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ABSTRACT

The Jacobian and stiffness matrices of two types of novel, six-
DOF parallel minimanipulators are derived. A minimanipulator
consists of three incxtensible limbs, each of which is driven by
a two-DOT driver. Bilinear stepper motors are used as drivers
in the first type minimanipulator, whereas five-bar linkages are
used as drivers in the second type minimanipulator. All of
the minimanipulator actuators are base-mounted. Inextensible
limbs (and five-bar linkage drivers in the second type minimanip-
ulator) improve positional resolution and stiffness of the minima-
nipulators in certain directions. It is shown that, at the central
configuration, the stiffness matrix of the first type minimanip-
ulator can be diagonalized (decoupled). It is also shown that
the first type minimanipulator can be designed o possess direct
or torsional isotropic stiffness properties. Moreover, guidelines
for designing the drivers of the second type minimanipulator are
established.

1 INTRODUCTION

Parallel mechanisms have been used for applications in which
the requirements for accuracy, rigidity, and load-to-weight ratio
are more important than the need for a large workspace.

Stewart (1965) introduced his famous six-degree-of-freedom
(six-DOF) platform as a motion simulator, Recently, many re-
searchers have suggested the Stewart platform as a robot manip-
ulator (e.g., Hunt, 1983; Fichter, 1986). Other six-DOF parallel
manipulators have also been introduced and studied in the lit-
erature (e.g., Kohli et al., 1988; Hudgens and Tesar, 1988; Tsai
and Tahmasebi, 1991a).

Dualities of serial and parallel manipulators were demon-
strated by Waldron and Hunt (1987). For cxample, inverse kine-
matics of a serial manipulator is much more difficult than its
direct kinematics; whereas, for a parallel manipulator, the
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opposite is true. Closed-form solutions have been obtained for
direct kinematics of certain parallel manipulators (e.g., Griffis
and Duffy, 1989; Nanua et al., 1990; Innocenti and Parenti-
Castelli, 1990; Tahmasebi and Tsai, 1991).

Gosselin and Angeles (1988, 1989) considered isotropy of
the Jacobian matrix for design optimization of planar and spher-
ical three-DOF parallel manipulators. Arai et al. (1990) also
used the Jacobian matrix in optimal design of a six-DOF par-
allel manipulator. Stiffness matrices of parallel manipulators,
which are closely related to their Jacobian matrices, have been
studied by Kerr (1989) and Gosselin (1990).

A class of three-limbed, six-DOF parallel minimanipula-
tors were introduced by Tsai and Tahmasebi (1991a, 1991b)
to obtain high positioning resolution and high stiffness in fine-
manipulation opcrations.? In this paper, the Jacobian and stifl-
ness matrices are derived for the minimanipulators. In addition,
the Jacobian and stiffness matrices are used in establishing de-
sign guidelines for the minimanipulators.

2 DESCRIPTION OF THE MINIMANIPULATORS

Let subscript i in this section and the rest of this work represent
numbers 1, 2, and 3 in a cyclic manner. A minimanipulator
contains three inextensible limbs, P;R;, as shown in Figure 1.
The lower end of each limb is connected to a two-DOF planar
driver and can be moved freely on the base plate. The desired
minimanipulator motion is obtained by moving the lower ends
of its three limbs on its base plate. Two-DOF universal joints
connect the limbs to the moving platform. The lower ends of
the limbs are connected to the drivers through three more uni-
versal joints. Note that one of the axes of the upper universal
joint is collinear with the limb, while the other axis of the upper

universal joint as well as one of the axes of the lower universal
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Figure 1: Representation of a minimanipulator

joint are always perpendicular to the limb. This arrangement
1s kinematically equivalent to a limb with a spherical joint at
its lower end and a revolute joint at its upper end, as shown
in Iigure 2. In this paper, two types of minimanipulators are
studicd. The difference between Type 1 minimanipulators and
Type 2 minimanipulators is in their two-DOF drivers.

In the Type 1 minimanipulator, bidirectional linear step-
per motors (Yeaple, 1988) arc used as drivers. Such stepper
motors act as X-Y positioning tables, but their stators are base-
mounted.

In the Type 2 minimanipulator, simplified five-bar link-
age are used as drivers. Figure 3 shows drivers for the Type 2
minimanipulator. Point C; is the output point of a driver. At
point D;, there is an actuator on cach side of the base plate to
drive links D;A; and D;B;. The simplified five-bar drivers are
completely symmetric. That is

[0 = [ = « 0

AT =[BT = @

As a result, coordination betwecen actuator rotations can be
casily accomplished. Namely, angular displacement of an out-
put point C; is obtained by cqual actuator rotations, and its
radial displacement 1s obtained by equal and opposite actuator
rotations.

Inextensible limbs and simplified five-bar linkages (in the
Type 2 minimanipulator) are used to improve positional resolu-
tion and stiffness of a minimanipulator. Since the minimanipula-
tor actuators are base-mounted; higher payload capacity, smaller
actuator sizes, and lower power dissipation can be obtained. In
addition, to achieve cven load distribution, the minimanipula-
tors are made completely symmetric. Namely, both triangles
DyD2D3 and Py Py Ps are made equilateral and the joint axes at

Platform
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Output Point of a Two-DOF Driver

Figure 2: Kinematic equivalent of a limb

Figure 3. Simplified five-bar linkage drivers
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R, R, and R, are connected to drivers.

Figure 4: Kinematic equivalent of a minimanipulator

points Py, P;, and P; are made parallel to lines P, P5, P, P3, and
P, Py, respectively.

In addition to the drivers mentioned above, other two-
DOT mechanisms such as regular five-bar linkages, pantographs,
or X-Y positioning tables can also be used as drivers for a min-
imanipulator (Tsal and Tahmasebi, 1991a).

3 TYPE 1 MINIMANIPULATOR

In this section, expressions {or the Jacobian and stiffness matri-
ces of the Type 1 minimanipulator are derived.

3.1 Jacobian Analysis
First, let us define a fixed reference frame (XYZ) and a mov-
ing reference frame (UVW). As shown in Figure 3, the fixed {or
base) reference {rame is attached to the base. The origin of the
fixed reference frame (point O) is placed at the centroid of tri-
angle DD, D3. The positive X-axis is parallel to and points in
the direction of vector D, D5, The positive Y-axis points from
point O to point D;. The Z-axis is defined by the right-hand-
rule. The moving (or platform) refercnce frame is attached to
the platform. The origin of the moving reference frame (point
G) is placed at the centroid of triangle Py Py Py (sce Figure 4).
The positive U-axis is parallel to and points in the direction of
vector P, P3. The positive V-axis points from point O to point
P,. The W-axis is defined by the right-hand-rule.

In this paper, without loss of generality, we let Zp; = 0. If
Zp, > 0 for a minimanipulator, a simple transformation should
be applied to the coordinates of the points used in the following
derivations.

Referring to Figure 5, we can write the following vector
equation

OR; = 0G + GP; + P.R; (3)
Taking the time derivative of both sides of equation (3) with

Y IR Y &

!

Figure 5: Parameters used in Jacobian analysis

respect to the fixed reference frame yields

Pyt = PV 4 Bt x OF + Ba" x PR: (4)
where V and @ denote lincar and angular velocities, respectively.
The right superscript for a velocity vector stands for a point or
a rigid body, whereas the left superscript refers to a reference
frame in which the velocity is expressed. The base, the platform,
and limb P;R; reference frames (rigid bodies) are denoted by B,
P, and L, respectively. The terms rigid body and reference
frame are used interchangeably, because every rigid body can
be used as a reference frame and every reference frame can be
viewed as a massless rigid body (Kane and Levinson, 1985).
Angular velocity of limb PR; in the fixed reference frame can
be found from

BwL. — PU_.)L' + BGP (5)

As shown in Figure 5, let 7; be the angle from vector GP; to
vector P R; measured about a unit vector I'; which is collinear
with the axis of the revolute joint at point P; and points in the
direction of vector PigoPiyy. * Then

Eu—)L, — ﬁ{ri + BwP (6)

where 7; is the time-derivative of n;. Substituting the above

expression for B in equation (4}, and simplifying, we obtain

Byt _ BYS 4 BoP « GR; + nT: x PR )

The Z-component of By s equal to zero. Therefore, we can
conclude from the above equation that

oy

) R, + (Pof x GRY) - &,
o= - (

f{ X P,'R;) ‘T,

(8)

where @, is a unit vector in the Z-direction. Let

= ri x PR; (9)

2The subscripts are cyclic, with a cycle length of 3.



Then, equation (8) reduces to

B+G | N5
. fi,- Vo +(GR; x @,) BzF
hi=— (ﬂ' ) (10)

where p; , is the Z-component of the vector z;. Also, let

¢ _ Hiz o My
”i,r - '/: ) Ly Z
where p;, and p;, are the X and Y-components of vector f;,
respectively. Substituting equation (10) into equation (7), and
solving for the X-component of the resulting equation, we obtain
BVIRX = (ﬁz - /‘:’,xﬁZ) ' BVG +
(GR;: x 7)) — i (GRi x #1,)} - B (1)
where BVIR' is the X-component of vector BY™ and iz 1s a unit
vector in the X-direction. Similarly, we can obtain the following
equation
B R _ -\ B=G
v, = (ay— /‘:',y”l) SVt
(GR: x ) — i} (GR, x a,)] - o’ (12)

where BVyR' is the Y-component of vector By and iy 15 a unit
vector in the Y-direction.

Let us define the 6 x 1 twist vector of the platform (z) as
B=G
= Vv
T = { BP } (13)
If the 6 x 1 vector of velocity components at the lower ends of
the limbs (g) is given by
R BypRy ByRs ByRs BpRs Byl

G=[V 1% 1% vie Py v

y ? z (14)

z 3 z

Then, we can define the 6 x 6 Jacobian matrix (J) by

=15 (15)

E=iN

Referring to equations (11) and (12), we can express the Jaco-
bian matrix as

<]

(i — /L’I,zHZ)T [(m‘a X fig) = lull,z(ml— X ﬁZ)]T
(g — i) ((GT % 1) — 4o GT X )T
J= (ﬁr - f‘;,:’zZ)T [(GR2 X ﬁr) - :“;,:(GRZ X ﬁZ)}T (]6)
(y — 1) (G x o) — sy CF )T
(o~ pho2)" [(GRs % #iz) — py (GR3 x 71.)]T
( ) ) — WG x )]

o
jus
w

N:i

where superscript T denotes transpose.

Note that due to dualities of parallel and serial manipula-
tors (Waldron and Hunt, 1987), we have defined the Jacobian
matrix as the transformation which maps the Cartesian veloci-
ties to joint rates. This is a common practice among most re-
searchers who have studied parallel manipulators (e.g.; Gosselin

and Angeles, 1988, 1989; Gosselin, 1990; Aral et al., 1990).

3.2 Stiffness Analysis
From equation (15), we can conclude that

8q = Jbz an

where 6q and 6z represent infinitesimal displacements at the
lower ends of the limbs and at the center of the platform, re-
spectively. Equation (15) and the principle of virtual work can
be used to derive the following equation (Asada and Slotine,
1986).

F=1Tf (18)
where .
— [ Fe
F = [ Mp ] (19)
and

-f-=[f1,z» fl,yv f?,n f2,y1 f3,r1 f3,y]T (20)

Vectors Fp and Mp in equation (19) represent the force and
moment applied to the platform. Also, f;, and f;, in equation
(20) are the X and Y-components of the actuator force applied
at point R;. The actuator forces and displacements at the lower
ends of the limbs can be related by the following equation.

Tk (21)

where k is a 6 x 6 diagonal matrix whose elements have units of
force per unit length. Substituting equation (17) into equation
(21) and the resulting equation into equation (18), yields

F =J1"kJ6z (22)

If k represents the stiffness of each bilincar stepper motor (ac-
tuator) in the X and Y directions, then the diagonal elements
of k are all equal to k. Therefore, the stiffness matrix for the
platform (K) can be expressed as

K = kJ7J (23)

Note that K is a symmetric, positive semidefinite matrix. Ele-
ments of the lower triangular portion of K/k (K) are given in
Appendix A.

3.3 Central Stiffness Matrix

In this subsection, the stiffness matrix at the central configura-
tion of the minimanipulator workspace (central stiflness matrix)
will be derived. The central configuration is defined as the con-
figuration where

1. The platform is not rotated with respect to the base.

2. The centroid of triangle P, P, P; (platform) is directly on
top of the centroid of triangle D; Do D3, i.e. Xg = Yo =0.

Let IG—P.‘ = p. Also, at the central configuration , lct i@Tﬂ =y
and Zg = (. Using equations (16) and (23), the stiffness matrix
at the central configuration (KX*) is found to be

Kt =

B! 0 0 0 12’(”—'_3)& D]
0 1 0 %(:21)4 0 0

| O 0 (—{? 0 0 0
-
GE0 0 0 et
|0 0 0 0 0 v? |



It is desirable to eliminate the off-diagonal terms which couple
the forces (moments) applied along (about) the X and Y axes
to the rotations (translations) about (along) the Y and X axes,
respectively. Fortunately, this can be easily accomplished by

setting
v

p = 2 (25)
In other words, the platform (triangle Py P;P3) should be one-
half of triangle R, R, R; at the central configuration. The above
result is similar to that obtained by Kerr (1989) in designing
a Stewart-platform-based force and torque transducer. If the

condition expressed in the above equation is satisfied, then
C=r-p (26)

where 7 is the length of any limb. If equations (25) and (26)
are used to substitute for v and ( in cquation (24), matrix K*
reduces to

2 2V/.2
K =3k o (27)

The above equation can be used to determine the relative di-
mensions of the minimanipulator so that desirable characteris-
tics can be obtained. Note that dimension v (the independent
variable) can be determined from other requirements and con-
straints such as maximizing the workspace and the upper bound
on size of the basc plate.

For some applications, it may be desirable to maximize one
or more of the diagonal elements of K* (K7, I{5,,..., Kg,). For
other applications, the designer may be intcrested in isotropic
stiflness properties. Note that it is not possible to make all of the
diagonal stiffness terms equal to one another. However, it will
be shown that it is possible to obtain isotropic direct stiffness
or isotropic torsional stiffness.

To move the platform in the X or Y-direction, the lower
ends of all three limbs should also move in the X or Y-direction.
As a result, elements K], and K7, are constants. Element I3,
is proportional to tangent-squared of the angle between any of
the limbs and the base plane. The closer this angle to 90 degrecs,
the larger the direct stiffness in the Z-direction. Stiffness terms
K34, K7 4, and K5 are functions of two design variables (r and
p). However, K¢ is only dependent on variable p (circumradius
of the platform). This is related to the fact that in order to
rotate the platform about the Z-axis, the lower ends of the limbs
should move on a circle, which passes through them, in the same
direction and by an equal amount.

The first three diagonal terms of the K* matrix are direct
stiffness terms. Equation (27) shows that by setting

r=V2

we can obtain equal dircct stiffness values in the X,Y, and Z
directions. At this configuration, the angle between any of the
limbs and the base plane becomes equal to 45 degrees.

The last three diagonal terms of the K* matrix are tor-
sional stiffness terms. Referring to equation (27), we notice that
by setting

r=5p

Figure 6: Parameters used in velocity analysis of drivers

we can obtain equal torsional stiffness values in the X,Y, and Z
directions. At this configuration, the angle between any of the
limbs and the base plane becomes equal to 63.43 degrees.

4 TYPE 2 MINIMANIPULATOR

In this section, expressions for the Jacobian and stiffness matri-
ces of the Type 2 minimanipulator are derived.

4.1 Jacobian Analysis

Figure 6 shows a simplified five-bar driver. Let ¢; and ¢; (driver
input angles) be the angles from the positive X-axis to the vec-
tors D;B; and D;A,, respectively, measured about the positive
Z-axis. D;B; and D;A; are the input links of the driver and
vector D; X;; is parallel to the positive X-axis. In the following
analysis, we assume that ¢; > 0, (if ¢; < 6;, 360 degrees is added
to ¢;). In addition, only one branch of a driver is considered,
because the other branch can be realized only by disassembling
and reassembling the driver. From the driver gecometry, we can
write

lD;C;! = acos&; + beos; (28)
where §; is the angle of line D;C; with line D;B; or line D;A;
and 9; is the angle of line C;D; with line C;B; or line C;A;.
Applying the law of sines to triangle D;A;C}, we get
sind; sin{;

a b (29)

or

cos; = /1 — (a/b)?sin’ &; (30)

From equations (28} and (30), we conclude that

D.C; = [a cosé; + by/1 — (a/b)? sinﬁ"’_é;] T (31)

where 71, ; is a unit vector in the direction of vector D;C;.



Let ¥; be the angle from the positive X-axis to the vector
D.C;, mecasured about the positive Z-axis. Also, as shown in
Figure 6, let the unit vector #i;; be at 90 degrees to the unit
vector 1, ;, measured about the positive Z-axis. Taking the time-
derivative of both sides of equation (31), with respect to the fixed
reference frame, we obtain

{ oy ] _ A® [ g ] (32)

where A is a 2 x 2 diagonal matrix whose diagonal elements
are given by

U
|

b [(a/b) siné; + (a/b)zl—iiﬁ%} (33)

AY) b [(a /b)cos& + /1 — (a/b)? sin’ fe] (34)

and (BVS, BV,>) are the radial (in the fi,; direction) and tan-
gential (in the 72y; direction) components of the velocity of point
Ci. In addition, {; and t; denote time-derivatives of angles ;
and ¥y, respectively. Note that f‘ and ; are related to the input
speeds (0 and ¢ ) by the following linear relationships.

Pi = (i +0:)/2 (35)

&= (di—0:)/2 (36)
Equations (32) - {36) show that for a given b, the smaller the
ratio a/b, the higher the spced reduction (mechanical advantage)
of the driver in the radial direction.
Substituting equations (35) and (36) into equation (32),
and simplifying, we obtain

6.1 _[ =1 /A(; 1/af), 11 Bve (37
& 1alh 1748 By
We can also write
Py Cip S ][ BV
E‘/;C, - _Swi sz B%C‘ (38)

where (BVS, vac,) arc the components of the velocity of point
C; in the X and Y directions, respectively; Ci; = cosi);; and
Si; = sinth,. Equations (37) and (38) imply that

.. . B C‘
[ f; } =340 [ Biﬁc } (39)

where

Jm:[—Cl/)e/Aﬁ'l St/ AL —S¢/A +Cz/)/A(‘]
‘ Cpel 8] — 9/ AL, S/ AV, + Oy AL

40
Let 0 be the 6 x 1 vector of input joint rates, i.e. o
-5 = [dl, ¢31, dz, <152, da, ¢.3]T (41)

Since BVrR' = BVIC' and BV;R' = vac we can write
0 =Jaq (42)

where ¢ is defined in equation (14) and Jq is the 6 x 6 Jacobian
for the drivers which is given by

Jd(l) 0
Ja= 3@ (43)
0 Jd(3) )

The overall Jacobian for a Type 2 minimanipulator (.:F ) is
defined by .
§=3z - (44)
where T is defined in equation (13). Referring to equations (15)
and (42), we can see that

J=343 (45)

where J, which can be found from equation (16), represents
the Jacobian for the main portion (platform and limbs) of the
minimanipulator.

4.2 Stiffness Analysis
Equation (44) implies that

80 = 33z (46)
where 80 and 6z represent infinitesimal displacements of the
actuated joints and the platform, respectively. Let T be the
6 x 1 vector of input joint torques. Similar to equation (18), we
can write .

F=JTF (47)
where F is defined in equation (19). Input actuator torques and
displacements are related by

= kéo (48)
where k is a 6 x 6 diagonal matrix whose elements represent stiff-

ness of the actuators. Substituting equation (46) into ecquation
(48) and the resulting equation into equation (47), yields

F=J3"kisz {49)

The above equation and cquation (45) show that the stiffness
matrix for the platform (K) is given by

K= JTk] = 3714 kd4J (50)

5 DESIGN GUIDELINES

Based on the results of subsection 3.3, the following design
guidelines can be established for the Type 1 minimanipulator.

o The central stiffness matrix can be diagonalized {decou-
pled) by making the platform (triangle P, P,P3) one-half
the size of the triangle passing through the lower ends of
the limbs, i.e. p = v/2.

o If the central stiffness matrix is decoupled, then

— Direct stiffness isotropy can be obtained by making
the limb length cqual to v/2 times the circumradius
of the platform, i.e. r = /2p.

— Torsional stiffness isotropy can be obtained by mak-
ing the limb length equal to /5 times the circumra-
dius of the platform, i.e. r = v/5p.



— The larger the ratio of the limb length to the platform
circumradius (r/p), the larger the direct stiffness in
the Z-direction.

— For a given platform size, the larger the limb length,
the larger the torsional stiffness values in the X and
Y-directions.

— For a given limb length, the larger the platform size,
the smaller the torsional stiffness values in the X and
Y-directions, and the larger the torsional stiffness in
the Z-direction.

Note that a minimanipulator will be at or near the center of its
workspace during most of its operations. Therefore, establishing
design guidelines based on the central stiffness matrix is justified.

The main portion (platform and limbs) of the Type 2 min-
imanipulator is the same as that of the Type 1 minimanipulator.
Therefore, the above design guidelines can also be applied to the
Type 2 minimanipulator. In addition, based on the results of
subsection 4.1, the following design guideline can be established
for the five-bar drivers of the Type 2 minimanipulator.

o The smaller the ratio of the input link length to the output
link length of a driver (a/b), the higher the stiffness of the
minimanipulator.

6 SUMMARY

In this paper, the Jacobian and stiffness matrices of two types
of three-limbed, six-DOF paralle]l minimanipulators are derived.
It is shown that the stiffness matrix at the central configuration
of a Type 1 minimanipulator workspace can be decoupled, if
the platform size is made half of the size of the triangle passing
through the lower ends of the limbs. It is also shown that, at the
central configuration of a Type 1 minimanipulator, ratio of the
limb length to the platform circumradius must be equal to V2
(v/5) for obtaining dircct (torsional) stiffness isotropy. Finally,
guidelines for obtaining high stiffness values and for designing
drivers of the Type 2 minimanipulator are established.
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APPENDIX A - LOWER TRIANGULAR ELEMENTS
OF K

RKiy=3
K’Z,l =0
Ka2=3

o ! ’ !
K3n = ~pa =~ My x — Hix

7 ! !
“Hay ~Hay T Hiy

1t

];'3,2
o 2 2 2 2 2
Kag =y, +us +uhy" +pp, + ”/I'yz i
Koy =~ (Yas — Ya) =y (Yr2 = Yo) — th (YR — Ya)

Riz2=3%a ~phy (YRs — Ya) — by (Yr2 ~ Yg)—
#1y (Yr1 = Ya)

Kag= -ty [Zc — thy (Yrs — Yo)| - hy [Z6 — phy (YR2—
Ya)) -ty (26 — ihy (YR = Yo) + 4th,” (YRs — Yo )+
Hy (YR — Ya) +4h " (Yra ~ Ya)

Kia=(Zc — phy (Yrs — Yo )I’ + [Zo — thy (YR2 — Yo)I*+
[Zc — phy (Yra = Yo) + s (Yra — Ya)2+

ot (Yra = Ya)2 + 44" (Yri - Ya)?

sy =326 — it (Xg — Xra) = #hx (Xo ~ Xp2)—
iull,x (XG - XRJ)

Ksp=—ph, (Xc - Xra) = #hy (Xa — Xr2) — #1,y (Xa — Xr,1)

Ksp = ~phx[-2Z6 — #hx (Xa = X 3)] - s [~Za ~ hx (Xa—
Xr,2)] - /‘Il,x [-Zc - l“ll,x (Xa - XR'I)] + 4“,3,}'2 (X - XR.3)+
”Ilyz (X6 = Xn;2) + 1/1,y2 (Xg — XRr,1)

1‘{'5,4 = ”#'3,, (Xg ~ Xr3)[Za - #g,y (Yrs - Yg)] - .“'2,y (Xg=
Xr.2)[Z6 — 12y (Yr2 ~ Ya)] ~ 11y (X6 — Xra) [Zc—
iy (Yra = Y6)] = 34 (Yra = Ya) [-Za — p3x (Xa—
Xg3)] = #hx (YR2 — Ya) [~ Zc — g (X — Xr.2)]~
i (YR — Ya) [~Zc — ¢ x (Xc = Xrp1)]

Ks5=[~Zc — tih r (Xg ~ Xpa)l* + [~ Zc — phx (X& ~ X .2)}*+
[~Zc - i (Xe ~ Xp)]* + b, * (Xa — Xna)*+
" (Xa = Xra)? + 4, (Xa — Xp1)?

ffs,l =—Ygr3— Yrz2 - Yr1 +3Y¢
Ke2=Xp3+ Xr2 + Xr1 - 3Xg

Koz =—ph,(Ya— Yra) ~ ph. (Yo = Yr2) = i (Yo = YR1)—
Hay (Xr3 - Xa) ~ .y (Xr2 — X@) — py (Xr1 — Xa)

Kes= (Xp3 — Xa)[Za — #hy (Yr3 — Yo)] + (Xr,2 — Xa) [Za-
2y (YR = Yo)l + (Xr1 — X6) [Za — ¢y (Yr1 — Ya)l-
H3x(Ya — Yra) (Yrs — Yo) — uax(Yo - Yr2) (YR2—
Yg) ~ 1. (Yo = Yr1) (Yra ~ Ya)

Ko = (Yo = Yra)[-Zo — #ax (Xa — Xra)] + (Yo
Yr2)[~Za — phx (Xa — Xr2)] + (Yo ~ Yra) [-Za-
e (Xa = Xpa)] — 5, (Xo — Xra) (Xr3 — Xa)-
1oy (Xa — Xr2) (XR2 = Xa)~
#hy Xe — Xr1) (Xr1 — Xa)

Keg = (Yo = Yra)? + (Yo = Yr2)? + (Yo = Yri1)2+
(Xra — Xa)* + (Xr;2 —~ Xa)* + (Xra — Xe)?

where (Xg;, Yr;) are the (X, Y) coordinates of point R; and

(Xe, Yo, Z¢) are the coordinates of point G.









