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In a class of other beyond-standard-model theories, CP-odd observables, such
as the neutron electric dipole moment, receive significant contributions from flavor-
neutral P-odd and CP-odd four-quark operators. However, considerable uncertain-
ties exist in the hadronic matrix elements of these operators strongly affecting the
experimental constraints on CP-violating parameters in the theories. Here we study
their hadronic matrix elements in combined chiral perturbation theory and nucleon
models. We first classify the operators in chiral representations and present the
leading-order QCD evolutions. We then match the four-quark operators to the cor-
responding ones in chiral hadronic theory, finding symmetry relations among the
matrix elements. Although this makes lattice QCD calculations feasible, we choose
to estimate the non-perturbative matching coefficients in simple quark models. We
finally compare the results for the neutron electric dipole moment and P-odd and
CP-odd pion-nucleon couplings with the previous studies using naive factorization

and QCD sum rules. Our study shall provide valuable insights on the present



hadronic physics uncertainties in these observables.

Using an effective theory approach, the neutron electric dipole moment in the
minimal left-right symmetric model with both explicit and spontaneous CP vio-
lations is recalculated systematically. Using the state-of-the-art hadronic matrix
elements, nEDM as a function of right-handed W-boson mass and CP-violating
parameters is obtained. The most stringent constraint yet on the left-right sym-
metric scale in the minimal version of left-right symmetric model is obtained to be
My, > (10 £ 3) TeV.

Light WIMP (weakly interacting massive particle)-like signals were reported
by dark matter direct detection experiments. WIMP candidates in this energy
range can be constrained by various collider experiments. We show that colliders
can impose strong constraints on models of low mass dark matter, in particular
in the case that the direct detection interaction depends on the momentum of dark
matter. We also find in the case of low mass dark matter, there are tensions between
the observed relic abundance and collider constraints. Putting the constraints from
collider physics, relic abundance and direct detection experiments, a large part of

parameter space in different models can be ruled out.
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Chapter 1

Introduction

1.1 Some Basic Features of Standard Model of Particle Physics

The known strong, weak and electromagnetic interactions can be described by
the gauge interactions in the Standard Model (SM) of Particle Physics. The gauge
group of SM is SU(3)¢ x SU(2), x U(1)y. The quantum numbers of the fermion

fields including quarks and leptons are shown in Table 1.1.

SUB)e  SUQR)L Uy

ur,
QL = 3 2 1/3
dr,
dr 3 1 —2/3
14
L= 1 2 1
€L
€er 1 1 —2

Table 1.1: Representations SM fermions in each gauge group of SM, where flavor

indices are omitted.



At low energy scale, the SU(2);, x U(1)y electroweak symmetry is sponta-
neously broken into U(1)., by the Higgs mechanism. To break the electroweak
symmetry, the Higgs boson is chosen to be a doublet under SU(2), transformation
and a singlet of SU(3)¢, and its U(1)y charge is 1. The potential of the Higgs field
can be written as

V(H) = p2|H|? + \H? . (1.1)

With a negative y? the vacuum expectation value (vev) of Higgs can be nonzero and

can be written as

v/\/§

0

where v = /—pu2/(2\).
In SM, the mass of quarks are also assumed to originate from the vev of Higgs

through the following Yukawa couplings
Lyuawa = —YuQrHug — Y,Q Hdp — Y. LHep (1.3)

where H = (—ioy)H*, where o9 is the second Pauli matrix defined in Appendix A.
The Yukawa couplings may not be diagonal. So the mass eigenstates of quarks may
not be the same as flavor eigenstates. Since a squared matrix can be diagonalized

by two Hermitian matrices, one can redefine the quark fields as
up = Viug, up=Viur, dp =Vid,, dy=Vidgp, (1.4)

where the fields with a prime are mass eigenstates. Since the gauge interactions con-

tain either lefthanded fermions or righthanded fermions, the redefinition of quark



fields bothers only those interactions containing different flavors. After the redefi-

nition, the coupling between quarks and W-boson can be written as
Ly ~u W Vorudr, (1.5)

The combination Vg = Vi#V; is the famous Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and it is the only combination which can be observed in the quark rotation
matrices. In SM, there is only one lefthanded charged gauge bosons, so one can only
get the information of lefthanded quark rotations.

It is easy to see that Vo is a 3x 3 unitary matrix which can be parameterized
by three rotational angle plus six complex phases. However, some of the complex
phases can be removed by redefinition of quark fields, and only one physical complex
phase is left after the redefinition, this phase is usually called Dirac phase.

Righthanded neutrinos are not required to be present in the framework of SM,
they are neutral under all gauge transformations in the SM gauge group. Therefore,
a natural consequence of SM is that the mass of neutrino should be zero. However,
the discovery of neutrino oscillation indicates the presence of non-vanishing tiny

neutrino masses. How to understand the origin of neutrino masses is still a question.

1.2 Minimal Version of Left-Right Symmetric Model

Parity is violated in the electroweak sector of SM. The reason for parity viola-
tion is still mystery. The left-right symmetric model (LRSM) was motivated by the
hypothesis that parity is a perfect symmetry at high-energy, and is broken sponta-
neously at low-energy due to the asymmetric vacuum [1]. Asymptotic restoration

3



of parity has a definite aesthetic appeal [2]. The model has a number of additional
attractive features, including a natural explanation of weak hyper-charge in terms of
baryon and lepton numbers, existence of right-handed neutrinos and entailed seesaw
mechanism for neutrino masses, possibility of spontaneous CP (charge-conjugation-
parity) violation, and natural solution for the strong CP problem. The model can be
constrained strongly by low-energy physics and predicts clear signatures at colliders.
It so far remains a decent possibility for new physics.

The LRSM is best constrained at low-energy by flavor-violating mixing and
decays, particularly CP violating observables. In making theoretical predictions,
the major uncertainty comes from the unknown right-handed quark mixing matrix,
similar in spirit to that of the left-handed quark CKM mixing. The new mixing
is a unitary matrix, depending on 9 real parameters: 6 CP violation phases and 3
rotational angles. All are physical after the left-handed CKM mixing is rotated into
a standard 4-parameter form.

In Ref [3], we reported a systematic approach to analytically solving the right-
handed quark mixing in a minimal version of LRSM (mLRSM), where the only
requirement of parity invariance is the imposed prior to symmetry breaking, leaving
automatically only one CP phase in the Higgs potential and one in the Yukawa
couplings and leading to a theory with both explicit and spontaneous CP violations.
This model therefore falls in-between the above two extreme cases and is free of the
problems described above. Our approach is based on the observation that in the
absence of any fine tuning, m; > m, implies that the ratio of the two vev’s of the
Higgs bi-doublet, £ = £'/k, is small and is of the order of my;,/m;. In the leading-order

4



in £, we find a linear equation for the right-handed quark mixing matrix which can
be readily solved. We present an analytical solution of this equation valid to O()\?),
where A = sin ¢ is the Cabibbo mixing parameter. The leading right-handed quark
mixing is nearly the same as the left-handed CKM matrix, except for additional
phases which are fixed by &, spontaneous CP phase «, and the quark masses.

In mLRSM, after neglecting the contributions from FCNH and the charged
higgs boson exchange, nEDM depends only on three parameters, r = (m;/my)(K'/K),
a, and Myy,,, where « is the new source of CP-violation. If o = 0, nEDM predicted
by the mLRSM will be the same as that predicted by SM, about five orders of magni-
tude smaller than the upper bound given by the current experiment [4]. Whereas for
¢, there are two new contributions in mLRSM [3], the Dirac phase in the righthanded
CKM matrix inherited from the lefthanded CKM matrix, and the spontaneous CP
phase a. The new contribution from the Dirac phase is enhanced compared to the
similar contribution in SM due to the chiral enhancement in the hadronic matrix
element (see Ref. [5] for a good review). The contribution of the spontaneous CP-
phase a must be adjusted to cancel the contribution of the Dirac phase. Therefore,
in mLRSM there is a tension between nEDM and € that one cannot only adjust a to
suppress all the new CP-violation sources, and a large Myy,, is needed. As a result,
nEDM and e together give a lower bound on Mjyy,,, which turns out to be the most

stringent to date in mLRSM.



1.3 Neutron Electric Dipole Moment

Neutron electric dipole moment (nEDM) has attracted considerable attention
over more than half a century. For an elementary particle to have non-vanishing
intrinsic EDM, simple analysis shows that parity-violating as well as time-reversal-
violating interactions must be present. [T-violation is equivalent to CP-violation
(combined charge-conjugation and parity) in local quantum field theory.] However,
in the standard model (SM) of particle physics, such interactions arise only from
flavor-changing Cabbibo-Kobayashi-Moskawa (CKM) matrix elements, which are
strongly suppressed phenomenologically, yielding a very small neutron EDM of order
10731 ecm. Therefore, an experimental observation of a large-size neutron EDM is
an unambiguous signal for new physics, widely expected to exit somewhere between
the electroweak symmetry breaking and TeV scales.

An efficient way to calculate the neutron EDM is to use the methodology of
effective field theories (EFT). In this approach, one generates P-odd and CP-odd
quark and gluon operators after integrating out the heavy particles (including heavy
quarks, gauge bosons and new particles) and run these operators to a scale around 1
GeV where non-perturbative QCD physics becomes important. The effective degrees
of freedom involves the light quarks (up, down and strange) and gluons. The CP-
odd part of the lagrangian is generally written as a sum of CP-odd operators of

different mechanical dimensions,

Lcp_odd = Z Z Ci(11)Oui (1) (1.6)

where d = 3,4, 5, etc, is the mechanical dimension of the operators, u is the renor-



malization scale (taken as 47F, in this paper) and i sums over operators of the
same dimension. The dim-3 operator is the usual CP-odd quark mass term ¢ivsq,
which can be rotated away through chiral rotations apart from the U4(1) anomaly.
The dim-4 operator is the usual 6 term GG. Dim-5 operators include quark elec-
tric and chromoelectric dipole operators. Dim-6 operators contain various four-
quark operators and Weinberg three-gluon operator. The matrix elements of dim-4
and, to less extent, dim-5 operators have been studied extensively in the litera-
ture [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], and the uncertainty of the estimates are
typically at the level of factor 2. The contributions of these operators have also been
studied extensively in the context of various new physics models (see Refs. [16, 17]
for good reviews).

However, the matrix elements of dim-6 operators have been a challenge to
estimate. In some beyond-SM theories such as the left-right symmetric model, dim-
6 four-quark operators dominate the contributions to nEDM. In the literature, the
only serious approach that has been proposed to calculate their matrix elements is
the naive factorization method: breaking the four-quark matrix elements into the
product of two-quark matrix elements between the nucleon states and between pion
and vacuum [18, 19, 20]. While the factorization involving mesons can be and has
been tested using lattice QCD [21] and the results may be trustable to within a
factor of 2, the same is not known for matrix elements involving the nucleon states.
The goal of this paper is to develop a chiral perturbation method combined with
simple quark models to estimate the four-quark contribution to the nEDM with

hopefully an improved accuracy.



The approach we are going to take is the standard chiral perturbation the-
ory (xPT) (see, for example, Ref. [22, 23]) which has been used to calculate the
contribution of #-term to nEDM [8]. One of the successes of the chiral approach
can be illustrated by the polarizabilities of the nucleon. The electric polarizabili-
ties of the proton and neutron have been extracted from experimental data, af? =

(10.4 + 0.6) x 107*m?*, a®® = (12.3 4 1.3) x 10~*fm®. The leading contribution in

XPT comes from the pion-nucleon intermediate states,

50emd?

_TemIA 11 x 10" *m? 1.7
067 F2m,, e (1.7)

ap:an:

which diverges linearly as m, — 0 and agrees well with the experimental data.
One would expect then a similar pion dominance in the neutron EDM because the
latter also involves the intermediate electric dipole excitations. Indeed a pioneer-
ing calculation by Crewther et al. found that the dominant contribution from the
charged-pion chiral-loop diverges logarithmically as m, goes to zero, and is propor-
tional to the CP-odd pion-nucleon-nucleon coupling g,nyn [7]. In this work, we take
this contribution as dominating and consider the four-quark operator contribution
to grnn. Of course, there are chiral-regular contributions to the nEDM which are of
the same order in chiral power counting and numerically competitive or even domi-
nating in the real world [17]. We will consider these contributions as well, although
the model-dependence becomes unavoidable.

In the chiral approach, one first writes down the CP-odd and even lagrangian



in terms of meson and nucleon fields,

£ - EGoldstone—boson CP—odd term + ﬁnucleon CP—odd mass term

+£EDM term 1 ECPfodd 7—N coupling + (CP — even terms) , (18)

where the Goldstone boson CP-odd lagrangian will generate terms annihilating 7°
and 7 in the vacuum, or in other words, will produce meson condensates. The
condensates will turn some of the CP-even terms (as we shall see, those proportional
to quark masses) in the chiral lagrangian into CP-odd contributions. This will
generate an additional CP-odd nucleon-mass term, neutron EDM term and CP-odd
pion-nucleon coupling. Once this is done, one can rotate away the CP-odd nucleon
mass term, generating further contributions to the neutron EDM terms and the
CP-odd pion-nucleon coupling.

After taking into all these contributions, one can calculate the nEDM gener-
ated by certain four-quark operator, and at the meanwhile get the upper bound on
its Wilson coefficients. The upper bounds of some four-quark operators are listed
in Table 1.2.

Armed with the hadronic matrix elements, we follow an effective theory ap-
proach to calculate the nEDM in mLRSM. Our goal here is to derive a factoriza-
tion formula for nEDM in this model, with QCD and other short-distance physics
in the Wilson coefficients, and with long-distance physics in hadronic matrix ele-
ments ready for, for example, lattice QCD calculations. Using the state-of-the-art
hadronic matrix elements, we derive the best constraints on the model parameters.

In particular, we find the most stringent bound yet on the left-right symmetric scale



Operators Upper bound of |Cy|/(GeV~?)

wirysudd 5 x 10712
audirysd 4 x 10712
Wiysuss 6 x 10712
divysd3s 6 x 10712
Wirysutiu 8 x 10712
divysddd 5x 10712
m%a‘“’uczcrwd 2 x 10711
wiyst®udt®d 4 x 10710
atudivyst®d 4 x 1071
Wiryst uiitu 3 x 107t
divysteddt®d 2 x 1071
ﬂz’%a“l’tauczawt“d 3 x 1071t

Table 1.2: Upper bound on the Wilson coefficients of P-odd, CP-odd four-quark
operators, calculated using the experimental data and hadronic matrix elements in

this work.
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10 £ 3 TeV, which is beyond the detection capability of the Large Hadron Collider

(LHC) [24].

1.4 Collider Constraints On Dark Matter

It now appears established that dark matter accounts for about one quarter of
the energy density, €2, of the universe and plays an essential role in the formation of
large scale structure in it. The identity of dark matter, however, remains unknown
since all the particles in the successful standard model can be ruled out as candi-
dates. What the dark matter particles are, how they interact with visible matter
and how their relic abundance originates, constitute some of the fundamental mys-
teries of particle physics and cosmology today. The most compelling vision of dark
matter is that dark matter is a weakly interacting massive particle (WIMP), which
offers the possibility to understand the relic abundance of dark matter as a natural
consequence of the thermal evolution of the Universe through the so-called WIMP
miracle, which indicates that the interaction between WIMP and ordinary particle
can be directly detected by various detectors.

Many direct detection experiments have been carrying on in order to look
for signals induced by the interaction between dark matter particles and nuclei.
Among these direct detection experiments, CoGeNT collaboration reported their
results from ultra low noise germanium detector with a very low-energy threshold
of 0.4 keVee in the Sudan Underground Laboratory [25]. The observed excess could

be explained by a WIMP signal with mass in the range 6~11 GeV, and a WIMP-
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nucleon spin-independent (SI) cross section 107 ~ 107 cm?. More recently, the
CRESST-II group also reported their preliminary results whose target is made of
CaWQ, and 32 events have been observed which cannot be explained by known
background and might be induced by collisions between nuclei and WIMPs with
a mass around or less than 15 GeV, and the cross section about a few times of
107 c¢m? [26]. On the other hand, with considering the smearing effect of the
detector, XENON100 could also probe the low WIMP mass region [27]. However, a
tension exists between the CoGeNT and CRESST-II results and the null-result of
XENON100, although an issue of the scintillation efficiency of nuclear recoils (L)
of xenon at low nuclear recoil region still remains. The upcoming new XENON100
result with detecting power increased by one order of magnitude will be published
soon, and the parameter space of this region will be further probed.

The signals produced by WIMPs in the direct detection detectors are assumed
to be induced by the interaction between WIMP and nuclei. Therefore, such a
WIMP can be produced at hadron colliders like Tevatron and LHC, and the signal
for WIMPs is missing transverse energy. However, Tevatron has not reported any
anomalous results related to such kind of signal which cannot be explained by SM
physics. This can be used to set constraints to on WIMP couplings to the quarks,

which in turn can be translated to constraints on direct detection cross section.
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1.5 The Organization of This Thesis

The organization of the thesis is in the following. In Chapter 2, we first give
the definition and basic properties of nEDM, and then we discuss nEDM induced by
various P-odd and CP-odd operators with concentration on four-quark operators.
In Chapter 3, we try to calculate nEDM in the framework of mLRSM using the
effective theory approach and give the most stringent bound to Mjyy,,. In Chapter

4, we discuss the constraints from collider physics on low mass dark matters.
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Chapter 2
P-odd and CP-odd Four-Quark Operator Contribution to Neutron

Electric Dipole Moment

2.1 Introduction

2.1.1 Definition of Electric Dipole Moment

The EDM of a charged system with a charge density distribution p(Z) is defined

as
@:/ﬁﬂ%ﬁ. 2.1)
Under the external electric field, the potential energy of this charged system is

defined as

H=-E-d,, (2.2)

where E is the electric field.

From the definition we can see that the EDM of a charged system is a vector,
and depends on the internal structure of the system. For an elementary particle,
the only intrinsic vector is the spin, so one can define the EDM of an elementary

particle in the following relation.



where §'is the spin of the particle, and the number d, is defined as the EDM of this
particle. Therefore, the Hamiltonian of EDM interaction between an elementary

particle and the external field can be written as

—

S —

H=—dog . (2.4)

There is no doubt that the electric field is a vector field. On the other hand,
however, the spin of an elementary particle is an axial-vector, just like angular
momentum. Therefore, the product of them gives a pseudoscalar, which is odd
under both parity transformation and CP transformation. As a result, the existence
of a nonzero EDM of elementary particle means there are Parity violating and CP
violating interactions in the system.

Since we are interested in spin-1/2 particle, so |5] = 1/2, and the corresponding

Lagrangian in quantum field theory can be written as

1
E = —§de’l/10"u1,’l”}/5wFuU y (25)

where 0, = £[y,,7] and 75 = i7°y'9%*? in the standard Dirac representation,

which is discussed in Appendix A, 1 is a Dirac spinor.

2.1.2 Classification of P-odd and CP-odd Operators

An efficient way to calculate the neutron EDM is to use the methodology of
effective field theories (EFT). In this approach, one generates P-odd and CP-odd
quark and gluon operators after integrating out the heavy particles (including heavy

quarks, gauge bosons and new particles) and run these operators to a scale around 1
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GeV where non-perturbative QCD physics becomes important. The effective degrees
of freedom involves the light quarks (up, down and strange) and gluons. The CP-
odd part of the lagrangian is generally written as a sum of CP-odd operators of

different mechanical dimensions,

Lcp_odd = Z Z Ci(11)Oui (1) (2.6)

where d = 3,4, 5, etc, is the mechanical dimension of the operators, p is the renor-
malization scale (taken as 47 F} in this paper) and ¢ sums over operators of the same
dimension.

The dim-3 operator is the usual CP-odd quark mass term givysq, and the dim-
4 operator is the usual # term GG. The Lagrangian containing dim-3 and dim-4

operators can be written as

v s (2.7)

£4 = Z my i

q
where m,, is the mass of quark ¢. Using the anomalous U(1)4 transformation, 6;
can be transferred to 6, and only the combination § = ; + 6, is related to physically

observable quantities.

The Lagrangian containing dim-5 operators can be written as

= > dF (O () + Y dS(WOS () , (2.8)

where Of = —%QU’“’Z'%QFW and Og = ——qa“”l%taqG and F),, and G, are the

pv

electromagnetic and gluon field strengths, respectively, and t* are generators of the

SU(3) color gauge group.
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For dim-6 operators, the effective Lagrangian can be written as

Lo = Z Ci(1)Oui(p) + Cy (1) Oy (1) (2.9)

where the four-quark CP-odd operators can be divided into two groups. The first

group includes operators with two different light flavors [18]

On = (qsa)(dd) ,

O = (q9)(qisq)

On = (qinst"q)(q't"q) ,
Oz = (qt"q)(qivst"q)
O3 = (qis0" Q) (T o) ,

Oy = (qivs0™tq) (7 o,ut’q) , (2.10)

where ¢, ¢ = u,d, s and ¢ # ¢'. The second group includes operators with one quark
g

flavor

O) = (qivs9)(qq)

Oy = (qinst*q)(qt*q) - (2.11)
The Weinberg operator is defined as

1
0y = — "™ 0G, GGy (2.12)

where 9123 = 1.

The contribution from @ and, to less extent, dim-5 operators and the Weinberg

operator have been studied extensively in the literature [6, 7, 8, 9, 10, 11, 12, 13,
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14, 15], which is discussed in Chapter 3 when we study mEDM in the framework of
mLRSM. The uncertainty of the estimates are typically at the level of factor 2. The
contributions of these operators have also been studied extensively in the context
of various new physics models [16, 17]. However, the matrix elements of dim-6
operators have been a challenge to estimate. In some beyond-SM theories such as
the LRSM, dim-6 four-quark operators dominate the contributions to nEDM. In
the literature, the only serious approach that has been proposed to calculate their
matrix elements is the naive factorization method: breaking the four-quark matrix
elements into the product of two-quark matrix elements between the nucleon states
and between pion and vacuum [18, 19, 20]. While the factorization involving mesons
can be and has been tested using lattice QCD [21] and the results may be trustable
to within a factor of 2, the same is not known for matrix elements involving the
nucleon states. The goal of this chapter is to develop a chiral perturbation method
combined with simple quark models to estimate the four-quark contribution to the

nEDM with hopefully an improved accuracy.

2.1.3 The Strategy of The Calculation

The approach we are going to take is the standard chiral perturbation the-
ory (xPT) (see, for example, Ref. [22, 23]) which has been used to calculate the
contribution of #-term to nEDM [8]. One of the successes of the chiral approach
can be illustrated by the polarizabilities of the nucleon. The electric polarizabili-

ties of the proton and neutron have been extracted from experimental data, ap? =
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(10.4 + 0.6) x 107*m?*, a®® = (12.3 4 1.3) x 10~*fm®. The leading contribution in

XPT comes from the pion-nucleon intermediate states,

2
5aen1gA

_TemIA 11 x 10" *m? 2.13
067 F2m, A (2.13)

ap:an:

which diverges linearly as m, — 0 and agrees well with the experimental data.
One would expect then a similar pion dominance in the neutron EDM because the
latter also involves the intermediate electric dipole excitations. Indeed a pioneer-
ing calculation by Crewther et al. found that the dominant contribution from the
charged-pion chiral-loop diverges logarithmically as m, goes to zero, and is propor-
tional to the CP-odd pion-nucleon-nucleon coupling g,y [7]. In this paper, we take
this contribution as dominating and consider the four-quark operator contribution
to grnn. Of course, there are chiral-regular contributions to the nEDM which are of
the same order in chiral power counting and numerically competitive or even domi-
nating in the real world [17]. We will consider these contributions as well, although
the model-dependence becomes unavoidable.

xPT is a low energy effective theory of QCD, the effective theory shares the
same symmetry as its UV completed theory. Since the masses of u, d and s quarks
are small compared to the QCD scale, SU(3), x SU(3)r can be seen as a global
symmetry of QCD approximately, which is inherited by yPT. This approximation
is good enough to our goal of accuracy. To use yPT to calculate nEDM, one needs
also to get the corresponding P-odd and CP-odd operators in xPT. To do this, in
the spirit of the Wigner-Echart Theorem, we first classify the four-quark operators

by the irreducible representations of SU(3), x SU(3)g symmetry group. Then,
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we collect all the chiral operators in the corresponding representations. Then, by
calculating some simple matrix elements we get the Wilson coefficients for those
operators.

The effective chiral Lagrangian can be written in terms of meson and nucleon

fields,

L = ‘CGoldstone—boson CP—odd term + [’nucleon CP—odd mass term

+LEDM term + LCP—odd 7N coupling 1 (CP — even terms) (214)

where the Goldstone boson CP-odd lagrangian will generate terms annihilating 7°
and 7 in the vacuum, or in other words, will produce meson condensates. The
condensates will turn some of the CP-even terms (as we shall see, those proportional
to quark masses) in the chiral lagrangian into CP-odd contributions. This will
generate an additional CP-odd nucleon-mass term, neutron EDM term and CP-odd
pion-nucleon coupling. Once this is done, one can rotate away the CP-odd nucleon
mass term, generating further contributions to the neutron EDM terms and the
CP-odd pion-nucleon coupling.

The presentation of this chapter is organized as follows: In Sec. 2.2, we clas-
sify all flavor-neutral P-odd and CP-odd four-quark operators in chiral representa-
tions. We also present the leading-order QCD scale evolution of these operators. In
Sec. 2.3, we match these operators to the corresponding Goldstone boson operators,
baryon operators, and EDM operators in xPT. We also discuss in the case of Peccei-
Quinn symmetry the size of the induced # term in the presence of these four-quark

operators. In Sec. 2.4, we calculate their contributions to the P-odd and CP-odd
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nucleon-pion vertices and the CP-odd nucleon mass using factorization in the case
of meson matrix elements and simple quark models for the nucleon ones. In Sec. 2.5,
we study the four-quark contribution to the neutron EDM in the chiral approach
supplemented with factorization and quark model estimates of counter terms, and
the results are compared with other calculations in the literature. The comparison
and analysis show that the hadronic physics uncertainties here can be quantified
to within a factor of two for operators generating unsuppressed meson condensate

contributions. We conclude this chapter in Sec. 2.6.

2.2 P-odd and CP-odd Four-quark operators: Classification, Run-

ning and Mixing

We consider three light quark flavors: up, down and strange. Flavor-neutral
P-odd and CP-odd four-quark operators can be divided into two groups which are
shown in Egs. (2.10) and (2.11).

To match the above quark operators into the hadronic ones in yPT, we have

to classify the former into irreducible representations of the chiral group SU(3). x

SU(3)g. Take the operator @ivsudd as an example, which can be decomposed as

ﬂZ’}%UCZd = —iﬂRuLJRdL -+ iﬂLURCZRdL + h.c. s (215)

where q, p = Pr rq with P, g = (1F75)/2. The first term can be further decomposed
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as

S i S
—zuRuLdeL = —§(uRuLdeL —i—dRuLuRdL)
i _ _
—§(ﬂRuLdeL — dputpdr)

{ 15 — _ i i = m = n
= _ZSkJZqRiq][C,QquZL - Zeg'r’;lnAjQRkQL 4qridy, , (2.16)
where ¢ = kleimn and
0 0 0
0 01
and
Si; = Sh =S =83 =1, (2.18)

with other elements vanishing. The second term of Eq. (2.15) can be written as

itpupdpdy, = @'H{iHéijLijz‘leqiL ; (2.19)
where
01 0 0 0 0
Hi=1000]|, 2= 100 |- (2.20)
0 0 0 0 0 0

In this way the operator wivsudd is decomposed into (3,3), (6,6) and (8, 8) represen-
tations of SU(3), x SU(3)g, and A, S, Hy, and H, can be regarded as spurion fields
in the sense that if they transform as (3,3), (6,6) and (8,8) under chiral transfor-
mation, the corresponding terms in Egs. (2.16) and (2.19) become invariant. These
spurion fields will be used in x PT to construct the effective operators corresponding
to the same four-quark operators. All spurion fields for four-quark operators with
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different Dirac and color structures are shown in Table 2.2. [It is easy to see that
there is no (1, 1) operator because any such operator must be expressible in terms of
products of chiral-even quark currents, which cannot yield CP-odd contributions.|
The four-quark operators usually emerge at a high energy scale where some
heavy particles have been integrated out. To match them to hadronic operators
in effective theories, one must run them down to a low energy scale where non-
perturbative physics becomes important. We can choose this to be 1 GeV or the
lattice cut-off 1/a, where a is the lattice spacing. In this work, we take p = 47 F},
with F; = 93 MeV. These operators mix with each other when the energy scale
changes. Although many of the mixings have been calculated in the literature before
[see Ref. [28], for example], we recalculate them and present the complete result

here for easy reference:

O11 8§ 0 0O 0 0 1 O11
O1 0o 8 0 0 0 1 O1
5 d 021 _ ag (:U’) 0 0 -1 0 9 % 021
du 4T .
O o o0 0 -1 = 3 (O
O3 0 0 24 24 —% 0 Os
16 16 19
Oy 3 3 10 10 0 = Oy
/ 40 4 /
24 G| _esw| v s % (2.22)
dp? 0! Am 80 46 0! . '
2 97 T 9 2

Clearly operators with different quark flavor structures do not mix. Since SU(3), x
SU(3)r symmetry is broken only by quark masses, four-quark operators belonging
to different chiral irreducible representations do not mix either. Therefore, we can
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(3,3) (6,6) (8,8)

0 0O Si2 = 512 010 0 00
qg="u

0 0O =54 =82=1 00 0 |- 1 00
q¢=d

0 0 1 others are zero 0 00 000

0 0O Siz =512 0 0O 010
qg=d

0 0 O =52 =821 =1 100 |- 0 00
¢ =u

0 01 others are zero 0 00 000

0 0 O Si3 =613 0 01 0 00
qg=1u

010 =5 =83=1 00 0 |> 000
q¢=s

0 00 others are zero 0 00 1 00

0 0O Si3 =853 0 0O 0 01
qg=3:

010 =83 =83 =1 00 0 |> 000
¢ =u

0 00 others are zero 1 00 000

1 00 S23 = 5% 0 0O 000
qg=d

0 0O =532 =852 =1 00 11> 000
q¢=s

0 00 others are zero 0 00 010

1 00 S23 = 5% 0 00 000
qg=3:

0 0O =532 =8%2=1 00 0 |- 0 0 1
q¢=d

0 00 others are zero 010 000

Table 2.1: Spurions for CP-odd 4-quark operators. The first six together with three
tensor structures yield 18 operators in Eq. (4) and the last three with two tensor

structures yield six operators in Eq. (5).94



(3,3) (6,6) (8,8)
0 0, 0
q =u others are zero
qg=d S35 =4
0 0, 0
¢ =d others are zero
g=s Sis =4
0 0, 0
qJ=s others are zero

Table 2.2: Spurions for CP-odd 4-quark operators. The first six together with three

tensor structures yield 18 operators in Eq. (4) and the last three with two tensor

structures yield six operators in Eq. (5).

further simplify Eq. (12),
O§376)

3,6
,d | o5

O§3,6)

01(1376)

,d [ oY

0y

as(p)
47

0 0 1
1 E
8 -3 0
20 0 ¥
0 o®

-1 oy’

O§3,6)
O§3,6)

. (2.23)
O§3,6)
0513,6)

: (2.24)

where 053’6’8) means the projections of the operator O; on the representations (3, 3),

(6,6) and (8,8), respectively. It is easy to see that the (3,3) and (6,6) projections

of O;1 and O;s are the same with i = 1,2, whereas their (8,8) projections differ only

by the sign. The tensor operators do not have (8,8) components and therefore do
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not participate in Eq. (2.24).

The four-quark operators may also mix with P-odd and CP-odd operators
with dimension less or equal to 6. For mixing with lower-dimensional operators,
either quark masses or power divergences will appear. The only other dimension-6

operator is the Weinberg operator [29]
1 abe _pvap a bp e
OW = _éf € G,quu Gaﬁ? (225)

which is a singlet under chiral transformation. Since the four-quark operators con-
tain no singlet component, the mixing between them and Oy, vanishes. The evolu-
tion of the Weinberg operator can be found in Ref. [30].

The P-odd and CP-odd dimension-5 operators are the quark electric dipole
moment operators (QEDM) and quark chromo-electric dipole moment operators
(QCDM). In principle, they belong to (3,3) of the chiral group. However, they can
mix logarithmically with four-quark operators multiplied by the quark mass which
transforms also like (3,3) [31, 32].

Finally, the four-quark operators can have mixing with mgiysq with quadrat-
ically divergent coefficients. Usually, one defines the four-quark operators with
quadratic divergences subtracted, as is natural in dimensional regularization where
all quadratically divergent integrals vanish by definition. Equivalently, this can be
achieved, for example, by demanding the CP-odd four-quark operators have van-
ishing contribution between QCD vacuum and CP-odd meson states in perturba-
tion theory. However, as we shall see in the following section, they can have non-

perturbative contributions. The exact physical implication of this non-perturbative
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contribution will be discussed in Sec. 5.5.

2.3 Matching to Operators in Chiral Perturbation Theory

Generically, any P-odd, CP-odd quark-gluon operator contributes to all P-
odd, CP-odd hadronic operators in yPT; the latter are constructed in terms of
Goldstone-boson (pion, kaon, eta) fields and baryon fields. Here we consider just
the contributions to the Goldstone-boson CP-odd interactions, nucleon CP-odd mass

term, m-N CP-odd coupling, as well as the neutron EDM term,
L = ‘CGoldstone—boson CP—odd term + Enucleon CP—odd mass term
+£CP—0dd m—N coupling + LEDM term - (226)

Following the standard practice in the literature, we imbed the Goldstone-boson

fields in the unitary matrix U = exp[2i¥/F}| with

1.0 1 1 + 1 +
571' +m77 7571' TﬁK
Y = 1 1,0, 1 1 30 2.27
Vol e UL (2.27)
1 — 1 770 1
vl it

where F is the pion decay constant. Under chiral rotations, U transforms like
U — LUR', where L and R are 3 x 3 unitary matrices belonging to SU(3), and
SU(3)g groups, respectively.

To include the baryon octet, we introduce

1 ¥v0 1 +
s A > p
B = - _lyo0 1 . 2.28
= 520+ A n (2.28)
- —0 2
= = A
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Again following the literature, we assume B transforms nonlinearly under chiral

transformation,

B — KBK' (2.29)

where K is a unitary matrix defined according to the transformation of & = U'/2.
£ = LEKT, ¢ — KERY (2.30)

It is clear that K is a nonlinear function of the Goldstone-boson fields.
The quark-mass term breaks chiral symmetry and plays an important role in
chiral expansion. To exhibit its physical effect, the usual practice is to introduce

the spurion field y, transforming as
x — LxR'. (2.31)
However, to combine y with the baryon field B, we introduce x
xe = &g +exTe (2.32)

which transform nonlinearly as Yo+ — Ky+KT.

In the leading order, the chiral lagrangian for meson fields is
1 1
L= ZFTfTr[auUTa“U] + §FﬁBTﬂM*U +UT™M], (2.33)

where M = diag{m,, mg, ms} is the mass matrix of light quarks. The leading-order

chiral lagrangian for the baryon field is [23]
_ _ 1 . 1
L="Tr {Bw“DﬂB —moBB + §DBWH’Y5UW B+ 5F37u75 [w,, B]} . (2.34)

where u,, = i(£10,€ — £0,£") is an axial vector current, D,B = 9,B + [I',,, B] and
L, ={£10,£ +£0,£7}/2 is a vector current.
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2.3.1 Matching to CP-Odd Goldstone-Boson Operators

Once there is a CP-odd term in the QCD lagrangian, it induces CP-odd terms
in the effective Goldstone-boson lagrangian. These terms can annihilate odd-number
(particularly, one) Goldstone bosons into the vacuum. Because of this CP-odd meson
condensate, the original CP-even terms can now contribute to the CP-odd effects.
Due to chiral symmetry, a meson condensate can generate physical effects only when
the CP-even terms explicitly break the symmetry.

As discussed in the last section, P-odd and CP-odd four-quark operators can
be decomposed into chiral (3,3), (6,6), (8,8) and their hermitian conjugate repre-
sentations. They in turn can be matched to the corresponding chiral operators in
the same representations. The leading ones without derivatives are unique and are

shown in Table 2.3.

Rep. (3,3) (6,6) (8,8)

Operator ~ OF = iTr[AUT] m = iSUkU! m = {Ty[H,U HyU']

Table 2.3: Leading meson operators in individual irreducible chiral representations
where A, S, H; and Hy are spurion fields in Table 2.2. The appearance of i in front
of each operator indicates that these operators generate P-odd and CP-odd vertices
in the meson lagrangian; their Wilson coefficients in the lagrangian are defined to

be real.

We illustrate the matching process using O% = w@ivsudd as an example. As

discussed in the last section, this quark operator can be decomposed into irreducible
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representations of the chiral group using the spurion fields
Ou = 0¥ 1 Op 0 L outES | e, (2.35)

Then, we can match each of the operators to the corresponding one in the meson

sector through the non-perturbative Wilson coefficients C’s
O3~ CBI0, , OO ~ 6904, OIS CBIO; (2.36)

The Wilson coefficients can be obtained by matching the simplest matrix elements:
(0]O]7%) and (0|O|n), which can be calculated using non-perturbative methods such
as lattice QCD.

In this paper, we use factorization approximation to estimate these non-
perturbative matrix elements. Lattice QCD calculations demonstrate that the ma-
trix elements of four-quark operators can be factorized typically to within a factor
of 2. Again take the operator O as an example, which can annihilate 7° and 7 to
the vacuum. [In principle, it also annihilates n’, but this contribution is suppressed
by the mass of n’. A brief discussion of the contribution from 1’ condensate can be

found in Appendix C.] The annihilation amplitude can be estimated using vacuum

saturation,

(O|aiysudd|m®) = (0|dd|0){0|wivsu|r). (2.37)
Using chiral symmetry, one can get (0]uiysu|n®) = F%(O]ﬂu|0> = —F,Bj, and
(O|@ivsuln) = —F.Bo/v/3. (This is consistent with the definition of the chiral

rotation of U defined below Eq. (2.27).) Therefore, a term CyO% in the QCD
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lagrangian can be matched to the linear terms in 7° and 7 in the chiral lagrangian

1
L:@%ﬁﬁaﬁ@%@mmw (2.38)

where ... represents higher-power meson fields. Then the leading terms in the po-

tential of 7° and 7 can be written as

1 1
vV = 5BO (M +myg)(7°)* + g(mu +mg + 4ms)n2}
+&(mu —mg)n’ny — C4B2F? <7T0 + in) : (2.39)
V3 V3

which can be minimized to yield a condensate (%) and (n).
The above discussion can be easily generalized to an arbitrary four-quark op-

erator, for which Eq. (2.38) can be written as
L = g.CsB{F27° + g,C4BSFin + ... | (2.40)

where g, and g, are numerical factors generated through the vacuum saturation

approximation. Then, the vevs of meson fields can be written as

() BoF2Cy [gx(my + mg + 4my) — V/3g,(my — ma)]
N 4(mymg + mams + mgm,,) ’
BoF3Cy [—\/ggw(mu —mq) + 3¢, (m, + md)}

4(mymg + mgms + mgmy,)

(n) =

, (2.41)

which is inversely proportional to quark masses! The vev of U can be written as

(m°) + Z5(n) 0 0
(U) =exp |i 0 —(m%) + ) 0 [Fr| - (2.42)
] 0 0 —Z=(n) |

This defines the vacuum state of Goldstone-boson fields.
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Therefore, we can redefine the meson fields in the following way:
U= (UU", (2.43)

where U’ collects the physical meson excitations. Through this redefinition, the me-
son lagrangian no longer contains terms annihilating the physical Goldstone bosons.

Correspondingly, we redefine the baryon fields,
{BE=(U){'B'E, (2.44)

through a chiral transformation with L = (U) and R = 1.
The above redefinition can change P-even and CP-even terms with explicit
chiral symmetry breaking to P-odd and CP-odd terms. This is particularly true for

the CP-even baryon lagrangian with linear dependence on quark masses,
L.=ciTr[BBTr[MUY 4 ¢ Tr[MEBBET + esTr[BEMEB] + hee.  (2.45)
and
Ly = diTr[Bys BITe[MU] + dyTr[M &' Brys BT 4 dsTr[Brys€'METB] + h.c.(2.46)

Substituting (U) to the above equation, we get CP-odd pion-nucleon couplings

through

o Te[B'BTe[(UY MU' + e, Te[(U)Y METB' B'EM) + e Te[B'¢N(U) METB'] 4 h.c.
(2.47)

and the CP-odd masses of baryons
d\ Tr[B'ys B\ Te[(UY MU 4+-dy Te[(U ) ME B s B €M 4-ds Tr[ By (U M ET B +h.c.
(2.48)
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which is part of the CP-odd mass generated by the four-quark operator. Note that
since (U) is inversely proportional to the quark mass, the above contribution is not
suppressed in the chiral limit.

One can also get a CP-odd dipole moment by considering a photo-pion pro-
duction term off the nucleon. When the pion is condensed through CP-odd effects,
one generates a new contribution to the CP-odd moment, which is beyond the scope

of this paper.

2.3.2 Matching to CP-Odd Baryon Operators

In this subsection, we construct the leading P-odd and CP-odd baryon oper-
ators induced by the CP-odd four-quark operators. These include all the operators
with one baryon and one conjugate baryon fields, and without any quark masses or
derivatives. All the independent operators are listed in Table 2.4. A brief proof of
the completeness and independence of these operators is shown in Appendix B.

There are two types of operators in Table 2.4, those with and without tilde.
For the first group without tilde, the expansion of the pion field generates the P-odd

and CP-odd nucleon-pion vertices
L0 — (hpna* + h.c.) + hyint® + h,ppr° . (2.49)

For the second group, the leading order expansion is a bilinear-baryon term with a

CP-odd mass structure,

ECP—odd

mass

~ —MiYsN. (2.50)

This term contributes to the CP-odd baryon wave function.

33



Rept. Operators

05" = iTe[BBITr[AU"), O = iTr[A¢! BBE!, OF = iTr[ B A¢!B),

O\ = iTr[Bys BITr[AUT], O = iTr[A¢t Bys BE], O = iTr[Byst A¢TB),

O = iS|(EBENEBE)), OF = iS(EBBE)IT,

[
O = iSg(BE)¢B)LUL, O = iTr[BBISJULUL.

m> 37

05 = iS(eBs6)H(EBEY, OF = iSi(¢BrsBELU},

m= 37

05" = iSi (B (€B);,Uj, O = iTe{Brs BIS{ULU

oY = iTe[BE H\UHo€' B, O = iTr[¢t BB H U Hy),
O = iTr[¢ BB¢HLUTH,), O = iTr[ BEH,U H B,
OF) = iTr[¢ BE Y Tr[¢! BEH,), OF) = iTr[¢! BEH,] Tr[¢ BE H, ],
O\ = iTr[¢ BeHoet Bet H,], OF = iTul¢t Bet H ¢ BEH,).
O = iTx[Brs & HU Hy¢TB), O = iTr[€" Bys BETH,U Hy),
O = iTr[¢ Bys BEHUTHY), O = iTr[Bys¢ HUTH B,
OY) = iTv[€ Bys&t Hy | Te[€1 BEH], OF) = iTel€! Brys¢ Ho| Tr[€ BE H)),

Of = iTr[e Bys6 o' BEHL), OF = iTr[€1 Brse! H ¢ BEH,)

Table 2.4: Hadronic operators that have the same quantum numbers as four-quark

operators in different irreducible representations.
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Traditionally, P-odd and CP-odd pion-nucleon couplings are defined in terms

of isospin 0, 1, and 2 of the operators, which can be written as [17]
LNy = gfrjz,NNT“Nﬁ + gfrlj)VN]\_ngbO + gff}VN(NT“Nw“ —3N7TN7% ,  (2.51)

where QSJ)V « is the coupling of the isospin-i term and 7° are the Pauli matrices. Then,

in terms of gSJ)\, N> Pes Iy, and hy, can be written as

he = ﬁ(ﬁf&zﬁgﬂm, h = (— gfr%N—i_gErl]sz—i_zgf]sz)? hy = ( Er%N‘f’gy(rjsz_Qg( )N)7
(2.52)
where h, does not contribute to nEDM.

To match the P-odd and CP-odd four-quark operators to the above baryon
operators, one must find ways to calculate the corresponding non-perturbative Wil-
son coefficients. This can be done by considering the matrix elements of the quark
operators in simple states. Take O% = @iysudd as an example. As shown in the last

section, it can be decomposed into irreducible representations of the chiral group,
Ou = ONFY) 4 on OO L o1 e (2.53)

The spurions related to this operator are given in Egs. (2.17), (2.18) and (2.20).
063 - outb8) and 0"G® must be matched to the hadronic operators in the

same irreducible representations and with the same spurions. Take the un-tilded
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hadronic operators as an example:
) 3
ud, (3,3 i) (i
i=1
) 4
ud, (6,6 i) (i
oY = N ool + ..
i=1
8 . .
oY = N ool + .. (2.54)
i=1

13 2

where represents higher order operators.

Note that, an operator can be separated into hermitian part and anti-hermitian
part. Since the QCD Lagrangian is hermitian, the hermitian part and the anti-
hermitian part must have the same Wilson coefficient in the effective theory. Take
the operator grqr as an example, it is a (3, 3) operator, so it can be matched to CUT
in the chiral perturbation theory, while its hermitian conjugation grqy is matched to
CU with exactly the same Wilson coefficient since the QCD Lagrangian is invariant
under the hermitian conjugate transformation. Therefore, the hermitian part of grqr
can be matched to C(UT + U)/2 whereas the anti-hermitian part can be matched
to C(UT — U)/2. As a result, one can use either the hermitian part or the anti-
hermitian part of the operators to get their Wilson coefficients depending on which
way is easier. For the operators without tilde listed in Table 2.4, the anti-hermitian
parts contain terms having only one baryon field and one anti-baryon field which
is easy to do the matching, while for the operators with tilde, the hermitian part
is easier. Therefore, we choose to match the anti-hermitian part of the operators

without a tilde whereas match the hermitian part of the operators with a tilde to

get the Wilson coefficients of them. One can show that this matching procedure
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works when current algebra is valid such as in non-relativistic quark model.

The leading-order expansion of the hadronic operators are, for (3, 3) operators,

—_———

O~ ipp+inn + iAA + iS50 4+ iSTSt 4878 42020 4 =2

2i
O§2) ~ ipp +inn + gAA ,

2% _
o) ~ EZAA+Z'EOEO +iETE (2.55)

Therefore, we can determine the Wilson coefficients with four physical matrix ele-

ments,

1 2 . ud,(3,3
OV 0P = (=)o)

1 . ud, (3,3
oV o= (=)o)

2

3657 = (=)o)

o5V +

: N =01 uds(3,3) | =
iV + ) = (i) |0V (2.56)
where we have chosen the normalization condition
(P|P'y = (2r)%0°%(P — P') , (2.57)

where P and P’ are the momenta of the states.
Since the number of equations is larger than the number of variables, to get a

solution the following condition must be satisfied,

110 (plowCop)

10 0 (20083950
det =0, (2.58)

0 (AJOYEH|A)

—_
Wi

—_ ud,(3,3) |—
10 1 (0=
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which gives a nontrivial relation among these matrix elements;
2 ud.(3 ]- ud, _, ua, _?
—5(plO" ) — (IO EV ) + MO Ay =0 (259)

This relation must be satisfied in the chiral limit, so it is a test for direct calculations
of the matrix elements. Similarly, a simple inspection of Eq. (2.55) can give us some

more relations among matrix elements
ud,(3,3 ud,(3,3
(p|011( )|p> = <”|011( )|n>a
ud, (3,3 ud, (3,3 —1 ~ud,(3,3 —
(S0P = (SHOY ISt = (2T1o Y n)
—01 ~ud,(3,3) = — ~yud,(3,3) | ——
(1017 = (=0 CYE) (2.60)

Generalizing the above discussion to (6,6) and (8, 8) operators, we write down

the leading expansion of the hadronic operators,

o ~ %KA ) 30 LIRS S0 SLUNERS 3o il

O ~ ipp+inn+ %]\A NI 305 YURNER) Sup yulEF) b Dl

o) ~ %]\A N === = ) 3D SUNEP) 3a5 YNIP) yub yull

O =~ 2i(pp+mn+ AN 4220 + =72 + 80 4 N 4 £7%7) (2.61)

38



AR
2

1 - 1

i(pp+ AN+ —=AX" + ——

PT% 23 2v/3
1. _ 1 - 1 - 1- _
AN ETE AR 0N 2200 22) ,
6 23 23 2
1
6

_ 1_ _
SOA + 52020 + 2+2+> ,

=

>

12

. o~
TN TN TN

o 1 - 1 - 1. .
0P ~ (AN +Z0Z0 - —_AR0— 50y 4 —$0%0 4 z+2+) ,
s 23 23 2
1- 1 - 1 - 1. _
oW ~ (nn + AN — —AX0 — 50N 4 25030 4 z:-z-)
s 6 23 23 2
05(35) ~ gutyt
Oéﬁ) ~ NTYT
1- 1 - _ 1.
o ~ (—AA + ——AX? — 30N — —2020> ,
8 6 2M/3 2

AN
2

1 1 - _ 1
i (BAA — 2—\/31\20 + XA — izozf’) : (2.62)

from which we can get similar relations among matrix elements just like in the
(3,3) case shown in Table 2.5. The other four-quark operators with the same flavor
structures have the same relations among hadronic matrix elements as in this case.

One can either build models or do lattice QCD calculations to get these sim-
plest four-quark matrix elements. Once known, one can get the Wilson coefficients
by solving Eq. (2.56) and similar equations for (6, 6) and (8, 8) operators. Then one
can expand these hadronic operators to the first order with one meson field in each
term to get the P-odd and CP-odd pion-nucleon vertices. A similar method works
for baryon operators with tilde. We will consider these matrix elements in the next

section.
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Rep. Relations
ud,(3,3 ud,(3,3 —_ ud,(3,3) | — —— | ~ud,(3,3) |—_
(p|011 ( )|p> = <n|011 ( )|”>7 <:0‘011 33 :0> = <: |011 ( )|: >7
ud, (3,3 ud, (3,3 _1 ~ud,(3,3 _
(3,3) (2001 V|50 = (5+]05F Y |ty = (571058 P 5,
ud,(3,3 ud,(3,3 ud, (3,3
—2(p|OYE Y p) — 10|03 EV 20y 4 (A|OY PP |A) = 0
plOY O p) = (O [n)
(6,6) EHONVE) = ETlo YV E)
ud,6,6 ud, (6,6 ud, (6,6 —_ ud,(6,6) |—
2(p|OYF 58 |p) — (201031 50) — 3(A|OFF OV |A) + 2(20|051 V=0 = 0
ud,(8,8 ud, (8,8 ud,(8,8 ud,(8,8
POV p) + (n]OFL BV ny + (2001 GV |20y — 3(A|OY Y| A)
— ud,(8,8) |— —— 1 ~ud,(8,8) | —_
5.9 H(E0| 0|0y 4 (=103 Y=y = 0
ud,(8,8 ud,(8,8 —_ ud,(8,8) |— —— | ud,(8,8) |——
POV p) — (n]OFF Yy — (20|05 |20 + (27105 Y |=7)
ud, (8,8 ud,(8,8
—V3(A[O} P20 — V320|051 Y |A) = 0

Table 2.5: Relations among hadronic matrix elements of the four-quark operators

in different chiral representations.
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2.3.3 Matching to EDM-Type Operators

In xPT, any CP-odd quark-gluon operator will generate directly an EDM con-
tribution to the neutron, analytical in the chiral limit. To write down such a contri-
bution, introduce vector and axial vector octet potential v, and a,, which transform
under local chiral rotations (with space-time dependent chiral transformation) as

ru=v,+a, — v, +a, = R(v,+a,)R" +iRO,R",

ly=vy—a, — v, —a, = L(v,—a,)L'+iLd,L". (2.63)

The corresponding gauge fields are defined as

ﬁ, = Oyry, — Oyry — [Ty, 1],
T = Oy — Ol —illy, 1) (2.64)

The gauge fields with definite parity are defined as
+ _ ¢tyR L ¢t
puy 5 ,uz/é- + gf,uz/é ) (265)
which transform under chiral transformation as
+ + 7ot
= K, K (2.66)

When reducing to the electromagnetic field, a, = 0, /f, = (£'QE+EQENF,,, where
Q) = diag(2/3,—1/3,—1/3) and F,, is the electromagnetic flield [23].

One can write down a number of EDM type of operators which contain B and
B, j,/, and the spurion fields A, H, and S. These contributions are direct matching
contributions to the neutron EDM, and cannot be calculated in xPT. These chiral
constants can in principle be calculated in lattice QCD. However, we will present

quark-model estimates in Sec. V.
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2.3.4 Peccei-Quinn Symmetry and Induced 6-Term

The experimental upper bound on the neutron EDM gives a strong constraint
on the P-odd and CP-odd 6-term, AGG, in the QCD lagrangian [7, 14, 6]. A brief
discussion of f-term contribution to nEDM can be found in Appendix C. Using the

current experimental limit [33],
dp, < 2.9 x 107%%c cm | (2.67)

one can get the upper bound,

6 <1071, (2.68)

On the other hand, it is unnatural for a parameter of the fundamental theory to be
so small without fine tuning. There are generally two ways to solve this strong CP
problem in the literature. The first is by introducing the spontaneous breaking of
parity. Since the f-term also breaks parity, if at some high energy scale parity is
conserved, then the f-term at low energy scale can only be generated by loop effects
and will be suppressed naturally [34].

The other way is to introduce the Peccei-Quinn symmetry, U(1)4 [35]. After
the spontaneous breaking of the symmetry, there emerges a pseudo-goldstone boson,
a, which is called the axion [36, 37, 38]. The effective Lagrangian for the axion field
can be written as

a a

1 ~
— o a apy
Lo = 50u00"a+ 51 GlLGM, (2.69)

which includes an effective interaction with GG. The axion field gets a small mass
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through the non-vanishing correlation function

K :@'{/d“xei’f'l’ <O’T (g‘—;aé(m),g—;aém))w} , (2.70)

k=0
after taking into account the non-perturbative QCD effect [37, 38].
When there is an additional neutral P-odd, CP-odd quark operator, Ocp_oqq,

in the lagrangian, the correlation function

K= {/d‘*xei’f’f <0 ’T (%Gé(x),Ocp_odd(O)) ) 0>}k: (2.71)

0
will be generally nonzero. Therefore, the vev of a, which cancels precisely the #-term
in the original lagrangian, will now be shifted by a small amount proportional to

K;. A non-vanishing effective 6-term is induced as [39]
(2.72)

which can contribute to the neutron EDM.
Following Ref. [39], we take the operator wiysudd as an example to calculate
the contribution to neutron EDM through the induced #-term. Then, K; can then

be written as

K= { / dizei <0 ’T (g—;Gé(x),Cmi%qu(O))‘0>} . (2.73)

k=0

Using the chiral anomaly [40], one can get
%Gé = 9,JE — 2m, (Givsu + dinsd + 5i55), (2.74)
T

where

i 37“753) : (2.75)
ms

My My -
Jt = (—u*y’“"yg)u + —dyFysd +
my, mq
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Then one can get

Ko = [ dacs 00 (00200, Canirnda) o),

1

5 /d%eik'm (0T (2m.(wivsu + divsd + Sivss)(x), Cativsudd(0))] (I?’CZSS)

The second term on the right-hand side of the above equation is negligible compared
to the first term because it is explicitly proportional to the reduced quark mass m,
and the operator @ivsu + divsd + 5iyss cannot annihilate light mesons. Therefore

K can be calculated as

Ko~ ol / d'xe™* (O[T (9, J2 (x), Cutiinsudd(0))[0)—

= L Cu0l[Q5(0), misudd(0)][0), (2.77)

where @5 is the charge related to the current J defined in Eq. (2.75). In the spirit

of large N¢ [41, 42] expansion one can assume that
(0|wiysudivsd|0) < (0]audd|0) ~ (0]au|0){0]dd|0). (2.78)

Therefore, we can get

Ko = =5 Cu0[[Qs(0), winsu(0)]10){01dd]o) = ~Ca e (0aulo) 0ldd])
= 0Bt (2.79)
Using the previously known result [38]
K =-m,F?By , (2.80)
one can get the § angle induced by the operator @iysudd,
Oina = —% = —CZZ;?LF’? . (2.81)
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A similar result can be obtained for any other CP-odd four-quark operator.
Using the standard chiral result in the literature [8], we write down the effective

chiral lagrangian corresponding to this induced 6 term;

B 460m,,

Ly o8

(2 Tr[SBB] + ¢3Tr[BEB]) + 2m.0(3d; + do + d3) Tr[Bivs B] . (2.82)

From the above, we read off the CP-odd pion-nucleon coupling and the CP-odd

mass of the neutron;

h o 2\/§C4B0F7rm* h . 204B0F7rm*
c — M n — M )
204 By F?m,
M, = +ﬁm(3d1 +dy + ds) . (2.83)

Comparing this with the meson condensates contribution in Eq. (2.85), one finds
that they are in the same order. If the Peccei-Quinn symmetry exists, one should
add this contribution to the neutron EDM. However, since it is not known if the
axion mechanism is in operation, we will not include this contribution to the nEDM

in the remainder of the paper.

2.4 P-odd and CP-odd nucleon-pion vertices and CP-odd Nucleon

Mass

In this section, we study the induced physical P-odd and CP-odd nucleon-
pion vertices as well as the CP-odd nucleon mass from four-quark operators. There
are a number of contributions to consider: First, the CP-odd meson lagrangian
will generate meson condensates which can convert a CP-even vertex into a CP-odd
one. Second, the baryon wave function contains the CP-odd part due to the CP-odd
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nucleon mass, which can also rotate a CP-even coupling into a CP-odd one. Finally,
there is the contribution from the direct matching operators (without a tilde) in

TABLE II. We will consider all of these in this section.

2.4.1 Meson Condensates Contribution

We use the vacuum saturation approximation to calculate the meson effective
lagrangian; the vevs of 7° and 7 can be obtained from Eq. (2.41), where g, and g,
for all the four-quark operators built with color-singlet and octet scalar currents are
listed in Table 2.6. Those induced by tensor operators vanish in this approximation.

In the large N. QCD [41] (also see Ref. [42] for a good review), the leading
contributions for operators constructed from two color-octet currents and two tensor
currents are shown as diagrams (a) and (b) in Fig. 2.1, respectively. Detailed anal-
ysis shows that the diagrams (a) and (b) suffer from 1/N? suppressions compared
with (c), which stands for the operator constructed from two scalar color-singlet
currents.

Terms contributing to the P-odd, CP-odd nucleon-pion vertices through the
condensates of neutral mesons are shown in Eq. (2.47). At tree level, one can relate
the coefficients ¢q, ¢, and c3 to the mass differences of the baryons and the 7 /N

o-term, and their values can be found in the literature [23];

C1 = QB()b() , Cg = QBo(bd — bf) , C3 = QBo(bd + bf) s (284)

where by = —0.517 GeV™!, by = 0.066 GeV~! and by = —0.213 GeV L.

The vertices we are interested in have two nucleons and one pion because of
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Operator | g n Operator Ix 9n

wirysudd 1 1/v3 | wivst*udt®d 0 0
divsduu | —1 1/v/3 | divst®dut®u 0 0
Uiysuss 1 1/v/3 Wiyt ust®s 0 0
Siyssuu 0 —2/V/3 | Siystesut®u 0 0
divysd5s -1 1/V3 diyst*dst®s 0 0
Siryssdd 0 —2/V/3 | Siystesdtd 0 0

wivsutiu | 5/6 | 5/(6v3) | wivstouatiu | —2/9 | —2/(9v3)

divsddd | —5/6 | 5/(63/3) | divsteddt®d | 2/9 | —2/(9V3)

575555 0 —5/(3v/3) | Fiyst®sstes 0 4/(9v/3)

Table 2.6: g, and g, induced by four-quark operators constructed by scalar currents.

Those induced by products of tensor currents are zero.
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Meson condensates contribution Factorization
Operator h. (C4B2) hy, (CyBg) he (CaBg) | hn (CiBg)
wivysudd —0.0117 0.225 0.0063 —0.24
dirysdiiu 0.0130 —0.227 0.0063 0.19
UiY5USS —0.0117 0.225 0 —0.088
5irys st —0.00122 0.000864 0 0
divysd5s 0.0130 —0.227 0 0.087
5iryssdd —0.00122 0.000864 0 0
Wirysuiiu —0.00976 0.188 0 —0.16
divysddd 0.0108 —0.189 0 0.20
5i7555s —0.00102 0.000722 0 0
Uiysot udo,,d 0 0 0.076 0
wiyso" uso s 0 0 0 0
dinyso1 d50,,s 0 0 0 0

Table 2.7: CP-odd pion-nucleon couplings induced by meson condensates. Cy is the
Wilson coefficient of the corresponding four-quark operator. The two columns on
the right side shows the P-odd and CP-odd pion-nucleon vertices calculated using

factorization which will be discussed in Sec. V.
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Meson condensates contribution Factorization
Operator h. (C4B2) hy, (C4Bg) he (C4Bg) | hn (CiB3)

wiystudt®d 0 0 0.0085 0
diyst*dut®u 0 0 0.0085 0
uiyst*ust®s 0 0 0 0
Styst*sut®u 0 0 0 0
diyst*dst®s 0 0 0 0
Siryst®sdt®d 0 0 0 0

wiysttuutu 0.00261 —0.0501 0 0.042

diysteddt®d —0.00288 0.0503 0 —0.054
Sty5t*s5t%s 0.000272 —0.000192 0 0
Uiso tudo,, td 0 0 0.101 0
uiysoM 't uso,,, ts 0 0 0 0
dirysot t7d50,,t"s 0 0 0 0

Table 2.8: CP-odd pion-nucleon couplings induced by meson condensates. C} is the
Wilson coefficient of the corresponding four-quark operator. The two columns on
the right side shows the P-odd and CP-odd pion-nucleon vertices calculated using

factorization which will be discussed in Sec. V.
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(c)

Figure 2.1: Annihilation of pion by four-quark operators: (a) operator constructed
from two color-octet current, like wiyst®udt®d; (b) operator from two tensor currents,

like ﬂa‘“’i%uciaw,d; (c) operator from two scalar currents, like @wiysudd.

the infrared enhancement in the pion loop [7]. From Eq. (2.47) we can read off the

relevant terms,

—% {63[3\/§<770><mu —mgq) + V6(n)(m, + md)}} (npr~ + pnm™)
_% {C3md(3<7r0> — \/§<77>) + c1[3(m., + md)<7ro> + \/§<7]><mu _ md)]} A :

(2.85)

in which (7%) and (n) are given in Eq. (2.41). It is customary to define the P-odd,

CP-odd nucleon-pion couplings
Lepy = he(pnm™ + apr ™) + hyana®, (2.86)

where h. and h,, induced by meson condensates are listed in Tables 2.7 and 2.8.
Typical values of h. are one order of magnitude smaller than the value of h,, because
V2e3(mg — my,) < 4ei(my + myg). For h, or h, generated by a certain four-quark
operator, if the contribution from (7°) is non-vanishing, the contribution from (n)
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can be neglected since (7°)/(n) ~ m,/m ~ 30. This also explains the contributions
from operators with the 5iv5s factor are much smaller than those without. Finally,
the contributions from operators made of color-octet currents are smaller than those
from operators made of color-singlet currents because a Fierz transformation is
needed for color-octet operators to annihilate the mesons, introducing a suppressing
factor of 1/4.

In Tables 2.7 and 2.8 one can see that the P-odd and CP-odd pion-nucleon
couplings are proportional to B2, which is related to the quark condensates. The

value of By can be extracted from the pion mass

mi = Bo(m, +ma) . (2.87)

The natural scale for yPT is 47 F, [43], and for simplicity we use the same scale to
define the quark masses to get By. The quark masses we use are m, = 2.4 MeV and
mg = 4.75 MeV in MS at 2 GeV. Using the one-loop renormalization group to run

them down to p = 47 F,, we have

By = 2.2 GeV . (2.88)

Here we have used one-loop Aqcp = 250 MeV.

2.4.2 Direct Contribution from Matching

To get the P-odd and CP-odd meson-nucleon coupling through direct match-
ing, one needs to calculate the matrix elements listed in Table 2.5. Lattice QCD is

perhaps the ultimate choice for calculating hadronic matrix elements. However, it is
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still quite difficult to directly calculate the matrix elements of four-quark operators
between baryons. Therefore, we resort to quark models to get an estimate. In the
remainder of this subsection we will use two different quark models to calculate these
hadronic matrix elements: the simple non-relativistic quark model [44, 45, 46, 47, 48|
and the MIT bag model [49, 50, 51, 52, 48]. We also discuss the significance of the

model calculations from the viewpoint of naive factorization.

2.4.2.1 Non-relativistic Quark Model

Here we consider the simplest version of the non-relativistic quark model with

harmonic oscillator interacting potentials,

1 1m,. N o L
H=-— ZZI: %V? + 5%&)2 [(Tl — 7’2)2 + (7”2 — 7’3)2 + (7”3 — 7’1)2] s (289)
where 77, 75, and 73 are positions of the three quarks inside the baryon, m, is the

mass of the constituent quarks and w is the angular frequency. One can isolate the

center of mass by introducing the Jacobi coordinates,

R = — (7 + 75 +73)
po= —F=-m),

X = (P + 7y — 273) . (2.90)
Then the spatial wave function of the nucleon can be written as

F (7, o, Py ) = (3V3) 2 exp(iP - B/V3B)(7,A) (2.91)

where (g, X) = (03/73/2) exp [—a2(p? + A2)/2] in which o = (mw)/2 ~ 0.41 GeV
[47] is the oscillator parameter, and P is the nucleon momentum. It is easy to check
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that the wave function is normalized to (27)36*(P — P'). The internal part of the
wave function is assumed to have SU(6) spin-flavor symmetry. For example, the

spin-up proton state has the following wave function,

abc

1 3. 13.. 13 .
’pﬁ = \/_1_8/d Tld ng Tgf(T'l,?“g,T’g)E
gt (P! (1) — ()] ()| () [0) (2.92)

where a, b, and ¢ are color indices and the anti-commutation relation of the non-
relativistic quark creation and annihilation operators is defined as {u&!(Z), u%(7)} =
dav0ap0” (T — ) with v and 8 as spin indices. The spatial part of the wave functions
is common for all members of the baryon octet. The SU(6) internal wave functions

are listed in Table 2.9 for easy reference.

aber. at b at jb c .
Ipy) ~ \/Lg b[ TdT UTTdJ]UT”O%

n4) ~ \/Labc[daT "l d?“?]dﬂm;

aber. at b at b7 ¢
[Ay) ~ \ﬁ b[ TdT U¢TdTT]5¢T|O>;

b b
|Z%L) ~ 118€abc[slzTuTT T T] CT|0>
b b b
|ZO> ot abc[ aTdT CT + s?d{ruf _ QSETdTTu?”m;

_ aber .at b at 3bty et 10\ .
25) ~ el — s o):

- b b
1Z9) ~ \/Lﬁe“bc[s?u{r s?uf]sﬂO)

—_— b b
:T>N\/L178abc[ ’rdT SdeTT]S?L‘(».

Table 2.9: SU(6) wave functions of baryon spin-1/2 octet.

Using Egs. (2.15)-(2.20), one can project operator %iysudd into different irre-
ducible representations of the chiral group, O (3:3) O”d , and O“d ®8) a5 in Eq.
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(D.12). Restricting to the non-relativistic case, these operators become

O Oa) =~ (el @y o) ()b (o) — dif e (o) () (o))
Off ) = —2: (uel(@us e)dlf () @) + 2l (@)uly(w)f (2} d () :

01V (x) o~ (w)ul () dy (x)dy (@) : - (2.93)

where u and d are non-relativistic two-component quark annihilation operators, a
and b label the color, a and (8 label the spin, and the “: :” means that the products
of the constituent quark fields are normal-ordered.

Considering the (6,6) component as an example, the simple quark model gives

the following matrix elements:

(PO O pe(P)) = (ny(P)OY O ny(P)) = —=a,
(P01 P)) = (37RO VST (P) =0,
(2P O CINDUP)) = ——a,

(AP0 CIA(P)) = 0,

(EUP)OF =P = (=5 (P)OfV=E(P) = 0, (2.94)

—

where a = [ dPrf*(P; Z,&,7) f(P; %, &,7) is independent of Z. It is easy to check that
these matrix elements satisfy the symmetry conditions listed in Table 2.5. Using

Eq. (2.61), one can get the Wilson coefficients for (6,6) hadronic operators defined

in Eq. (2.54);

¥ = =o. (2.95)



Expanding the hadronic operators to the first order, one can get the P-odd, CP-odd

three-point nucleon-pion couplings, h. and h,,. The result induced by Off (66) g

he = C%a? /(8732 F,) ~ 0.022C“a? /F, , h, =0 . (2.96)

In the same way one can calculate h. and h,, induced by the (3,3) and (8,8) com-
ponents of @iysudd. Taking into account the hermitian conjugate part of each com-

ponent, the contribution for h. and h,, is doubled.

2.4.2.2 MIT Bag Model

The basic idea of the bag model is that valence quarks are confined in a bag
where the vacuum is in a phase different from the true QCD vacuum. The inside
has a constant energy-momentum density generating a negative pressure, B, which
is balanced by the positive pressure of the quarks. The bag is usually taken as a
sphere of radius Ry. The quarks inside the bag move freely with the following wave

functions,

. N ZjO(C‘Jn,fl'r/RO)Xm
Vn—11/2m(T,1) = Ner: . (2.97)

47 . o .
—J1(wn,—17/Ro)T - TXm,

The normalization factor of the above is

w3 1/2
N(wne) = LT . 2.98
(ne) <2R8 (Wny + ) sin? wm> (2.98)

The boundary condition gives the energy eigenvalue equation,

wnn

, (2.99)

tan wy,, =
Wnk T K

95



and numerical calculation gives wg = 2.043. The ground state of quarks is kK = —1,
n = 0 state. For the baryon octet, all the quarks are in this state. Keeping only

this, the quark operator can be written as
q(z) = %7_171/27,,1(:Z’)e’iwo"lt/R°b07_171/g,m + (anti—quark creation) . (2.100)

The physical meaning of the operator b,,(0) is that it annihilates a quark with
quantum number described by the wave function 1y 1 1/2,,. Due to the assumption
that inside the bag the interaction between quarks and gluons is negligible, flavor
and spin automatically become good quantum numbers.

We again take the (6,6) component of @iysudd as an example, which can be

written as

D L\ (#PLo () ()L (7)

o%p Y1

X [uiTugdlgdi + dusubtdd | (2.101)

where a and b are indices of color, A, o, p, 7 labeling the spin. The creation and

annihilation operators here are just like by _1,1/2,, in Eq. (2.100). Using

Un()PLipe ()

= o {3 wor/ Ro) — G (wor/ Ro)] b5

~2ijolr/Ro)joer/RXAE - ixe} (2.102)

and only keeping the terms which give non-vanishing contributions after integrating
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NR quark model MIT bag model
Operators | he/(a®/Fr) | ha/(a®/Fx) | he/(1/(R3FR)) | ha/(1/(RGFY))
wiysudd 0.045 0.13 0.029 -0.024
divysdiiu 0.045 -0.13 0.029 0.024
ULY5USS 0 0 0 0
517y58UU 0 0 0 0
divysd5s 0 0 0 0
5iryssdd 0 0 0 0
ULY5UUU 0.045 0 0.029 0
divysddd 0.045 -0.13 0.029 -0.083
5175558 0 0 0 0
wivso* udo,,d 0.18 0 0.12 0
dirso™ diio,u 0.18 0 0.12 0
w50t uso s 0 0 0 0
Siys0MY stuo U 0 0 0 0
ng,adeaWs 0 0 0 0
5@'750“”3Jam,d 0 0 0 0

Table 2.10: P-odd, CP-odd three-point pion-nucleon vertices generated by P-odd,
CP-odd four-quark operators. The couplings induced by operators constructed by
two color-octet currents are equal to theXuplings induced by corresponding color-

singlet operators multiplying by —2/3.



over a spherical region, we have

U (@) PLipe (2) 0, (2)PLi- (z)
N4
6472

—453 (wor/ Ro)jt (wor / Ro) (X} - #xo) (X} - fXT)} :

12

{ 3w/ Ro) = 5 (wor/Ro)] 0r00r

where we neglect the term proportional to ¢ - 7. In a proton state normalized to our

convention before, the expectation value of the operator can be written as

ud(6,6 l
(O pr) = —5 N (wo)*

s { [ wor/ Ro) = 33(ar/ Ro)) (o1 Alpr) = 473 (wir/ Ro) 3 (wor / Ro) (o1l Blpr)

(2.103)
where
A = uusdid 4 dyugulidl
B = :uiT(Xic_r'-f‘XJ)ung(X;&-fXT)d?:
+:dt(xta- fxa)uf‘,ufj(x;&’ S [ (2.104)
A straightforward calculation gives
(il Alpr) = (mlAfny) =1
(SHAISH = (Z5l4187) = 0
(X453 = 2
(A4lAlAy) = 0
(ENAEY) = (E7I4ED) = 0, (2.105)



and

(p1| Blpy) (ny|Blny) = 1/3

(XLIBIE) (Xy|BIEY) =0
SUBISY = 2/3
(A[BIAy) = 0

(ZBIZ)) = (Z;IBIE;) = 0. (2.106)

Therefore we can get in the MIT bag model

(el @)lpr) = iA+ 3B, (2.107)
where
A = —lN(w )4LR3/1 - 2d - 45 (wor/ Ro) — ji (wor/R )]2
- Y e )\ Ry R, ) JoRr/ o) T R0
1 a1 3 L r 9 9
B = §N((JJO) ERO ; EO d R_O jO(WQT/Ro)]1<WoT/R0), (2108)

and similarly for other matrix elements.
Then, using the method we used in the non-relativistic quark model, we can

get h. and h,, induced by Olﬁl(ﬁ,é)’

o 0.015Cd
c — Rng ’

h,=0". (2.109)
One can compare this with the result from the non-relativistic quark model in Eq.
(2.96), where h, is proportional to a®. From the definition of ¢ below Eq. (2.91),

1/ can also be seen as the radius of the baryon. It is well known that 1/a = 0.5 fm

gives a too small value for the proton’s charge radius and the pion cloud is usually
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NR quark model MIT bag model
Operators he h,, he hy,
wivysudd 0.0883 | 0.374 | 0.0560 | —0.0690
dirysdiiu 0.0883 | —0.374 | 0.0560 | 0.0690
iryst udt®d —0.0343 | —0.0759 | —0.0222 | 0.0140
diryst*dut®u —0.0343 | 0.0759 | —0.0222 | —0.0140
Wirysutin 0.0883 0 0.0569 0
dirysddd 0.0883 | —0.255 | 0.0569 | —0.163
Wiryst utit®u —0.0343 0 —0.0221 0
diyst*ddt®d —0.0343 | 0.0991 | —0.0221 | 0.0633
wiyso" udo,,d | —0.0397 0 —0.0230 0
uivsot t*udo,,t°d | —0.268 0 —0.180 0

Table 2.11: Same as Table 2.10, except the matrix elements are quoted here at the
scale p = 47 F; assuming the quark model scale of 400 MeV. The units of h. and h,,

in NR quark model and MIT bag model are Cya®/F, and Cy/(R3Fy), respectively.
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invoked to gap it. On the other hand, the bag radius is usually taken to be 1.0 fm,
which will give a considerably smaller h.. In any case, it is reasonable to consider
Ry ~ 1/a and take the non-relativistic quark model result as the representative.

The couplings h. and h,, induced by color-singlet four-quark operators are
listed in Table 2.10 and those by color-octet operators are equal to the above mul-
tiplying by —2/3. In Table 2.10, many four-quark operators yield zero h. and h,,
because we neglect the “sea quark” contribution. By making the four-quark opera-
tors normal ordered in Eq. (2.93) and (2.104), one cannot get any contribution to
h. and h,, from four-quark operators containing strange quarks.

Model calculations do not have explicit QCD scale dependence. To match
the results with QCD matrix elements, we have to assume a model scale and using
perturbative QCD (pQCD) evolution to run them to appropriate perturbative scale,
for which we choose to be p = 47 F;. In this work, we assume the model scale to
be at 400 MeV and Aqcp = 250 MeV and take into account the pQCD effect using
one-loop renormalization group equation to run the operators down to the energy
scale of the model. At this low energy regime the strong coupling is large and the
one-loop pQCD evolution is by no means accurate, but it may still serve as an
estimate of the pQCD effect. The matrix elements at scale p are shown in Table

2.11.
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Figure 2.2: P-odd and CP-odd pion-nucleon coupling generated by the four-quark
operators through parity-odd resonances, where the black dot is the CP-odd, four-

quark operator, N* and A* are the CP-odd excited states.

2.4.2.3 Contribution from odd-parity resonances

The P-odd and CP-odd quark operators can also generate a CP-odd pion-
nucleon interaction through the parity-odd excited resonances which is shown in Fig.
2.2. The P-odd and CP-odd quark operators can generate mixings between nucleons
and parity-odd excited resonances which can be calculated using quark models [53].
Take the operator Oﬁ‘d) = uiysudd and the intermediate state N(1535) as an ex-
ample, using the harmonic oscillator non-relativistic quark model the mass mixing
between neutron and N (1535) resonance can be estimated as § = mqw?/(8v/37%/2),
where m, =~ w ~ 300 MeV are the constituent quark mass and the frequency of
the harmonic oscillator, respectively. The resonance can decay into a nucleon plus
a pion, the partial decay width is about 50 MeV [54]. The effective Lagrangian for

this process can be written as
EN* :gN*NN*’YT—f—h.C. s (2110)

where as an order-of-magnitude estimate we discard the isospin quantum number.
Then, from the partial decay width one can get gy« ~ O(1). The P-odd and CP-odd
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pion-nucleon coupling induced by this mixing can be written as

C49N* J

MN* — My

~ 6 x 107'C,GeV? | (2.111)

hmiw -

where C is the Wilson coefficient of the four-quark operator. Compared with the
direct matching contribution listed in Table 2.10, one can see that h,,;, is about two
orders of magnitude smaller and therefore its contribution to nEDM is negligible.
The contribution from Fig. 2.2 can be seen as a one-loop contribution since
the intermediate resonances may also be described as scattering states of pion and

nucleon. Therefore, this contribution is suppressed by a loop factor.

2.4.3 Tree-Level CP-Odd Mass of Neutron

The nucleon CP-odd observables receive contributions from its CP-odd mass
term m/viysep. In xPT, there are also two sources of CP-odd mass: that induced
by the condensates of meson fields, namely (7°) and (n), and that from the direct

matching contribution of the four-quark operators.

2.4.3.1 Meson Condensates

The relevant terms contributing to the CP-odd mass of neutron can be read

from expanding Eq. (2.48), which gives

s {—dlumu = ma)(2%) + = om -+ ) ) — )]
2 1
a2+ duna () ~ —3<n>>} , (2.112)
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where di, dy and d3 can be related to the discrepancy of the Goldberger-Treiman

relation, and the values dy and d3 have been determined in the literature [55].
dy = —2Bymo(D19 — Fi9) , d3 = —2Bomo(D1g + Fig) , (2.113)
where my is the common octet mass in the chiral limit, and
moFig ~ —0.2, moDyg~ —04. (2.114)

Note that the signs of the Fig and Djg here are different from those in Ref. [55].
Since d; has not been determined from isospin-violation effect, we will set it to be
zero in the following calculation. One should note that disregarding d; leads to some

errors because m(n) might be the same order as mg(n°).

2.4.3.2 Direct Contribution

The leading-order expansion of the tilded hadronic operators listed in Table

2.4 are hermitian. Take Oém as an example. It can be written as

1- _ _ _
O = pirsp + ism + SRivsh + X0 + Hin T + s, (2115)

which gives a CP-odd mass of neutron. To calculate the matching coefficients, we
can see from above that the leading-order expansion is parity-odd, and we need
to calculate a parity-odd quantity. The simplest is As - Ap, where AS is the spin
difference between the initial and final states and Ap’is the momentum difference
between the initial and final states.

In the non-relativistic quark model, take the (6,6) components of @ivsudd, as
an example, to calculate the matrix elements proportional to As- Ap; the relevant
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Operators | m/,/(1073C,B2 GeV) | Operators | m/,/(1073C, B2 GeV)

wiysudd —8.8 ut®iysudt®d 0

dirysduu 5.7 dt®iysdiut®u 0

Uiy5dss —8.8 utiysust®s 0

517Y58UU 3.2 sty sut®u 0

divysd5s 5.7 dtirysdst®s 0

5iyssdd 3.2 5t%y5sdt®d 0

ULY5UUU —7.4 ut®iysuutu 2.0

divysddd 4.7 dt¥iysddt®d -1.3

51775558 2.6 5t%y555t%s 0.7

Table 2.12: CP-odd mass of the neutron induced by meson condensates. Contri-

butions from operators made of tensor currents are neglected due to the large-N¢

suppression.
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Operators | CP-odd mass/(a*C,) |  Operators | CP-odd mass /(a3Cy)
wiysudd 0.0635 wiysot udo,,d —0.127
dirysdiiu —0.127 - —

ULY5uSS 0 w5t uso s 0
5175 S5UU 0 — —
dirysdss 0 Ji’yg,a“”déaw,s 0
5ivyssdd 0 — _

ULY5UUU 0 — _
diysddd —0.127 — —
517Y555S 0 — _

Table 2.13: CP-odd mass of neutron induced directly by color-singlet four-quark
operators. The CP-odd mass induced by color-octet four-quark operators are equal

to the one induced by corresponding color-singlet operators multiplied by —2/3.
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Operators | CP-odd mass/(a3C}) Operators CP-odd mass /(a3Cy)
wiysudd 0.212 Uiyso" udo,,d 0.0280
dirysduu —0.336 uiysot t*udo,,td 0.189

wiystudt®d —0.0314 — —

diystedut®u 0.0799 — —
ULY5UUU 0 uiyst*uutu 0
divsddd —0.249 diysteddt®d 0.0968

Table 2.14: Same as Fig. 2.13. The matrix elements are now evolved to the scale

where p = 47 F.

part of the four-quark operator can be written as

wd(66) L T o ia o L (TR
Oy, 2 {ch (V- (w'au)|(d'd) - +—2mc D (u'w)[V - (d'ad)]

l

~ome [V - (d'Gu)|(uld) : “ome (d'w)[V - (u'&d)] :} (2.116)

where u and d are two-component quark operators, m is the mass of the constituent
quark which is set to be one-third of the nucleon mass. The wave functions of
baryons in the non-relativistic quark model are listed in Eq. (2.92) and Table 2.9.
Then using the same method as described in the last section one can get the CP-
odd mass of the neutron directly induced by the tilded operators, and the results
are listed in Table 2.13. After the leading-order QCD evolution to the scale where

=4 F,, the result is shown in Table 2.14.
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2.4.3.3 Contribution to CP-Odd Meson-Nucleon Coupling

If rotating away the CP-odd nucleon mass through Uy(1) transformation, one
can generate new contributions to the CP-odd meson-nucleon coupling from CP-
even chiral operators. However, this contribution is of higher order in chiral power
counting because all the CP-even meson-nucleon interactions are suppressed in the
chiral limit, whereas the CP-odd coupling we considered in the previous subsections

are not.

2.5 Four-Quark Contribution to nEDM in yPT

In this section, we study the CP-odd four-quark contributions to the neutron
EDM in xyPT. The approach here is completely general and is applicable to any CP-
odd quark-gluon operators. Some results presented can be found in the literature;
however, to our knowledge, this is the most systematic and thorough discussion in
the context of the CP-odd four-quark operators. In the last subsection, we make
a comparison of the four-quark contributions in different approximations of non-
perturbative QCD physics.

In xPT, the leading contributions come from many different sources. Since
the CP-violating pion-nucleon couplings are O(1), the pion loop contribution to
the neutron EDM is O(1), apart from possible enhancement by chiral logarithms.
On the other hand, the direct matching contribution is also O(1), along with the
pion condensate contribution through photo-production amplitudes. Finally, the

CP-odd mass terms contribute through the nucleon magnetic moment after chiral
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rotation. This contribution is again O(1) in chiral power counting. We will consider
all these leading contributions in the following subsections. We ignore the subleading

contribution in this work.

2.5.1 Direct Matching from Quark Model

We have first considered the direct matching contribution from the four-quark
operators to the neutron EDM in Sec. IV. When any CP-odd quark-gluon operator
is matched in yPT, there appear many tree-level neutron EDM-like operators in the
chiral Lagrangian [8]. We do not have much to say about the size of the Wilson
coefficients other than they are O(1) in chiral power counting. Since they also serve
as the counter terms for ultraviolet-divergent chiral-loop calculations, they depend
on the regularization scheme and subtraction scale. In this work, we choose to
estimate this contribution using nucleon models with dipole excitations into odd-

parity resonances, such as Siq, following the work in [53].

Figure 2.3: Direct calculation of the neutron EDM in quark models. The neutron
makes a transition to a CP-odd excited state and goes back via electromagnetic
interaction, where the black dot is the CP-odd, four-quark operator, N* and A* are

the CP-odd excited states.

We use the non-relativistic quark model with harmonic oscillator potentials to
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estimate the contribution from the first CP-odd excited states, which is shown in

Fig. 2.3. The wave functions of the lowest CP-odd excited states can be written as

P.-R o
INT) = Nle“bc/d3r1d3r2d3r3exp (Z\/g —%(p2+)\2)>

{(Ax + A [ (r)d (r2)d{ (rs) = uf (r)d] (r2)d] (r5)]]0)

Al () (r2) ! () = T (r) ()T (r)]10) }
be 3, 13, 13 iP-R o 2 2

|AY) = Nape® /d rid’rod rgexp< v 7(p + A ))

{ O+ R G0 () () + ) )0 r)0)

—Az[Quﬁf(rl)dﬁ(rz)df(rg)+df(rl)dﬁ*(m)uf(m)]\o>} . (2117)

In the above formulas A, A\, and A, are the z, y and 2z components of A, respectively.
N; and N; are normalization factors of the states with N = 21204 /(3%/473/2) | N, =
al/(21/239/473/2)

The results are shown in Table 2.15, which agree with the results extracted
from Ref. [53]. We also need to take into account the evolution of the operators
between 47 F, and the energy scale of the quark model. The results are shown in

Table 2.16 with a@ = 0.41 GeV.

2.5.2 Meson Condensate Contribution through Photo-Pion Produc-
tion

In photon-pion production, there are CP-even electric-dipole couplings be-
tween the baryon-octet and electromagnetic fields through using f1” [8]. Some of

these couplings can generate the neutron EDM if they violate the chiral symmetry
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Operators nEDM/(eaC}y) Operators nEDM/(eaCy)
wivysudd — m wiystudt®d m
divysduu — m diystedut®u 9#%
m'%au”chaw,d m ﬂi%a"”tauciaw,t“d _&r%
ULYsuuU 0 wiystuutu 0
divysddd 0 diyst*ddt®d 0
Table 2.15: nEDM contributed from first excited CP-odd states in the non-

relativistic quark model, where C} is the Wilson coefficients of the quark models,
« is defined below Eq. (2.91). The unit of nEDM used here is e-GeV ™!, which is
different from the traditional one e-cm due to that the Wilson coefficients of the

The

four-quark operators are unknown which are always in the unit of GeV 2.

translation between the two units is e - GeV ™! ~ 2 x 10~ ¢e-cm.

Operators nEDM/(103eC,GeV) Operators nEDM/(10%eC,GeV)
wiysudd —37.6 wiyst®udt®d 3.80
divysduu —62.6 diystedut®u 8.87
ﬂi’yg)a“”uc%w,d 77.5 m%a“l’t“uczawt“d —103
ULY5UUU 0 wiyst uutu 0
divysddd 0 diyst*ddt®d 0

Table 2.16: Same as Table XIII, except the renormalization scale is now at 4w F.
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through the quark masses and at the same time the meson fields acquire vacuum
condensates through the CP-odd four-quark operators. In more physical language,
the contact terms for the pion-photoproduction processes give rise to the neutron

EDM through the diagram in Fig. 2.4. Although the electromagnetic field also

Figure 2.4: Pion-photoproduction diagram with the pion field annihilated by the

four-quark operator into the vacuum, where the cross is a four-quark operator.

violates chiral symmetry, it cannot generate an EDM through meson condensates
by itself—a quark mass factor is essential.

The terms of interest are made of linear products of baryon fields B and B,

X and f, [8],
1 = v 5 v
E% = 622 (61 Tx[Boys{x—, [} B] + 62 Tx[Bovs f1 Bl Tr[x -] + ...]

(2.118)
where we have shown two of the ten possible terms. It is difficult, however, to extract
the Wilson coefficients 9; directly from experimental data. Some of the coefficients
have been estimated by calculating the contribution from the excited baryon states
in the context of the two-flavor scenario [56]. In the two-flavor scenario, neglecting
the isospin violation generated by the difference between the up and down quark

masses, the terms relevant to nEDM can be written as

L2 — Nysow[(af — af) f27 + al Te(f27)x- N, (2.119)
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Operators | d.,/(107%eCyB2 GeV ™) | Operators | d,,/(107%eCy,B2 GeV ™)

wiysudd 10.6 utiysudt®d 0

divysdiiu —10.5 dtirysdut®u 0

uiy5dss 10.6 utiysustts 0

S1Y5SUU —0.12 sty sut®u 0

divysdss —10.5 dtiry;dst®s 0

5iyssdd —0.12 5%y sdtd 0

ULYsuUU 8.87 ut“iysuuttu —2.37

divsddd —8.77 dt®iysddt®d 2.34

5175558 —0.10 5t%1y555t%s 0.03

Table 2.17: nEDM induced by meson condensates through pion-photoproduction.

Contribution from operators constructed by tensor operators are neglected due to

the large-No suppression.
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p
where N = , and in the two-flavor case, f1" = e(£1QE + £QET)F*, in which
n

Q = (1+ 7%)/2. Expanding f and x_, we can get the nEDM induced by the

condensate of 7;

~ 8ea Bo(my, + ma)(r")
Fr

dpy = (2.120)

From Ref. [56], one can get the contribution to a; from A and p internal states,
which is
a; = —0.156GeV 2 . (2.121)

Using this, one can estimate the nEDM induced by the pion condensate, as shown

in Table 2.17.

2.5.3 (CP-0Odd Baryon Mass Contribution

The CP-odd baryon-mass terms considered in the previous section generate
a CP-odd part of the baryon wave function. This part can transform a magnetic

moment term into an EDM contribution. The physics of this is shown in Fig. 2.5.

(@ (b)

Figure 2.5: The CP-odd mass of neutron turns the tree level magnetic moment into
an EDM. The cross is the tree level magnetic moment, the gray dot is the CP-odd

mass of the neutron and the black dot is the CP-odd pion-nucleon coupling.
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The mass terms of the neutron can be written as
Linass = —MypIin — m, fiiysn . (2.122)

Note that the neutron field n here is already redefined using the transformation in
Eq. (2.44) after taking into account the meson condensate effect as discussed in the

previous section. Redefining the neutron field again through a chiral rotation,

/

. m, /
n exp( Z2m )7571 s ( )

n

the mass term becomes the standard one,
Loinass = —mpn'n’ . (2.124)

On the other hand, the tree level anomalous magnetic moment of the neutron can
be written as

Emag.mom. = ___no-wjnF,uz/ . (2125)

The redefinition in Eq. (2.123) generates a neutron EDM,

/

dEDM = Lo 2.126
CP—oddmass 2m% ( )

The experimental values of the anomalous magnetic dipole moments of the nucleons
are Kk, = 1.7928, Kk, = —1.9131. The numerical values of this contribution have
been shown in Tables 2.18 and 2.19. For the tensor operator ﬂi'yg,a“”uczaw,d, the
contribution from the CP-odd mass of the nucleon is particularly large. The CP-odd
mass also gets a quantum correction shown in diagram (b) of Fig. 2.5. It is easy
to see that this term does not have any chiral enhancement and is of a higher-order
effect.
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2.5.4 Leading Chiral Loop Contribution

The contribution we have considered so far has a smooth chiral limit, i.e.,
regular as the quark masses go to zero. The leading contribution in the chiral limit,
however, involves the pion loop with an infrared divergence. This contribution
was first calculated by Crewther et al [7], and has been studied thoroughly in the
literature (see Fig. 2.6). Diagrams (a) and (b) in Fig. 2.6 contain an infrared
divergence which is regularized by the mass of pion and an analytical part. The
constant part is canceled by diagrams (c) and (d). Diagrams (e) and (f) cancel

with each other [8]. Therefore, up to terms of order (m,/m,), the neutron EDM

2 2

n n n )4 n
(a) (b)

n p p n n P P n
(c) (d)

n p n n P n
(e) )

Figure 2.6: Charged-pion loop contribution to neutron EDM (without the anoma-

lous magnetic moment), where the black dots represent the CP-odd vertices.

generated by the charged pion loop can be written as [§]

n ev/2 2/ 2
ot = —MhC(D + F) h’l (mﬂ/mn) ; (2127)

where D + F' = —g4 = —1.26 is the CP-even pion-nucleon coupling (the signs of D
and F is different from that in Ref. [23] because we are using a different definition of
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Figure 2.7: Contribution from the tree level anomalous magnetic moments of proton
and neutron, where the crosses are anomalous magnetic moments of nucleons and

the dots are CP-odd vertices.

the chiral transformation of U), and h,. is the CP-odd pion-nucleon coupling defined
in Eq. (2.86). Note that, in Fig. 2.6, the contribution from the proton’s anomalous
magnetic moment has not been included. To include this contribution, we consider
all these diagrams in Fig. 2.7 where the neutral pion loop is also present, and the

result is Ref. [20].

’ ¢ D+F m2
dﬂ'OJrli = W Fﬂ_ <—\/§hcffp + hn:‘in> Fn <W> s (2128)

where k,, and k, are tree-level anomalous magnetic moments of protons and neu-

trons, respectively, and

3 3s — s s(bs — %) — 4s s —s%/4
Ins+ arctan ————. 2.129
2 2 2¢/s — s2/4 s/2 ( )

We can see that there is no chiral enhancement in F,(s).

Using the above, we estimate the pion-loop and the CP-odd mass contributions
to neutron EDM due to the P-odd and CP-odd four-quark operators. The results are
listed in Tables 2.18 and 2.19. Although the charged pion-loop (Fig. 2.6) dominates
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nEDM from different contributions / (107 3eCy GeV)
meson 7-N coupling 7-N coupling, CP-odd CP-odd
contact photo- direct (7%, (n) mass mass

operators term production | Fig. 2.6 | Fig. 2.7 | Fig. 2.6 | Fig. 2.7 direct (79, (n) total
wiysudd | —37.6 52.9 —30.9 71.3 27.2 202.1 15.8 —47.6 253.2
audivsd | —62.6 —52.3 —30.9 —37.3 —30.2 | —2023 | —25.1 30.6 —410.2
UiysuSSs 0 52.9 0 0 27.2 202.1 0 —47.6 234.6
Uusivyss 0 —0.6 0 0 2.8 —-0.7 0 17.1 18.5
divsdss 0 —52.3 0 0 —30.2 | —202.3 0 30.6 —254.3
ddsivss 0 —0.6 0 0 2.8 —0.7 0 17.1 18.5
UY5UTY 0 44.1 —30.9 17.0 22.7 168.9 0 —39.7 182.1
diysddd 0 —43.6 —30.9 —20.0 —25.1 —168.5 —18.6 25.5 —281.2
5iv555s 0 —0.5 0 0 2.4 —0.6 0 14.2 15.5

O%a 0 0 13.9 77 0 0 2.1 0 85.8

(8 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0

Table 2.18: nEDM from the P-odd and CP-odd four-quark operators composed
of color-singlet currents. Different contributions are shown. In the table, O, =

uivsotudo,,d, O, = wivso"uso,,s, Ok, = divso"”dso,,s.
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nEDM from different contributions / (10~ 3eCy GeV)

meson 7-N coupling 7-N coupling, CP-odd CP-odd
contact photo- direct (7%, (n) mass mass

operators term production | Fig. 2.6 | Fig. 2.7 | Fig. 2.6 | Fig. 2.7 direct (79, (n) total
TirystTudt®d 3.8 0 12.0 ~17.6 0 0 —2.34 0 —4.2
at®udiyst®d 8.9 0 12.0 4.42 0 0 6.0 0 31.2

uiystiust®s 0 0 0 0 0 0 0 0 0

ut®usiyst®s 0 0 0 0 0 0 0 0 0

diyst®dst®s 0 0 0 0 0 0 0 0 0

dt@dsiryst®s 0 0 0 0 0 0 0 0 0
uiyst*uut®u 0 —11.8 12.0 —6.6 —6.1 —45.0 0 10.6 —46.8
diyst®ddt®d 0 11.6 12.0 7.8 6.7 44.8 7.2 —6.8 83.4
Siy5t*s5t%s 0 0.1 0 0 —0.6 0.2 0 -3.8 —4.1
Ogd ~103.1 0 93.8 —51.6 0 0 14.1 0 —46.9

oLs 0 0 0 0 0 0 0 0 0

O3y 0 0 0 0 0 0 0 0 0

Table 2.19: Neutron EDM generated by P-odd and CP-odd four-quark operators

composed of color-octet currents. The labels have the same meaning as in Table 2.18.

Or¢ = wirsot*uso,,t%s, OL¢ = iysot*uso,,t"s, O = divso"t*dso,,t%s.
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in the chiral limit, its numerical value is actually about an order of magnitude
smaller than the analytical chiral-loop contribution (Fig. 2.7). This is due to the
enhancement of h,, relative to h. in the large N, limit.

The P-odd and CP-odd four-quark operators can also lead to nonvanishing
P-odd and CP-odd interaction like n — K and n — An. These interactions can
generate nEDM through kaon- or eta-loop diagrams. However, there is no reason to
believe that the kaon- or eta-loop contribution should be more important than the
pion-loop contribution so that it would not change the order-of-magnitude estimate
of nEDM generated by those four-quark operators without the strange quark. For
those operators containing strange quark the estimation may not be reliable and the

kaon- or eta-loop contributions should be included.

2.5.5 Comparison with Other Calculations and the Error-bars of this
Calculation

The P-odd and CP-odd four-quark contributions to neutron EDM have been
studied using different approximation methods in the literature [18, 19, 20]. The
problem is that it is difficult to get an estimate on the errors in any of these methods.
This is the strong motivation for the alternative study presented here. By using a
completely different approach, we hope to get a better idea how well one actually
estimates these hadronic matrix elements.

In Ref. [18], the authors used the external field method, factorization and

QCD sum rules to make a direct calculation of the neutron EDM. Their result is
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supposed to be the total contribution, although it is unclear how the chiral physics
would be included in this approach. Their numbers are listed in Tables 2.20 and
2.21 as “factorization and QCD sum rule.” The result is, in general, comparable to
the charged pion-loop contribution, although the contribution to the tensor operator
is particularly large.

In Ref. [19], the authors also calculated the contributions of the pion-loop
as we do in this paper. They used entirely the factorization method to calculate
the CP-odd pion-nucleon couplings, including the effects that the CP-odd operators
can annihilate the neutral pion in the vacuum. Taking the operator @ivsudd as an

example, their factorization works like this:

(nm°lwivsuddin) = (n|dd|n)(°|wivsu|0)

™

_ , 1 - B
{000 ({nrfuinsuln) — o el (i) ) |

(2.130)

where Loeop is the usual QCD Lagrangian. The terms inside the bracket on the
second line of the above formula cancel each other. The reason is that wivsu is just
a CP-odd mass of the up-quark which can be rotated away through chiral trans-
formation, except for a possible U4 (1) contribution. Thus these two contributions
should cancel with each other exactly. This is first noticed in Ref. [57] in the spirit
of the Feinberg-Weinberg-Kabir theorem [58]. Using this method, one can get the
CP-odd vertices, h. and h,, as shown in Tables 2.7 and 2.8. For the charged coupling
h., one needs to do a Fierz transformation, from which one can get a suppression
factor of 1/12, where 1/3 is from the color factor and the other 1/4 is from the spin.
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Therefore, h. is one order of magnitude smaller than h,,. The corresponding nEDM
calculated using this method is included in Tables 2.20 and 2.21 as well.

From Tables 2.20 and 2.21, taking the operator @#iysudd as an example, one
can see that the magnitude of our result is comparable with what obtained using
naive factorization method but with a different sign; also the our result is about one
order of magnitude larger than the result estimated using QCD sum rules. In our
calculation, we separate the contribution into the meson condensate contribution
and the direct matching contribution. The vacuum saturation method is used to
calculate the meson condensate contribution to h. and h,,. This vacuum saturation
method using to calculate the meson matrix elements is accurate in the large-Ng
limit, which means the calculation for this contribution is accurate up to 1/N¢ [42].
From Table 2.18, one can see that the meson condensate contributions dominate over
the direct matching contributions. Therefore, for operators generating unsuppressed
meson condensates (see Sec IV for detailed discussions), a conservative uncertainty
can be set to be a factor of two.

In Ref. [19], the authors also used the vacuum saturation approach to get
the factorization result as shown in Eq. (2.130). However, in the case of baryon
matrix element, the non-factorized contribution is not suppressed in the large-Ng
limit [42], therefore the missed non-factorized contribution should be of the same
order as the factorized contribution shown in Eq. (2.130). The calculation using
QCD sum rules in Ref. [18] did not include the meson condensate contribution,
therefore, their calculation might miss an important contribution.

The factor of two uncertainty can also be seen from the Feinberg-Weinberg-
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Our Naive Factorization &
Operators results | factorization | QCD sum rules
wivysudd 253 —248 17.5
dirysdiiu —410 177 —17.5
Utysdss 235 —85.8 —
5175 SUU 18.5 0 —
divysd5s —254 85.8 -
5ivssdd 18.5 0 —
ULY5UUU 182 —154 —17.7
divysddd —281 203 15.2
517Y555S 15.5 0 —
Uivso" udo,,d | 85.8 —79.4 —127.5
uiyso" ' uso s 0 0 —
divysot d50,,s 0 0 —

Table 2.20: Comparison of different methods, nEDM calculated by factorization
in Ref. [19, 20] are shown as “naive factorization”. The column on the right side
shows nEDM calculated using factorization and QCD sum rules [18]. The unit of

the numbers is 1073eC,GeV.
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Our Naive Factorization &
Operators results | factorization | QCD sum rules
ut%iysudt®d —4.2 —8.88 —3.18
dtirysdut®u 31.3 —8.88 3.18
utiysustts 0 0 —
st%iyssut®u 0 0 —
dtirysdst®s 0 0 —
5%y sdtd 0 0 —
ut®iysuutu —46.8 39.5 —23.5
dt®iysddt®d 83.4 —51.1 9.3
5t%y555t%s —4.12 0 —
Ut iysot udt®o,,d | —46.9 —106 14.3
utiys0"usto,, s 0 0 —
dt%iryso dsteo,, s 0 0 —

Table 2.21: Comparison of different methods, nEDM calculated by factorization
in Ref. [19, 20] are shown as “naive factorization”. The column on the right side
shows nEDM calculated using factorization and QCD sum rules [18]. The unit of

the numbers is 1073eC,GeV.
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Kabir theorem [58]. Applying to this context, the theorem dictates that CP-odd
(3,3) two-quark operators give no contribution to CP-odd processes. A brief dis-
cussion of this theorem can be found in Appendix D. However, since we are using a
hybrid method, this theorem may not be satisfied. Therefore, the amount of viola-
tion of this theorem can be seen as an estimate of the error of this calculation. Take
the operator @wivsu— divysd as an example, following the prescription in Secs. III and
IV, one can get meson-condensate contribution to the neutral CP-odd pion-nucleon

coupling which can be written as

203(2C1 + Cg) _ 1003
F, TR

mec __
hy'¢ =

(2.131)

where m,, = my = m is assumed for the sake of simplicity, C'5 is the Wilson coefficient
of the two-quark operator and the definitions of ¢; and ¢3 can be found in Eq. (2.84).
If the o-term is also employed to do the direct matching, one can easily show that
the direct matching contribution cancels the meson condensate contribution exactly.
Instead, in order to get the uncertainty of our calculation we need to do the direct
matching using the quark model. Since the operator includes only products of two

quark fields, the calculation using the quark model is straightforward, which gives

; 3C3  5C
dir _ p°2Y3 ~ 3
hy" =R F B

(2.132)

where the factor of 3 is due to that in the quark model the nucleon contains three
constituent quarks. R ~ 1.7 comes from the perturbative QCD effect as discussed
in Sec. V. The anomalous dimensions of the operator discussing here is as the same
as the anomalous dimensions of the quark mass. The relative sign between the
direct contribution and the meson condensate contribution is as desired. However,
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the magnitude of the direct contribution is about two times smaller than the meson
condensate contribution. The mismatch between the two contributions is due to that
quark model does not differentiate (N|gg|N) and (N|q'q|N). From this mismatch
one can see that the inaccuracy of the direct contribution calculated using quark
model might be a factor of two. Therefore, conservatively, the total inaccuracy for
those operators having unsuppressed vacuum condensate contributions can be seen

as a factor of two.

2.6  Summary

In this chapter, we studied the four-quark contributions to the neutron EDM,
which dominate over other QCD operators in some new physics models. Our ap-
proach was based on chiral expansion and simple quark models. It is well known in
the literature that the leading chiral contribution comes from one-pion loop which
dominates in the chiral limit m, — 0, just like in the case of the nucleon electric
polarizability. Therefore, one needs to calculate the four-quark contribution to the
CP-odd pion nucleon couplings. We studied these couplings in simple quark mod-
els, as an alternate to large-N.. factorization. We also considered O(1) contribution
from direct matching and pion-condensation to the dipole moment, as well as the
CP-odd nucleon mass contribution through the magnetic moment. The resulting
nEDM can be compared with those from the naive factorization and QCD sum
rules. The comparison provides us some idea on the hadronic physics uncertainty in

the neutron EDM calculation. Our approach also provides a formalism for lattice
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QCD calculations of the nucleon matrix elements of the four-quark operators.

Using the matrix elements thus obtained, we obtain new-physics-independent
upper bounds on the Wilson coefficients of four-quark operators from the experi-
mental data. The current experimental upper bound on neutron EDM is 2.9 x 10~26¢
cm [33]. If we assume that there is no significant cancelations among the contribu-
tions from these operators, we can use the experiment limit to give upper bounds
to the Wilson coefficients of individual operators. In our calculation, the strange
quark effects were ignored, and we considered only operators composed of up and
down quarks. The final results are shown in Table 1.2.

It is interesting to note that the chiral-enhanced contribution is actually large-
N, suppressed. In fact, the non-singular part of the chiral-loop contribution nu-
merically dominates over the singular one. This suggests a large- N, analysis of the
neutron EDM, including the delta resonance contribution. However, this might be

discussed in future works.
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Chapter 3

Systematic Calculation of Neutron EDM in Minimal LRSM

3.1 General CP-Violating Effective Lagrangian

In this section, we lay out a general approach to calculating the nEDM using
the effective Lagrangian method, independent of new physics. In this approach, one
integrates out all heavy particles including SM gauge bosons and heavy-quarks. The
resulting flavor neutral CP-violating effective Lagrangian has an expansion in terms
of operators consisting of light-quark fields, u, d, and s and the gluon field G*,
with increasing dimensions, the general P-odd and CP-odd Lagrangian is given in
Eq. (2.6), and the operators contained in it are listed in Eqgs. (2.8), (2.9), (2.10),
(2.11) and (2.12).

As discussed in Chapter 2. To calculate nEDM systematically we need to crank
down the energy scale to the hadronic scale. Therefore, the anomalous dimensions
of the operators are needed.

At dimension-five level, the one-loop evolution equations are [31]

P00 = - (; - bEf) 05w, 3
uZd%gOf (1) = _%laigru) 07 (1) , (3.2)

where by = 11 — 2ny/3, ny is the number of quark flavors. It is easy to see that
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the dependence of the evolution of the quark CDM on ny is the same as that of the
strong coupling, since they are both derived from wave function renormalization of
the gluon field.

For dimension-six operators, the leading-order QCD evolution equations for
dimension-six operator are listed in Eq. 2.21 in Chapter 2. The anomalous dimension
of the Weinberg, 7,4, has been calculated in the literature [30], v,y = —Ca/2 — ny,
where C'y = 3. The dimension-six operators mix with the dimension-five operators
when scale evolves, however at the energy scale where only the light quarks exist,
the mixing can be neglected because the dimension-five quark EDM and CDM are
chirality flipping and thus proportional to the quark mass. At higher energies, the
mixing is important and we will discuss it in the following sections.

There is no mixing between the Weinberg operator and the four-quark opera-
tors listed in Eqgs. (2.10) and (2.11). To see this, we can decompose the four-quark
operators into irreducible representations of the SU(3); x SU(3)g chiral group and
only (3,3), (6,6), (8,8) and their conjugate representations are found as discussed
in Chapter 2. On the other hand, the three-gluon operator is a chiral singlet. QCD
evolution maintains the chiral structure of operators.

When scale changes, the pure quark-gluon CP-odd operators generate pertur-

bative contributions to quark EDM through the following T-product

/d4az T ( x)jh (x Z 0;(0 > , (3.3)

where the summation neglects the quark EDM operator itself. The contributions

are divergent so they induce additional running of the CP-odd operators. The
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contributions from the dimension-six operators are proportional to the mass of light
quarks and can be neglected. The only large contribution is from the quark CDM

operator, whose running has an effective inhomogenous term, [31]

d ag(p) 2 b 16 e
e (R AVZA (N (Rat A e O 12
W0 =0 ( (3 2)oq 3o (M)quq) , (3.4)

where (), is the electric charge of the quarks and gg is the coupling of strong interac-
tion. Inversely, the quark EDM operators can also generate quark CDM operators
through the electromagnetic interaction which is, however, proportional to the elec-
tromagnetic fine-structure constant.

Therefore, omitting the #-contribution, one can define the following electric

dipole form factor

i / d'z T |eA, ()", (z (ch mn

+ZC )04:(0; 1) 4 Cyp )09(0;u)>

7(q)N (ky)) (3.5)

where ¢* = kb — ki and U, is the wavefunction of neutron and €” is the polarization
of the incoming photon. The static nEDM is just the zero-momentum limit of the

form factor d¥ = F£(0).

3.2 Wilson Coefficients in LRSM

Following the previous section, we make calculation of nEDM in the mLRSM
by first evaluating the Wilson coefficients of the effective quark-gluon operators at
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the electroweak scale, and subsequently running them to hadronic scale. The detail
of the model can be found in Ref. [3], in which the spontaneous CP-violation is
controlled by a phase angle « in the Higgs sector, and additional parameters of the
model include, among others, the masses of the right-handed gauge boson and the
new Higgs bosons. In the following subsections, we study the Wilson coefficients
of various CP-violating operators separately. We will ignore the contribution of
the f-term as it will usually generate a much too large nEDM: We assume certain

mechanisms such as Peccei-Quinn symmetry [35] is in operation to suppress it.

3.2.1 CP-0dd Four-Quark Operators

To leading order, diagrams in Fig. 3.1 generate the CP-odd four-quark opera-
tors induced by the exchange of gauge bosons and Higgs bosons. The operators are

listed in Eq. (2.10) and (2.11). The corresponding Wilson coefficients can be easily
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read through the diagrams,

V8Gr V8Gr

Cilf = 6 sin 2<Im(6_iavgbvﬁb*) + M—le(caanb)
Hop
8G .
+—§4§j (m2 —my)& Im(e™ " *VEPVR™) |
2
C?g = - V8Gr sin QCIm(e_iaVL’le}%b*) + \/ng Im(C’aanb)
6 M3,
8G A
2 = (mg — my)¢ Tm(e VEPVE)

6M7,
C% = /8Gpsin 2¢Im(e VPV
\/ng 2

P V8O (12 e (e vtV
M2,
ce = —\/gGFsiHQCIm(e’mVL“bVI%b*)
8G .

FYSOE (2 e (e vt (3.6
a \/ng —tay o abx
C:sb = GME (mi—mg)f Im(e VL5VR5>>

Hy
a \/gG —tay o abx
C4b = MQF(mi_mg)g Im(e VLﬁvR/B )
H»>
aa’ 2\/§G aa va'a’*
Cii = Sn Elm(coec” @™y |
Ho
aa’ 2\/§G aa va'a’*
Cl’ = —= g Im(CmC)
Hy
/ 2 I
Cﬁ) = ﬁfplm(DaaDaa*) 7
Hy
’ 2\/§G aa ~a'a
o= - v Elm(De Dy | (3.7)
Hy

where a,a’ € u,c,t, a # o and b,V € d,s,b, b #V, C = VLMDVA — 2¢et My,
D = VLT]\Z[UVR — 256‘“‘]\%7, My, is the mass of the flavor changing neutral Higgs
(FCNH) and My, is the mass of H; which is a charged Higgs in mLRSM [3]. My
and Mp are diagonalized quark mass matrices. ( is the mixing angle between the
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lefthanded and righthanded W-bosons that

) dmy, ( My 2
2 ~ —p (21 .
sin 26 " my (Mg) ’ (3:8)

where r = (my;/m;)€ and £ is the ratio between the two vevs of the Higgs bidoublet in
mLRSM [3]. The contributions due to the Higgs exchanges are always proportional
to quark masses. Since we are only interested in operators with at least two of
the quarks being light, the Wilson coefficients are always proportional to at least
one light quark mass, or they are proportional to heavy quark masses but must be
suppressed by the non-diagonal CKM matrix elements. Furthermore, the mass of
FCNH is strongly constrained to very large value by the mass differences and the
CP-violating decay properties of the neutral K-bosons and B-bosons [3, 59], and
detailed calculation shows H; is as heavy as FCNH. If we are interested in the case
of a few TeV right-handed W-boson mass, we can safely neglect the Higgs exchange
contributions. Then at the electroweak scale the Wilson coefficients of the CP-odd

four-quark operators can be simplified to

Cff = —C’fg = \/§6GF sin 2 Im(e‘io‘VL“bVﬁb*) ,

O = —(O% = /8Gpsin2¢ Im(e VPV . (3.9)

We will take this simple limit in the following discussion.

3.2.2 Quark EDM and CDM Operators

The one-loop contributions to the quark EDM from the gauge interactions

are shown in Fig. 3.2, where the internal wavy lines represent the light charged
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gauge-boson Wi which is dominated by W, but has a small admixture of Wg. The
dashed lines represent the charged-Goldstone boson present in Feynman gauge, and
the external wavy line is the static electric field or photon. Diagrams a) and b) have
the photon interacting with the quarks directly, and these from c¢) to f) have the
photon interacting with charged bosons. For the quark CDM case we have the first
two diagrams only with the external wavy line representing a gluon.

These diagrams have been calculated in the literature long ago [12], our result
is somewhat different from theirs in the infrared part. The CP-odd part of the
diagrams in Fig. 3.2 can be expressed in terms of the coefficients of the EDM and

CDM operators. For the up quark, we have dZOF + d¢0¢ with,

1

df = 1672 Z mdie\/gGFSin2CIm(e—iaV£i }%z*)
m
i=d,s,b
1 4 1 ) ;
X (1—r)3 (g — 4r; + 317 — 57’? + énlnm - érflnn) ,
dg = 1672 Z mdz‘gs\/éGFsin%Im(eﬂath 1%1*>
m
i=d,s,b
1 3 1 3

And for the down quark, the contribution is dYO¥ + d§0§ with

dj = 1617T2 i;tmme@GF sin 2¢Tm(e "V V™)
X ﬁ (g — %7’1’ + 37“;2 — 15—27’;3 +rilnr, — grf In ré) ,
dy = - 1617r2 i:zu;tmuigs\/gGF sin 2¢Tm(e "V V™)
X ﬁ (1 — Zr; — 37“;3 - grg In ri) : (3.11)

It is easy to see that this mixing angle is suppressed by the mass ratio of bottom
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and top quarks and by the ratio of the left and right handed WW-boson masses. m,;
are the masses of up-type intermediate quarks, r; = m2, /M2, vl = m?2, /M3, Vr
and Vg are the left and right-handed CKM mixing matrices, respetively, « is the
spontaneous CP phase mentioned earlier.

In mLRSM, H; also gives contribution to the quark EDM and CDM. The

relevant diagrams are shown in Fig. 3.3, and the result is

1 2ma<mz - m?z) —ia a ax*
i = = D, 5aV8Gr—"35 ¢ Im(e"V1VAe)
ac{d,s,b} Hy
[ 3—drj+ri+2nr; 1477 —2r;Inry
d —e ;
A—1+1,) 2(—1+1,)°
Js 2mgy(m? — m?) i rlas a3 — 4+ 12 4+ 21n7;
dC _ Z \/ng u a Im(e iay/lays a*) J
u 2 2 L R . \3 )
ac{d,sb} MH2 2( 1+ TJ)
(3.12)
1 Qma(mz — m2) —iaysa alx
di = = Y pmV8Gr— e (e VIV
ac{u,c,t} Hy
3—47‘3—1—7’;2—%21117“; —1+7“;»2—27“§-1nr;
T prA R T g e
Js 2m,(m? — m2) i rateate 3 — A+ 4+ 21n 7,
dC — 8G a I iaysa Va * J J J
d Z 1671'2 \/_ F MIQ_I 5 m(e L YR ) 2(_1 + T‘/-)?’ )
ac{u,ct} 2 J
(3.13)
in which
M3, M?.
r; Dy Uj (3.14)

M T M
Therefore, if the right-handed W-boson has a moderate mass, say, a few TeV, the

contribution from H; to the quark EDM and CDM can be neglected in comparison

to that from the right-handed gauge boson.
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Actually, there are both long-distance and short-distance contributions from
the one-loop diagrams in Fig. 3.2 and Fig. 3.3. The short-distance contributions
come from the integration region where the internal momentum is around My ; and
the long-distance one from the loop momentum around the internal light quark
masses. Due to asymptotic freedom of the strong interaction, the short-distance
contributions can be calculated accurately using perturbation theory. The long-
distance contributions, however, suffer from non-perturbative QCD effects, and the
only known way to calculate it correctly is by Lattice QCD. In the matching cal-
culation, the long distance contribution has to be subtracted to obtain the Wilson
coefficients, which is shown in Fig. 3.4. This contribution can be calculated using a
certain UV regulator, such as dimensional regulation or momentum cut-off or lattice
regularization. Any regularization preserving a certain Fierz identity will give a zero
answer as the loop integral involves only the photon or gluon external momentum.
Other regularizations, such as naive dimensional regularization, will find a finite
contribution. One must be careful though that the vanishing of long-distance con-
tribution is only true at one-loop level: as soon as the QCD corrections are taken
into account, the result becomes non-zero. Therefore, to the leading order, we can
directly read off the Wilson coefficients of quark EDM and CDM operators from

Egs.(3.10), (3.11), and (3.12).
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3.2.3 Weinberg Operator

In mLRSM, the Weinberg operator can be induced from diagrams in Fig. 3.5.
Since the result is proportional to the quark masses, the leading contribution comes
from the third generation of the quarks running in the loop. These are two-loop
diagrams, the Weinberg operator comes out after one integrates out the internal
quarks and bosons entirely. If one follows the effective theory approach, in which
the top quark and the W-boson are first integrated out, the CDM operator of the
bottom quark emerges and one can get its wilson coefficient from Eq. (3.11).

Then from Fig. 3.6, one gets the major contribution to the Weinberg three
gluon vertex. Because this diagram would diverge quadratically in the infrared if the
mass of the bottom quark was zero, this diagram should be proportional to 1/mj.
However, chirality flipping is needed or otherwise the fermion loop will vanish, so the
numerator of the diagram must be proportional to m;. Combining the two effects
together, this diagram is proportional to d§ /my, where dS is the bottom quark CDM
which is proportional to m;. Therefore this diagram has an enhancement of a factor
of my/my, about 40, which was first found in Ref. [60]. Detailed calculation gives
the Wilson coefficient

_ galmy) dy (1)

Cylm) = = — pant (3.15)

This contribution is seemingly large, however, it is suppressed by a numerical factor,
1/(1 —m2/M})? ~ —0.02 in Eq. (3.11). Therefore, the effect of the enhancement
is totally canceled. Furthermore, the evolution also makes the contribution of this

operator to be smaller at the low energy region [30]. Therefore, we safely neglect its
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contribution to nEDM in the following calculations.

3.2.4 Wilson Coefficients at Hadronic Scale Through Leading-Order

QCD Evolution

The coefficient functions above, and hence the quark-gluon operators, are cal-
culated at the high-energy electroweak scale, which is not yet useful for practical
calculations. We are going to remedy this by running down the scale in the composite
operator by including the leading logarithmic pQCD corrections. When we change
the scale, dimension-six operators will mix with each other and generate dimension-
five operators, and dimension-five operators will also mix with each other. The
Wilson coefficients for CP-odd four-quark operators are shown to the leading order
approximation in Eq. (3.9). From Eq. (2.21) the renormalization group equations
(RGE) keep this relation, and other CP-odd four-quark operators are not generated

by the running. Then one can redefine the operators
op = o -0,
03 = 0% - 03 . (3.16)

with the Wilson coefficients C%® = C% and C$® = C$P, respectively. Therefore, the

RGEs of the Wilson coefficients of the dimension-six operators can be written as

d a, Qs a
e = s o)
d as(p)
2_ 2 vab — ab

which shows that C] grows as the scale goes down, whereas Cy does the opposite.
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The RGE of the quark CDM operators are a little bit complicated. For d
quark and s quark CDM operators, as we discussed before, the ¢ quark internal line
gives a large contribution. Therefore, the RGEs of d and s quark CDM operators

can be written as [31]

gt = G (050 -
)

LB gy + g2 = 8)dS. () (315

The Wilson coefficient of the up quark CDM operator is one order of magnitude
smaller than that of the of d quark due to that ms/m. ~ 1/10. In the above
formula, 731 = 5/2, 30 = —1, 733 = —14/3, and 6 = —4 is the anomalous dimension
of the quark mass. Detailed calculation gives, at m,., the relevant Wilson coefficients

are
M m,) = 3.0CM (M)
Cy ) (m,) = 0.87CH (M)

16 5 (M) + 1645, (My) .

(3.19)
were M is the mass of the SM W-boson.
The CP-odd operators generate additional running of the quark EDM oper-

ators through the electromagnetic interaction. The RGE of the down quark EDM

operator can be written as [31]

s d poo 2em(W)gi (1) ea egs(p)
Y d—ugdd (1) = T3 (16 e (1) — 162 Yasdg (1)
) D)) (3.20
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where v4 = 16/3, 143 = 16/9, 744 = —16/3, and similarly for the strange quark.
The RGE of the electromagnetic coupling e does not depend on the strong coupling
constant g, up to one-loop, therefore, can be treated as a constant. At the charm
quark mass scale, one can get

em,
1672

¥ (m.) = (0.07C5*) (M) + 0.34C5 ) (M)

+0.17ed§ (M) + 0.83d} ,(My,) . (3.21)

which shows the explicit contributions from the running of the four-quark operators

as well as CDM operators.

3.3 nEDM in mLRSM and Constraint on Left-right Symmetry scale

In this section, we carry out the last step of the nEDM calculation in mLRSM
by incorporating the neutron matrix elements of hadronic operators. We collect
the state-of-art results in the literature and use them to constrain the parameters
in mLRSM. We find that in order to satisfy the current experimental bound on
nEDM and the data on kaon-decay parameter ¢, the right-handed gauge boson Wx
might be as heavy as 104+ 3 TeV. This bound is far higher than the bound obtained
previously from the kaon mass difference, making it difficult to discover left-right

symmetry at LHC.

3.3.1 Hadronic Matrix Elements

The most difficult part in calculating nEDM is to estimate the hadronic matrix
elements. In the literature, many different approaches,; such as the SU(6) quark
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model, bag models, QCD sum rules, and chiral perturbation theory have been used
to make estimations. In this subsection, we summarize the results and get some

idea about their uncertainties.

3.3.1.1 Contribution from Quark EDM

In the SU(6) constituent quark model, the matrix elements of the quark tensor
operators are simple and scale-independent [11, 12], leading to

1 4
dy) = —5dy + 5dg - (3.22)

Although it has been suggested that one should use the constituent quark masses
in the formulas of quark EDM [12], this is incorrect from the point of view of
factorization.

In the parton quark model discussed in [13], it was found,
dy) = —0.50847 + 0.746d% — 0.226d" . (3.23)
From the QCD sum rules, one gets [14]
dY = (140.5) x 0.7(—=0.25d7 + d¥) . (3.24)

Different approximations are largely consistent.

3.3.1.2 Contribution from Quark CDM

The contribution to nEDM from the quark CDM in the constituent quark
model is [11]

4 e 8 e
dY) = Z—df + 2 —d§ 3.25
N 995 u + 995 d > ( )



where g, is the coupling of strong interaction at the energy scale where the model
is applicable. In this calculation, the authors assumed first that the neutron is
composed of constituent quarks, and then treated the gluon field inside the neutron
as a background, neglecting its kinetic energy. Therefore, Eq. (3.25) can only be
seen as an order-of-magnitude estimate.

Weinberg’s naive dimensional analysis has also been used to estimate this

contribution [29, 61, 62],
2 € c o
dy ~ o (O(1)dy +0(1)dy) . (3.26)

In Ref. [63], the authors used the chiral perturbation theory to calculate the singular

part of the long distance contribution,

0.7
$(dC +dS) . (3.27)

dNE

And finally, QCD sum rules analysis in Ref. [14] gives

0.55¢e

dP = (1+0.5) x
9s

(0.5d5 +d9) , (3.28)

where g, is the strong coupling constant at 1 GeV, about 2.5.

3.3.1.3 Contribution from Weinberg Operator

The contribution from the Weinberg’s operator Oy, can be estimated by Wein-

berg’s naive dimensional analysis [29], which is an order-of-magnitude estimate
d¥ ~ eMC,(p)/4m ~ 100 MeV e Cy(1GeV) | (3.29)

where M = 4nF, ~ 1190 MeV and p is the hadronic scale taking as 1 GeV.
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On the other hand, the estimate based on QCD sum rules gives [64]
d¥ ~ (10 — 30)MeV e C,y(1 GeV) | (3.30)

which is considerably smaller. In any case, because of the small coefficient function,

the Weinberg operator contribution can essentially be neglected.

3.3.1.4 Contribution from Four-Quark Operators

The hadronic matrix elements of the four-quark operators have been studied

and reviewed in Ref. [65]. In this work we will take the results from that paper.

3.3.2 Numerical Results

As discussed in Ref. [3], combining with the kaon indirect CP-violation € pa-
rameter, one can use nEDM to get the most stringent lower bound on the mass of
the right-handed W boson in the context of the mLRSM. In Ref. [3], the authors
used naive factorization [20] to estimate the contribution of four-quark operators.
However, this method for baryons may not be valid even in the large- N limit, and
the uncertainty is unknown. Therefore, we have assumed a very large error on their
matrix elements and the resulting constraint on the left-right symmetry scale is not
very strong. In a dedicated study of these matrix elements [65], we have gotten
a much better understanding on their contribution. In Ref. [65], the contribution
of four-quark operators to nEDM was separated into two parts, the direct contri-
bution and the meson-condensate contribution. For the direct contribution, quark

models were employed to calculate the hadronic matrix elements, which is only an
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order-of-magnitude estimate be. However, for the meson-condensate contribution,
the factorization method was used to calculate the meson matrix elements, which
can be justified in the large-Ng limit. Since the meson-condensate contribution
dominates over the direct one, we believe that we reached a factor-of-two accuracy
in the matrix elements of four-quark operators.

In mLRSM, after neglecting the contributions from FCNH and the charged
higgs boson exchange, nEDM depends only on three parameters, r, o, and Myy,,
where « is the new source of CP-violation. Therefore, if o = 0, nEDM predicted by
the mLRSM will be the same as that predicted by SM, about five orders of magnitude
smaller than the upper bound given by the current experiment [4]. Whereas for e,
there are two new contributions in mLRSM [3], the Dirac phase in the righthanded
CKM matrix inherited from the lefthanded CKM matrix, and the spontaneous phase
«. The new contribution from the Dirac phase is enhanced compared to the similar
contribution in SM due to the chiral enhancement in the hadronic matrix element
(see Ref. [5] for a good review). The contribution of the spontaneous CP-phase
a must be adjusted to cancel the contribution of the Dirac phase. Therefore, in
mLRSM there is a tension between nEDM and e that one cannot only adjust « to
suppress all the new CP-violation sources, and a large Myy,, is needed. As a result,
nEDM and e together give a lower bound on Myy,.

In this new study, we use the QCD sum rules to estimate the contribution
of the quark EDM and CDM operators, and use the results in Ref. [65] for the
contribution of the four-quark operators. Fig. 3.7 shows the contributions to nEDM

from different operators at fixed My, and r. The result from the Weinberg operator
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is too small to be included in the figure. It is clear that the contributions from four-
quark operators are much larger than from quark EDM and CDM operators. One
way to understand this is that in mLRSM the quark EDM and CDM operators are
generated in the same way as the four-quark operators. The quark EDM and CDM
operators are generated through diagrams in Fig. 3.2 and the four-quark operators
are generated through diagrams in Fig. 3.1. The Wilson coefficients roughly have

the following relations

Oy, (3.31)

where A and A’ are two proportionality coefficients, C} is the Wilson coefficient of
certain four-quark operators. Take the down quark EDM as an example, A can be
written as sin? @com,/m, ~ 15, where ¢ is the Cabibbo angle. From QCD sum
rules, nEDM contributed by the down-quark EDM operator is approximately the
down-quark EDM itself, whereas the nEDM contributed directly from the four-quark
operator can be written as [65]

(&

dfourfquark ~
N 1672

BoCy (3.32)

where By >~ 2.2 GeV is related to SSB of the chiral symmetry. Since By > Amy,
nEDM directly from the four-quark operator @iysudd is much larger than the contri-
bution from the down quark EDM operator. Indeed, this is a common phenomenon
in left-right models and two-Higgs-doublet models, where the quark EDM and CDM
operators are always generated by the triangle diagrams in Fig. 3.2, and the inter-
nal lines are always quarks. In other types of new physics models, the internal lines
can be other kind of fermions. For example, in supersymmetric models, they can
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be gauginos, and in extra dimension models, they can be KK-fermions, where the
above relation between quark EDM operators and four-quark operators is no longer
hold. In these models, quark EDM and CDM operators might be more important
that four-quark operators.

Using the matrix elements in Ref. [65], we calculate the constraint from the
nEDM and kaon-decay parameter € on the allowed parameter space of mLRSM. The
result is shown in Fig. 3.8. The allowed parameter region by the experimental upper
bound on nEDM is shown as green dots. The constraints from e-parameter depends
strongly on the mass of the FCNH in the theory. We have shown two possible values
of Mpy,, 50 TeV and oo for simplicity. We assume for € the new contribution should
not exceed 1/4 of the experimental value. From Fig. 3.8 one can see that the lower
bound for the My, from nEDM and € is around 10 TeV. If we assume a factor of 2
uncertainty on the hadronic matrix elements, the actual bound is 10 + 3 TeV. This
will make a direct detection of the right-handed gauge boson very difficult at LHC

if it exits.

3.4 Summary

In this chapter, we have studied nEDM in mLRSM systematically by using
effective field theory approach. The formula for calculating nEDM is given in Eq.
(3.5). The contribution of four-quark operators is found to be the most important.
The contribution of Weinberg operator to nEDM has been discussed systematically.

A numerical suppression is found which counteracts the infrared enhancement and
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makes the contribution of this operator negligible. We have found a lower bound on
the mass of Wx which is about (10 £ 3) TeV. This constraint is the most stringent
one on the righthanded scale to date, which means in the framework of mLRSM,
Wgr cannot be detected at LHC.

In a more complicated non-supersymmetric scenario of LRSM, although the
CP-violation pattern in the Higgs sector might be change, the tension between e and
nEDM discussed in Sec. IV still exists. Therefore, one can also use this analysis to
set a lower bound on the righthanded scale. In the supersymmetric LRSM, there are
new CP-violation sources from the soft terms, which can contribute to both nEDM
and e. Furthermore, in supersymmetric LRSM [66], the lefthanded and righthanded
CKM matrices must be equal to each other up to a sign, therefore, if one assumes
certain scenarios of the breaking mechanism of supersymmetry, € itself can give a

constraint on the righthanded scale [67].
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(b)

Figure 3.1: Effective four-quark operators generated by integrating out Wi-boson:

(a) the diagrams in the full theory and (b) the effective operator.

B
rg’ 1

© ()

Figure 3.2: One-loop contribution to quark EDM. The internal wavy lines represent

the W-boson contribution and the dashed lines the corresponding Goldstone bosons.
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Figure 3.3: Higgs-induced quark EDM. The dashed lines here represents the Higgs

-

Figure 3.4: Long-distance contributions to quark EDM and CDM through CP-odd

bosons.

four-quark operators.

é

Figure 3.5: Diagrams contributing to Weinberg operator in mLRSM. The first dia-
gram is induced by the W-boson exchange, the second by Goldstone exchange and

the third by the charged Higgs boson.
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Figure 3.6: Contribution to the three-gluon vertex after integrating out the top

quark, the Higgs boson and the W-bosons. The black dot labels the bottom quark

CDM operator.

15+

nEDM /(10-%e cm)
=
o

(5]
T

0.00 0.05 0.10 0.15 0.20

Figure 3.7: nEDM contributed from operators, @ivsudd (short dashed red line),

uivysuSs (long dashed green line), down quark EDM and CDM operators (solid blue

line).
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Figure 3.8: Constraints on the mass of Wg and the spontaneous CP-violating pa-

rameter « from the kaon decay parameter ¢ (Mpg, = oo, red dots; My, = 50 TeV,

blue dots) and nEDM (green dots). For nEDM, we use the current experimental up-

per bound as the constraint and for € we use the criteria that the beyond-SM-physics

contribution should not exceed 1/4 of the experimental value.
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Chapter 4

Collider Constraints On Low Mass Dark Matter

4.1 Introduction

If the mass of WIMP is around or less than 15 GeV and the cross section
between WIMP and nucleons is as large as 10~*! cm?, it might probably be generated
in colliders. The Tevatron constraints of direct detection signal has been studied in

Refs. [68, 69] in an effective theory approach. The authors studied the process

pp — mono — jet + missing energy . (4.1)

At Tevatron, this process with the cuts that the leading jet E7 > 80 GeV, missing
Er > 80 GeV, second jet with pr < 30 GeV and vetoing any third jet with Ep > 20
GeV has been studied in order to constrain large extra dimension model [70]. 1.0 fb™*
of data was analyzed with 8449 events observed. On the other hand the expected
value of SM background is 86631332, therefore following Ref. [68, 69], the 20 limit
on the new physics can be set as opew < 0.664 pb. In Ref. [68], both the hard
processes and soft ones have been simulated as well as the collider effects. It has
been shown that the correction from the soft processes and the collider effects do not
change much of the cross section of the hard processes. Therefore, in the following

discussions, we only simulate the parton level processes.
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In Tevatron, the center-of-mass energy of the incoming proton and anti-proton
is 1.96 TeV. If the mass of mediator conducting the interaction between dark matter
and SM particles is around or less than a few hundred GeV, it can be produced on-
shell so that one cannot use contact operators to study Tevatron constraints. On the
other hand, if the mass of mediator is so large that it cannot be produced on-shell
at Tevatron, we show in Sec. 6.3 that the Tevatron constraint cannot be saturated
in perturbative region. Furthermore, if the signal of CoGeNT or CRESST-II are
induced by SI and momentum-independent (MI) interaction between WIMP and
nuclei, the effective four-fermion interaction between quarks and WIMP (assuming

dark matter is a fermion) can be estimated as

2
() — _9smIp 1 49
¢ - M? ((1~3)Te\/) ’ (4.2)

mediator

where ggpr and gp are the couplings of the mediator to quarks and MD, respectively.
Therefore, at the Large Hadron Collider (LHC), since the center-of-mass energy of
proton pairs is as large as 14 TeV, in the process pp — jets + missing energy, the
mediator could not be integrating out or the unitary condition would be violated.

Another well known property of DM is its relic abundance, Qh? = 0.11 [71].
It can be generated in several ways. One is through thermal freezing out. The
relic density of DM can also be produced by late-decays of the thermal relics of
long living particles, for example, superWIMP models [72]. Tt can also be pro-
duced asymmetrically in analogy to baryogenesis, and this idea was first proposed
in Ref. [73]. Usually, in late-decay scenarios, direct detection signal is difficult to

be produced. On the other hand, if the annihilation interaction of DM is strong
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so that the thermal produced relic abundance is much smaller than the observed
value, asymmetric production can be turned on to solve this problem. Therefore,
in this work, we use the observed relic abundance of DM as a lower bound for the
thermal relic abundance, which gives lower bounds on the interaction between DM
and SM particles. If there is a relationship between g, and g;, where g, and g¢; are
the couplings of the mediator to quarks and leptons respectively, there are stringent
constraints from the Linear Electron-Positron Collider (LEP) [74] and Tevatron [75].
Therefore, the constraint from relic abundance cannot be alleviated by increasing
the thermal annihilation of channel of DM to leptons.

Since the Yukawa sector of SM violates flavor symmetry, the mediator of the
interaction between SM and DM particles may induce additional sources of flavor
changing neutral current (FCNC) if it does not commute with the rotations of quarks
from flavor eigenstates to mass eigenstates, and in this case, the mass differences of
neutral meson systems, K° — K° D% — DY B; — B, and B, — B, can be used to
constrain the parameter space of this interaction.

In most models, if DM is a WIMP, the spin of DM is 0 or 1/2, for example
in supersymmetric models both sneutrino and neutrolino can be DM candidate. In
extra-dimension models, the spin of DM can also be 1 [76]. Furthermore, DM can
also be composite particles like nuclei or atoms [77], and in these cases, the spin
structure of DM can be rather complicated. If the mediator between DM and SM
particles is a vector particle, the interaction between DM with non-vanishing spin
can interact with SM particles through multi-pole interactions. In this work, to get
the main features of the interaction between DM and SM particles, we consider spin
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0 complex scalar DM candidate and spin-1/2 Dirac spinor DM candidates which are
labeled as ¢ and y, respectively.

The annihilation of dark matter can be either through either S-channel or
through T-channel. In the case of S-channel annihilation, the mediator is neutral
under the symmetry transformation which keeps DM stable. And the direct detec-
tion signal in this case must be through T-channel. Furthermore, the thermal relic
abundance determines that the mass of the mediator should not be around weak
scale. In the case of T-channel annihilation, the interaction between DM and quarks
must be conducted by new colored particles which shares the same quantum number
as DM under the transformation of the symmetry keeps DM stable. In this chapter,
we concentrate on the S-channel annihilation cases.

In SM, there are two natural candidates for the mediator, which are Z-boson
and the Higgs boson. Since we are interested in low mass dark matter with mass
around or smaller than 15 GeV. Therefore, the Z-width constraint force the coupling
between DM and Z to be no larger than 0.02. For the mass of DM as low as being
smaller than 15 GeV, thermal annihilation would leave too much dark matter and
the universe would be over closed.

In the case of Higgs boson mediator, if DM is a fermion, for the reason that
a low mass dark matter particle cannot annihilate into top quarks during thermal
annihilation era, the annihilation rate between dark matter and anti-dark matter
particles to SM particles is suppressed by the small Yukawa couplings between Higgs
boson and light SM fermions. Therefore, the correct dark relic abundance cannot

be generated in the perturbative region. However, if DM is a scalar, the coupling
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between DM and Higgs is dimension one, therefore, during the thermal annihilation,
the coupling can be seen as enhanced by a factor of M),/Mp relative to the fermion
DM case, where M), is the Higgs mass, so that it is possible to reconcile light DM
with relic abundance [78].

In this chapter, we concentrate on the new vector mediator case which we will
call Z' throughout this chapter. The interaction between Z’ and DM particles are
listed in Table 4.1. This Z’ particle also contributes to the pp — jj at Tevatron

which is studied both in CDF detector [79] and in DO detector [80].

¢ Z,(¢1i0" — i0" ')

!/

X 22X 2 XY X L XX 2, Xisot X

Table 4.1: Interaction between DM and mediator.

4.2 From Resonant to Contact Interaction

The propagator of the S-channel mediator can be written as

)
s — M? —iy/s(s)’

(4.3)

where s is the center-of-mass energy of the two incoming particles and I'(s) is the

width of the mediator if its mass is v/s. Therefore, we can get

2 2

(s — M?)2 + sT'2(s) ’
where ggps is the coupling between the mediator and the SM particles whereas gp

is the coupling between the mediator and DM.
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Assuming gsyr = gp = g, in the case that both SM quarks and DM are much
lighter than the mediator, the cross section can be written as

4
o x J : (4.5)

2
(s — M?2)2 + (t;_f) 52

where a is proportional to the number of light degrees of freedom. In direct detection
experiments, since the momentum transfer is small, it can only see a contact inter-
action and the cross section is determined by My = M/g. Substitute this relation

to Eq. (4.5) we can get that

o X ! . (4.6)

s o) L (e g2
g2 0 +(87r)5

Therefore, in the case that s/g2 < Mg and (a/(87))?s* < M, the contact interac-

tion treatment is a good approximation.
On the other hand, if the mediator can be produced on shell, the enhancement

of the cross section is quite large. In Fig. 4.1, it is demonstrated that

2.0~

T Mp = 50Gev
158 (/ \ = Mp = 150 Gev

Mp = 50 GeV Contact Interactic
rrrrrr Mp = 150 GeV Contact Intactic

0~ 200 400 600 800 100C 120C 140C
Mz(GeV)

Figure 4.1: Transition from resonant case to contact interaction.
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4.3 Tevatron Constraints on Z’' Mediator

In this section, we study the constraint from the process in Eq. (4.1) on the
couplings and masses of the mediator in different cases. The couplings between
mediators and quarks are assumed to be universal. If they were not, there would be
large tree-level flavor changing neutral currents induced by quark mixings which is

discussed in Sec V.

4.3.1 Constraint from monojet plus missing energy

4.3.1.1 Vector-like Interaction
The interacting Lagrangian of vector-like interaction can be written as

Lyector = Z,, [q (g(zlf)’m + 9(21/)5%75> q+X (gg)w + ggg,’yu%) x} : (4.7)

Since we are concentrating on low mass dark matter case, the produced dark matter
particles in Tevatron are relativistic, therefore, the total cross section depends very
weakly on whether the mediator couples to vector currents or axial vector currents.
As a consequence, we concentrate on vector coupling cases.

Using CalcHEP2.5.7 [81] we simulate the pp — y X+ one jet process, assuming
Z' couples only to DM and quarks. The constraints on gz and My /\/gzgp for
My > 20 GeV are shown in Fig. 4.2, where the mass of dark matter is fixed to
5 GeV. We can see that the bound on My /\/gzgp gets lower for smaller dark
matter masses. The reason is that, in this region, Z’ is on shell, and the process

pp — XX + one jet can be divided into two processes, namely, pp — Z’j and
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7" — xx. Furthermore, in small M region, the cross section of pp — Z' j changes
very little with Mz, and the branching ratio of Z’ decaying to yx also does not
change much with My since M2, remains much larger than m?, where my, is the
mass of bottom quark. Therefore, with fixed gz and gp, the total cross section
almost does not change with Mz . Therefore, as we can see from (a) of Fig. 4.2,
with the fixed total cross section which is the Tevatron bound, the lower bound on
Mz /\/9z'gp gets smaller with smaller M.

In Fig. 4.2, the red, orange, yellow, green, and blue curves correspond to
gp = 0.5, 1, 2, 3, and 5, respectively. We can see that in the small mass region,
the upper bound on gz does not depend on gp. The reason is that the total cross
section depends only on the cross section of pp — Z’ j and the branching ratio of
7" — xX, and in small M region, the upper bound on gz is much smaller than
gp so that the branching ratio of Z/ — yx ~ 1. Therefore, the upper bound of
gz does not change with gp. As a result, in small My region, the dependence of
Mz /\/9z'gp on gp can be factorized out. Furthermore, this factorization property
is applicable to more general cases.

From Fig. 4.2a, one can see that the coupling gets much larger when M
approaches certain value for each gp. Furthermore, since Z’ couples universally to
SM quarks, the width of Z’ is enhanced by a factor of 18. Neglecting the effect of

top quark mass, the width of My can be written as

3 1
Fz/(le) ~ %g%/le + EQ%MZ/ . (48)

Therefore, we can see that the loop factor is canceled by the degrees of freedom
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Figure 4.2: The red, orange, yellow, green, and blue curves show the upper bounds

on the combination gz in (a) and lower bound on My /,/gz/gp in (b) for cases in

which gp is fixed to 0.5, 1, 2, 3 and 5, respectively. In (b), the horizontal dashed

purple line shows the upper bound in the case of contact operator.
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Figure 4.3: Typical hard processes for pp — xx + jet, where diagrams (c) and (d)

show divided processes for (a) and (b), respectively.
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of quarks. Therefore, for large gz the effect of width is important, and the total
cross section gets smaller for larger g,. Fig. 4.4 shows the total cross section of
the hard process of pp — xx + j where the mediator masses is chosen to be 430
(green), 450 (purple), 480 (red) and 500 (blue) GeV in the case of gp = 1. The
solid black horizontal line is the Tevatron bound. We can see that in the case that
gp = 1 if Mz > 480 GeV, the Tevatron bound cannot be achieved. Therefore, for
each gp a parameter M, can be defined beyond which the collider constraint cannot
be saturated in perturbative region. One can get M, from Fig. 4.2a by looking at
the sharp rising of each curve, and one can get M, ~ 340, 430, 560, 630, 690 GeV for

gp = 0.5,1,2,3,5, respectively.

oTeV/Pb
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Figure 4.4: Cross section of hard process of pp — xx + j with the cut that the
transverse energy of the jet should be larger 80 GeV and gy fixed to 1. The green
upward triangle, purple downward triangle, red diamond triangle, and blue square
triangle are for 430, 450, 480, 500 GeV M, respectively. The solid black horizontal

line is the Tevatron bound for this process.

Fig. 4.5 shows the comparison between 5 GeV and 15 GeV DM. From the
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plots, we can see that at Mz > 30 GeV, the two curves coincide with each other,
which means the bound does not depend on the mass of DM. And in the case of
My < 2M,, the constraint on gz gets much looser due to that the phase space of
three-body final state is much smaller than the two-body one. Furthermore, in this
region, a plateau appears indicating that the bound on gz does not depend on the
mass of the mediator. The reason is that the denominator of the Z’ propagator is
completely off-shell and the width of Z’ can be neglected. Therefore, on the plateau,
the cross section of the process in Eq. (4.1) depends solely on the product gz ¢gp,
and the upper bound of gz goes like 1/gp. From Fig. 4.5a, we can see that the
height of the plateau depends slightly on the mass of dark matter. The dependance
of the upper bound of gsy;gp on the mass of DM in this case is shown as the red
curve in Fig. 4.6a.

9z

1,00+ Mz/~/ @z 9o /GeV

0.501 500
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020 100}

0.10} sor

0.05f

Mz/GeV

= Mz/GeV
5 10 50 100

(a) (b)
Figure 4.5: Comparison between upper bounds on gz (a) and lower bounds on

My /\/9z7gp (b) in the cases of 5 GeV (red square) and 15 GeV (blue triangle) DM

mass. In both cases, gp = 1.

If the coupling contains both the vector part and the axial-vector part, the
constraint shown in Fig. 4.2 can be seen as on the combination Mz /[(92,4+9%:5) (g% +
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Figure 4.6: (a) shows upper bounds on ggygp from Tevatron in the case that
M pediator < Mppr, where the red curve is for vector coupling with fermion dark
matter, the green one vector coupling with scalar dark matter, the blue one scalar
mediator with fermion dark matter. In the first two cases the coupling between Z’
to fermions are assumed to be vector-like. (b) shows upper bounds on g(ZQ,) gg)/M 71,
where the coupling between Z’ and quarks is assumed to be dipole and the coupling
between Z’ and DM is vector-like. The red curve is for fermion dark matter whereas
the blue one is for scalar dark matter. (c¢) shows upper bound of gy gp My in the

case of scalar mediator and scalar DM.
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g2D5)]1/4, instead of Mz /\/g29p.
In the case that dark matter particle is a scalar, the interacting Lagrangian

can be written as

Loector = Z, [(j ( v+ g(zl%vws) g+ gy (¢hiore — Z'@%%)} L (49

The analysis is parallel to the fermion dark matter case and the constraints for 5

GeV dark matter is shown in Fig. 4.7. If parity violating interaction is invoked,

the bounds should be seen as to Mz /\/(9% + 9%:5)"/?gp instead of to Mz /\/3zgp.
From Fig. 4.7a, one can see that in this case M, is around 340 GeV. In the case that
My < 2M,, the upper bound on gz gp is similar as in Fig. 4.5a, and the height of
the plateau is shown in Fig. 4.6a.
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Figure 4.7: Lower bound on the combination Mz /,/gz gp (a) and upper bound on
gz (b). The horizontal blue line is the upper bound in the case of contact operator.
M, =5 GeV, gp = 1. The horizontal blue line in (a) shows the corresponding

bound in the case of contact operator.

In the case that Z’ couples to the axial currents of SM fermions, an issue
of anomaly occurs if the quantum numbers are assigned improperly. However, the
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existence of anomaly only mean that the theory needs a cut-off at some energy scale.
And for an anomalous U(1) gauge theory, the upper bound on the cut-off scale can

be written as [94]

6473

A< ——
92/ Q>

My (4.10)

where @) is the charge of chiral fermions. Therefore, we can see that even for GeV
scale 7', the cut-off is far from the reach of Tevatron. Even if Z’ couples only
to vector currents of SM quarks, the chiral nature of electroweak interaction may
induce the SU(2),&SU(2),&U(1) z» anomaly, which means a cut-off is needed at the
energy scale 47 Myeak /g5 Where go is the coupling of the weak interaction, therefore,
we can see that in this case, the upper bound of the cut-off cannot be reached by

Tevatron as well.

4.3.1.2 Dipole coupling between Z' and dark matter particle

The dipole interaction has recently be proposed to make CoGeNT and DAMA
reconcile with other experiments [82, 83, 84, 85, 86]. In the case that dipole inter-
action dominates the interaction between DM particle and Z’, the Lagrangian can

be written as

1 o
/v‘dipole = M_Z’X ( (DZ)O'“V + g(gng}%o”u > XZ;/W ) (411)

Generically, there are two ways the dipole operator can be induced. One is through
strong dynamics in analogy to the anomalous magnetic moments of nucleons. The
other is through perturbative interaction like the anomalous magnetic dipole of

electron, which is induced by the diagrams shown in Fig. 4.8, and the dipole moment
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can be estimated as

My 1672(M2 + M) ‘

where x’ and W’ are some internal particles, which are shown in Fig. 4.8.

Figure 4.8: Triangle contribution to dipole moment.
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Figure 4.9: Total cross section of the hard process of pp — xx + jet in Tevatron
requiring the transverse momentum of the jet larger than 80 GeV. The red and

blue curves are for Mz = 200 GeV and 350 GeV, respectively. In both cases,

gZ/:gD:1,

In the perturbative scenario, in the case that Mz < M,, Z' can be produced on
shell. If M, > 2M,, or Mz > 2Myy, the process pp — x'X'+jet or pp — W'W'+jet
dominate over the process pp — xx + jet, and if the life-time of W’ and y’ is long
enough, they can fly out of the detector, and in this case, Tevatron constraints on
single jet plus missing energy is similar to the vector-like coupling case. In order
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for the dipole operator not to be destroyed by the decay of Z’, My < 2M,, and
My < 2Myy should be imposed, and in this case, the partial decay width of Z’ to

XX can be estimated as

2 2
M3, 9(2) 9(2) MZ’
Iz 5y~ 2 d2 ) =2z 72 4.13
( XX) or \ 20, - (4.13)

The Tevatron bound on g and the combination My /(g%)g\?)/3 are shown in

Fig. 4.10. One can see in this case M, is around 430 GeV. The factorization of the
dependance on gp as discussed before for My < 2M, and 2M, < Mz < M, is still
applicable here. However, one should note that in this dipole coupling case, in this
case, it is the constraint on g(Zl,) gg) /My does not depend on M. In this case, from

the simulation, it does not depend on M, as well, and the bound can be written as

g(l) 9(2)
/ - -1
227D <12x107° GeV'. (4.14)
My
MZ’ <2MX
9z 1/3
Mz /(9z9p)""/GeV
0.20CH J 700+ _m
-
0.10CH . n -~ " ‘
0.05Cf - - 500F "
0.02¢H s s ol
0.01CE ./-" 300} ‘.‘/
0.005f J._,/ .‘--
0.002F /..". 200r =
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(a) (b)
Figure 4.10: Lower bound on the combination M/ (gg) g(Zl))l/ 3 (a) and upper bound
on g(Zl,) (b) for magnetic interaction between Z’ and dark matter particle. M, =5

GeV, gg) =1.

In the case of strong dynamics, just like in QCD, the intrinsic scale of the
strong interaction determines both the mass of the dark matter and its magnetic
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moments. There, for low mass dark matter, Tevatron is energetic enough to break
the composite dark matter particle and see the internal structure. Therefore, the
hard process, in this case can be written as gg — ¢, ¢, +jet, where c,, is the constitute
of the dark matter. In this case, the Tevatron bound is just like what is shown in

Fig. 4.2.

4.3.2 Constraints from dijet final states

4.3.2.1 Fermion dark matter
The interacting Lagrangian is
L = q(gur +igmwsys)gH' + X(g9p +igps)xH' . (4.15)

The constraints on M, /(\/grgp) and gp for 5 GeV dark matter and 15 GeV

dark matter are shown in Fig. 4.11.

4.3.2.2 Scalar dark matter
The interacting Lagrangian is
L= qGlgu +igmsys)qH' + gpMp ¢t oH' . (4.16)

In this case the low energy experiments and dark matter relic abundance depend
only on the combination My, /(AzAp) which is shown in Fig. 4.12, where we can

see that in this case M, is around 350 GeV.

128



9z

0.30f

0.201
0.15¢

0.101

9z

0.30p

0.201

0.15f

0.101

Mz/GeV

M_/Gev

Mz/4/ 9z 9o /GeV
7001

500+ "
300( o

200} ’ 4

1501 u

50 100 200

Mz/+/ @z 9o /GeV

500

200 -
100 !
50
20 '

10f -

Mz/GeV

Mz/GeV

Figure 4.11: Upper bounds on the combination gy (a), (¢) and lower bounds on

My /(grrgp) (b), (d) in the case of scalar mediator and fermion DM. M, =5 GeV

(a), (b) and 15 GeV (c), (d), respectively.
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4.4  Detector Constraints on Dark Matter Direct Detection Signal

4.4.1 Effective Operator for Dark Matter Direct Detection Experi-
ments

At the energy scale of direct detection, we should consider the interaction
between mediator and the nucleons. Then a subtlety comes out that even if the Z’
couples to u quark or d-quark through a vector-like coupling, that this vector-like
might be canceled inside the nucleon, so that the leading order coupling becomes a
dipole. This happens in models where the interaction between Z' and SM particles
is induced by a kinetic mixing between Z’ and photon. However, the target is
composed by both protons and neutrons, and there is no way for the vector-like
couplings to be canceled in proton and neutron at the same time. Therefore, if
the vector-like coupling between Z’' to u and d quarks is present, the vector-like
interaction between Z’ and the target nuclei dominates over the dipole interaction.
However, if Z’ couples only to heavy quarks, after integrating out the heavy quarks,
a dipole interaction is induced [87] and the matching is calculated in Ref. [89]. The
relevant hadronic matrix elements have been carefully discussed in detail in Ref. [90].

The non-relativistic (NR) effective operators for each couplings can be found in
Ref. [90]. However, the magnetic interaction is different in our case. After integrat-
ing out Z’, the four-fermion interaction should be written as 9,(No* N)3d,(Yo”,x)
and 0, (Nivsa* N)d,(xo",x) for CP-even and CP-odd cases, respectively. There-

fore, the leading order CP-even NR operator should be written as (¢'x §y) - (' 8y),
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where ¢ is the three-momentum transferred during the collision.

In direct detection experiment, the interactions between dark matter particle
and the target nuclei is non-relativistic, and the velocity of dark matter is about
1073, Therefore, if the interaction is proportional to the momentum of dark matter
particle, there is a suppression factor of 107% appearing in the cross section between
nuclei and dark matter. Furthermore, the interaction should be separated into spin-
dependent and spin-independent, since the energy transferred from dark matter to
nuclei is smaller than the energy scale of nuclear structure, the dark matter particle
interacts with nucleus as a whole, therefore the cross section of spin dependent
interaction suffers from a factor of 1/A? suppression relative to spin independent
interaction, which is about a factor of 107*. Therefore, according to this power

counting, we classify the operators as the following,

4.4.2 Tevatron Bounds on Direct Detection between Dark Matter

and Nucleon (Mpediator > 2Mdark matter)

4.4.2.1 7' mediator with fermion dark matter

The hadronic matrix elements are discussed in detail in Refs. [90, 91]. The
CP-odd interaction Z Luqi%a“l’q can be seen as a Z’ electric dipole moment (EDM),
and the hadronic matrix elements can be calculated in the same way as calculating
the quark EDM contribution to neutron EDM, which has been calculated in several

ways. In this chapter, we use the result from QCD rum rules [14] that

E
dneutron

= (1£0.5) x 0.7(—0.25d% + d¥) | (4.17)
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Operator Structure NR Cross Section

01 N'y“N)_m/Mx SI, MI %

O2 NAE N5 X SI, MD %

O Nogbogs Namx SD. MD c2M12VM§7[r((J\J/égV4;1;I;X);+2M§,]vz
O4 NA#y5 NXYuvs5X SD, MI %

Os N7, Ny (xoH x) x vt

Os Ny Ny (Xivsot x) ST, MD %

O7 ]V'yyfysNau()’(a“”x) SD, MD %

Os u(Nat¥ N)xvux oc vt

Og 8M(NU”VN)XWV’YSX SD, MD %

010 9u(Nivsoh”N)xwx  SD, MD 20 MM

71'(IMN"']MX)4

Table 4.2: Effective operator between nucleon and dark matter, where C' is the

Wilson coefficient for each operator and v is the speed of dark matter particle.
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Operator Structure

NR Cross Section

O13

O14

O1s

O19

O29

Oa23

O24

9uvda(NoH N )9 (X" x)
9uvOa(NoHins N )y (X0 x)

9uvOa (N ins N)Dy (X0 x)
9uvOa(Ninso"*N)dy (Xivs P x)

N7, N(ptiore — ior ¢t ¢) SI, MI
NyuvsN(ptiore — ion ¢l e) SD, MD

3 (Na* N)(stiore — ior ¢t @)

Oy (Niysoh N)(¢Ti0, ¢ — i0, ¢t h) SD, MD
NNxx SI, MI
NNxivsx SI, MD
Nivs Nxx SD, MD
Niys Nxivsx SD, MD
NN¢tp SI, MI
NiysNoto SD, MD

C2MZ M}
m(Mpy +Mx>2

C2 MR MGv?
2m(My+My)?

2 4 4 2
202 My MRv
T(Mpy+My)*

2 2 2
C2MF M2
m(My+My)?

254 2,2
C2MY M2
2n(My+ M)

2 4 2.2
C2MEME v
27 (My+Mp )2

M3
4 (Mpy+My)?

2 2 2 .2
C2M3ZMFv
8 (Mpy+My)t

Table 4.3: Effective operator between nucleon

and dark matter, where C' is the

Wilson coefficient for each operator and v is the speed of dark matter particle.

133



where d¥ and df are the EDM of u and d quarks, respectively.
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Figure 4.13: Tevatron constraints on cross sections between dark matter and nu-

cleons for Z’ mediator and fermion dark matter particle. Flavor universal coupling

is assumed. The red and blue curves are cases for gp = 1 and gp = 0.5 cases,

respectively. (a), (b), (c), and (d) are for effective operators Oy, O,, O3z, and Oy,

respectively.

If dark matter interacts with SM particles through the dipole of Z’, either

induced by the loop diagrams shown in Fig. 4.8 or by strong interactions, as discussed

in last section, we need to classify the collider constraint into two cases.

First, if the mass of Z’ is larger than twice of the intermediate particle like

W' or x" in Fig. 4.8, or larger than the intrinsic scale of the dark sector, the collider

constraint is indeed on the process pp to intermediate particles or to constituents
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of dark matter. Assuming Z’' couples to intermediate particles or the constituents
perturbatively. Then the loop contribution in Fig. 4.8 is suppressed by the loop fac-
tor, whereas in the case of strong interaction, in analogy to the anomalous magnetic
dipole moments of proton and neutron, the induced dipole moment is order one and
can be written as d®gp /M., where d® is an order 1 parameter which will be set

to be 1. Tevatron constraints for this case is shown in Fig. 4.14.
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Figure 4.14: Tevatron constraints on cross section between dark matter and nucleons
for Z' mediator, where the leading interaction between Z’' and the dark matter
particle is assumed to be dipole at the energy scale of direct detection and the decay

of the Z’ breaks the dipole structure. The interaction between Z’ and the quarks

are through vector-like and universal. (a) and (b) are for Og and Oy, respectively.

Second, if Z' cannot decay into any intermediate states, the bound on the
combination of direct detection cross section can be calculated from Fig. 4.10,
which is shown in Fig. 4.15.

If Z' couples to the quarks through a dipole interaction, the constraints on the

direct detection cross section are shown in Fig. 4.16.
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Figure 4.15: Tevatron constraints on cross section between dark matter and nucleons
for Z' mediator, where the leading interaction between Z’' and the dark matter
particle is assumed to be dipole at the energy scale of direct detection and the
decay of the Z’ does not break the dipole structure. The interaction between Z’
and the quarks are through vector-like and universal. (a) and (b) are for Og and
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Figure 4.16: Tevatron constraints on cross section between dark matter and nucleons
for Z' mediator, where the leading interaction between Z' and quarks is assumed
to be dipole and universal. The interaction between Z’ and the dark matter are

through vector-like. (a) and (b) are for Oy and Oy, respectively.
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4.4.2.2 7' mediator with scalar dark matter

In this case Tevatron constraint for direct detection cross section is shown in
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Figure 4.17: (a), (b) and (c) are for Oy5, O16 and Osg, respectively.

4.4.2.3 H' mediator with fermion dark matter

In this case Tevatron constraint for direct detection cross section is shown in
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Figure 4.18: (a), (b) and (c) are for Oy9, O and Oy, respectively.

4.4.2.4 H' mediator with scalar dark matter

In this case the collider constraint is shown in Fig. 4.19.
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Figure 4.19: Tevatron constraints on cross section between scalar dark matter and

nucleons for H' mediator. (a) and (b) are for Oy3 and Oay, respectively.

4.4.3 Mmediator < 2]\4DM

The Tevatron bounds for direct detection cross section of 15 GeV dark matter
are shown in Fig. 4.20 and Fig. 4.21 for Z' and H' mediator, respectively. We can see
that at the region M cdiator < 2Mdark matter; due to that the phase space is smaller,

the bound on direct detection cross section is about 2 orders of magnitude looser

than the the case Mmediator > 2]\Jdark matter -

4.5 Constraint from Relic Abundance (M2 ;... > 4M?%)

The relic abundance of dark matter is well determined that Qh? = 0.11. For
the prototype models discussed in the above section, if the thermal relic abundance is
smaller than the observed value, one can always introduce CP violation in the model
and makes it to be asymmetric dark matter. However, if the calculated thermal relic
abundance is larger than the observed value, there are no many methods to rescue.
Therefore, the constraint from the the thermal relic abundance is that, the thermal

relic abundance of DM generated by each prototype model should not over-close the
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Figure 4.20: Tevatron constraints on cross section between fermion dark matter and
nucleons for Z’ mediator, where the leading interaction between Z’ and quarks is
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Oy, respectively. The masses of DM are chosen to be 5 GeV (red square) and 15
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Figure 4.21: Tevatron constraints on cross section between fermion dark matter and
nucleons for H' mediator. (a), (b) and (c) are for Oy, Oy and Os, respectively.

The mass of dark matter is 15 GeV.
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universe. In this work, the relic abundance is simulated using MicrOmega2.4.0 [93].

The relic abundance depends on the combination, gsygp/M?2 and the

ediator>
Tevatron constraints on this combination is for different cases have been studied in
Sec. III. From Fig. 4.2, we can see that the upper bound on this quantity depends
on gp, and too many parameters make the situation complicated. Therefore, we
would like to study some benchmark scenario from which we can grasp the main
feather of interactions between dark matter and SM particles. In this section, we

focus on the gp = 1 scenario. One case use the factorization properties discussed in

Sec. III to get the constraint in the case of Meqiator << M.

4.5.1 Tevatron Constraint and Dark Matter Relic Abundance

In the above section, we can see that Tevatron strongly constrains on cou-
plings between dark matter and SM particles. These interactions also determine the
thermal relic abundance of dark matter. Therefore, from the Tevatron bound we
can get lower bound on the dark matter relic abundance corresponding to each op-
erator. The energy region of dark matter thermal annihilation is very different from
Tevatron and direct detection experiments, and a specific effective theory needs to
be introduced for each case. From Fig. 4.22 to Fig. 4.29, Tevatron constraints on
the lower bound of relic abundance for each case is shown. The plots are explained

in the following.
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4.5.1.1 Annihilation at non-relativistic limit

In the era of dark matter thermal freezing-out, the ratio M/T ~ 20 [92],
so the dark matter particle is non-relativistic during annihilation. Therefore, the
annihilation cross section can be expanded in terms of v?, where v is the speed of
dark matter during and v? ~ 0.1. The mass of dark matter particle we are interested
in is from 5 GeV to 15 GeV, in the case of universal coupling the annihilation channel
of dark matter is mainly to light quarks. Therefore, the final states can be seen as
massless particles.

In the case of Z/ mediator, if the dark matter particle is a Dirac fermion and

the interaction between dark matter and Z’ is through a vector current,

O annihilation X Tr[(ﬂl + MD)P)/M(¢2 - MD)PYV]TY[%lfVM %271/] ~ 128Mé ) (418)

where py, po and kq, ko are the four-momentum for initial dark matter pairs and
final quark pairs, respectively. However, if the interaction between dark matter and

7' is through a axial-vector current, the annihilation cross section can be written as

Gamnihilation O Tr[(B1 -+ Mp)y*ys (B2 — Mp)y" s Te[Jry, Hov] = 64Mpv* (14 cos®6)
(4.19)
where we can see that the cross section is suppressed by the v2. In the case of Z’

mediator and scalar dark matter the annihilation cross section can be written as

O annihilation X (pl - P2)p(p1 - pz)uTr[%l’Yﬂ %27”} ~ 32M14)U2(1 — cos® 9) . (4-20)

In the case of H' mediator, if the dark matter particle is a Dirac fermion and
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the interaction between dark matter and H’ is through a scalar vertex, we have
Tannihilation O TT[(#1 + Mp) (P2 — Mp)|Tr[f1 fo] ~ 64Mé7)2 ) (4.21)

whereas if the interaction between H' and the fermion dark matter is through a

pseudoscalar vertex, we can get

O annihilation X Tr[lf%(]él - MD)ZV5(¢2 + MD)]TT[%I k2] ~ 64Ml2) . (422)

This non-relativistic suppression is clearly shown in Fig. 4.22, Fig. 4.26 and
Fig. 4.28 where the Tevatron constraints on operators with v? suppression are much
stronger than the ones without this suppression. Furthermore, we can see that
inside the range of Tevatron ability, the interactions containing a v? suppression
cannot satisfy Tevatron constraint and relic abundance constraint at the same time.
Therefore, they cannot be the dominant interaction between dark matter and SM
particles.

The physical reason for this suppression is that the ground state of a particle

JFC of ground

and anti-particle pair has certain parity. For spin-1/2 Direc fermions,
states can only be 0" and 177, and can be 07" and 17~ for first excited states
(L =1, where L is the orbital angular momentum). Therefore, in the case of scalar
mediator, if the interaction is scalar-like, the y-Y cannot be in the ground state dur-
ing annihilation, therefore, the annihilation amplitude must be proportional to the
orbital angular momentum and the annihilation cross section must be proportional
to v2. The reason for the vector mediator case is a little bit more complicated. The
suppression in the case of axial-vector like coupling is not only because of the JF¢

structure but also due to the fact that the final states are massless so that the both
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the vector current and the axial vector current of the final states are conserved at
tree-level. Therefore, in the case that the mediator is a vector and the interaction

is axial-vector like, the annihilation cross section must be proportional to v2.

4.5.1.2 Dipole interactions

In the case of Z’ mediation, in Tevatron, if Z’ can be on shell, the energy
scale of the Z’ decay process to produce dark matter pairs is just M. However,
in the process of dark matter annihilation during the thermal freezing-out epoch,
the energy scalar is about 2Mp, and in the case of M2, > 4M3, a suppression
factor (g Mp)?/M2, appears in the cross section of the dipole interaction cases.
From Fig. 4.23, Fig. 4.24, Fig. 4.25, and Fig. 4.27, we can see that in the range
of Tevatron ability, if Mz > 80 GeV, dipole interactions cannot satisfy Tevatron
constraint and relic abundance at the same time. Therefore, in this case, they cannot

be the dominant interaction between dark matter and SM particles.

4.5.1.3 Scalar mediator with scalar dark matter

In the range of Tevatron ability to produce a real mediator particle, the energy
flow inside the mediator is just the mass of the mediator. However, in the case of
the dark matter annihilation during the thermal freezing-out epoch, the energy flow
is around 2Mp, therefore, in the case of dimension-1 coupling like the H’ mediator
with scalar dark matter case, compared to the dimensionless coupling cases, there

is an enhancement factor M#%,/M? in the annihilation cross section. Therefore, in
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Fig. 4.29, we see that the Tevatron constraint on the relic abundance is much lower
than the observed value. This also explains why in the case of Higgs mediator low

mass dark matter still survives the constraint from relic abundance.

4.5.1.4 Lepton Final States

A complication occurs when we are trying to calculate the relic abundance that
7' can also couple to leptons. However, if this is the case, the couplings between 2’
and the SM particles suffer stringent constraint from LEP [74] as well as Tevatron
with leptonic final states [75]. If Mz > 209 GeV, the LEP constraint on leptonic

coupling of Z’ model can be written as

M,
“Z 562z TeV (4.23)
9z

where z is the parameter in Lagrangian
Ly =gz(B— xL)@/;fy“@/JZI’A , (4.24)

where 1) labels SM fermions, B and L are baryon and lepton numbers, respectively.
Whereas if the My < 209 GeV, the coupling between Z’ and leptons should be
smaller than or of order 1072, Assuming Z’ couples only to the righthanded charged
leptons universally, LEP constraint on relic abundance is shown in Fig. 4.30, where
gp = 1 is assumed. Approximately, the thermal relic abundance can be estimated as
0.1 pb/Canninilation, therefore, we can see that in the case of Mz > 80 GeV, the lepton
channel contributes only less then 10% of the total annihilation cross section if Z’

couples only to righthanded charged leptons. If Z’ couples to lefthanded leptons
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Figure 4.22: Tevatron constraints on lower bound of dark matter relic abundance for
7' mediator and fermion dark matter cases, where the leading interaction between 2’
and quarks is assumed to be vector-like and universal, and the interaction between
7" and dark matter is also assumed to be vector-like. (a), (b), (c), (d) are for Oy, Os,
O3, and Oy, respectively, with nucleons replaced by quarks. The red round circle,
orange square, green diamond, blue upward triangle and purple downward triangle
are for 5, 7, 10, 12, 15 GeV dark matter masses, respectively. The black horizontal

line shows the observed value for QhZ2.
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Figure 4.23: Tevatron constraints on lower bound of dark matter relic abundance
for Z' mediator and fermion dark matter cases, where the leading interaction be-
tween Z’ and quarks is assumed to be vector-like and universal, and the interaction
between Z’ and dark matter is also assumed to be dipole. (a), (b), (c), (d) are
for {qvuq » X" x} {A@wysa » xo™'x} @ » Xivso™ x}, {@wrsq . Xo™ i}

respectively.

146



e o
1000 .’.,o/' ﬁ 1000 e "ﬁ
//./,‘ i o .ﬁ //.’*/ o= - .ﬁ
— | | - | |
100 ///. . - . ,mﬂ\ 100 ///,. . Y 7‘,,“\
- — K -
ok “‘q‘ papt e A
u v,k R, = - ‘/:’4 _v
Py - ¢ ~ v
1 pe PSR L 1 - ' ¥
i -v _-7 -v -
_ A B _ A N
T o BAPr
1 s 1 s
. . . . My L . . . . My
100 150 200 300 100 150 200 300

h? h?
g e J
K L J
1x10* "/. \ 1x10 ,r/' ‘
5000 _ e - e \‘ 5000 e - -—“.‘
o////. - - .//,/' o
- - ,, _- P 2
1000F -~ " o 1000F _ -~ " e * e \
- - _ A K - * _ Ak
50 o K -V 500 S 3 -
e v S
- AT v - _4A s
- _v - v
100 o 100 .
sof T - sof - Ca
- My ¥ L L L L My
100 150 200 300 100 150 200 300

Figure 4.24: Tevatron constraints on lower bound of dark matter relic abundance
for Z' mediator and fermion dark matter cases, where the leading interaction be-
tween Z’ and quarks is assumed to be vector-like and universal, and the interaction
between Z’ and dark matter is also assumed to be dipole. (a), (b), (c), (d) are

for {gowa , xvux}s {@vs0ma s XX} {30wa , XVsxt {@s0ma . XVuYsX )

respectively.
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Figure 4.25: Tevatron constraints on lower bound of dark matter relic abundance

for Z' mediator and fermion dark matter cases, where the leading interaction be-

tween Z' and quarks is assumed to be vector-like and universal, and the interaction

between Z' and dark matter is also assumed to be dipole. (a), (b), (c), (d) are for

{qauuq ) XUW/XL {qi750uuq ) XU“VX}? {qauuq ) )ZZ‘P)/SO—”VXh {quSUuuq ) XU!LUZ‘FYBX}’

respectively.
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Figure 4.26: Tevatron constraints on lower bound of dark matter relic abundance for
7' mediator and fermion dark matter cases, where the leading interaction between Z’
and quarks is assumed to be vector-like and universal, and the interaction between
7' and dark matter is also assumed to be dipole. (a), (b) are for {gy.q, ¢'i0,¢ —

i@ugb%} and {gv,759 , qﬁ'@,@ — z'au(/b%}, respectively.
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Figure 4.27: Tevatron constraints on lower bound of dark matter relic abundance for
7' mediator and fermion dark matter cases, where the leading interaction between 2’
and quarks is assumed to be vector-like and universal, and the interaction between
7' and dark matter is also assumed to be dipole. (a), (b) are for {go,.q , ¢'i0,¢ —

i0,0'¢} and {Giv50,,q , ¢1i0,0 — 0,010}, respectively.
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Figure 4.28: Tevatron constraints on lower bound of dark matter relic abundance for
7' mediator and fermion dark matter cases, where the leading interaction between

H' and quarks is assumed to be universal. (a), (b), (c), (d) are for {qq , xx},

{q@ivsq , xx}s {aqa . xXivsx}, {@ivsq , XivsX}, respectively.
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Figure 4.29: Tevatron constraints on lower bound of dark matter relic abundance
for H' mediator and fermion dark matter cases, where the leading interaction be-

tween H' and quarks is assumed to be vector-like and universal, and the interaction

between Z' and dark matter is also assumed to be dipole. (a), (b) are for {gq , ¢T¢}

and {@ivsq , @0}, respectively.

7' mediator: {Xvx s @t s {xvux s @vsat

H' mediator: {21’75X ) QQ} ) {XZW5X ) ql%Q} ) {¢T¢ ) QQ} ) {¢T¢ ) ql%Q}

Table 4.4: Possible interactions dominate the thermal annihilation of dark matter

in the case of M ediator > 2Mp.

as well, the lepton channel can at best contribute as large as 30% of the total
annihilation cross section. Therefore, in the case gp = 1, Mz > 80 GeV, the
leptonic channel does not change much of the constraint.

From the above analysis, we can see that, in order to satisfy the bounds from
Tevatron and relic abundance at the same time, the thermal annihilation must be

dominated by interactions listed in Table 4.4.
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Figure 4.30: LEP constraint on dark matter thermal relic abundance, assuming
Z' couples to righthanded charged leptons universally. The Red, Orange, Yellow,
Green, Blue and Purple curves are lower bounds for 5, 7, 9, 11, 13 and 15 GeV dark
matters, respectively. The dark matter particle is assumed to be Dirac fermion and
gp is assumed to be 1 for solid curves and 3 for dashed curves. The thick black line

shows the observed value of the relic abundance of dark matter.
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4.5.2 Combining Relic Abundance with Direct Detections

4.5.2.1 7' mediator

For heavy mediator cases (M2, > 4M3), from Table 4.4, to generate the ob-
served relic abundance, the dominant coupling between Z’ and dark matter particle
can only be like Z foy“x. Therefore, if there is no Parity violation in the coupling,
the interaction between nuclei and dark matter is spin-independent in the direct
detection experiments. If the reported CoGeNT result is generated by collisions
between dark matter and nuclei, one can calculate the range of Mz /\/gpgz/, and
then one can calculate the lower bound of the relic abundance.

A complication occurs when we are trying to calculate the relic abundance that
7' can also couple to leptons. However, if this is the case, the couplings between 2’
and the SM particles suffer stringent constraint from LEP [74] as well as Tevatron
with leptonic final states [75]. If Mz > 209 GeV, the LEP constraint on leptonic
coupling of Z’ model can be written as

M
—Z 562z TeV (4.25)
9z

where x is the parameter in Lagrangian
Lz =gz (B—zLyyy"vZ, (4.26)

where 1) labels SM fermions, B and L are baryon and lepton numbers, respectively.
Whereas if the Mz < 209 GeV, the coupling between Z’' and leptons should be
smaller than or of order 10~2. In this model, constraint from thermal relic abundance
and CoGeNT is shown in Fig. 4.31, where 5, 7, 9, 11, 13, 15 GeV dark matter masses
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are considered, with = calculated from Eq. 4.25. One can see that a tension exists
between direct detection experiments and thermal relic abundance. Therefore, to
satisfy the relic abundance and direct detection at the same time, parity violation
in the coupling between Z’ and SM quarks must be introduced. The Lagrangian

can be written as
L= gpZ, XX + 92/ Z,,q7" (cos O + sin 0vs5)q . (4.27)

From Tables 4.2 and 4.3, we can see that the parity-odd part generates a SD&MD
interaction, and the direct detection cross section is suppressed by v? ~ 107, also,
compared with SI interaction, the cross section between dark matter particle and
nuclei is suppressed further at least by a factor of 1072. Therefore, as long as
tan?# < 108, the contribution from parity-odd part to direct detection signal is
negligible. The lower bound on tan 6 for different masses is shown in Fig. 4.32, where
we can see that in the context of Z’ mediator if CoGeNT signal is induced by dark
matter, the coupling between Z’ and quarks is axial-vector like. From XENON100
constraint, we can also see that if the coupling between quarks and Z’ is axial-vector
like for relatively heavy dark matter. In this case, the axial-vector coupling between
7' and quarks can induce non-vanishing gauge anomaly. Therefore, spectator fields
must be introduced so that anomaly can be canceled. According to Ref. [94], for an
anomalous Abelian gauge theory in four dimensions there is a fundamental cut-off,
which can be written as
6473

A< ‘gz—/F’MZ/ , (428)

which can be seen as the upper bound of the mass of the mediator. Therefore, in
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our case, this bound cannot be reached by Tevatron.

(a) (b) (c)
Figure 4.31: Z’ mediator, no Parity-violation or CP-violation, no coupling to lep-
tons, universally couple to quarks. The red, orange, yellow, green, blue, purple lines
are for 5, 7,9, 11, 13, 15 GeV dark matter particles, respectively. Plot (a) shows the
relic abundance as a function of Mz /,/gz/gp, the thick red line shows the observed
thermal relic abundance of cold dark matter. Plot (b) shows the spin-independent
WIMP-nucleon cross section as a function of the same combination, and the region
between the two red thick straight lines is the region favored by CoGeNT. The dif-
ference from the above plots is that, here the leptonic channels are opened in the
context of B — xL scenario, and the bound in z is calculated from Eq. (4.25). The
horizontal lines in (c) show the XENON100 constraints for different dark matter

masses.

4.5.2.2 H' mediator with fermion dark matter

In the case of H' mediator, the leading interaction is SI&MD, and for Mz > 80
GeV, the collider constraint on direct detection cross section is about 3 x 10™*3 cm?
as shown in Fig. 4.18, which is much lower than XENON100 bound. However, if
CoGeNT signal is due to dark matter collision, in this case, the SI&MI channel must
be opened, but its contribution to thermal annihilation must be dominated over by
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Figure 4.32: Lower bound on Parity-violating angle in Z’ model from relic abundance
and direct detection experiments. The blue curve is the lower bound constrained by
XENON100 and the region enclosed in the red dashed curve is the region favored

by CoGeNT.

the contribution from SI&MD interaction. In order to generate CoGeN'T signal and

correct relic abundance, the Lagrangian should be written as

L = X(9p + igps75)X (4.29)

with gD/gDB ~ 1073.

4.5.3 Tension between Relic Abundance and FCNC

In the above discussion, the coupling between Z' or H' is assumed to be
universal to all families of quarks, so that there is no flavor changing neutral current
(FCNC) issue in the case of Z’ mediator. However, in the case of H' mediator, even

in this universal coupling case, after the diagonalization of quark masses, tree-level

FCNC is difficult to be avoided.
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In SM, the Yukawa coupling can be written as
Lyuawa = —QYy Hu — QYpHd | (4.30)

where H is the Higgs boson in SM and the H = —ioyH*, Q, u and d are quark

fields in flavor eigenstates. Rotating quarks into mass eigenstates, we can get that
L R L R
UL—>VU ur, , uR—>Vu UR , dL—>Vd dr, , dR—>Vd dR , (431)

where (u,d)r g are chiral quarks. The Cabibbo-Kobayashi-Maskawa (CKM) matrix

is given by
Verew = VEVE (4.32)
which can be parameterized as
1—X2/2 A AX3(p — in)
Voru = — 1—A2/2 A2 , (4.33)
AN(1—p—in) —AN 1

where A\ = 0.22 is sin f¢- and ¢ is the Cabibbo angle, other parameters are order one.
All the known information of the quark rotations are involved in Vg, however,
to avoid large fine-tuning, the off-diagonal elements of VI and V' should be of the
same order of Vogas.

On the other hand, mass differences of neutral meson systems are well-measured
and can be used to constrain new FCNC contributions. In the case of H' mediator,

the relevant Lagrangian can be written as

2 2
g , ’ ’
LENC = _WH%I, <aqu qrqp + a’%f qRq’L) +h.c. , (4.34)
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where ¢ and ¢’ are different quarks with the same charge of electromagnetic inter-
action. Whereas in the case of Z’ mediator, the corresponding Lagrangian can be
written as

2 2

g / ’_ ’

LEONC = —ﬁ (a%q Qg + a% qR%qﬂg) +h.c. . (4.35)
Z/

In the case of K — KO system, since the SM calculation suffers from a large
uncertainty from long-distance contribution, we are using the criteria that the con-
tribution from new physics should not exceed the experimental value. Therefore,

we can get that

ds
I 5 1077 GeV . (4.36)
Mz

In the same way, we can get the constraint from D® — D system, that

g (Z/)auc

<5x1077 GeV . 4.37
MH/(Z/) ( )
In the case of By and B, systems, the contribution from beyond SM physics can be

as large as 20% of the mass differences with running into conflict with the present

SM calculations. Therefore we can get the constraints

gi(2) qdb (2, b

<107% GeV7t,

<5x107% GeV!. 4.38
MH/(Z/) MH/(Z/) ( )

4.5.3.1 H' with fermion dark matter

where gps is fixed to 1. Therefore, then one can get the bound on the constraint
of the off-diagonal elements that
In the case of H' mediator with fermion dark matter, to get the correct relic

abundance, in the case of universal coupling between H' and quarks, one can get

158



that

N 15 GeV'\ /2
Jg\;’H?D >1.5% 1073 GeV™! ( M; ) , (4.39)

Therefore, together with Eqs. (4.36), (4.37) and (4.38), one can get

B 100 GeV Mp
ds 10 3
@< I\ "3 15 Gev )

. (100 GeV Mp,
uc 2 1 3
o < 2x10 gD( Mo )(15 GeV) ’

100 GeV M

db -3 D

< 4x10

a4 % gD( Mg ><15 GeV) ’

100 GeV M
sb 2 x 1072 D . 4.40
A G v 15 GeV (4.40)

In the case of universal coupling between H' and quarks, after rotating the quarks

ds

to mass eigenstates, without fine-tuning, a* and a"“ should be at least around .

Therefore, we can see that there is a tension between the relic abundance and FCNC.

4.5.3.2 H' mediator with scalar dark matter

As discussed in Sec. V.A, if the relic abundance is enhanced by a factor of
(Mp//Mp)? due to that the coupling between H' and DM is dimension 1. Therefore,
as soon as the leptonic channel is opened, there should be no constraint from relic

abundance.

4.5.3.3 Z' non-universally coupled to quarks

In the above discussions, Z’ is assumed to be universally coupled to quarks. A
tension between relic abundance and direct detection if the coupling between dark

matter and Z’ is vector-like. However, if Z' couples only to the second and third
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generations of quarks, this constraint can be well alleviated. However, since the
Yukawa couplings in SM also violate flavor symmetry, the rotation of quarks from
flavor eigenstates to mass eigenstates induces off-diagonal couplings between Z’ and
the quarks, which are also strongly constrained from FCNC [95, 96].

The discussion is in parallel to the case of H' mediator. In the case that Z’
couples only to the second and third families of quarks, from the relic abundance

assuming hadronic channels dominate the thermal annihilation, we can get that

, 1 1/2
V]g\j 9D 15 %107 GeV ( > Gev) . (4.41)
zZ! D

Therefore, together with the FFC'NC' constraints on can get that

B 100 GeV Mp
ds 10 3
“s 9o\ "1, 15 Gev )

1 M
4 < 2><10_3gp( 00G€V>< D )

le 15 GeV
100 GeV M
o< 4% 1078 °
A G v 15 Gov )
100 GeV M
sb 2 % 1072 D . 4.42
o < 2x107%p (| — 15 GeV (4.42)

On the other hand, from quark rotation matrix, the off-diagonal elements can be

written as

arr ~ N, al ~ N, aP ~ A a3~ (4.43)

In this case, since the mixing in lepton sector is large [97], rotating leptons from
flavor eigenstates to mass eigenstates may generate a large coupling between Z’
and the first generation of leptons, therefore, the coupling between Z’ and leptons

may still suffer from stringent constraint from LEP. Therefore, generally, in this
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case the annihilation channel of dark matter is similar to the universal coupling
case. Following the same procedure as in the discussion of the case of H' mediator,
one can show that there is a strong tension between relic abundance and FCNC in
K° — K% and D° — DY systems as well.

If Z’ couples only to the third generation of SM fermions, from the relic abun-

dance and assuming DM dominantly annihilates to hadrons, we can get

/ ] 1/2
Vij 9D - 9% 107 GeV ( L GeV> . (4.44)
A D

Therefore, the constraints on off-diagonal matrix elements can be written as

100 GeV M

ds —4 D

< 5x10

“ . 9D< My ) <15 GeV) ’

100 GeV Mp
uc 1 -3
o < 10 gD( My ) (15 Ge\/) !

| M
at < 2><1o—3gD< OOGGV)( D )

MZ’ 15 GeV
_ 100 GeV Mp
sb 1072 . 4.45
“ < 0 gD ( MZ’ ) <15 GGV) ( )

On the other hand, after rotating quarks to mass eigenstates, we can get that
a" ~a®™ ~ N a® N et N2 (4.46)

We can see that the tension gets weakened in this case.

We need to note that the CKM matrix is related only to V¥ and V}, and
the structure of V.® and V' might be completely different from their lefthanded
counterparts. Therefore, the off-diagonal elements of the righthanded quark matrices
might be much smaller than the lefthanded ones, so that if Z’ couples only to

righthanded quarks the FCNC constraints can be avoided.
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4.6 Low Mass Mediator

4.6.1 Resonant Thermal Annihilation

In last Sec. V, we have seen that in Z’ mediator case, if the coupling between
dark matter and Z’ is vector-like, there is tension between relic abundance and direct
detection in heavy mediator case. However, if the mass of mediator is about twice
of DM, the annihilation of DM to SM particles is strongly enhanced. As shown in
the Fig. 4.33, the red, blue and green curves show relic abundance constraint on
the direct detection cross section between DM and nucleons. We can see that in
the resonant annihilation region, the tension between relic abundance and direct

detection can be alleviated.

4.6.2 Very Light Mediator

A sharp drop-down appears on the righthand side of each curve in Fig. 4.33

which is due to the newly opened annihilation channel of

Xy = 27" (4.47)

when M, approaches My, and the relic abundance cannot serve as a constraint
anymore.

As discussed in Sec. IV, in the heavy mediator region, there is a tension
between Tevatron constraint and the CoGeNT result for MD interactions due to
that the cross section predicted by MD interaction is much smaller than CoGeNT

favored region. However, there is no such a tension in the light mediator region due
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Figure 4.33: Z' mediator, the couplings between Z’ to both quarks and DM are
vector-like. The red, blue and green curves show the constraint from relic abundance
on direct detection cross section between DM and nucleons for 15, 20, and 30 GeV
Mz, respectively. The yellow region is favored by CoGeNT result. The solid black
curve shows the constraint from XENON100 result and the dashed black curve shows
the constraint from new XENON100 result which will be published soon assuming
the non WIMP events being found and the detecting power increased by a factor of

10.
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to that the mass in the denominator of the propagator is negligible.

The favored region of SD WIMP-nucleon cross section for CoGeNT is studied
in Ref. [98]: the favored WIMP mass range is from 5 GeV to 10 GeV, and the SD
cross section is about 10733 ~ 10732 ¢m? if WIMP only interacts with proton and
1073 ~ 1073* cm? if WIMP only interacts with neutron. Therefore, together with
the SI region, one can get the GoGeNT favored range of My for each interaction.
Generally, the value for My to fit the CoGeNT result for SI&MD&v* interaction
and SD&MD&w? interaction is about 0.1 ~ 1 GeV.

A subtlety occurs when one try to estimate My from a dipole interaction since
the dipole can be destroyed in the collider processes. In this case, one needs to first
get the collider constraint on gz gp from Fig. 4.6a and then translate the constraint

into the dipole coupling.

4.7 Summary

In this chapter we use Tevatron constraints, DM relic abundance, direct detec-
tion experiments as well as results from low energy flavor physics to study the param-
eter space of light DM with a mass around or smaller than 15 GeV. During the study
we concentrate on the s-channel Z’ and H' mediators. The Tevatron constraints can
be clearly separated into three parts, Myedgiator < 2Mpar, 2Mprr < Mipediator < M
and M cqitor > M,. In this chapter, we have concentrated on the first two cases,
whereas for the third case, the Tevatron constraint cannot be saturated in pertur-

bative region. In the first two cases, the dependance of the direct detection cross

164



section between DM and nucleon on gp can be factorized out, which makes the
analysis simpler. Combining the constraints from relic abundance and Tevatron,
one can see that the parameter space for 2Mpy; < Mz < M, is strongly limited,
whereas in the region My < 2Mp,s the dipole interactions become possible.

In the case of MD interactions, indeed, in the direct detection, the speed of
DM cannot be factorized out from the convolution of the differential detecting rate

which can be written as

dR pO Umax do. 3
= Np— d 4.4
dE, ~ " Mp / TACARROLAR (4.48)

where p is the local DM density in the solar system, f(v,v.) is the distribution of
DM velocity and v is the velocity with respect to the Earth, Np is the number
of target nuclei in the detector. vy, is the minimal energy can induce nuclear
recoil energy FE, and vy.y is the escape velocity in our galaxy. In the case MD
interaction, the dependence of do/dF, on v is different from in the case of MI
interaction. Therefore, the constraint from direct detection experiments will be
slightly changed. However, to make an order-of-magnitude estimation, we simply
factorize the additional velocity out and replace it with the average velocity which
is about 1073,

There are many details needed to be studied, like in the dipole interaction.
If the mass difference between x and Y’ is about a few keV, the collision between
DM and nuclei can be inelastic which would change the pattern of direct detection

signals and the Tevatron signal would be changed as well.
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Chapter 5

Discussions

In this thesis, we have discussed the low energy constraints on minimal left-
right symmetric model, the constraints from neutron EDM together with the indirect
CP-violation give the most stringent constraint on My, to date.

However, in many other cases, the constraint can be relaxed. For example, in
the case of the supersymmetric (SUSY) version of LRSM, the CP-violation pattern
is forced to be manifest so that the contribution to nEDM is much smaller than in
mLRSM. Furthermore, the contributions to AMg and € from SUSY box diagrams
by exchanging gluino or chargino fields can partially cancel with the major new
contribution from LRSM, and the lower bound on My, can be as low as around 2
TeV [67].

There is another kind of left-right symmetric model called the C version [99,
100]. In this model, the building blocks are the same as in mLRSM, however, instead
of impose Parity to the Lagrangian, in the C version, the Lagrangian is invariant

under the following transformation,

c . 9z (Qr)" (5.1)

d — o7

where (Qr)° is the charge conjugate of Q. In this case the Yukawa coupling ma-
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trices are required to be symmetric instead of hermitian as in the case of mLRSM.
Therefore, more phases are allowed in the Yukawa couplings, and there are param-
eter spaces that contributions to all the CP-violation observables can be canceled.
Therefore the most stringent constraint on My, still comes from the mass difference
between Ky and Kg, which is about 2.5 TeV.

In nEDM calculation, quark models have been used to calculate the hadronic
matrix elements. However, these models were invented to understand the mass
spectrum of the baryons which are not effective theories. A model good at one aspect
of phenomenology may not work in the other. Although the Feinberg-Weinberg-
Kabir theorem is employed to control the uncertainty, we still need an effective
theory, for example Lattice QCD, where the error bar can be systematically defined.

In mLRSM, from Ref. [3], we can see that the dominating part of the new
contribution to the direct CP-violation parameter ¢’ is also proportional to the
spontaneous CP phase a. Therefore, these is also a tension between the constraints
from € and €’. A detailed calculation of € can be found in Ref. [101]. However, the
constraint from nEDM is stronger.

The updated upper bound on the EDM of Hg atom [102] can also be used
to constrain the right handed scale in mLRSM. The EDM of a diamagnetic atom

such as Hg can be written as

ddia = ddia(s{ngN;dN];057CP70T7de> ) (52)

where S is the Schiff moment of the nucleus which depends on the P-odd and CP-

odd nucleon-pion couplings and the EDM of nucleons; d, is the EDM of electron;
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and Cg, Cp, Cr are Wilson coefficients of P-odd and CP-odd electron-nucleon four-
fermion operators [17]. Putting in the results of numerical studies, the EDM of Hg

can be written as

g = —(1.8 x 1074GeV eg y +1072d, 4 (3.5 x 107°GeV)eCY) | (5.3)

where gfrljzw is the P-odd and CP-odd isospin-vector nucleon-pion coupling, Céo)

is the Wilson coefficient of the operator €ivse NN. Of course, the isospin-scalar
and tensor parts also contribute to the Schiff moment, but they are numerically
suppressed according to the same reference.

The operator €ivse NN can be induced from four-fermion operators €ivseqq,
where ¢ labels light quarks. In mLRSM, this kind of operators cannot be generated
by integrating out a heavy gauge boson at tree-level since neutral currents never
violate CP whereas charged currents always violate flavor. Therefore, the leading
order contribution to this operator is from integrating out Higgs bosons. Further-
more, since in this model quarks only couple to the bi-doublet higgs whose vevs
induce the masses of the quarks and charged leptons. Therefore, the Wilson coeffi-
cient of this operator must be proportional to the mass of electron and the mass of
the light quark. Therefore, Cfgo) can be estimated as (mem,)/(TeV*) which is about
ten orders of magnitude smaller than the Wilson coefficient of the four-quark oper-
ators which is induced by integrating out the W-boson. Therefore, it is not difficult
to see that dy, generated by quo) is not as competitive as nEDM in mLRSM.

In mLRSM, the coupling between leptons and triplet Higgs bosons involve

new CP-violating parameters which complicates the calculation of electron EDM.
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Therefore, it is difficult to constrain the righthanded scale using electron EDM. If
we assume there is no cancelation between the contribution from the Schiff moment
and the contribution from the electron EDM, we can get a constraint on gf:}, n from

ng that

Gy <1071 (5.4)
The neutron EDM generated by 5779]3[ y can be estimated as [65]

_3g%y kne D+ F

~ (1) -1
dy ~ 5 1602 F ~ 0.3eg, ynGeV ™ . (5.5)

Then using the experimental upper bound dy < 2.9 x 10~2%¢ c¢m, one can get
erlz)wv <5x1077, (5.6)

Since the uncertainty of the hadronic matrix elements is about a factor of two, if we
assume there is no cancelation between the electron EDM contribution and the Schiff
moment contribution, we can say that the constraint from dy, is as competitive as
the constraint from dy. However, we also see that the constraint from neutron EDM
is cleaner since only two phases are involved and there is no way to cancel it after

the constraint from e is considered.
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Appendix A

Notations and Conventions

The metric tensor is defined as

10 0 O

» 0 -1 0 O

G =9 = D0 1o
0 0 0 -1

The Pauli matrices are defined as

o= (017 ) ’0'3) )

where

The Dirac Notation of the gamma matrices are defined as

1 0 0 & o 01
v = y= Y5 =iy Yy =

The left and right-handed projectors are defined as

Pr=(01-%)/2, Pr=(1+1)/2,

respectively.

The total symmetric tensor is defined as €”'23 = 1.
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Appendix B

Proof of the Completeness and Independence of Operators in yPT

The chiral operators in different irreducible representations are shown in Ta-
ble 2.4. We need to prove that the operators in each set are complete and indepen-
dent with each other. The proof is tedious and the outline is given in this Appendix.

The building blocks of these operators are EBE, €7 B&*, the spurions fields, U,
and UT. We need to use these building blocks to construct singlets of the the chiral
symmetry group. Since we consider only the tree-level matching, the operators
we need should contain one B, one B and exactly the same spurions as in the
corresponding quark operator.

The irreducible representation of SU(3) group can be constructed using Young
tableau. A good introduction to Young tableau can be found in Ref. [103]. To
construct a singlet of SU(3), each column of the Young-tableau needs to be filled
with three boxes. For example, if all the three boxes are filled by U, using the
total anti-symmetric properties of Young tableau, the constructed operator must be

proportional to

TP UIUI UF = det[U]e7% (B.1)

where €% is the total anti-symmetric tensor. Since U is an element of SU(3),

det[U] = 1. The corresponding Young-tableau is reduced. Therefore, the number
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of operators in each set of the group is finite. Using this method, the operators

(without the tilde) we can get are listed in the following,

Oz = iend An (EBEN(EBY), + hoc.
O3y = iTr[BB|Tr[AU] + h.c.
033 == ZTY[A&TBBfT] + h.c.

Osy = iTY[BETAE'B] + h.c.. (B.2)

O = iTH(EBENEBE), + h.c.
Oz = T3 (EBBEFUL + h.c.
Ogs = T (BT (EB)U; + hec.
Ogs = iTr[BB]T,i{UfU}—i—h.c.

Oes = i} e ULUT (£ BE), (1B + h.c.. (B.3)

kps
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i€)" (€BE)IEBEY UPRY 1S, + h.c.
i€ (EBEV(EBE)LULRE b, + h.c.

Ilmn
i€ (EBE(EBERUINT S, + h.c.
e (EBE)L(EBEY,UTAL B, + hc.
e (EBE(EBEUR Y, NS, + hc.
icimn, (€' BEN(ETBEN, UPRE S, + hec.
iejr (6T BEN (&1 BEN, USRS, b, + hoc.
i, (€1 BEN (1 BENLUP b, + hec.
ieir (67 BENL(E BENT,UMRE 1Y, + hec.
etk (€' BEN (& BENIUITRE, B, + hec.
iTe[BB|Tr[UThiUhs] + h.c.
iTr[¢"BBEh Uhy] + h.c.
iTr[BETh Uho&' B + h.c.
iTr[¢ BBERYUTh1] + h.c. O%5 = iTr[BER U hEB] + h.c.
iTr[€ BE h | Tr[€T BEhy] 4 h.c. OF, = iTr[¢' BEhy Tr[€BEYh, ]| + h.c.
iTr[€ BERLE T BEY M) + h.c.
iTr[TBETh €BERy) + h.c.
ierd(EBBE)IUFNL UTR,,, + h.c.

it (BET (EB)UL RS Uy, + hoc. (B.4)

29~ p
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where A, T, hy and hy are spurion fields for (3,3), (6,6), and (8, 8) representa-
tions, respectively. However, these operators are not independent with each other.

One can use the relation
egf;; ~ 5352’(5; + 53(55(57« + 536363’( — 53535; — 63(55651 — (53(525? , (B.5)

the number of operators can be reduced. First of all, by tedious calculation, it can
be shown that O} can be constructed by a linear combination of the other three
and Of can be constructed by the other four. Second, all the (8,8) operators can
be constructed by 0%, O%,, 0%;, O}, O%;, Of, OF., O%,0%,.

It turns out, however, the remaining nine (8, 8) operators still have a linear
relation. This can be seen in the following way. An important observation is that
all these nine operators can be constructed from four matrices, which are B, B,
EThi€ and EhyoéT. All these four fields transform as 8-representation of the unbroken
SU(3)y symmetry. However, the product of four 8-dimensional representations of

SU(3)y group gives only eight singlet rather than nine.
8X8x8x8=(1+8+8+10+10+27) x (1+8+8+10+10+27). (B.6)

Therefore, one of the nine operators can written as a linear combination of the other
eight.

Now, we have complete bases in each set. During the matching process in
Chapter 2, we have shown that the solution for the matching equations in each case
is unique. Therefore, the operators of each representation are complete and linearly

independent with each other.
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Appendix C
Discussions of the nEDM generated by #-term and the contribution

from 7’

In the case of -term, the Lagrangian of QCD is
LOD = L2 _ GMg — 0m., (wivsu + divsd + 5ivss), (C.1)

where m, is the reduce quark mass defined as m,mgm,(m,mq + maqms +mgm,) '

With the 6-term, the quark mass matrics can be redefined as

My, + 10m,
M = mg -+ 10m, . (C.2)
mg + 10m,
Just as before, the vev of U is assumed to have the form of Eq. (D.9). And the
potential of U is still can be written as in Eq. (D.8). In the case of small 0, it is
easy to see that a and [ should also be small, since they must be proportional to

0. The potential is

V = —F2?B (m, cos a + mgcos 3 + m, cos(a + B) + m.0(sina + sin B — sin(a + 3))) .

(C.3)
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Expanding over a and (3, we can get

V = —FT?B (mu +mg +mg — %muQQ — %mdﬁQ
—%ms(a + B2 +mb(a+ B — (a+ 5))) : (C.4)

Therefore, we can see that the terms including 6 canceled, which means the potential

is not depends on # and it is easy to see that the minimum happens at

a=p=0. (C.5)

Which means such a choice of # vacuum will not generate the vev of goldstone
bosons.
The #-term has exactly the same chiral properties as the quark mass matrix,

so we can combine them together. Therefore the spurion fields can be written as

M = M + diag(i@m., i0m., i0m..). (C.6)

Then, we can consider the leading order contribution of this spurion field to the
nucleon-pion Lagrangian in chiral perturbation theory. The relevant terms in yPT
are listed in Eqs. (2.45) and (2.46). In the presence of 6, the terms in Eq. (2.45)
generate a CP-odd pion-nucleon coupling which can be written as

46m,

™

(2 Tr[©BB] + ¢;Tr[BEB]) , (C.7)

which is independent of ¢; since the X is traceless. ¢, and c¢3 can be determined
by the mass differences of baryons. The terms in Eq. (2.46) in the leading order

generate CP-odd masses for baryons which can be written as

Qm*(dl + d2 + dg)TI'[BZ’}%B] y (CS)
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which term will turn the neutron magnetic dipole moment to the electric dipole
moment as discussed in Chapter 2.

There is one more subtlety that there is another meson field 7', which can
be annihilated by the 6 term. Therefore, it may have a vev, and generate new
contributions to CP-violating processes. Therefore, we should add 7’ in ¥ to get a

meson nonet,

1.0 1 1 L+ 1 pr+
3™+ o T v vz
= 11— 1 1 1 1 K
> 2t _§7T0+W§77+7677/ V2 " ' (C.9)
1 — 1 770 1 1.7
vl vl —v T

We know that the

<

(1) 4 symmetry is not only spontaneously broken by the quark
condensate and explicitly broken by the small quark masses, it is broken by the
chiral anomaly as well. Therefore, ' gets a unusual heavy mass. To realize the
chiral anomaly in the chiral perturbation theory, we can add a special mass term

for 1, which can be written as [§]

F?2a (i 2
Luay, = —I’rﬁc {5 [log(det U) — log(det UT)] } , (C.10)

where a can be related to vacuum susceptibility in the zero flavor case and N, is the

number of color. Then one can write down the potential of the neutral meson fields

V = —F’B {mu cos [(WO + %?7 + %n’)/ﬂr}

bmacos (=2 + o+ /B +mocos [ (= + Zoanye] |

_F2Bm.o {Sin {(WO + %n + %n') /Fﬂ]

+1si]1\1[{(—770 + %77 + %n’)/ﬂr} + sin [(—%ﬁ + %W')/Fw} }
LNy 2

+2Nca77 )

(C.11)
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where the last term is induced by the anomaly and in the Ny = N, = 3 case, a is
just the mass of 1. Since 6 is small, to get the vevs of meson fields one can expand

the sine and cosine to the second order in #, then, we can get

V = —F?B(m,+mg+my)

1 1 1
+§B(mu + md)7r02 + §B {g(mu +myg + 4m5)772}

112
+§ {gB(mu + mg +mg) + aﬂ n'?

1 2
(11— ma)7®n 4+ —=(my, — ma)xsf

V3 V6
+ (ﬁ(mu +mg) — %ms> 7777’]

+5 |

3 3
—V/6F,Bm. 0. (C.12)

We need to solve the minimum of the above potential to get the vevs of the meson

fields. With the help of MATHEMATICA, one can get

30BEmy(my, — mg)(1 — m./ms)
a (M, + mq)(a® + 6Bm,)
V30BF,m,(1 — 3m,/m,)
a? 4+ 6 Bm,
V60BF,m,

W)= oBm, (1

The vevs are of the same order of magnitude as § BF,m,/a?. Put the meson vevs

in Eq. (2.45), we can get

mqlBm,

e TiBBY] (C.14)

where ¢ is an order 1 parameter. Then, compared to the CP-odd vertex directly
induced by the 6-term. This contribution is suppressed by m,B/a?, which is just

the mass ratio between a usual pseudo-goldstone and the mass of 1’. Therefore, in
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the following, we will neglect the contribution of 7' condensate. 7’ also appears in
the CP-odd vertices and with an equal coupling to all the baryons. However, the
loop generated by 1’ has no large log therefore, we will not consider ' in future
discussion.

One interesting thing here is to consider the large N, limit, in which a? = 0.
Then, just like in the last section, a rotation of the baryon fields can kill all the
CP-odd effects in Eq.(C.7) and (C.8). Therefore, one can see that all the physical
effects must be multiplied by a factor of 1 — O(m?2 /a?). To be precise, the factor is

CL2

a? 4+ 2B(my +mg+my)

(C.15)
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Appendix D

Feinberg-Weinberg-Kabir theorem
In the case of two flavor quantum electrodynamics, the Lagrangian can be
written as
L= i Py =y mighityy (D.1)
ij ij
where D, = 0, — ieA,, A, is U(1) gauge field.
The theorem states that no flavor changing observed in this system. The
reason is that all these mixings can be absorbed into the redefinition of the fields.
In the context of the chiral perturbation theory, it can be restate as CP-odd
(3,3) two-quark operators cannot generate CP-violation observables, the reason is
that all these operators can be absorbed by redefinition of quark fields. In this
Appendix, we show this property explicitly.

The QCD Lagrangian without any CP-violating sources, can be written as
L9 = £fP —gMq (D.2)

where EOQCD is the massless part which is invariant under the chiral SU(3), x SU(3) g
transformation, and M = diag{m,, mg4,ms} is the mass matrix of light quarks,
which breaks the chiral symmetry explicitly. To introduce CP-violating two-quark

operator, let’s redefine the quark fields by the following transformation,
q = explivs0t°], (D.3)
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where 3 = \3/2 is the third generator of the SU(3) group. Therefore, the La-

grangian can be written as
LPlg) = £FP[¢'] —  explins0t* ] M explins0t’]q . (D.4)

One can separate the left and right part of the fermion fields and then the mass

term can be written as
_qj:MeQiHﬁq;% o q_;%./\/le_mtgqj: : (D.5)

where the fact that 3 commutes with M has been used. Therefore, the mass term
can be further written as
—q, My — @pM'q), (D.6)

where M = Me2#” Then M can be seen as a spurion field, transforms as a (3,3)
operator, From which one can construct the effective Lagrangian in xyPT.

In the meson sector, the leading order Lagrangian for meson fields can be
written as

1 1
L= ZFﬁTr[ﬁuUTﬁ“U] + 5EEBTr[MU +U'M], (D.7)

where U is defined in Chapter 2. Then, the potential up to leading order of the

quark mass can be written as
1
V(U) = —EF,fBTr[MTU +UTM] . (D.8)

Note that #3 commutes with the electromagnetic symmetry generator which is

diag{2/3,—1/3,—1/3}, so only the neutral fields can have a vev. Therefore, consid-
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ering that det U = 1, the vev of U can be written as

e
(U) = et (D.9)
e_i(a+5)
Then the potential of meson fields becomes
V = —F?B[m, cos( — a) + mgcos(f + B) + my cos(a + 3)]. (D.10)

From the potential one can seen that the two-flavor case is equivalent to m, — oo,
which set « = —f. And the minimum of the potential is at & = 6. In the three-flavor

case, one can get the following equations

my sin(a — 0) + mgsin(a+ 5) =0

mgsin(6 + 8) + mgsin(a+ 5) =0 (D.11)

The analytical solution is

a=0 B8=—90. (D.12)

Therefore, we can see that the CP-phases cause a non-vanishing vev of U, so that
U can be parameterized as

U= (U\U, (D.13)

and now the meson fields contained in U’ are physical fields, which means that they
have no vevs. After this reparametrization, the Lagrangian for meson fields can be
written as

1 1
L= ZFﬁTr[GMU’TG“U’] + 5FgBTr[/\/lU’ + U M]. (D.14)
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We can see that there is no CP-violation in the meson Lagrangian using the redefined
meson fields. Now let’s consider the baryon fields. The terms in the Lagrangian of
baryon terms can be put in two groups, the first group is only generated by £@¢P
which respects the chiral symmetry in the Lagrangian level, and the second group
has the contribution from the quark mass term and breaks the chiral symmetry
explicitly. Let’s have an example of the operators in the first group which can be

written, without loose of generality, as
01 = TH0,U(€' BeNo U (€' BeN), (D.15)

where ¢ = U'Y2. From the potential of U we found that U = (U)U’ and Ut =

U'N(U"). Therefore, O; becomes
0, = Te[o,U" (€1 BE U)o (¢ BN (U] (D.16)

Since ¢ = U2 we know that (¢) = (U)/2. Since generically, (U) does not commute
with U, it is very difficult to write down & in terms of U’. However, we can always

redefine the baryon field B to make that
{BE = (U)¢'B'E, (D.17)

where ¢ = U'Y/2, and B’ is a collection of physical baryon fields. From the above

relation one can easily get that
&Bet = ¢TBENU)!
§B¢ = (U)¢'BY¢
&Bet = ¢BENU)! (D.18)
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After this co-transformation of baryon fields, one can get
O, = Tr[9,U' (€T B'¢M)orU' (€T B'eM), (D.19)

from which one can say that O; is not bothered by the vev of U if one applies a
suitable co-transformation of B.
Now, let’s consider the terms in the breaking the chiral symmetry explicitly.

A typical operator in this group is
Oy = CyTr[MTEBBE] + CyTr[¢' BBET M| (D.20)

For the baryon field, we perform the above co-transformation, and it is easy to see

that
¢BBE = (U)E'B'B'¢ (D.21)
Therefore, we can get
Oy = Cy (Te[(MN(U))E'B'B'¢) + Tx[¢"B'B'¢N(U) T M]) . (D.22)
And it is easy to see that
MUY = (UM = M. (D.23)
Therefore,
Oy = CyTr[M(¢B'B'E + 1B B¢ (D.24)

from which one can see that there is no CP-violation in the redefined Lagrangian.
The redefinition of the meson field is by no doubt due to the meson condensate.
Therefore, in another way the meson condensate contribution cancels the direct

matching contribution so that there is no CP-violation observable in the system.
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