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ABSTRACT

This paper describes application of global monotonicity analysis within a
multi-level design optimization framework. ‘We'preseot a general formulation and
solution procedure, based on a bottom-level global monotonicity analysis, for &
design optimizafioo problem which is oecomposed into three 1evels'of |
'-sobprobTems.,'A»we11~khown gear reducer example illustrates application of the

method.
1. introduction

One possible means of solution to a large and/or complex design optimization
problem is a hierarchical decomposition of the problem into a number of smaller
subproblems each with 1ts'own objectioe and oonstraints. In this type of
decomposition, interconnection between subproblemo 15 usually multi-level,
Figure 1, where a given-level subproblem -coordinates a lower-level subprobiem(s)
and in turn is coordinated by a higher-level subproblem. One of the main

advantages of the muiti-level design optimization methods is that they fit well



into the multi-disciplinary framework of design process where a.number of engi-
neering disciplines interact in order to obtain an integrated optimum design
(Mesarovic et al. 1970; Sobieski and'Haftka, 1987). " Furthermore, these methods
allow .parallel processing, which is typical of a modern computing enviroﬁment,
and use of>different specialized 6pt1mization techniques on various portions of
‘the problem.

A multi-level design optimization procedure usually consists of two steps.
First, the integrated or undecomposed broblem (objective and constraint
functions, also called the design optimjzation model) is partitioned into a
hierarchy of two- or multi-level subproblems. To be successful in the first
.steb, the integrated problem should be formulated in such'a way that it will be
fully'or at least partially decompdsable. While there is no systematic proce-
dure available for the first step, one possible alternative is the one according
to the physical make-up of the.problem. For example, design optimization model
of an aircraft might'be decomposable into its main component;, némeiy, Wing,
fuséiage, landing geér, eﬁgine, efc. Sécond,Astarting with fhe lowésf-1evei,
~the subproblems are solved independently. The solutions to.the subproblems at
a giveﬁ level are then coordinated by the upper-level problems, i.e., |
subproblems are forced to select solutions corresponding to an overall optimum.
In general, the lower- and the upper-level subprop]ems are solved iteratively.
Each of the 1owér-1éve] sprrob]ems mighf be a constrained design aptimization
problem and should be solved several times before the solutions to the upper-
level problems are obtained. The success and effectiveness of the second step
often depends on how simple and independent are the solutions to the lower-

level subproblems.



There exists a variety of decomposition-based approaches for solving a giVen
design optimization problem. In general, these techniques fall into two
different methods, namefy, the gpal coordination and the model coordination
methods (Wismer, 1971; Kirsch, 1981). 'The model coordination method, in
barticular, is more attféctive for engineering design optimization, since the
jteration process may be terminated whenever it is desired with a feasible, even
though nonoptimal, so]ution._ Several engineering optimization problems have
been Solved uéing decompositioﬁ—based optimizétion methods incTuding those in
chemical (Wilde, 1965), mechanical (Siddall and Michael, 1980), structural
(Kirsch, 1981; Haftka, 1984), and aérospace'design (Sobieski et al., 1984;
Barthelemy and Riley, 1986; Wrenn et al. 1987).

In a recent paper, Azarm and Li‘(1988) proposed a two-level design
) optimization approach, an extension of the model coordination method (Kirsch,
1981). - The proposed approach applied -to a number of problems including those in
mechanical design 6ptjmization‘(Azarm and Li, 1987). The present paper is an
extension of that effort. wé présent heré a three-level formulation of a
separable design optimizatign.prob]em. A three-level sqlution brocédure'is then
suggested based on the global monotonicity analysis (Papalambros aﬁd Wilde,
1988). The formulation and solution procedure which we present in this paper
can be generalized to any number of levels. A well-known gear reducer example

is used as a demonstration‘eXampie.
2. Formulation

We consider the following nontinearly constrained design optimization

problem:



Minimize {f(z): g(z)<0 } o (1)

where 2z is an n-vector of design variables, f and g are the objective and the
vector of inequa11ty consfraints, respectively. Té simblify the problem, the
equality constrainfs‘have been e]iminated. However, in case of their presence,
they may be handled either through direct elimination or éonstrainéd defivatives
(Wilde and Beightler, 1967). |

IWe assume that the problem is decomposable into three levels, namely, the
top-level, the middie-level, and the bottom-level. The top-level is composed
of one subproblem (or prdb]em). quever, the middle- or the bottom-level may
be compoééd of several subprob]ehs. In each subproblem, the vafiables are
partitioned into two groups, namely, the 1ocalland the global variables. We
define the globéi variables to be those quantities which are taken to be fixed
in a subproblem, and the local variables to be those quantities which are taken
to be changed'1n'the sprfoblém. “Quantities whjchlére variables or fixed in
each level ére.shown in Tab]g<1; .ﬁe have set z :Q"(y;x)t, where y represents
the vector of top-level 16;a1 design varjables - fixed in the lower levels, and
x represents the vector of top-level globai'désién variables - fixed in the top-
level. Likewise, we have set x = (u,v)t, where u represents the vector of
middie-level local design variables, and v together with y represent the vector
~of middle-level global desjgn variables. Finally, in the bottom-level, v
represents the vectbr of bottom-level 1océi désign variables, and u together
with y represenf the vector of.bottom—level global design variables.

We assume that the objective function f is in the following additively

separable form:



_ I Jd
f(y,u,v) = £ (y) +1§1[fi(y,ui) +j§1fi.j(y’“1""

iq) (2)

where i, j are indices corresponding to the number of middle-level .subproblems,
number of bottom-level subproblems with respect to (w.r.t.) the middle-level

subproblem i, respectively (Figure 2).

In addition, we assume that the inequality constraints are in fhe following

form:
9,(y) =0 h=1,00., H
9 k(¥suy) <0 | P=lil
»gi,j,l(y’ui’vi,j) <0 J=1,00., 4 (3)
k = 1,: [ K
1=1,..., L

where h, k, and 1 are indices corresponding to the number of inequality
, constfaints in thé topjleve1>pfob1em; numberrof inequality constréints in the
‘midd1e—1evé1 sﬁbproﬁ]em (1); and number of inequality constraints in the bottom-
level subproblem (i,j), respectively (Figure 2).

Tﬁe formulation of the bottom-level subproblem (i,j) with y and u; as the
vectors of the bottom-level giobal design variables (fixed in the bottom-level),

and v. . as the bottom-level local design variable is:

1,]
Minimize fg, j(¥tgavy 50 = Ty 5000504 )
ViLj e '

The formulation of the middle-level subproblem (i) with y and v?,j (found from
the bottom-ievel subproblem (i,j)) as the vector of middle-level global design

variables (fixed in the middie-level) and uj as the vector of middie-level local



design variables is:

J
Coe * _ x
Minimize fMi(y’ui’vi,j) = fi(y,uy) + §1fi’j(y,u1,vi’j)
uj J=
subject to: g, ,(¥,u;) S0, k=1,.00, K ()

Finally, the formulation of the top-level problem with u? and v?,j as the
vector of top-level global design variables (found from the lower levels, fixed
in the top-level), and y as the vector of top-level local design variables is:

- J

* % % L
Minimize f(y,ui,vi,j) = fo(y) +'Z [fi(y,ui) +.2 fi,j(y’ui’vi,j)]
y i=1 j=1
Subject to: gh(y) <0, h=1,,u04, H . (6)

Figure 2 shows in three levels, the bottom-level subproblem (i,j), the

middle-tevel subproblem (i), and the tdp-level problem.
3. Solution Procedure

The iterative solution procedﬁre used for the decomposed problem is
summarized below:
Given an initial point as the current point,
2°= (y°,u°,v%)",
Begin step A, for i = 1,..., I,
begin step B, for j = 1,..., J,

(B.1)  for a given (y°,u$)t, use global monotonicity analysis to find v?,j
from the bottom-level subproblem (i,j),

(B.2) find a new u?, for a given y°, from the middle-level subproblem (i)

such that fM- is decreased,
i

(B.3) return to step (B.1) until the minimum for f

M is obtained, for a
i



given y°,

end step B,

(A.1) find a new y° from the top-level problem such that f is decreased,

(A.2) go to step A until the minimum for. f is obtained,

End step A.

The middle- and top-level subproblems are solved by a conventional
(single-level) optimization method while the bottom-level subprobiems are solved
by the g106a1 monotonic%ty aﬁélysis. To do that,”we assume‘in subprob]em (i,3)
the objective function fBi,j is increasing w.r.t. the variable v, . and the

1,]

first L' constraints (L'<L) are decreasing w.r.t. Vi,j then we can show that

(Azarm and Li, 1988):
11 <1<} _ (7)

where g; i, is obtained by rewriting constraint 9; i, (y,u,vi j) < 0 in the
L] ] - ? ’ ’

form of Vi j b g; 3 i (y,u). Likewise, when_the objective function of subproblem
(i,j) is decreasing w.r.t. Vs j'and the first L' constraints are increasing
Werote -Vi,j’ then:
- 3 . s
vi,y = min {gi,j,l :1<1 <t} (8)

The assumption that the bottom-level objective function is increasing/decreasing,

and the bottom-level constraints are decreasing/increasing, w.r.t v  Within

J

a given range is not unrealistic. In fact, many engineering design optimization

problems have one or more such design variables (Papalambros and Wilde, 1988).
Note that if the middle-level subproblems (or the top-level problem) are

solved by a derivative-based optimization method, then we may need to obtain:



*
df; /du; = Bfi/du; + (3fw;/dv, ;) (dv,

*
;/8uy) (9)

This derivative may display a discontinuous behavior as a result of eq. (7) or
(8), unless the active constraints found from the bottom-level subpkoblems are

unchanged (Lootsma and Ragsdell, 1988).
4., A Gear Reducer Example

In this section, we preséht a well-known gear Eeducef example, Figure 3,
which was first formulated by Golinski (1970) and solved by several optimization
methods including those by Datseris (1982), Azarm (1984), Li and Papalambros
(1985). Here we present the final design optimization model. The reader may
consult the cited reference for further jnformation.

In the gear reducer example, the design objective is to minimize the overall

volume (or weight). The design variables for the example are as follows:

gear face width (cm)

X1 =

X2 = teeth module (cm)

X3 = number of teefh of pinion

X4 = distance between bearings 1 (cm)
X5 = distance between bearings 2 (cm)
Xxg = diameter of shaft 1 (cm)

X7 = diameter of shaft 2 (cm)

And, the constraints are as follows:

g1 : Upper bound on the bending stress

- of the gear tooth.



g2 - Uppér bound on the contact stress
of the gear tooth.

93-94 : Upper bounds on the transverse
deflection of the shaft.

g5-96 . Upper bounds on the stresses of

the shaft.

g7-923 : Dimensional restrictions based on
| space and/or experience.
g24-925 : Design condition for the shaft based

on experience.
Finally, the nonlinear. programming statement for this example is presented:
o 2 2 | 2 2
Minimize f(x) = 0.7854x1x5(3.3333x3 + 14.9334x3 - 43.0934) - 1.508x1(xg + x7)

+ 7.477(x¢ + x3) + 0.7854(xgx§ + x5x8) - (10)
subject to: | | |

91: . 27xp Ixg72x37l < 1

192: :39f.5x1‘1x2'2xj‘2 <1
93: 1.93xp-1x3-1x3xg~4 < 1
94 1.93xp-1x371x3x774 < 1

‘gg: A1/B; < 1100

745x
4,2 0.
AL = i)’ + (16.9)10°1°°°
2%3
By = 0.1x3



g6: Az/Bp < 850

745x
Ay = [(?Xf)2 + (157.5)10870-5

3

B2 = 0.1x7

g7: X2x3 < 40

g8: 5 5 x1/x2 512 .49
d10: 2{6 < x1 < 3.6 : 911
glzf 0.7 £ x2 £0.8° : 913
g14: 17 < x3 < 28 : 915
gi6: 7.3 < x4 < 8.3 :>§17
g18: 7.3 < x5 < 8.3 P 919
g20: 2.9 < xg < 3.9 P 821
g22: 5.0 £ x7 < 5.5 | : §23'l

g24: (1.5x6 + 1.9)x4"1 < 1
gz5: (1.1x7 + 1.9)x5~1 < 1.
4.1. Three-Level Design Optimization

The gear reducer example is decomposed into two subsystems, namely, shaft

and bearings 1, and shaft and bearings 2. Each of these two subsystems may be

10



further decomposed, hence resulting in a three;level decomposed problem which is
based on the physical make-up of the gear reducer. Here, this decomposition
preserves: (1) the additively separable form of the objective function from the
top- to the bottom-level subproblems (equation (2)), (2) the separable form of
the constraints from the fop— to the bottom—fevel subpfoblems (equation'(j)),
and (3) the simplicity of the bottom-level subproblems such that the global

monotonicity analysis can be easily performed.
4.1.1. Formulation and Solution

The gear reducer is decomposed into three levels with the bottom-level

subproblems (1,1) and (2,1) as follows:

Subproblem (1,1): Find the diameter (xg) Of shaft 1
2 3 2

Min;zize fBl,l = -1.508x1x6.+ 7.477x6 + 0.7854x4x6 | (11)
Subject to: ‘

o S -1 -1.3,1/4 _

93¢ Xg 2 (1.93x, X3 "Xz) =9'y 3

95 Xg 2 (A~1/.110)1/3 =9y 5

90° Xg 2 2.9 = 9'1,20

P Xg S 3.9 = g'l’21

9o4° Xg § (x4 - 1f9)/1.5 = g'l,24

in-which Xg is a variable; X{s X5, X3, and X, are fixed.
Subproblem (2,1): Find the diameter (x7) of shaft 2
o _ : 2 ig73 2 -
AM]ﬂ;?1ze fBZ,l-_ —l.SO8x1x7 + 7.477x7 + 0.7854x5x7 _ (12)
Subject to:

-1X -1x3

. 1/4 _
9" X, 2 (1.93x2 3 5) =

9'2.4

11



9% X 2 (1\2/85)1/3 = 9'2,6

922} X725 =9% 2

9,3 Xy S 5.5 = g{2’23

955! X < (xS - 1.9)/1.1 = 9'2,25

in which X5 is a variable; X1s Xos X3, and Xg are fixed. '
It can be easily demonstrated that application of the global monotonicity

analysis to the bottom-level subproblems (1,1) and (2,1) results in:

* i 1 1
Xg = max 19"y 35 9"y 50 9'q,20} , (13)
and | .
* ' 1 ' .
x7 = max {9'5 45 9'2,67 92,22 | (14)

The middle-level subproblems 1 and 2 are:

Middle-Level Subproblem 1: Find the distance (x4) between bearings 1

x2 «3 X2

-:Mjnizize fM1,= -1.508x1x_6 + 7.4?7x6_ + 0.7?54x4x6
Subject to: 7.3 < Xy < 8.3 : (15)

- ‘. . *‘ . -
where X4 is a variable; xl, and Xg are fixed.

Middle-Level Subproblem 2: Find the distance (XS) between bearings 2

e _ *x2 *3 *2
M1n;§1ze sz = -1.508x1x7 + 7.477x7 + 0.7854x5x7
Subject to: 7.3 S xg S 8.3 | | (16)

where x5 is a variable; Xy and x; are fixed.

Finally, the topfievel problem is:

2

3+ 14.9334x

- 43.0934)

Minimize f(x) = 0.7854x,x5 (3.3333 ;

XI'XZ’X3

12



-1.5708x1(x;;2 + x;z) + 7.477(xg3 + x;3)
+‘0.7854(x:x;? + x;x;z)
Subject to: _ : (17)-
9y 27x1'1x2—2x3'1 <1 |
9,° 397.5 xl—]‘x2'2x3'2 <1
95: XXq < 40
98:' 5« x1/x2 <12 194
90° 2.6 < X, < 3.6 9y
95° 0.7 < X, £ 0.8 93
944" 17 < xs < 23 95

' * * * *
where xl, X §nd X3 are variables; Xgs Xgs Xgs and X5 are fixed.

The inttial point selected for this example is X = (2.6, 0.7, 17, 7, 7,
2.9,-5)t which is infeasible, and gives'f(x°) = 2335 (cm3). The,fina] solution
- from the iterative proceduré'is x* = (3.5, 0.7, 17, 7.3, 7;71,'3.35,‘5.29)t
which gives f(x*) = 2994 (cm3). This solution is identical to the one reported
by Li and'Papalambros (1985) who used a single-level optimizéfion approach Based
on the global monotonicity analysis. However, the approach presented here is a
multi-level one and applicable to a complex problem which is decomposable into

several simple subproblgms.
5. Concluding Remarks

The multi-level ‘optimization method presented here should make possible
solutions of problems previously too difficult to handle by the global monotoni-

city analysis within a single-level framework. However, for large problems, the

13



global monotonicity analysis (done manually here) is likely to be tedious and
cause mistakes. To overcome this probiem, a symbolic manipulation program (see,
for example, MACSYMA, 1983) may be used. 'If global monotonicity analysis 'is not
possible then local monotonicity analysis should be used (Azarm, 1984).

| One disadvantage of the method presented here, when coupled with a conven-
tional optimization method, is the possibility of discontinuous behavior of
derivatives at the bottom-level subproblems (see, equations (7) or (8)). This
can be resolved by using an optimizatioh method on the:ﬁpper—levél subproblems
which does not require derivatives from the lower-level subproblems. Another.
solution is to use a penalty function approach of the type suggested by Haftka
(1984).
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Quantities

y X u v
Levels
Top-Level var. fixed
Middle-Level fixed x=(u,v)t var. fixed
Bottom-Level fixed fixed var.,

Table 1 Variable/Fixed Quantities in Each Level
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Top-Level Problem

Subprobiem se

7

Subproblem Subproblem
(1,1) ces (1,J) ces

etc.

Subproblem
(1)
Subprobiem Subproblem
Au.wv e (I,J)

Figure 1 Structure of a Multi-Level Decomposition




*

Min. f (y,x )

s.t.
9, (y) <0
h=1,...,H
* * *

K x,_lﬁﬂ._w<.w w,uv
. *
Hin. j:. Q.f.f.;.v

S.t.
gi (You;) < 0
k=1,...,K
*
Yy i3

der._ 1 duu
s.t.
@._ uundﬁkvﬁa.u<4. wuv ¢ O
1=1,...,L

Top-Level

Middle-Level

Bottom-Level

Figure 2° Decomposition Structure of a Three-Level Problem
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Figure 3 A Gear Reducer



. X kX *x x
Min. f(xl,xz,x3,x4,x5,x6,x7
s.t. '
-1.-2 -1 '
27x1 X5 X3 <1
-1.-2 -2
397.5x1 X, X3 <1
x2>(3540
5 < x1/x2 <12
2.6 < X, S 3.6
0.7 < X, < 0.8
17 < X3 < 28
A A
x % x %
X{2XosX3 Xg41Xg X{sXp1X3 Xg 1 Xy
y y
) * *
Min. fMl(xl,x4,x6) Min fM (xl,xs,x7)
s.t. s.t.
7.3 < Xy S 8.3 7.3 < Xg S 8.3
* *
XosX3:Xy Xg XosX35X, Xy

* ] [ ] *
xg=max{g 1,3'9'1,5°9 1,20} Xz=max

{9'2,449'2,679'2,223

Figure 4 Three-Level Decomposition of a Gear Reducer
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