte.  On the whole 

knowledge of polymer electrolytes and the electrochemical interfaces they form is 

lacking.  These insights could lead to further optimization of not only our hybrid polymer 

electrolyte system, but others as well. 
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IX. Contributions	

Over the past four years my research focused on the development of polymer 

electrolytes has to this point led to 4 publications, 1 patent, 1 invention disclosure, 7 

conference talks and 4 poster presentations.   Chapter IV is jointly published in the 

Journal of Power Sources70 and the half-cell cycling is published as a conference 

proceeding in Electrochemical Transactions76.  The full article was selected among the 

“25 Hottest Articles” in the journal for the 4th quarter of 2011.  Chapter V and VI are 

published as two separate papers in the Journal of the Electrochemical Society in 

201277,88.  The early work from Chapter IV and V has resulted in a provisional patent, 

while the more recent work in Chapter VI has resulted in an invention disclosure through 

the University of Maryland - Office of Technology Commercialization.   

Since 2009 I have been a John and Maureen Hendricks Energy Fellow recipient.  

This annual award supports students engaged in research that advances the frontiers of 

energy science and technology.  Presentations on the research discussed in this 

dissertation have been given at a number of prestigious national and international 

conferences.  Talks have been given at The Materials Research Society Meeting, The 

Electrochemical Society Meeting, The International Society of Electrochemistry Meeting 

and The American Chemical Society National and Mid-Atlantic Regional Meeting.  For 

the 2012 ECS conference I was selected for a student travel grant from both the national 

battery division, and the University of Maryland ECS student chapter. Conference posters 

have been presented at the International Meeting on Lithium Batteries, the Conference on 

Ionic Liquids, the Fischell Festival, and the Royal Society of Chemistry International 

Symposia on Challenges in Renewable Energy. 
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The research has also led to the formation of a small company called SafeLiCell 

LLC.  SafeLiCell has been entered into several business plan competitions and awarded 

money.  I took second place in the $100k ACC Clean Energy Challenge winning $15k 

and a presentation led by Mian Khalid took second place at the ACS Green Chemistry 

and Engineering Business Plan Competition winning $10k.  The company also was 

selected as a finalist and semi-finalist in 2010 and 2012 respectively in the UMD $75k 

Business Plan Competition.   
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