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In this report, we provide an accurate analysis of the probabilities P(I,m — [|K), | =
0,1,---,m and m < K, of exactly | correct packet receptions in a group of m receivers,
given that I packets are transmitted simultaneously from users employing direct-sequence
spread-spectrum (DS/SS) signalling schemes. This quantity is essential for the design and
performance evaluation of protocols for admission control, dynamic code allocation of
multiple-access spread-spectrum packet radio networks; specific applications include net-
works of LEO satellites and multi-rate multi-media communications using CDMA (code-
division multiple-access) techniques. The evaluations are carried out for DS/SS networks
employing BPSK modulation with coherent demodulation and convolutional codes with
Viterbi decoding. Systems with geographically dispersed receivers and systems with co-
located receivers are considered.

First the exact multireception probabilities for synchronous uncoded systems are
evaluated at the bit level; these results are essential for checking the accuracy of the other
approximations used here. Our results establish that the Independent Receiver Opera-
tion Assumption (IROA) yields very good approximations whose accuracy increases as the
number of chips per bit N increases. The IROA accuracy is not as satisfactory for co-
located receivers when Ej /Ny is small; for this case we develop an approximation based on
the Gaussian multivariate distribution, which is more accurate than the IROA. Extensive
comparisons of the exact expressions with the Gaussian and the IROA approximations are
conducted. For convolutional coded systems, we derive the multireception packet prob-
abilities following a new approach, the Joint First Error Event Approximation (JFEEA),
which is based on the lower bound of the probabilities of all-correct packet receptions and
the moments of random variables. We compare this approximation with the IROA and
observe good agreement between the two.

This work was supported by the Center for Satellite and Hybrid Communication
Networks and the Institute for Systems Research at the University of Maryland.
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1. INTRODUCTION

Spread-spectrum multiple-access (SSMA) schemes are becoming increas-
ingly important not only in military applications, but also in commercial
communication networks. Mobile radio networks, satellite communications,
air to air, ship to air, and cellular phone communications can all benefit from
the multiple-access capability and the protection against multipath and other
in-band narrowband interference that spread spectrum provides. An impor-
tant quantity which is needed for the performance evaluation as well as the
design and optimization of protocols in spread-spectrum radio networks is
the probability that exactly [ out of m packet transmissions are successful,
given that K users transmit their packets simultaneously; this quantity is
denoted by P({,m — [|K).

In the literature (see for example [1] and [2]) these multireception packet
probabilities are typically approximated via the independent receiver oper-
ation assumption (IROA) method, which assumes that the m receivers op-
erate independently of each other although the same A transmitted signals
are present at all of them. This approximation is intuitively pleasing but
its accuracy has not been verified (for direct-sequence systems) due to the
lack of computationally efficient exact expressions for P(I,m — [|K). The
computation of these exact packet probabilities is a difficult combinatorial
problem whose complexity is prohibitive even when the system parameters
are small.

In our earlier work [??] we comprehensively analyzed exact expressions
and approximations of P(I,m — {|K) for frequency-hopped spread-spectrum
(FH/SS) networks employing random frequency hopping patterns. In this re-
port, we evaluate these quantities for direct-sequence spread-spectrum multiple-
access (DS/SSMA) networks employing random signature sequences and ex-
amine thoroughly the accuracy of the IROA.

In order to provide a basis for reference against which the accuracy of
all approximations will be checked, we first compute the exact expression
for the joint packet probabilities at the bit level (i.e. packet length equals
1) for synchronous uncoded systems with dispersed or co-located receivers.
The accuracy of the IROA at the bit level is investigated via comparisons
with these exact probabilities. In addition, a new approximation based on
the multivariate Gaussian distribution is obtained for both synchronous and
asynchronous systems. For the system with co-located receivers and a certain



range of parameters this approximation shows better agreement with the
exact values than the IROA does. Based on these joint bit probabilities, the
approximations for packet probabilities are derived with greater accuracy.

Typically DS/SSMA systems employ error-correcting codes for additional
interference-rejection capability. Here, we analyze systems using binary con-
volutional codes with Viterbi decoding (trellis search) and hard-decisions at
the receiver. A block diagram of the system is depicted in Figure ??. The
evaluation of the multireception packet probabilities is complicated because
of the fact that not only the errors at the decoder outputs are dependent,
but also the errors at the decoder inputs of different receivers are dependent
due to the common other-user interference present at all receivers.

Due to the difficulty in evaluating the packet probabilities of coded DS/SSMA
systems, the assumption of independent errors at the decoder input and the
union bound on the packet error probability (of a single receiver) are often
used. Pursley and Taipale [??] have developed a tighter upper bound for the
packet error probability for the single-receiver system. Here we consider the
multireceiver case and take the dependence among users into consideration
to derive a lower bound for the all-correct multireception packet probabil-
ities. Then, the rest of the multireception probabilities are obtained from
solving m — 1 linear equations involving the moments of the random variable
representing the number of correct receptions at each of the the m receivers
(except for the all-correct event). We call this Joint First Error Event Ap-
proximation (JFEEA) method. The JFEEA is then compared with the IROA
approximation to check the accuracy of the latter. Since the JFEEA does not
provide upper or lower bounds (except the all-correct and the all-error prob-
abilities) our comparisons focus on how close the two approximations are.
Since the two approximations turn out to be reasonably close and they were
obtained following completely independent (unrelated) methods we conclude
that they help validate each other.

This report is organized as follows: In Section 2, exact expressions for
P(I,m—I|k) at the bit level are derived for synchronous uncoded systems with
AWGN. In Section 3, the corresponding expressions based on the multivariate
Gaussian approximation technique are derived for both synchronous



and asynchronous systems. The approximation based on the independence
assumption is cited in Section 4. Section 5 derives the JFEEA approximation
for synchronous coded systems. The IROA for coded systems is cited in
Section 6. Numerical results and comparisons of different approaches are
presented in Section 7. In Section 8, conclusions are drawn.



2. DERIVATION OF EXACT EXPRESSIONS

For general binary DS/SSMA systems, the system model is that of [4].
The K transmitted signals are of the form

sk(t) = V2Pby(1)U(t)ax(t)cos(2r fot + b%) (1)

for 1 < k < K. In (1), P is the signal power; f, is the common carrier
frequency; and 8, the phase introduced by the kth modulator, is modeled
as a random variable uniformly distributed over [0,2r]. The data waveform
by (t) consists of a sequence of mutually independent rectangular pulses b{*) of
duration T' and amplitude taking values +1 or —1 with equal probability. The
shaping waveform W¥(t) is defined by W(t) = 1(s), for s = ¢t mod T, where
¥(t) is an arbitrary time-limited function satisfying ¥(t) = 0, for ¢t ¢ [0, T¢]
(where T! is the chip rate), and is normalized to have energy equal to 7%
(ie., fo ¥*(t)dt = T.). The code waveform a,(t) consists of a sequence of
rectangular pulse agk) of duration T, and has amplitude taking values +1 of
—1. And N = T/T, is the number of chips per bit.

For K users transmitting simultaneously signals over an AWGN channel,
the received signal at any receiver is

K
r(t) = Z sE(t — 1) + n(t) (2)
k=1

where n(t) is a zero-mean white Gaussian noise process with two-sided spec-
tral density %Q and 7 is the kth delay modeled as a uniformly distributed
random variable in the interval [0, T].

In a DS/SS packet radio network, packet errors are caused by a combina-
tion of noise at the receivers and interference between packet transmissions.
The evaluation of joint packet probabilities is complicated, since the interfer-
ence between packet transmissions produces dependent errors at the output
of the demodulators and the bit errors among the successive bits in a packet
are also dependent. Because these dependences prohibit the accurate analysis
of joint packet probabilities even for uncoded systems, we make some neces-
sary assumptions and present a worst-case analysis. It is well known that the
packet error probability for a slotted, chip- and phase-synchronous network
model is an upper bound on the packet error probability for an unslotted,
chip- and phase-asynchronous model given that the maximum number of



transmitters seen by both models are the same [6]. To make bit errors at the
decoder input independent from bit to bit, we further assume that random
signature sequences are used, as was the case in [5] and [6]. Recall that the
random sequence model is convenient both for facilitating the performance
evaluation of DS/SSMA systems and for modeling systems with large user
populations for which we do not desire to distinguish in any way among the
different users. Consequently, our assumptions are as follows :

- Random signature sequences are used.

- ks and s in (1) are all zero.

- K in (2) remains constant over the duration of the packet.

The exact result of P(I,m — {|K) is derived at bit level based on the
perfectly synchronous system assumption stated above.

2.1 JOINT INTERFERENCE IN ONE CHIP

The key information for solving P(l,m — [|K) is the mutually dependent
interferences among the m receivers. We arrange these interferences at the
chip level in order to reduce the number of combinations as much as possible
so that the interferences at the bit level for small system parameters can
be obtained quickly. Two simple examples of the derivation is presented in
Figures 2 and 3.

Consider a single chip duration, the chips of the K users can be cate-
gorized into two groups: one is the set of chips on the m receivers we are
interested in, the other is the set of the ' — m chips on all other receivers.
We arrange the users so that the m users in which we are interested are user
0 to user m — 1, while all other users are from user m to user ' — 1. Let
X;(0 < j < K —1) be the "chip value” of the jth user, which means that
X; is the value of b;(t)a;(t) during the chip considered; then the X;s are
i.i.d. binary random variables taking values +1 or —1 with equal probability.
Define the random vector X = (Xy,..., Xx_1), which can take any of the
21 different vectors with equal probability 27, and let I;(0 < j < m —1)
denote the total interference that user j suffers from all the other K —1 users
during the chip considered, then

K-1
7

Here interference is defined as the difference between the number of ”agree



with X;” chips and that of "disagree with X;” chips. Since the I;s are
dependent random variables, they shouldn’t be considered separately. We
define the random vector I = ([ly,...,I,_1) as the basic unit of interference
in this interference-dependent system. Let S; denote the sample space of 1
and N; be the number of different vectors I can take (i.e., the number of

elements in S7), then

ofK) ey -
Nr=1+EK)+ Y ¥ ( )

i=1 j=b; \J

where

{ I, 1t KN =eceven
0, it K = odd

[l‘—j, ifK = odd
=~ 1, ifK = even
_{0, UK ~1-m>0
TAlm—-(K =), HK-i-m<0

e; = min(t, m)

(4)

(7)
(8)

Now we have N; instead of 2" interference vectors in one chip. Define three

vectors
m terms
Vo = (KN-1,K-1,...,K-1)
m terms
Vi = (=1,-1,...,-1)
7 terms m~j terms
V;J = (EiOv"'in07Ei17'"7Ei1)
where

E,’O = —K+2i—-1
Ey = K-21-1

then the elements of S;, denoted by (0 < [ < N; — 1), and the probability
mass function, P(I = T'}(0 < [ < N; — 1), are derived by the following



algorithm

1° = Vg (9)
P(I=1°% = 21K, (10)
[ =0;

for(t=1;1 < a(K);i4+)for(j = bi;j < e;;j++)
for(k =13k < (W);k +0){ I++
J

I' = the kth permutation of Viji (11)
pa=1)=2(% 7)) (12)
t—=]
if(K == even){
IVt = Vg (13)
K
PI =1Vt =27k ; 14
=1 (14

The derivation of equations (4) to (14) is given in Appendix A.

2.2 JOINT INTERFERENCE IN ONE BIT

Let I<9>(1 < j < N) be the interference vector during chip j in some
data bit; then I</>s are i.i.d. random vectors with distribution of that of T
described in (10), (12) and(14). Now we are interested in the total interfer-
ence in a data bit, denoted by B = (Bqg, By, - -, Bin_1), which is the sum of
I<‘7>s,

N
B=) 1V (15)
j=1
In a data bit, the random vector I<?> can take the value of any of the N;

elements in S;. Let M;(0 <1 < N;y— 1) be the number of times that vector
I' is chosen during the N chips in the bit; then

‘;\;10—1 My =N
0<M <N
The number of integral solutions for the above equation, denoted by Np, is

N+ Np—1
o -
AB-—< N[——l ) (11)

(16)

7



Let vector MY = (Mg, M, -, My, _;),1 < w < Np, be the solutions of
equation (16), and B* = (By, By, ---, BY_,) the total interference in a data
bit, given the wth solution of equation (16); then

Ny-1
= > M}T (18)

The probability that B equals B is

NI Nt

[] Pa=1)" (19)

PB=BY) = ———
( ) Hﬁ—]o—lfwlw! 1=0

2.3 MULTIRECEPTION PROBABILITIES AT BIT LEVEL

Consider a single bit [, for coherent reception and a correlation receiver
matched to the jth user; the output [4] is

JP2T(0 = LB; +7) it o) = 20)
JP/ Tb‘”+ LBy +n) itsl =

where 7 is a zero-mean Gaussian random variable with variance (QEb/NO)_l,
E, = PT is the energy per bit, bgj) the desired signal in the decision interval
[0.7], and B, the jth component of the multiple-access interference vector
B. The probability that the lth bit of the jth user is incorrect is hence

1 ; ,
Peé = —Q—Pr(Z]’- > 0[65” =—1)+ %Pr(ZJI- < Oibfj) =1)

+5) 1)

The multireception probabilities at the bit level are considered for two
kinds of systems. One is the system with the m receivers at independent sites;
the other is the system with m co-located receivers. The packet probabilities
for these two systems are denoted by P(I,m — I|K) and P.(I,m — [|K),
respectively. Due to the symmetry of the m receivers, we assume that only
the first [ packets are correctly received when deriving P(I,m — [|K). Then

= Prin>1+

Pm=i) = (| )HPr{m_ (145, HPr{m (1418} (22)

8



where 7;s are 1.1.d. zero-mean Gaussian random variables with variance

(2E/No)™". In terms of P(B = B®), (22) can be restated as

Pi(z,m—zuf):(m)f{m il ¢<a;’>]}P(B=BW) (23)

w=1 7=l

where
v _ LtwB :
2E,
o1 1 22
$la) = / T dz (25)
—00 27‘(‘

For systems with co-located receivers,

1 1
—By,--,n <1+ —B_4,
0 N = +N -1

m
—I|K) = <
P.(l,m - |K) (1>Pr{ n _1+N

1 1
2B ... 14+ —B._,) (26
Define
w 1 wy g
LY = m]ax{l+NBj|]:l,...,m~1} (27)
w : 1 wi -
vy = mjm{l-{—NBj l7=0,...,0—1} (28)

then (26) in terms of P(B = B") becomes

U“’ Lw

P(l,m—I|K)= ()i

)} 1(L*,U”)P(B = B”)

E R
(20)

where G <U
{ ifL>U (30)



3. THE MULTIVARIATE GAUSSIAN APPROXIMATION

In the previous section, we derived exact expressions for the probabilities
Plym - 1|K)(l=0,1,---,m,m < K) at the bit level. Here we develop an
approximation method based on the Gaussian multivariate distribution. The
packet probabilities based on this approximation are denoted by Pg(l,m —
[|K).

Consider a single bit interval, let the random variables z;;(0 <1 < K —
1,0 <3 <m — 1,7 # j) denote the normalized interference term that user 7
has over user j, #7(1 <n < N,0<i< K -1,0<j<m—1,i+# j) denote
the interference that user ¢ causes to user j during the nth chip of the bit;
then the total interference user j suffers from all the other users is

K-1 K-1 1 N
xj=2wi;—=2—ﬁ2wz (31)

=0 v=0 n=1

g i#g

Since the z;;s are i.i.d. random variables for a fixed j, z; tends toward a
Gaussian distribution for large K. Even K is not large, @; approaches to
a Gaussian distribution as long as the number of chips per bit N is large
enough. This is because z7;s are i.i.d. for fixed 7 and j (proved in Appendix
B), and s;;s tends to Gaussian for large N. Now, if we consider any linear
combination of the z;s, say

m-1
=) a; (32)
J=0
then
m~1 K-1 1 N 1 K-1 N m-1 1 K-1 N
zT= aj( > NZQ/Z):—]\—[ > ajx%=—N- > zim o (33)
7=0 i=0 n=1 =0 n=1 ;=0 =0 n=1
i#] J#
Consider a fixed n, since z7; = 2% when 0 < 4,7 <m —1 and ¢ # 7, random

variables zg,,- -+, 2m_1 n are m — 1 dependent; and the number of m — 1
dependent z;,s in (33) are Nm. But all other N(K — m) z;,8s (m < i <
K —1,1 £ n < N) are i.i.d. random variables. It turns out that Z is a
sum of 1.i.d. and m — 1 dependent RVs and, as NA — oo, tends to have
a Gaussian distribution. Consequently, all z,s are jointly Gaussian if the
number of NI\ is sufficiently large.

10



Define the m-dimensional column vectors

1 I
T2
T = . and p = ,u (34)
Tm~1 H

where y is the mean of z;s.
Then we have the multivariate Gaussian probability density function (pdf)

pe(z) = L ewTs e (35)

(27)™ ]
where ¥ is the m x m covariance matrix with diagonal elements

a = E{(e; — )"} (36)

and off-diagonal elements (all of which are equal due to the symmetry of our
problem)

b= E{(z; — u)(z; — n)} (37)
a and b are calculated in Appendix C on the basis of the signaling scheme
(DS synchronous or asynchronous) and the presence of AWGN.
Let b1, by1, biz, and bys be system parameters such that user j is successful

when z; € [by1, by1] and unsuccessful when x; € [b2, bye]; then the multivariate
Gaussian approximation of P(I,m —I|K) is

m—1

l
bu1 but  fbuz bu2
PG(I,T)’L*”]X):‘/I;“ ”"AH /bl2 .../blz Pg(:?f_)d$0“'d$m—1 (38)

We define

1 m—1

z = b, by by b (39)

{ m—|

Ly = bula e 7bul~, bu‘Zs Tty bu‘Z (40)

11



and have

Po(l,m —[|K) :/_u ———%——-—e“f(z w5 z=p) gy (41)
zo/(20)" |3

The integral in (41) can be simplified, if the exponent is converted from
a quadratic to a sum-of-squares form. The result of this conversion is

2
1 Tt b m—1
—RTEE=- a—b [ﬂ*w(ixi (42)
and the determinant of ¥ is found to be
det(2) = (a — b)" a + (m — 1)} (43)

(42) and (43) are derived in Appendix D.
Using uj = —= makes (42)

m b m—1 2
[4? w5 } )

But the square in the above equation can be eliminated with the help of the
following integral transform [7]

o242 1 /°° by __}%_
e? = dy e®¥e 2 (45)
Voro? Jooo

[\')I)—*

with ;
2
- 4
o a+(m—1)b (46)
and .
b= u (47)
=0

After some manipulations in which we use (43),(45),(46) and (47), we obtain
the basic result

Ps(l,m —|K) =

2

/.j dy \/7— [Q(Z(by)) = QUZb))[Q(Z (b)) — Q(Z(bu2))]" (48)

12



where

x—,u—\/gy
Va—>b

Qz) = \/—12:; /;’e—%du (50)

Equation (48) gives a method for calculating Pg({,m — | ') with linear com-
putational complexity in m.

Consider the system with AWGN, random variable 7 is added to z;; from
equation (21) we know that, for user j to be successful, z; + n has to be
greater than —1. Hence, by = —1, by = —00, by; = 0o and b, = —1. The
parameters ¢ and b also need to be changed to account for the AWGN : for
the system with independent receivers,

_ Y
{Z/':Z“L?f% (51)

(49)

for the system with co-located receivers,

- N
b’_b+4L2Eb

Finally, (48) becomes

1
+eo e~V

dy =lREIl-eE)™ (33

Po(l,m — 1K) :/

X

where

_ 1+ p+ Vby
T Va -

13



4. THE INDEPENDENCE ASSUMPTION (IROA)

The assumption of independence between the packet errors of the users is
commonly made for simplifying the evaluation of P({,m —[|K). The relevant
expressions for synchronous systems are given in this section. The numerical
results of these expressions will be compared with the exact results derived
in Section 2 to determine the validity of IROA assumption.

The exact bit error probability p for a binary DS/SSMA system is [9]

p= Q(,/%%) + ;1;/000 Si’:f“)%(u)u ~ By (u))du (55)

where
Oy(u) = [cos (%)]N(K_l) (56)
D2 (u)

I
)
8
"3
|
g
~o
—
=
-J
~—

and Q(z) is defined as (50).
Based on the IROA, the packet probabilities Py(l,m — [|K) is

Pia(l,m =1

K) = (’7),)1(1 — o (58)

14



5. CODED SYSTEMS

Pursley and Taipale [6] have developed a tight upper bound of the packet
error probability for the hard-decision single-receiver case. In this section,
we consider the multireceiver system using binary convolutional coding and
hard-decision Viterbi decoding. Approximations (JFEEA) for the packet
probabilities P(I,m — {|K)(I = 0,1,...,m and m < K) are obtained by
using first-event error [§8], Pursley and Taipale’s bound [6], multi-dimensional
extension, and moments of random variables.

The difficulties in evaluating the joint packet probabilities in a multi-
receiver system are twofold: first, the stream of input to the decoders is
dependent from bit to bit (horizontal dependence); second, the other-user
interference terms present at the m receives in the same time slot are cor-
related (vertical dependence). To facilitate the analysis, the assumptions of
zero delays and zero phases among the users, as well as the constant num-
ber of equal power transmitters are again made. These assumptions render
among the successive bits of input stream to the decoder independent and
yield a worst-case evaluation of the system [6]. For a convolutional coded
system using Viterbi decoding, another horizontal dependence exists since
the errors out of the decoder are not independent. The first-event error is
used to circumvent the dilliculty caused by this dependence.

There is a considerable difference hetween the single-receiver case and the
multireceiver case when it comes to the evaluation of packet probabilities. In
the single-receiver case, there are only two events, namely the error event
and the correct event whereas in the multireceiver case there are 2™ different
evenls. One of the events is that all i receives have correct packet receptions.
In this case, a union bound on P(m,0]/") can be obtained based on Pursley
and Taipale’s work [6]. But all other non-syminetric joint packet probabilities
(i.e. the probabilities that [ packets are successful, while m — [ packets are
unsuccessful, where [ # m) can not be obtained from the union bound. A
technique is thus introduced for deriving these non-symmetric joint packet
probabilities based on solving a system of m — 1 linear equations involving
the lower bound on the all-correct packet probabilities and the moments of
random variable representing the number of correct receptions at each of the
m receivers. These linear equations give the result of the packet probabilities
as long as the algorithm which solves them can reach the required accuracy.



5.1 LOWER BOUND ON P({,0|K)

Denote a convolutional code with a k—input, n —output linear sequential
circuit with input memory m by (n, k,m). Then, for an information sequence
of length kM, the trellis diagram contains M +m+1 time units (or nodes) and
28 distinct paths through the trellis corresponding to the 25 codewords
of length n(M + m). Since convolutional codes are group codes, for purposes
of analysis we can assume, without loss of generality, that the transmitted
message of each transmitter is the all-zeros message. The all-correct event
happens if no path ever causes an error event for all m receivers. Consider
P(m,0|K), an error occurs when any of the m Viterbi decoders selects any
of the non-all-zeros paths as it merges with the all-zeros path. So, P(m, 0]K)
is the probability that none of the non-all-zeros paths of all m trellises are
selected by the Viterbi algorithm. Let us classify the paths in the trellis into
M classes, from class 0 to class M — 1. Class ¢ consists all the paths that
first deviate from node 7. Denote the number of paths in class ¢ by V;, and
define the following events :

IS5 the joint event that in all m trellises, all paths with class number greater
than or equal to 7 do not cause error events.

A7 the joint event that in all m trellises, all paths in class ¢ do not cause
error events.

R o . . . . .
R;7: the joint event that in all m trellises, all paths in class ¢ with path
indexes greater than or equal to [ do not cause error events.

K): the joint event thal in all m trellises, all m [th paths in class ¢ do not
causc error events.

Then according to [6], the lower bound of P(m,0]I{) can be derived as fol-
lows:

Pn0|K) = P(K%) = P(K" K] PUKE)
> P(K")P(Kg) > - > [] P(KT) (59)

and

v

PREP(R:)y = 2 T PR (60)



If in each class we include paths of all lengths originating from the node,
then all M classes are the same and (60) becomes

P(Kg) 2

o 1]

P(K{)) (61)

1

Consequently,

0 M
(m,0|K) > H (Ks, ] (62)

Let P(l) denote the probability that in all m trellises, any of the m paths
with index [ causes an error event, then by (62),

=1

y - M
P(m,0|K) > [HP(KOI] [H ]
(=1
> (Lip ) 2(1-P) (63)

The sum P, on the right-hand side of (63) is a vector version of the union
bound of first-event error probability discussed by Viterbi in [8]. The evalu-
ation of P, is based on the generating function T'(D) [8]. Suppose

o0

T(D)= Y ayD? (64)

d:dfree

Let P; denote the probability that in all m trellises, one or more distance d
paths cause error events, then

P, = Z aq Py (65)
d:dfree

The evaluation of P, is not easy because of the dependence among m users.
Let us define the random variables 2,;;(0 <: <m —1,1 <3y < d), which are
the bits of interest for some distance d path in all m trellises, so that

a2, = 1, if the jth interested bit of trellis 7 is correct with probability (1 — p).

z,; = 0, if the jth interested bit of trellis ¢ is incorrect with probability p.

17



where p is given in (55).
Define random variables z;(0 < ¢ < m — 1) so that

d
I; = Z T (66)
7j=1
Then in terms of z;5, P, =1 — P, is
P(zg >—x1>d%,--',xm_12d—*2'l), d odd
Pi={ WPlso=d0y= 4 s =) (67

+P(:c0> +1:c1_2+1 :Bm_12%+1), d even

Since the input stream to the decoder is assumed to be independent from bit
to bit, z;; is independent of z;; when j # j'. Consequently, z; is the sum
of d ii.d. random variables and has mean d(1 — p) and variance dp(1 — p).
In order to determine how much z; and z;; are dependent, we derive the
covariance, b, of them

b = E[(zi—d(1—p))(zy —d(1 - p))]

)

j=1

d
= D (Blegens] = (1= p)") = d [Pleyy = 1,205 = 1) — (1 - p)*] (63)

j=1
The term P(x;; = 1,zy; = 1) is in fact P(2,0/K) at the bit level we have
derived in section 2, and (1 — p)* is the IROA approximation of P(z;; =
1,zy; = 1) in section 4. According to our numerical results, P(z;; = 1,2, =
1) — (1 — p)® is negligible for general system parameters. Moreover, since
the distance d of interest can not be very large, b is also negligible. Conse-
quently, Py can be derived with enough accuracy based on the independence

assumption. Assume that z;; and y; are independent, P; becomes

B 1-Fi= - R0 o
where
P(d) = Thegrnya (i )d(i =), o if d = odd
%(dj?)(l - /)) / pd/2 + Zk:d/2+1 (k>(]‘ — ,0) pd—k ifd= 61}67;’_'0)
{
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By applying (69) to (65), then to (63), the lower bound of P(l,0|K) is ob-

tained.

5.2 THE JFEEA APPROXIMATION

Given P([,0/K)(1 < I < m), the probabilities P({,m — I|K)(0 < [ <
m — 1) are derived in the following way : Define the random variable V =
Vi+Vo+-- -4V, where the Vs are binary random variables which take value
1, if the ith receiver decodes correctly, and 0, if the ith receiver’s decoder
fails. Then the nth moment of V is

m

Yn = ZlnP(l,m — | K) (71)
=1
= E[(Vi+Va+t- -+ V) (72)
1 1
= > oD (vt vet )" Por,va, V) (73)
v =0 V=0
By substituting p, for n = 1,2,---,m — 1 into (71), m — 1 linear equations
can be obtained to solve P(I,m — [|K'), for I =1,2,---,m — 1, i.e.
[ 11 2 .. omt P(1,m )
l 12 22 m? P(2,m - 2|K
S I L e
fom—1 1m-l gm=1 o el P{m,0|K)
Then, the probability P(0,m|A") is obtained by
PO,m|K)=1-> P(l,m-I|K) (75)
=1
The nth moment of V can be obtained by expanding (73)
Z Z nl’ng Ty u;() :L;O
vy 11’2 v P01, vg, 0 Um) (76)
where
{711+712+"'+nm:n (TT\
0<n; <n /
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Consider the expansion of (76), if n; = 0, v;,* is always 1 and the sum over v,
is eliminated; moreover, for a nonzero n;, v; has to be one to avoid the whole
term becoming zero. Consequently, The sum in (76) can be divided into n
groups, Group 1 to Group n; in Group j, only j of the n;s are nonzero; i.e.

fhn, :ZA/[an(’Ulz’Ug: = =1) (78)
=1
where M,,; is the number of terms in Group j.
Because of the symmetry of all m receivers, M,,; equals (TJ") Ny, where N,

is the number of terms in the expansion of (v +vp+ -+ vj)" that contain
all j variables. N,; can be computed iteratively

Ny=ir= S (j)N (79)

i=1
where N,; = 1.
Finally, the nth moment of V' becomes

n

m o

o= 32 (7 )01 50)
=1 \J

After obtaining p1, g2, -+, im—1, we can derive the packet probabilities by

applying (74).

5.3 PACKET PROBABILITIES FOR UNCODED SYSTEMS

For the purpose of comparison, we also cite the packet probabilities for
uncoded systems. Both exact expressions and approximation can be ob-
tained. Since the system is assumed to be synchronous, and the covariance
between two bits is negligible, P(I,0/K) can be very well approximated by

P(1,0]K) = (1 — p)'™ (81)

where M 1s the packet length. The packet probabilities are derived by Ap-
plying P(l,0|A')(1 <! < m) to the moments method.

If we use the packet probabilities at the bit level derived in section 2,
exact packet probabilities can be derived by changing (81) to

P(1,0|K) = [Pyi(1, 0| )M (82)
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6. APPROXIMATIONS BASED ON IROA

If we assume that the packet errors are independent among users, and
apply the upper bound of single-receiver packet error probability P(FE) in
[6], the approximation of multireceiver packet probabilities are

m

Pia(l,m - |K) = (l

)(1 ~ P(E))'P(E)™ (83)

where

1—P(E) =1 - P.(p)]" (84)
In (84), P.(p) is the union bound discussed by Viterbi [g],

Pip)= 3 asPulp) (85)
d=dfree
where
Py - Theo " ()t = if d = odd
%(d?z)pdﬂ(l - P)d/z + Z}'ffo“l <Z)Pk(1 — p)d_k if d = even

(86)
ag is determined by the generating function (64), and p is obtained by (55).



7. NUMERICAL RESULTS

In this section we present extensive comparisons between the exact ex-
pressions (whenever available) and the approximations.

The first group of results (Tables 1 to 5) is concerned with synchronous
uncoded DS/SSMA systems. Multireception probabilities at the bit level are
compared since for those the exact expressions have been obtained. Packet
probabilities of systems with geographically dispersed receivers are shown
in Tables 1 to 4. Then Table 5 shows results for systems with co-located
receivers. The exact results for P(l,m — | K') are compared to those obtained
via the multivariate Gaussian and the IROA approximations.

In Tables 1 and 3 E,/Ny varies while all other parameters (i, m, N) are
held constant. Tables 2 and 4 illustrate the comparisons when (m, i) vary,
for fixed values of N and E,/Ny. From the results it becomes clear that
the IROA approximation is superior to the Gaussian approximation. This
is because the covariance of the interference present at two receivers (during
the same bit interval, is 1/N, usually a small number. According to our
results, even when N = 31 the IROA approximation is very accurate, and
the covariance is negligible. Consequently, the IROA approximation, which
requires the least computational effort, is a sufficiently accurate approxima-
tion for any range of parameters. Our results also show that the accuracy
of the multivariate Gaussian approximation improves as /V and K become
larger.

In Table 5 we present the comparisons for systems with co-located re-
ceivers. The Gaussian approximation is better than the IROA approximation
when Ej, /Ny is small. However, as F,/Np increases, the IROA approximation
yields more accurate results than the Gaussian approximation. Consider the
covariance &', which is the sum of % and —2%9; If Fy/No is small such that

%9; >> —]%,-, then 21—7502 dominates, the receivers are highly correlated and the
IROA is not appropriate. In the opposite case where b is dominant, IROA is
the better approximation.

From Tables 1 to 5, we also notice that, the larger [ is, the smaller the
relative error of the P(l,m — [JK) is. Since we are usually interested in
the multireception packet probabilities for large [, the approximations (in
particular the IROA) are appropriate.

The second group of results (Tables 6 to 8) is concerned with synchronous
coded DS/SSMA systems; convolutional codes with Viterbi decoding and

o
o



hard-decisions are employed by the DS/SSMA system.

In Tables 6 and 7 we present the JFEEA of the multireception packet
probabilities for coded systems in which rate 1/2 convolutional codes are
used. The relative errors in these tables are computed by

IROA - JFEEA|
(JFEEA ¥ IROA)/2

100

Error =

The results obtained by JFEEA and those computed based on the IROA are
almost identical. Since the two approximation techniques were derived fol-
lowing completely different methodologies and independent assumptions, we
interpret the observed closeness to each other as a sign of common accuracy.
Of course true verification/validation can only be achieved via comparisons
with the exact expressions, unfortunately these are completely out of reach
for the coded systems. In this context we feel sufficiently confident to claim
that the IROA has satisfactory accuracy for approximating the multirecep-
tion probabilities of the coded DS/SSMA systems as well.

In Table 8§ we compare the packet probabilities of coded and uncoded
systems. It is evident that the performance level of the uncoded system
is not acceptable and convolutional coding is absolutely necessary. For the
uncoded system, we compared the exact result and that obtained from the
IROA. It shows that the difference between them are negligible. Therefore,
the errors caused by the correlation between users in the coded system are
also negligible.



8. CONCLUSIONS AND DISCUSSION

For DS/SSMA systems we derived the exact expressions for the multire-
ception probabilities P(I,m — [|K') at the bit level (given that packet length
equals one); this is the only case that these expressions can be computed
and provides a basis for comparisons of all approximations considered. The
effects of AWGN were taken into account. For systems with geographically
dispersed receivers, we conclude that the IROA approximation is sufficiently
accurate. For systems with co-located receivers, the multivariate Gaussian
approximation gives better results when E,/Ny is small. But as the Ey/Ng
increases, the IROA approximation becomes superior. We also observed that
the closer [ is to m, the smaller the relative error is. So in most cases we
have interest, the approximations are close enough to the exact values. For
the convolutional coded systems with Viterbi decoding, the packet proba-
bilities obtained by JFEEA and that computed from IROA are very close.
We conclude that the IROA approximation is sufficiently accurate for coded
systems as well.

The results of this report find applications in all our current work on
CDMA networks. They are used for comparison of the performance of ad-
mission policies for voice and data traffic in CDMA networks when threshold
and graceful degradation models are used. (refer to [10]). Also in our work
on networks of LEO satellites using CDMA (refer to [11]-[12]) p(m|k) plays
an important role. The same is true for the derivation of dynamic CDMA
code allocation schemes in [13]. Finally, in [14] we extend some of the work in
this report to CDMA systems with multi-rate traffic (this finds applications
in PCS communications and wireless video).

Moreover, the work in this report opens the way for using the graceful
degradation model, which results in more realistic assessment of the CDMA
multiple-access capability, in CDMA networks. The work of other researchers
in the CDMA area will also benefit.

Finally, the effects of channel fading, signal shadowing, and power control
must be incorporated into our analysis to enable the use of our findings to
real-life CDMA networks. This can be done at the expense of a moderately
large analytical and computational effort. Actually, we expect that the IROA
will be valid within some range of CDMA system (network) and channel
(fading, shadowing) parameters but it may be difficult to determine this
range without further work.



APPENDIX A

Figures 2 and 3 are two examples for the derivation of equations (4) to
(14), given K is odd and even, respectively. We list all possible K-dimensional
vectors that X can take, where the value of Xy is assumed to be always —1
since the symmetry of the problem; hence the probability that X takes any
of these vectors is 2!=%. The corresponding interference vector I are given
and rearranged below X in the two figures. We found that they can be
categorized into three groups, denoted by Group 1, Group 2, and Group
3. Group 1 consists a single vector I° = Vp; (9), (10) and the term 1”7 in

(4) correspond to this vector. Group 2, which exists only when K is even,

contains —(II>2) identical vectors with all components —1; (13), (14) and the

term "E(K)” in (4) correspond to this vector.

All the remaining vectors are Jelong) to Group 3. These interference
vectors are again categorized into Za(l‘ > ies, subgroups (see (6)-(8)). In
subgroup ij, each vector is a permutation of V;; (see(11)), where ¢ determines
the values of Fi and Fj;, and j determines the number of Ejos in Vj;. Con-
sider the vector I* = (lo, [y, -, Ix_1) in subgroup 7j (for all 7); it consists ¢
entries taking value E;p and K — ¢ entries taking value F;. If K — 1 > m,
vector I = (Io, [y, -+, I,,_1) can have all its entries being E;;. If K —1 < m,
at least m — (/{ — 1) entries of I have to be E;. This explains (7). Since the
number of available F;ps in I* is ¢ and the dimension of I is m, we can not
have any vector with more than mun(z,m) entries being E;o. This explains
(8). The probability that a vector in subgroup #j happens is determined by
the number of permutations of the set with ¢ —j Figs and K —m —~1+7 E;s
and is given in (12).



APPENDIX B

For a synchronous system, the independence of z¥s for fixed ¢, j is clear;
they are i.i.d. distributed and each of them takes values +1 or —1 with equal
probability.

For the asynchronous case (Figure 4), let 7;; be the time delay between
user 1 and user j, and ¢;; be the phase difference between user : and user
J. Ti; is assumed to be uniformly distributed over [0,7,). ¢;; is in general a
function of the phase of the interfering transmission and the delay, but it has
been shown that ¢;; mod 27 is statistically independent of 7;; and assumed
to be uniformly distributed over [0, 27).

Define r;; = %, then r;; is uniformly distributed over [0,1) and the distribu-
tion of z7; is

Pr(z}i=1)=1
PT(;L‘% =-1)= %
P7(’L‘Z =1 - 2rij) = %
P?‘(Cli?j = 97‘1’]‘ —_ 1) = %

The derivation of the above equation is explained in Figure 4, in which ¢ (0 <
[ < K—1,1 <n < N)denotes the chip value of user [ in the nth chip interval.
Since 7;; and ¢;; are fixed during the bit interval, z7;s are independent. In
Figure 4 note that

and
P(a} = xg) = $P(a? = wolc? = 1) + 3P (2} = o} = —1)
P(a¥ = z1) = §P(z}; = m1]c] = 1) + §P(af; = w1} = —1)
S0
Pz} = z0) = P(a}; = wo|c} = 1) = P(a}; = zolc} = —1)
P(a}; = 21) = P(a}; = 21|} = 1) = P(a}; = w1lc} = 1)
and
P(z}; = zo,z}; = 21)
1 1
= sp(r?j = 10,x?j =aylc; = 1) + EP(E?J' = a:o,lf’j = z1|c? = =1)



= -P(g;?.

i .T()'C? = l)P(:L‘?J = $1IC? = 1) +
P(a? = zolc? = —1)P(z%, = 1]} = —1)
= P(af; = 20)P(z}; = 71)

This proves the independence of z7:s for fixed 1, 7.



APPENDIX C

The method developed in Section 3 for approximating the probability
P(l;m — l|K) requires only knowledge of the three quantities g, a and b.
These quantities are the mean of the total interference a user suffers from
all the other ' — 1 users in a bit duration and the diagonal and off-diagonal
terms of the covariance matrix ¥ [see (34) - (37) ]. Here we evaluate these
quantities for both synchronous and asynchronous systems.

For a synchronous system, xz”](l <n<NOL:1 <K-10<3 <
m —1,¢ # ) (the interference term that user ¢ has over user 7 during the nth
chip of the bit) takes values +1 or —1 with equal probability. The normalized
interference that user j suffers from all the other ' —1 users in a bit duration,
z;, 1s given in (31). And p becomes

| K=1 N
#:E(‘rf):NZZE[sz’LJ’]:O (87)
i=0 n=l
]
Since z;; = YN, et and @y = YN | 2%, are independent as long as (1 #

IVj#Fk)and (¢ # kVj # 1), and for fixed 2,7, z7;s are independent, the

variance « 1s

2

1 K-1 N 1 k-1 N 2
a = —F 7 = — E zrs
i#7 i#j
] Kt N ] K -1
_ 1 E[ a ]: 88
RIS () n (88)
i#]
and the covariance b is
1 i K-1 N K-1 N
\z= ) g

1

r/ N N 1 N
- e |5 ) (B - wnr bl ox o

For the asynchronous case, the normalized interference that user j suffers
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from all the other K — 1 users in a single bit duration is
1 K-1
=5 Z (Z :vZ) cosd; ; (90)

where ¢;; is the phase difference between user ¢ and user j and is defined in
Appendix B. In Appendix B, we also proved that z}.s are independent for
fixed ¢, 7. So the mean value of T, is

1 K-1 1 K-1 N
Qo= Z (Z @] ) cos¢ij| = — Z > E(x xl)E(cosgi;) =0 (91)
=0 n=1 =0 n=1
1#7 £

Note that for fixed j, 7 # ¢/, and any n, n’, the random variables z7; and xz,J

are independent; and for ﬁ\ed 1,7 and n 7é n', the random variables z7; and

!
n
T

». are independent. The variance a is

2

1 K-1 N 1 K-1 N 2
a = NZE Z Z ;5008 = Z E (Z x%cos@]—)
1=0 n=1 n=1
i£7 Z#]
1 KN-1 N

= 3 2 L B[(#) ] B leoen) = T )

=0 n=1

i#J

and covariance b is

1 K-1 N K-1 N

b = mE Z Z x?jcosd).,-]- Z Z x?j,cos@j,

=0 n=1 i=0 n=1

L\ g i#5!
I N N
= ]_VEE (cosquIJ- > 17?/j) (cos¢jj/ > a:;‘J,ﬂ
=1

1 1
= 2 Ecos¢jiicosd;y) ZE[ i “] = 3% (93)




APPENDIX D
In (41), ¥ takes the form

fa & b - b7
b a o a—>b 0 b .-+ b
S={p 0 ¢ i| = Ao
Do } 0 a—2>b b - b
. . . mxXm mxXm
b b - b a
- mxm

and, consequently,
S =A+w’

where w7 = Vb[11...1] and A = (¢ — b)I. Moreover,

1xm

E_l _ A-—l . (A—lﬁ)(gTA—l) - 1 J — y’.ﬂT
- 1+ulA-w  a—b (a—b)a+(m—1)b)

so that, if we define

-1 I b
“=20 )“(a—b)(aﬁ-(m—l)b)
then - -
b - b
Sh=al—-|: - 24l -B
I -
mXm

Consider the exponent of the integrand in (41). After a shift of variables to
account for the mean, it can be simplified to

| 1 — b 5~ 2
B il i — R — T (i — 1\h '
9 - 2(a — b) JZ:B R (m —1)b JZ=:0 k

One way to diagonalize ©~! is to find its eigenvalues and the corresponding
eigenvectors and then create a transformation matrix with the eigenvectors
as its columns. The eigenvalues of £~ are given by the equation

det(\ — £71) = 0
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But AI — £7! = (A —@)I + B, where B is of rank 1, and

det(M =71 = (A =a)" "det(I +

— (A _ .d)m,—-l [1
Hence
and
A, =T
where |
A, =
a—b

Finally, notice that

/\b =

1

A —E)F)

—~~

1

a+(m—1)b

det(2) = (a —b)" a + (m — 1)b]
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Figure 1: A multiple access system using direct-sequence spread spectrum

and convolutional code with hard-decision Viterbi decoding
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Figure 2: An example of deriving P({,m — {|K) in a perfectly synchronous

system with K odd; K = 5. m = 3.
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Figure 3: An example of deriving P({,m — [|K) in a perfectly synchronous

system with K even; K =4. n. = 2.
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Figure 4: The interference in an asynchronous DS/SS system
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Table 1

Packet probabilities of uncoded systems computed using exact,
Gaussian and IROA models with packet length =1,
N =31, (m,K) =(2,6), and E,/Ny = 10,12,14,16

(a) Eb/N() = 10

P(l,m — I|K) Exact Gaussian IROA
’ Value Approx. | Error (%) Approx. | Error (%)
P(0,2]6) 0.00019027 | 0.00052210 | 1.7E+02 | 0.00021761 14.
P(1,1]6) 0.029123 0.028548 -2.0 0.029068 -0.19
P(2,0[6) 0.97069 0.97093 0.025 0.97071 0.0028
(b) Ey/No = 12
Exact Gaussian IROCA
5 N

P,m = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]6) 9.4084E-05 | 0.00035613 | 2.8E402 | 0.00012838 36.
P(1,16) 0.022473 0.022061 -1.8 0.022404 -0.31
P(2,0/6) 0.97743 0.97758 0.015 0.97747 0.0035

(c) Ey/No = 14
Exact Gaussian [ROA
> _

Pl,m = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]6) 5.3540E-05 | 0.00027113 | 4.1E402 | 8.7273E-05 63.
P(1,1]6) 0.018577 0.018270 -1.7 0.018509 -0.36
P(2,0]6) 0.98137 0.98146 0.0091 0.98140 0.0034

(d) Ey/Ny = 16
Exact Gaussian IROA
> —

P(l,m = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]6) 3.5013E-05 | 0.00022492 | 5.4E402 | 6.6674E-05 90.
P(1,1]6) 0.016261 0.016019 -1.5 0.016198 -0.39
P(2,0[6) 0.98370 | 0.93376 |  0.0053 |  0.08374 |  0.0032




Table 2

Packet probabilities of uncoded systems computed using exact,
Gaussian and IROA models with packet length = 1,
N =31, Ey/Ng = 10, and different (m, K)s

(a) (m, K)=(2,3)
Exact Gaussian IROA
P —|K
(ym = U]) Value Approx. | Error (%) Approx. | Error (%)
P(0,2|3) 8.0756E-06 | 2.6503E-05 | 2.3E402 | 2.3296E-06 -T1.
P(1,1]3) 0.0030365 | 0.0030731 1.2 | 0.0030480 0.38
P(2,0[3) 0.99696 0.99690 -0.0055 0.99695 | -0.00057
(b) (m, K) = (2,4)
N _ Exact Gaussian IROA
P, m— 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2[4) 2.6958E-05 | 9.9920E-05 | 2.7E+02 | 2.0006E-05 -26.
P(1,1|4) 0.0088917 { 0.0038489 -0.48 | 0.0089055 0.16
P(2,0/4) 0.99108 0.99105 -0.0031 0.99107 | -0.00070
(c) (m,K) =(2,5)
Exact Gaussian IROA
P — K i
(f,m = IK) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]5) 7.8821E-05 | 0.00025694 | 2.3E402 | 8.1036E-05 2.8
P(1,1]5) 0.017846 0.017595 -1.4 0.017842 -0.025
P(2,0]5) 0.98207 0.98215 0.0075 0.98208 0.00023
(d) (m, K) = (3,4)
Exact Gaussian IROA
, N
Pt,m = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,3}4) 2.3677E-07 | 5.5100E-06 | 2.2E+03 | 8.9431E-08 -62.
P(1,2]4) 8.0165E-05 | 0.00028323 | 2.5E+02 | 5.9749E-05 -25.
P(2,1]4) 0.013257 0.012990 -2.0 0.013299 0.31
P(3,0/4) 0.98666 0.98672 0.0060 0.98664 -0.0021
(e) (m, K) = (3,5)
Exact Gaussian IROA
) o
P{,m —[|K) Value Errvor (%) Error (%)

P(0,35) | S.370SE-07 | 1.5100E-05 | 1.7E+03 | 7.2940E-07 13.
P(1,25) | 0.00023395 | 0.00072551 | 2.1L-+02 | 0.00021092 3.0
P(2,15) 0.026536 | 0.025667 337 0.026522 70.051
P(3,0[5) 0.97323 0.97359 0.037 0.97324 | 0.00070




Table 3

Packet probabilities of uncoded systems computed using exact,
Gaussian and IROA models with packet length = 1,
N =63, (m,K) =(2,12), and Ey/Ny = 10,12,14,16

(a) Ey/No =10
Exact Gaussian IROA
) — e
P(t,m = IK) Value Approx. | Error (%) Approx. | Error (%)
P(0,2{12) 0.00027542 | 0.00045670 66. | 0.00030337 10.
P(1,1]12) 0.034284 | 0.033941 0] 0034228 0.16
P(2,0]12) 0.96544 0.96560 0.017 0.96547 0.0029
(b) Ey/No = 12
Exact Gaussian IROA
> T
P{,m = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2|12) 0.00016172 | 0.00030609 89. | 0.00019055 18.
P(1,1]12) 0.027285 0.027021 -0.97 0.027227 -0.21
P(2,0]12) 0.97255 0.97267 0.012 0.97258 0.0030
(c) Ey/Nog = 14
Exact Gaussian [ROA
P - l|K
(hm = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2|12) 0.00010884 | 0.00022990 1.1E402 | 0.00013615 25.
P(1,1)12) 0.023119 | 0.022005 20.92 | 0.023064 0.24
P(2,0]12) 0.97677 0.97686 0.0095 0.97680 0.0028
Exact Gaussian IROA
N g
Pll,m — 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2{12) 8.2269E-05 | 0.00018890 1.3E+02 | 0.00010790 31.
P(1,1]12) 0.020610 0.020428 -0.88 0.020559 -0.25
P(2,0]12) 0.97931 0.97938 0.0077 0.97933 0.0026




Table 4

Packet probabilities of uncoded systems computed using exact,
Gaussian and IROA models with packet length = 1,

N =63, Ey/Ng = 12, and different (m, K)s
(2) (m, ) = (2,8)

P(l,m — [|K) Exact Gaussian IROA
’ Value Approx. | Error (%) Approx. | Error (%)
P(0,2]8) 1.3411E-05 | 3.9956E-05 | 2.0E402 | 1.6312E-05 22.
P(1,1]8) 0.0080508 | 0.0080270 -0.30 | 0.0080450 -0.072
P(2,0[8) 0.99194 0.99193 -0.00028 0.99194 0.00029
(b) (m, K) =(2,9)
Exact Gaussian IROA
, 0w
Pl,m— 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]9) 2.9506E-05 | 7.5774E-05 | 1.6E+02 | 3.5941E-05 22.
P(1,11]9) 0.011931 0.011869 -0.52 0.011918 -0.11
P(2,0/9) 0.98804 0.93806 0.0016 0.98805 0.00065
(©) (m, K) = (2,10)
Exact Gaussian IROA
P(l,m—-1|K :
(,m = IK) Value Approx. | Error (%) Approx. | Error (%)
P(0,2|10) 5.7113E-05 | 0.00012983 1.3K402 | 6.8992E-05 21.
P(1,1]10) 0.016498 0.016382 -0.70 0.016474 -0.14
P(2,0]10) 0.98344 0.93349 0.0044 0.98346 0.0012
(d) (m,K) = (2,11)
Exact Gaussian IROA
P(l,m-1l|K -
(L = 1) Value Approx. | Error (%) Approx. | Error (%)
P(0,2[11) | 0.00010000 | 0.00020564 | 1.1E-+02 | 0.00011936 9.
P(1,1[11) 0.021650 | 0.021467 085 | 0.021612 0.18
P(2,0/11) 0.97825 0.97833 0.0030 0.97827 0.0020
(e) (m, K) = (3,4)
Exact Gaussian IROA
) e
Pl,m 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,3]4) 5.0049E-11 | 3.9929E-09 | T7.9E+03 | 6.4060E-12 -87.
P(1,2|4) 2.0532E-07 | 1.24755-06 | 5.1E402 | 1.0346E-07 -50.
P(2,1]4) | 0.00055677 | 0.00056650 17 | 0.00055696 0.034
P(3,0|4) 0.99944 0.99943 -0.0011 0.99944 -9.0E-06




Table 5

Packet probabilities of systems withed co-located receivers

computed using exact, Gaussian and IROA models

with N = 63, different E,/Ngs and (m, K')s

(a) Packet probabilities for (m, ') = (2,3) and £E,/Ny = 10,14

Eb/]Vo - ].0
Exact Gaussian IROA
P(l,m-1|K
(l,m — 1) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]3) 3.9966E-05 | 5.1719E-05 29. 1 5.3793E-08 | -1.0E+402
P(1,1]3) 0.00038395 | 0.00036608 -4.7 1 0.00046376 21.
P(2,0]3) 0.99958 0.99958 0.00061 0.99954 -0.0040
Eb/,/\’,() - 14
Exact Gaussian IROA
) l ___ g
P{,m—1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]3) 8.3406E-08 | 2.7247E-07 | 2.3E+02 | 2.4740E-11 | -1.0E+02
P(1,1]3) 9.7818E-06 | 1.0277E-05 5.1 1 9.9478E-06 1.7
P(2,0]3) 0.99999 0.99999 | -6.8E-05 0.99999 | -8.3E-06
(b) Packet probabilities for (m, K') = (2,12) and [,/Ng = 10,14
Eb/l\fo =10
, , Exact (Gaussian IROA
Pl,m = 1K) Value |  Approx. | Error (%) Approx. | Error (%)
P(0,2]12) 0.00096942 | 0.0013022 34. 1 0.00030337 -69.
P(1,1}12) 0.032896 | 0.032250 -2.0 0.034228 4.0
P(2,0]12) 0.96613 | 0.06645 0.032 | 0.96547 | -0.069
Eb/./\ro =14
Exact Gaussian IROA
) o
Pl,m = 1K) Value Approx. | Error (%) Approx. | Error (%)
P(0,2]12) 0.00023073 | 0.00040640 76. | 0.00013615 -41.
P(1,1]12) 0.022875 0.022552 -1.4 0.023064 0.83
P(2,0]12) 0.97689 0.97704 0.015 0.97630 -0.0097




Table 6
Packet probabilities of coded systems computed using
JFEEA and IROA models with (m, K) = (3,8), N = 63,
M = 1000, Ey/Ny = 10 and different constraint lengths

(a) Constraint Length = 6

P(l,m — [|K) JFEEA IROA | Error(%)
P(0,3]8) 2.2315E-14 | 2.2329E-14 0.060
P(1,28) | 2.3764E-00 | 2.375SE-00 0.10
P(2,118) | 8.4473E-05 | 8.44735-05 | 5.6E-06
P(3,008) 0.99992 | 0.99992 | 2.4E-10

(b) Constraint Length = 7

P(l,m—I[|K) JFEEA IROA | Error(%)
P(0,3[8) | 2.7756E-15 | 2.78631-15 0.39
P(1,2]8) 5.9342E-10 | 5.9402E-10 0.10
P(2,118) | 4.2213605 | 1.22136-05 | 2.3E-06
P(3,08) 0.99996 0.99996 | 5.9E-11

(c) Constraint Length = 8

P(l,m - 1K) JFEEA IROA | Error(%)
P(0,3]8) 7.1054E-15 | 6.9234E-15 2.6
P(1,2]8) 1.0887E-09 | 1.0893E-09 0.10
P(2,1]8) 5.7176L-05 | 5.7176E-05 | 3.8E-06
P(3,0[8) 0.99994 0.99994 | 1.1E-10

(d) Constraint Length = 9

P(l,m—|K) JFEEA IROA | Error(%)
P(0,3[3) | 5.9952E-15 | 6.1764E-15 3.0
P(1,28) 1.0089L-09 | 1.0099L-09 0.10
P(2,1|S) | 5.5041E-05 | 5.5011E.05 | 3.76-06
P(3,008) 099991 | 099994 | LOE-10




Table 7
Packet probabilities of coded systems computed using
JFEEA and IROA models with & =12, N =63, E,/Ny = 10,
M = 1000, constraint length = 6 and different ms

(a) m =3
P(l,m - [|K) JFEEA IROA | Error(%)
P(0,3]12) | 2.1906E-08 | 2.1968L-08 0.28
P(1,2[12) | 2.3444E-05 | 2.3466E-05 0.094
P(2,1]12) 0.0083551 | 0.0083551 0.00053
P(3,0[12) 0.99162 | 0.99162 | 2.2E-06
(bym=4
P(l,m — [|K) JFEEA [ROA | Error(%)
P(0,4]12) | 6.1289E-11 | 6.1527E-11 0.39
P(1,3|12) | 8.7380E-08 | 8.7628E-08 0.28
P(2,2]12) | 4.67575-05 | 4.6300E-05 0.094
P(3,112) 0011109 | 0.011100 | 0.00079
P(4,0]12) 0.98884 0.98384 | 4.5E-06
(c)m=25
P(lym - 1|K) JFEEA IROA | Error(%)
P(0,5]12) - - -
P(1,4]12) | 3.0339E-10 | 3.0677E-10 1.1
P(2,3[12) | 2.1784E-07 | 2.1816E-07 0.28
P(3,2]12) | 7.7710E-05 | 7.77S2E-05 0.093
P(4,1]12) 0.013347 | 0.013847 | 0.0011
P(5,0]12) 0.98607 | 0.93607 | 7.5E-06
(d)m =6
P(l,m —|K) JFEEA IROA | Error(%)
P(0,6]12) - i -
P(1,5[12) i : i
P(2,4]12) | 9.1920E-10 | 9.1775E-10 0.16
P(3,3]12) 4.3446E-07 | 4.3569E-07 0.28
P(4,2|12) 0.00011624 | 0.00011635 0.093
P(5,1]12) 0.016570 0.016570 0.0013
P(6,0]12) 0.98331 0.98331 | 1.1E-05




Table 8
Packet probabilities of coded and uncoded systems computed
using JFEEA and IROA models with N = 31, E,/Ny = 10,
M = 1000, constraint length = 6 and different (K, m)s

(a) (K,m) = (4,2)

P{,m — 1K)

CODED(IROA)

UNCODED(EXACT)

UNCODED(IROA)

P(0,2[4) | 3.720769446E-13 0.9775254110 0.9775245442
P(1,1]4) | 1.219961460E-06 0.02234593619 0.02234772989
P(2,0[4) 0.9999987800 0.0001236228078 | 0.0001277259569

(b) (K,m) = (4,3)

P(l,m — 1K)

CODED(IROA)

UNCODED(EXACT)

UNCODED(IROA)

P(0,34) 2.269599047E-19 0.9664796216 0.9664769617
P(1,2]4) 1.116230153E-12 0.03313745812 0.03314274748
P(2,1]4) 1.829941073E-06 0.0003814461631 0.0003788473512
P(3,0[4) 0.9999981701 1.474086790L-06 1.4435065131-06

(c) (K,m) =(5,2)

P(l,m— 1K)

CODED(IROA)

UNCODED(EXACT)

UNCODED(IROA)

P(0,2]5) 6.823868745E-09 0.9997635304 0.9997635304
P(1,1]5) 0.0001651997748 0.0002364556484 0.0002364555849
P(2,0/5) 0.9998347934 1.394938883E-08 1.398111702E-08

(d) (K,m)=(53)

CODED(IROA)

UNCODED(EXACT)

UNCODED(IROA)

5.636973550E-13

0.9996453165

0.9996453166

2.0469915142-08

0.0003546416293

0.0003546414390

0.0002477791922

4.184324145E-08

4.193839160E-08

0.9997522003

1.641679GSSE-12

1.653152073E-12




