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In a class of other beyond-standard-model theories, CP-odd observables, such

as the neutron electric dipole moment, receive significant contributions from flavor-

neutral P-odd and CP-odd four-quark operators. However, considerable uncertain-

ties exist in the hadronic matrix elements of these operators strongly affecting the

experimental constraints on CP-violating parameters in the theories. Here we study

their hadronic matrix elements in combined chiral perturbation theory and nucleon

models. We first classify the operators in chiral representations and present the

leading-order QCD evolutions. We then match the four-quark operators to the cor-

responding ones in chiral hadronic theory, finding symmetry relations among the

matrix elements. Although this makes lattice QCD calculations feasible, we choose

to estimate the non-perturbative matching coefficients in simple quark models. We

finally compare the results for the neutron electric dipole moment and P-odd and

CP-odd pion-nucleon couplings with the previous studies using naive factorization

and QCD sum rules. Our study shall provide valuable insights on the present



hadronic physics uncertainties in these observables.

Using an effective theory approach, the neutron electric dipole moment in the

minimal left-right symmetric model with both explicit and spontaneous CP vio-

lations is recalculated systematically. Using the state-of-the-art hadronic matrix

elements, nEDM as a function of right-handed W-boson mass and CP-violating

parameters is obtained. The most stringent constraint yet on the left-right sym-

metric scale in the minimal version of left-right symmetric model is obtained to be

MWR
> (10± 3) TeV.

Light WIMP (weakly interacting massive particle)-like signals were reported

by dark matter direct detection experiments. WIMP candidates in this energy

range can be constrained by various collider experiments. We show that colliders

can impose strong constraints on models of low mass dark matter, in particular

in the case that the direct detection interaction depends on the momentum of dark

matter. We also find in the case of low mass dark matter, there are tensions between

the observed relic abundance and collider constraints. Putting the constraints from

collider physics, relic abundance and direct detection experiments, a large part of

parameter space in different models can be ruled out.
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rents, like ūiγ5ud̄d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 P-odd and CP-odd pion-nucleon coupling generated by the four-quark
operators through parity-odd resonances, where the black dot is the
CP-odd, four-quark operator, N∗ and ∆∗ are the CP-odd excited
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Direct calculation of the neutron EDM in quark models. The neu-
tron makes a transition to a CP-odd excited state and goes back
via electromagnetic interaction, where the black dot is the CP-odd,
four-quark operator, N∗ and ∆∗ are the CP-odd excited states. . . . 69

2.4 Pion-photoproduction diagram with the pion field annihilated by the
four-quark operator into the vacuum, where the cross is a four-quark
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 The CP-odd mass of neutron turns the tree level magnetic moment
into an EDM. The cross is the tree level magnetic moment, the gray
dot is the CP-odd mass of the neutron and the black dot is the CP-
odd pion-nucleon coupling. . . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Charged-pion loop contribution to neutron EDM (without the anoma-
lous magnetic moment), where the black dots represent the CP-odd
vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.7 Contribution from the tree level anomalous magnetic moments of pro-
ton and neutron, where the crosses are anomalous magnetic moments
of nucleons and the dots are CP-odd vertices. . . . . . . . . . . . . . 77

3.1 Effective four-quark operators generated by integrating outW1-boson:
(a) the diagrams in the full theory and (b) the effective operator. . . 108

3.2 One-loop contribution to quark EDM. The internal wavy lines repre-
sent the W-boson contribution and the dashed lines the corresponding
Goldstone bosons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3 Higgs-induced quark EDM. The dashed lines here represents the Higgs
bosons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4 Long-distance contributions to quark EDM and CDM through CP-
odd four-quark operators. . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5 Diagrams contributing to Weinberg operator in mLRSM. The first di-
agram is induced by the W-boson exchange, the second by Goldstone
exchange and the third by the charged Higgs boson. . . . . . . . . . . 109

3.6 Contribution to the three-gluon vertex after integrating out the top
quark, the Higgs boson and the W-bosons. The black dot labels the
bottom quark CDM operator. . . . . . . . . . . . . . . . . . . . . . . 110

ix



3.7 nEDM contributed from operators, ūiγ5ud̄d (short dashed red line),
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Chapter 1

Introduction

1.1 Some Basic Features of Standard Model of Particle Physics

The known strong, weak and electromagnetic interactions can be described by

the gauge interactions in the Standard Model (SM) of Particle Physics. The gauge

group of SM is SU(3)C × SU(2)L × U(1)Y . The quantum numbers of the fermion

fields including quarks and leptons are shown in Table 1.1.

SU(3)C SU(2)L U(1)Y

QL =

 uL

dL

 3 2 1/3

uR 3 1 4/3

dR 3 1 −2/3

L =

 νL

eL

 1 2 1

eR 1 1 −2

Table 1.1: Representations SM fermions in each gauge group of SM, where flavor

indices are omitted.
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At low energy scale, the SU(2)L × U(1)Y electroweak symmetry is sponta-

neously broken into U(1)em by the Higgs mechanism. To break the electroweak

symmetry, the Higgs boson is chosen to be a doublet under SU(2)L transformation

and a singlet of SU(3)C , and its U(1)Y charge is 1. The potential of the Higgs field

can be written as

V (H) = µ2|H|2 + λ|H|2 . (1.1)

With a negative µ2 the vacuum expectation value (vev) of Higgs can be nonzero and

can be written as

⟨H⟩ =

 v/
√
2

0

 , (1.2)

where v =
√

−µ2/(2λ).

In SM, the mass of quarks are also assumed to originate from the vev of Higgs

through the following Yukawa couplings

LYukawa = −YuQ̄LHuR − YdQ̄LĤdR − YeL̄ĤeR , (1.3)

where Ĥ = (−iσ2)H∗, where σ2 is the second Pauli matrix defined in Appendix A.

The Yukawa couplings may not be diagonal. So the mass eigenstates of quarks may

not be the same as flavor eigenstates. Since a squared matrix can be diagonalized

by two Hermitian matrices, one can redefine the quark fields as

u′L = V u
L uL , u′R = V u

RuL , d′L = V d
LdL , d′R = V d

RdR , (1.4)

where the fields with a prime are mass eigenstates. Since the gauge interactions con-

tain either lefthanded fermions or righthanded fermions, the redefinition of quark
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fields bothers only those interactions containing different flavors. After the redefi-

nition, the coupling between quarks and W -boson can be written as

LW ∼ ū′LW
+VCKMdL , (1.5)

The combination VCKM ≡ V u
L V

d†
L is the famous Cabibbo-Kobayashi-Maskawa (CKM)

matrix, and it is the only combination which can be observed in the quark rotation

matrices. In SM, there is only one lefthanded charged gauge bosons, so one can only

get the information of lefthanded quark rotations.

It is easy to see that VCKM is a 3×3 unitary matrix which can be parameterized

by three rotational angle plus six complex phases. However, some of the complex

phases can be removed by redefinition of quark fields, and only one physical complex

phase is left after the redefinition, this phase is usually called Dirac phase.

Righthanded neutrinos are not required to be present in the framework of SM,

they are neutral under all gauge transformations in the SM gauge group. Therefore,

a natural consequence of SM is that the mass of neutrino should be zero. However,

the discovery of neutrino oscillation indicates the presence of non-vanishing tiny

neutrino masses. How to understand the origin of neutrino masses is still a question.

1.2 Minimal Version of Left-Right Symmetric Model

Parity is violated in the electroweak sector of SM. The reason for parity viola-

tion is still mystery. The left-right symmetric model (LRSM) was motivated by the

hypothesis that parity is a perfect symmetry at high-energy, and is broken sponta-

neously at low-energy due to the asymmetric vacuum [1]. Asymptotic restoration
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of parity has a definite aesthetic appeal [2]. The model has a number of additional

attractive features, including a natural explanation of weak hyper-charge in terms of

baryon and lepton numbers, existence of right-handed neutrinos and entailed seesaw

mechanism for neutrino masses, possibility of spontaneous CP (charge-conjugation-

parity) violation, and natural solution for the strong CP problem. The model can be

constrained strongly by low-energy physics and predicts clear signatures at colliders.

It so far remains a decent possibility for new physics.

The LRSM is best constrained at low-energy by flavor-violating mixing and

decays, particularly CP violating observables. In making theoretical predictions,

the major uncertainty comes from the unknown right-handed quark mixing matrix,

similar in spirit to that of the left-handed quark CKM mixing. The new mixing

is a unitary matrix, depending on 9 real parameters: 6 CP violation phases and 3

rotational angles. All are physical after the left-handed CKM mixing is rotated into

a standard 4-parameter form.

In Ref [3], we reported a systematic approach to analytically solving the right-

handed quark mixing in a minimal version of LRSM (mLRSM), where the only

requirement of parity invariance is the imposed prior to symmetry breaking, leaving

automatically only one CP phase in the Higgs potential and one in the Yukawa

couplings and leading to a theory with both explicit and spontaneous CP violations.

This model therefore falls in-between the above two extreme cases and is free of the

problems described above. Our approach is based on the observation that in the

absence of any fine tuning, mt ≫ mb implies that the ratio of the two vev’s of the

Higgs bi-doublet, ξ = κ′/κ, is small and is of the order ofmb/mt. In the leading-order
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in ξ, we find a linear equation for the right-handed quark mixing matrix which can

be readily solved. We present an analytical solution of this equation valid to O(λ3),

where λ = sin θC is the Cabibbo mixing parameter. The leading right-handed quark

mixing is nearly the same as the left-handed CKM matrix, except for additional

phases which are fixed by ξ, spontaneous CP phase α, and the quark masses.

In mLRSM, after neglecting the contributions from FCNH and the charged

higgs boson exchange, nEDM depends only on three parameters, r ≡ (mt/mb)(κ
′/κ),

α, and MWR
, where α is the new source of CP-violation. If α = 0, nEDM predicted

by the mLRSM will be the same as that predicted by SM, about five orders of magni-

tude smaller than the upper bound given by the current experiment [4]. Whereas for

ϵ, there are two new contributions in mLRSM [3], the Dirac phase in the righthanded

CKM matrix inherited from the lefthanded CKM matrix, and the spontaneous CP

phase α. The new contribution from the Dirac phase is enhanced compared to the

similar contribution in SM due to the chiral enhancement in the hadronic matrix

element (see Ref. [5] for a good review). The contribution of the spontaneous CP-

phase α must be adjusted to cancel the contribution of the Dirac phase. Therefore,

in mLRSM there is a tension between nEDM and ϵ that one cannot only adjust α to

suppress all the new CP-violation sources, and a large MWR
is needed. As a result,

nEDM and ϵ together give a lower bound on MWR
, which turns out to be the most

stringent to date in mLRSM.
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1.3 Neutron Electric Dipole Moment

Neutron electric dipole moment (nEDM) has attracted considerable attention

over more than half a century. For an elementary particle to have non-vanishing

intrinsic EDM, simple analysis shows that parity-violating as well as time-reversal-

violating interactions must be present. [T-violation is equivalent to CP-violation

(combined charge-conjugation and parity) in local quantum field theory.] However,

in the standard model (SM) of particle physics, such interactions arise only from

flavor-changing Cabbibo-Kobayashi-Moskawa (CKM) matrix elements, which are

strongly suppressed phenomenologically, yielding a very small neutron EDM of order

10−31 ecm. Therefore, an experimental observation of a large-size neutron EDM is

an unambiguous signal for new physics, widely expected to exit somewhere between

the electroweak symmetry breaking and TeV scales.

An efficient way to calculate the neutron EDM is to use the methodology of

effective field theories (EFT). In this approach, one generates P-odd and CP-odd

quark and gluon operators after integrating out the heavy particles (including heavy

quarks, gauge bosons and new particles) and run these operators to a scale around 1

GeV where non-perturbative QCD physics becomes important. The effective degrees

of freedom involves the light quarks (up, down and strange) and gluons. The CP-

odd part of the lagrangian is generally written as a sum of CP-odd operators of

different mechanical dimensions,

LCP−odd =
∞∑
d=3

∑
i

Cdi(µ)Ôdi(µ) , (1.6)

where d = 3, 4, 5, etc, is the mechanical dimension of the operators, µ is the renor-
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malization scale (taken as 4πFπ in this paper) and i sums over operators of the

same dimension. The dim-3 operator is the usual CP-odd quark mass term q̄iγ5q,

which can be rotated away through chiral rotations apart from the UA(1) anomaly.

The dim-4 operator is the usual θ term GG̃. Dim-5 operators include quark elec-

tric and chromoelectric dipole operators. Dim-6 operators contain various four-

quark operators and Weinberg three-gluon operator. The matrix elements of dim-4

and, to less extent, dim-5 operators have been studied extensively in the litera-

ture [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], and the uncertainty of the estimates are

typically at the level of factor 2. The contributions of these operators have also been

studied extensively in the context of various new physics models (see Refs. [16, 17]

for good reviews).

However, the matrix elements of dim-6 operators have been a challenge to

estimate. In some beyond-SM theories such as the left-right symmetric model, dim-

6 four-quark operators dominate the contributions to nEDM. In the literature, the

only serious approach that has been proposed to calculate their matrix elements is

the naive factorization method: breaking the four-quark matrix elements into the

product of two-quark matrix elements between the nucleon states and between pion

and vacuum [18, 19, 20]. While the factorization involving mesons can be and has

been tested using lattice QCD [21] and the results may be trustable to within a

factor of 2, the same is not known for matrix elements involving the nucleon states.

The goal of this paper is to develop a chiral perturbation method combined with

simple quark models to estimate the four-quark contribution to the nEDM with

hopefully an improved accuracy.
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The approach we are going to take is the standard chiral perturbation the-

ory (χPT) (see, for example, Ref. [22, 23]) which has been used to calculate the

contribution of θ-term to nEDM [8]. One of the successes of the chiral approach

can be illustrated by the polarizabilities of the nucleon. The electric polarizabili-

ties of the proton and neutron have been extracted from experimental data, αexp
p =

(10.4± 0.6)× 10−4fm3, αexp
n = (12.3± 1.3)× 10−4fm3. The leading contribution in

χPT comes from the pion-nucleon intermediate states,

αp = αn =
5αemg

2
A

96πF 2
πmπ

≈ 11× 10−4fm3 , (1.7)

which diverges linearly as mπ → 0 and agrees well with the experimental data.

One would expect then a similar pion dominance in the neutron EDM because the

latter also involves the intermediate electric dipole excitations. Indeed a pioneer-

ing calculation by Crewther et al. found that the dominant contribution from the

charged-pion chiral-loop diverges logarithmically as mπ goes to zero, and is propor-

tional to the CP-odd pion-nucleon-nucleon coupling ḡπNN [7]. In this work, we take

this contribution as dominating and consider the four-quark operator contribution

to ḡπNN . Of course, there are chiral-regular contributions to the nEDM which are of

the same order in chiral power counting and numerically competitive or even domi-

nating in the real world [17]. We will consider these contributions as well, although

the model-dependence becomes unavoidable.

In the chiral approach, one first writes down the CP-odd and even lagrangian
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in terms of meson and nucleon fields,

L = LGoldstone−boson CP−odd term + Lnucleon CP−odd mass term

+LEDM term + LCP−odd π−N coupling + (CP− even terms) , (1.8)

where the Goldstone boson CP-odd lagrangian will generate terms annihilating π0

and η in the vacuum, or in other words, will produce meson condensates. The

condensates will turn some of the CP-even terms (as we shall see, those proportional

to quark masses) in the chiral lagrangian into CP-odd contributions. This will

generate an additional CP-odd nucleon-mass term, neutron EDM term and CP-odd

pion-nucleon coupling. Once this is done, one can rotate away the CP-odd nucleon

mass term, generating further contributions to the neutron EDM terms and the

CP-odd pion-nucleon coupling.

After taking into all these contributions, one can calculate the nEDM gener-

ated by certain four-quark operator, and at the meanwhile get the upper bound on

its Wilson coefficients. The upper bounds of some four-quark operators are listed

in Table 1.2.

Armed with the hadronic matrix elements, we follow an effective theory ap-

proach to calculate the nEDM in mLRSM. Our goal here is to derive a factoriza-

tion formula for nEDM in this model, with QCD and other short-distance physics

in the Wilson coefficients, and with long-distance physics in hadronic matrix ele-

ments ready for, for example, lattice QCD calculations. Using the state-of-the-art

hadronic matrix elements, we derive the best constraints on the model parameters.

In particular, we find the most stringent bound yet on the left-right symmetric scale
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Operators Upper bound of |C4|/(GeV−2)

ūiγ5ud̄d 5× 10−12

ūud̄iγ5d 4× 10−12

ūiγ5us̄s 6× 10−12

d̄iγ5ds̄s 6× 10−12

ūiγ5uūu 8× 10−12

d̄iγ5dd̄d 5× 10−12

ūiγ5σ
µνud̄σµνd 2× 10−11

ūiγ5t
aud̄tad 4× 10−10

ūtaud̄iγ5t
ad 4× 10−11

ūiγ5t
auūtau 3× 10−11

d̄iγ5t
add̄tad 2× 10−11

ūiγ5σ
µνtaud̄σµνt

ad 3× 10−11

Table 1.2: Upper bound on the Wilson coefficients of P-odd, CP-odd four-quark

operators, calculated using the experimental data and hadronic matrix elements in

this work.
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10± 3 TeV, which is beyond the detection capability of the Large Hadron Collider

(LHC) [24].

1.4 Collider Constraints On Dark Matter

It now appears established that dark matter accounts for about one quarter of

the energy density, Ω, of the universe and plays an essential role in the formation of

large scale structure in it. The identity of dark matter, however, remains unknown

since all the particles in the successful standard model can be ruled out as candi-

dates. What the dark matter particles are, how they interact with visible matter

and how their relic abundance originates, constitute some of the fundamental mys-

teries of particle physics and cosmology today. The most compelling vision of dark

matter is that dark matter is a weakly interacting massive particle (WIMP), which

offers the possibility to understand the relic abundance of dark matter as a natural

consequence of the thermal evolution of the Universe through the so-called WIMP

miracle, which indicates that the interaction between WIMP and ordinary particle

can be directly detected by various detectors.

Many direct detection experiments have been carrying on in order to look

for signals induced by the interaction between dark matter particles and nuclei.

Among these direct detection experiments, CoGeNT collaboration reported their

results from ultra low noise germanium detector with a very low-energy threshold

of 0.4 keVee in the Sudan Underground Laboratory [25]. The observed excess could

be explained by a WIMP signal with mass in the range 6∼11 GeV, and a WIMP-
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nucleon spin-independent (SI) cross section 10−41 ∼ 10−40 cm2. More recently, the

CRESST-II group also reported their preliminary results whose target is made of

CaWO4 and 32 events have been observed which cannot be explained by known

background and might be induced by collisions between nuclei and WIMPs with

a mass around or less than 15 GeV, and the cross section about a few times of

10−41 cm2 [26]. On the other hand, with considering the smearing effect of the

detector, XENON100 could also probe the low WIMP mass region [27]. However, a

tension exists between the CoGeNT and CRESST-II results and the null-result of

XENON100, although an issue of the scintillation efficiency of nuclear recoils (Leff)

of xenon at low nuclear recoil region still remains. The upcoming new XENON100

result with detecting power increased by one order of magnitude will be published

soon, and the parameter space of this region will be further probed.

The signals produced by WIMPs in the direct detection detectors are assumed

to be induced by the interaction between WIMP and nuclei. Therefore, such a

WIMP can be produced at hadron colliders like Tevatron and LHC, and the signal

for WIMPs is missing transverse energy. However, Tevatron has not reported any

anomalous results related to such kind of signal which cannot be explained by SM

physics. This can be used to set constraints to on WIMP couplings to the quarks,

which in turn can be translated to constraints on direct detection cross section.
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1.5 The Organization of This Thesis

The organization of the thesis is in the following. In Chapter 2, we first give

the definition and basic properties of nEDM, and then we discuss nEDM induced by

various P-odd and CP-odd operators with concentration on four-quark operators.

In Chapter 3, we try to calculate nEDM in the framework of mLRSM using the

effective theory approach and give the most stringent bound to MWR
. In Chapter

4, we discuss the constraints from collider physics on low mass dark matters.
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Chapter 2

P-odd and CP-odd Four-Quark Operator Contribution to Neutron

Electric Dipole Moment

2.1 Introduction

2.1.1 Definition of Electric Dipole Moment

The EDM of a charged system with a charge density distribution ρ(x⃗) is defined

as

d⃗e =

∫
d3xx⃗ρ(x⃗) . (2.1)

Under the external electric field, the potential energy of this charged system is

defined as

H = −E⃗ · d⃗e , (2.2)

where E⃗ is the electric field.

From the definition we can see that the EDM of a charged system is a vector,

and depends on the internal structure of the system. For an elementary particle,

the only intrinsic vector is the spin, so one can define the EDM of an elementary

particle in the following relation.

d⃗e = de
s⃗

|s⃗|
, (2.3)
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where s⃗ is the spin of the particle, and the number de is defined as the EDM of this

particle. Therefore, the Hamiltonian of EDM interaction between an elementary

particle and the external field can be written as

H = −de
s⃗

|s⃗|
· E⃗ . (2.4)

There is no doubt that the electric field is a vector field. On the other hand,

however, the spin of an elementary particle is an axial-vector, just like angular

momentum. Therefore, the product of them gives a pseudoscalar, which is odd

under both parity transformation and CP transformation. As a result, the existence

of a nonzero EDM of elementary particle means there are Parity violating and CP

violating interactions in the system.

Since we are interested in spin-1/2 particle, so |s⃗| = 1/2, and the corresponding

Lagrangian in quantum field theory can be written as

L = −1

2
deψσµνiγ5ψF

µν , (2.5)

where σµν = i
2
[γµ, γν ] and γ5 = iγ0γ1γ2γ3 in the standard Dirac representation,

which is discussed in Appendix A, ψ is a Dirac spinor.

2.1.2 Classification of P-odd and CP-odd Operators

An efficient way to calculate the neutron EDM is to use the methodology of

effective field theories (EFT). In this approach, one generates P-odd and CP-odd

quark and gluon operators after integrating out the heavy particles (including heavy

quarks, gauge bosons and new particles) and run these operators to a scale around 1
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GeV where non-perturbative QCD physics becomes important. The effective degrees

of freedom involves the light quarks (up, down and strange) and gluons. The CP-

odd part of the lagrangian is generally written as a sum of CP-odd operators of

different mechanical dimensions,

LCP−odd =
∞∑
d=3

∑
i

Cdi(µ)Ôdi(µ) , (2.6)

where d = 3, 4, 5, etc, is the mechanical dimension of the operators, µ is the renor-

malization scale (taken as 4πFπ in this paper) and i sums over operators of the same

dimension.

The dim-3 operator is the usual CP-odd quark mass term q̄iγ5q, and the dim-

4 operator is the usual θ term GG̃. The Lagrangian containing dim-3 and dim-4

operators can be written as

L4 =
∑
q

mq sin θ1q̄iγ5q −
g2θ2
32π2

GµνG̃µν , (2.7)

where mq is the mass of quark q. Using the anomalous U(1)A transformation, θ1

can be transferred to θ2 and only the combination θ̄ = θ1+θ2 is related to physically

observable quantities.

The Lagrangian containing dim-5 operators can be written as

L5 =
∑
q

dEq (µ)O
E
q (µ) +

∑
q

dCq (µ)O
C
q (µ) , (2.8)

where OE
q = −1

2
qσµνiγ5qFµν and OC

q = −1
2
qσµνiγ5t

aqGa
µν , and Fµν and Ga

µν are the

electromagnetic and gluon field strengths, respectively, and ta are generators of the

SU(3) color gauge group.
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For dim-6 operators, the effective Lagrangian can be written as

L6 =
∑
i

Ci(µ)O4i(µ) + Cg(µ)Og(µ) , (2.9)

where the four-quark CP-odd operators can be divided into two groups. The first

group includes operators with two different light flavors [18]

O11 = (q̄iγ5q)(q̄
′q′) ,

O12 = (q̄q)(q̄′iγ5q
′) ,

O21 = (q̄iγ5t
aq)(q̄′taq′) ,

O22 = (q̄taq)(q̄′iγ5t
aq′) ,

O3 = (q̄iγ5σ
µνq)(q̄′σµνq

′) ,

O4 = (q̄iγ5σ
µνtaq)(q̄′σµνt

aq′) , (2.10)

where q, q′ = u, d, s and q ̸= q′. The second group includes operators with one quark

flavor

O′
1 = (q̄iγ5q)(q̄q) ,

O′
2 = (q̄iγ5t

aq)(q̄taq) . (2.11)

The Weinberg operator is defined as

Og = −1

6
fabcϵµναβGa

µρG
bρ
ν G

c
αβ , (2.12)

where ϵ0123 = 1.

The contribution from θ̄ and, to less extent, dim-5 operators and the Weinberg

operator have been studied extensively in the literature [6, 7, 8, 9, 10, 11, 12, 13,
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14, 15], which is discussed in Chapter 3 when we study mEDM in the framework of

mLRSM. The uncertainty of the estimates are typically at the level of factor 2. The

contributions of these operators have also been studied extensively in the context

of various new physics models [16, 17]. However, the matrix elements of dim-6

operators have been a challenge to estimate. In some beyond-SM theories such as

the LRSM, dim-6 four-quark operators dominate the contributions to nEDM. In

the literature, the only serious approach that has been proposed to calculate their

matrix elements is the naive factorization method: breaking the four-quark matrix

elements into the product of two-quark matrix elements between the nucleon states

and between pion and vacuum [18, 19, 20]. While the factorization involving mesons

can be and has been tested using lattice QCD [21] and the results may be trustable

to within a factor of 2, the same is not known for matrix elements involving the

nucleon states. The goal of this chapter is to develop a chiral perturbation method

combined with simple quark models to estimate the four-quark contribution to the

nEDM with hopefully an improved accuracy.

2.1.3 The Strategy of The Calculation

The approach we are going to take is the standard chiral perturbation the-

ory (χPT) (see, for example, Ref. [22, 23]) which has been used to calculate the

contribution of θ-term to nEDM [8]. One of the successes of the chiral approach

can be illustrated by the polarizabilities of the nucleon. The electric polarizabili-

ties of the proton and neutron have been extracted from experimental data, αexp
p =
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(10.4± 0.6)× 10−4fm3, αexp
n = (12.3± 1.3)× 10−4fm3. The leading contribution in

χPT comes from the pion-nucleon intermediate states,

αp = αn =
5αemg

2
A

96πF 2
πmπ

≈ 11× 10−4fm3 , (2.13)

which diverges linearly as mπ → 0 and agrees well with the experimental data.

One would expect then a similar pion dominance in the neutron EDM because the

latter also involves the intermediate electric dipole excitations. Indeed a pioneer-

ing calculation by Crewther et al. found that the dominant contribution from the

charged-pion chiral-loop diverges logarithmically as mπ goes to zero, and is propor-

tional to the CP-odd pion-nucleon-nucleon coupling ḡπNN [7]. In this paper, we take

this contribution as dominating and consider the four-quark operator contribution

to ḡπNN . Of course, there are chiral-regular contributions to the nEDM which are of

the same order in chiral power counting and numerically competitive or even domi-

nating in the real world [17]. We will consider these contributions as well, although

the model-dependence becomes unavoidable.

χPT is a low energy effective theory of QCD, the effective theory shares the

same symmetry as its UV completed theory. Since the masses of u, d and s quarks

are small compared to the QCD scale, SU(3)L × SU(3)R can be seen as a global

symmetry of QCD approximately, which is inherited by χPT. This approximation

is good enough to our goal of accuracy. To use χPT to calculate nEDM, one needs

also to get the corresponding P-odd and CP-odd operators in χPT. To do this, in

the spirit of the Wigner-Echart Theorem, we first classify the four-quark operators

by the irreducible representations of SU(3)L × SU(3)R symmetry group. Then,
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we collect all the chiral operators in the corresponding representations. Then, by

calculating some simple matrix elements we get the Wilson coefficients for those

operators.

The effective chiral Lagrangian can be written in terms of meson and nucleon

fields,

L = LGoldstone−boson CP−odd term + Lnucleon CP−odd mass term

+LEDM term + LCP−odd π−N coupling + (CP− even terms) (2.14)

where the Goldstone boson CP-odd lagrangian will generate terms annihilating π0

and η in the vacuum, or in other words, will produce meson condensates. The

condensates will turn some of the CP-even terms (as we shall see, those proportional

to quark masses) in the chiral lagrangian into CP-odd contributions. This will

generate an additional CP-odd nucleon-mass term, neutron EDM term and CP-odd

pion-nucleon coupling. Once this is done, one can rotate away the CP-odd nucleon

mass term, generating further contributions to the neutron EDM terms and the

CP-odd pion-nucleon coupling.

The presentation of this chapter is organized as follows: In Sec. 2.2, we clas-

sify all flavor-neutral P-odd and CP-odd four-quark operators in chiral representa-

tions. We also present the leading-order QCD scale evolution of these operators. In

Sec. 2.3, we match these operators to the corresponding Goldstone boson operators,

baryon operators, and EDM operators in χPT. We also discuss in the case of Peccei-

Quinn symmetry the size of the induced θ term in the presence of these four-quark

operators. In Sec. 2.4, we calculate their contributions to the P-odd and CP-odd
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nucleon-pion vertices and the CP-odd nucleon mass using factorization in the case

of meson matrix elements and simple quark models for the nucleon ones. In Sec. 2.5,

we study the four-quark contribution to the neutron EDM in the chiral approach

supplemented with factorization and quark model estimates of counter terms, and

the results are compared with other calculations in the literature. The comparison

and analysis show that the hadronic physics uncertainties here can be quantified

to within a factor of two for operators generating unsuppressed meson condensate

contributions. We conclude this chapter in Sec. 2.6.

2.2 P-odd and CP-odd Four-quark operators: Classification, Run-

ning and Mixing

We consider three light quark flavors: up, down and strange. Flavor-neutral

P-odd and CP-odd four-quark operators can be divided into two groups which are

shown in Eqs. (2.10) and (2.11).

To match the above quark operators into the hadronic ones in χPT, we have

to classify the former into irreducible representations of the chiral group SU(3)L ×

SU(3)R. Take the operator ūiγ5ud̄d as an example, which can be decomposed as

ūiγ5ud̄d = −iūRuLd̄RdL + iūLuRd̄RdL + h.c. , (2.15)

where qL,R = PL,Rq with PL,R = (1∓γ5)/2. The first term can be further decomposed
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as

−iūRuLd̄RdL = − i

2
(ūRuLd̄RdL + d̄RuLūRdL)

− i

2
(ūRuLd̄RdL − d̄RuLūRdL)

= − i

4
Sij
kl q̄Riq

k
Lq̄Rjq

l
L − i

4
ϵjklimnA

i
j q̄Rkq

m
L q̄Rlq

n
L , (2.16)

where ϵjklimn ≡ ϵjklϵimn, and

A =


0 0 0

0 0 0

0 0 1

 , (2.17)

and

S12
12 = S21

12 = S12
21 = S21

21 = 1, (2.18)

with other elements vanishing. The second term of Eq. (2.15) can be written as

iūLuRd̄RdL = iHj
1iH

l
2kq̄Ljq

k
Rq̄Rlq

i
L , (2.19)

where

H1 =


0 1 0

0 0 0

0 0 0

 , H2 =


0 0 0

1 0 0

0 0 0

 . (2.20)

In this way the operator ūiγ5ud̄d is decomposed into (3̄, 3), (6, 6̄) and (8, 8) represen-

tations of SU(3)L×SU(3)R, and A, S, H1, and H2 can be regarded as spurion fields

in the sense that if they transform as (3, 3̄), (6̄, 6) and (8, 8) under chiral transfor-

mation, the corresponding terms in Eqs. (2.16) and (2.19) become invariant. These

spurion fields will be used in χPT to construct the effective operators corresponding

to the same four-quark operators. All spurion fields for four-quark operators with
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different Dirac and color structures are shown in Table 2.2. [It is easy to see that

there is no (1, 1) operator because any such operator must be expressible in terms of

products of chiral-even quark currents, which cannot yield CP-odd contributions.]

The four-quark operators usually emerge at a high energy scale where some

heavy particles have been integrated out. To match them to hadronic operators

in effective theories, one must run them down to a low energy scale where non-

perturbative physics becomes important. We can choose this to be 1 GeV or the

lattice cut-off 1/a, where a is the lattice spacing. In this work, we take µ = 4πFπ,

with Fπ = 93 MeV. These operators mix with each other when the energy scale

changes. Although many of the mixings have been calculated in the literature before

[see Ref. [28], for example], we recalculate them and present the complete result

here for easy reference:

µ2 d

dµ2



O11

O12

O21

O22

O3

O4



=
αS(µ)

4π



8 0 0 0 0 1

0 8 0 0 0 1

0 0 −1 0 2
9

5
12

0 0 0 −1 2
9

5
12

0 0 24 24 −8
3

0

16
3

16
3

10 10 0 19
3





O11

O12

O21

O22

O3

O4



,(2.21)

µ2 d

dµ2

 O′
1

O′
2

 =
αS(µ)

4π

 40
9

−4
3

−80
27

−46
9


 O′

1

O′
2

 . (2.22)

Clearly operators with different quark flavor structures do not mix. Since SU(3)L×

SU(3)R symmetry is broken only by quark masses, four-quark operators belonging

to different chiral irreducible representations do not mix either. Therefore, we can
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(3̄, 3) (6, 6̄) (8, 8)

q = u

q′ = d


0 0 0

0 0 0

0 0 1


S12
12 = S12

21

= S21
12 = S21

21 = 1

others are zero


0 1 0

0 0 0

0 0 0

 ,


0 0 0

1 0 0

0 0 0



q = d

q′ = u


0 0 0

0 0 0

0 0 1


S12
12 = S12

21

= S21
12 = S21

21 = 1

others are zero


0 0 0

1 0 0

0 0 0

 ,


0 1 0

0 0 0

0 0 0



q = u

q′ = s


0 0 0

0 1 0

0 0 0


S13
13 = S13

31

= S31
13 = S31

31 = 1

others are zero


0 0 1

0 0 0

0 0 0

 ,


0 0 0

0 0 0

1 0 0



q = s

q′ = u


0 0 0

0 1 0

0 0 0


S13
13 = S13

31

= S31
13 = S31

31 = 1

others are zero


0 0 0

0 0 0

1 0 0

 ,


0 0 1

0 0 0

0 0 0



q = d

q′ = s


1 0 0

0 0 0

0 0 0


S23
23 = S23

32

= S32
23 = S32

32 = 1

others are zero


0 0 0

0 0 1

0 0 0

 ,


0 0 0

0 0 0

0 1 0



q = s

q′ = d


1 0 0

0 0 0

0 0 0


S23
23 = S23

32

= S32
23 = S32

32 = 1

others are zero


0 0 0

0 0 0

0 1 0

 ,


0 0 0

0 0 1

0 0 0


Table 2.1: Spurions for CP-odd 4-quark operators. The first six together with three

tensor structures yield 18 operators in Eq. (4) and the last three with two tensor

structures yield six operators in Eq. (5).24



(3̄, 3) (6, 6̄) (8, 8)

q = u

q′ = u

0
S11
11 = 4

others are zero

0, 0

q = d

q′ = d

0
S22
22 = 4

others are zero

0, 0

q = s

q′ = s

0
S33
33 = 4

others are zero

0, 0

Table 2.2: Spurions for CP-odd 4-quark operators. The first six together with three

tensor structures yield 18 operators in Eq. (4) and the last three with two tensor

structures yield six operators in Eq. (5).

further simplify Eq. (12),

µ2 d

dµ2



O
(3,6)
1

O
(3,6)
2

O
(3,6)
3

O
(3,6)
4


=

αS(µ)

4π



8 0 0 1

0 −1 2
9

5
12

0 48 −8
3

0

32
3

20 0 19
3





O
(3,6)
1

O
(3,6)
2

O
(3,6)
3

O
(3,6)
4


, (2.23)

µ2 d

dµ2

 O
(8)
1

O
(8)
2

 =
αS(µ)

4π

 8 0

0 −1


 O

(8)
1

O
(8)
2

 , (2.24)

where O
(3,6,8)
i means the projections of the operator Oi on the representations (3̄, 3),

(6, 6̄) and (8, 8), respectively. It is easy to see that the (3̄, 3) and (6, 6̄) projections

of Oi1 and Oi2 are the same with i = 1, 2, whereas their (8, 8) projections differ only

by the sign. The tensor operators do not have (8, 8) components and therefore do
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not participate in Eq. (2.24).

The four-quark operators may also mix with P-odd and CP-odd operators

with dimension less or equal to 6. For mixing with lower-dimensional operators,

either quark masses or power divergences will appear. The only other dimension-6

operator is the Weinberg operator [29]

OW = −1

6
fabcϵµναβGa

µρG
bρ
ν G

c
αβ, (2.25)

which is a singlet under chiral transformation. Since the four-quark operators con-

tain no singlet component, the mixing between them and OW vanishes. The evolu-

tion of the Weinberg operator can be found in Ref. [30].

The P-odd and CP-odd dimension-5 operators are the quark electric dipole

moment operators (QEDM) and quark chromo-electric dipole moment operators

(QCDM). In principle, they belong to (3̄, 3) of the chiral group. However, they can

mix logarithmically with four-quark operators multiplied by the quark mass which

transforms also like (3̄, 3) [31, 32].

Finally, the four-quark operators can have mixing with mq̄iγ5q with quadrat-

ically divergent coefficients. Usually, one defines the four-quark operators with

quadratic divergences subtracted, as is natural in dimensional regularization where

all quadratically divergent integrals vanish by definition. Equivalently, this can be

achieved, for example, by demanding the CP-odd four-quark operators have van-

ishing contribution between QCD vacuum and CP-odd meson states in perturba-

tion theory. However, as we shall see in the following section, they can have non-

perturbative contributions. The exact physical implication of this non-perturbative
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contribution will be discussed in Sec. 5.5.

2.3 Matching to Operators in Chiral Perturbation Theory

Generically, any P-odd, CP-odd quark-gluon operator contributes to all P-

odd, CP-odd hadronic operators in χPT; the latter are constructed in terms of

Goldstone-boson (pion, kaon, eta) fields and baryon fields. Here we consider just

the contributions to the Goldstone-boson CP-odd interactions, nucleon CP-odd mass

term, π-N CP-odd coupling, as well as the neutron EDM term,

L = LGoldstone−boson CP−odd term + Lnucleon CP−odd mass term

+LCP−odd π−N coupling + LEDM term . (2.26)

Following the standard practice in the literature, we imbed the Goldstone-boson

fields in the unitary matrix U = exp[2iΣ/Fπ] with

Σ =


1
2
π0 + 1

2
√
3
η 1√

2
π+ 1√

2
K+

1√
2
π− −1

2
π0 + 1

2
√
3
η 1√

2
K0

1√
2
K− 1√

2
K̄0 − 1√

3
η

 , (2.27)

where Fπ is the pion decay constant. Under chiral rotations, U transforms like

U → LUR†, where L and R are 3 × 3 unitary matrices belonging to SU(3)L and

SU(3)R groups, respectively.

To include the baryon octet, we introduce

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (2.28)
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Again following the literature, we assume B transforms nonlinearly under chiral

transformation,

B → KBK† (2.29)

where K is a unitary matrix defined according to the transformation of ξ = U1/2.

ξ → LξK†, ξ → KξR† (2.30)

It is clear that K is a nonlinear function of the Goldstone-boson fields.

The quark-mass term breaks chiral symmetry and plays an important role in

chiral expansion. To exhibit its physical effect, the usual practice is to introduce

the spurion field χ, transforming as

χ→ LχR† . (2.31)

However, to combine χ with the baryon field B, we introduce χ±

χ± = ξ†χξ† ± ξχ†ξ , (2.32)

which transform nonlinearly as χ± → Kχ±K
†.

In the leading order, the chiral lagrangian for meson fields is

L =
1

4
F 2
πTr[∂µU

†∂µU ] +
1

2
F 2
πBTr[M †U + U †M ] , (2.33)

where M = diag{mu,md,ms} is the mass matrix of light quarks. The leading-order

chiral lagrangian for the baryon field is [23]

L = Tr

{
B̄iγµDµB −m0B̄B +

1

2
DB̄γµγ5uµ, B +

1

2
FB̄γµγ5[uµ, B]

}
, (2.34)

where uµ = i(ξ†∂µξ − ξ∂µξ
†) is an axial vector current, DµB = ∂µB + [Γµ, B] and

Γµ = {ξ†∂µξ + ξ∂µξ
†}/2 is a vector current.
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2.3.1 Matching to CP-Odd Goldstone-Boson Operators

Once there is a CP-odd term in the QCD lagrangian, it induces CP-odd terms

in the effective Goldstone-boson lagrangian. These terms can annihilate odd-number

(particularly, one) Goldstone bosons into the vacuum. Because of this CP-odd meson

condensate, the original CP-even terms can now contribute to the CP-odd effects.

Due to chiral symmetry, a meson condensate can generate physical effects only when

the CP-even terms explicitly break the symmetry.

As discussed in the last section, P-odd and CP-odd four-quark operators can

be decomposed into chiral (3̄, 3), (6, 6̄), (8, 8) and their hermitian conjugate repre-

sentations. They in turn can be matched to the corresponding chiral operators in

the same representations. The leading ones without derivatives are unique and are

shown in Table 2.3.

Rep. (3̄, 3) (6, 6̄) (8, 8)

Operator Om
3 = iTr[AU †] Om

6 = iSij
klU

k
i U

l
j Om

8 = iTr[H1UH2U
†]

Table 2.3: Leading meson operators in individual irreducible chiral representations

where A, S, H1 and H2 are spurion fields in Table 2.2. The appearance of i in front

of each operator indicates that these operators generate P-odd and CP-odd vertices

in the meson lagrangian; their Wilson coefficients in the lagrangian are defined to

be real.

We illustrate the matching process using Oud
11 = ūiγ5ud̄d as an example. As

discussed in the last section, this quark operator can be decomposed into irreducible
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representations of the chiral group using the spurion fields

Oud
11 = O

ud,(3̄,3)
11 +O

ud,(6,6̄)
11 +O

ud,(8,8)
11 + h.c. (2.35)

Then, we can match each of the operators to the corresponding one in the meson

sector through the non-perturbative Wilson coefficients C ′s

O
ud,(3̄,3)
11 ∼ C(3̄,3)O3 , O

ud,(6,6̄)
11 ∼ C(6,6̄)O6 , O

ud,(8,8)
11 ∼ C(8,8)O8 . (2.36)

The Wilson coefficients can be obtained by matching the simplest matrix elements:

⟨0|O|π0⟩ and ⟨0|O|η⟩, which can be calculated using non-perturbative methods such

as lattice QCD.

In this paper, we use factorization approximation to estimate these non-

perturbative matrix elements. Lattice QCD calculations demonstrate that the ma-

trix elements of four-quark operators can be factorized typically to within a factor

of 2. Again take the operator Oud
11 as an example, which can annihilate π0 and η to

the vacuum. [In principle, it also annihilates η′, but this contribution is suppressed

by the mass of η′. A brief discussion of the contribution from η′ condensate can be

found in Appendix C.] The annihilation amplitude can be estimated using vacuum

saturation,

⟨0|ūiγ5ud̄d|π0⟩ ≈ ⟨0|d̄d|0⟩⟨0|ūiγ5u|π0⟩. (2.37)

Using chiral symmetry, one can get ⟨0|ūiγ5u|π0⟩ = 1
Fπ
⟨0|ūu|0⟩ ≡ −FπB0, and

⟨0|ūiγ5u|η⟩ = −FπB0/
√
3. (This is consistent with the definition of the chiral

rotation of U defined below Eq. (2.27).) Therefore, a term C4O
ud
11 in the QCD
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lagrangian can be matched to the linear terms in π0 and η in the chiral lagrangian

L = C4B
2
0F

3
ππ

0 +
1√
3
C4B

2
0F

3
πη + ... , (2.38)

where ... represents higher-power meson fields. Then the leading terms in the po-

tential of π0 and η can be written as

V =
1

2
B0

[
(mu +md)(π

0)2 +
1

3
(mu +md + 4ms)η

2

]
+
B0√
3
(mu −md)π

0η − C4B
2
0F

3
π

(
π0 +

1√
3
η

)
, (2.39)

which can be minimized to yield a condensate ⟨π0⟩ and ⟨η⟩.

The above discussion can be easily generalized to an arbitrary four-quark op-

erator, for which Eq. (2.38) can be written as

L = gπC4B
2
0F

3
ππ

0 + gηC4B
2
0F

3
πη + ... , (2.40)

where gπ and gη are numerical factors generated through the vacuum saturation

approximation. Then, the vevs of meson fields can be written as

⟨π0⟩ =
B0F

3
πC4

[
gπ(mu +md + 4ms)−

√
3gη(mu −md)

]
4(mumd +mdms +msmu)

,

⟨η⟩ =
B0F

3
πC4

[
−
√
3gπ(mu −md) + 3gη(mu +md)

]
4(mumd +mdms +msmu)

, (2.41)

which is inversely proportional to quark masses! The vev of U can be written as

⟨U⟩ = exp

i


⟨π0⟩+ 1√
3
⟨η⟩ 0 0

0 −⟨π0⟩+ 1√
3
⟨η⟩ 0

0 0 − 2√
3
⟨η⟩

 /Fπ

 . (2.42)

This defines the vacuum state of Goldstone-boson fields.
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Therefore, we can redefine the meson fields in the following way:

U = ⟨U⟩U ′ , (2.43)

where U ′ collects the physical meson excitations. Through this redefinition, the me-

son lagrangian no longer contains terms annihilating the physical Goldstone bosons.

Correspondingly, we redefine the baryon fields,

ξBξ = ⟨U⟩ξ′B′ξ′ , (2.44)

through a chiral transformation with L = ⟨U⟩ and R = 1.

The above redefinition can change P-even and CP-even terms with explicit

chiral symmetry breaking to P-odd and CP-odd terms. This is particularly true for

the CP-even baryon lagrangian with linear dependence on quark masses,

Lc = c1Tr[B̄B]Tr[MU †] + c2Tr[Mξ†B̄Bξ†] + c3Tr[B̄ξ
†Mξ†B] + h.c. (2.45)

and

Ld = d1Tr[B̄γ5B]Tr[MU †] + d2Tr[Mξ†B̄γ5Bξ
†] + d3Tr[B̄γ5ξ

†Mξ†B] + h.c.(2.46)

Substituting ⟨U⟩ to the above equation, we get CP-odd pion-nucleon couplings

through

c1Tr[B̄
′B′]Tr[⟨U⟩†MU ′†] + c2Tr[⟨U⟩†Mξ′†B̄′B′ξ′†] + c3Tr[B̄

′ξ′†⟨U⟩†Mξ′†B′] + h.c.

(2.47)

and the CP-odd masses of baryons

d1Tr[B̄
′γ5B

′]Tr[⟨U⟩†MU ′†]+d2Tr[⟨U⟩†Mξ′†B̄′γ5B
′ξ′†]+d3Tr[B̄

′γ5ξ
′†⟨U⟩†Mξ′†B′]+h.c.

(2.48)
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which is part of the CP-odd mass generated by the four-quark operator. Note that

since ⟨U⟩ is inversely proportional to the quark mass, the above contribution is not

suppressed in the chiral limit.

One can also get a CP-odd dipole moment by considering a photo-pion pro-

duction term off the nucleon. When the pion is condensed through CP-odd effects,

one generates a new contribution to the CP-odd moment, which is beyond the scope

of this paper.

2.3.2 Matching to CP-Odd Baryon Operators

In this subsection, we construct the leading P-odd and CP-odd baryon oper-

ators induced by the CP-odd four-quark operators. These include all the operators

with one baryon and one conjugate baryon fields, and without any quark masses or

derivatives. All the independent operators are listed in Table 2.4. A brief proof of

the completeness and independence of these operators is shown in Appendix B.

There are two types of operators in Table 2.4, those with and without tilde.

For the first group without tilde, the expansion of the pion field generates the P-odd

and CP-odd nucleon-pion vertices

LCP−odd
NNπ = (hcp̄nπ

+ + h.c.) + hnn̄nπ
0 + hpp̄pπ

0 . (2.49)

For the second group, the leading order expansion is a bilinear-baryon term with a

CP-odd mass structure,

LCP−odd
mass ∼ −m⋆n̄iγ5n. (2.50)

This term contributes to the CP-odd baryon wave function.
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Rept. Operators

(3̄, 3)
O

(1)
3 = iTr[B̄B]Tr[AU †], O

(2)
3 = iTr[Aξ†B̄Bξ†], O

(3)
3 = iTr[B̄ξ†Aξ†B],

Õ
(1)
3 = iTr[B̄γ5B]Tr[AU †], Õ

(2)
3 = iTr[Aξ†B̄γ5Bξ

†], Õ
(3)
3 = iTr[B̄γ5ξ

†Aξ†B],

(6, 6̄)

O
(1)
6 = iSij

kl(ξB̄ξ)
k
i (ξBξ)

l
j, O

(2)
6 = iSij

kl(ξB̄Bξ)
k
iU

l
j,

O
(3)
6 = iSij

kl(B̄ξ)
m
i (ξB)kmU

l
j, O

(4)
6 = iTr[B̄B]Sij

klU
k
i U

l
j.

Õ
(1)
6 = iSij

kl(ξB̄γ5ξ)
k
i (ξBξ)

l
j, Õ

(2)
6 = iSij

kl(ξB̄γ5Bξ)
k
iU

l
j,

Õ
(3)
6 = iSij

kl(B̄γ5ξ)
m
i (ξB)kmU

l
j, Õ

(4)
6 = iTr[B̄γ5B]Sij

klU
k
i U

l
j

(8, 8)

O
(1)
8 = iTr[B̄ξ†H1UH2ξ

†B], O
(2)
8 = iTr[ξ†B̄Bξ†H1UH2],

O
(3)
8 = iTr[ξB̄BξH2U

†H1], O
(4)
8 = iTr[B̄ξH2U

†H1ξB],

O
(5)
8 = iTr[ξB̄ξ†H1]Tr[ξ

†BξH2], O
(6)
8 = iTr[ξ†B̄ξH2]Tr[ξBξ

†H1],

O
(7)
8 = iTr[ξB̄ξH2ξ

†Bξ†H1], O
(8)
8 = iTr[ξ†B̄ξ†H1ξBξH2].

Õ
(1)
8 = iTr[B̄γ5ξ

†H1UH2ξ
†B], Õ

(2)
8 = iTr[ξ†B̄γ5Bξ

†H1UH2],

Õ
(3)
8 = iTr[ξB̄γ5BξH2U

†H1], Õ
(4)
8 = iTr[B̄γ5ξH2U

†H1ξB],

Õ
(5)
8 = iTr[ξB̄γ5ξ

†H1]Tr[ξ
†BξH2], Õ

(6)
8 = iTr[ξ†B̄γ5ξH2]Tr[ξBξ

†H1],

Õ
(7)
8 = iTr[ξB̄γ5ξH2ξ

†Bξ†H1], Õ
(8)
8 = iTr[ξ†B̄γ5ξ

†H1ξBξH2]

Table 2.4: Hadronic operators that have the same quantum numbers as four-quark

operators in different irreducible representations.
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Traditionally, P-odd and CP-odd pion-nucleon couplings are defined in terms

of isospin 0, 1, and 2 of the operators, which can be written as [17]

LπNN = ḡ
(0)
πNNN̄τ

aNπa + ḡ
(1)
πNNN̄Nϕ

0 + ḡ
(2)
πNN(N̄τ

aNπa − 3N̄τ 3Nπ0) , (2.51)

where ḡ
(i)
πNN is the coupling of the isospin-i term and τ i are the Pauli matrices. Then,

in terms of ḡ
(i)
πNN , hc, hn, and hp can be written as

hc =
√
2(ḡ

(0)
πNN+ḡ

(2)
πNN), hn = (−ḡ(0)πNN+ḡ

(1)
πNN+2ḡ

(2)
πNN), hp = (ḡ

(0)
πNN+ḡ

(1)
πNN−2ḡ

(2)
πNN) ,

(2.52)

where hp does not contribute to nEDM.

To match the P-odd and CP-odd four-quark operators to the above baryon

operators, one must find ways to calculate the corresponding non-perturbative Wil-

son coefficients. This can be done by considering the matrix elements of the quark

operators in simple states. Take Oud
11 = ūiγ5ud̄d as an example. As shown in the last

section, it can be decomposed into irreducible representations of the chiral group,

Oud
11 = O

ud,(3̄,3)
11 +O

ud,(6,6̄)
11 +O

ud,(8,8)
11 + h.c. (2.53)

The spurions related to this operator are given in Eqs. (2.17), (2.18) and (2.20).

O
ud,(3̄,3)
11 , O

ud,(6,6̄)
11 and O

ud,(8,8)
11 must be matched to the hadronic operators in the

same irreducible representations and with the same spurions. Take the un-tilded
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hadronic operators as an example:

O
ud,(3̄,3)
11 =

3∑
i=1

C
(i)
3 O

(i)
3 + ... ,

O
ud,(6,6̄)
11 =

4∑
i=1

C
(i)
6 O

(i)
6 + ... ,

O
ud,(8,8)
11 =

8∑
i=1

C
(i)
8 O

(i)
8 + ... , (2.54)

where “...” represents higher order operators.

Note that, an operator can be separated into hermitian part and anti-hermitian

part. Since the QCD Lagrangian is hermitian, the hermitian part and the anti-

hermitian part must have the same Wilson coefficient in the effective theory. Take

the operator q̄LqR as an example, it is a (3̄, 3) operator, so it can be matched to CU †

in the chiral perturbation theory, while its hermitian conjugation q̄RqL is matched to

CU with exactly the same Wilson coefficient since the QCD Lagrangian is invariant

under the hermitian conjugate transformation. Therefore, the hermitian part of q̄LqR

can be matched to C(U † + U)/2 whereas the anti-hermitian part can be matched

to C(U † − U)/2. As a result, one can use either the hermitian part or the anti-

hermitian part of the operators to get their Wilson coefficients depending on which

way is easier. For the operators without tilde listed in Table 2.4, the anti-hermitian

parts contain terms having only one baryon field and one anti-baryon field which

is easy to do the matching, while for the operators with tilde, the hermitian part

is easier. Therefore, we choose to match the anti-hermitian part of the operators

without a tilde whereas match the hermitian part of the operators with a tilde to

get the Wilson coefficients of them. One can show that this matching procedure
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works when current algebra is valid such as in non-relativistic quark model.

The leading-order expansion of the hadronic operators are, for (3̄, 3) operators,

O
(1)
3 ≃ ip̄p+ in̄n+ iΛ̄Λ + iΣ̄0Σ0 + iΣ̄+Σ+ + iΣ̄−Σ− + iΞ̄0Ξ0 + iΞ̄−Ξ− ,

O
(2)
3 ≃ ip̄p+ in̄n+

2i

3
Λ̄Λ ,

O
(3)
3 ≃ 2i

3
Λ̄Λ + iΞ̄0Ξ0 + iΞ̄−Ξ− . (2.55)

Therefore, we can determine the Wilson coefficients with four physical matrix ele-

ments,

C
(1)
3 + C

(2)
3 = (−i)⟨p|Oud,(3̄,3)

11 |p⟩ ,

C
(1)
3 = (−i)⟨Σ0|Oud,(3̄,3)

11 |Σ0⟩ ,

C
(1)
3 +

2

3
C

(2)
3 = (−i)⟨Λ|Oud,(3̄,3)

11 |Λ⟩ ,

C
(1)
3 + C

(3)
3 = (−i)⟨Ξ0|Oud,(3̄,3)

11 |Ξ0⟩ , (2.56)

where we have chosen the normalization condition

⟨P⃗ |P⃗ ′⟩ = (2π)3δ3(P⃗ − P⃗ ′) , (2.57)

where P⃗ and P⃗ ′ are the momenta of the states.

Since the number of equations is larger than the number of variables, to get a

solution the following condition must be satisfied,

det



1 1 0 ⟨p|Oud,(3̄,3)
11 |p⟩

1 0 0 ⟨Σ0|Oud,(3̄,3)
11 |Σ0⟩

1 2
3

0 ⟨Λ|Oud,(3̄,3)
11 |Λ⟩

1 0 1 ⟨Ξ0|Oud,(3̄,3)
11 |Ξ0⟩


= 0 , (2.58)
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which gives a nontrivial relation among these matrix elements;

−2

3
⟨p|Oud,(3̄,3)|p⟩ − 1

3
⟨Σ0|Oud,(3̄,3)

11 |Σ0⟩+ ⟨Λ|Oud,(3̄,3)
11 |Λ⟩ = 0 . (2.59)

This relation must be satisfied in the chiral limit, so it is a test for direct calculations

of the matrix elements. Similarly, a simple inspection of Eq. (2.55) can give us some

more relations among matrix elements

⟨p|Oud,(3̄,3)
11 |p⟩ = ⟨n|Oud,(3̄,3)

11 |n⟩ ,

⟨Σ0|Oud,(3̄,3)
11 |Σ0⟩ = ⟨Σ+|Oud,(3̄,3)

11 |Σ+⟩ = ⟨Σ−|Oud,(3̄,3)
11 |Σ−⟩ ,

⟨Ξ0|Oud,(3̄,3)
11 |Ξ0⟩ = ⟨Ξ−|Oud,(3̄,3)

11 |Ξ−⟩ . (2.60)

Generalizing the above discussion to (6, 6̄) and (8, 8) operators, we write down

the leading expansion of the hadronic operators,

O
(1)
6 ≃ i

3
Λ̄Λ− iΣ̄0Σ0 + iΣ̄+Σ+ + iΣ̄−Σ− ,

O
(2)
6 ≃ ip̄p+ in̄n+

i

3
Λ̄Λ + iΣ̄0Σ0 + iΣ̄+Σ+ + iΣ̄−Σ− ,

O
(3)
6 ≃ i

3
Λ̄Λ + iΞ̄0Ξ0 + iΞ̄−Ξ− + iΣ̄0Σ0 + iΣ̄+Σ+ + iΣ̄−Σ− ,

O
(4)
6 ≃ 2i

(
p̄p+ n̄n+ Λ̄Λ + iΞ̄0Ξ0 + Ξ̄−Ξ− + Σ̄0Σ0 + Σ̄+Σ+ + Σ̄−Σ−) ;(2.61)
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O
(1)
8 ≃ i

(
p̄p+

1

6
Λ̄Λ +

1

2
√
3
Λ̄Σ0 +

1

2
√
3
Σ̄0Λ +

1

2
Σ̄0Σ0 + Σ̄+Σ+

)
,

O
(2)
8 ≃ i

(
1

6
Λ̄Λ + Ξ̄−Ξ− +

1

2
√
3
Λ̄Σ0 +

1

2
√
3
Σ̄0λ+

1

2
Σ̄0Σ0 + Σ̄−Σ−

)
,

O
(3)
8 ≃ i

(
1

6
Λ̄Λ + Ξ̄0Ξ0 − 1

2
√
3
Λ̄Σ0 − 1

2
√
3
Σ̄0λ+

1

2
Σ̄0Σ0 + Σ̄+Σ+

)
,

O
(4)
8 ≃ i

(
n̄n+

1

6
Λ̄Λ− 1

2
√
3
Λ̄Σ0 − 1

2
√
3
Σ̄0Λ +

1

2
Σ̄0Σ0 + Σ̄−Σ−

)
O

(5)
8 ≃ iΣ̄+Σ+ ,

O
(6)
8 ≃ iΣ̄−Σ− ,

O
(7)
8 ≃ i

(
1

6
Λ̄Λ +

1

2
√
3
Λ̄Σ0 − Σ̄0Λ− 1

2
Σ̄0Σ0

)
,

O
(8)
8 ≃ i

(
1

6
Λ̄Λ− 1

2
√
3
Λ̄Σ0 + Σ̄0Λ− 1

2
Σ̄0Σ0

)
, (2.62)

from which we can get similar relations among matrix elements just like in the

(3̄, 3) case shown in Table 2.5. The other four-quark operators with the same flavor

structures have the same relations among hadronic matrix elements as in this case.

One can either build models or do lattice QCD calculations to get these sim-

plest four-quark matrix elements. Once known, one can get the Wilson coefficients

by solving Eq. (2.56) and similar equations for (6, 6̄) and (8, 8) operators. Then one

can expand these hadronic operators to the first order with one meson field in each

term to get the P-odd and CP-odd pion-nucleon vertices. A similar method works

for baryon operators with tilde. We will consider these matrix elements in the next

section.
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Rep. Relations

(3̄, 3)

⟨p|Oud,(3̄,3)
11 |p⟩ = ⟨n|Oud,(3̄,3)

11 |n⟩, ⟨Ξ0|Oud,(3̄,3)
11 |Ξ0⟩ = ⟨Ξ−|Oud,(3̄,3)

11 |Ξ−⟩,

⟨Σ0|Oud,(3̄,3)
11 |Σ0⟩ = ⟨Σ+|Oud,(3̄,3)

11 |Σ+⟩ = ⟨Σ−|Oud,(3̄,3)
11 |Σ−⟩,

−2
3
⟨p|Oud,(3̄,3)

11 |p⟩ − 1
3
⟨Σ0|Oud,(3̄,3)

11 |Σ0⟩+ ⟨Λ|Oud,(3̄,3)
11 |Λ⟩ = 0

(6, 6̄)

⟨p|Oud,(6,6̄)
11 |p⟩ = ⟨n|Oud,(6,6̄)

11 |n⟩

⟨Ξ+|Oud,(6,6̄)
11 |Ξ+⟩ = ⟨Ξ−|Oud,(6,6̄)

11 |Ξ−⟩

2⟨p|Oud,6,6̄
11 |p⟩ − ⟨Σ0|Oud,(6,6̄))

11 |Σ0⟩ − 3⟨Λ|Oud,(6,6̄)
11 |Λ⟩+ 2⟨Ξ0|Oud,(6,6̄)

11 |Ξ0⟩ = 0

(8, 8)

⟨p|Oud,(8,8)
11 |p⟩+ ⟨n|Oud,(8,8)

11 |n⟩+ ⟨Σ0|Oud,(8,8)
11 |Σ0⟩ − 3⟨Λ|Oud,(8,8)

11 |Λ⟩

+⟨Ξ0|Oud,(8,8)
11 |Ξ0⟩+ ⟨Ξ−|Oud,(8,8)

11 |Ξ−⟩ = 0

⟨p|Oud,(8,8)
11 |p⟩ − ⟨n|Oud,(8,8)

11 |n⟩ − ⟨Ξ0|Oud,(8,8)
11 |Ξ0⟩+ ⟨Ξ−|Oud,(8,8)

11 |Ξ−⟩

−
√
3⟨Λ|Oud,(8,8)

11 |Σ0⟩ −
√
3⟨Σ0|Oud,(8,8)

11 |Λ⟩ = 0

Table 2.5: Relations among hadronic matrix elements of the four-quark operators

in different chiral representations.
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2.3.3 Matching to EDM-Type Operators

In χPT, any CP-odd quark-gluon operator will generate directly an EDM con-

tribution to the neutron, analytical in the chiral limit. To write down such a contri-

bution, introduce vector and axial vector octet potential vµ and aµ, which transform

under local chiral rotations (with space-time dependent chiral transformation) as

rµ ≡ vµ + aµ −→ v′µ + a′µ = R(vµ + aµ)R
† + iR∂µR

† ,

lµ ≡ vµ − aµ −→ v′µ − a′µ = L(vµ − aµ)L
† + iL∂µL

† . (2.63)

The corresponding gauge fields are defined as

fR
µν = ∂µrν − ∂νrµ − i[rµ, rν ] ,

fL
µν = ∂µlν − ∂νlµ − i[lµ, lν ] . (2.64)

The gauge fields with definite parity are defined as

f±
µν = ξ†fR

µνξ ± ξfL
µνξ

†, (2.65)

which transform under chiral transformation as

f±
µν → Kf±

µνK
† . (2.66)

When reducing to the electromagnetic field, aµ = 0, f±
µν = (ξ†Qξ± ξQξ†)Fµν , where

Q = diag(2/3,−1/3,−1/3) and Fµν is the electromagnetic flield [23].

One can write down a number of EDM type of operators which contain B̄ and

B, f±
µν , and the spurion fields A, H, and S. These contributions are direct matching

contributions to the neutron EDM, and cannot be calculated in χPT. These chiral

constants can in principle be calculated in lattice QCD. However, we will present

quark-model estimates in Sec. V.
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2.3.4 Peccei-Quinn Symmetry and Induced θ-Term

The experimental upper bound on the neutron EDM gives a strong constraint

on the P-odd and CP-odd θ-term, θGG̃, in the QCD lagrangian [7, 14, 6]. A brief

discussion of θ-term contribution to nEDM can be found in Appendix C. Using the

current experimental limit [33],

dn < 2.9× 10−26e cm , (2.67)

one can get the upper bound,

θ < 10−10 . (2.68)

On the other hand, it is unnatural for a parameter of the fundamental theory to be

so small without fine tuning. There are generally two ways to solve this strong CP

problem in the literature. The first is by introducing the spontaneous breaking of

parity. Since the θ-term also breaks parity, if at some high energy scale parity is

conserved, then the θ-term at low energy scale can only be generated by loop effects

and will be suppressed naturally [34].

The other way is to introduce the Peccei-Quinn symmetry, U(1)A [35]. After

the spontaneous breaking of the symmetry, there emerges a pseudo-goldstone boson,

a, which is called the axion [36, 37, 38]. The effective Lagrangian for the axion field

can be written as

La =
1

2
∂µa∂

µa+
a

fa

αs

8π
Ga

µνG̃
aµν , (2.69)

which includes an effective interaction with GG̃. The axion field gets a small mass
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through the non-vanishing correlation function

K = i

{∫
d4xeik·x

⟨
0
∣∣∣T (αs

8π
GG̃(x),

αs

8π
GG̃(0)

)∣∣∣ 0⟩}
k=0

, (2.70)

after taking into account the non-perturbative QCD effect [37, 38].

When there is an additional neutral P-odd, CP-odd quark operator, OCP−odd,

in the lagrangian, the correlation function

K1 = i

{∫
d4xeik·x

⟨
0
∣∣∣T (αs

8π
GG̃(x), OCP−odd(0)

)∣∣∣ 0⟩}
k=0

(2.71)

will be generally nonzero. Therefore, the vev of a, which cancels precisely the θ-term

in the original lagrangian, will now be shifted by a small amount proportional to

K1. A non-vanishing effective θ-term is induced as [39]

θind = −K1

K
, (2.72)

which can contribute to the neutron EDM.

Following Ref. [39], we take the operator ūiγ5ud̄d as an example to calculate

the contribution to neutron EDM through the induced θ-term. Then, K1 can then

be written as

K1 = i

{∫
d4xeik·x

⟨
0
∣∣∣T (αs

8π
GG̃(x), C4ūiγ5ud̄d(0)

)∣∣∣ 0⟩}
k=0

. (2.73)

Using the chiral anomaly [40], one can get

αs

4π
GG̃ = ∂µJ

µ
5 − 2m∗(ūiγ5u+ d̄iγ5d+ s̄iγ5s), (2.74)

where

Jµ
5 ≡

(
m∗

mu

ūγµγ5u+
m∗

md

d̄γµγ5d+
m∗

ms

s̄γµγ5s

)
. (2.75)
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Then one can get

K1 =
i

2

∫
d4xeik·x

⟨
0
∣∣T (∂µJµ

5 (x), C4ūiγ5ud̄d(0)
)∣∣ 0⟩

k=0

− i

2

∫
d4xeik·x

⟨
0
∣∣T (2m∗(ūiγ5u+ d̄iγ5d+ s̄iγ5s)(x), C4ūiγ5ud̄d(0)

)∣∣ 0⟩
k=0

.(2.76)

The second term on the right-hand side of the above equation is negligible compared

to the first term because it is explicitly proportional to the reduced quark mass m∗

and the operator ūiγ5u + d̄iγ5d + s̄iγ5s cannot annihilate light mesons. Therefore

K1 can be calculated as

K1 ≈ i

2

∫
d4xeik·x⟨0|T (∂µJµ

5 (x), C4ūiγ5ud̄d(0))|0⟩k=0

= − i

2
C4⟨0|[Q5(0), ūiγ5ud̄d(0)]|0⟩, (2.77)

where Q5 is the charge related to the current Jµ
5 defined in Eq. (2.75). In the spirit

of large NC [41, 42] expansion one can assume that

⟨0|ūiγ5ud̄iγ5d|0⟩ ≪ ⟨0|ūud̄d|0⟩ ≈ ⟨0|ūu|0⟩⟨0|d̄d|0⟩. (2.78)

Therefore, we can get

K1 ≃ − i

2
C4⟨0|[Q5(0), ūiγ5u(0)]|0⟩⟨0|d̄d|0⟩ = −C4

m∗

mu

⟨0|ūu|0⟩⟨0|d̄d|0⟩

= −m∗

mu

C4B
2
0F

4
π . (2.79)

Using the previously known result [38]

K = −m∗F
2
πB0 , (2.80)

one can get the θ angle induced by the operator ūiγ5ud̄d,

θind = −K1

K
= −C4B0F

2
π

mu

. (2.81)
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A similar result can be obtained for any other CP-odd four-quark operator.

Using the standard chiral result in the literature [8], we write down the effective

chiral lagrangian corresponding to this induced θ term;

Lθ =
4θm∗

Fπ

(
c2Tr[ΣB̄B] + c3Tr[B̄ΣB]

)
+ 2m∗θ(3d1 + d2 + d3)Tr[B̄iγ5B] . (2.82)

From the above, we read off the CP-odd pion-nucleon coupling and the CP-odd

mass of the neutron;

hc = −2
√
2C4B0Fπm∗

mu

hn =
2C4B0Fπm∗

mu

,

M⋆ =
2C4B0F

2
πm∗

mu

(3d1 + d2 + d3) . (2.83)

Comparing this with the meson condensates contribution in Eq. (2.85), one finds

that they are in the same order. If the Peccei-Quinn symmetry exists, one should

add this contribution to the neutron EDM. However, since it is not known if the

axion mechanism is in operation, we will not include this contribution to the nEDM

in the remainder of the paper.

2.4 P-odd and CP-odd nucleon-pion vertices and CP-odd Nucleon

Mass

In this section, we study the induced physical P-odd and CP-odd nucleon-

pion vertices as well as the CP-odd nucleon mass from four-quark operators. There

are a number of contributions to consider: First, the CP-odd meson lagrangian

will generate meson condensates which can convert a CP-even vertex into a CP-odd

one. Second, the baryon wave function contains the CP-odd part due to the CP-odd

45



nucleon mass, which can also rotate a CP-even coupling into a CP-odd one. Finally,

there is the contribution from the direct matching operators (without a tilde) in

TABLE II. We will consider all of these in this section.

2.4.1 Meson Condensates Contribution

We use the vacuum saturation approximation to calculate the meson effective

lagrangian; the vevs of π0 and η can be obtained from Eq. (2.41), where gπ and gη

for all the four-quark operators built with color-singlet and octet scalar currents are

listed in Table 2.6. Those induced by tensor operators vanish in this approximation.

In the large Nc QCD [41] (also see Ref. [42] for a good review), the leading

contributions for operators constructed from two color-octet currents and two tensor

currents are shown as diagrams (a) and (b) in Fig. 2.1, respectively. Detailed anal-

ysis shows that the diagrams (a) and (b) suffer from 1/N2
c suppressions compared

with (c), which stands for the operator constructed from two scalar color-singlet

currents.

Terms contributing to the P-odd, CP-odd nucleon-pion vertices through the

condensates of neutral mesons are shown in Eq. (2.47). At tree level, one can relate

the coefficients c1, c2, and c3 to the mass differences of the baryons and the πN

σ-term, and their values can be found in the literature [23];

c1 = 2B0b0 , c2 = 2B0(bd − bf ) , c3 = 2B0(bd + bf ) , (2.84)

where b0 = −0.517 GeV−1, bd = 0.066 GeV−1 and bf = −0.213 GeV−1.

The vertices we are interested in have two nucleons and one pion because of
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Operator gπ gη Operator gπ gη

ūiγ5ud̄d 1 1/
√
3 ūiγ5t

aud̄tad 0 0

d̄iγ5dūu −1 1/
√
3 d̄iγ5t

adūtau 0 0

ūiγ5us̄s 1 1/
√
3 ūiγ5t

aus̄tas 0 0

s̄iγ5sūu 0 −2/
√
3 s̄iγ5t

asūtau 0 0

d̄iγ5ds̄s −1 1/
√
3 d̄iγ5t

ads̄tas 0 0

s̄iγ5sd̄d 0 −2/
√
3 s̄iγ5t

asd̄tad 0 0

ūiγ5uūu 5/6 5/(6
√
3) ūiγ5t

auūtau −2/9 −2/(9
√
3)

d̄iγ5dd̄d −5/6 5/(6
√
3) d̄iγ5t

add̄tad 2/9 −2/(9
√
3)

s̄iγ5ss̄s 0 −5/(3
√
3) s̄iγ5t

ass̄tas 0 4/(9
√
3)

Table 2.6: gπ and gη induced by four-quark operators constructed by scalar currents.

Those induced by products of tensor currents are zero.
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Meson condensates contribution Factorization

Operator hc (C4B
2
0) hn (C4B

2
0) hc (C4B

2
0) hn (C4B

2
0)

ūiγ5ud̄d −0.0117 0.225 0.0063 −0.24

d̄iγ5dūu 0.0130 −0.227 0.0063 0.19

ūiγ5us̄s −0.0117 0.225 0 −0.088

s̄iγ5sūu −0.00122 0.000864 0 0

d̄iγ5ds̄s 0.0130 −0.227 0 0.087

s̄iγ5sd̄d −0.00122 0.000864 0 0

ūiγ5uūu −0.00976 0.188 0 −0.16

d̄iγ5dd̄d 0.0108 −0.189 0 0.20

s̄iγ5ss̄s −0.00102 0.000722 0 0

ūiγ5σ
µνud̄σµνd 0 0 0.076 0

ūiγ5σ
µνus̄σµνs 0 0 0 0

d̄iγ5σ
µνds̄σµνs 0 0 0 0

Table 2.7: CP-odd pion-nucleon couplings induced by meson condensates. C4 is the

Wilson coefficient of the corresponding four-quark operator. The two columns on

the right side shows the P-odd and CP-odd pion-nucleon vertices calculated using

factorization which will be discussed in Sec. V.
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Meson condensates contribution Factorization

Operator hc (C4B
2
0) hn (C4B

2
0) hc (C4B

2
0) hn (C4B

2
0)

ūiγ5t
aud̄tad 0 0 0.0085 0

d̄iγ5t
adūtau 0 0 0.0085 0

ūiγ5t
aus̄tas 0 0 0 0

s̄iγ5t
asūtau 0 0 0 0

d̄iγ5t
ads̄tas 0 0 0 0

s̄iγ5t
asd̄tad 0 0 0 0

ūiγ5t
auūtau 0.00261 −0.0501 0 0.042

d̄iγ5t
add̄tad −0.00288 0.0503 0 −0.054

s̄iγ5t
ass̄tas 0.000272 −0.000192 0 0

ūiγ5σ
µνtaud̄σµνt

ad 0 0 0.101 0

ūiγ5σ
µνtaus̄σµνt

as 0 0 0 0

d̄iγ5σ
µνtads̄σµνt

as 0 0 0 0

Table 2.8: CP-odd pion-nucleon couplings induced by meson condensates. C4 is the

Wilson coefficient of the corresponding four-quark operator. The two columns on

the right side shows the P-odd and CP-odd pion-nucleon vertices calculated using

factorization which will be discussed in Sec. V.
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Figure 2.1: Annihilation of pion by four-quark operators: (a) operator constructed

from two color-octet current, like ūiγ5t
aud̄tad; (b) operator from two tensor currents,

like ūσµνiγ5ud̄σµνd; (c) operator from two scalar currents, like ūiγ5ud̄d.

the infrared enhancement in the pion loop [7]. From Eq. (2.47) we can read off the

relevant terms,

− 1

3F 2
π

{
c3[3

√
2⟨π0⟩(mu −md) +

√
6⟨η⟩(mu +md)]

}
(n̄pπ− + p̄nπ+)

− 2

3F 2
π

{
c3md(3⟨π0⟩ −

√
3⟨η⟩) + c1[3(mu +md)⟨π0⟩+

√
3⟨η⟩(mu −md)]

}
n̄nπ0 ,

(2.85)

in which ⟨π0⟩ and ⟨η⟩ are given in Eq. (2.41). It is customary to define the P-odd,

CP-odd nucleon-pion couplings

LCPV = hc(p̄nπ
+ + n̄pπ−) + hnn̄nπ

0, (2.86)

where hc and hn induced by meson condensates are listed in Tables 2.7 and 2.8.

Typical values of hc are one order of magnitude smaller than the value of hn because

√
2c3(md −mu) ≪ 4c1(mu +md). For hc or hn generated by a certain four-quark

operator, if the contribution from ⟨π0⟩ is non-vanishing, the contribution from ⟨η⟩

50



can be neglected since ⟨π0⟩/⟨η⟩ ≃ ms/m̂ ≃ 30. This also explains the contributions

from operators with the s̄iγ5s factor are much smaller than those without. Finally,

the contributions from operators made of color-octet currents are smaller than those

from operators made of color-singlet currents because a Fierz transformation is

needed for color-octet operators to annihilate the mesons, introducing a suppressing

factor of 1/4.

In Tables 2.7 and 2.8 one can see that the P-odd and CP-odd pion-nucleon

couplings are proportional to B2
0 , which is related to the quark condensates. The

value of B0 can be extracted from the pion mass

m2
π = B0(mu +md) . (2.87)

The natural scale for χPT is 4πFπ [43], and for simplicity we use the same scale to

define the quark masses to get B0. The quark masses we use are mu = 2.4 MeV and

md = 4.75 MeV in MS at 2 GeV. Using the one-loop renormalization group to run

them down to µ = 4πFπ, we have

B0 = 2.2 GeV . (2.88)

Here we have used one-loop ΛQCD = 250 MeV.

2.4.2 Direct Contribution from Matching

To get the P-odd and CP-odd meson-nucleon coupling through direct match-

ing, one needs to calculate the matrix elements listed in Table 2.5. Lattice QCD is

perhaps the ultimate choice for calculating hadronic matrix elements. However, it is
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still quite difficult to directly calculate the matrix elements of four-quark operators

between baryons. Therefore, we resort to quark models to get an estimate. In the

remainder of this subsection we will use two different quark models to calculate these

hadronic matrix elements: the simple non-relativistic quark model [44, 45, 46, 47, 48]

and the MIT bag model [49, 50, 51, 52, 48]. We also discuss the significance of the

model calculations from the viewpoint of naive factorization.

2.4.2.1 Non-relativistic Quark Model

Here we consider the simplest version of the non-relativistic quark model with

harmonic oscillator interacting potentials,

H = −
3∑

i=1

1

2m
∇2

i +
1

2

mc

3
ω2
[
(r⃗1 − r⃗2)

2 + (r⃗2 − r⃗3)
2 + (r⃗3 − r⃗1)

2
]
, (2.89)

where r⃗1, r⃗2, and r⃗3 are positions of the three quarks inside the baryon, mc is the

mass of the constituent quarks and ω is the angular frequency. One can isolate the

center of mass by introducing the Jacobi coordinates,

R⃗ =
1√
3
(r⃗1 + r⃗2 + r⃗3) ,

ρ⃗ =
1√
2
(r⃗1 − r⃗2) ,

λ⃗ =
1√
6
(r⃗1 + r⃗2 − 2r⃗3) . (2.90)

Then the spatial wave function of the nucleon can be written as

f(r⃗1, r⃗2, r⃗3; k⃗) = (3
√
3)−1/2 exp(iP⃗ · R⃗/

√
3)ψ(ρ⃗, λ⃗) , (2.91)

where ψ(ρ⃗, λ⃗) = (α3/π3/2) exp [−α2(ρ2 + λ2)/2] in which α = (mω)1/2 ≈ 0.41 GeV

[47] is the oscillator parameter, and P⃗ is the nucleon momentum. It is easy to check
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that the wave function is normalized to (2π)3δ3(P⃗ − P⃗ ′). The internal part of the

wave function is assumed to have SU(6) spin-flavor symmetry. For example, the

spin-up proton state has the following wave function,

|p↑⟩ =
1√
18

∫
d3r1d

3r2d
3r3f(r⃗1, r⃗2, r⃗3)ϵ

abc

[
ua†↓ (r⃗1)d

b†
↑ (r⃗2)− ua†↑ (r⃗1)d

b†
↓ (r⃗2)

]
uc†↑ (r⃗3)|0⟩ , (2.92)

where a, b, and c are color indices and the anti-commutation relation of the non-

relativistic quark creation and annihilation operators is defined as {ua†α (x⃗), ubβ(y⃗)} =

δabδαβδ
3(x⃗− y⃗) with α and β as spin indices. The spatial part of the wave functions

is common for all members of the baryon octet. The SU(6) internal wave functions

are listed in Table 2.9 for easy reference.

|p↑⟩ ∼ 1√
18
ϵabc[ua†↓ d

b†
↑ − ua†↑ d

b†
↓ ]u

c†
↑ |0⟩;

|n↑⟩ ∼ 1√
18
ϵabc[da†↑ u

b†
↓ − da†↓ u

b†
↑ ]d

c†
↑ |0⟩;

|Λ↑⟩ ∼ 1√
12
ϵabc[ua†↑ d

b†
↓ − ua†↓ d

b†
↑ ]s

c†
↑ |0⟩;

|Σ+
↑ ⟩ ∼ 1√

18
ϵabc[sa†↓ u

b†
↑ − sa†↑ u

b†
↓ ]u

c†
↑ |0⟩;

|Σ0
↑⟩ ∼ 1

6
ϵabc[sa†↑ d

b†
↓ u

c†
↑ + sa†↑ d

b†
↑ u

c†
↓ − 2sa†↓ d

b†
↑ u

c†
↑ ]|0⟩;

|Σ−
↑ ⟩ ∼ 1√

18
ϵabc[sa†↑ d

b†
↓ − sa†↓ d

b†
↑ ]d

c†
↑ |0⟩;

|Ξ0
↑⟩ ∼ 1√

18
ϵabc[sa†↓ u

b†
↑ − sa†↑ u

b†
↓ ]s

c†
↑ |0⟩;

|Ξ−
↑ ⟩ ∼ 1√

18
ϵabc[sa†↑ d

b†
↓ − sa†↓ d

b†
↑ ]s

c†
↑ |0⟩.

Table 2.9: SU(6) wave functions of baryon spin-1/2 octet.

Using Eqs. (2.15)-(2.20), one can project operator ūiγ5ud̄d into different irre-

ducible representations of the chiral group, O
ud,(3̄,3)
11 , O

ud,(6,6̄)
11 , and O

ud,(8,8)
11 as in Eq.
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(D.12). Restricting to the non-relativistic case, these operators become

O
ud,(3̄,3)
11 (x) ≃ − i

8
:
(
ua†α (x)uaα(x)d

b†
β (x)d

b
β(x)− da†α (x)uaα(x)u

b†
β (x)d

b
β(x)

)
:

O
ud,(6,6̄)
11 (x) ≃ − i

8
:
(
ua†α (x)uaα(x)d

b†
β (x)d

b
β(x) + da†α (x)uaα(x)u

b†
β (x)d

b
β(x)

)
:

O
ud,(8,8)
11 (x) ≃ i

4
: ua†α (x)uaα(x)d

b†
β (x)d

b
β(x) : . (2.93)

where u and d are non-relativistic two-component quark annihilation operators, a

and b label the color, α and β label the spin, and the “: :” means that the products

of the constituent quark fields are normal-ordered.

Considering the (6, 6̄) component as an example, the simple quark model gives

the following matrix elements:

⟨p↑(P )|Oud,(6,6̄)
11 |p↑(P )⟩ = ⟨n↑(P )|Oud,(6,6̄)

11 |n↑(P )⟩ = − i

8
a ,

⟨Σ+
↑ (P )|O

ud,(6,6̄)
11 |Σ+

↑ (P )⟩ = ⟨Σ−
↑ (P )|O

ud,(6,6̄)
11 |Σ−

↑ (P )⟩ = 0 ,

⟨Σ0
↑(P )|O

ud,(6,6̄)
11 |Σ0

↑(P )⟩ = − i

4
a ,

⟨Λ↑(P )|Oud,(6,6̄)
11 |Λ↑(P )⟩ = 0 ,

⟨Ξ0
↑(P )|O

ud,(6,6̄)
11 |Ξ0

↑(P )⟩ = ⟨Ξ−
↑ (P )|O

ud,(6,6̄)
11 |Ξ−

↑ (P )⟩ = 0 , (2.94)

where a =
∫
d3rf ∗(P⃗ ; x⃗, x⃗, r⃗)f(P⃗ ; x⃗, x⃗, r⃗) is independent of x⃗. It is easy to check that

these matrix elements satisfy the symmetry conditions listed in Table 2.5. Using

Eq. (2.61), one can get the Wilson coefficients for (6, 6̄) hadronic operators defined

in Eq. (2.54);

C
(1)
6 = −C(2)

6 =
1

8

α3

(2π)3/2
;

C
(3)
6 = C

(4)
4 = 0 . (2.95)
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Expanding the hadronic operators to the first order, one can get the P-odd, CP-odd

three-point nucleon-pion couplings, hc and hn. The result induced by O
ud,(6,6̄)
11 is

hc = Cud
11α

3/(8π3/2Fπ) ≃ 0.022Cud
11α

3/Fπ , hn = 0 . (2.96)

In the same way one can calculate hc and hn induced by the (3̄, 3) and (8, 8) com-

ponents of ūiγ5ud̄d. Taking into account the hermitian conjugate part of each com-

ponent, the contribution for hc and hn is doubled.

2.4.2.2 MIT Bag Model

The basic idea of the bag model is that valence quarks are confined in a bag

where the vacuum is in a phase different from the true QCD vacuum. The inside

has a constant energy-momentum density generating a negative pressure, B, which

is balanced by the positive pressure of the quarks. The bag is usually taken as a

sphere of radius R0. The quarks inside the bag move freely with the following wave

functions,

ψn,−1,1/2,m(r⃗, t) =
N√
4π

 ij0(ωn,−1r/R0)χm

−j1(ωn,−1r/R0)σ⃗ · r̂χm

 . (2.97)

The normalization factor of the above is

N(ωnκ) =

(
ω3
nκ

2R3
0(ωnκ + κ) sin2 ωnκ

)1/2

. (2.98)

The boundary condition gives the energy eigenvalue equation,

tanωnκ =
ωnκ

ωnκ + κ
, (2.99)
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and numerical calculation gives ω0 = 2.043. The ground state of quarks is κ = −1,

n = 0 state. For the baryon octet, all the quarks are in this state. Keeping only

this, the quark operator can be written as

q(x) = ψ0,−1,1/2,m(x⃗)e
−iω0,−1t/R0b0,−1,1/2,m + (anti−quark creation) . (2.100)

The physical meaning of the operator bm(0) is that it annihilates a quark with

quantum number described by the wave function ψ0,−1,1/2,m. Due to the assumption

that inside the bag the interaction between quarks and gluons is negligible, flavor

and spin automatically become good quantum numbers.

We again take the (6, 6̄) component of ūiγ5ud̄d as an example, which can be

written as

O
ud(6,6̄)
11 ∼ − i

2
ψ̄λ(x⃗)PLψσ(x⃗)ψ̄ρ(x⃗)PLψτ (x⃗)

×
[
ua†λ u

a
σd

b†
ρ d

b
τ + da†λ u

a
σu

b†
ρ d

b
τ

]
, (2.101)

where a and b are indices of color, λ, σ, ρ, τ labeling the spin. The creation and

annihilation operators here are just like b0,−1,1/2,m in Eq. (2.100). Using

ψ̄λ(x)PLψσ(x)

=
N2

8π

{[
j20(ω0r/R0)− j21(ω0r/R0)

]
δλσ

−2ij0(ωr/R0)j0(ωr/R)χ
†
λσ⃗ · r̂χσ

}
, (2.102)

and only keeping the terms which give non-vanishing contributions after integrating
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NR quark model MIT bag model

Operators hc/(α
3/Fπ) hn/(α

3/Fπ) hc/(1/(R
3
0Fπ)) hn/(1/(R

3
0Fπ))

ūiγ5ud̄d 0.045 0.13 0.029 -0.024

d̄iγ5dūu 0.045 -0.13 0.029 0.024

ūiγ5us̄s 0 0 0 0

s̄iγ5sūu 0 0 0 0

d̄iγ5ds̄s 0 0 0 0

s̄iγ5sd̄d 0 0 0 0

ūiγ5uūu 0.045 0 0.029 0

d̄iγ5dd̄d 0.045 -0.13 0.029 -0.083

s̄iγ5ss̄s 0 0 0 0

ūiγ5σ
µνud̄σµνd 0.18 0 0.12 0

d̄iγ5σ
µνdūσµνu 0.18 0 0.12 0

ūiγ5σ
µνus̄σµνs 0 0 0 0

s̄iγ5σ
µνsūσµνu 0 0 0 0

d̄iγ5σ
µνds̄σµνs 0 0 0 0

s̄iγ5σ
µνsd̄σµνd 0 0 0 0

Table 2.10: P-odd, CP-odd three-point pion-nucleon vertices generated by P-odd,

CP-odd four-quark operators. The couplings induced by operators constructed by

two color-octet currents are equal to the couplings induced by corresponding color-

singlet operators multiplying by −2/3.
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over a spherical region, we have

ψ̄λ(x)PLψσ(x)ψ̄ρ(x)PLψτ (x)

≃ N4

64π2

{[
j20(ωor/R0)− j21(ω0r/R0)

]2
δλσδρτ

−4j20(ω0r/R0)j
2
1(ω0r/R0)(χ

†
λσ⃗ · r̂χσ)(χ

†
ρσ⃗ · r̂χτ )

}
,

where we neglect the term proportional to σ⃗ · r̂. In a proton state normalized to our

convention before, the expectation value of the operator can be written as

⟨p↑|Oud(6,6̄)
11 |p↑⟩ = − i

2
N(w0)

4 1

64π2

∫
d3x

×
{[
j20(ωor/R0)− j21(ωor/R0)

]2 ⟨p↑|A|p↑⟩ − 4j20(ω0r/R0)j
2
1(ω0r/R0)⟨p↑|B|p↑⟩

}
,

(2.103)

where

A = : ua†λ u
a
λd

b†
ρ d

b
ρ : + : da†λ u

a
λu

b†
ρ d

b
ρ :

B = : ua†λ (χ†
λσ⃗ · r̂χσ)u

a
σd

b†
ρ (χ

†
ρσ⃗ · r̂χτ )d

b
τ :

+ : da†(χ†
λσ⃗ · r̂χσ)u

a
σu

b†
ρ (χ

†
ρσ⃗ · r̂χτ )d

b
τ : . (2.104)

A straightforward calculation gives

⟨p↑|A|p↑⟩ = ⟨n↑|A|n↑⟩ = 1

⟨Σ+
↑ |A|Σ

+
↑ ⟩ = ⟨Σ−

↑ |A|Σ
−
↑ ⟩ = 0

⟨Σ0
↑|A|Σ0

↑⟩ = 2

⟨Λ↑|A|Λ↑⟩ = 0

⟨Ξ0
↑|A|Ξ0

↑⟩ = ⟨Ξ−
↑ |A|Ξ

−
↑ ⟩ = 0 , (2.105)
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and

⟨p↑|B|p↑⟩ = ⟨n↑|B|n↑⟩ = 1/3

⟨Σ+
↑ |B|Σ+

↑ ⟩ = ⟨Σ−
↑ |B|Σ−

↑ ⟩ = 0

⟨Σ0
↑|B|Σ0

↑⟩ = 2/3

⟨Λ↑|B|Λ↑⟩ = 0

⟨Ξ0
↑|B|Ξ0

↑⟩ = ⟨Ξ−
↑ |B|Ξ−

↑ ⟩ = 0 . (2.106)

Therefore we can get in the MIT bag model

⟨p↑|Oud(6,6̄)
11 (x)|p↑⟩ = iA+

i

3
B , (2.107)

where

A = −1

2
N(ω0)

4 1

16π
R3

0

∫ 1

0

(
r

R0

)2

d

(
r

R0

)[
j20(ω0r/R0)− j21(ω0r/R0)

]2
,

B =
1

2
N(ω0)

4 1

4π
R3

0

∫ 1

0

(
r

R0

)2

d

(
r

R0

)
j20(ω0r/R0)j

2
1(ω0r/R0) , (2.108)

and similarly for other matrix elements.

Then, using the method we used in the non-relativistic quark model, we can

get hc and hn induced by O
ud(6,6̄)
11 ,

hc =
0.015Cud

11

R3
0Fπ

, hn = 0 . (2.109)

One can compare this with the result from the non-relativistic quark model in Eq.

(2.96), where hc is proportional to α3. From the definition of ψ below Eq. (2.91),

1/α can also be seen as the radius of the baryon. It is well known that 1/α = 0.5 fm

gives a too small value for the proton’s charge radius and the pion cloud is usually
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NR quark model MIT bag model

Operators hc hn hc hn

ūiγ5ud̄d 0.0883 0.374 0.0560 −0.0690

d̄iγ5dūu 0.0883 −0.374 0.0560 0.0690

ūiγ5t
aud̄tad −0.0343 −0.0759 −0.0222 0.0140

d̄iγ5t
adūtau −0.0343 0.0759 −0.0222 −0.0140

ūiγ5uūu 0.0883 0 0.0569 0

d̄iγ5dd̄d 0.0883 −0.255 0.0569 −0.163

ūiγ5t
auūtau −0.0343 0 −0.0221 0

d̄iγ5t
add̄tad −0.0343 0.0991 −0.0221 0.0633

ūiγ5σ
µνud̄σµνd −0.0397 0 −0.0230 0

ūiγ5σ
µνtaud̄σµνt

ad −0.268 0 −0.180 0

Table 2.11: Same as Table 2.10, except the matrix elements are quoted here at the

scale µ = 4πFπ assuming the quark model scale of 400 MeV. The units of hc and hn

in NR quark model and MIT bag model are C4α
3/Fπ and C4/(R

3
0Fπ), respectively.
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invoked to gap it. On the other hand, the bag radius is usually taken to be 1.0 fm,

which will give a considerably smaller hc. In any case, it is reasonable to consider

R0 ∼ 1/α and take the non-relativistic quark model result as the representative.

The couplings hc and hn induced by color-singlet four-quark operators are

listed in Table 2.10 and those by color-octet operators are equal to the above mul-

tiplying by −2/3. In Table 2.10, many four-quark operators yield zero hc and hn

because we neglect the “sea quark” contribution. By making the four-quark opera-

tors normal ordered in Eq. (2.93) and (2.104), one cannot get any contribution to

hc and hn from four-quark operators containing strange quarks.

Model calculations do not have explicit QCD scale dependence. To match

the results with QCD matrix elements, we have to assume a model scale and using

perturbative QCD (pQCD) evolution to run them to appropriate perturbative scale,

for which we choose to be µ = 4πFπ. In this work, we assume the model scale to

be at 400 MeV and ΛQCD = 250 MeV and take into account the pQCD effect using

one-loop renormalization group equation to run the operators down to the energy

scale of the model. At this low energy regime the strong coupling is large and the

one-loop pQCD evolution is by no means accurate, but it may still serve as an

estimate of the pQCD effect. The matrix elements at scale µ are shown in Table

2.11.
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N NN * *

Figure 2.2: P-odd and CP-odd pion-nucleon coupling generated by the four-quark

operators through parity-odd resonances, where the black dot is the CP-odd, four-

quark operator, N∗ and ∆∗ are the CP-odd excited states.

2.4.2.3 Contribution from odd-parity resonances

The P-odd and CP-odd quark operators can also generate a CP-odd pion-

nucleon interaction through the parity-odd excited resonances which is shown in Fig.

2.2. The P-odd and CP-odd quark operators can generate mixings between nucleons

and parity-odd excited resonances which can be calculated using quark models [53].

Take the operator O
(ud)
11 = ūiγ5ud̄d and the intermediate state N(1535) as an ex-

ample, using the harmonic oscillator non-relativistic quark model the mass mixing

between neutron and N(1535) resonance can be estimated as δ = mcω
2/(8

√
3π3/2),

where mc ≈ ω ≈ 300 MeV are the constituent quark mass and the frequency of

the harmonic oscillator, respectively. The resonance can decay into a nucleon plus

a pion, the partial decay width is about 50 MeV [54]. The effective Lagrangian for

this process can be written as

LN∗ = gN∗N̄N∗π + h.c. , (2.110)

where as an order-of-magnitude estimate we discard the isospin quantum number.

Then, from the partial decay width one can get gN∗ ∼ O(1). The P-odd and CP-odd
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pion-nucleon coupling induced by this mixing can be written as

hmix =
C4gN∗δ

MN∗ −mn

≈ 6× 10−4C4GeV2 , (2.111)

where C4 is the Wilson coefficient of the four-quark operator. Compared with the

direct matching contribution listed in Table 2.10, one can see that hmix is about two

orders of magnitude smaller and therefore its contribution to nEDM is negligible.

The contribution from Fig. 2.2 can be seen as a one-loop contribution since

the intermediate resonances may also be described as scattering states of pion and

nucleon. Therefore, this contribution is suppressed by a loop factor.

2.4.3 Tree-Level CP-Odd Mass of Neutron

The nucleon CP-odd observables receive contributions from its CP-odd mass

term m′ψ̄iγ5ψ. In χPT, there are also two sources of CP-odd mass: that induced

by the condensates of meson fields, namely ⟨π0⟩ and ⟨η⟩, and that from the direct

matching contribution of the four-quark operators.

2.4.3.1 Meson Condensates

The relevant terms contributing to the CP-odd mass of neutron can be read

from expanding Eq. (2.48), which gives

n̄iγ5n
1

Fπ

{
−d1[(mu −md)⟨π0⟩+ 1√

3
(mu +md)⟨η⟩ −

2√
3
ms⟨η⟩]

+d2
2√
3
ms⟨η⟩+ d3md(⟨π0⟩ − 1√

3
⟨η⟩)

}
, (2.112)
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where d1, d2 and d3 can be related to the discrepancy of the Goldberger-Treiman

relation, and the values d2 and d3 have been determined in the literature [55].

d2 = −2B0m0(D19 − F19) , d3 = −2B0m0(D19 + F19) , (2.113)

where m0 is the common octet mass in the chiral limit, and

m0F19 ≈ −0.2 , m0D19 ≈ −0.4 . (2.114)

Note that the signs of the F19 and D19 here are different from those in Ref. [55].

Since d1 has not been determined from isospin-violation effect, we will set it to be

zero in the following calculation. One should note that disregarding d1 leads to some

errors because ms⟨η⟩ might be the same order as md⟨π0⟩.

2.4.3.2 Direct Contribution

The leading-order expansion of the tilded hadronic operators listed in Table

2.4 are hermitian. Take Õ
(2)
6 as an example. It can be written as

Õ
(2)
6 ≃ p̄iγ5p+ n̄iγ5n+

1

3
Λ̄iγ5Λ + Σ̄0iγ5Σ

0 + Σ̄+iγ5Σ
+ + Σ̄−iγ5Σ

− , (2.115)

which gives a CP-odd mass of neutron. To calculate the matching coefficients, we

can see from above that the leading-order expansion is parity-odd, and we need

to calculate a parity-odd quantity. The simplest is ∆s⃗ · ∆p⃗, where ∆s⃗ is the spin

difference between the initial and final states and ∆p⃗ is the momentum difference

between the initial and final states.

In the non-relativistic quark model, take the (6, 6̄) components of ūiγ5ud̄d, as

an example, to calculate the matrix elements proportional to ∆s⃗ ·∆p⃗; the relevant
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Operators m′
n/(10

−3C4B
2
0 GeV) Operators m′

n/(10
−3C4B

2
0 GeV)

ūiγ5ud̄d −8.8 ūtaiγ5ud̄t
ad 0

d̄iγ5dūu 5.7 d̄taiγ5dūt
au 0

ūiγ5ds̄s −8.8 ūtaiγ5us̄t
as 0

s̄iγ5sūu 3.2 s̄taiγ5sūt
au 0

d̄iγ5ds̄s 5.7 d̄taiγ5ds̄t
as 0

s̄iγ5sd̄d 3.2 s̄taiγ5sd̄t
ad 0

ūiγ5uūu −7.4 ūtaiγ5uūt
au 2.0

d̄iγ5dd̄d 4.7 d̄taiγ5dd̄t
ad −1.3

s̄iγ5ss̄s 2.6 s̄taiγ5ss̄t
as 0.7

Table 2.12: CP-odd mass of the neutron induced by meson condensates. Contri-

butions from operators made of tensor currents are neglected due to the large-NC

suppression.
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Operators CP-odd mass/(α3C4) Operators CP-odd mass /(α3C4)

ūiγ5ud̄d 0.0635 ūiγ5σ
µνud̄σµνd −0.127

d̄iγ5dūu −0.127 − −

ūiγ5us̄s 0 ūiγ5σ
µνus̄σµνs 0

s̄iγ5sūu 0 − −

d̄iγ5ds̄s 0 d̄iγ5σ
µνds̄σµνs 0

s̄iγ5sd̄d 0 − −

ūiγ5uūu 0 − −

d̄iγ5dd̄d −0.127 − −

s̄iγ5ss̄s 0 − −

Table 2.13: CP-odd mass of neutron induced directly by color-singlet four-quark

operators. The CP-odd mass induced by color-octet four-quark operators are equal

to the one induced by corresponding color-singlet operators multiplied by −2/3.
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Operators CP-odd mass/(α3C4) Operators CP-odd mass /(α3C4)

ūiγ5ud̄d 0.212 ūiγ5σ
µνud̄σµνd 0.0280

d̄iγ5dūu −0.336 ūiγ5σ
µνtaud̄σµνt

ad 0.189

ūiγ5t
aud̄tad −0.0314 − −

d̄iγ5t
adūtau 0.0799 − −

ūiγ5uūu 0 ūiγ5t
auūtau 0

d̄iγ5dd̄d −0.249 d̄iγ5t
add̄tad 0.0968

Table 2.14: Same as Fig. 2.13. The matrix elements are now evolved to the scale

where µ = 4πFπ.

part of the four-quark operator can be written as

O
ud,(6,6̄)
11 ∼ − i

8

{
i

2mC

: [∇ · (u†σ⃗u)](d†d) : + i

2mC

: (u†u)[∇ · (d†σ⃗d)] :

− i

2mC

: [∇ · (d†σ⃗u)](u†d) : − i

2mC

: (d†u)[∇ · (u†σ⃗d)] :
}
,(2.116)

where u and d are two-component quark operators,mC is the mass of the constituent

quark which is set to be one-third of the nucleon mass. The wave functions of

baryons in the non-relativistic quark model are listed in Eq. (2.92) and Table 2.9.

Then using the same method as described in the last section one can get the CP-

odd mass of the neutron directly induced by the tilded operators, and the results

are listed in Table 2.13. After the leading-order QCD evolution to the scale where

µ = 4πFπ, the result is shown in Table 2.14.
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2.4.3.3 Contribution to CP-Odd Meson-Nucleon Coupling

If rotating away the CP-odd nucleon mass through UA(1) transformation, one

can generate new contributions to the CP-odd meson-nucleon coupling from CP-

even chiral operators. However, this contribution is of higher order in chiral power

counting because all the CP-even meson-nucleon interactions are suppressed in the

chiral limit, whereas the CP-odd coupling we considered in the previous subsections

are not.

2.5 Four-Quark Contribution to nEDM in χPT

In this section, we study the CP-odd four-quark contributions to the neutron

EDM in χPT. The approach here is completely general and is applicable to any CP-

odd quark-gluon operators. Some results presented can be found in the literature;

however, to our knowledge, this is the most systematic and thorough discussion in

the context of the CP-odd four-quark operators. In the last subsection, we make

a comparison of the four-quark contributions in different approximations of non-

perturbative QCD physics.

In χPT, the leading contributions come from many different sources. Since

the CP-violating pion-nucleon couplings are O(1), the pion loop contribution to

the neutron EDM is O(1), apart from possible enhancement by chiral logarithms.

On the other hand, the direct matching contribution is also O(1), along with the

pion condensate contribution through photo-production amplitudes. Finally, the

CP-odd mass terms contribute through the nucleon magnetic moment after chiral
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rotation. This contribution is again O(1) in chiral power counting. We will consider

all these leading contributions in the following subsections. We ignore the subleading

contribution in this work.

2.5.1 Direct Matching from Quark Model

We have first considered the direct matching contribution from the four-quark

operators to the neutron EDM in Sec. IV. When any CP-odd quark-gluon operator

is matched in χPT, there appear many tree-level neutron EDM-like operators in the

chiral Lagrangian [8]. We do not have much to say about the size of the Wilson

coefficients other than they are O(1) in chiral power counting. Since they also serve

as the counter terms for ultraviolet-divergent chiral-loop calculations, they depend

on the regularization scheme and subtraction scale. In this work, we choose to

estimate this contribution using nucleon models with dipole excitations into odd-

parity resonances, such as S11, following the work in [53].

n nN * *

Figure 2.3: Direct calculation of the neutron EDM in quark models. The neutron

makes a transition to a CP-odd excited state and goes back via electromagnetic

interaction, where the black dot is the CP-odd, four-quark operator, N∗ and ∆∗ are

the CP-odd excited states.

We use the non-relativistic quark model with harmonic oscillator potentials to
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estimate the contribution from the first CP-odd excited states, which is shown in

Fig. 2.3. The wave functions of the lowest CP-odd excited states can be written as

|N∗
↑ ⟩ = N1ϵ

abc

∫
d3r1d

3r2d
3r3 exp

(
iP⃗ · R⃗√

3
− α2

2
(ρ2 + λ2)

)
{
(λx + iλy)[u

a†
↓ (r1)d

b†
↑ (r2)d

c†
↓ (r3)− ua†↑ (r1)d

b†
↓ (r2)d

c†
↓ (r3)]|0⟩

−λz[ua†↑ (r1)d
b†
↓ (r2)d

c†
↑ (r3)− ua†↓ (r1)d

b†
↑ (r2)d

c†
↑ (r3)]|0⟩

}
;

|∆∗
↑⟩ = N2ϵ

abc

∫
d3r1d

3r2d
3r3 exp

(
iP⃗ · R⃗√

3
− α2

2
(ρ2 + λ2)

)
{
(λx + iλy)[2u

a†
↓ (r1)d

b†
↓ (r2)d

c†
↑ (r3) + da†↓ (r1)d

b†
↓ (r2)u

c†
↑ (r3)]|0⟩

−λz[2ua†↑ (r1)d
b†
↑ (r2)d

c†
↓ (r3) + da†↑ (r1)d

b†
↑ (r2)u

c†
↓ (r3)]|0⟩

}
. (2.117)

In the above formulas λx, λy and λz are the x, y and z components of λ, respectively.

N1 andN2 are normalization factors of the states withN1 = 21/2α4/(39/4π3/2) , N2 =

α4/(21/239/4π3/2) .

The results are shown in Table 2.15, which agree with the results extracted

from Ref. [53]. We also need to take into account the evolution of the operators

between 4πFπ and the energy scale of the quark model. The results are shown in

Table 2.16 with α = 0.41 GeV.

2.5.2 Meson Condensate Contribution through Photo-Pion Produc-

tion

In photon-pion production, there are CP-even electric-dipole couplings be-

tween the baryon-octet and electromagnetic fields through using fµν
± [8]. Some of

these couplings can generate the neutron EDM if they violate the chiral symmetry
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Operators nEDM/(eαC4) Operators nEDM/(eαC4)

ūiγ5ud̄d − 1
6
√
2π3/2 ūiγ5t

aud̄tad 1
9
√
2π3/2

d̄iγ5dūu − 1
3
√
2π3/2 d̄iγ5t

adūtau
√
2

9π3/2

ūiγ5σ
µνud̄σµνd

1√
2π3/2 ūiγ5σ

µνtaud̄σµνt
ad −

√
2

3π3/2

ūiγ5uūu 0 ūiγ5t
auūtau 0

d̄iγ5dd̄d 0 d̄iγ5t
add̄tad 0

Table 2.15: nEDM contributed from first excited CP-odd states in the non-

relativistic quark model, where C4 is the Wilson coefficients of the quark models,

α is defined below Eq. (2.91). The unit of nEDM used here is e·GeV−1, which is

different from the traditional one e·cm due to that the Wilson coefficients of the

four-quark operators are unknown which are always in the unit of GeV−2. The

translation between the two units is e ·GeV−1 ≃ 2× 10−14e·cm.

Operators nEDM/(10−3eC4GeV) Operators nEDM/(10−3eC4GeV)

ūiγ5ud̄d −37.6 ūiγ5t
aud̄tad 3.80

d̄iγ5dūu −62.6 d̄iγ5t
adūtau 8.87

ūiγ5σ
µνud̄σµνd 77.5 ūiγ5σ

µνtaud̄σµνt
ad −103

ūiγ5uūu 0 ūiγ5t
auūtau 0

d̄iγ5dd̄d 0 d̄iγ5t
add̄tad 0

Table 2.16: Same as Table XIII, except the renormalization scale is now at 4πFπ.
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through the quark masses and at the same time the meson fields acquire vacuum

condensates through the CP-odd four-quark operators. In more physical language,

the contact terms for the pion-photoproduction processes give rise to the neutron

EDM through the diagram in Fig. 2.4. Although the electromagnetic field also

Figure 2.4: Pion-photoproduction diagram with the pion field annihilated by the

four-quark operator into the vacuum, where the cross is a four-quark operator.

violates chiral symmetry, it cannot generate an EDM through meson condensates

by itself—a quark mass factor is essential.

The terms of interest are made of linear products of baryon fields B̄ and B,

χ− and f+ [8],

LC
πγ =

1

16π2F 2
π

[
δ1Tr[B̄σµνγ5{χ−, f

µν
+ }B] + δ2Tr[B̄σµνγ5f

µν
+ B]Tr[χ−] + ...

]
,

(2.118)

where we have shown two of the ten possible terms. It is difficult, however, to extract

the Wilson coefficients δi directly from experimental data. Some of the coefficients

have been estimated by calculating the contribution from the excited baryon states

in the context of the two-flavor scenario [56]. In the two-flavor scenario, neglecting

the isospin violation generated by the difference between the up and down quark

masses, the terms relevant to nEDM can be written as

L2−flavor
πγ = N̄γ5σµν [(a

p
1 − an1 )f

µν
+ + an1Tr(f

µν
+ )]χ−N , (2.119)
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Operators dπγ/(10
−3eC4B

2
0 GeV−1) Operators dπγ/(10

−3eC4B
2
0 GeV−1)

ūiγ5ud̄d 10.6 ūtaiγ5ud̄t
ad 0

d̄iγ5dūu −10.5 d̄taiγ5dūt
au 0

ūiγ5ds̄s 10.6 ūtaiγ5us̄t
as 0

s̄iγ5sūu −0.12 s̄taiγ5sūt
au 0

d̄iγ5ds̄s −10.5 d̄taiγ5ds̄t
as 0

s̄iγ5sd̄d −0.12 s̄taiγ5sd̄t
ad 0

ūiγ5uūu 8.87 ūtaiγ5uūt
au −2.37

d̄iγ5dd̄d −8.77 d̄taiγ5dd̄t
ad 2.34

s̄iγ5ss̄s −0.10 s̄taiγ5ss̄t
as 0.03

Table 2.17: nEDM induced by meson condensates through pion-photoproduction.

Contribution from operators constructed by tensor operators are neglected due to

the large-NC suppression.
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where N =

 p

n

, and in the two-flavor case, fµν
+ ≡ e(ξ†Qξ + ξQξ†)F µν , in which

Q = (1 + τ 3)/2. Expanding fµν
+ and χ−, we can get the nEDM induced by the

condensate of π0;

dπγ = −8ean1B0(mu +md)⟨π0⟩
Fπ

. (2.120)

From Ref. [56], one can get the contribution to a1 from ∆ and ρ internal states,

which is

a1 = −0.156GeV−3 . (2.121)

Using this, one can estimate the nEDM induced by the pion condensate, as shown

in Table 2.17.

2.5.3 CP-Odd Baryon Mass Contribution

The CP-odd baryon-mass terms considered in the previous section generate

a CP-odd part of the baryon wave function. This part can transform a magnetic

moment term into an EDM contribution. The physics of this is shown in Fig. 2.5.

(a) (b)

Figure 2.5: The CP-odd mass of neutron turns the tree level magnetic moment into

an EDM. The cross is the tree level magnetic moment, the gray dot is the CP-odd

mass of the neutron and the black dot is the CP-odd pion-nucleon coupling.
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The mass terms of the neutron can be written as

Lmass = −mnn̄n−m′
nn̄iγ5n . (2.122)

Note that the neutron field n here is already redefined using the transformation in

Eq. (2.44) after taking into account the meson condensate effect as discussed in the

previous section. Redefining the neutron field again through a chiral rotation,

n = exp(−i m
′
n

2mn

)γ5n
′ , (2.123)

the mass term becomes the standard one,

Lmass = −mnn̄
′n′ . (2.124)

On the other hand, the tree level anomalous magnetic moment of the neutron can

be written as

Lmag.mom. = −1

4

κn
mn

n̄σµνnFµν . (2.125)

The redefinition in Eq. (2.123) generates a neutron EDM,

dEDM
CP−oddmass = −κnm

′
n

2m2
n

. (2.126)

The experimental values of the anomalous magnetic dipole moments of the nucleons

are κp = 1.7928, κn = −1.9131. The numerical values of this contribution have

been shown in Tables 2.18 and 2.19. For the tensor operator ūiγ5σ
µνud̄σµνd, the

contribution from the CP-odd mass of the nucleon is particularly large. The CP-odd

mass also gets a quantum correction shown in diagram (b) of Fig. 2.5. It is easy

to see that this term does not have any chiral enhancement and is of a higher-order

effect.
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2.5.4 Leading Chiral Loop Contribution

The contribution we have considered so far has a smooth chiral limit, i.e.,

regular as the quark masses go to zero. The leading contribution in the chiral limit,

however, involves the pion loop with an infrared divergence. This contribution

was first calculated by Crewther et al [7], and has been studied thoroughly in the

literature (see Fig. 2.6). Diagrams (a) and (b) in Fig. 2.6 contain an infrared

divergence which is regularized by the mass of pion and an analytical part. The

constant part is canceled by diagrams (c) and (d). Diagrams (e) and (f) cancel

with each other [8]. Therefore, up to terms of order (mπ/mn), the neutron EDM

Figure 2.6: Charged-pion loop contribution to neutron EDM (without the anoma-

lous magnetic moment), where the black dots represent the CP-odd vertices.

generated by the charged pion loop can be written as [8]

dnπ+ = − e
√
2

16π2Fπ

hc(D + F ) ln
(
m2

π/m
2
n

)
, (2.127)

where D + F = −gA = −1.26 is the CP-even pion-nucleon coupling (the signs of D

and F is different from that in Ref. [23] because we are using a different definition of
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Figure 2.7: Contribution from the tree level anomalous magnetic moments of proton

and neutron, where the crosses are anomalous magnetic moments of nucleons and

the dots are CP-odd vertices.

the chiral transformation of U), and hc is the CP-odd pion-nucleon coupling defined

in Eq. (2.86). Note that, in Fig. 2.6, the contribution from the proton’s anomalous

magnetic moment has not been included. To include this contribution, we consider

all these diagrams in Fig. 2.7 where the neutral pion loop is also present, and the

result is Ref. [20].

dnπ0+κ =
e

16π2

D + F

Fπ

(
−
√
2hcκp + hnκn

)
Fn

(
m2

π

m2
n

)
, (2.128)

where κn and κn are tree-level anomalous magnetic moments of protons and neu-

trons, respectively, and

Fn(s) =
3

2
− s− 3s− s2

2
ln s+

s(5s− s2)− 4s

2
√
s− s2/4

arctan

√
s− s2/4

s/2
. (2.129)

We can see that there is no chiral enhancement in Fn(s).

Using the above, we estimate the pion-loop and the CP-odd mass contributions

to neutron EDM due to the P-odd and CP-odd four-quark operators. The results are

listed in Tables 2.18 and 2.19. Although the charged pion-loop (Fig. 2.6) dominates
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nEDM from different contributions / (10−3eC4 GeV)

meson π-N coupling π-N coupling, CP-odd CP-odd

contact photo- direct ⟨π0⟩, ⟨η⟩ mass mass

operators term production Fig. 2.6 Fig. 2.7 Fig. 2.6 Fig. 2.7 direct ⟨π0⟩, ⟨η⟩ total

ūiγ5ud̄d −37.6 52.9 −30.9 71.3 27.2 202.1 15.8 −47.6 253.2

ūud̄iγ5d −62.6 −52.3 −30.9 −37.3 −30.2 −202.3 −25.1 30.6 −410.2

ūiγ5us̄s 0 52.9 0 0 27.2 202.1 0 −47.6 234.6

ūus̄iγ5s 0 −0.6 0 0 2.8 −0.7 0 17.1 18.5

d̄iγ5ds̄s 0 −52.3 0 0 −30.2 −202.3 0 30.6 −254.3

d̄ds̄iγ5s 0 −0.6 0 0 2.8 −0.7 0 17.1 18.5

ūiγ5uūu 0 44.1 −30.9 17.0 22.7 168.9 0 −39.7 182.1

d̄iγ5dd̄d 0 −43.6 −30.9 −20.0 −25.1 −168.5 −18.6 25.5 −281.2

s̄iγ5ss̄s 0 −0.5 0 0 2.4 −0.6 0 14.2 15.5

OT
ud 0 0 13.9 −7.7 0 0 2.1 0 85.8

OT
us 0 0 0 0 0 0 0 0 0

OT
ds 0 0 0 0 0 0 0 0 0

Table 2.18: nEDM from the P-odd and CP-odd four-quark operators composed

of color-singlet currents. Different contributions are shown. In the table, OT
ud ≡

ūiγ5σ
µνud̄σµνd, O

T
us ≡ ūiγ5σ

µνus̄σµνs, O
T
ds ≡ d̄iγ5σ

µνds̄σµνs.
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nEDM from different contributions / (10−3eC4 GeV)

meson π-N coupling π-N coupling, CP-odd CP-odd

contact photo- direct ⟨π0⟩, ⟨η⟩ mass mass

operators term production Fig. 2.6 Fig. 2.7 Fig. 2.6 Fig. 2.7 direct ⟨π0⟩, ⟨η⟩ total

ūiγ5taud̄tad 3.8 0 12.0 −17.6 0 0 −2.34 0 −4.2

ūtaud̄iγ5tad 8.9 0 12.0 4.42 0 0 6.0 0 31.2

ūiγ5taus̄tas 0 0 0 0 0 0 0 0 0

ūtaus̄iγ5tas 0 0 0 0 0 0 0 0 0

d̄iγ5tads̄tas 0 0 0 0 0 0 0 0 0

d̄tads̄iγ5tas 0 0 0 0 0 0 0 0 0

ūiγ5tauūtau 0 −11.8 12.0 −6.6 −6.1 −45.0 0 10.6 −46.8

d̄iγ5tadd̄tad 0 11.6 12.0 7.8 6.7 44.8 7.2 −6.8 83.4

s̄iγ5tass̄tas 0 0.1 0 0 −0.6 0.2 0 −3.8 −4.1

OTc
ud −103.1 0 93.8 −51.6 0 0 14.1 0 −46.9

OTc
us 0 0 0 0 0 0 0 0 0

OTc
ds 0 0 0 0 0 0 0 0 0

Table 2.19: Neutron EDM generated by P-odd and CP-odd four-quark operators

composed of color-octet currents. The labels have the same meaning as in Table 2.18.

OTc
us ≡ ūiγ5σ

µνtaus̄σµνt
as, OTc

us ≡ ūiγ5σ
µνtaus̄σµνt

as, OTc
ds ≡ d̄iγ5σ

µνtads̄σµνt
as.
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in the chiral limit, its numerical value is actually about an order of magnitude

smaller than the analytical chiral-loop contribution (Fig. 2.7). This is due to the

enhancement of hn relative to hc in the large Nc limit.

The P-odd and CP-odd four-quark operators can also lead to nonvanishing

P-odd and CP-odd interaction like n → KΣ and n → Λη. These interactions can

generate nEDM through kaon- or eta-loop diagrams. However, there is no reason to

believe that the kaon- or eta-loop contribution should be more important than the

pion-loop contribution so that it would not change the order-of-magnitude estimate

of nEDM generated by those four-quark operators without the strange quark. For

those operators containing strange quark the estimation may not be reliable and the

kaon- or eta-loop contributions should be included.

2.5.5 Comparison with Other Calculations and the Error-bars of this

Calculation

The P-odd and CP-odd four-quark contributions to neutron EDM have been

studied using different approximation methods in the literature [18, 19, 20]. The

problem is that it is difficult to get an estimate on the errors in any of these methods.

This is the strong motivation for the alternative study presented here. By using a

completely different approach, we hope to get a better idea how well one actually

estimates these hadronic matrix elements.

In Ref. [18], the authors used the external field method, factorization and

QCD sum rules to make a direct calculation of the neutron EDM. Their result is
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supposed to be the total contribution, although it is unclear how the chiral physics

would be included in this approach. Their numbers are listed in Tables 2.20 and

2.21 as “factorization and QCD sum rule.” The result is, in general, comparable to

the charged pion-loop contribution, although the contribution to the tensor operator

is particularly large.

In Ref. [19], the authors also calculated the contributions of the pion-loop

as we do in this paper. They used entirely the factorization method to calculate

the CP-odd pion-nucleon couplings, including the effects that the CP-odd operators

can annihilate the neutral pion in the vacuum. Taking the operator ūiγ5ud̄d as an

example, their factorization works like this:

⟨nπ0|ūiγ5ud̄d|n⟩ = ⟨n|d̄d|n⟩⟨π0|ūiγ5u|0⟩

+ ⟨0|d̄d|0⟩
(
⟨nπ0|ūiγ5u|n⟩ −

1

m2
π

⟨nπ0|Lm
QCD|nπ0⟩⟨π0|ūiγ5u|0⟩

)
,

(2.130)

where LQCD is the usual QCD Lagrangian. The terms inside the bracket on the

second line of the above formula cancel each other. The reason is that ūiγ5u is just

a CP-odd mass of the up-quark which can be rotated away through chiral trans-

formation, except for a possible UA(1) contribution. Thus these two contributions

should cancel with each other exactly. This is first noticed in Ref. [57] in the spirit

of the Feinberg-Weinberg-Kabir theorem [58]. Using this method, one can get the

CP-odd vertices, hc and hn as shown in Tables 2.7 and 2.8. For the charged coupling

hc, one needs to do a Fierz transformation, from which one can get a suppression

factor of 1/12, where 1/3 is from the color factor and the other 1/4 is from the spin.
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Therefore, hc is one order of magnitude smaller than hn. The corresponding nEDM

calculated using this method is included in Tables 2.20 and 2.21 as well.

From Tables 2.20 and 2.21, taking the operator ūiγ5ud̄d as an example, one

can see that the magnitude of our result is comparable with what obtained using

näıve factorization method but with a different sign; also the our result is about one

order of magnitude larger than the result estimated using QCD sum rules. In our

calculation, we separate the contribution into the meson condensate contribution

and the direct matching contribution. The vacuum saturation method is used to

calculate the meson condensate contribution to hc and hn. This vacuum saturation

method using to calculate the meson matrix elements is accurate in the large-NC

limit, which means the calculation for this contribution is accurate up to 1/NC [42].

From Table 2.18, one can see that the meson condensate contributions dominate over

the direct matching contributions. Therefore, for operators generating unsuppressed

meson condensates (see Sec IV for detailed discussions), a conservative uncertainty

can be set to be a factor of two.

In Ref. [19], the authors also used the vacuum saturation approach to get

the factorization result as shown in Eq. (2.130). However, in the case of baryon

matrix element, the non-factorized contribution is not suppressed in the large-NC

limit [42], therefore the missed non-factorized contribution should be of the same

order as the factorized contribution shown in Eq. (2.130). The calculation using

QCD sum rules in Ref. [18] did not include the meson condensate contribution,

therefore, their calculation might miss an important contribution.

The factor of two uncertainty can also be seen from the Feinberg-Weinberg-
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Our Naive Factorization &

Operators results factorization QCD sum rules

ūiγ5ud̄d 253 −248 17.5

d̄iγ5dūu −410 177 −17.5

ūiγ5ds̄s 235 −85.8 −

s̄iγ5sūu 18.5 0 −

d̄iγ5ds̄s −254 85.8 −

s̄iγ5sd̄d 18.5 0 −

ūiγ5uūu 182 −154 −17.7

d̄iγ5dd̄d −281 203 15.2

s̄iγ5ss̄s 15.5 0 −

ūiγ5σ
µνud̄σµνd 85.8 −79.4 −127.5

ūiγ5σ
µνus̄σµνs 0 0 −

d̄iγ5σ
µνds̄σµνs 0 0 −

Table 2.20: Comparison of different methods, nEDM calculated by factorization

in Ref. [19, 20] are shown as “naive factorization”. The column on the right side

shows nEDM calculated using factorization and QCD sum rules [18]. The unit of

the numbers is 10−3eC4GeV.

83



Our Naive Factorization &

Operators results factorization QCD sum rules

ūtaiγ5ud̄t
ad −4.2 −8.88 −3.18

d̄taiγ5dūt
au 31.3 −8.88 3.18

ūtaiγ5us̄t
as 0 0 −

s̄taiγ5sūt
au 0 0 −

d̄taiγ5ds̄t
as 0 0 −

s̄taiγ5sd̄t
ad 0 0 −

ūtaiγ5uūt
au −46.8 39.5 −23.5

d̄taiγ5dd̄t
ad 83.4 −51.1 9.3

s̄taiγ5ss̄t
as −4.12 0 −

ūtaiγ5σ
µνud̄taσµνd −46.9 −106 14.3

ūtaiγ5σ
µνus̄taσµνs 0 0 −

d̄taiγ5σ
µνds̄taσµνs 0 0 −

Table 2.21: Comparison of different methods, nEDM calculated by factorization

in Ref. [19, 20] are shown as “naive factorization”. The column on the right side

shows nEDM calculated using factorization and QCD sum rules [18]. The unit of

the numbers is 10−3eC4GeV.
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Kabir theorem [58]. Applying to this context, the theorem dictates that CP-odd

(3, 3̄) two-quark operators give no contribution to CP-odd processes. A brief dis-

cussion of this theorem can be found in Appendix D. However, since we are using a

hybrid method, this theorem may not be satisfied. Therefore, the amount of viola-

tion of this theorem can be seen as an estimate of the error of this calculation. Take

the operator ūiγ5u− d̄iγ5d as an example, following the prescription in Secs. III and

IV, one can get meson-condensate contribution to the neutral CP-odd pion-nucleon

coupling which can be written as

hmc
n =

2C3(2c1 + c3)

Fπ

≈ −10C3

Fπ

, (2.131)

wheremu = md = m̄ is assumed for the sake of simplicity, C3 is the Wilson coefficient

of the two-quark operator and the definitions of c1 and c3 can be found in Eq. (2.84).

If the σ-term is also employed to do the direct matching, one can easily show that

the direct matching contribution cancels the meson condensate contribution exactly.

Instead, in order to get the uncertainty of our calculation we need to do the direct

matching using the quark model. Since the operator includes only products of two

quark fields, the calculation using the quark model is straightforward, which gives

hdirn = R
3C3

Fπ

≈ 5C3

Fπ

, (2.132)

where the factor of 3 is due to that in the quark model the nucleon contains three

constituent quarks. R ≈ 1.7 comes from the perturbative QCD effect as discussed

in Sec. V. The anomalous dimensions of the operator discussing here is as the same

as the anomalous dimensions of the quark mass. The relative sign between the

direct contribution and the meson condensate contribution is as desired. However,
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the magnitude of the direct contribution is about two times smaller than the meson

condensate contribution. The mismatch between the two contributions is due to that

quark model does not differentiate ⟨N |q̄q|N⟩ and ⟨N |q†q|N⟩. From this mismatch

one can see that the inaccuracy of the direct contribution calculated using quark

model might be a factor of two. Therefore, conservatively, the total inaccuracy for

those operators having unsuppressed vacuum condensate contributions can be seen

as a factor of two.

2.6 Summary

In this chapter, we studied the four-quark contributions to the neutron EDM,

which dominate over other QCD operators in some new physics models. Our ap-

proach was based on chiral expansion and simple quark models. It is well known in

the literature that the leading chiral contribution comes from one-pion loop which

dominates in the chiral limit mπ → 0, just like in the case of the nucleon electric

polarizability. Therefore, one needs to calculate the four-quark contribution to the

CP-odd pion nucleon couplings. We studied these couplings in simple quark mod-

els, as an alternate to large-Nc factorization. We also considered O(1) contribution

from direct matching and pion-condensation to the dipole moment, as well as the

CP-odd nucleon mass contribution through the magnetic moment. The resulting

nEDM can be compared with those from the naive factorization and QCD sum

rules. The comparison provides us some idea on the hadronic physics uncertainty in

the neutron EDM calculation. Our approach also provides a formalism for lattice
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QCD calculations of the nucleon matrix elements of the four-quark operators.

Using the matrix elements thus obtained, we obtain new-physics-independent

upper bounds on the Wilson coefficients of four-quark operators from the experi-

mental data. The current experimental upper bound on neutron EDM is 2.9×10−26e

cm [33]. If we assume that there is no significant cancelations among the contribu-

tions from these operators, we can use the experiment limit to give upper bounds

to the Wilson coefficients of individual operators. In our calculation, the strange

quark effects were ignored, and we considered only operators composed of up and

down quarks. The final results are shown in Table 1.2.

It is interesting to note that the chiral-enhanced contribution is actually large-

Nc suppressed. In fact, the non-singular part of the chiral-loop contribution nu-

merically dominates over the singular one. This suggests a large-Nc analysis of the

neutron EDM, including the delta resonance contribution. However, this might be

discussed in future works.
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Chapter 3

Systematic Calculation of Neutron EDM in Minimal LRSM

3.1 General CP-Violating Effective Lagrangian

In this section, we lay out a general approach to calculating the nEDM using

the effective Lagrangian method, independent of new physics. In this approach, one

integrates out all heavy particles including SM gauge bosons and heavy-quarks. The

resulting flavor neutral CP-violating effective Lagrangian has an expansion in terms

of operators consisting of light-quark fields, u, d, and s and the gluon field Gµν ,

with increasing dimensions, the general P-odd and CP-odd Lagrangian is given in

Eq. (2.6), and the operators contained in it are listed in Eqs. (2.8), (2.9), (2.10),

(2.11) and (2.12).

As discussed in Chapter 2. To calculate nEDM systematically we need to crank

down the energy scale to the hadronic scale. Therefore, the anomalous dimensions

of the operators are needed.

At dimension-five level, the one-loop evolution equations are [31]

µ2 d

dµ2
OC

q (µ) = −
(
2

3
− bf

2

)
αS(µ)

4π
OC

q (µ) , (3.1)

µ2 d

dµ2
OE

q (µ) = −4

3

αS(µ)

4π
OE

q (µ) , (3.2)

where bf = 11 − 2nf/3, nf is the number of quark flavors. It is easy to see that
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the dependence of the evolution of the quark CDM on nf is the same as that of the

strong coupling, since they are both derived from wave function renormalization of

the gluon field.

For dimension-six operators, the leading-order QCD evolution equations for

dimension-six operator are listed in Eq. 2.21 in Chapter 2. The anomalous dimension

of the Weinberg, γgg, has been calculated in the literature [30], γgg = −CA/2− nf ,

where CA = 3. The dimension-six operators mix with the dimension-five operators

when scale evolves, however at the energy scale where only the light quarks exist,

the mixing can be neglected because the dimension-five quark EDM and CDM are

chirality flipping and thus proportional to the quark mass. At higher energies, the

mixing is important and we will discuss it in the following sections.

There is no mixing between the Weinberg operator and the four-quark opera-

tors listed in Eqs. (2.10) and (2.11). To see this, we can decompose the four-quark

operators into irreducible representations of the SU(3)L ×SU(3)R chiral group and

only (3, 3̄), (6, 6̄), (8, 8) and their conjugate representations are found as discussed

in Chapter 2. On the other hand, the three-gluon operator is a chiral singlet. QCD

evolution maintains the chiral structure of operators.

When scale changes, the pure quark-gluon CP-odd operators generate pertur-

bative contributions to quark EDM through the following T -product

∫
d4x T

(
eAµ(x)j

µ
em(x)

∑
i

′
Oi(0)

)
, (3.3)

where the summation neglects the quark EDM operator itself. The contributions

are divergent so they induce additional running of the CP-odd operators. The
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contributions from the dimension-six operators are proportional to the mass of light

quarks and can be neglected. The only large contribution is from the quark CDM

operator, whose running has an effective inhomogenous term, [31]

µ2 d

dµ2
OC

q =
αS(µ)

4π

(
−
(
2

3
− bf

2

)
OC

q − 16

3

e

gS(µ)
QqO

E
q

)
, (3.4)

where Qq is the electric charge of the quarks and gS is the coupling of strong interac-

tion. Inversely, the quark EDM operators can also generate quark CDM operators

through the electromagnetic interaction which is, however, proportional to the elec-

tromagnetic fine-structure constant.

Therefore, omitting the θ-contribution, one can define the following electric

dipole form factor

−FE
n (q2)Ūn(k⃗2)σ

µνγ5qµUn(k⃗1)ϵν(q)

= ⟨N(k⃗2)|
∑
q

dEq (µ)O
E
q (0;µ)

+i

∫
d4x T

[
eAµ(x)j

µ
em(x)

(∑
q

dCq (µ)O
C
q (0;µ)

+
∑
i

Ci(µ)O4i(0;µ) + Cg(µ)Og(0;µ)

)]
|γ(q)N(k⃗1)⟩ , (3.5)

where qµ = kµ2 −kµ1 and Un is the wavefunction of neutron and ϵν is the polarization

of the incoming photon. The static nEDM is just the zero-momentum limit of the

form factor dEn = FE
n (0).

3.2 Wilson Coefficients in LRSM

Following the previous section, we make calculation of nEDM in the mLRSM

by first evaluating the Wilson coefficients of the effective quark-gluon operators at
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the electroweak scale, and subsequently running them to hadronic scale. The detail

of the model can be found in Ref. [3], in which the spontaneous CP-violation is

controlled by a phase angle α in the Higgs sector, and additional parameters of the

model include, among others, the masses of the right-handed gauge boson and the

new Higgs bosons. In the following subsections, we study the Wilson coefficients

of various CP-violating operators separately. We will ignore the contribution of

the θ-term as it will usually generate a much too large nEDM: We assume certain

mechanisms such as Peccei-Quinn symmetry [35] is in operation to suppress it.

3.2.1 CP-Odd Four-Quark Operators

To leading order, diagrams in Fig. 3.1 generate the CP-odd four-quark opera-

tors induced by the exchange of gauge bosons and Higgs bosons. The operators are

listed in Eq. (2.10) and (2.11). The corresponding Wilson coefficients can be easily
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read through the diagrams,

Cab
11 =

√
8GF

6
sin 2ζIm(e−iαV ab

L V ab∗
R ) +

√
8GF

M2
H0

Im(CaaDbb)

+

√
8GF

6M2
H2

(m2
a −m2

b)ξ Im(e−iαV ab
L V ab∗

R ) ,

Cab
12 = −

√
8GF

6
sin 2ζIm(e−iαV ab

L V ab∗
R ) +

√
8GF

M2
H0

Im(CaaDbb)

+

√
8GF

6M2
H2

(m2
a −m2

b)ξ Im(e−iαV ab
L V ab∗

R ) ,

Cab
21 =

√
8GF sin 2ζIm(e−iαV ab

L V ab∗
R )

+

√
8GF

M2
H2

(m2
a −m2

b)ξ Im(e−iαV αβ
L V αβ∗

R ) ,

Cab
22 = −

√
8GF sin 2ζIm(e−iαV ab

L V ab∗
R )

+

√
8GF

M2
H2

(m2
a −m2

b)ξ Im(e−iαV αβ
L V αβ∗

R ) , (3.6)

Cab
3 =

√
8GF

6M2
H2

(m2
a −m2

b)ξ Im(e−iαV αβ
L V αβ∗

R ) ,

Cab
4 =

√
8GF

M2
H2

(m2
a −m2

b)ξ Im(e−iαV αβ
L V αβ∗

R ) ,

Caa′

11 =
2
√
8GF

M2
H0

Im(CaaCa′a′∗) ,

Caa′

12 = −2
√
8GF

M2
H0

Im(CaaCa′a′∗) ,

Cbb′

11 =
2
√
8GF

M2
H0

Im(DaaDa′a′∗) ,

Cbb′

12 = −2
√
8GF

M2
H0

Im(DaaDa′a′∗) , (3.7)

where a, a′ ∈ u, c, t, a ̸= a′ and b, b′ ∈ d, s, b, b ̸= b′, C = VLM̂DV
†
R − 2ξeiαM̂U ,

D = V †
LM̂UVR − 2ξe−iαM̂D, MH0 is the mass of the flavor changing neutral Higgs

(FCNH) and MH2 is the mass of H+
2 which is a charged Higgs in mLRSM [3]. M̂U

and M̂D are diagonalized quark mass matrices. ζ is the mixing angle between the
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lefthanded and righthanded W -bosons that

sin 2ζ ≃ −r4mb

mt

(
M1

M2

)2

, (3.8)

where r ≡ (mt/mb)ξ and ξ is the ratio between the two vevs of the Higgs bidoublet in

mLRSM [3]. The contributions due to the Higgs exchanges are always proportional

to quark masses. Since we are only interested in operators with at least two of

the quarks being light, the Wilson coefficients are always proportional to at least

one light quark mass, or they are proportional to heavy quark masses but must be

suppressed by the non-diagonal CKM matrix elements. Furthermore, the mass of

FCNH is strongly constrained to very large value by the mass differences and the

CP-violating decay properties of the neutral K-bosons and B-bosons [3, 59], and

detailed calculation shows H+
2 is as heavy as FCNH. If we are interested in the case

of a few TeV right-handed W-boson mass, we can safely neglect the Higgs exchange

contributions. Then at the electroweak scale the Wilson coefficients of the CP-odd

four-quark operators can be simplified to

Cab
11 = −Cab

12 =

√
8GF

6
sin 2ζ Im(e−iαV ab

L V ab∗
R ) ,

Cab
21 = −Cab

22 =
√
8GF sin 2ζ Im(e−iαV ab

L V ab∗
R ) . (3.9)

We will take this simple limit in the following discussion.

3.2.2 Quark EDM and CDM Operators

The one-loop contributions to the quark EDM from the gauge interactions

are shown in Fig. 3.2, where the internal wavy lines represent the light charged

93



gauge-boson W1 which is dominated by WL, but has a small admixture of WR. The

dashed lines represent the charged-Goldstone boson present in Feynman gauge, and

the external wavy line is the static electric field or photon. Diagrams a) and b) have

the photon interacting with the quarks directly, and these from c) to f) have the

photon interacting with charged bosons. For the quark CDM case we have the first

two diagrams only with the external wavy line representing a gluon.

These diagrams have been calculated in the literature long ago [12], our result

is somewhat different from theirs in the infrared part. The CP-odd part of the

diagrams in Fig. 3.2 can be expressed in terms of the coefficients of the EDM and

CDM operators. For the up quark, we have dEuO
E
u + dCuO

C
u with,

dEu =
1

16π2

∑
i=d,s,b

mdie
√
8GF sin 2ζIm(e−iαV 1i

L V
1i∗
R )

× 1

(1− ri)3

(
4

3
− 4ri + 3r2i −

1

3
r3i +

1

2
ri ln ri −

3

2
r2i ln ri

)
,

dCu =
1

16π2

∑
i=d,s,b

mdigs
√
8GF sin 2ζIm(e−iαV 1i

L V
1i∗
R )

× 1

(1− ri)3

(
1− 3

4
ri −

1

4
r3i +

3

2
ri ln ri

)
. (3.10)

And for the down quark, the contribution is dEd O
E
d + dCd O

C
d with

dEd =
1

16π2

∑
i=u,c,t

muie
√
8GF sin 2ζIm(e−iαV 1i

L V
1i∗
R )

× 1

(1− r′i)
3

(
5

3
− 17

4
r′i + 3r′i

2 − 5

12
r′i

3
+ r′i ln r

′
i −

3

2
r′i

2
ln r′i

)
,

dCd = − 1

16π2

∑
i=u,c,t

muigs
√
8GF sin 2ζIm(e−iαV i1

L V
i1∗
R )

× 1

(1− r′i)
3

(
1− 3

4
r′i −

1

4
r′i

3
+

3

2
r′i ln r

′
i

)
. (3.11)

It is easy to see that this mixing angle is suppressed by the mass ratio of bottom
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and top quarks and by the ratio of the left and right handed W -boson masses. mui

are the masses of up-type intermediate quarks, ri = m2
di/M

2
W , r′i = m2

ui/M
2
W , VL

and VR are the left and right-handed CKM mixing matrices, respetively, α is the

spontaneous CP phase mentioned earlier.

In mLRSM, H+
2 also gives contribution to the quark EDM and CDM. The

relevant diagrams are shown in Fig. 3.3, and the result is

dEu = −
∑

a∈{d,s,b}

1

16π2

√
8GF

2ma(m
2
u −m2

a)

M2
H2

ξ Im(e−iαV 1a
L V 1a∗

R )

[
ed
3− 4rj + r2j + 2 ln rj

2(−1 + rj)3
− e

−1 + r2j − 2rj ln rj

2(−1 + rj)3

]
,

dCu =
∑

a∈{d,s,b}

gs
16π2

√
8GF

2ma(m
2
u −m2

a)

M2
H2

Im(e−iαV 1a
L V 1a∗

R )
3− 4rj + r2j + 2 ln rj

2(−1 + rj)3
,

(3.12)

dEd = −
∑

a∈{u,c,t}

1

16π2

√
8GF

2ma(m
2
a −m2

d)

M2
H2

ξ Im(e−iαV a1
L V a1∗

R )

[
eu

3− 4r′j + r′2j + 2 ln r′j
2(−1 + r′j)

3
+ e

−1 + r′2j − 2r′j ln r
′
j

2(−1 + r′j)
3

]
,

dCd =
∑

a∈{u,c,t}

gs
16π2

√
8GF

2ma(m
2
a −m2

d)

M2
H2

ξ Im(e−iαV a1
L V a1∗

R )
3− 4r′j + r′2j + 2 ln r′j

2(−1 + r′j)
3

,

(3.13)

in which

rj =
M2

Dj

M2
H2

, r′j =
M2

Uj

M2
H2

, (3.14)

Therefore, if the right-handed W -boson has a moderate mass, say, a few TeV, the

contribution from H+
2 to the quark EDM and CDM can be neglected in comparison

to that from the right-handed gauge boson.
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Actually, there are both long-distance and short-distance contributions from

the one-loop diagrams in Fig. 3.2 and Fig. 3.3. The short-distance contributions

come from the integration region where the internal momentum is around MW ; and

the long-distance one from the loop momentum around the internal light quark

masses. Due to asymptotic freedom of the strong interaction, the short-distance

contributions can be calculated accurately using perturbation theory. The long-

distance contributions, however, suffer from non-perturbative QCD effects, and the

only known way to calculate it correctly is by Lattice QCD. In the matching cal-

culation, the long distance contribution has to be subtracted to obtain the Wilson

coefficients, which is shown in Fig. 3.4. This contribution can be calculated using a

certain UV regulator, such as dimensional regulation or momentum cut-off or lattice

regularization. Any regularization preserving a certain Fierz identity will give a zero

answer as the loop integral involves only the photon or gluon external momentum.

Other regularizations, such as naive dimensional regularization, will find a finite

contribution. One must be careful though that the vanishing of long-distance con-

tribution is only true at one-loop level: as soon as the QCD corrections are taken

into account, the result becomes non-zero. Therefore, to the leading order, we can

directly read off the Wilson coefficients of quark EDM and CDM operators from

Eqs.(3.10), (3.11), and (3.12).
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3.2.3 Weinberg Operator

In mLRSM, the Weinberg operator can be induced from diagrams in Fig. 3.5.

Since the result is proportional to the quark masses, the leading contribution comes

from the third generation of the quarks running in the loop. These are two-loop

diagrams, the Weinberg operator comes out after one integrates out the internal

quarks and bosons entirely. If one follows the effective theory approach, in which

the top quark and the W-boson are first integrated out, the CDM operator of the

bottom quark emerges and one can get its wilson coefficient from Eq. (3.11).

Then from Fig. 3.6, one gets the major contribution to the Weinberg three

gluon vertex. Because this diagram would diverge quadratically in the infrared if the

mass of the bottom quark was zero, this diagram should be proportional to 1/m2
b .

However, chirality flipping is needed or otherwise the fermion loop will vanish, so the

numerator of the diagram must be proportional to mb. Combining the two effects

together, this diagram is proportional to dCb /mb, where d
C
b is the bottom quark CDM

which is proportional to mt. Therefore this diagram has an enhancement of a factor

of mt/mb, about 40, which was first found in Ref. [60]. Detailed calculation gives

the Wilson coefficient

Cg(mb) =
g2s(mb)

16π2

dCb (mb)

mb

. (3.15)

This contribution is seemingly large, however, it is suppressed by a numerical factor,

1/(1 −m2
t/M

2
1 )

3 ≃ −0.02 in Eq. (3.11). Therefore, the effect of the enhancement

is totally canceled. Furthermore, the evolution also makes the contribution of this

operator to be smaller at the low energy region [30]. Therefore, we safely neglect its
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contribution to nEDM in the following calculations.

3.2.4 Wilson Coefficients at Hadronic Scale Through Leading-Order

QCD Evolution

The coefficient functions above, and hence the quark-gluon operators, are cal-

culated at the high-energy electroweak scale, which is not yet useful for practical

calculations. We are going to remedy this by running down the scale in the composite

operator by including the leading logarithmic pQCD corrections. When we change

the scale, dimension-six operators will mix with each other and generate dimension-

five operators, and dimension-five operators will also mix with each other. The

Wilson coefficients for CP-odd four-quark operators are shown to the leading order

approximation in Eq. (3.9). From Eq. (2.21) the renormalization group equations

(RGE) keep this relation, and other CP-odd four-quark operators are not generated

by the running. Then one can redefine the operators

Oab
1 = Oab

11 −Oab
12 ,

Oab
2 = Oab

21 −Oab
22 , (3.16)

with the Wilson coefficients Cab
1 = Cab

11 and Cab
2 = Cab

21 , respectively. Therefore, the

RGEs of the Wilson coefficients of the dimension-six operators can be written as

µ2 d

dµ2
Cab

1 (µ) = −8
αs(µ)

4π
Cab

1 (µ) ;

µ2 d

dµ2
Cab

2 (µ) =
αs(µ)

4π
Cab

2 (µ) , (3.17)

which shows that C1 grows as the scale goes down, whereas C2 does the opposite.
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The RGE of the quark CDM operators are a little bit complicated. For d

quark and s quark CDM operators, as we discussed before, the c quark internal line

gives a large contribution. Therefore, the RGEs of d and s quark CDM operators

can be written as [31]

µ2 d

dµ2
dCd,s(µ) = − g3s(µ)

(16π)2
mc(µ)

(
2

3
γ31C

c(d,s)
2 (µ)− 4γ32C

c(d,s)
1 (µ)

)
−g

2
s(µ)

16π2
(γ33 + bf/2− δ)dCd,s(µ) . (3.18)

The Wilson coefficient of the up quark CDM operator is one order of magnitude

smaller than that of the of d quark due to that ms/mc ∼ 1/10. In the above

formula, γ31 = 5/2, γ32 = −1, γ33 = −14/3, and δ = −4 is the anomalous dimension

of the quark mass. Detailed calculation gives, at mc, the relevant Wilson coefficients

are

C
u(d,s)
1 (mc) = 3.0C

u(d,s)
1 (ML) ,

C
u(d,s)
2 (mc) = 0.87C

u(d,s)
2 (ML) ,

dCd,s(mc) = 1.7
mc

16π2
C

c(d,s)
1 (ML) + 0.34

mc

16π2
C

c(d,s)
2 (ML) + 1.6dCd,s(ML) .

(3.19)

were ML is the mass of the SM W-boson.

The CP-odd operators generate additional running of the quark EDM oper-

ators through the electromagnetic interaction. The RGE of the down quark EDM

operator can be written as [31]

µ2 d

dµ2
dEd (µ) = −2

3

emc(µ)g
2
s(µ)

(16π2)2
γ41C

cd
2 (µ)− egs(µ)

16π2
γ43d

C
d (µ)

−g
2
s(µ)

16π2
(γ44 − δ)dEd (µ) , (3.20)
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where γ41 = 16/3, γ43 = 16/9, γ44 = −16/3, and similarly for the strange quark.

The RGE of the electromagnetic coupling e does not depend on the strong coupling

constant gs up to one-loop, therefore, can be treated as a constant. At the charm

quark mass scale, one can get

dEd,s(mc) =
emc

16π2
(0.07C

c(d,s)
1 (ML) + 0.34C

c(d,s)
2 (ML))

+0.17edCd,s(ML) + 0.83dEd,s(ML) . (3.21)

which shows the explicit contributions from the running of the four-quark operators

as well as CDM operators.

3.3 nEDM in mLRSM and Constraint on Left-right Symmetry scale

In this section, we carry out the last step of the nEDM calculation in mLRSM

by incorporating the neutron matrix elements of hadronic operators. We collect

the state-of-art results in the literature and use them to constrain the parameters

in mLRSM. We find that in order to satisfy the current experimental bound on

nEDM and the data on kaon-decay parameter ϵ, the right-handed gauge boson WR

might be as heavy as 10± 3 TeV. This bound is far higher than the bound obtained

previously from the kaon mass difference, making it difficult to discover left-right

symmetry at LHC.

3.3.1 Hadronic Matrix Elements

The most difficult part in calculating nEDM is to estimate the hadronic matrix

elements. In the literature, many different approaches, such as the SU(6) quark

100



model, bag models, QCD sum rules, and chiral perturbation theory have been used

to make estimations. In this subsection, we summarize the results and get some

idea about their uncertainties.

3.3.1.1 Contribution from Quark EDM

In the SU(6) constituent quark model, the matrix elements of the quark tensor

operators are simple and scale-independent [11, 12], leading to

d
(1)
N = −1

3
dEu +

4

3
dEd . (3.22)

Although it has been suggested that one should use the constituent quark masses

in the formulas of quark EDM [12], this is incorrect from the point of view of

factorization.

In the parton quark model discussed in [13], it was found,

d
(1)
N = −0.508dEu + 0.746dEd − 0.226dEs . (3.23)

From the QCD sum rules, one gets [14]

d
(1)
N = (1± 0.5)× 0.7(−0.25dEu + dEd ) . (3.24)

Different approximations are largely consistent.

3.3.1.2 Contribution from Quark CDM

The contribution to nEDM from the quark CDM in the constituent quark

model is [11]

d
(2)
N =

4

9

e

gs
dCu +

8

9

e

gs
dCd , (3.25)
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where gs is the coupling of strong interaction at the energy scale where the model

is applicable. In this calculation, the authors assumed first that the neutron is

composed of constituent quarks, and then treated the gluon field inside the neutron

as a background, neglecting its kinetic energy. Therefore, Eq. (3.25) can only be

seen as an order-of-magnitude estimate.

Weinberg’s naive dimensional analysis has also been used to estimate this

contribution [29, 61, 62],

d
(2)
N ∼ e

4π

(
O(1)dCu +O(1)dCd

)
. (3.26)

In Ref. [63], the authors used the chiral perturbation theory to calculate the singular

part of the long distance contribution,

dN ≃ 0.7e

gs
(dCu + dCd ) . (3.27)

And finally, QCD sum rules analysis in Ref. [14] gives

d
(2)
N = (1± 0.5)× 0.55e

gs
(0.5dCu + dCd ) , (3.28)

where gs is the strong coupling constant at 1 GeV, about 2.5.

3.3.1.3 Contribution from Weinberg Operator

The contribution from the Weinberg’s operator OW can be estimated by Wein-

berg’s naive dimensional analysis [29], which is an order-of-magnitude estimate

d
(3)
N ≃ eMCg(µ)/4π ≈ 100 MeV e Cg(1GeV) , (3.29)

where M = 4πFπ ≃ 1190 MeV and µ is the hadronic scale taking as 1 GeV.
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On the other hand, the estimate based on QCD sum rules gives [64]

d
(3)
N ≃ (10− 30)MeV e Cg(1 GeV) , (3.30)

which is considerably smaller. In any case, because of the small coefficient function,

the Weinberg operator contribution can essentially be neglected.

3.3.1.4 Contribution from Four-Quark Operators

The hadronic matrix elements of the four-quark operators have been studied

and reviewed in Ref. [65]. In this work we will take the results from that paper.

3.3.2 Numerical Results

As discussed in Ref. [3], combining with the kaon indirect CP-violation ϵ pa-

rameter, one can use nEDM to get the most stringent lower bound on the mass of

the right-handed W boson in the context of the mLRSM. In Ref. [3], the authors

used naive factorization [20] to estimate the contribution of four-quark operators.

However, this method for baryons may not be valid even in the large-NC limit, and

the uncertainty is unknown. Therefore, we have assumed a very large error on their

matrix elements and the resulting constraint on the left-right symmetry scale is not

very strong. In a dedicated study of these matrix elements [65], we have gotten

a much better understanding on their contribution. In Ref. [65], the contribution

of four-quark operators to nEDM was separated into two parts, the direct contri-

bution and the meson-condensate contribution. For the direct contribution, quark

models were employed to calculate the hadronic matrix elements, which is only an
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order-of-magnitude estimate be. However, for the meson-condensate contribution,

the factorization method was used to calculate the meson matrix elements, which

can be justified in the large-NC limit. Since the meson-condensate contribution

dominates over the direct one, we believe that we reached a factor-of-two accuracy

in the matrix elements of four-quark operators.

In mLRSM, after neglecting the contributions from FCNH and the charged

higgs boson exchange, nEDM depends only on three parameters, r, α, and MWR
,

where α is the new source of CP-violation. Therefore, if α = 0, nEDM predicted by

the mLRSM will be the same as that predicted by SM, about five orders of magnitude

smaller than the upper bound given by the current experiment [4]. Whereas for ϵ,

there are two new contributions in mLRSM [3], the Dirac phase in the righthanded

CKMmatrix inherited from the lefthanded CKMmatrix, and the spontaneous phase

α. The new contribution from the Dirac phase is enhanced compared to the similar

contribution in SM due to the chiral enhancement in the hadronic matrix element

(see Ref. [5] for a good review). The contribution of the spontaneous CP-phase

α must be adjusted to cancel the contribution of the Dirac phase. Therefore, in

mLRSM there is a tension between nEDM and ϵ that one cannot only adjust α to

suppress all the new CP-violation sources, and a large MWR
is needed. As a result,

nEDM and ϵ together give a lower bound on MWR
.

In this new study, we use the QCD sum rules to estimate the contribution

of the quark EDM and CDM operators, and use the results in Ref. [65] for the

contribution of the four-quark operators. Fig. 3.7 shows the contributions to nEDM

from different operators at fixedMWR
and r. The result from the Weinberg operator
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is too small to be included in the figure. It is clear that the contributions from four-

quark operators are much larger than from quark EDM and CDM operators. One

way to understand this is that in mLRSM the quark EDM and CDM operators are

generated in the same way as the four-quark operators. The quark EDM and CDM

operators are generated through diagrams in Fig. 3.2 and the four-quark operators

are generated through diagrams in Fig. 3.1. The Wilson coefficients roughly have

the following relations

dEq ≃ emqA

16π2
C4 ; d

C
q ≃ gsmqA

′

16π2
C4 , (3.31)

where A and A′ are two proportionality coefficients, C4 is the Wilson coefficient of

certain four-quark operators. Take the down quark EDM as an example, A can be

written as sin2 θCmc/mu ≃ 15, where θC is the Cabibbo angle. From QCD sum

rules, nEDM contributed by the down-quark EDM operator is approximately the

down-quark EDM itself, whereas the nEDM contributed directly from the four-quark

operator can be written as [65]

dfour−quark
N ≃ e

16π2
B0C4 , (3.32)

where B0 ≃ 2.2 GeV is related to SSB of the chiral symmetry. Since B0 ≫ Amd,

nEDM directly from the four-quark operator ūiγ5ud̄d is much larger than the contri-

bution from the down quark EDM operator. Indeed, this is a common phenomenon

in left-right models and two-Higgs-doublet models, where the quark EDM and CDM

operators are always generated by the triangle diagrams in Fig. 3.2, and the inter-

nal lines are always quarks. In other types of new physics models, the internal lines

can be other kind of fermions. For example, in supersymmetric models, they can
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be gauginos, and in extra dimension models, they can be KK-fermions, where the

above relation between quark EDM operators and four-quark operators is no longer

hold. In these models, quark EDM and CDM operators might be more important

that four-quark operators.

Using the matrix elements in Ref. [65], we calculate the constraint from the

nEDM and kaon-decay parameter ϵ on the allowed parameter space of mLRSM. The

result is shown in Fig. 3.8. The allowed parameter region by the experimental upper

bound on nEDM is shown as green dots. The constraints from ϵ-parameter depends

strongly on the mass of the FCNH in the theory. We have shown two possible values

of MH0 , 50 TeV and ∞ for simplicity. We assume for ϵ the new contribution should

not exceed 1/4 of the experimental value. From Fig. 3.8 one can see that the lower

bound for the MWR
from nEDM and ϵ is around 10 TeV. If we assume a factor of 2

uncertainty on the hadronic matrix elements, the actual bound is 10± 3 TeV. This

will make a direct detection of the right-handed gauge boson very difficult at LHC

if it exits.

3.4 Summary

In this chapter, we have studied nEDM in mLRSM systematically by using

effective field theory approach. The formula for calculating nEDM is given in Eq.

(3.5). The contribution of four-quark operators is found to be the most important.

The contribution of Weinberg operator to nEDM has been discussed systematically.

A numerical suppression is found which counteracts the infrared enhancement and
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makes the contribution of this operator negligible. We have found a lower bound on

the mass of WR which is about (10± 3) TeV. This constraint is the most stringent

one on the righthanded scale to date, which means in the framework of mLRSM,

WR cannot be detected at LHC.

In a more complicated non-supersymmetric scenario of LRSM, although the

CP-violation pattern in the Higgs sector might be change, the tension between ϵ and

nEDM discussed in Sec. IV still exists. Therefore, one can also use this analysis to

set a lower bound on the righthanded scale. In the supersymmetric LRSM, there are

new CP-violation sources from the soft terms, which can contribute to both nEDM

and ϵ. Furthermore, in supersymmetric LRSM [66], the lefthanded and righthanded

CKM matrices must be equal to each other up to a sign, therefore, if one assumes

certain scenarios of the breaking mechanism of supersymmetry, ϵ itself can give a

constraint on the righthanded scale [67].
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(a)

(b)

Figure 3.1: Effective four-quark operators generated by integrating out W1-boson:

(a) the diagrams in the full theory and (b) the effective operator.

(a) (b) (c)

(f)(e)(d)

Figure 3.2: One-loop contribution to quark EDM. The internal wavy lines represent

the W-boson contribution and the dashed lines the corresponding Goldstone bosons.
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Figure 3.3: Higgs-induced quark EDM. The dashed lines here represents the Higgs

bosons.

Figure 3.4: Long-distance contributions to quark EDM and CDM through CP-odd

four-quark operators.

Figure 3.5: Diagrams contributing to Weinberg operator in mLRSM. The first dia-

gram is induced by the W-boson exchange, the second by Goldstone exchange and

the third by the charged Higgs boson.
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Figure 3.6: Contribution to the three-gluon vertex after integrating out the top

quark, the Higgs boson and the W-bosons. The black dot labels the bottom quark

CDM operator.
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Figure 3.7: nEDM contributed from operators, ūiγ5ud̄d (short dashed red line),

ūiγ5us̄s (long dashed green line), down quark EDM and CDM operators (solid blue

line).
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Figure 3.8: Constraints on the mass of WR and the spontaneous CP-violating pa-

rameter α from the kaon decay parameter ϵ (MH0 = ∞, red dots; MH0 = 50 TeV,

blue dots) and nEDM (green dots). For nEDM, we use the current experimental up-

per bound as the constraint and for ϵ we use the criteria that the beyond-SM-physics

contribution should not exceed 1/4 of the experimental value.
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Chapter 4

Collider Constraints On Low Mass Dark Matter

4.1 Introduction

If the mass of WIMP is around or less than 15 GeV and the cross section

between WIMP and nucleons is as large as 10−41 cm2, it might probably be generated

in colliders. The Tevatron constraints of direct detection signal has been studied in

Refs. [68, 69] in an effective theory approach. The authors studied the process

pp̄→ mono− jet + missing energy . (4.1)

At Tevatron, this process with the cuts that the leading jet ET > 80 GeV, missing

ET > 80 GeV, second jet with pT < 30 GeV and vetoing any third jet with ET > 20

GeV has been studied in order to constrain large extra dimension model [70]. 1.0 fb−1

of data was analyzed with 8449 events observed. On the other hand the expected

value of SM background is 8663±332, therefore following Ref. [68, 69], the 2σ limit

on the new physics can be set as σnew < 0.664 pb. In Ref. [68], both the hard

processes and soft ones have been simulated as well as the collider effects. It has

been shown that the correction from the soft processes and the collider effects do not

change much of the cross section of the hard processes. Therefore, in the following

discussions, we only simulate the parton level processes.
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In Tevatron, the center-of-mass energy of the incoming proton and anti-proton

is 1.96 TeV. If the mass of mediator conducting the interaction between dark matter

and SM particles is around or less than a few hundred GeV, it can be produced on-

shell so that one cannot use contact operators to study Tevatron constraints. On the

other hand, if the mass of mediator is so large that it cannot be produced on-shell

at Tevatron, we show in Sec. 6.3 that the Tevatron constraint cannot be saturated

in perturbative region. Furthermore, if the signal of CoGeNT or CRESST-II are

induced by SI and momentum-independent (MI) interaction between WIMP and

nuclei, the effective four-fermion interaction between quarks and WIMP (assuming

dark matter is a fermion) can be estimated as

G(4) ≡ gSMgD
M2

mediator

≈
(

1

(1 ∼ 3) TeV

)2

, (4.2)

where gSM and gD are the couplings of the mediator to quarks and MD, respectively.

Therefore, at the Large Hadron Collider (LHC), since the center-of-mass energy of

proton pairs is as large as 14 TeV, in the process pp → jets + missing energy, the

mediator could not be integrating out or the unitary condition would be violated.

Another well known property of DM is its relic abundance, Ωh2 ≈ 0.11 [71].

It can be generated in several ways. One is through thermal freezing out. The

relic density of DM can also be produced by late-decays of the thermal relics of

long living particles, for example, superWIMP models [72]. It can also be pro-

duced asymmetrically in analogy to baryogenesis, and this idea was first proposed

in Ref. [73]. Usually, in late-decay scenarios, direct detection signal is difficult to

be produced. On the other hand, if the annihilation interaction of DM is strong
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so that the thermal produced relic abundance is much smaller than the observed

value, asymmetric production can be turned on to solve this problem. Therefore,

in this work, we use the observed relic abundance of DM as a lower bound for the

thermal relic abundance, which gives lower bounds on the interaction between DM

and SM particles. If there is a relationship between gq and gl, where gq and gl are

the couplings of the mediator to quarks and leptons respectively, there are stringent

constraints from the Linear Electron-Positron Collider (LEP) [74] and Tevatron [75].

Therefore, the constraint from relic abundance cannot be alleviated by increasing

the thermal annihilation of channel of DM to leptons.

Since the Yukawa sector of SM violates flavor symmetry, the mediator of the

interaction between SM and DM particles may induce additional sources of flavor

changing neutral current (FCNC) if it does not commute with the rotations of quarks

from flavor eigenstates to mass eigenstates, and in this case, the mass differences of

neutral meson systems, K0 − K̄0, D0 − D̄0, Bd − B̄d, and Bs − B̄s can be used to

constrain the parameter space of this interaction.

In most models, if DM is a WIMP, the spin of DM is 0 or 1/2, for example

in supersymmetric models both sneutrino and neutrolino can be DM candidate. In

extra-dimension models, the spin of DM can also be 1 [76]. Furthermore, DM can

also be composite particles like nuclei or atoms [77], and in these cases, the spin

structure of DM can be rather complicated. If the mediator between DM and SM

particles is a vector particle, the interaction between DM with non-vanishing spin

can interact with SM particles through multi-pole interactions. In this work, to get

the main features of the interaction between DM and SM particles, we consider spin
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0 complex scalar DM candidate and spin-1/2 Dirac spinor DM candidates which are

labeled as ϕ and χ, respectively.

The annihilation of dark matter can be either through either S-channel or

through T-channel. In the case of S-channel annihilation, the mediator is neutral

under the symmetry transformation which keeps DM stable. And the direct detec-

tion signal in this case must be through T-channel. Furthermore, the thermal relic

abundance determines that the mass of the mediator should not be around weak

scale. In the case of T-channel annihilation, the interaction between DM and quarks

must be conducted by new colored particles which shares the same quantum number

as DM under the transformation of the symmetry keeps DM stable. In this chapter,

we concentrate on the S-channel annihilation cases.

In SM, there are two natural candidates for the mediator, which are Z-boson

and the Higgs boson. Since we are interested in low mass dark matter with mass

around or smaller than 15 GeV. Therefore, the Z-width constraint force the coupling

between DM and Z to be no larger than 0.02. For the mass of DM as low as being

smaller than 15 GeV, thermal annihilation would leave too much dark matter and

the universe would be over closed.

In the case of Higgs boson mediator, if DM is a fermion, for the reason that

a low mass dark matter particle cannot annihilate into top quarks during thermal

annihilation era, the annihilation rate between dark matter and anti-dark matter

particles to SM particles is suppressed by the small Yukawa couplings between Higgs

boson and light SM fermions. Therefore, the correct dark relic abundance cannot

be generated in the perturbative region. However, if DM is a scalar, the coupling
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between DM and Higgs is dimension one, therefore, during the thermal annihilation,

the coupling can be seen as enhanced by a factor of Mh/MD relative to the fermion

DM case, where Mh is the Higgs mass, so that it is possible to reconcile light DM

with relic abundance [78].

In this chapter, we concentrate on the new vector mediator case which we will

call Z ′ throughout this chapter. The interaction between Z ′ and DM particles are

listed in Table 4.1. This Z ′ particle also contributes to the pp̄ → jj at Tevatron

which is studied both in CDF detector [79] and in D0 detector [80].

ϕ Z ′
µ(ϕ

†i∂µϕ− i∂µϕ†ϕ)

χ Z ′
µχ̄γ

µχ, Z ′
µχ̄γ

µγ5χ, Z
′
µνχ̄σ

µνχ, Z ′
µνχ̄iγ5σ

µνχ

Table 4.1: Interaction between DM and mediator.

4.2 From Resonant to Contact Interaction

The propagator of the S-channel mediator can be written as

i

s−M2 − i
√
sΓ(s)

, (4.3)

where s is the center-of-mass energy of the two incoming particles and Γ(s) is the

width of the mediator if its mass is
√
s. Therefore, we can get

σ ∝ g2SMg
2
D

(s−M2)2 + sΓ2(s)
, (4.4)

where gSM is the coupling between the mediator and the SM particles whereas gD

is the coupling between the mediator and DM.
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Assuming gSM = gD = g, in the case that both SM quarks and DM are much

lighter than the mediator, the cross section can be written as

σ ∝ g4

(s−M2)2 +
(

ag2

8π

)2
s2

, (4.5)

where a is proportional to the number of light degrees of freedom. In direct detection

experiments, since the momentum transfer is small, it can only see a contact inter-

action and the cross section is determined by M0 = M/g. Substitute this relation

to Eq. (4.5) we can get that

σ ∝ 1(
s
g2

−M2
0

)2
+
(

a
8π

)2
s2

. (4.6)

Therefore, in the case that s/g20 ≪M2
0 and (a/(8π))2s2 ≪M4

0 , the contact interac-

tion treatment is a good approximation.

On the other hand, if the mediator can be produced on shell, the enhancement

of the cross section is quite large. In Fig. 4.1, it is demonstrated that

----------- MD = 50 GeV

----------- MD = 150 GeV

- - - - - - MD = 50 GeV Contact Interaction

- - - - - - MD =
150 GeV Contact Intaction

0 200 400 600 800 1000 1200 1400

0.5

1.0

1.5

2.0

MZ 'HGeVL

Σ
Hp

bL

Figure 4.1: Transition from resonant case to contact interaction.
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4.3 Tevatron Constraints on Z ′ Mediator

In this section, we study the constraint from the process in Eq. (4.1) on the

couplings and masses of the mediator in different cases. The couplings between

mediators and quarks are assumed to be universal. If they were not, there would be

large tree-level flavor changing neutral currents induced by quark mixings which is

discussed in Sec V.

4.3.1 Constraint from monojet plus missing energy

4.3.1.1 Vector-like Interaction

The interacting Lagrangian of vector-like interaction can be written as

Lvector = Z ′
µ

[
q̄
(
g
(1)
Z′ γµ + g

(1)
Z′5γµγ5

)
q + χ̄

(
g
(1)
D γµ + g

(1)
D5γµγ5

)
χ
]
. (4.7)

Since we are concentrating on low mass dark matter case, the produced dark matter

particles in Tevatron are relativistic, therefore, the total cross section depends very

weakly on whether the mediator couples to vector currents or axial vector currents.

As a consequence, we concentrate on vector coupling cases.

Using CalcHEP2.5.7 [81] we simulate the pp̄→ χχ̄+one jet process, assuming

Z ′ couples only to DM and quarks. The constraints on gZ′ and MZ′/
√
gZ′gD for

MZ′ > 20 GeV are shown in Fig. 4.2, where the mass of dark matter is fixed to

5 GeV. We can see that the bound on MZ′/
√
gZ′gD gets lower for smaller dark

matter masses. The reason is that, in this region, Z ′ is on shell, and the process

pp̄ → χχ̄ + one jet can be divided into two processes, namely, pp̄ → Z ′ j and
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Z ′ → χχ̄. Furthermore, in small MZ′ region, the cross section of pp̄→ Z ′ j changes

very little with MZ′ , and the branching ratio of Z ′ decaying to χχ̄ also does not

change much with MZ′ since M2
Z′ remains much larger than m2

b , where mb is the

mass of bottom quark. Therefore, with fixed gZ′ and gD, the total cross section

almost does not change with MZ′ . Therefore, as we can see from (a) of Fig. 4.2,

with the fixed total cross section which is the Tevatron bound, the lower bound on

MZ′/
√
gZ′gD gets smaller with smaller MZ′ .

In Fig. 4.2, the red, orange, yellow, green, and blue curves correspond to

gD = 0.5, 1, 2, 3, and 5, respectively. We can see that in the small mass region,

the upper bound on gZ′ does not depend on gD. The reason is that the total cross

section depends only on the cross section of pp̄ → Z ′ j and the branching ratio of

Z ′ → χχ̄, and in small MZ′ region, the upper bound on gZ′ is much smaller than

gD so that the branching ratio of Z ′ → χχ̄ ≈ 1. Therefore, the upper bound of

gZ′ does not change with gD. As a result, in small MZ′ region, the dependence of

MZ′/
√
gZ′gD on gD can be factorized out. Furthermore, this factorization property

is applicable to more general cases.

From Fig. 4.2a, one can see that the coupling gets much larger when MZ′

approaches certain value for each gD. Furthermore, since Z ′ couples universally to

SM quarks, the width of Z ′ is enhanced by a factor of 18. Neglecting the effect of

top quark mass, the width of MZ′ can be written as

ΓZ′(MZ′) ≈ 3

2π
g2Z′MZ′ +

1

12π
g2DMZ′ . (4.8)

Therefore, we can see that the loop factor is canceled by the degrees of freedom
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Figure 4.2: The red, orange, yellow, green, and blue curves show the upper bounds

on the combination gZ′ in (a) and lower bound on MZ′/
√
gZ′gD in (b) for cases in

which gD is fixed to 0.5, 1, 2, 3 and 5, respectively. In (b), the horizontal dashed

purple line shows the upper bound in the case of contact operator.
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Figure 4.3: Typical hard processes for pp̄ → χχ̄ + jet, where diagrams (c) and (d)

show divided processes for (a) and (b), respectively.
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of quarks. Therefore, for large gZ′ the effect of width is important, and the total

cross section gets smaller for larger gZ′ . Fig. 4.4 shows the total cross section of

the hard process of pp̄ → χχ̄ + j where the mediator masses is chosen to be 430

(green), 450 (purple), 480 (red) and 500 (blue) GeV in the case of gD = 1. The

solid black horizontal line is the Tevatron bound. We can see that in the case that

gD = 1 if MZ′ ≥ 480 GeV, the Tevatron bound cannot be achieved. Therefore, for

each gD a parameterM∗ can be defined beyond which the collider constraint cannot

be saturated in perturbative region. One can get M∗ from Fig. 4.2a by looking at

the sharp rising of each curve, and one can get M∗ ≈ 340, 430, 560, 630, 690 GeV for

gD = 0.5, 1, 2, 3, 5, respectively.
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Figure 4.4: Cross section of hard process of pp̄ → χχ̄ + j with the cut that the

transverse energy of the jet should be larger 80 GeV and gZ′ fixed to 1. The green

upward triangle, purple downward triangle, red diamond triangle, and blue square

triangle are for 430, 450, 480, 500 GeVMZ′ , respectively. The solid black horizontal

line is the Tevatron bound for this process.

Fig. 4.5 shows the comparison between 5 GeV and 15 GeV DM. From the
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plots, we can see that at MZ′ > 30 GeV, the two curves coincide with each other,

which means the bound does not depend on the mass of DM. And in the case of

MZ′ < 2Mχ, the constraint on gZ′ gets much looser due to that the phase space of

three-body final state is much smaller than the two-body one. Furthermore, in this

region, a plateau appears indicating that the bound on gZ′ does not depend on the

mass of the mediator. The reason is that the denominator of the Z ′ propagator is

completely off-shell and the width of Z ′ can be neglected. Therefore, on the plateau,

the cross section of the process in Eq. (4.1) depends solely on the product gZ′gD,

and the upper bound of gZ′ goes like 1/gD. From Fig. 4.5a, we can see that the

height of the plateau depends slightly on the mass of dark matter. The dependance

of the upper bound of gSMgD on the mass of DM in this case is shown as the red

curve in Fig. 4.6a.
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Figure 4.5: Comparison between upper bounds on gZ′ (a) and lower bounds on

MZ′/
√
gZ′gD (b) in the cases of 5 GeV (red square) and 15 GeV (blue triangle) DM

mass. In both cases, gD = 1.

If the coupling contains both the vector part and the axial-vector part, the

constraint shown in Fig. 4.2 can be seen as on the combinationMZ′/[(g2Z′+g2Z′5)(g
2
D+
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Figure 4.6: (a) shows upper bounds on gSMgD from Tevatron in the case that

Mmediator ≪ MDM , where the red curve is for vector coupling with fermion dark

matter, the green one vector coupling with scalar dark matter, the blue one scalar

mediator with fermion dark matter. In the first two cases the coupling between Z ′

to fermions are assumed to be vector-like. (b) shows upper bounds on g
(2)
Z′ g

(1)
D /MZ′ ,

where the coupling between Z ′ and quarks is assumed to be dipole and the coupling

between Z ′ and DM is vector-like. The red curve is for fermion dark matter whereas

the blue one is for scalar dark matter. (c) shows upper bound of gH′gDMH′ in the

case of scalar mediator and scalar DM.
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g2D5)]
1/4, instead of MZ′/

√
gZ′gD.

In the case that dark matter particle is a scalar, the interacting Lagrangian

can be written as

Lvector = Z ′
µ

[
q̄
(
g
(1)
Z′ γµ + g

(1)
Z′5γµγ5

)
q + g

(1)
D

(
ϕ†i∂µϕ− i∂µϕ†ϕ

)]
. (4.9)

The analysis is parallel to the fermion dark matter case and the constraints for 5

GeV dark matter is shown in Fig. 4.7. If parity violating interaction is invoked,

the bounds should be seen as toMZ′/
√

(g2Z′ + g2Z′5)
1/2gD instead of toMZ′/

√
gZ′gD.

From Fig. 4.7a, one can see that in this caseM∗ is around 340 GeV. In the case that

MZ′ < 2Mϕ, the upper bound on gZ′gD is similar as in Fig. 4.5a, and the height of

the plateau is shown in Fig. 4.6a.
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Figure 4.7: Lower bound on the combination MZ′/
√
gZ′gD (a) and upper bound on

gZ′ (b). The horizontal blue line is the upper bound in the case of contact operator.

Mχ = 5 GeV, gD = 1. The horizontal blue line in (a) shows the corresponding

bound in the case of contact operator.

In the case that Z ′ couples to the axial currents of SM fermions, an issue

of anomaly occurs if the quantum numbers are assigned improperly. However, the
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existence of anomaly only mean that the theory needs a cut-off at some energy scale.

And for an anomalous U(1) gauge theory, the upper bound on the cut-off scale can

be written as [94]

Λ <
64π3

|gZ′Q|3
MZ′ , (4.10)

where Q is the charge of chiral fermions. Therefore, we can see that even for GeV

scale Z ′, the cut-off is far from the reach of Tevatron. Even if Z ′ couples only

to vector currents of SM quarks, the chiral nature of electroweak interaction may

induce the SU(2)L&SU(2)L&U(1)Z′ anomaly, which means a cut-off is needed at the

energy scale 4πMweak/g
2
2 where g2 is the coupling of the weak interaction, therefore,

we can see that in this case, the upper bound of the cut-off cannot be reached by

Tevatron as well.

4.3.1.2 Dipole coupling between Z ′ and dark matter particle

The dipole interaction has recently be proposed to make CoGeNT and DAMA

reconcile with other experiments [82, 83, 84, 85, 86]. In the case that dipole inter-

action dominates the interaction between DM particle and Z ′, the Lagrangian can

be written as

Ldipole =
1

MZ′
χ̄
(
g
(2)
D σµν + g

(2)
D5iγ5σ

µν
)
χZ ′

µν , (4.11)

Generically, there are two ways the dipole operator can be induced. One is through

strong dynamics in analogy to the anomalous magnetic moments of nucleons. The

other is through perturbative interaction like the anomalous magnetic dipole of

electron, which is induced by the diagrams shown in Fig. 4.8, and the dipole moment

125



can be estimated as

g
(2)
D

MZ′
∼ Mχ′

16π2(M2
χ′ +M2

W ′)
. (4.12)

where χ′ and W ′ are some internal particles, which are shown in Fig. 4.8.

Z’
W’

Z’
W’

W’

Figure 4.8: Triangle contribution to dipole moment.
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Figure 4.9: Total cross section of the hard process of pp̄ → χχ̄ + jet in Tevatron

requiring the transverse momentum of the jet larger than 80 GeV. The red and

blue curves are for MZ′ = 200 GeV and 350 GeV, respectively. In both cases,

gZ′ = gD = 1.

In the perturbative scenario, in the case thatMZ′ < M∗, Z
′ can be produced on

shell. IfMZ′ > 2Mχ′ orMZ′ > 2MW ′ , the process pp̄→ χ′χ̄′+jet or pp̄→ W ′W ′+jet

dominate over the process pp̄ → χχ̄ + jet, and if the life-time of W ′ and χ′ is long

enough, they can fly out of the detector, and in this case, Tevatron constraints on

single jet plus missing energy is similar to the vector-like coupling case. In order
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for the dipole operator not to be destroyed by the decay of Z ′, MZ′ < 2Mχ′ and

MZ′ < 2MW ′ should be imposed, and in this case, the partial decay width of Z ′ to

χχ̄ can be estimated as

Γ(2)(Z ′ → χχ̄) ≈ M3
Z′

6π

(
g
(2)
Z′

MZ′

)2

=
g
(2)
Z′

2
MZ′

6π
. (4.13)

The Tevatron bound on g
(1)
Z′ and the combination MZ′/(g

(1)
Z′ g

(2)
D )1/3 are shown in

Fig. 4.10. One can see in this case M∗ is around 430 GeV. The factorization of the

dependance on gD as discussed before for MZ′ < 2Mχ and 2Mχ < MZ′ ≪M∗ is still

applicable here. However, one should note that in this dipole coupling case, in this

case, it is the constraint on g
(1)
Z′ g

(2)
D /MZ′ does not depend on MZ′ . In this case, from

the simulation, it does not depend on Mχ as well, and the bound can be written as

g
(1)
Z′ g

(2)
D

MZ′

∣∣∣∣∣
MZ′<2Mχ

< 1.2× 10−3 GeV−1 . (4.14)
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Figure 4.10: Lower bound on the combinationMZ′/(g
(2)
D g

(1)
Z )1/3 (a) and upper bound

on g
(1)
Z′ (b) for magnetic interaction between Z ′ and dark matter particle. Mχ = 5

GeV, g
(2)
D = 1.

In the case of strong dynamics, just like in QCD, the intrinsic scale of the

strong interaction determines both the mass of the dark matter and its magnetic
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moments. There, for low mass dark matter, Tevatron is energetic enough to break

the composite dark matter particle and see the internal structure. Therefore, the

hard process, in this case can be written as qq̄ → cχc̄χ+jet, where cχ is the constitute

of the dark matter. In this case, the Tevatron bound is just like what is shown in

Fig. 4.2.

4.3.2 Constraints from dijet final states

4.3.2.1 Fermion dark matter

The interacting Lagrangian is

L = q̄(gH′ + igH′5γ5)qH
′ + χ̄(gD + igD5)χH

′ . (4.15)

The constraints onM
H′/(

√
gH′gD) and gH′ for 5 GeV dark matter and 15 GeV

dark matter are shown in Fig. 4.11.

4.3.2.2 Scalar dark matter

The interacting Lagrangian is

L = q̄(gH′ + igH′5γ5)qH
′ + gDMH′ϕ†ϕH ′ . (4.16)

In this case the low energy experiments and dark matter relic abundance depend

only on the combination MH′/(λZ′λD) which is shown in Fig. 4.12, where we can

see that in this case M∗ is around 350 GeV.
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Figure 4.11: Upper bounds on the combination gH′ (a), (c) and lower bounds on

MH′/(gH′gD) (b), (d) in the case of scalar mediator and fermion DM. Mχ = 5 GeV

(a), (b) and 15 GeV (c), (d), respectively.

à à à à à à
à à
à
à
à
à

à

à

à

à

à

à
àà

50 100 200
MH '�GeV

0.10

1.00

0.50

0.20

0.30

0.15

0.70

ΛH '

à

à

à

à

à

à

à

à
à
àà
à

à

à

à

à

à

à

à
à

50 100 200
MH '�GeV

1000

2000

1500

MH '�HΛH 'ΛDL�GeV

(a) (b)

Figure 4.12: Upper bound on λH′ (a) and lower bound on the combination

MH′/(λZ′λD) (b) in the case of scalar mediator and scalar dark matter particle.

Mϕ = 5 GeV, λD = 1.
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4.4 Detector Constraints on Dark Matter Direct Detection Signal

4.4.1 Effective Operator for Dark Matter Direct Detection Experi-

ments

At the energy scale of direct detection, we should consider the interaction

between mediator and the nucleons. Then a subtlety comes out that even if the Z ′

couples to u quark or d-quark through a vector-like coupling, that this vector-like

might be canceled inside the nucleon, so that the leading order coupling becomes a

dipole. This happens in models where the interaction between Z ′ and SM particles

is induced by a kinetic mixing between Z ′ and photon. However, the target is

composed by both protons and neutrons, and there is no way for the vector-like

couplings to be canceled in proton and neutron at the same time. Therefore, if

the vector-like coupling between Z ′ to u and d quarks is present, the vector-like

interaction between Z ′ and the target nuclei dominates over the dipole interaction.

However, if Z ′ couples only to heavy quarks, after integrating out the heavy quarks,

a dipole interaction is induced [87] and the matching is calculated in Ref. [89]. The

relevant hadronic matrix elements have been carefully discussed in detail in Ref. [90].

The non-relativistic (NR) effective operators for each couplings can be found in

Ref. [90]. However, the magnetic interaction is different in our case. After integrat-

ing out Z ′, the four-fermion interaction should be written as ∂µ(N̄σ
µνN)∂ρ(χ̄σ

ρ
νχ)

and ∂µ(N̄iγ5σ
µνN)∂ρ(χ̄σ

ρ
νχ) for CP-even and CP-odd cases, respectively. There-

fore, the leading order CP-even NR operator should be written as (q⃗× s⃗N) · (q⃗× s⃗χ),

130



where q⃗ is the three-momentum transferred during the collision.

In direct detection experiment, the interactions between dark matter particle

and the target nuclei is non-relativistic, and the velocity of dark matter is about

10−3. Therefore, if the interaction is proportional to the momentum of dark matter

particle, there is a suppression factor of 10−6 appearing in the cross section between

nuclei and dark matter. Furthermore, the interaction should be separated into spin-

dependent and spin-independent, since the energy transferred from dark matter to

nuclei is smaller than the energy scale of nuclear structure, the dark matter particle

interacts with nucleus as a whole, therefore the cross section of spin dependent

interaction suffers from a factor of 1/A2 suppression relative to spin independent

interaction, which is about a factor of 10−4. Therefore, according to this power

counting, we classify the operators as the following,

4.4.2 Tevatron Bounds on Direct Detection between Dark Matter

and Nucleon (Mmediator > 2Mdark matter)

4.4.2.1 Z ′ mediator with fermion dark matter

The hadronic matrix elements are discussed in detail in Refs. [90, 91]. The

CP-odd interaction Z ′
µν q̄iγ5σ

µνq can be seen as a Z ′ electric dipole moment (EDM),

and the hadronic matrix elements can be calculated in the same way as calculating

the quark EDM contribution to neutron EDM, which has been calculated in several

ways. In this chapter, we use the result from QCD rum rules [14] that

dEneutron = (1± 0.5)× 0.7(−0.25dEu + dEd ) , (4.17)
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Operator Structure NR Cross Section

O1 N̄γµNχ̄γµχ SI, MI
C2M2

NM2
χ

π(MN+Mχ)2

O2 N̄γµNχ̄γµγ5χ SI, MD
C2M4

NM2
χv2

2π(MN+Mχ)4

O3 N̄γµγ5Nχ̄γµχ SD, MD
C2M2

NM2
χ[(MN+Mχ)2+2M2

N ]v2

2π(MN+Mχ)4

O4 N̄γµγ5Nχ̄γµγ5χ SD, MI
3C2M2

NM2
χ

π(MN+Mχ)2

O5 N̄γνN∂µ(χ̄σµνχ) ∝ v4

O6 N̄γνN∂µ(χ̄iγ5σµνχ) SI, MD
2C2M4

NM4
χv2

π(MN+Mχ)4

O7 N̄γνγ5N∂µ(χ̄σµνχ) SD, MD
4C2M4

NM4
χv2

π(MN+Mχ)4

O8 ∂µ(N̄σµνN)χ̄γνχ ∝ v4

O9 ∂µ(N̄σµνN)χ̄γνγ5χ SD, MD
4C2M4

NM4
χv2

π(MN+Mχ)4

O10 ∂µ(N̄iγ5σµνN)χ̄γνχ SD, MD
2C2M4

NM4
χv2

π(MN+Mχ)4

Table 4.2: Effective operator between nucleon and dark matter, where C is the

Wilson coefficient for each operator and v is the speed of dark matter particle.
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Operator Structure NR Cross Section

O11 gµν∂α(N̄σµαN)∂β(χ̄σ
νβχ) ∝ v4

O12 gµν∂α(N̄σµαiγ5N)∂ν(χ̄σνβχ) ∝ v6

O13 gµν∂α(N̄σµαiγ5N)∂ν(χ̄σνβχ) ∝ v6

O14 gµν∂α(N̄iγ5σµαN)∂ν(χ̄iγ5σνβχ) ∝ v4

O15 N̄γµN(ϕ†i∂µϕ− i∂µϕ†ϕ) SI, MI
C2M2

NM2
χ

π(MN+Mχ)2

O16 N̄γµγ5N(ϕ†i∂µϕ− i∂µϕ†ϕ) SD, MD
C2M2

NM2
ϕv2

2π(MN+Mϕ)2

O17 ∂µ(N̄σµνN)(ϕ†i∂µϕ− i∂µϕ†ϕ) ∝ v4

O18 ∂µ(N̄iγ5σµνN)(ϕ†i∂νϕ− i∂νϕ†ϕ) SD, MD
2C2M4

ϕM4
Nv2

π(MN+Mϕ)4

O19 N̄Nχ̄χ SI, MI
C2M2

NM2
χ

π(MN+Mχ)2

O20 N̄Nχ̄iγ5χ SI, MD
C2M4

NM2
χv2

2π(Mχ+MN )4

O21 N̄iγ5Nχ̄χ SD, MD
C2M4

χM2
Nv2

2π(Mχ+MN )4

O22 N̄iγ5Nχ̄iγ5χ SD, MD ∝ v4

O23 N̄Nϕ†ϕ SI, MI
C2M2

N
4π(MN+Mχ)2

O24 N̄iγ5Nϕ†ϕ SD, MD
C2M2

ϕM2
Nv2

8π(MN+Mϕ)4

Table 4.3: Effective operator between nucleon and dark matter, where C is the

Wilson coefficient for each operator and v is the speed of dark matter particle.
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where dEu and dEd are the EDM of u and d quarks, respectively.
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Figure 4.13: Tevatron constraints on cross sections between dark matter and nu-

cleons for Z ′ mediator and fermion dark matter particle. Flavor universal coupling

is assumed. The red and blue curves are cases for gD = 1 and gD = 0.5 cases,

respectively. (a), (b), (c), and (d) are for effective operators O1, O2, O3, and O4,

respectively.

If dark matter interacts with SM particles through the dipole of Z ′, either

induced by the loop diagrams shown in Fig. 4.8 or by strong interactions, as discussed

in last section, we need to classify the collider constraint into two cases.

First, if the mass of Z ′ is larger than twice of the intermediate particle like

W ′ or χ′ in Fig. 4.8, or larger than the intrinsic scale of the dark sector, the collider

constraint is indeed on the process pp̄ to intermediate particles or to constituents
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of dark matter. Assuming Z ′ couples to intermediate particles or the constituents

perturbatively. Then the loop contribution in Fig. 4.8 is suppressed by the loop fac-

tor, whereas in the case of strong interaction, in analogy to the anomalous magnetic

dipole moments of proton and neutron, the induced dipole moment is order one and

can be written as d(2)gD/Mχ, where d
(2) is an order 1 parameter which will be set

to be 1. Tevatron constraints for this case is shown in Fig. 4.14.
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Figure 4.14: Tevatron constraints on cross section between dark matter and nucleons

for Z ′ mediator, where the leading interaction between Z ′ and the dark matter

particle is assumed to be dipole at the energy scale of direct detection and the decay

of the Z ′ breaks the dipole structure. The interaction between Z ′ and the quarks

are through vector-like and universal. (a) and (b) are for O6 and O7, respectively.

Second, if Z ′ cannot decay into any intermediate states, the bound on the

combination of direct detection cross section can be calculated from Fig. 4.10,

which is shown in Fig. 4.15.

If Z ′ couples to the quarks through a dipole interaction, the constraints on the

direct detection cross section are shown in Fig. 4.16.
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Figure 4.15: Tevatron constraints on cross section between dark matter and nucleons

for Z ′ mediator, where the leading interaction between Z ′ and the dark matter

particle is assumed to be dipole at the energy scale of direct detection and the

decay of the Z ′ does not break the dipole structure. The interaction between Z ′

and the quarks are through vector-like and universal. (a) and (b) are for O6 and

O7, respectively.
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Figure 4.16: Tevatron constraints on cross section between dark matter and nucleons

for Z ′ mediator, where the leading interaction between Z ′ and quarks is assumed

to be dipole and universal. The interaction between Z ′ and the dark matter are

through vector-like. (a) and (b) are for O9 and O10, respectively.
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4.4.2.2 Z ′ mediator with scalar dark matter

In this case Tevatron constraint for direct detection cross section is shown in

Fig. 4.17.
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Figure 4.17: (a), (b) and (c) are for O15, O16 and O18, respectively.

4.4.2.3 H ′ mediator with fermion dark matter

In this case Tevatron constraint for direct detection cross section is shown in

Fig. 4.18.
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Figure 4.18: (a), (b) and (c) are for O19, O20 and O21, respectively.

4.4.2.4 H ′ mediator with scalar dark matter

In this case the collider constraint is shown in Fig. 4.19.
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Figure 4.19: Tevatron constraints on cross section between scalar dark matter and

nucleons for H ′ mediator. (a) and (b) are for O23 and O24, respectively.

4.4.3 Mmediator < 2MDM

The Tevatron bounds for direct detection cross section of 15 GeV dark matter

are shown in Fig. 4.20 and Fig. 4.21 for Z ′ and H ′ mediator, respectively. We can see

that at the region Mmediator < 2Mdark matter, due to that the phase space is smaller,

the bound on direct detection cross section is about 2 orders of magnitude looser

than the the case Mmediator > 2Mdark matter.

4.5 Constraint from Relic Abundance (M 2
mediator ≫ 4M 2

D)

The relic abundance of dark matter is well determined that Ωh2 = 0.11. For

the prototype models discussed in the above section, if the thermal relic abundance is

smaller than the observed value, one can always introduce CP violation in the model

and makes it to be asymmetric dark matter. However, if the calculated thermal relic

abundance is larger than the observed value, there are no many methods to rescue.

Therefore, the constraint from the the thermal relic abundance is that, the thermal

relic abundance of DM generated by each prototype model should not over-close the
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Figure 4.20: Tevatron constraints on cross section between fermion dark matter and

nucleons for Z ′ mediator, where the leading interaction between Z ′ and quarks is

assumed to be vector-like and universal. (a), (b), (c), (d) are for O1, O2, O3, and

O4, respectively. The masses of DM are chosen to be 5 GeV (red square) and 15

GeV (blue triangle), respecttively.
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Figure 4.21: Tevatron constraints on cross section between fermion dark matter and

nucleons for H ′ mediator. (a), (b) and (c) are for O19, O20 and O21, respectively.

The mass of dark matter is 15 GeV.
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universe. In this work, the relic abundance is simulated using MicrOmega2.4.O [93].

The relic abundance depends on the combination, gSMgD/M
2
mediator, and the

Tevatron constraints on this combination is for different cases have been studied in

Sec. III. From Fig. 4.2, we can see that the upper bound on this quantity depends

on gD, and too many parameters make the situation complicated. Therefore, we

would like to study some benchmark scenario from which we can grasp the main

feather of interactions between dark matter and SM particles. In this section, we

focus on the gD = 1 scenario. One case use the factorization properties discussed in

Sec. III to get the constraint in the case of Mmediator ≪M∗.

4.5.1 Tevatron Constraint and Dark Matter Relic Abundance

In the above section, we can see that Tevatron strongly constrains on cou-

plings between dark matter and SM particles. These interactions also determine the

thermal relic abundance of dark matter. Therefore, from the Tevatron bound we

can get lower bound on the dark matter relic abundance corresponding to each op-

erator. The energy region of dark matter thermal annihilation is very different from

Tevatron and direct detection experiments, and a specific effective theory needs to

be introduced for each case. From Fig. 4.22 to Fig. 4.29, Tevatron constraints on

the lower bound of relic abundance for each case is shown. The plots are explained

in the following.
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4.5.1.1 Annihilation at non-relativistic limit

In the era of dark matter thermal freezing-out, the ratio M/T ≈ 20 [92],

so the dark matter particle is non-relativistic during annihilation. Therefore, the

annihilation cross section can be expanded in terms of v2, where v is the speed of

dark matter during and v2 ≈ 0.1. The mass of dark matter particle we are interested

in is from 5 GeV to 15 GeV, in the case of universal coupling the annihilation channel

of dark matter is mainly to light quarks. Therefore, the final states can be seen as

massless particles.

In the case of Z ′ mediator, if the dark matter particle is a Dirac fermion and

the interaction between dark matter and Z ′ is through a vector current,

σannihilation ∝ Tr[(̸p1 +MD)γ
µ(̸p2 −MD)γ

ν ]Tr[̸k1γµ ̸k2γν ] ≈ 128M4
D , (4.18)

where p1, p2 and k1, k2 are the four-momentum for initial dark matter pairs and

final quark pairs, respectively. However, if the interaction between dark matter and

Z ′ is through a axial-vector current, the annihilation cross section can be written as

σannihilation ∝ Tr[(̸p1+MD)γ
µγ5(̸p2−MD)γ

νγ5]Tr[̸k1γµ ̸k2γν ] ≈ 64M4
Dv

2(1+cos2 θ) ,

(4.19)

where we can see that the cross section is suppressed by the v2. In the case of Z ′

mediator and scalar dark matter the annihilation cross section can be written as

σannihilation ∝ (p1 − p2)µ(p1 − p2)νTr[̸k1γ
µ ̸k2γν ] ≈ 32M4

Dv
2(1− cos2 θ) . (4.20)

In the case of H ′ mediator, if the dark matter particle is a Dirac fermion and
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the interaction between dark matter and H ′ is through a scalar vertex, we have

σannihilation ∝ Tr[(̸p1 +MD)(̸p2 −MD)]Tr[̸k1 ̸k2] ≈ 64M4
Dv

2 , (4.21)

whereas if the interaction between H ′ and the fermion dark matter is through a

pseudoscalar vertex, we can get

σannihilation ∝ Tr[iγ5(̸p1 −MD)iγ5(̸p2 +MD)]Tr[̸k1 ̸k2] ≈ 64M2
D . (4.22)

This non-relativistic suppression is clearly shown in Fig. 4.22, Fig. 4.26 and

Fig. 4.28 where the Tevatron constraints on operators with v2 suppression are much

stronger than the ones without this suppression. Furthermore, we can see that

inside the range of Tevatron ability, the interactions containing a v2 suppression

cannot satisfy Tevatron constraint and relic abundance constraint at the same time.

Therefore, they cannot be the dominant interaction between dark matter and SM

particles.

The physical reason for this suppression is that the ground state of a particle

and anti-particle pair has certain parity. For spin-1/2 Direc fermions, JPC of ground

states can only be 0−+ and 1−−, and can be 0++ and 1+− for first excited states

(L = 1, where L is the orbital angular momentum). Therefore, in the case of scalar

mediator, if the interaction is scalar-like, the χ-χ̄ cannot be in the ground state dur-

ing annihilation, therefore, the annihilation amplitude must be proportional to the

orbital angular momentum and the annihilation cross section must be proportional

to v2. The reason for the vector mediator case is a little bit more complicated. The

suppression in the case of axial-vector like coupling is not only because of the JPC

structure but also due to the fact that the final states are massless so that the both
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the vector current and the axial vector current of the final states are conserved at

tree-level. Therefore, in the case that the mediator is a vector and the interaction

is axial-vector like, the annihilation cross section must be proportional to v2.

4.5.1.2 Dipole interactions

In the case of Z ′ mediation, in Tevatron, if Z ′ can be on shell, the energy

scale of the Z ′ decay process to produce dark matter pairs is just MZ′ . However,

in the process of dark matter annihilation during the thermal freezing-out epoch,

the energy scalar is about 2MD, and in the case of M2
Z′ ≫ 4M2

D, a suppression

factor (g(2)MD)
2/M2

Z′ appears in the cross section of the dipole interaction cases.

From Fig. 4.23, Fig. 4.24, Fig. 4.25, and Fig. 4.27, we can see that in the range

of Tevatron ability, if MZ′ > 80 GeV, dipole interactions cannot satisfy Tevatron

constraint and relic abundance at the same time. Therefore, in this case, they cannot

be the dominant interaction between dark matter and SM particles.

4.5.1.3 Scalar mediator with scalar dark matter

In the range of Tevatron ability to produce a real mediator particle, the energy

flow inside the mediator is just the mass of the mediator. However, in the case of

the dark matter annihilation during the thermal freezing-out epoch, the energy flow

is around 2MD, therefore, in the case of dimension-1 coupling like the H ′ mediator

with scalar dark matter case, compared to the dimensionless coupling cases, there

is an enhancement factor M2
H′/M2

D in the annihilation cross section. Therefore, in

143



Fig. 4.29, we see that the Tevatron constraint on the relic abundance is much lower

than the observed value. This also explains why in the case of Higgs mediator low

mass dark matter still survives the constraint from relic abundance.

4.5.1.4 Lepton Final States

A complication occurs when we are trying to calculate the relic abundance that

Z ′ can also couple to leptons. However, if this is the case, the couplings between Z ′

and the SM particles suffer stringent constraint from LEP [74] as well as Tevatron

with leptonic final states [75]. If MZ′ > 209 GeV, the LEP constraint on leptonic

coupling of Z ′ model can be written as

MZ′

gZ′
> 6.2 x TeV , (4.23)

where x is the parameter in Lagrangian

LZ′ = gZ′(B − xL)ψ̄γµψZ ′
µ , (4.24)

where ψ labels SM fermions, B and L are baryon and lepton numbers, respectively.

Whereas if the MZ′ < 209 GeV, the coupling between Z ′ and leptons should be

smaller than or of order 10−2. Assuming Z ′ couples only to the righthanded charged

leptons universally, LEP constraint on relic abundance is shown in Fig. 4.30, where

gD = 1 is assumed. Approximately, the thermal relic abundance can be estimated as

0.1 pb/σannihilation, therefore, we can see that in the case ofMZ′ > 80 GeV, the lepton

channel contributes only less then 10% of the total annihilation cross section if Z ′

couples only to righthanded charged leptons. If Z ′ couples to lefthanded leptons
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Figure 4.22: Tevatron constraints on lower bound of dark matter relic abundance for

Z ′ mediator and fermion dark matter cases, where the leading interaction between Z ′

and quarks is assumed to be vector-like and universal, and the interaction between

Z ′ and dark matter is also assumed to be vector-like. (a), (b), (c), (d) are for O1, O2,

O3, and O4, respectively, with nucleons replaced by quarks. The red round circle,

orange square, green diamond, blue upward triangle and purple downward triangle

are for 5, 7, 10, 12, 15 GeV dark matter masses, respectively. The black horizontal

line shows the observed value for Ωh2.
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Figure 4.23: Tevatron constraints on lower bound of dark matter relic abundance

for Z ′ mediator and fermion dark matter cases, where the leading interaction be-

tween Z ′ and quarks is assumed to be vector-like and universal, and the interaction

between Z ′ and dark matter is also assumed to be dipole. (a), (b), (c), (d) are

for {q̄γµq , χ̄σµνχ}, {q̄γµγ5q , χ̄σµνχ}, {q̄γµq , χ̄iγ5σµνχ}, {q̄γµγ5q , χ̄σµνiγ5χ},

respectively.
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Figure 4.24: Tevatron constraints on lower bound of dark matter relic abundance

for Z ′ mediator and fermion dark matter cases, where the leading interaction be-

tween Z ′ and quarks is assumed to be vector-like and universal, and the interaction

between Z ′ and dark matter is also assumed to be dipole. (a), (b), (c), (d) are

for {q̄σµνq , χ̄γµχ}, {q̄iγ5σµνq , χ̄γµχ}, {q̄σµνq , χ̄γµγ5χ}, {q̄iγ5σµνq , χ̄γµγ5χ},

respectively.
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Figure 4.25: Tevatron constraints on lower bound of dark matter relic abundance

for Z ′ mediator and fermion dark matter cases, where the leading interaction be-

tween Z ′ and quarks is assumed to be vector-like and universal, and the interaction

between Z ′ and dark matter is also assumed to be dipole. (a), (b), (c), (d) are for

{q̄σµνq , χ̄σµνχ}, {q̄iγ5σµνq , χ̄σµνχ}, {q̄σµνq , χ̄iγ5σµνχ}, {q̄iγ5σµνq , χ̄σµνiγ5χ},

respectively.
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Figure 4.26: Tevatron constraints on lower bound of dark matter relic abundance for

Z ′ mediator and fermion dark matter cases, where the leading interaction between Z ′

and quarks is assumed to be vector-like and universal, and the interaction between

Z ′ and dark matter is also assumed to be dipole. (a), (b) are for {q̄γµq , ϕ†i∂µϕ−

i∂µϕ
†ϕ} and {q̄γµγ5q , ϕ†i∂µϕ− i∂µϕ

†ϕ}, respectively.
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Figure 4.27: Tevatron constraints on lower bound of dark matter relic abundance for

Z ′ mediator and fermion dark matter cases, where the leading interaction between Z ′

and quarks is assumed to be vector-like and universal, and the interaction between

Z ′ and dark matter is also assumed to be dipole. (a), (b) are for {q̄σµνq , ϕ†i∂µϕ−

i∂µϕ
†ϕ} and {q̄iγ5σµνq , ϕ†i∂µϕ− i∂µϕ

†ϕ}, respectively.
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Figure 4.28: Tevatron constraints on lower bound of dark matter relic abundance for

Z ′ mediator and fermion dark matter cases, where the leading interaction between

H ′ and quarks is assumed to be universal. (a), (b), (c), (d) are for {q̄q , χ̄χ},

{q̄iγ5q , χ̄χ}, {q̄q , χ̄iγ5χ}, {q̄iγ5q , χ̄iγ5χ}, respectively.
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Figure 4.29: Tevatron constraints on lower bound of dark matter relic abundance

for H ′ mediator and fermion dark matter cases, where the leading interaction be-

tween H ′ and quarks is assumed to be vector-like and universal, and the interaction

between Z ′ and dark matter is also assumed to be dipole. (a), (b) are for {q̄q , ϕ†ϕ}

and {q̄iγ5q , ϕ†ϕ}, respectively.

Z ′ mediator: {χ̄γµχ , q̄γµq} , {χ̄γµχ , q̄γµγ5q}

H ′ mediator: {χ̄iγ5χ , q̄q} , {χ̄iγ5χ , q̄iγ5q} , {ϕ†ϕ , q̄q} , {ϕ†ϕ , q̄iγ5q}

Table 4.4: Possible interactions dominate the thermal annihilation of dark matter

in the case of Mmediator ≫ 2MD.

as well, the lepton channel can at best contribute as large as 30% of the total

annihilation cross section. Therefore, in the case gD = 1, MZ′ > 80 GeV, the

leptonic channel does not change much of the constraint.

From the above analysis, we can see that, in order to satisfy the bounds from

Tevatron and relic abundance at the same time, the thermal annihilation must be

dominated by interactions listed in Table 4.4.
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Figure 4.30: LEP constraint on dark matter thermal relic abundance, assuming

Z ′ couples to righthanded charged leptons universally. The Red, Orange, Yellow,

Green, Blue and Purple curves are lower bounds for 5, 7, 9, 11, 13 and 15 GeV dark

matters, respectively. The dark matter particle is assumed to be Dirac fermion and

gD is assumed to be 1 for solid curves and 3 for dashed curves. The thick black line

shows the observed value of the relic abundance of dark matter.
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4.5.2 Combining Relic Abundance with Direct Detections

4.5.2.1 Z ′ mediator

For heavy mediator cases (M2
Z′ ≫ 4M2

D), from Table 4.4, to generate the ob-

served relic abundance, the dominant coupling between Z ′ and dark matter particle

can only be like Z ′
µχγ

µχ. Therefore, if there is no Parity violation in the coupling,

the interaction between nuclei and dark matter is spin-independent in the direct

detection experiments. If the reported CoGeNT result is generated by collisions

between dark matter and nuclei, one can calculate the range of MZ′/
√
gDgZ′ , and

then one can calculate the lower bound of the relic abundance.

A complication occurs when we are trying to calculate the relic abundance that

Z ′ can also couple to leptons. However, if this is the case, the couplings between Z ′

and the SM particles suffer stringent constraint from LEP [74] as well as Tevatron

with leptonic final states [75]. If MZ′ > 209 GeV, the LEP constraint on leptonic

coupling of Z ′ model can be written as

MZ′

gZ′
> 6.2 x TeV , (4.25)

where x is the parameter in Lagrangian

LZ′ = gZ′(B − xL)ψ̄γµψZ ′
µ , (4.26)

where ψ labels SM fermions, B and L are baryon and lepton numbers, respectively.

Whereas if the MZ′ < 209 GeV, the coupling between Z ′ and leptons should be

smaller than or of order 10−2. In this model, constraint from thermal relic abundance

and CoGeNT is shown in Fig. 4.31, where 5, 7, 9, 11, 13, 15 GeV dark matter masses
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are considered, with x calculated from Eq. 4.25. One can see that a tension exists

between direct detection experiments and thermal relic abundance. Therefore, to

satisfy the relic abundance and direct detection at the same time, parity violation

in the coupling between Z ′ and SM quarks must be introduced. The Lagrangian

can be written as

L = gDZ
′
µχ̄γ

µχ+ gZ′Z ′
µq̄γ

µ(cos θ + sin θγ5)q . (4.27)

From Tables 4.2 and 4.3, we can see that the parity-odd part generates a SD&MD

interaction, and the direct detection cross section is suppressed by v2 ∼ 10−6, also,

compared with SI interaction, the cross section between dark matter particle and

nuclei is suppressed further at least by a factor of 10−2. Therefore, as long as

tan2 θ ≪ 108, the contribution from parity-odd part to direct detection signal is

negligible. The lower bound on tan θ for different masses is shown in Fig. 4.32, where

we can see that in the context of Z ′ mediator if CoGeNT signal is induced by dark

matter, the coupling between Z ′ and quarks is axial-vector like. From XENON100

constraint, we can also see that if the coupling between quarks and Z ′ is axial-vector

like for relatively heavy dark matter. In this case, the axial-vector coupling between

Z ′ and quarks can induce non-vanishing gauge anomaly. Therefore, spectator fields

must be introduced so that anomaly can be canceled. According to Ref. [94], for an

anomalous Abelian gauge theory in four dimensions there is a fundamental cut-off,

which can be written as

Λ <
64π3

|gZ′|3
MZ′ , (4.28)

which can be seen as the upper bound of the mass of the mediator. Therefore, in
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our case, this bound cannot be reached by Tevatron.
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Figure 4.31: Z ′ mediator, no Parity-violation or CP-violation, no coupling to lep-

tons, universally couple to quarks. The red, orange, yellow, green, blue, purple lines

are for 5, 7, 9, 11, 13, 15 GeV dark matter particles, respectively. Plot (a) shows the

relic abundance as a function of MZ′/
√
gZ′gD, the thick red line shows the observed

thermal relic abundance of cold dark matter. Plot (b) shows the spin-independent

WIMP-nucleon cross section as a function of the same combination, and the region

between the two red thick straight lines is the region favored by CoGeNT. The dif-

ference from the above plots is that, here the leptonic channels are opened in the

context of B − xL scenario, and the bound in x is calculated from Eq. (4.25). The

horizontal lines in (c) show the XENON100 constraints for different dark matter

masses.

4.5.2.2 H ′ mediator with fermion dark matter

In the case ofH ′ mediator, the leading interaction is SI&MD, and forMH′ > 80

GeV, the collider constraint on direct detection cross section is about 3× 10−43 cm2

as shown in Fig. 4.18, which is much lower than XENON100 bound. However, if

CoGeNT signal is due to dark matter collision, in this case, the SI&MI channel must

be opened, but its contribution to thermal annihilation must be dominated over by
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Figure 4.32: Lower bound on Parity-violating angle in Z ′ model from relic abundance

and direct detection experiments. The blue curve is the lower bound constrained by

XENON100 and the region enclosed in the red dashed curve is the region favored

by CoGeNT.

the contribution from SI&MD interaction. In order to generate CoGeNT signal and

correct relic abundance, the Lagrangian should be written as

L = χ̄(gD + igD5γ5)χ , (4.29)

with gD/gD5 ≈ 10−3.

4.5.3 Tension between Relic Abundance and FCNC

In the above discussion, the coupling between Z ′ or H ′ is assumed to be

universal to all families of quarks, so that there is no flavor changing neutral current

(FCNC) issue in the case of Z ′ mediator. However, in the case of H ′ mediator, even

in this universal coupling case, after the diagonalization of quark masses, tree-level

FCNC is difficult to be avoided.
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In SM, the Yukawa coupling can be written as

LYukawa = −Q̄YUHu− Q̄YDH̃d , (4.30)

where H is the Higgs boson in SM and the H̃ ≡ −iσ2H∗, Q, u and d are quark

fields in flavor eigenstates. Rotating quarks into mass eigenstates, we can get that

uL → V L
u uL , uR → V R

u uR , dL → V L
d dL , dR → V R

d dR , (4.31)

where (u, d)L,R are chiral quarks. The Cabibbo-Kobayashi-Maskawa (CKM) matrix

is given by

VCKM ≡ V L
u

†
V L
d , (4.32)

which can be parameterized as

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (4.33)

where λ = 0.22 is sin θC and θC is the Cabibbo angle, other parameters are order one.

All the known information of the quark rotations are involved in VCKM , however,

to avoid large fine-tuning, the off-diagonal elements of V L
u and V L

d should be of the

same order of VCKM .

On the other hand, mass differences of neutral meson systems are well-measured

and can be used to constrain new FCNC contributions. In the case of H ′ mediator,

the relevant Lagrangian can be written as

LFCNC
H′ = − g2H′

2M2
H′

(
aqq

′

L q̄Lq
′
R + aqq

′

R q̄Rq
′
L

)2
+ h.c. , (4.34)
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where q and q′ are different quarks with the same charge of electromagnetic inter-

action. Whereas in the case of Z ′ mediator, the corresponding Lagrangian can be

written as

LFCNC
Z′ = − g2Z′

2M2
Z′

(
aqq

′

L q̄Lγµq
′
L + aqq

′

R q̄Rγµq
′
R

)2
+ h.c. . (4.35)

In the case of K0 − K̄0 system, since the SM calculation suffers from a large

uncertainty from long-distance contribution, we are using the criteria that the con-

tribution from new physics should not exceed the experimental value. Therefore,

we can get that

gH′(Z′)a
ds

MH′(Z′)
< 2× 10−7 GeV−1 . (4.36)

In the same way, we can get the constraint from D0 − D̄0 system, that

gH′(Z′)a
uc

MH′(Z′)
< 5× 10−7 GeV−1 . (4.37)

In the case of Bd and Bs systems, the contribution from beyond SM physics can be

as large as 20% of the mass differences with running into conflict with the present

SM calculations. Therefore we can get the constraints

gH′(Z′)a
db

MH′(Z′)
< 10−6 GeV−1 ,

gH′(Z′)a
sb

MH′(Z′)
< 5× 10−6 GeV−1 . (4.38)

4.5.3.1 H ′ with fermion dark matter

where gD5 is fixed to 1. Therefore, then one can get the bound on the constraint

of the off-diagonal elements that

In the case of H ′ mediator with fermion dark matter, to get the correct relic

abundance, in the case of universal coupling between H ′ and quarks, one can get
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that
√
gH′gD

MH′
> 1.5× 10−3 GeV−1

(
15 GeV

MD

)1/2

, (4.39)

Therefore, together with Eqs. (4.36), (4.37) and (4.38), one can get

ads < 10−3gD

(
100 GeV

MH′

)(
MD

15 GeV

)
,

auc < 2× 10−3gD

(
100 GeV

MH′

)(
MD

15 GeV

)
,

adb < 4× 10−3gD

(
100 GeV

MH′

)(
MD

15 GeV

)
,

asb < 2× 10−2gD

(
100 GeV

MH′

)(
MD

15 GeV

)
. (4.40)

In the case of universal coupling between H ′ and quarks, after rotating the quarks

to mass eigenstates, without fine-tuning, ads and auc should be at least around λ.

Therefore, we can see that there is a tension between the relic abundance and FCNC.

4.5.3.2 H ′ mediator with scalar dark matter

As discussed in Sec. V.A, if the relic abundance is enhanced by a factor of

(MH′/MD)
2 due to that the coupling between H ′ and DM is dimension 1. Therefore,

as soon as the leptonic channel is opened, there should be no constraint from relic

abundance.

4.5.3.3 Z ′ non-universally coupled to quarks

In the above discussions, Z ′ is assumed to be universally coupled to quarks. A

tension between relic abundance and direct detection if the coupling between dark

matter and Z ′ is vector-like. However, if Z ′ couples only to the second and third
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generations of quarks, this constraint can be well alleviated. However, since the

Yukawa couplings in SM also violate flavor symmetry, the rotation of quarks from

flavor eigenstates to mass eigenstates induces off-diagonal couplings between Z ′ and

the quarks, which are also strongly constrained from FCNC [95, 96].

The discussion is in parallel to the case of H ′ mediator. In the case that Z ′

couples only to the second and third families of quarks, from the relic abundance

assuming hadronic channels dominate the thermal annihilation, we can get that

√
gZ′gD

MZ′
> 1.5× 10−3 GeV

(
15 GeV

MD

)1/2

. (4.41)

Therefore, together with the FCNC constraints on can get that

ads < 10−3gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
,

auc < 2× 10−3gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
,

adb < 4× 10−3gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
,

asb < 2× 10−2gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
. (4.42)

On the other hand, from quark rotation matrix, the off-diagonal elements can be

written as

a12u ∼ λ , a12d ∼ λ , a13d ∼ λ4 , a23d ∼ λ4 . (4.43)

In this case, since the mixing in lepton sector is large [97], rotating leptons from

flavor eigenstates to mass eigenstates may generate a large coupling between Z ′

and the first generation of leptons, therefore, the coupling between Z ′ and leptons

may still suffer from stringent constraint from LEP. Therefore, generally, in this
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case the annihilation channel of dark matter is similar to the universal coupling

case. Following the same procedure as in the discussion of the case of H ′ mediator,

one can show that there is a strong tension between relic abundance and FCNC in

K0 − K̄0 and D0 − D̄0 systems as well.

If Z ′ couples only to the third generation of SM fermions, from the relic abun-

dance and assuming DM dominantly annihilates to hadrons, we can get

√
gZ′gD

MZ′
> 2× 10−3 GeV

(
15 GeV

MD

)1/2

. (4.44)

Therefore, the constraints on off-diagonal matrix elements can be written as

ads < 5× 10−4gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
,

auc < 10−3gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
,

adb < 2× 10−3gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
,

asb < 10−2gD

(
100 GeV

MZ′

)(
MD

15 GeV

)
. (4.45)

On the other hand, after rotating quarks to mass eigenstates, we can get that

auc ∼ ads ∼ λ5 , adb ∼ λ3 , asb ∼ λ2 . (4.46)

We can see that the tension gets weakened in this case.

We need to note that the CKM matrix is related only to V L
u and V L

d , and

the structure of V R
u and V R

d might be completely different from their lefthanded

counterparts. Therefore, the off-diagonal elements of the righthanded quark matrices

might be much smaller than the lefthanded ones, so that if Z ′ couples only to

righthanded quarks the FCNC constraints can be avoided.
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4.6 Low Mass Mediator

4.6.1 Resonant Thermal Annihilation

In last Sec. V, we have seen that in Z ′ mediator case, if the coupling between

dark matter and Z ′ is vector-like, there is tension between relic abundance and direct

detection in heavy mediator case. However, if the mass of mediator is about twice

of DM, the annihilation of DM to SM particles is strongly enhanced. As shown in

the Fig. 4.33, the red, blue and green curves show relic abundance constraint on

the direct detection cross section between DM and nucleons. We can see that in

the resonant annihilation region, the tension between relic abundance and direct

detection can be alleviated.

4.6.2 Very Light Mediator

A sharp drop-down appears on the righthand side of each curve in Fig. 4.33

which is due to the newly opened annihilation channel of

χχ̄→ Z ′Z ′ , (4.47)

when Mχ approaches MZ′ , and the relic abundance cannot serve as a constraint

anymore.

As discussed in Sec. IV, in the heavy mediator region, there is a tension

between Tevatron constraint and the CoGeNT result for MD interactions due to

that the cross section predicted by MD interaction is much smaller than CoGeNT

favored region. However, there is no such a tension in the light mediator region due
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Figure 4.33: Z ′ mediator, the couplings between Z ′ to both quarks and DM are

vector-like. The red, blue and green curves show the constraint from relic abundance

on direct detection cross section between DM and nucleons for 15, 20, and 30 GeV

MZ′ , respectively. The yellow region is favored by CoGeNT result. The solid black

curve shows the constraint from XENON100 result and the dashed black curve shows

the constraint from new XENON100 result which will be published soon assuming

the non WIMP events being found and the detecting power increased by a factor of

10.
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to that the mass in the denominator of the propagator is negligible.

The favored region of SD WIMP-nucleon cross section for CoGeNT is studied

in Ref. [98]: the favored WIMP mass range is from 5 GeV to 10 GeV, and the SD

cross section is about 10−33 ∼ 10−32 cm2 if WIMP only interacts with proton and

10−35 ∼ 10−34 cm2 if WIMP only interacts with neutron. Therefore, together with

the SI region, one can get the GoGeNT favored range of MZ′ for each interaction.

Generally, the value for MZ′ to fit the CoGeNT result for SI&MD&v4 interaction

and SD&MD&v2 interaction is about 0.1 ∼ 1 GeV.

A subtlety occurs when one try to estimateMZ′ from a dipole interaction since

the dipole can be destroyed in the collider processes. In this case, one needs to first

get the collider constraint on gZ′gD from Fig. 4.6a and then translate the constraint

into the dipole coupling.

4.7 Summary

In this chapter we use Tevatron constraints, DM relic abundance, direct detec-

tion experiments as well as results from low energy flavor physics to study the param-

eter space of light DM with a mass around or smaller than 15 GeV. During the study

we concentrate on the s-channel Z ′ and H ′ mediators. The Tevatron constraints can

be clearly separated into three parts, Mmediator < 2MDM , 2MDM < Mmediator < M∗

and Mmeditor > M∗. In this chapter, we have concentrated on the first two cases,

whereas for the third case, the Tevatron constraint cannot be saturated in pertur-

bative region. In the first two cases, the dependance of the direct detection cross
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section between DM and nucleon on gD can be factorized out, which makes the

analysis simpler. Combining the constraints from relic abundance and Tevatron,

one can see that the parameter space for 2MDM ≪ MZ′ < M∗ is strongly limited,

whereas in the region MZ′ ≪ 2MDM the dipole interactions become possible.

In the case of MD interactions, indeed, in the direct detection, the speed of

DM cannot be factorized out from the convolution of the differential detecting rate

which can be written as

dR

dEr

= NT
ρ0
MD

∫ vmax

vmin

dσ

dEr

vf(v, ve)d
3v , (4.48)

where ρ is the local DM density in the solar system, f(v, ve) is the distribution of

DM velocity and v is the velocity with respect to the Earth, NT is the number

of target nuclei in the detector. vmin is the minimal energy can induce nuclear

recoil energy Er and vmax is the escape velocity in our galaxy. In the case MD

interaction, the dependence of dσ/dEr on v is different from in the case of MI

interaction. Therefore, the constraint from direct detection experiments will be

slightly changed. However, to make an order-of-magnitude estimation, we simply

factorize the additional velocity out and replace it with the average velocity which

is about 10−3.

There are many details needed to be studied, like in the dipole interaction.

If the mass difference between χ and χ′ is about a few keV, the collision between

DM and nuclei can be inelastic which would change the pattern of direct detection

signals and the Tevatron signal would be changed as well.
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Chapter 5

Discussions

In this thesis, we have discussed the low energy constraints on minimal left-

right symmetric model, the constraints from neutron EDM together with the indirect

CP-violation give the most stringent constraint on MWR
to date.

However, in many other cases, the constraint can be relaxed. For example, in

the case of the supersymmetric (SUSY) version of LRSM, the CP-violation pattern

is forced to be manifest so that the contribution to nEDM is much smaller than in

mLRSM. Furthermore, the contributions to ∆MK and ϵ from SUSY box diagrams

by exchanging gluino or chargino fields can partially cancel with the major new

contribution from LRSM, and the lower bound on MWR
can be as low as around 2

TeV [67].

There is another kind of left-right symmetric model called the C version [99,

100]. In this model, the building blocks are the same as in mLRSM, however, instead

of impose Parity to the Lagrangian, in the C version, the Lagrangian is invariant

under the following transformation,

C :


QL ↔ (QR)

c

Φ ↔ ΦT

, (5.1)

where (QR)
c is the charge conjugate of QR. In this case the Yukawa coupling ma-
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trices are required to be symmetric instead of hermitian as in the case of mLRSM.

Therefore, more phases are allowed in the Yukawa couplings, and there are param-

eter spaces that contributions to all the CP-violation observables can be canceled.

Therefore the most stringent constraint onMWR
still comes from the mass difference

between KL and KS, which is about 2.5 TeV.

In nEDM calculation, quark models have been used to calculate the hadronic

matrix elements. However, these models were invented to understand the mass

spectrum of the baryons which are not effective theories. A model good at one aspect

of phenomenology may not work in the other. Although the Feinberg-Weinberg-

Kabir theorem is employed to control the uncertainty, we still need an effective

theory, for example Lattice QCD, where the error bar can be systematically defined.

In mLRSM, from Ref. [3], we can see that the dominating part of the new

contribution to the direct CP-violation parameter ϵ′ is also proportional to the

spontaneous CP phase α. Therefore, these is also a tension between the constraints

from ϵ and ϵ′. A detailed calculation of ϵ′ can be found in Ref. [101]. However, the

constraint from nEDM is stronger.

The updated upper bound on the EDM of 199Hg atom [102] can also be used

to constrain the right handed scale in mLRSM. The EDM of a diamagnetic atom

such as Hg can be written as

ddia = ddia(S[ḡπNN , dN ], CS, CP , CT , de) , (5.2)

where S is the Schiff moment of the nucleus which depends on the P-odd and CP-

odd nucleon-pion couplings and the EDM of nucleons; de is the EDM of electron;
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and CS, CP , CT are Wilson coefficients of P-odd and CP-odd electron-nucleon four-

fermion operators [17]. Putting in the results of numerical studies, the EDM of Hg

can be written as

dHg = −(1.8× 10−4GeV−1)eḡ
(1)
πNN + 10−2de + (3.5× 10−3GeV)eC

(0)
S , (5.3)

where ḡ
(1)
πNN is the P-odd and CP-odd isospin-vector nucleon-pion coupling, C

(0)
S

is the Wilson coefficient of the operator ēiγ5eN̄N . Of course, the isospin-scalar

and tensor parts also contribute to the Schiff moment, but they are numerically

suppressed according to the same reference.

The operator ēiγ5eN̄N can be induced from four-fermion operators ēiγ5eq̄q,

where q labels light quarks. In mLRSM, this kind of operators cannot be generated

by integrating out a heavy gauge boson at tree-level since neutral currents never

violate CP whereas charged currents always violate flavor. Therefore, the leading

order contribution to this operator is from integrating out Higgs bosons. Further-

more, since in this model quarks only couple to the bi-doublet higgs whose vevs

induce the masses of the quarks and charged leptons. Therefore, the Wilson coeffi-

cient of this operator must be proportional to the mass of electron and the mass of

the light quark. Therefore, C
(0)
S can be estimated as (memu)/(TeV

4) which is about

ten orders of magnitude smaller than the Wilson coefficient of the four-quark oper-

ators which is induced by integrating out the W-boson. Therefore, it is not difficult

to see that dHg generated by C
(0)
S is not as competitive as nEDM in mLRSM.

In mLRSM, the coupling between leptons and triplet Higgs bosons involve

new CP-violating parameters which complicates the calculation of electron EDM.
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Therefore, it is difficult to constrain the righthanded scale using electron EDM. If

we assume there is no cancelation between the contribution from the Schiff moment

and the contribution from the electron EDM, we can get a constraint on ḡ
(1)
πNN from

dHg that

ḡ
(1)
πNN < 10−11 . (5.4)

The neutron EDM generated by ḡ
(1)
πNN can be estimated as [65]

dN ≈ 3ḡ
(1)
πNN

2

κne

16π2

D + F

Fπ

≈ 0.3eḡ
(1)
πNNGeV−1 . (5.5)

Then using the experimental upper bound dN < 2.9× 10−26e cm, one can get

ḡ
(1)
πNN < 5× 10−12 , (5.6)

Since the uncertainty of the hadronic matrix elements is about a factor of two, if we

assume there is no cancelation between the electron EDM contribution and the Schiff

moment contribution, we can say that the constraint from dHg is as competitive as

the constraint from dN . However, we also see that the constraint from neutron EDM

is cleaner since only two phases are involved and there is no way to cancel it after

the constraint from ϵ is considered.
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Appendix A

Notations and Conventions

The metric tensor is defined as

gµν = gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.1)

The Pauli matrices are defined as

σ⃗ = (σ1, σ2 , σ3) , (A.2)

where

σ1 =

 0 1

1 0

 σ2 =

 0 −i

i 0

 σ3 =

 1 0

0 −1

 . (A.3)

The Dirac Notation of the gamma matrices are defined as

γ0 =

 1 0

0 −1

 γ⃗ =

 0 σ⃗

−σ⃗ 0

 γ5 = iγ0γ1γ2γ3 =

 0 1

1 0

 . (A.4)

The left and right-handed projectors are defined as

PL = (1− γ5)/2 , PR = (1 + γ5)/2 , (A.5)

respectively.

The total symmetric tensor is defined as ϵ0123 = 1.
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Appendix B

Proof of the Completeness and Independence of Operators in χPT

The chiral operators in different irreducible representations are shown in Ta-

ble 2.4. We need to prove that the operators in each set are complete and indepen-

dent with each other. The proof is tedious and the outline is given in this Appendix.

The building blocks of these operators are ξBξ, ξ†B̄ξ†, the spurions fields, U ,

and U †. We need to use these building blocks to construct singlets of the the chiral

symmetry group. Since we consider only the tree-level matching, the operators

we need should contain one B, one B̄ and exactly the same spurions as in the

corresponding quark operator.

The irreducible representation of SU(3) group can be constructed using Young

tableau. A good introduction to Young tableau can be found in Ref. [103]. To

construct a singlet of SU(3), each column of the Young-tableau needs to be filled

with three boxes. For example, if all the three boxes are filled by U , using the

total anti-symmetric properties of Young tableau, the constructed operator must be

proportional to

ϵijkU i
lU

j
mU

k
n = det[U ]ϵijk , (B.1)

where ϵijk is the total anti-symmetric tensor. Since U is an element of SU(3),

det[U ] = 1. The corresponding Young-tableau is reduced. Therefore, the number
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of operators in each set of the group is finite. Using this method, the operators

(without the tilde) we can get are listed in the following,

O31 = iϵmij
nklA

n
m(ξB̄ξ)

k
i (ξBξ)

l
j + h.c.

O32 = iTr[B̄B]Tr[AU ] + h.c.

O33 = iTr[Aξ†B̄Bξ†] + h.c.

O34 = iTr[B̄ξ†Aξ†B] + h.c.. (B.2)

O61 = iT ij
kl (ξB̄ξ)

k
i (ξBξ)

l
j + h.c.

O62 = iT ij
kl (ξB̄Bξ)

k
iU

l
j + h.c.

O63 = iT ij
kl (B̄ξ)

m
i (ξB)kmU

l
j + h.c.

O64 = iTr[B̄B]T ij
klU

k
i U

l
j + h.c.

O65 = iT uj
lr ϵ

imu
kps U

l
sU

r
j (ξ

†B̄ξ)ik(ξ
†Bξ)mp + h.c.. (B.3)
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O8
1 = iϵijklmn(ξB̄ξ)

i
l(ξBξ)

j
mU

p
q h

k
1ph

q
2n + h.c.

O8
2 = iϵijklmn(ξB̄ξ)

p
l (ξBξ)

j
mU

i
qh

k
1ph

q
2n + h.c.

O8
3 = iϵijklmn(ξB̄ξ)

i
l(ξBξ)

p
mU

j
qh

k
1ph

q
2n + h.c.

O8
4 = iϵijklmn(ξB̄ξ)

i
q(ξBξ)

j
mU

p
l h

k
1ph

q
2n + h.c.

O8
5 = iϵijklmn(ξB̄ξ)

i
l(ξBξ)

j
qU

p
mh

k
1ph

q
2n + h.c.

O8
6 = iϵijklmn(ξ

†B̄ξ†)il(ξ
†Bξ†)jmU

†p
q h

k
2ph

q
1n + h.c.

O8
7 = iϵijklmn(ξ

†B̄ξ†)pl (ξ
†Bξ†)jmU

†i
q h

k
2ph

q
1n + h.c.

O8
8 = iϵijklmn(ξ

†B̄ξ†)il(ξ
†Bξ†)pmU

†j
q h

k
2ph

q
1n + h.c.

O8
9 = iϵijklmn(ξ

†B̄ξ†)iq(ξ
†Bξ†)jmU

†p
l h

k
2ph

q
1n + h.c.

O8
10 = iϵijklmn(ξ

†B̄ξ†)il(ξ
†Bξ†)jqU

†p
m h

k
2ph

q
1n + h.c.

O8
11 = iTr[B̄B]Tr[U †h1Uh2] + h.c.

O8
12 = iTr[ξ†B̄Bξ†h1Uh2] + h.c.

O8
13 = iTr[B̄ξ†h1Uh2ξ

†B] + h.c.

O8
14 = iTr[ξB̄Bξh2U

†h1] + h.c. O8
15 = iTr[B̄ξh2U1h1ξB] + h.c.

O8
16 = iTr[ξB̄ξ†h1]Tr[ξ

†Bξh2] + h.c. O8
17 = iTr[ξ†B̄ξh2]Tr[ξBξ

†h1] + h.c.

O8
18 = iTr[ξB̄ξh2ξ

†Bξ†h1] + h.c.

O8
19 = iTr[ξ†B̄ξ†h1ξBξh2] + h.c.

O8
20 = iϵipqikl (ξB̄Bξ)

j
iU

k
r h

r
2qU

m
p h

l
1m + h.c.

O8
21 = iϵipqikl (B̄ξ)

n
i (ξB)jnU

k
r h

r
2qU

m
p h

l
1m + h.c. (B.4)
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where A, T , h1 and h2 are spurion fields for (3̄, 3), (6, 6̄), and (8, 8) representa-

tions, respectively. However, these operators are not independent with each other.

One can use the relation

ϵabcdef ∼ δadδ
b
eδ

c
f + δbdδ

c
eδ

a
f + δcdδ

a
eδ

b
f − δbdδ

a
eδ

c
f − δadδ

c
eδ

b
f − δcdδ

b
eδ

a
f , (B.5)

the number of operators can be reduced. First of all, by tedious calculation, it can

be shown that O3
1 can be constructed by a linear combination of the other three

and O6
5 can be constructed by the other four. Second, all the (8, 8) operators can

be constructed by O8
11, O

8
12, O

8
13, O

8
14, O

8
15, O

8
16, O

8
17, O

8
18,O

8
19.

It turns out, however, the remaining nine (8, 8) operators still have a linear

relation. This can be seen in the following way. An important observation is that

all these nine operators can be constructed from four matrices, which are B, B̄,

ξ†h1ξ and ξh2ξ
†. All these four fields transform as 8-representation of the unbroken

SU(3)V symmetry. However, the product of four 8-dimensional representations of

SU(3)V group gives only eight singlet rather than nine.

8× 8× 8× 8 = (1 + 8 + 8 + 10 + 1̄0 + 27)× (1 + 8 + 8 + 10 + 1̄0 + 27) . (B.6)

Therefore, one of the nine operators can written as a linear combination of the other

eight.

Now, we have complete bases in each set. During the matching process in

Chapter 2, we have shown that the solution for the matching equations in each case

is unique. Therefore, the operators of each representation are complete and linearly

independent with each other.

174



Appendix C

Discussions of the nEDM generated by θ-term and the contribution

from η′

In the case of θ-term, the Lagrangian of QCD is

LQCD = LQCD
0 − q̄Mq − θm∗(ūiγ5u+ d̄iγ5d+ s̄iγ5s), (C.1)

where m∗ is the reduce quark mass defined as mumdms(mumd +mdms +msmu)
−1.

With the θ-term, the quark mass matrics can be redefined as

M =


mu + iθm∗

md + iθm∗

ms + iθm∗

 . (C.2)

Just as before, the vev of U is assumed to have the form of Eq. (D.9). And the

potential of U is still can be written as in Eq. (D.8). In the case of small θ, it is

easy to see that α and β should also be small, since they must be proportional to

θ. The potential is

V = −F 2
πB (mu cosα+md cos β +ms cos(α+ β) +m∗θ(sinα+ sin β − sin(α+ β))) .

(C.3)
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Expanding over α and β, we can get

V = −F 2
πB

(
mu +md +ms −

1

2
muα

2 − 1

2
mdβ

2

−1

2
ms(α+ β)2 +m∗θ(α+ β − (α+ β))

)
. (C.4)

Therefore, we can see that the terms including θ canceled, which means the potential

is not depends on θ and it is easy to see that the minimum happens at

α = β = 0. (C.5)

Which means such a choice of θ vacuum will not generate the vev of goldstone

bosons.

The θ-term has exactly the same chiral properties as the quark mass matrix,

so we can combine them together. Therefore the spurion fields can be written as

M = M+ diag(iθm∗, iθm∗, iθm∗). (C.6)

Then, we can consider the leading order contribution of this spurion field to the

nucleon-pion Lagrangian in chiral perturbation theory. The relevant terms in χPT

are listed in Eqs. (2.45) and (2.46). In the presence of θ, the terms in Eq. (2.45)

generate a CP-odd pion-nucleon coupling which can be written as

4θm∗

Fπ

(
c2Tr[ΣB̄B] + c3Tr[B̄ΣB]

)
, (C.7)

which is independent of c1 since the Σ is traceless. c2 and c3 can be determined

by the mass differences of baryons. The terms in Eq. (2.46) in the leading order

generate CP-odd masses for baryons which can be written as

2m∗(d1 + d2 + d3)Tr[B̄iγ5B] , (C.8)
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which term will turn the neutron magnetic dipole moment to the electric dipole

moment as discussed in Chapter 2.

There is one more subtlety that there is another meson field η′, which can

be annihilated by the θ term. Therefore, it may have a vev, and generate new

contributions to CP-violating processes. Therefore, we should add η′ in Σ to get a

meson nonet,

Σ =


1
2
π0 + 1

2
√
3
η + 1√

6
η′ 1√

2
π+ 1√

2
K+

1√
2
π− −1

2
π0 + 1

2
√
3
η + 1√

6
η′ 1√

2
K0

1√
2
K− 1√

2
K̄0 − 1√

3
η + 1√

6
η′

 . (C.9)

We know that the U(1)A symmetry is not only spontaneously broken by the quark

condensate and explicitly broken by the small quark masses, it is broken by the

chiral anomaly as well. Therefore, η′ gets a unusual heavy mass. To realize the

chiral anomaly in the chiral perturbation theory, we can add a special mass term

for η′, which can be written as [8]

LU(1)A = −F
2
π

4

a

Nc

{
i

2

[
log(detU)− log(detU †)

]}2

, (C.10)

where a can be related to vacuum susceptibility in the zero flavor case and Nc is the

number of color. Then one can write down the potential of the neutral meson fields

V = −F 2
πB

{
mu cos

[
(π0 +

1√
3
η +

2√
6
η′)/Fπ

]
+md cos

[
(−π0 +

1√
3
η +

2√
6
η′)/Fπ

]
+ms cos

[
(− 2√

3
η +

2√
6
η′)/Fπ

]}
−F 2

πBm∗θ

{
sin

[
(π0 +

1√
3
η +

2√
6
η′)/Fπ

]
+sin

[
(−π0 +

1√
3
η +

2√
6
η′)/Fπ

]
+ sin

[
(− 2√

3
η +

2√
6
η′)/Fπ

]}
+
1

2

Nf

Nc

a2η′2 , (C.11)
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where the last term is induced by the anomaly and in the Nf = Nc = 3 case, a is

just the mass of η′. Since θ is small, to get the vevs of meson fields one can expand

the sine and cosine to the second order in θ, then, we can get

V = −F 2
πB(mu +md +ms)

+
1

2
B(mu +md)π

02 +
1

2
B

[
1

3
(mu +md + 4ms)η

2

]
+
1

2

[
2

3
B(mu +md +ms) + a2

]
η′2

+B

[
1√
3
(mu −md)π

0η +
2√
6
(mu −md)π

0η′

+

(√
2

3
(mu +md)−

2
√
2

3
ms

)
ηη′

]
−
√
6FπBm∗θη

′. (C.12)

We need to solve the minimum of the above potential to get the vevs of the meson

fields. With the help of MATHEMATICA, one can get

⟨π0⟩ = −3θBFπm∗(mu −md)(1−m∗/ms)

(mu +md)(a2 + 6Bm∗)

⟨η⟩ =

√
3θBFπm∗(1− 3m∗/ms)

a2 + 6Bm∗

⟨η′⟩ =

√
6θBFπm∗

a2 + 6Bm∗
. (C.13)

The vevs are of the same order of magnitude as θBFπm∗/a
2. Put the meson vevs

in Eq. (2.45), we can get

c
mqθBm∗

Fπa2
Tr[B̄BΣ] , (C.14)

where c is an order 1 parameter. Then, compared to the CP-odd vertex directly

induced by the θ-term. This contribution is suppressed by mqB/a
2, which is just

the mass ratio between a usual pseudo-goldstone and the mass of η′. Therefore, in
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the following, we will neglect the contribution of η′ condensate. η′ also appears in

the CP-odd vertices and with an equal coupling to all the baryons. However, the

loop generated by η′ has no large log therefore, we will not consider η′ in future

discussion.

One interesting thing here is to consider the large Nc limit, in which a2 = 0.

Then, just like in the last section, a rotation of the baryon fields can kill all the

CP-odd effects in Eq.(C.7) and (C.8). Therefore, one can see that all the physical

effects must be multiplied by a factor of 1−O(m2
π/a

2). To be precise, the factor is

a2

a2 + 2
3
B(mu +md +ms)

. (C.15)
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Appendix D

Feinberg-Weinberg-Kabir theorem

In the case of two flavor quantum electrodynamics, the Lagrangian can be

written as

L =
∑
ij

ψ̄ii D̸ψj −
∑
ij

mijψ̄iψj , (D.1)

where Dµ = ∂µ − ieAµ, Aµ is U(1) gauge field.

The theorem states that no flavor changing observed in this system. The

reason is that all these mixings can be absorbed into the redefinition of the fields.

In the context of the chiral perturbation theory, it can be restate as CP-odd

(3, 3̄) two-quark operators cannot generate CP-violation observables, the reason is

that all these operators can be absorbed by redefinition of quark fields. In this

Appendix, we show this property explicitly.

The QCD Lagrangian without any CP-violating sources, can be written as

LQCD = LQCD
0 − q̄Mq , (D.2)

where LQCD
0 is the massless part which is invariant under the chiral SU(3)L×SU(3)R

transformation, and M = diag{mu,md,ms} is the mass matrix of light quarks,

which breaks the chiral symmetry explicitly. To introduce CP-violating two-quark

operator, let’s redefine the quark fields by the following transformation,

q = exp[iγ5θt
3]q′, (D.3)
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where t3 = λ3/2 is the third generator of the SU(3) group. Therefore, the La-

grangian can be written as

LQCD[q′] = LQCD
0 [q′]− q̄′ exp[iγ5θt

3]M exp[iγ5θt
3]q′ . (D.4)

One can separate the left and right part of the fermion fields and then the mass

term can be written as

−q̄′LMe2iθt
3

q′R − q̄′RMe−2iθt3q′L , (D.5)

where the fact that t3 commutes with M has been used. Therefore, the mass term

can be further written as

−q̄′LMq′R − q̄′RM
†q′L , (D.6)

where M = Me2iθt
3
. Then M can be seen as a spurion field, transforms as a (3, 3̄)

operator, From which one can construct the effective Lagrangian in χPT.

In the meson sector, the leading order Lagrangian for meson fields can be

written as

L =
1

4
F 2
πTr[∂µU

†∂µU ] +
1

2
F 2
πBTr[M †U + U †M ] , (D.7)

where U is defined in Chapter 2. Then, the potential up to leading order of the

quark mass can be written as

V (U) = −1

2
F 2
πBTr[M †U + U †M ] . (D.8)

Note that t3 commutes with the electromagnetic symmetry generator which is

diag{2/3,−1/3,−1/3}, so only the neutral fields can have a vev. Therefore, consid-
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ering that detU = 1, the vev of U can be written as

⟨U⟩ =


eiα

eiβ

e−i(α+β)

 . (D.9)

Then the potential of meson fields becomes

V = −F 2
πB[mu cos(θ − α) +md cos(θ + β) +ms cos(α+ β)]. (D.10)

From the potential one can seen that the two-flavor case is equivalent to ms → ∞,

which set α = −β. And the minimum of the potential is at α = θ. In the three-flavor

case, one can get the following equations

mu sin(α− θ) +ms sin(α+ β) = 0

md sin(θ + β) +ms sin(α+ β) = 0 (D.11)

The analytical solution is

α = θ β = −θ. (D.12)

Therefore, we can see that the CP-phases cause a non-vanishing vev of U , so that

U can be parameterized as

U = ⟨U⟩U ′ , (D.13)

and now the meson fields contained in U ′ are physical fields, which means that they

have no vevs. After this reparametrization, the Lagrangian for meson fields can be

written as

L =
1

4
F 2
πTr[∂µU

′†∂µU ′] +
1

2
F 2
πBTr[MU ′ + U ′†M]. (D.14)
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We can see that there is no CP-violation in the meson Lagrangian using the redefined

meson fields. Now let’s consider the baryon fields. The terms in the Lagrangian of

baryon terms can be put in two groups, the first group is only generated by LQCD

which respects the chiral symmetry in the Lagrangian level, and the second group

has the contribution from the quark mass term and breaks the chiral symmetry

explicitly. Let’s have an example of the operators in the first group which can be

written, without loose of generality, as

O1 = Tr[∂µU(ξ
†B̄ξ†)∂µU(ξ†Bξ†)], (D.15)

where ξ ≡ U1/2. From the potential of U we found that U = ⟨U⟩U ′ and U † ≡

U ′†⟨U ′⟩. Therefore, O1 becomes

O1 = Tr[∂µU
′(ξ†B̄ξ†)⟨U⟩∂µU ′(ξ†Bξ†)⟨U⟩]. (D.16)

Since ξ = U1/2, we know that ⟨ξ⟩ = ⟨U⟩1/2. Since generically, ⟨U⟩ does not commute

with U ′, it is very difficult to write down ξ′ in terms of U ′. However, we can always

redefine the baryon field B to make that

ξBξ = ⟨U⟩ξ′B′ξ′, (D.17)

where ξ′ = U ′1/2, and B′ is a collection of physical baryon fields. From the above

relation one can easily get that

ξ†B̄ξ† = ξ′†B̄′ξ′†⟨U⟩†

ξB̄ξ = ⟨U⟩ξ′B̄′ξ′

ξ†Bξ† = ξ′†B′ξ′†⟨U⟩† (D.18)
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After this co-transformation of baryon fields, one can get

O1 = Tr[∂µU
′(ξ′†B̄′ξ′†)∂µU ′(ξ′†B′ξ′†)], (D.19)

from which one can say that O1 is not bothered by the vev of U if one applies a

suitable co-transformation of B.

Now, let’s consider the terms in the breaking the chiral symmetry explicitly.

A typical operator in this group is

O2 = C2Tr[M
†ξB̄Bξ] + C2Tr[ξ

†B̄Bξ†M ] (D.20)

For the baryon field, we perform the above co-transformation, and it is easy to see

that

ξB̄Bξ = ⟨U⟩ξ′B̄′B′ξ′ (D.21)

Therefore, we can get

O2 = C2

(
Tr[(M †⟨U⟩)ξ′B̄′B′ξ′] + Tr[ξ′†B̄′B′ξ′†⟨U⟩†M ]

)
. (D.22)

And it is easy to see that

M †⟨U⟩ = ⟨U⟩†M = M. (D.23)

Therefore,

O2 = C2Tr[M(ξ′B̄′B′ξ′ + ξ′†B̄′B′ξ′†)] (D.24)

from which one can see that there is no CP-violation in the redefined Lagrangian.

The redefinition of the meson field is by no doubt due to the meson condensate.

Therefore, in another way the meson condensate contribution cancels the direct

matching contribution so that there is no CP-violation observable in the system.

184



Bibliography

[1] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975); R. N. Moha-
patra and J. C. Pati, Phys. Rev. D 11, 2558 (1975); R. N. Mohapatra and
G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980). G. Senjanovic and R. N. Mo-
hapatra, Phys. Rev. D 12, 1502 (1975); Phys. Rev. D 23, 165 (1981); For a
review, Rabindra N. Mohapatra, CP Violation, World Scientific Publ. Co., C.
Jarlskog, Ed., 1989.

[2] T. D. Lee, talk given at the Center for High-Energy Physics, Peking University,
Nov. 2006.

[3] Y. Zhang, H. An, X. Ji and R. N. Mohapatra, Phys. Rev. D 76, 091301 (2007)
[arXiv:0704.1662 [hep-ph]]; Y. Zhang, H. An, X. Ji and R. N. Mohapatra,
arXiv:0712.4218 [hep-ph].

[4] E. P. Shabalin, Sov. J. Nucl. Phys. 28, 75 (1978) [Yad. Fiz. 28, 151 (1978)].
A. Czarnecki and B. Krause, Phys. Rev. Lett. 78, 4339 (1997) [arXiv:hep-
ph/9704355]. D. V. Nanopoulos, A. Yildiz and P. H. Cox, Phys. Lett. B 87, 53
(1979).

[5] I. I. Y. Bigi and A. I. Sanda, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.
9, 1 (2000).

[6] V. Baluni, Phys. Rev. D 19, 2227 (1979).

[7] R. J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Phys. Lett. B 88,
123 (1979) [Erratum-ibid. B 91, 487 (1980)].

[8] A. Pich and E. de Rafael, Nucl. Phys. B 367, 313 (1991).

[9] M. Pospelov and A. Ritz, Phys. Rev. Lett. 83, 2526 (1999) [arXiv:hep-
ph/9904483].

[10] M. Pospelov and A. Ritz, Nucl. Phys. B 573, 177 (2000) [arXiv:hep-
ph/9908508].

[11] X. G. He, B. H. J. McKellar and S. Pakvasa, Int. J. Mod. Phys. A 4, 5011
(1989) [Erratum-ibid. A 6, 1063 (1991)].

[12] G. Beall and A. Soni, Phys. Rev. Lett. 47, 552 (1981).

185



[13] S. Abel and S. Khalil, Phys. Lett. B 618, 201 (2005) [arXiv:hep-ph/0412344].

[14] M. Pospelov and A. Ritz, Phys. Rev. D 63, 073015 (2001) [arXiv:hep-
ph/0010037].

[15] W. H. Hockings and U. van Kolck, Phys. Lett. B 605, 273 (2005) [arXiv:nucl-
th/0508012].

[16] J. Erler and M. J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351 (2005)
[arXiv:hep-ph/0404291].

[17] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005) [arXiv:hep-
ph/0504231].

[18] V. M. Khatsimovsky, I. B. Khriplovich and A. S. Yelkhovsky, Annals Phys.
186, 1 (1988).

[19] G. Valencia, Phys. Rev. D 41, 1562 (1990).

[20] X. G. He and B. McKellar, Phys. Rev. D 47, 4055 (1993).

[21] R. Babich, N. Garron, C. Hoelbling, J. Howard, L. Lellouch and C. Rebbi,
Phys. Rev. D 74, 073009 (2006) [arXiv:hep-lat/0605016].

[22] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003) [arXiv:hep-ph/0210398].

[23] V. Bernard, N. Kaiser and U. G. Meissner, Int. J. Mod. Phys. E 4, 193 (1995)
[arXiv:hep-ph/9501384].

[24] S. N. Gninenko, M. M. Kirsanov, N. V. Krasnikov and V. A. Matveev, Phys.
Atom. Nucl. 70, 441 (2007).

[25] C. E. Aalseth et al. [CoGeNT collaboration], arXiv:1002.4703 [astro-ph.CO].

[26] W.Seidel et. al. [CRESST collaboration], Talk given at IDM2010, July 2010.

[27] E. Aprile et al. [XENON100 Collaboration], Phys. Rev. Lett. 105, 131302
(2010) [arXiv:1005.0380 [astro-ph.CO]].

[28] R. D. C. Miller and B. H. J. McKellar, Phys. Rept. 106, 169 (1984).

[29] S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989).

186



[30] E. Braaten, C. S. Li and T. C. Yuan, Phys. Rev. Lett. 64, 1709 (1990).

[31] J. M. Frere, J. Galand, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal,
Phys. Rev. D 45, 259 (1992).

[32] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Rev. D 18, 2583
(1978) [Erratum-ibid. D 19, 2815 (1979)].

[33] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006) [arXiv:hep-ex/0602020].

[34] K. S. Babu, B. Dutta and R. N. Mohapatra, Phys. Rev. D 65, 016005 (2002)
[arXiv:hep-ph/0107100]. R. N. Mohapatra, A. Rasin and G. Senjanovic, Phys.
Rev. Lett. 79, 4744 (1997) [arXiv:hep-ph/9707281]. R. N. Mohapatra and
A. Rasin, Phys. Rev. Lett. 76, 3490 (1996) [arXiv:hep-ph/9511391]. K. S. Babu
and R. N. Mohapatra, Phys. Rev. D 41, 1286 (1990). R. N. Mohapatra and
G. Senjanovic, Z. Phys. C 20, 365 (1983).

[35] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977). R. D. Peccei
and H. R. Quinn, Phys. Rev. D 16, 1791 (1977).

[36] S. Weinberg, Phys. Rev. D 11, 3583 (1975).

[37] J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).

[38] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 166, 493
(1980).

[39] T. Falk, K. A. Olive, M. Pospelov and R. Roiban, Nucl. Phys. B 560, 3 (1999)
[arXiv:hep-ph/9904393].

[40] S. L. Adler, Phys. Rev. 177, 2426 (1969). J. S. Bell and R. Jackiw, Nuovo Cim.
A 60, 47 (1969).

[41] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).

[42] A. V. Manohar, arXiv:hep-ph/9802419.

[43] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).

[44] O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964).

[45] D. Faiman and A. W. Hendry, Phys. Rev. 173, 1720 (1968).

187



[46] J. F. Donoghue and G. Karl, Phys. Rev. D 24, 230 (1981) [Erratum-ibid. D
26, 1804 (1982)].

[47] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980) [Erratum-ibid. D 23,
818 (1981)].

[48] J. F. Donoghue, E. Golowich and B. R. Holstein, Camb. Monogr. Part. Phys.
Nucl. Phys. Cosmol. 2, 1 (1992).

[49] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. F. Weisskopf, Phys.
Rev. D 9, 3471 (1974).

[50] K. Johnson, Phys. Lett. B 78, 259 (1978).

[51] A. Chodos, R. L. Jaffe, K. Johnson and C. B. Thorn, Phys. Rev. D 10, 2599
(1974).

[52] T. A. DeGrand, R. L. Jaffe, K. Johnson and J. E. Kiskis, Phys. Rev. D 12,
2060 (1975).

[53] G. Ecker, W. Grimus and H. Neufeld, Nucl. Phys. B 229, 421 (1983).

[54] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).

[55] J. L. Goity, R. Lewis, M. Schvellinger and L. Z. Zhang, Phys. Lett. B 454, 115
(1999) [arXiv:hep-ph/9901374].

[56] V. Bernard, N. Kaiser and U. G. Meissner, Z. Phys. C 70, 483 (1996)
[arXiv:hep-ph/9411287].

[57] J. F. Donoghue and B. R. Holstein, Phys. Rev. D 33, 2717 (1986).

[58] G. Feinberg, P. Kabir and S. Weinberg, Phys. Rev. Lett. 3, 527 (1959).

[59] K. Kiers, J. Kolb, J. Lee, A. Soni and G. H. Wu, Phys. Rev. D 66, 095002
(2002) [arXiv:hep-ph/0205082].

[60] D. Chang, C. S. Li and T. C. Yuan, Phys. Rev. D 42, 867 (1990).

[61] R. L. Arnowitt, J. L. Lopez and D. V. Nanopoulos, Phys. Rev. D 42, 2423
(1990).

[62] R. L. Arnowitt, M. J. Duff and K. S. Stelle, Phys. Rev. D 43, 3085 (1991).

188



[63] V. M. Khatsymovsky and I. B. Khriplovich, Phys. Lett. B 296, 219 (1992).

[64] D. A. Demir, M. Pospelov and A. Ritz, Phys. Rev. D 67, 015007 (2003)
[arXiv:hep-ph/0208257].

[65] H. An, X. Ji and F. Xu, arXiv:0908.2420 [hep-ph].

[66] C. S. Aulakh, K. Benakli and G. Senjanovic, Phys. Rev. Lett. 79, 2188 (1997)
[arXiv:hep-ph/9703434]. C. S. Aulakh, A. Melfo, A. Rasin and G. Senjanovic,
Phys. Rev. D 58, 115007 (1998) [arXiv:hep-ph/9712551]. R. N. Mohapatra and
A. Rasin, Nucl. Phys. Proc. Suppl. 52A, 182 (1997).

[67] Y. Zhang, H. An and X. d. Ji, Phys. Rev. D 78, 035006 (2008) [arXiv:0710.1454
[hep-ph]].

[68] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait and
H. B. P. Yu, arXiv:1005.1286 [hep-ph]. J. Goodman, M. Ibe, A. Rajaraman,
W. Shepherd, T. M. P. Tait and H. B. P. Yu, arXiv:1008.1783 [hep-ph].

[69] Y. Bai, P. J. Fox and R. Harnik, arXiv:1005.3797 [hep-ph].

[70] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 101, 181602 (2008)
[arXiv:0807.3132 [hep-ex]].

[71] K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010).

[72] J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 91, 011302 (2003)
[arXiv:hep-ph/0302215].

[73] S. Nussinov, Phys. Lett. B 165, 55 (1985).

[74] J. Alcaraz et al. [ALEPH Collaboration and DELPHI Collaboration and L3
Collaboration and ], arXiv:hep-ex/0612034.

[75] M. S. Carena, A. Daleo, B. A. Dobrescu and T. M. P. Tait, Phys. Rev. D 70,
093009 (2004) [arXiv:hep-ph/0408098].

[76] H. C. Cheng, J. L. Feng and K. T. Matchev, Phys. Rev. Lett. 89, 211301 (2002)
[arXiv:hep-ph/0207125].

[77] D. E. Kaplan, G. Z. Krnjaic, K. R. Rehermann and C. M. Wells, JCAP 1005,
021 (2010) [arXiv:0909.0753 [hep-ph]].

189



[78] X. G. He, S. Y. Ho, J. Tandean and H. C. Tsai, Phys. Rev. D 82, 035016 (2010)
[arXiv:1004.3464 [hep-ph]].

[79] T. Aaltonen et al. [ CDF Collaboration ], Phys. Rev. D79, 112002 (2009).
[arXiv:0812.4036 [hep-ex]].

[80] V. M. Abazov et al. [ D0 Collaboration ], [arXiv:1009.2444 [hep-ex]].

[81] A. Pukhov, arXiv:hep-ph/0412191.

[82] H. An, S. L. Chen, R. N. Mohapatra, S. Nussinov and Y. Zhang, Phys. Rev. D
82, 023533 (2010) [arXiv:1004.3296 [hep-ph]].

[83] S. Chang, N. Weiner and I. Yavin, arXiv:1007.4200 [hep-ph].

[84] V. Barger, W. Y. Keung and D. Marfatia, arXiv:1007.4345 [hep-ph].

[85] A. L. Fitzpatrick and K. M. Zurek, Phys. Rev. D 82, 075004 (2010)
[arXiv:1007.5325 [hep-ph]].

[86] T. Banks, J. F. Fortin and S. Thomas, arXiv:1007.5515 [hep-ph].

[87] D. B. Kaplan and A. Manohar, Nucl. Phys. B 310, 527 (1988).

[88] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78, 443
(1978).

[89] X. d. Ji and D. Toublan, Phys. Lett. B 647, 361 (2007) [arXiv:hep-ph/0605055].

[90] J. Fan, M. Reece and L. T. Wang, arXiv:1008.1591 [hep-ph].

[91] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Com-
mun. 180, 747 (2009) [arXiv:0803.2360 [hep-ph]].

[92] E. W. . Kolb and M. S. . Turner, REDWOOD CITY, USA: ADDISON-
WESLEY (1988) 719 P. (FRONTIERS IN PHYSICS, 70)

[93] G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and
A. Semenov, arXiv:1004.1092 [hep-ph].

[94] J. Preskill, Annals Phys. 210, 323 (1991).

190



[95] P. Langacker and M. Plumacher, Phys. Rev. D 62, 013006 (2000) [arXiv:hep-
ph/0001204].

[96] R. S. Chivukula and E. H. Simmons, Phys. Rev. D 66, 015006 (2002)
[arXiv:hep-ph/0205064].

[97] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002)
[arXiv:hep-ph/0202074].

[98] J. Kopp, T. Schwetz and J. Zupan, JCAP 1002, 014 (2010) [arXiv:0912.4264
[hep-ph]].

[99] B. Bajc, M. Nemevsek and G. Senjanovic, Phys. Lett. B 684, 231 (2010)
[arXiv:0911.1323 [hep-ph]].

[100] A. Maiezza, M. Nemevsek, F. Nesti and G. Senjanovic, Phys. Rev. D 82,
055022 (2010) [arXiv:1005.5160 [hep-ph]].

[101] P. Chen, H. Ke and X. Ji, Phys. Lett. B 677, 157 (2009) [arXiv:0810.2576
[hep-ph]].

[102] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel
and E. N. Fortson, Phys. Rev. Lett. 102, 101601 (2009).

[103] Z. Q. Ma, “Group Theory for Physicists”, World Scientific, (2007).

191


