CS-TR-3703 UMIACS-TR-96-73

Grindstone: A Test Suitefor Parallel Performance Tools’

Jeffrey K. Hollingsworth Michael Steele
Institute for Advanced Computer Studies Computer Science Department
and Computer Science Department
University of Maryland

College Park, MD 20742
{hol l'i ngs, m ke} @s. und. edu

Abstract

We describe Grindstone, a suite of programs for testing and calibrating parallel per-
formance measurement tools. The suite consists of nine simple SPMD style PVM pro-
grams that demonstrate common communication and computational bottlenecks that oc-
cur in parallel programs. In addition, we provide a short case study that demonstrates
the use of the test suite on three performance tools for PVM. The results of the case study
showed that we were able to uncover bugs or other anomaliesin all three tools. The pa-
per also describes how to acquire, compile, and use the test suite.

" This work was suppated in part by NIST CRA award 70-NANB-5H0055 DOE Grant DE-FG02-93ER25176 and
the State of Maryland.

1. Introduction

Creaing and debuggng performance measurement tools for parallel systems is a difficult task.
First, paral el tods are often parallel programsin their own right, and as sich have dl of the difficulties of
writing parallel programs. Seand, the input data for parallel tools is aso a parallel program. Full parallel
programs (and even “small” kernels) are often large programs that exhibit complex performance behavior.
Performancetools exist to measure and analyze these mmplex performance daraderistics. However, when
debuggng and validating performance measurement toadls, it is useful to have ssmpler programs with well
understood performance daraderistics. For testing implementations of programming languages, validation
suites exist that contain many small programs ead testing one or a few feaures of the language. We fed

that a similar suite of parallel programs would be useful to help develop parallel performance tools.

We have aeaed a validation suite of programs, cdled Grindstone', that demonstrate simple but
common problems which parallel programs commonly suffer from. Test Program suites sich as
SPLASH[5] and PERFECT Club[1] have proved useful to evaluate parallel compiles. We intend Grind-
stone & the starting point for a standardized validation suite which authors of performance analysis tools
will be aleto use to verify that their software gives corred prognoses for common problems. In this paper,
we present nine simple PVM programs that demonstrate common performance problems. In addition, we
present a brief case study that shows the resulting of running these programs with three performance meas-
urement tools: XPVM, Paradyn, and PVaniM. The tests programs were &le to uncover bugs in all three

tools. The appendix at the end of the paper describes how to obtapileg@nd run the test programs.

2. Description of the Validation Suite

In this sdion, we describe eat of the programs in the validation suite. Each program is a single
PVM applicdion that consists of a single exeautable image. The programs are dl written in a SPMD style
and spawn additional copies of themselves as needed. When it completes exeaution, ead program prints the
wall time, CPU time, messages sent, and messages recaved by ead process This information can be used
to validate the metrics produced by ead tod. The timing information can also be used to compute the over-
head of atod by comparing the exeaution time of ead program run without the toadl to the time to run with
the tod. We have divided the test programs into two categories. communication bottlenedk programs and

computation bottlenedks. An obvious third caegory is programs that are limited by 1/0 performance. How-

! Like a physical grindstone, this test suite is intended to shape and hone other tools.

ever, since there is currently no standard way of performing 1/0 in PVM, we have omitted 1/0O test pro-

grams.

2.1 Communication Bottleneck Programs

The test suite cntains $x programs that demonstrate various types of communication problems.
All of the programs use the blocking versions of either paint-to-point (pvm send/ pvm r ecv) or group
(pvm barri er) communicaion. Four of the programs demonstrate pure communicaion performance
since they are limited by the latency of bandwidth of the message passng system. The other two ill ustrate

the interaction between load imbalance and communication waiting time.

Passing L ar ge M essages (big-message)

The first test program passes very large messages (an array of 100000 integers). The intended
bottlenedk is that the overheal associated with setting yp and sending a large message should slow the pro-
gram down. This program is limited by speed at which messages can move throughthe communication net-
work. Since the messages are large, communicaion bandwidth, not latency is the important problem here.
Two processs are spawned: the parent starts by sending the large message to the dild. When the dild
processrecaves the message, it sendsit bad. This continues for a preset number of iterations. The program
can be mnfigured to send its messages indiredly via ather the PVM daemon process or diredly using the

“direct route” option of PVM.

Passing Too Many Small M essages (small-messages)

The second program in the test suite demonstrates the problem of pasdng too many small mes-
sages. The program small-messages was designed to show how the overhead associated with message
passng could beacome abottlenedk. In this example, the parent process s$arts up three dildren. Then, all of
the dildren begin sending small messages (the size of two integers) to the parent in an attempt to swamp
the parent with too many incoming messages. Then, all of the dhildren begin sending small messages (the
size of two integers) to the parent in an attempt to swamp the parent with too many incoming messages.
Since none of the messages generates a reply, it is possble to combine these messages into larger units of

work to amortize the per message overhead.

Latency Critical M essaging (ping-pong)
The third program in the test suite ill ustrates an applicaion that is being slowed down by the
round-trip latencies between processes. This program spawns one worker process Like small-messages, it

sends a short message from one processto the other. However, before the sender continues, it waits for a

response from the other process Message pading and unpading time, PVM daamon latency, and message

time-of-flight all contribute to the critical path of this program.

Server Intensive Applications (intensive-server)

The fourth program in the validation suite demonstrates the pitfall of having a dient-server model
in which the server is overloaded. In the intensive-server program, the parent process (which will be the
server) spawns three dild processes (which become the dients). The dients initially wait for a messge
from the server telling them to start, and then go into a g/cle of sending the server a message and waiting
for a response. Meanwhile, the server is recaving the messages from clients, but then wastes time before

sending out responses. This simulates the server having too much work to do in comparison with the clients.

Random Barriers (random-barrier)

The next bottlenedk demonstration is smilar to the intensive-server problem, only thistime no sin-
gle processis the bottlened. The parent process sarts three dildren, and then sits and wastes time. The
other proceses wait at apvm barri er cdl. When the parent finishes wasting time, it passes a token to
another randomly seleded process(hence, this program is cdled random-barrier), and that processwastes a
predetermined amourt of time. The processcontinues urtil ead processhas gone through a predetermined
number of iterations. The dfed of this program is to simulate aprogram with a load imbalance that is de-
pendent on the data and moves around to dfferent processors during different iterations of a major loop

(such as a time-step loop in a simulation of a physical system).

Passing M essages Out Of Order (wrong-way)

The final message pasdng test program highli ghts the problem of passng messages “ out-of-order.”
This problem could arise if one processis expeding messages in a cetain order, but another processis
sending messages which are not in the expeded order. This could also arise if the two processs have to
communicate over a “noisy” network, and message padkets are dropped o have to be resent. In the wrong-
way program, an extreme cae of having messages out-of-order is used. Two proceses are spawned. The
first process £nds messages with messages numbered 1 through n(where n set to 1,000 in the program).
The semnd process waits to recave the messages, but expeds to recave the messages in the order n
through 1. This program is also known to stresstest toadls that record and match message send and receve

operations.

2.2 Computation Bottleneck Programs
This ®dion describes the three @mputation bottlened programs we have aeaded. Some of these
program ill ustrate computation bottlenedks that occur only in paralel programs, and some that also can

happen in serial programs.

One Bottleneck Procedure (hot-procedure)

This program demonstrates a bottlenedk creaed by a single procedure that is consuming the ma-
jority of the time. It is a completely seria program, and not additional processes are aeaed. The program
contains 21 procedures that are cdled 100times ead. Almost al of the procesr time is due to one proce

durebot t | eneckPr ocedur e.

Diffused Bottleneck Procedure (diffuse-procedure)

This program demonstrates a procedure bottlenedk that is distributed among several processes in
an application. The procedure bot t | eneckPr ocedur e is responsible for 50% of the CPU time in the
overall program. Each of the other procedures consumes approximately 2.5% of the program's CPU time.
The program consists of four “rounds’” where the bot t | eneckPr ocedur e is adive in ead of the pro-
gram's five processes. When a processis not exeauting bot t | eneckPr ocedur e, isit runs one of the 20
i rrel evant Procedur e*. The only communicaion or synchronization in the program is 21 barrier

operations per process.

Excessive System time (system-time)

This program spends most of its time exeauting code in the operating system kernel. The program
is completely serial and dces not crede ay additional processes. Depending on the operating system, it
should spend about 75% of its time & “system time” and the remaining 25% is user time. System time is

consumed by having the program repetitively call the UNIX system call kill to send itselfirsuecsignal.

3. Experience Using the Validation Suite

We ran the suite with three performance todls indented to work with the PVM system. Perform-
ancetods can be evaluated by two dfferent criteria, their quantitative acarracy, or the quality of the guid-
ance supplied to the programmer. Quantitative acaracy refers to the adility of atodl to corredly time or
court the events during a program’s exeaution. Quality of guidance is an indicaion of the value the toadl
provides the programmer in locating the source of a performance bottlened. Due to the difficulties in com-
paring the quality of guidance, we choose to focus on quantitative measures. We hope & we expand and

refine this tool set to be able to use it to compare the quality of guidance too.

For al threetools we tested, we were ale to find bugs or anomalous behavior for at least one of
the test programs. Below we summarize the bugs we found in ead todl. It is not our intent to single out
these todls for spedfic aiticism. We seleded them not because they were buggy, but rather that they are
fredy available and are eay to install and start using. We had tried several other toadls, but were never able

to get them to work in our environment.

3.1 PVaniM

The Georgia Tech Graphics, Visualization, and Usability Center's PVaniM[6] visualization tool
was the first program tested. Using PVaniM (version 2.0) required a few minor modificaions to the test
suite source @de (using the PVaniM include file, and cdling a function to register the process with the
PVaniM monitor program). Two problems were discovered for this toa using the test suite. One problem
manifested itself by causing the gplication processes die, and the other by reporting that all the processes

were doing productive work when all but one of them was stopped at a barrier.

For the random barrier applicdion, PVaniM reports that all of the processes are doing work, when
in fad, they are waiting at a barrier. This problem is caused by PVaniM using maaos to instrument PVM
message passng routines. The barrier function in PVM is built using the normal send and receve proce-
dures and was not explicitly instrumented by PVaniM. However, since PVaniM only requires recompili ng
the gplication, the cdls made by the implementation of the barrier routine to pvm send and pvm r ecv

from within the PVM library are nahstrumented.

Runring wrong-way and small-messages with PVaniM caused the PYM daemons to de on all the
hosts except for the host on which PVaniM was runnng. Reducing the number of iterations allowed the
processes to finish runring. The cause of this problem is that when the PVaniM processgets behind, it does
not de-queue instrumentation messages from the PVM daemons. Eventually, the PVM daemons exhaust the
avail able virtual memory and exit. It would appea that thisisredly two bugs: PVaniM can't keep up with a

high volume of traffic, and PVM does not gracefully handle large backlogs of messages.

3.2 XPVM

XPVM[2] is a performance visualization and configuration management tool for PVM that was
developed by Oak Ridge National Labs. For our study we used version 1.1. The tod is implemented in
TCL/TK and provides ®vera visudizaions to dsplay the communicaion behavior of PVM programs. We
found threetypes of problems with XPVM. First, sometimes the todl is not able to keep up with alarge vol-

ume of messages being exchanged. Sewnd, the tod caused the PVM daemons to crash in two configura-

tions. Third, the visualizations were not able to differentiate individual communication operations when the

volume of mesage passing was high.

For the small-message program, the time required for XPVM to draw the animation adds consider-
able overhead, and XPVM is unable to keep up with the rate & which messages are generated. The server
and one dient processcouldn't runto completion in over 40 minutes of runtime, and it appeared that while

XPVM was still running, the processes had become hung.

Also in the too small message passng program, there ae so many messages being rapidly passed
that the message lines are dose elough to ead other to appea as a solid triangle. This appeasto be a
problem with not supparting a 2z00m feaure that would let the programmer expand the time scde to dffer-

entiate the individual messages.

Finaly, the documentation claims that the traceoutput fil es are in SDDF format, ready for Pablo to
use for analysis, but we found that this wasn't completely the cae. XPVM outputs data types and traceout-
put interleaved, but Pablo[4] insists that all the data types be defined before any of the traceoutput lines.
Also, XPVM's SDDF files don't begin with the gpropriate magic string. A ssimple perl script could be used
to overcome these problems, but it would be helpful if XPVM generated the traces in the corred format.
We ae not sure if this problem was due to a version missmatch between Pablo and XPVM or if they never

worked bgether.

3.3 Paradyn

The third program tested is Paradyn[3], developed at the University of Wisconsin. To test the
automated search feaures of Paradyn, when we increased the number of iterations to one million for the
small -messages program. However, Paradyn couldn't handle it: some of the Paradyn daemon processes died
before the small-messages processes were done running. As these processs died, error message dialog
boxes popped up announcing which machine they had ded on. Further investigation showed that the
daamon processes were aashing as a result of running out of memory. It would have been helpful if the

tool had printed a more descriptive error message for this case.

4. Conclusion

This paper presented a nine program PV M-based test suite for parall el measurement tools and then
showed the results of running the test-suite with three such existing analysis toadls: XPVM, Paradyn, and
PVaniM. The six programs tested passng large messages, a dient-server model where the server did al the

work, programs taking turns being the barrier at random, passng lots of small messages, and passng mes-

sages out-of-order. The Grindstone suite highlights some of the basic problems parallel programs suffer;
however, despite the simple nature of the tests, the suite of programs found flaws or exposed bugs in every
performance analysis tool we tried. Clealy, there is room for improvement in the field of parallel perform-

ance analysis tools.

Eadh of these threetoadls provides useful information which complements the information from the
other toadls. Separately, ead can gve the programmer a view of what is going on, but any single toal will
have its shortcomings. By using multi ple todls together, one can get a more complete picture of how a par-

allel algorithm is working and where the performance bottlenecks are.

Our goal is to develop a more cmprehensive set of test programs for parallel performance ad
correanesstools. We welcome and encourage people to submit suggestions for additional common prob-

lems.
5. Compiling and Testing

This appendix describes how to get, compile, and run the Grindstone package.
The source code for the test suite is available via anonymous ftg frpncs. und. edu in
pub/ facul ty/ hol | i ngs/grindstone.tar.gz.

The padkage comes with a single Makefile that should build all of the test suite. To compil e the
software for your spedfic platform, you will need to creae adiredory for the target platform (using the
PVM_ARCH environment). If the performance tod to be tested requires additional libraries to be linked
into the gplicaion, edit the Makefile and insert the libraries to the gpropriate location. For al of the tests
conducted in this report, we used gcc 2.7.2 on a duster of 4 Sun Microsystems SPARCstation5’s runring
SunOS 4.1.3. In addition, we used PVM version 3.3.10.

6. Acknowledgments

Charles Lin and Alex Kaplunov developed an ealy prototype of this padkage. Pete Keleher sug-
gested the name Grindstone. Brad Topd patiently traded dawvn a problem caused by our not following the

directions supplied witPVaniM.

References

M. Berry, et al., “The PERFECT Club benchmarks: Effedive performance evaluation of super-
computers; The International Journal of Supercomputing Applications, 1989.3(3), pp. 5-40.

A. Geigt, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM : Parallel
Virtual Machine. 1994, Cambridge, Mass: The MIT Press.

B. P. Miller, M. D. Calaghan, J. M. Cargill e, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall, “ The Paradyn Parall el Performance Measurement Todls’, IEEE
Computer, Nov. 199528(11), pp. 37-46.

D. A. Red], R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F. Tavera,
Scalable Performance Analysis. The Pablo Performance Analysis Environment, in Scalable Par-
allel Libraries Conference, A. Skjellum, Editor. 1993, IEEE Computer Society.

J. P. Singh W.-D. Weber, and A. Gupta, “SPLASH: Stanford Parallel Applicaions for Shared-
Memory”, Computer Architecture News, March 199220(1), pp. 5-44.

B. Topd, J. T. Stasko, and V. S. Sunderam, Monitoring and Visualization in Cluster Environ-
ments,GIT-CC-96-10,Georgia Institute of Technology, March 1996.

