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Autonomously navigating robots have long been a tough challenge facing engineers. 

The recent push to develop micro-aerial vehicles for practical military, civilian, and 

industrial use has added a significant power and time constraint to the challenge. In 

contrast, animals, from insects to humans, have been navigating successfully for 

millennia using a wide range of variants of the ultra-low-power computational system 

known as the brain.  For this reason, we look to biological systems to inspire a 

solution suitable for autonomously navigating micro-aerial vehicles. In this 

dissertation, the focus is on studying the neurobiological structures involved in 

mammalian spatial navigation. The mammalian brain areas widely believed to 

contribute directly to navigation tasks are the Head Direction Cells, Grid Cells and 

Place Cells found in the post-subiculum, the medial entorhinal cortex, and the 

hippocampus, respectively.  In addition to studying the neurobiological structures 



  

involved in navigation, we investigate various neural models that seek to explain the 

operation of these structures and adapt them to neuromorphic VLSI circuits and 

systems. We choose the neuromorphic approach for our systems because we are 

interested in understanding the interaction between the real-time, physical 

implementation of the algorithms and the real-world problem (robot and 

environment).  By utilizing both analog and asynchronous digital circuits to mimic 

similar computations in neural systems, we envision very low power VLSI 

implementations suitable for providing practical solutions for spatial navigation in 

micro-aerial vehicles. 
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the 32 possible locations around the ring. The plot shows the presence of some global 

attractors; for example, the bumps with initial center of mass near neurons 6, 7, 8, 9, 

and 10 eventually migrate to a centroid near neuron 9. The plot shows the two time 

intervals where the drift in the bump occurred; the first is the first 0.5 sec of 

operation; then another window after 2.5 seconds until 5 seconds, after 5 seconds we 

did not see any other drift in the bump location. A neuron # wrap-around was used for 

better visualization of the attractor basins. ................................................................. 88 
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Fig ‎4.14. Left panel, neural response spike rasters of the ring neurons to a constant 

input current with the global inhibitory neuron suppressed. Multiple bumps of activity 

are present. Right panel, response of the ring neurons to a constant input current with 

the global inhibitory neuron providing feedback. A single, synchronously firing group 

of neurons emerges. .................................................................................................... 91 

Fig ‎4.15. Each trace represents the centroid of the activity of a bump started at each of 

the 32 possible locations around the ring in the synchronized mode of operation. The 

plot shows that the bumps initiated at all locations are stable (i.e., no drift was 

detected during the course of operation).  The same neuron # wrap-around as in Fig. 

13 was used. ................................................................................................................ 92 

Fig ‎4.16. Activity bumps with variable widths of three, four, and five neurons wide. 

For the three neuron-wide bump, each neuron was connected to 10 others (four 

excitatory and six inhibitory). For the four neuron-wide bump each neuron was 

connected to 12 others (six excitatory and six inhibitory), and for the five neuron-

wide bump each neuron was connected to 14 others (eight excitatory and six 

inhibitory). .................................................................................................................. 95 

Fig ‎4.17. System data, for rotating the bump to the left with variable speed. ............ 96 

Fig ‎4.18. Moving the bump around the ring in both directions with variable rotation 

speed. The bump starts at rest. At 6.2 sec, the system is fed with an increasing 

leftward rotation velocity until it reaches a maximum of 153.2 deg / sec  at 10.4 sec. 

Starting from 14.8 sec, it is slowly brought back to a full stop at 16.6 sec. In the 

second part starting from 21.3 sec, an increasing right-ward rotation velocity is fed to 

the system until it reaches a maximum speed of 123.3 deg / sec at 22.3 sec. At 29.3 

sec, the rightward velocity signal is decreased slowly until the system reaches a rest at 

33.3 sec. ...................................................................................................................... 98 

Fig ‎4.19. The black, blue and green lines show the evolution head position as 

represented by the centroid of the bump of the activity as the system is driven to 

perform a 360   rotation around the ring using three different rotation speeds and the 

dotted gray lines show the expected head position if the same velocities were 

presented to a perfect velocity integrator system. ..................................................... 100 

Fig ‎4.20. The error in estimating the head position in degrees as coded for using our 

system vs. using a perfect integrator for the same three examples shown in Fig. 19.

................................................................................................................................... 100 

Fig ‎4.21. Resetting the Bump Location: Externally-provided stimulation input is 

shown in big black dots, spikes from the ring neurons are in gray dots and the 

inhibitory neuron spikes are in red along the top of the graph. ................................ 102 

Fig ‎4.22. Average spiking rates on the rotation chips and the corresponding speed 
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Fig ‎4.23. The average bump velocity measured in (Neurons per Sec.) as a function of 

average spiking rates on the rotation chips. The vertical bars represented one standard 

deviation from the average. ....................................................................................... 106 

Fig ‎5.1. A simple sonar transducer is mounted on a rotating platform from which the 

rotation velocity can be measured. The grey cone represents the effective field of 

view of the sonar. For simplicity in this demonstration, the targets are classified based 

on their radial distance from the head. ...................................................................... 109 

Fig ‎5.2.  System block diagram. The blocks enclosed in the dashed-line box are 

implemented in software and the other blocks are in hardware. The black arrows 

indicate predefined non-plastic synaptic connections, the arrows in grey show the 

plastic synaptic connections, and the white arrows indicate non  -plastic connections 

used as teacher signals to guide the learning process. .............................................. 110 

Fig ‎5.3. This figure shows the activity in the system when the HD estimate is aligned 

with the actual orientation in space.  The left panel shows a schematic for the arena 

with the targets as red circles. The black arrow represents the actual head position and 

the blue arrow is the position as estimated by the HDS. The center panel shows the 

HD and Conjunctive cells. Although in practice the HD system activates a contiguous 

group of four neurons when indicating a location, for simplicity we only show the 

activity of one cell active for each position on both networks. The right panel shows 

the Object and Expectation cells, the top cell (in red) is the “no object” cell and each 

of the bottom cells represents one of the four targets. (a) shows the case when the 

head is pointing towards target #1 and (b) shows the case when the head is not 

pointing towards any target. ...................................................................................... 117 

Fig ‎5.4. The system is disoriented. Based on the current HD estimate, the system was 

expecting to see object #4, however the live sensory data shows no target in sight. 119 

Fig ‎5.5. The system will reset. Based on the HD estimate of orientation, the system 

was not expecting to see a target, however, the sensory data show the presence of 

object #4. The system will reset the HD system to point toward the position of object 

#4. Note that the activity in the conjunctive cells reflect both the HDS’ estimate and 

the stored orientation................................................................................................. 119 

Fig ‎5.6. Left panel shows the results from an experiment with 2 targets present at (45˚ 

and 100˚), as the HDS drifts, spatial memories of the targets locations are used to 

reset it to the accurate head position. Right panel shows the case with no correction, 

the HDS’ estimate accumulates error with time with no means to correct it. .......... 120 

Fig ‎6.1. Response of 4 grid cells from the entorhinal cortex of a rat, modified from 

[19]. ........................................................................................................................... 123 

Fig ‎6.2. Two examples of interconnection weights for neuron at location (0, 0) on a 

2D sheet of neurons used to simulate grid cells activity. .......................................... 125 
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Fig ‎6.3. Firing rates (in Hz) of one simulated grid neuron over a virtual arena using 

the connection weights schemes shown in Fig ‎6.2, showing that the spatial frequency 

of the response grid changes by changing the width of the connection matrix for the 

neurons on the sheet. The neuron in the left panel is connected to its neighbors using 

the weight pattern shown in Fig ‎6.2 (left) and the one in the right panel uses the 

weights from Fig ‎6.2 (right panel). ........................................................................... 125 

Fig ‎6.4. Micrograph of the Grid Chip. The chip has an array of 16 x 16 analog pixels. 

Scanner circuits are used to select pixels, allowing the activity of each pixel to be read 

out in the form of AER pulses .................................................................................. 127 

Fig ‎6.5. Diagram showing the connectivity of one pixel. The 16 x 16 array is formed 

by tiling this pixel. Each pixel receives row and column select lines, is connected to 

each of its neighbors by six local signal lines two of which go through pFET diffusors 

(small shaded box), and shares a global output voltage line (Vmem). ..................... 127 

Fig ‎6.6.  Pixel Circuit. The pixel circuit consists of the central node (between  M13 

and M14) and four circuit blocks that implement the inhibitory and excitatory 

projection kernels and a readout circuit. ................................................................... 129 

Fig ‎6.7. Request generation. M25 provides the bias for the source-follower transistor 

in every pixel (M24 in Fig. 1). The voltage output from the selected pixel is buffered 

and compared to Vref_diff, to generate a Req_bar signal when the pixel voltage is 

higher than the spiking threshold. ............................................................................. 132 

Fig ‎6.8. Reset generation. The Ack_bar signal coming from the AER system pulls the 

Reset signal low.  The Reset signal can only be raised high by the rising edge of a 

new clk cycle as the scanner selects the next pixel. .................................................. 132 

Fig ‎6.9. Raster plot of 0.2 sec of activity recorded from the chip, this raster translates 

to the patterns shown in Fig 6.10. The rasters show pixels firing at different 

frequencies which create analog bumps of activity on the chip. .............................. 134 

Fig ‎6.10. Reconstructed grid cell circuit activity pattern on the chip at three different 

spatial frequencies. The brightness of the pixel represents the rate of spikes generated 

by the pixel (spikes/sec). ........................................................................................... 135 

Fig ‎6.11. Matlab generated response of a 16 x 1 array of pixels using the model of the 

interconnection on the chip for an impulse input at pixel 8. (a = 0.17, c = 0.25) ..... 139 

Fig ‎6.12. Matlab generated response of a 16 x 16  array of pixels using the model of 

the interconnection on the chip showing the emergence of grid-like patterns on the 

pixels (a = 0.17, b = 0.25) ......................................................................................... 139 

Fig ‎6.13. Condition Number results for the system of Equations described in (4) for 

the entire range of parameters of a and c. ................................................................. 140 
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Chapter 1 :  Introduction 

1.1   Introduction 

If an animal (e.g., a rat) is placed in a novel environment and is taught to search for 

food, we see the animal moving around and exploring the environment to achieve this 

task. During this exploration, it maintains a sense of its starting point (home location) 

and returns back home successfully after finishing its task. What capabilities are 

needed in an autonomous robot to perform the same task? 

In cognitive neuroscience, navigation is defined as the capability of planning 

and traveling along a path from the current position to a desired goal [1].  To 

accomplish this in a novel environment requires the following elements: 

 Sensing the external world via multiple sensory modalities (e.g., 

vision, audition, olfaction, touch) and sensing its internal state through 

other specialized internal sensory modalities (e.g., vestibular signals, 

proprioception, motor commands). 

 Using the collected information to adapt the behavior to achieve the 

goal. 

Reaching an interesting location (e.g., a food source), returning home, finding short-

cuts, and adopting efficient exploration strategies are all tasks that require spatial 

behavior and interaction with the environment. 

Approaching a visible target’s location is not difficult if it is in clear view and 

is uniquely identifiable (e.g. large red star). In this case, a simple target-guidance 

behavior can be used to do the task (taxon navigation) [2, 3]. Taxon navigation can be 
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understood as simple stimulus-response type of behavior. The agent associates a 

single motor response to a single stimulus (e.g. orients itself towards the stimulus and 

moves forward). Another type of navigation based on stimulus-response behavior is 

praxic navigation [3].  In this case, an agent moves towards a goal by executing a 

specific sequence of motor actions learned through prior training. This strategy is 

appropriate when the trajectory to the target is identified by a sequence of specific 

cues. Instead of single orienting responses as in taxon navigation, the agent must 

learn sequences of stimulus-action associations.  In more difficult (and more realistic) 

situations, target locations are either not directly identified by a specific cue (or 

sequences of cues) or are simply hidden with respect to the agent’s sensory 

capabilities.   

A third form of navigation is goal-oriented navigation or (locale navigation) 

[3-5], which requires more complex spatial learning; the agent builds a representation 

of the environment, uses available sensory information to locate itself within this 

representation, and plans its next step to reach the goal. This type of representation is 

known as the cognitive map (Tolman, 1948) and is formed by linking available 

information about different locations in the environment (from sensors or 

proprioception) to build a unified representation for navigation. An agent behaving in 

this way is said to be performing a SLAM (Simultaneous Localization And Mapping) 

[6] behavior. This agent is able to explore new locations and create maps along the 

way. Moreover, it maintains an estimate of its position within this dynamically 

forming map. 
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All living creatures (e.g., desert ants, bees, rodents, monkeys, and humans) 

must navigate within their particular ecological niche and with their own unique 

senses and computational hardware. Is there a common theme in their navigation 

strategies?  

When looking for food, desert ants forage and walk along winding, indirect 

paths, however, to return home, they take a straight path to the home nest. 

Experiments with the ant species (Cataglyphis fortis) suggest that they perform a 

form of path integration by maintaining an estimate of the average of all directions in 

which they have moved, weighted by the distance moved in each direction and thus 

always have a homing vector pointing towards home [7]. Path integration, however, 

is a noisy computation and experimental results show that the further the ants forage, 

the larger the error they suffer in the homing vector.  Upon arriving to the expected 

nest site, if it is not found, they perform a systematic search to find their nest. 

 The honeybee is another example of an insect capable of foraging  for food 

over very long distances.  Typical distances of 2 to 3 Km have been observed with 

extreme trips up to 13.5 Km [8, 9]. There is considerable debate and modeling  [10].  

[10] on how they are able to navigate over such long distances.  At one extreme, some 

models of honeybee navigation are based on the local route concept; a combination of 

path integration and route-specific landmark memories. Landmark memories are not 

stored within a general map, but in temporal sequences, that mirror the order in which 

landmarks were encountered. On the other extreme, it has been hypothesized that 

honeybees can learn their environment and build a cognitive map that they can use to 
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navigate. Experimental results found thus far can be interpreted in light of both 

theories.  

The most extensively studied animals for spatial navigation are rats. The 

dominant experimental paradigm is to place the rat in one of three environments:  an 

open arena where it walks and searches for food pellets,  a “Morris water maze“ in 

which it swims to find (or remember the location of) a hidden platform, or runs along 

piecewise-linear T- or star-shaped mazes, while recording from a variety of neurons 

found in the hippocampal formation [15-18]. These experiments have demonstrated 

the presence of various types of cells in the hippocampal formation that respond to 

different aspects of navigational behavior: head direction cells that code for the 

animal’s head orientation in  space, grid cells that code (in a periodic way) for the 

animal’s 2-D displacement in the arena, and place cells that code for the animal’s 

position in space [11, 14, 19].  

The objective of this work is to study some of the neurophysiological 

mechanisms underlying spatial navigation behavior in mammals, focusing on the 

echolocating bat as our model organism. While there is a wealth of qualitative data 

about the spatial behavior of bats, however, very little data is available on the 

neurophysiology of the hippocampal formation in bats, however it has been shown in 

recent experiments that there are cells in the bat’s entorhinal cortex and hippocampus 

that behave in a very similar way to the grid cells and place cells of the rats [20-24]. 

We rely on the fact that bats are mammals and have brains very similar to the brains 

of rodents and therefore we adopt models based on the rodent literature in our work.  
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As our primary interest in spatial navigation stems from an interest in bat behavior, 

we adopt sonar as our main external sensory modality. 

1.2   Problem Overview 

 

The task of developing autonomously navigating systems (particularly those small 

and light enough to be mounted on micro-aerial vehicles) is still an open and very 

challenging problem. Successful solutions will likely be simple, power-efficient and 

able to adapt its behavior to unexpected changes in the environment, its own body 

and systems, and its goals. Many different technologies have been proposed for self-

localization in small autonomous vehicles, ranging from very advanced and complex 

(large infrastructure) technologies like GPS to pure Artificial Intelligence (AI) 

algorithms (e.g., dead reckoning) to biomimetic algorithms and hybrid techniques 

comprising the use of one or more of the previous methods.  

Although solutions using global-positioning satellites might seem straight-

forward, GPS receivers are rarely a complete solution for flying robots due to their 

power requirements and their reliance on satellite reception which limit their indoor 

operation.  In any case, GPS does not help with collision avoidance without current, 

detailed, and accurate maps that include everything a flying vehicle might encounter, 

static or dynamic. 

Traditional AI techniques for navigation are based on pre-specifying accurate 

internal models of the world which allow the agent to solve many tasks in a symbolic 

or logical fashion. Simple and accurate internal models of the world are, however, 

extremely hard to develop and most AI solutions are highly sensitive to errors in the 
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model [10].  In response to these drawbacks, a non-symbolic approach called 

behavior-based (or reflexive) robotics attempts to operate without much memory or 

prior assumption about the environment [25]. In this approach, the robot reacts to the 

complexity of the environment and builds its own minimal, functional representation 

of the world by means of its own experience and behavior using learning techniques.  

In most of these examples, robots extract just the information that is needed to solve 

the various tasks, producing fast, adaptive (but simple) behavior.  The principles for 

designing behavior-based robots are often inspired from basic behaviors observed in 

biological systems and from neurophysiologically-inspired learning mechanisms. 

Several behavior-based learning frameworks, such as reinforcement learning and 

evolutionary techniques, have successfully addressed the problem of designing 

adaptive systems to autonomously navigate in unpredictable real environments [26]. 

Most of these systems, however, are based on reactive behavior; agents learn to map 

incoming stimuli to actions to accomplish their tasks without building any internal 

spatial model of the environment. The behavior-based paradigm can thus be 

employed to capture the functions of a simple landmark-guidance system in 

biological agents, but do not scale up well to more complex navigation tasks. 

The issue of building an internal model of the world for autonomous 

navigation in mobile robotics has produced two principal approaches: the metric 

paradigm and the topological paradigm [4, 10].  

The metric paradigm aims to model the geometrical features of the world 

accurately [27]. One very popular and intuitive method is the occupancy-grid method.  

It employs a multidimensional (typically 2D or 3D) tessellation of space into cells, 
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where each cell stores a probabilistic estimate of its state. The state of each cell 

represents the probability of occupancy of the corresponding area of the world [28]. 

The agent must rely on the information gathered by its sensors to build its knowledge 

of the world and hence the occupancy grid. The task of estimating the world from 

sensory information depends heavily on the quality of the data provided by the 

robot’s sensors and is accordingly contaminated by noise in those sensors.  The 

probability of occupancy of each grid cell is computed and updated by the 

information provided from all sensors that have information about the corresponding 

part of space. As the occupancy grids reproduce the geometrical structure of the 

environment explicitly, they are easy to conceptualize and manipulate. On the other 

hand, this approach is limited by its spatial discretization and complexity of 

algorithms required to manage any non-uniform tiling scheme. Constructing 

occupancy grids can therefore be very expensive in terms of both memory and time 

[4]. To adequately model a complex environment, the resolution of the occupancy 

grid must be matched to the spatial resolution of relevant parts of the environment, 

which can require tremendous memory capacity and heavy computational loads [4].  

An important consideration for the implementation of this approach in fixed 

computational hardware is the a priori uncertainty about the size and resolution of 

memory needed for general navigation.  

Topological maps are more compact representations in which spatial 

relationships between relevant locations in the environment are modeled by means of 

a graph structure [29]. Accordingly, a map is a graph of nodes representing landmarks 

in the environment and links that represent topological adjacency.  In most cases, 
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precise metrical information about the links is not preserved and locations that are not 

visited are not represented.  For example, vision-based topological approaches learn 

the visual scenes associated with visited places in the environment. The perceptual 

decision that certain features in the space constitute a landmark is critical and 

dramatically affects the performance of the system. In some cases, landmarks are 

based on a sensory-based decision ( e.g. visual scenes of critical junctions in a maze 

environment), but in other algorithms nodes are simply locations that are spaced 

equally from each other [30]. Topological maps are chosen to be qualitative 

representations of the world, so that they are neither affected much by quantitative 

errors in metric information nor by “unexpected” complexities in the environment 

(i.e., changes in dimensionality, such as going up/down stairs in a building to another 

level).  Additionally, the complexity of the learned graph reflects the complexity of 

the observed world, leading to a more optimal use of time and memory resources.  

One limitation for this approach is its reliance on the perceptual systems of the robot 

(i.e., a place may not be recognized simply due to a change in orientation of the robot 

compared to the map-associated view. [4]. Compared to the occupancy grid approach, 

which can be very inefficient (since much of the grid will represent locations of 

indeterminate occupancy), the topological approach allocates its memory only to 

state-action trajectories that it has experienced.   

Because these two paradigms exhibit complementary strengths and 

weaknesses, several models have been put forth to integrate both representations into 

hybrid systems [31, 32].  So far, however, most of these systems are not as robust, 

flexible, or adaptable as the biological examples we strive to emulate [32]. 
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To provide a better solution for the problem, researchers have begun  adopting 

biologically-inspired models which directly emulate mammalian navigation abilities 

[4, 10]. To date, all of the modeling work that falls into this category have adopted 

biologically-inspired algorithms and have implemented them on general purpose PCs 

or special purpose digital hardware like FPGAs or DSPs. Although such solutions 

have benefited from biologically-inspired algorithms, the choice of digital hardware 

as the platform for implementation leads to systems that suffer from the following 

drawbacks: 

 While digital technology provides a computational environment that is 

very robust against noise and provides perfect matching between all 

computational units. These features allow noise-sensitive computational 

algorithms to operate successfully on digital circuitry. In neurobiology it is 

generally agreed that the computational elements (neurons) operate 

somewhat stochastically and suffer from noise both due to inherent 

mismatch and cross-talk from neighboring neurons. Despite this noisy 

environment, the neural circuitry in the brain functions properly, implying 

that neurobiological algorithms are very robust against noise. Similar to 

biological circuitry, analog circuits suffer from unpredictable mismatch 

between its elements; this feature forces the designer to confront the 

mismatch issue and develop solutions that will be biologically-plausible. 

 Power consumption is an important consideration if the objective is to 

build micro- aerial vehicles; digital circuits are known to use more power 

to obtain a large noise margin. , whereas neuromorphic analog hardware 
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examples commonly consume power around three to four orders of 

magnitude less than traditional approaches with digital circuits. 

Some neurophysiological data revealing the presence of structures in the brain 

that contribute to the SLAM behavior in mammals became available after the 

completion of this work and were not taken into account when designing these 

systems. 

In the work presented here, we target a biologically-realistic solution for the 

SLAM problem by adopting biologically-inspired computational algorithms and use 

neuromorphic analog VLSI circuits to construct the system. 

1.3  Thesis Overview 

 The thesis is organized as follows: in Chapter 2 we review the 

neurophysiological data from brain structures involved in spatial navigation. We then 

discuss various proposed models for these neural structures in Chapter 3. Chapter 4 

addresses our implementation of a neuromorphic head direction cell system. In 

Chapter 5 we discuss how sensory information can be linked with head direction 

information to correct for drift errors of the head direction cell system. In Chapter 6 

we discuss our implementation of a neuromorphic grid cell system. In Chapter 7 we 

discuss how grid cells can be used to create neuromorphic place cells. Finally, 

Chapter 8 concludes this work with a summary of the findings and proposed future 

directions for this work. 
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Chapter 2 :  Biological Background 

Space and how it is represented in the brain has been the focus of much research 

for many years. The discovery of place cells by John O’Keefe and colleagues in 1971 

[11] opened the door to understanding how the brain might provide this capability. 

Recording from the hippocampi of freely moving rats exploring an environment 

containing food, liquid and other objects,   they discovered neurons in which activity 

was correlated with the location of the rat in the environment.  These  “Place Cells” 

[11] fire only when the animal is in a specific region of the environment, the place 

field of the cell.  With neurons exhibiting spatially correlated activity, the 

hippocampus seemed to be a good structure for storing a map of space, a discovery 

that supported the theory proposed by Tolman in 1948 which suggested that rodents 

navigate using cognitive maps [33]. Since their discovery, the hippocampus and 

neighboring brain structures have been the subject of a huge body of research, leading 

to the discovery of other neurons which also show spatially-correlated activity, head 

direction cells and grid cells [12, 19]. In this chapter, we will review the 

neuroanatomy and neurophysiology of the main structures that have shown spatially-

correlated activity in the brain of the rat (i.e., Head Direction Cells, Grid Cells, and 

Place Cells). 

2.1  Head Direction Cell System  

Head Direction (HD) cells were first recorded by Ranck (1984) from the rat 

postsubiculum (poSC). They are a population of neurons that individually respond to 

different orientations of the animal’s head with respect to its environment.  

Subsequent studies have shown the presence of HD neurons in other areas of the 
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brain of the rat as well [14]. Furthermore, HD cells have been found in the brains of 

other mammals such as monkeys [34]. 

The latest neurophysiological data show the presence of HD cells in the 

following brain regions [14]: 

 The deep layers of the postsubiculum (poSC) [12]. 

 The laterodorsal nucleus (LDN) of the thalamus [35]. 

 The dorsal striatum (caudate nucleus) [36]. 

 The retrosplenial cortex (RsCX) [37]. 

 The anterodorsal nucleus (ADN) of the thalamus [38]. 

 The lateral mammillary nucleus (LMN) [39]. 

The dorsal tegmental nucleus (DTN) [14]. 

2.1.1 Neuroanatomy of Head Direction Cells 

While the functional relationship between the different brain areas containing 

HD cells is not fully known, the connectivity between some of the structures that are 

thought to participate in computing the HD signals are shown in Fig ‎2.1 [14]. Current 

theories suggest that cortical structures containing HD cells such as poSC, and RsCX 

mainly support allothetic-based orientation (information about the environment 

obtained through the location of the spatial cues; ‘Landmark Orientation’), whereas 

subcortical structures mostly support idiothetic-based orientation (based on self-

motion signals e.g. angular head velocity integration [40]). 
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Fig 2.1. HD system Connectivity. The top panel shows the location of different structures exhibiting HD 

responses in the rat’s brain (blue boxes) [14]. The bottom panel shows the functional interconnection between 

regions with HD cell and neighboring structures, shaded boxes denote regions that are known to contain HD 

cells. Abbreviations: AD, anterodorsal thalamus; DTN, dorsal tegmental nucleus; HIP, hippocampus; LMN, 

lateral mammillary nucleus; PoSC, postsubiculum; RsCX, retrosplenial cortex; CX,  cortex, modified from [40].  
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2.1.2 Neurophysiological Properties of Head Directional Cells 

The firing activity of a typical head direction cell is found to be maximal if the 

head of the rat is facing a certain orientation in the environment and drops as the head 

angle changes away from the preferred orientation. The firing rates of these cells vary 

as a function of the angle between the midline of the animal’s head and its preferred 

direction. The distribution of activity typically has a Gaussian shape with a peak at 

the preferred orientation [14, 41]. Fig ‎2.2 shows a response field for a HD cell. The 

width of the response field varies between the cells but it is usually on the order of 

60º - 90° [42].   

 

 

 

 

 

 

 

 

 

 

Topological Features:  Anatomical data show that head-direction cells are not 

topographically organized. That is, two distinct head-direction cells with neighboring 

preferred directions are not necessarily neighboring units within the network [12]. 

Fig 2.2. The receptive fields of 2 HD neurons from the rat postsubiculum, adapted from [14]. 
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Stability of Representation: One very important feature of HD cells is the stability 

and consistency of the representation; the difference between preferred directions of 

different HD cells remains constant, despite cue manipulation, disorientation of the 

animal, or exposure to different environments [43].  

2.1.3 Head Direction Cell Determinants: 

Allothetic vs. idiothetic cues: While compass-like, HD cells do not appear to be based 

on the Earth’s magnetic field; neurophysiological data show that HD cells can be 

controlled by salient cues in the environment [43].  The recorded neurophysiological 

data show that the activity of HD neurons is sensitive to allothetic cues; the rotation 

of cue cards on the walls of the environment results in a corresponding rotation in all 

of the HD cells’ preferred directions [14, 43]. The HD cells are also sensitive to 

idiothetic cues; if an animal enters an environment in complete darkness, the 

preferred-direction of the head-direction cells are carried forward from the previous 

environment, and they continue to show normal directional firing [3].                     

Angular head velocity: While head-direction cells are primarily correlated with the 

animal’s spatial orientation, the head angular velocity plays an important role in 

modulating the firing activity. Experiments show that most of the cells in the lateral 

mammillary nuclei (LMN) are strongly correlated with both head direction and 

angular velocity [39]. In contrast, the anterodorsal nucleus (AND) head-direction 

cells fire proportionally to the magnitude of the angular velocity and can shift their 

preferred direction as a function of the head velocity to anticipate the head direction 

[38, 44, 45]. 
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Direction of Head Rotation: In the postsubiculum (poSC), there are cells whose 

activity depends on the sign of the angular head velocity as well as the current head 

orientation.  For example, a cell tends to fire more if the head is facing a certain 

direction and rotating clock wise whereas anti-clockwise rotation result in little or no 

activity in the same cell [12, 41]. 

2.1.4 From Head Direction Cells to Navigation: 

HD cells are thought to participate in the computation required for spatial 

navigation because they maintain an ongoing estimate of the orientation of the animal 

in the environment. They use both allothetic and idiothetic information to maintain 

the estimate.  In total darkness, the HD cells’ preferred orientation suffers from drift 

[46].  This is hypothesized to occur because the data available in total darkness is 

only the angular head velocity and integrating this information to estimate the 

orientation may suffer from a variety of systematic errors and biases. If the lights are 

turned ON, however, the HD cells recover from any drifts and “reset” to their original 

preferred direction.  In addition to the HD cells described above, cells that anticipate 

the animal’s “future” direction have been discovered in the anterodorsal nucleus 

(AD).  During head turning, AD cells shift their preferred direction as if to temporally 

“anticipate” head directions by a time delay which has been found to be between 0ms 

and 100ms [14].  

Having these characteristics, the HD cells are important components for solving 

the navigation task since they maintain the current head orientation estimate by both 

integrating head velocity and by using sensory input to reset the preferred direction in 

case of drifts or conflicts. 
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2.2  Grid Cells 

 

In 2005 Hafting and his colleagues reported the presence of cells in the medial 

entorhinal cortex (MEC) of the rat that fire repeatedly as the animal explores the 

environment. These cells are organized in a way that each cell has a firing field 

organized as a hexagonal grid over the environment. These grids are independent of 

sensory cues in the environment and the firing is solely dependent on the rat being in 

one of the response fields of the cell. They named these cells grid cells [19]. This 

discovery was striking because these so-called “grid cells” provide a good candidate 

for path integration circuitry that feeds the hippocampal formation. The regular nature 

of the activity distribution was verified by spatial autocorrelation analyses, which for 

all cells showed a tessellating pattern similar to that of the original rate maps. Fig ‎2.3 

shows the trajectory maps, rate maps, and spatial autocorrelograms of cells recorded 

from the MEC [19]. 

 Grid Structure: The geometrical structure of the grid firing field is a regular 

hexagon; the central peak of the autocorrelorgram of the firing of a single cell 

surrounded by six equidistant peaks forming the vertices of a regular hexagon. 

 Within each firing grid, the distance from the central peak of the 

autocorrelogram to the nearest six peaks is nearly constant. 

 Hexagons of equidistant firing peaks were formed at multiples of the distance 

to the nearest hexagon, implying that the pattern was regular across the entire 

field. 

 The angular separation of the vertices of the inner hexagon was in multiples of 

60 degrees 
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 The locations of the grid vertices are stable across multiple recording trials 

If the environment gets expanded, the number of activity nodes increases, but the 

density remains constant [19, 47]. 

Grid Topographical Organization:  The grid fields of neighboring neurons share a 

number of metric properties (e.g. spacing, orientation, and field size), however, some 

of these features varied for cells at different layers in the MEC; the spatial frequency 

of the grid increases going from the ventral to the dorsal axis of the MEC [47]. 

Grid Development in Novel Environments: In novel environments, the grid patterns 

form and stabilize rapidly, as first as the first passage through the field. This suggests 

that the grid patterns are based on pre-existing network mechanisms [47]. 

 

 

 

 

 

 

 

 

 

 

 

 Fig 2.3: Grid Cells, Trajectory maps (left), rate maps (middle) and spatial autocorrelograms (right) for three cells 

recorded from the MEC. The peak firing rate for each cell is indicated from [19]. 
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2.3  Place Cells 

In the following sections we will review the main features of place cells, showing 

their anatomical and physiological characteristics and describing the main theories for 

their functionality. We will then discuss the grid cell system and how previous 

models have been adapted to explain their relationship to the cognitive map theory. 

2.3.1 Neuroanatomy 

Location-sensitive neurons have been discovered in the following brain areas 

of freely-moving rats: 

 The hippocampus (DG and CA1 – CA3) [11, 48]. 

 The entorhinal cortex (EC) [49]. 

 The subicular structure (Subiculum, Parasubiculum, Presubiculum) [50]. 

Extensive study of these areas led to the discovery of place cells and grid 

cells. To characterize their basic functionalities, it is important to study their 

anatomical interconnections. Fig ‎2.4 is a simplified representation of the mutual 

projections between these areas. 

The hippocampal formation contains the hippocampus, the entorhinal cortex (EC), 

the subiculum (SC), the parasubiculum (paSC), and the presubiculum (prSC), whose 

dorsal part forms the postsubiculum (poSC). The hippocampus includes the dentate 

gyrus (DG) and the hippocampus proper (or cornu ammonis CA) made of 4 

subregions CA1 - CA4, but CA1 and CA3 are the most distinguishable areas [51]. 
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Fig 2.4. Anatomical interconnections between the different structures in the hippocampal formation.  EC: 

entorhinal cortex, DG: dentate gyrus, SC: subiculum, paSC: parasubiculum, prSC: presubiculum, the 

hippocampus proper consists of the DG and CA3-CA1 areas (shaded area). The hippocampal intrinsic loop is 

shown in bold: EC → DG → CA3 → CA1 → SC → EC adapted from [4].   
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2.3.1.1  The Hippocampal Formation 

Hippocampal afferents: Two major inputs enter the structure [51]:  

 The perforant pathway carries highly processed multimodal sensory 

information coming from neocortical areas projecting through the EC.  

 The fornix fiber bundle carries signals from subcortical areas (the thalamus, 

the hypothalamus, the brainstem, and the amygdala) to the hippocampus.  It is 

thought that this input carries arousal and emotional information which 

modulate the ensemble hippocampal activity and seem to be responsible for 

generating the hippocampal theta rhythm.  

Intrinsic hippocampal circuit [51, 52]: The propagation of neocortical inputs through 

the hippocampal formation is believed to be the main processing pathway in this 

structure:  

 The highly processed information from neocortical areas reaches the 

entorhinal cortex which project to DG granule cells, CA3 and CA1, and the 

subiculum. Furthermore, EC exhibits intrinsic connections. 

 The DG sends efferents to CA3 via the mossy fibers, these projections are 

very selective: each granule cell projects approximately onto about 14 CA3 

cells only. The DG has also intrinsic projections. 

 CA3 cells form a dense recurrent network through the Shaffer collaterals. 

Moreover, they send projections onto CA1 and the subiculum. 

 CA1 neurons send their output to entorhinal as well as subicular cells via the 

angular bundle. 

 SC projects onto the entorhinal cortex. 
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The hippocampal circuit has been approximated by a simple feed-forward loop 

known as the trisynaptic loop [51]; information enters the loop via EC, proceeds 

towards the DG, then to CA3 and CA1, and finally arrives at SC which closes the 

loop by projecting back to the EC. 

Hippocampal efferents [51]: The subiculum provides the main output of the 

hippocampal formation by projecting to the deep layers of the entorhinal cortex 

(dEC). From dEC, information is sent to a variety of cortical areas. It is important to 

note that the CA3 and CA1 regions also send an output directly to subcortical areas.  

2.3.1.2  The Entorhinal Cortex 

The entorhinal cortex EC is considered to be the main “cortical gate” of the 

hippocampal formation; it receives sensory signals from the neocortex and conveys 

this information to the hippocampus via the perforant path. It is a six-layered structure 

divided into superficial (sEC), layers I, II, and III, and deep (dEC), layers IV, V, and 

VI. In rats, there is also a distinction between the lateral (LEC) and the medial (MEC) 

areas of the entorhinal cortex [51]. 

EC afferents [49, 51]:  

 Afferents to sEC are thought to form the main source for the information that 

enters the hippocampus. An important cortical input to sEC is via the 

perirhinal (peRH) and parahippocampal (paHI) cortices, carrying information 

from most of the associative areas (visual, auditory, and somatosensory), as 

well as from the parietal, temporal, frontal, and retrosplenial lobes. Another 

major input to the rodent sEC comes from the olfactory system. 
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 The dEC receives cortical afferents from the limbic system, the retrosplenial 

cortex (which projects almost exclusively onto MEC), and from the frontal 

cortex. The role of this input on the hippocampal formation activity is not yet 

clear. 

EC efferents [49]: The entorhinal cortex projects mainly to perirhinal (peRH), 

infralimbic, prelimbic, orbitofrontal, and olfactory cortices. Secondary EC projections 

reach the temporal, frontal, retrosplenial, occipital, and parietal regions.  

EC hippocampal afferents [51]: The EC receives input from CA1 as well as SC, 

especially layers I – III of the MEC. Another important input to sEC comes from 

presubicular and parasubicular cortices. 

 EC hippocampal efferents [51]: The EC projects to the hippocampus via the 

perforant path that arises from the superficial layers. Layer II mainly synapse onto the 

dentate gyrus and CA3, but also sends projections to the subiculum SC. Layer III 

primarily projects to CA1 and SC. EC sends also a (weak) output to the presubicular 

and parasubicular cortices. 

EC intrinsic projections [49]: Internal links connect the deep layers of the entorhinal 

cortex (dEC) to the superficial ones (sEC). In addition, the lateral entorhinal cortex 

(LEC) strongly projects to the medial entorhinal area (MEC). 

2.3.1.3  The Subicular Complex 

It consists of three principal subregions; the subiculum (SC), the presubiculum 

(prSC), and the parasubiculum (paSC). It is considered to provide the main output of 

the hippocampal formation back to the EC. Although it exhibits significant 
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connectivity with other areas, the processing role of this structure in the hippocampal 

circuit is still not clear [51]. 

Subicular afferents: SC receives input projections from CA1 and sEC. The 

presubiculum (prSC) receives afferents from the subiculum, the posterior parietal 

cortex, the temporal lobes, the retrosplenial cortex, the anterodorsal thalamic nucleus 

(ADN), the laterodorsal thalamic nucleus (LDN), and the lateral mammillary nuclei 

(LMN). The parasubiculum (paSC) is reached by projections from the subiculum, the 

presubiculum, and the retrosplenial cortex. 

Subicular efferents: prSC and paSC project to layers III and II of EC, respectively. SC 

projects to the LEC, MEC, prSC, paSC, the medial prefrontal cortex, the retrosplenial 

cortex, the septal complex, the nucleus accumbens (NA), the mammillary nuclei, the 

amygdala (AM), the hypothalamus, and the thalamic nuclei. 

2.3.2 Neurophysiological Properties of Place Cells 

The spatial plot of mean spiking rate of a place cell forms a two-dimensional 

place field in space with a peak firing frequency at some preferred location within the 

field, (usually in the center) and with smoothly falling off edges in all directions [5, 

11, 12, 16, 21, 47, 53, 54]. Fig ‎2.5  (left panel) shows the firing field of a place cell in 

addition to the trajectory of the rat in the arena. The right panel shows firing rate 

maps for the place fields of 4 CA1 cells recorded simultaneously with a tetrode in a 

freely moving rate exploring a square arena [47, 55]. The darkest regions indicate the 

areas in which the cells respond maximally. When the animal is visiting the white 

marked areas, the cells remained silent. Place cells tend to cover the environment 

densely and uniformly with highly overlapping place fields. As a consequence, space 
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coding may be achieved by taking into account the ensemble firing activity, rather 

than single cell activity. 

 

 

 

 

 

 

 

 

 

 

 

Many behavioral, neurophysiological, and neuroanatomical studies have been 

done since the discovery of place cells in 1971 to understand the space coding 

properties of hippocampal place cells, to study the effect of changes in the 

environment on the hippocampal representation, and to identify the specific 

functionality of different anatomical areas. The common experimental setup used is to 

record from neurons of the hippocampus of animals engaged in a navigation task (e.g. 

randomly exploring new environments or searching for food). Various environmental 

setups have been used in such experiments (e.g. water maze, cylindrical and 

rectangular arenas, T, Y, radial arm mazes) [15, 16, 54]. These experiments have 

produced a large amount of data that serves to show some insights about spatial 

(a) (b) 

Fig 2.5. Place Cells in the hippocampus: a) Spike locations (red) are superimposed on the animal’s trajectory in 

the recording enclosure (black), adapted from [47]. b)Firing rate maps of place fields from 4 CA1 cells, the peak 

firing rates vary between 4.8, 22.8 Hz.; adapted from [55]. 
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capabilities of rodents [3, 54]. There is general agreement that the hippocampus is 

involved in spatial behavior, however, there is no agreement on the specific role of 

the hippocampal formation.  Is it used only to represent and learn space [5] or it is 

involved in higher order episodic memory functions (many of which have space as an 

inherent constituent [3]). A review of some of the most relevant properties of the 

hippocampal place cells is presented below. 

2.3.3 Hippocampus’ Place Cells (DG, CA1, CA3) 

Place fields tuning shapes: A typical place field can be roughly approximated by a 

two-dimensional Gaussian with the peak representing the preferred location for the 

cell [55]. Cells coding for peripheral locations show crescent-shaped fields hugging 

the arena walls  

Place field formation: Establishing a place field representation in a novel 

environment takes a relatively short time; experiments show that it takes ~ 10 – 30 

minutes of exploration to generate stable place fields, some cells develop their firing 

fields quicker (a few minutes) than others (30 minutes). It has also been shown in 

some experiments that cells can exhibit place coding as robust on the first visit to 

their field as on subsequent visits, i.e. no experience was required to tune up their 

firing [56].  

Place field experience-dependent reshaping: As the animal experiences a route 

several times, CA1 cells tend to asymmetrically expand their (initially symmetric) 

field and to shift their field center backwards with respect to the rat’s direction of 

motion.  This place field expansion is related only to the experienced environment 
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and does not transfer to the other place fields formed by the same cells in different 

environments [57].  

Place field directionality: Experimental data shows that place cells have 

directionally-independent place fields; the firing activity does not depend on head 

direction when the animal randomly moves over two-dimensional, open 

environments. On the other hand, place cells have been shown to have directional 

place fields in experiments where the rat moves along fixed trajectories, such as on 

linear track mazes [54]. 

Place field distribution: CA3-CA1 firing fields tend to cover the whole environment 

uniformly, without differentiating areas with respect to their potential relevance (e.g., 

home or feeder location). A given place cell can have place fields in several but not 

all environments.   A very large number of cells participate in the representation of an 

environment and thus a dense population of highly overlapping place fields [5, 16] 

results. 

Place cells topological features:  

 CA3-CA1 place cells are not topographically organized, there is no 

relationship between the physical place field topology and the anatomical 

place cell arrangement; two cells coding for neighboring locations in space are 

not necessarily anatomically adjacent, in fact, they are most likely not 

adjacent [16]. 

 Experiments with recordings in different environments show that the spatial 

relationships between place cells and their place fields are not preserved 

across environments;  if two place cells have neighboring place fields in one 



 

 28 

 

environment, they may not have neighboring place fields in a different 

environment [54]. 

Place code replaying during sleep [58]: Recordings from the hippocampus of animals 

that were performing spatial tasks while they are sleeping show that: 

 Cells that were activated during the last session are more active during 

subsequent sleep episodes than others. 

 Cells with temporally correlated activity during the most recent sessions, 

exhibit correlated reactivation during sleep. 

2.3.4 Subicular Place Cells 

SC neurons, similar to the hippocampal ones, show spatially-dependent firing, 

however, their firing properties are different from hippocampal neurons; they have 

the property of maintaining a similar place field topology across distinct 

environments Fig ‎2.6 shows examples of 4 subicular place cells recorded in two 

different arenas [59]: 

 When recorded in two geometrically different arenas (e.g., a square box and a 

cylinder) with diverse visual cues (e.g., different wall colors), a typical cell in 

SC exhibits similar firing patterns (field location, firing rate, and field size) in 

the two recording chambers. For instance, if a cell codes for a location near 

the east wall of the cylinder, it will also respond maximally when the animal 

is at a location near to the east wall of the square box. 

 When recorded in two square environments of different size, a cell in the SC 

tends to show similar overall firing patterns such that its place field tends to 

expand or shrink to fit the size of the current environment. SC cells have 
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broader receptive fields than place cells in the hippocampus proper. 

Moreover, SC cells show directional tuning even in situations in which CA3-

CA1 do not (e.g., open-field spatial tasks). Also, subicular cell activity seems 

to be strongly modulated by self-motion information. 

 

 

 

 

 

 

 

 

 

2.3.5 Place Field Determinants 

Several studies have tried to identify what information controls place cell 

activity. Most experiments have been performed using visual stimuli, however, there 

is a hypothesis that the hippocampus does not rely on any one sensory modality and 

this is supported by experiments done on visually impaired animals or in complete 

darkness. The hypothesis is that the hippocampus tries to build an allocentric 

representation of the environment based on complimentary information from multiple 

sensory modalities [54, 60]. 

Fig 2.6 Subicular Place Cells recorded in two arenas, it is to note that the cells exhibit topologically related firing 

in both arenas, adopted from [59]. 
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Allothetic determinants: Neurophysiological data show that hippocampal place fields 

strongly depend on external sensory cues (e.g. visual landmarks in the arena). 

Rotating cues during the experiment often result in place field rotations.  

Idiothetic determinants: Despite their dependence on external sensory signals, place 

cells exhibit location selectivity in the absence of these cues. This suggests that 

hippocampal cells are also driven by internal movement-related signals, since these 

are the only available cues in the absence of sensory cues (i.e., environmental 

landmarks). A strong support for the idiothetic basis for place fields comes from 

experiments where: 

 Place cells have unchanged place fields after the lighting is switched off. 

 When the animal is introduced in the arena in complete darkness, place cells 

are established and subsequently persist after lighting is provided. 

2.3.6 The Theta Rhythm and Hippocampal Activity: 

The hippocampal EEG from rats exhibits a regular sinusoidal signal of 7 to 

12Hz called the theta rhythm during locomotion (e.g., walking, running, swimming, 

jumping), as well during passive locomotion of the animal, otherwise, the 

hippocampus shows a non-rhythmic pattern [17]. The theta rhythm is observed also 

during sensory scanning as well as in REM sleep. There exists a phase correlation 

between the theta rhythm and hippocampal place cell firing. As the animal goes 

through the place field of a cell on a linear path, the theta phase at which the cell 

discharges shifts systematically; every time the rat enters the field, the cell starts 

firing at the same phase late in the theta period, then as the  animal proceeds through 

the field, the firing tends to occur earlier and earlier in the cycle. This phase shift 
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phenomenon is termed phase precession and is believed to provide an estimate of the 

animal’s position inside the place field of the cell. DG, CA3 and CA1 cells all exhibit 

this phase precession [17]. Neuroanatomical results suggest that the medial septum 

might be involved in modulating temporal processing in the hippocampus. In 

particular, the cholinergic and GABA-ergic septal efferents seem to be responsible for 

driving the theta rhythm [61]. 

2.3.7 Hippocampal Synaptic Plasticity 

To accomplish its proposed role, the hippocampus has to provide rapid on-line 

learning and linking of spatio-temporal patterns extracted from its inputs. Activity-

dependent synaptic plasticity in the hippocampal formation offers a suitable 

neurochemical substrate for implementing associative learning [62]. 

Long-term potentiation (LTP):  is the general term used to describe the synaptic 

modification that is the basis of hippocampal learning. LTP is defined as a persistent 

potentiation of the synaptic efficacy that will persist for at least an hour, but can last 

for hours or days under certain conditions [62]. The most studied mechanism 

underlying synaptic, long-term potentiation is a NMDA-mediated LTP [63, 64]. It 

depends on the causal relationship of the presynaptic input spikes and the 

postsynaptic output spikes. If a spike from the presynaptic (input) neuron precedes a 

spike by the postsynaptic (output) neuron by a small time interval (milliseconds), the 

synaptic efficacy between these two neurons is increased. On the other hand, if the 

postsynaptic neuron precedes the presynaptic neuron, either the synapse is unchanged 

(no LTP) or long-term depression (LTD) occurs, i.e. the synapse efficacy is reduced. 
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Pharmacological studies support the idea that the hippocampal NMDA-

mediated LTP is relevant for spatial learning; blocking the NMDA receptors results in 

impaired spatial learning capabilities. Mice that have been genetically engineered to 

have deficient LTP exhibit unstable CA1 place fields between recording sessions and 

are severely impaired in learning spatial tasks like the water maze. Recently it has 

been proposed that NMDA-dependent hippocampal synaptic plasticity plays a more 

general role in episodic memory rather than merely providing a basis for spatial 

learning [62]. 

2.3.8 Memory Space or Space Memory? 

Although most of the literature on hippocampal activity comes from spatially-

dependent behavior, experiments in other animals have shown that it may be involved 

in more complex functions [3, 65]. 

Non-spatial place cell correlates: hippocampal cells have been studied in non-spatial 

tasks such as in odor and auditory discrimination experiments. Results show that the 

hippocampus is also involved in this kind of non-spatial process. Experimental data 

has shown the influence of the context on cell activity: a cell responding to a stimulus 

in a specific task, might not encode the same stimulus in a different context. The fact 

that place cells may be task-sensitive has been explicitly demonstrated by a series of 

experiments in which rats were trained to solve different tasks within the same 

environment[66]. In this experiment, the place field varied with the task (i.e., 

context). These findings indicate that the hippocampus might play a more general role 

than just being responsible for tagging a specific location in the environment; 

hippocampal cells might be involved in a more general class of memory (e.g., 
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episodic memory) related to perceptual, behavioral, and reward-related variables. 

Nevertheless, space might be the contextual framework necessary to encode and link 

such memories. 

2.3.9 Navigation: 

In this Chapter we reviewed the biological features of the brain structures 

known to be involved in spatial navigation, the head direction cells, the grid cells, and 

the hippocampal place cells. Our focus is to understand the neurobiology underlying 

spatial navigation to build a neuromorphic system to mimic that behavior and 

implement it on a behaving robot. Many hypotheses have been postulated to interpret 

the available biological data and arrange it into a unified theory for how the brain 

handles the task of spatial navigation. 

 The interpretation with the strongest evidence from neurobiological data is 

that the rodents are relying on a cognitive map-like navigation system. Their spatial 

navigation system relies on both idiothetic and allothetic information to behave. The 

information about orientation (from head direction cells), displacement (from the grid 

cells) and the available cues or landmarks in the environment (from the different 

sensory modalities) are used to create a unified sense of location in space represented 

by the place cells.  Navigation can be performed by relying only on the allothetic or 

the idiothetic data, however, it can be inferred that the brain uses both sources of 

information to perform spatial navigation.  
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Chapter 3 :  Modeling the Navigation System (State of the Art) 

Since the discovery of place cells in 1971 [11], much research has gone into 

creating a theory explaining their formation and use. The specific role of place cells 

in navigation was and still is under debate. Subsequent discoveries such as head 

direction cells [12] and grid cells [19] shed some light on the neural substrate of 

spatial behavior, however, there still remains many unanswered questions. In this 

chapter we will review models proposed for the formation and use of head direction 

cells, grid cells and place cells with an emphasis on models that are closest to 

biological realism and are suitable for implementation using neuromorphic VLSI 

circuits.  

3.1  Modeling Head Direction Cells 

Several models have been proposed for the creation of the head direction 

response characteristic. The primary concept governing most of these models is the 

integration of idiothetic signals (e.g., vestibular and proprioceptive information) to 

steer the activity of the network between different attractor states. In addition to being 

a sensory integrator (mathematically integrating head angular velocity to orientation), 

the head direction system acts as a memory for orientation in the case of deprivation 

of sensory cues (e.g. navigation in darkness). 

3.1.1 (McNaughton et al., 1991)[43]: 

Bruce McNaughton and his colleagues proposed one of the earliest models for 

the head direction cell system in 1991; the model employed a mechanism to integrate 

vestibular signals to update the directional representation using a linear associative 
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neural network to functionally model the mathematical integration of angular 

velocity. The inputs to the associative network are the current orientation and the 

current angular velocity and the network output provides the next orientation 

estimate. The model has a population of cells (H) encoding the current orientation, a 

population of cells (H’) encoding the angular velocity, and an intermediate group of 

neurons in which all possible joint values HH’ are represented by a set of linearly 

independent vectors to ensure linear independence of the inputs. Each HH’ cell 

provides the next angular orientation for a specific heading and a specific angular 

velocity i.e. the HH’ population represents a neural associative look-up table of 

angular velocity integrals that determines state transition and projects onto H cells 

properly. To code for the calibration of directional cells by means of external cues, 

they proposed a population of local-view cells projecting to the H population that rely 

on Hebbian learning to correlate local-view cell activity to H cell activity.  

The hypothesis postulated by McNaughton et al. was the first plausible theory 

explaining both the update mechanism underlying head-direction cells and the 

influence of extrinsic signals. They addressed the problem on an abstract level, 

however, without accounting for neural connections and dynamics. Moreover, they 

do not report any implementation of the model that was tested in a closed-loop 

system.  

3.1.2 (Skaggs et al. 1995)[67]: 

Skaggs and colleagues proposed a one-dimensional attractor network scheme 

to model the head direction cells. In this model, head-direction cells are coupled by 

intrinsic connections, such that nearby cells are linked by strong excitatory synapses, 
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and distant cells are connected by strong inhibitory projections. The activity in such a 

network is represented as an activity bump that is moving around the network in an 

angular velocity dependent fashion. Fig ‎3.1 shows a schematic of the proposed 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the attractor model, at each time step the system has a stable representation 

of orientation consisting of a single localized cluster of active cells, or “bump of 

activity”. If an excitatory external signal is applied to cells on one side of the peak, 

the activity will gradually shift towards the side at which the input has been applied. 

The model has two populations of “rotation” cells; one group is responsible for 

Fig 3.1. Head Direction model from Touretzkey and Skaggs [67]. 
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clockwise turns and the other for counterclockwise turns. Each rotation cell is active 

only if the current heading is equal to its preferred direction and the head is turning 

according to its preferred angular velocity sign. Clockwise rotation cells project to 

head-direction cells neighboring them on the right. Counterclockwise rotation cells 

project to head-direction cells neighboring them on the left. During clockwise turns, 

clockwise rotation cells will excite cells to the right of the current peak, and the bump 

of activity will shift rightward. The model has also a set of visual feature detectors, 

each of which responds maximally to a specific visual cue located at a specific angle. 

These neurons project to head direction cells and Hebbian learning is used to modify 

synaptic connections. The activity of visual feature detectors is used to correct head-

direction activity. This model was the first in adopting the attractor concept and 

triggered a long line of subsequent models. One notable shortcoming of the original 

paper was the lack of simulations or implementations to validate its functionality. 

3.1.3 (Redish et al. 1996) [68]:  

This model uses a coupled attractor network representation for the interaction 

between the postsubiculum (poSC) and the anterodorsal thalami nucleus (ATN) 

which is known to be reciprocally connected in the rat. The poSC and the ATN are 

both represented by a separate attractor network each consisting of two groups of 

neurons: One pool of excitatory units E, and one pool of inhibitory units I. Neurons in 

both pools have evenly distributed preferred directions. Each excitatory cell e ϵ E 

with preferred direction θe projects strong exciting synapses to neurons in both E and 

I having preferred directions close to θe. Each inhibitory neuron i ϵ I weakly inhibits 

all cells in both E and I pools, whereas cells in E and I having preferred directions 
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close to θi are inhibited slightly more. The dynamics of the attractor are such that both 

excitatory and inhibitory pools are characterized by a single stable state at each time. 

Fig ‎3.2 shows a schematic for the connectivity between the pools of neurons.  

The poSC attractor and ATN attractor networks are connected through their 

excitatory pools by a set of synapses called “matching connections” which connect 

between neurons having equivalent preferred directions. Moreover, a set of 

projections, namely left and right-offset connections, is responsible for updating the 

head-direction representation. Each excitatory unit i in the poSC with preferred 

direction θi has a left-offset connection to excitatory unit j in the ATN such that θj = 

θi - 10˚ and has a right-offset connection to excitatory unit k in the ATN such that θk = 

θi + 10˚; the offset has been arbitrarily chosen to be 10˚ in the model and is the same 

for all units. The weights of the offset synapses are modulated by the head angular 

velocity. During rightward head turns, the right-offset connections have a strength 

proportional to the magnitude of angular velocity, whereas left-offset connections 

have strength zero and the opposite situation occurs during leftward turns. The model 

has an inhibitory input to ATN coming from the mammillary bodies (MB). This input 

is assumed to be proportional to the magnitude of the angular velocity. MB cells work 

as a gain control mechanism to compensate for modulated offset connections. This 

allows the system to maintain the shape of the hill of AT activity nearly unchanged 

during rotations (otherwise, the combined input from offset and matching connections 

would distort it). A schematic of the entire system is shown in Fig ‎3.3 
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Fig 3.2. Two ring attractor network from [68]. 

Fig 3.3. Schematic of HD Neural System [68]. 
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This model showed biologically plausible directional tuning curves and was 

effective in tracking the orientation of the head. ATN activity anticipates poSC 

activity by a constant lead time of approximately 10ms (capturing the anticipatory 

property of real anterior thalamic neurons). On the other hand, a major problem for 

this theory is its failure to explain results from anatomical lesion experiments.  After 

lesions to the postsubiculum (poSC), anterior thalamic cells (ATN) are still 

directional selective [69]. By contrast, the model predicts that lesions to poSC cells 

would disrupt the entire system. The model requires the existence of poSC → ATN 

synapses that can be dynamically modulated by head angular velocity, which is not 

known to be biologically-plausible.  

3.1.4 (Goodridge and Touretzky, 2000) [70]: 

This model takes into account the interactions of HD cells in three brain areas: 

poSC, ATN, and LMN. Fig ‎3.4 shows the proposed neuronal model. 

 

 

 

 

 

 

 

 

 
Fig 3.4. Neuronal Model from [70]. 
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The postsubiculum poSC: It is modeled as a ring of neurons that generates attractor 

dynamics as bumps of activity amongst its neurons. Each element along the ring has a 

Gaussian tuning curve with its maximum activity at a preferred direction. The 

neurons in the ring are interconnected with excitatory connections that have weights 

with a Gaussian distribution in the difference between the preferred directions of the 

units. The model has a global inhibitory neuron that receives excitation from all the 

elements in the ring and project back inhibition to all of them. The poSC receives its 

input from the ATN.  

The Lateral Mamillary Nucleus LMN:  The LMN is modeled as two independent 

attractor networks: one for clockwise rotation and the other for counter-clockwise 

rotation. Each attractor network has lateral excitatory recurrent connections and a 

global inhibitory unit. The LMN networks receive excitatory input from the angular 

velocity units which are active during either clockwise head rotation or counter-

clockwise head rotation. The LMN units send excitatory projections to the ATN unit.  

The Anterior Thalamic Nucleus ATN: the model for ATN in this model is a ring of 

neurons with no recurrent connections. The inputs to the ATN are excitatory offset 

projections from the LMN units. A unit i in the ATN with preferred direction of θº 

receives input from the unit i+1 in the clockwise LMN with preferred direction of θº 

+ Δθ and from the unit i-1 in the counter-clockwise LMN with preferred direction of 

θº - Δθ. The ATN units send their output excitatory projections to units in the poSC 

attractor network which have the same preferred direction. 

To summarize, the poSC units’ exhibit attractor dynamics in the form of a 

bump of activation, the current location of the bump will be on the units which have 
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the same preferred direction as the current head orientation. If the head is not turning, 

units in both LMN attractor units will have a stable bump of activity along the 

neurons with the same head orientation as the current head direction, since there is no 

angular velocity, the firing rates in the two LMN attractor bumps will be the same. 

The ATN receives offset excitatory input from LMN units, which will cause a 

bimodal response on the neurons of the ATN, one coding for the proposed new head 

orientation had the head been turning clockwise and the other for counter-clockwise. 

The projection from the ATN units to the poSC will be symmetric and hence the 

bump on the poSC will not move. 

If the head is turning clockwise, the clockwise LMN will be more active than 

the counter-clockwise LMN and the response in the ATN will be bimodal but not 

symmetric.  In this case, the clockwise ATN will be stronger than the counter-

clockwise one, and hence the poSC will receive a stronger input driving clockwise 

motion of the bump and the bump will turn clockwise. 

This model captures a lot of the details of the biology like the interconnection 

between the poSC, LMN, and ATN. The LMN neurons have been shown to have 

direction dependent velocity modulation as modeled; the model also captures the 

poSC feedback projection to the LMN in the rats. The model has some drawbacks, 

however, the angular velocity units are not biologically realistic, because no such 

structure has been reported and no bimodal responses in the ATN have been reported 

so far. Finally, the model does not take into account any head-direction calibration 

based on external signals, although this could be added. 
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3.1.5 (Sharp et al., 2001)[37]: 

In their model (shown in Fig 3.5), the network consists of two populations of 

HD cells one excitatory and one inhibitory. As in other models, neurons that represent 

adjacent directions are located next to one another. 

3.1.5.1  Stable and Sustained Activity 

The excitatory HD cells provide excitatory input to nearby HD cells, but 

provide inhibitory input to distant HD cells, via the inhibitory cell layer. In the 

absence of external influences, the population activity pattern will settle into an 

attractor state in which one HD cell will fire maximally, and neighboring HD cells 

will show progressively lower activity levels, as a function of distance from this 

maximal peak.  

3.1.5.2  Angular Velocity Integration 

To accomplish path integration, the system must first receive input about the 

animal’s head angular velocity. This is provided by the angular velocity (AV) cells 

shown in Fig ‎3.5, These cells are tonically active when the head is still, but increase 

their firing rate during a preferred turn direction (clockwise or counter-clockwise) and 

decrease their firing rate during a turn in the opposite direction. This AV input is 

connected to the attractor network by a set of inhibitory cells that receive input from 

both excitatory HD cells and from the AV cells as shown in Fig ‎3.5. Two types of 

such AV-by-HD cells are shown. One type receives input from excitatory HD cells to 

the right and excitatory input from AV cells that fire at high rates during clockwise 

head movement; these cells, in turn, project onto excitatory HD cells that are located 

to the left. The other type receives input from excitatory HD cells to the left, and from 
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AV cells that prefer counterclockwise motion. These cells project onto excitatory HD 

cells located to the right. When the rat does not move, the two types of AV-by-HD 

cell are equally active, and so the activity packet in the HD cell layer remains stable. 

When the rat begins to turn clockwise, inhibitory AV-by- HD cells to the left of the 

activity packet increase their firing rate, while inhibitory cells on the right side 

decrease their firing rate. This causes the activity packet to shift to the right, 

estimating the new directional heading (i.e. that which resulted from the clockwise 

turn). During counter-clockwise turns the opposite is true.  

 

3.1.5.3  HD cell system can be calibrated by environmental landmarks 

In a familiar environment, the HD cell firing direction can be set by the 

position of environmental landmarks. HD cells also receive sensory inputs that can be 

strengthened in a Hebbian manner, as a result of experience. These sensed landmarks 

operate to calibrate drift in the integration of head velocity by associating the 

detection of the landmark with the position of the activity bump, so that in a familiar 

environment (where many associations have been made) each HD cell will have the 

same preferred direction each time the rat visits (i.e., landmarks will reset the HD 

network to the same state each time).  
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Fig 3.5. a) Stable bump, b) Bump rotation from [37]. 
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3.2  Modeling the Grid Formation: 

Following the discovery of grid cells in 2005 [19], many efforts were made to 

model the neural computation underlying the formation and activity of these grids in 

the medial entorhinal cortex (MEC). Current models for the grid field formation 

propose that MEC neurons path-integrate speed and direction provided by self-motion 

signals, whereas sensory information related to the environment is used for setting the 

initial parameters of the grid (2-dimensional phase) or calibrating it to correct for the 

cumulative error associated with the integration of velocity. There are two classes of 

models for the grid formation; one class suggests that grid formation is based on 

attractor dynamics in the MEC formation and the other suggests that grid formation is 

a result of constructive interference of subthreshold inputs to the network’s neurons 

[47]. 

3.2.1 Continuous Attractor Models: 

In this class, a single position in space is represented by an attractor state in 

the system. The network stores several attractor states associated with different 

locations and recalls any of them in response to sensory cues or path integration. 

When a large number of very close positions are represented, a continuous attractor 

(i.e., a hyperplane) emerges, which then allows a smooth transition between states 

according to the animal’s trajectory. There are two important models in this class. 
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3.2.2 (Fuhs and Touretzky, 2006)[71]: 

 

 

 

 

 

 

 

 

 

 

In this model, the authors assumed that the MEC is topographically organized 

(i.e. neighboring cells become active together). The representation of a single location 

in space forms a stable grid pattern on the neuron layer. This type of activity pattern 

can be generated if each neuron has mutual excitatory connection with its nearest 

neighbors, mutual inhibitory connections with neurons at intermediate distance, and 

no direct connections with those far away. Using different sizes for the excitatory and 

inhibitory projections, grids of activity with different spatial frequencies appear in the 

MEC layer. At the border of the layer, the lack of balanced connections at the input of 

these neurons leads to over excitation, hence the grid pattern is not uniform and 

additional attenuation is required to overcome that.  

To transform the grid pattern of activity in the MEC layer into a allocentric 

grid firing field for each neuron, the pattern of activity must be moved around on the 

Fig 3.6. Grid pattern in the MEC layer forms instantaneously and makes a displacement to the right to follow the 

motion.  In the origin of the white axes, a neuron is not firing at time t = 0, fires in the maximum of a grid node at 

t = 140, and is at rest again at t = 290 from [71]. 
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network following the movements of the animal. This is done by applying an input to 

the neuron proportional to the running speed of the animal when the rat runs in a 

preferred direction, which is different for each neuron. Fig ‎3.6 shows simulation 

results for this model, a stable grid pattern of activity forms spontaneously as a 

rightward motion is introduced the activity in the grid is displaced in the 

corresponding direction. Increased speed produces increased excitation and a faster 

displacement of the grid pattern across the neural layer. 

This model’s main challenges are the apparent lack of topography in grid 

phases of neighboring MEC neurons and the distortion of activity at the peripheral 

that was not reported in the neurophysiological literature. 

3.2.3 (McNaughton et al., 2006)[72]: 

 

 

 

 

 

 

 

 

 

McNaughton and his colleagues proposed in (2006) an alternative model that 

relies on the assumption that a topographically arranged network is present in the 

cortex during early development and serves as a tutor to train MEC cells. The tutor 

Fig 3.7. A topographically arranged network serves as a tutor to train an MEC module with no topographical 

arrangement (left). Connectivity in a layer of MEC if the connectivity is rearranged topographically (center), the 

effective geometry is that of a toroidal surface (right) from [71]. 
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network has scrambled connections with the neurons in the MEC. The synaptic 

connections between neurons in MEC are modified by Hebbian learning to form 

connectivity pattern that exhibits attractor dynamics which is not necessarily 

topographically organized. If the neurons in the MEC were to be rearranged 

according to their connectivity, a topographically connected pattern similar to the one 

proposed by Fuhs and Touretzky could be seen Fig ‎3.7. Because the tutor has the 

periodicity of a grid, the rearranged MEC network has no borders and resembles the 

surface of a torus Fig ‎3.7. 

To displace representations along the abstract space of the continuous 

attractor, the model introduces an additional layer of cells whose firing is modulated 

by place cells, head direction cells, and neurons that code for speed;, neurons with 

such properties have been shown to exist. Neurons in this hidden layer receive input 

from currently firing grid cells and project back selectively to grid cells that fire next 

along the trajectory. The activation of target cells depends on the current head 

direction and velocity of the animal.  They model the variability of grid spatial 

frequencies seen along the MEC dorsoventral axis to variation in the projection 

strength of the speed signal into the layer, the stronger the projection, the higher the 

spatial frequency of the grid. 

3.2.4 Interference Model, [73, 74]: 

The principles governing the second class of models are that path integration 

occurs at the single cell level and is related to the theta phase precession. In 1993, 

O’Keefe and Reece modeled phase precession as the sum of two oscillatory signals 

with frequencies around the theta rhythm that are slightly different by an amount 
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proportional to the running speed. The resulting interference pattern can be 

decomposed into an oscillation at the mean of the two frequencies, which advances 

with respect to the theta rhythm and a slow periodical modulation with a phase that 

integrates the rat’s speed and thus reflects its position along the track.  

 

 

  

 

 

 

 

 

 

 

Burgess and his colleagues extended the interference model to be two 

dimensional. At each cell, there is an interaction of a somatic intrinsic oscillator of 

frequency ws (∼theta rhythm) with several dendritic oscillators, each with a frequency 

equal to ws plus a term proportional to the projection of the rat velocity in some 

preferred direction as shown in Fig ‎3.8. The interference of the somatic signal with 

each of these dendritic oscillators has a slow modulation that integrates the preferred 

component of the velocity into a linear spatial interference pattern. As several of these 

linear patterns combines, a triangular grid map is obtained, provided that their 

directions differ in multiples of 60◦ and the phases are set in such a way that all 

Fig 3.8. Sum of three or more linear interference maps; while the animal is running on a linear track, 

the sum of a somatic (s) and a dendritic (d) oscillation with slightly different frequencies results in an 

interference pattern exhibiting phase precession and slow periodic spatial modulation (left). 

Combining three or more linear interference maps, responding to different projections of the velocity, 

results in a grid map (center). Simulated grid map after 10 min of a rat’s actual trajectory (right) from 

[73]. 
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maxima coincide as shown in Fig ‎3.8. This choice of parameters could result from a 

self-organization process maximizing the neuron’s overall activity.  In this model, the 

modulation in spacing of grids along the MEC is associated with a gradient in the 

frequency of subthreshold membrane potential oscillations along this axis. 

The main challenge of this model is that it depends on many parameters being 

chosen accurately, a process that the authors claim can emerge in biology from self-

organization. Another challenge for this model is its operation relies entirely on 

having subthreshold oscillations at each grid cells with precise and stable phases and 

frequencies since any drift in them will result in the grid cells not operating properly. 

3.3  Modeling the Place Cells 

The effort to postulate a model for place cell formation and functionality began in 

1971, and many models have been proposed trying to explain and replicate known 

neurophysiological data. Recent discoveries have altered the way the models are 

proposed, whereas the fact that most place cells show no direction selectivity allowed 

the models to be independent of head direction cell activity, it is not feasible to ignore 

the grid cells due the direct projections from the entorhinal cortex to the 

hippocampus. So the models for place cell formation can be divided into models 

proposed before the discovery of grid cells (a.k.a., “pre-grid”) and models proposed 

after the discovery of grid cells (a.k.a., “post-grid”).  
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3.3.1 “Pre-Grid” Place Cell Models 

3.3.1.1  (Sharp, 1991)[14]: 

In this model place fields are generated based on local-view pattern 

classification by competitive learning. The system consists of a three-layer neural 

network in which all units of one layer project to all units of the next layer through 

Hebb-like synapses as shown in Fig ‎3.9.  

Cells in the first layer act as metric sensory cells responding to specific stimuli 

(e.g., distance to a cue). The input layer involves two types of units: Type 1 cells that 

fire as a function of the distance to specific external cues, and Type 2 cells that 

encode the distance of a cue as well as its angle relative to the agent’s heading. The 

activity of type 2 cells therefore depends on the agent’s current location and 

orientation. Both types of sensory units respond to a specific visual cue by a 

stochastic assignment done the first time the agent enters an environment. 

Each cell in the middle layer receives afferent projections from all units in the 

sensory cell layer. Connection weights are initialized randomly such that they are all 

positive and their sum is normalized. There are 60 cells in the middle layer, divided 

into three winner-take-all clusters. Only one cell per cluster, the one receiving the 

largest input, can fire at any time. Synaptic weights to each winner cell are 

strengthened by Hebbian learning. The middle layer in this model corresponds to the 

entorhinal cortex.  

The pattern of activity of cells in the middle layer (i.e., 3 active cells at any 

time t) is propagated to the output level of the model: the hippocampus. In this level, 

there is only one cluster of 20 cells whose firing activity is determined according to 
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the same winner-take-all scheme defined above. Also, synaptic enhancement occurs 

as before.  

Sharp (1991) simulated a circular environment with 8 evenly distributed 

landmarks on the edge of the arena. At each step a simulated rat computes distances 

and angles of all 8 cues relative to its current position and heading, respectively. This 

information is used to drive the cells in the first layer of the model, and is propagated 

through the network to generate hippocampal place cell firing. Reported receptive 

fields are similar to real hippocampal place fields. A limitation of the model is that it 

does not capture data from experiments in the absence of visual landmarks (e.g., 

when light is extinguished) suggesting that rats are able to maintain place fields even 

without visual information.  

3.3.1.2 (Burgess et al., 1994) [55]: 

In this model, the allothetic sensory information activates a neural layer of 

entorhinal cells (EC), and then propagates through the network to form place fields in 

CA1-CA3 and in the subiculum (SC). Fig ‎3.10 shows a diagram of the proposed 

connectivity in this model. 

 At the sensory level, there is a population of cells, each cell responds 

maximally to a sensory cue at a different distance.  A discrete set of cues is arranged 

around the edge of a square arena.   

 An intermediate layer of entorhinal cells (EC) receive hardwired input from 

the sensory cells to produce a large firing field, as shown in Fig ‎3.10. The EC cells 

project to the place cells (CA1-CA3) layer in the model through binary connections 

that are formed through Hebbian learning.  Cells in the CA1-CA3 layer are arranged 
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in 5 clusters of 50 units each, and competitive learning is applied within each cluster: 

At each time step, only the four cells with the largest input fire a number of spikes 

proportional to their input, the others remain silent. As a consequence of competition, 

CA1-CA3 cells have smaller place fields than EC cells. 

CA1-CA3 units project to SC cells through connections that are formed according 

to the same Hebbian learning scheme as before. Competitive learning also occurs 

within the SC layer. However, SC cells are arranged in 10 groups of 25 each, that is, 

each SC cell has to compete with fewer cells than each CA1-CA3 cell. This results in 

larger SC place fields. A simple set of goal cells was used to associate directions to 

goals with the current rat’s location as given by the subicular cells. 

A limitation of the model is that external landmarks are assumed to be perfectly 

distinguishable. Also, the approach does not take into account idiothetic information 

(i.e., path integration) in order to enable the simulated agent to exhibit stable place 

fields in the absence of external cues.  
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Fig 3.9: Sharp model [14]. 
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Fig 3.10. Burgess, Recce, and O’Keefe model, adopted from [55]. 
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3.3.2 Post-Grid Cells Models 

3.3.2.1  (McNaughton et al., 2006) [72]:  

By 2006, following the discovery of grid cells, McNaughton and his 

colleagues adopted a Fourier like analysis to explain the formation of non-periodic 

place fields in the hippocampus using periodic grids from the entorhinal cortex as 

shown in Fig ‎3.11. They assume that the hippocampal activity reflects the summation 

of the outputs of many grids with different spatial frequencies which leads to a 

periodic representation in the hippocampus but the cycle for repetition would be very 

larger than the scale of the largest grid. This assumption enables each position to be 

expressed by a unique pattern to collective activity. The activation of the 

hippocampal place field is computed by applying a simple thresholding operation to 

the summed grid fields as shown in Fig ‎3.11. 

In this model, the authors assumed that the grid cell showed equal response at 

all active locations in the grid; this assumption is not supported by neurobiological 

data which shows variability in the response of the a given unit at different grid 

points.  
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3.3.2.2 (Rolls et al., 2006) [75]: 

In this model, the authors argue that the connections from the EC to the 

hippocampus need not be hardwired and that starting from random initial connectivity 

between the two layers and by applying simple learning techniques, place field like 

responses are achievable in the hippocampal neurons. This model has a group of EC 

(125) cells exhibiting grid like activities with multiple spatial frequencies. In this 

model they took into account the fact that each EC unit does not exhibit the same 

activation in all the vertices of the grid. They present two different algorithms for the 

learning, both apply competitive hebbian learning, however, in one algorithm the 

change in weight is a function of the current activity levels of pre and post synaptic 

neurons, and in the other algorithm, the change in weights is a function of the current 

and previous activity levels which allowed the formation of wider place fields in the 

hippocampal layer. Fig ‎3.12 shows the activity of two EC cells and the activity in a 

Fig 3.11. Multiple grid fields with different scales contribute to form a single peaked place field adopted from 

[72]. 
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hippocampal dentate gyrus (DG) neuron before and after training, showing that the 

hippocampal cell had single peaked place field in the arena after training. 

The main limitations of this model are the lack of significant neurobiological 

evidences that competitive learning is used to establish place field formation in 

hippocampal neurons. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.12. Simulated place cell formation in the hippocampal DG cells for the model proposed by Rolls et al., 

adopted from [75]. 
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3.4  From Models to Navigation Systems 

In the previous section, various proposed models for different biological 

structures known to be involved in spatial navigation were reviewed.  In this section, 

we will review relevant previous efforts to implement biologically-inspired 

navigation systems on mobile robot systems, as our main objective is to build a 

neuromorphic spatial navigation system inspired from the bat and develop 

autonomous navigation capabilities for mobile robotic platforms. 

3.4.1 (Arleo, 2000; Arleo and Rondi-Reig, 2007) [4, 76]:  

Angelo Arleo implemented a system with place code cells, head direction 

cells and angular velocity cells. Activity in the head direction cells was shifted by 

idiothetic input (path integration) and recalibrated by visual input (allothetic 

calibration). Likewise, activity in the place code cells was shifted around by idiothetic 

input modulated by the activity in the head direction cells and corrected by visual 

input. The experimental setup consisted of a Kheperra robot equipped with a camera 

and wheel encoders in a small 800 by 800 mm arena with bar-coded walls. The room 

contained one external light source that was effectively used as a North Pole 

reference (salient cue). The robot starts exploring the environment and forms place 

cells activity relying only on idiothetic signals, Hebbian learning is used to link the 

created place cells to the allothetic cues encountered in the space (different views). As 

the robot spends more time exploring, it develops a growing sense of uncertainty due 

to drift in the self-motion integration. As the uncertainty passes a certain threshold, a 

homing vector is created and the robot heads back to the starting point while 

switching off the learning. As the robot heads back home it uses the learned spatial 



 

 61 

 

memories to calibrate for the integration errors. The computation and processing were 

performed off-board as the robot is moving in the arena.  

The robot was able to stay localized under these conditions although no results 

were presented for global kidnapping tests or for dealing with highly ambiguous 

visual input. There was no evaluation of the system’s performance without the North 

Pole reference.  

3.4.2 (Milford, 2008) [10]: 

Milford worked on building a system relying on path integration and visual 

signals that he called RatSLAM. Rather than building a system with head direction 

and place cells he built a unified representation for Cartesian and angular position (x, 

y, θ) called a pose cell system. Fig ‎3.13 shows the RatSLAM model, the agent’s pose 

is represented by the activity in a competitive attractor network called the pose cells. 

Wheel encoder information is used to perform path integration by injecting activity 

into the pose cells to shift the activity packets. Vision information is converted into a 

Local View (LV) representation which if familiar, injects activity into the particular 

pose cells that are associated with that specific local view. 

The pose cells are implemented as a competitive attractor network, the 

network is organized such that it allows only one group of units to be active at a given 

time coding for the current estimate for (x, y, θ). The path integration process 

provides pose updates in the absence of visual input using information from the wheel 

encoders of the robot. The local view module is a collection of neural units that 

represent what the robot sensors ‘see’ to the rest of the RatSLAM system. Hebbian 
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learning is used to associate visual data to pose cells. Data were collected by the robot 

but the processing was performed using an off-board computer.  

This system was able to operate properly in the absence of salient cues in the 

environments and it was successfully tested for exploring novel and large 

environments and for generating goal-directed behavior. 

Although this system was able to operate successfully it is not suitable for our 

intended application because of the off-board processing and lack of 

neurophysiological detail. Moreover, using on-board dedicated hardware to 

implement this algorithm is not feasible since the pose cell system is an attractor 

network with infinite number of attractors corresponding to the potential poses for 

any given environment. This system solved for the ambiguity of position by 

recruiting a new pose for each new location and then using higher order processing to 

link different pose cells coding for the same physical location. 

 

 

 

 

 

 

 

 

 

 

Fig 3.13. The architecture of the RatSLAM algorithm, adopted from [10]. 
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3.4.3 (Erdem and Hasselmo 2012)[77]: 

Erdem and Hasselmo presented a model for goal-directed navigation using 

forward linear look-ahead probes of potential trajectories through the environment 

using a circuit of head direction cells, grid cells, place cells and prefrontal cortex 

(PFC) cells. Fig ‎3.14 shows a schematic of the network used in this model to create 

place cells. 

The circuit creates a place cell map using Hebbian modification of 

connections between prefrontal cortex (PFC) cells. The agent creates a map 

composed of place cells and PFC cells by random exploration. After exploration, the 

rat recalls the goal location, picks its next movement direction by forward linear look-

ahead probe of trajectories in several directions while stationary to find the one 

activating PFC cells with the highest reward signal. Each probe direction activates of 

a static pattern of head direction cells to drive the grid cells to update their phases in a 

specific direction which in turn drive place cells along the probed look-ahead 

trajectory. This probing is repeated until the look-ahead trajectory activates the 

reward signal and the corresponding direction is used to guide goal-finding behavior. 

This model represents a plausible method for goal directed navigation using the 

network of head direction cells, grid cells and place cells that can shed some light on 

how the brain actually uses these circuits for navigation, however, the network is 

computationally expensive since at every position the agent has to evaluate all the 

possible trajectories to maximize the reward signal. This model addresses the problem 

of place cell creation by recruiting new cells when the agent is in a place that is not 
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represented, from the neurobiology we don’t know whether this is a plausible 

assumption or not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.14. A schematic for the network used in the (Erdem and Hasselmo) model for goal directed navigation; 

adapted from [77]. 
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Chapter 4 :  Head Direction Cell System 

4.1  Introduction 

 

As we discussed in chapter 2, the hippocampus, the entorhinal cortex, and the 

postsubiculum are areas of the mammalian brain that have been shown to be heavily 

involved in spatial navigation related tasks [11, 12, 19, 47]. In rats, where spatial 

navigation and memory have been studied using two-dimensional environments, 

neural recordings from the postsubiculum have shown the presence head direction 

(HD) cells, that are tuned to the orientation of the animal’s head in space; a given  

neuron fires whenever the animal’s head is facing its preferred orientation and is 

silent otherwise [12, 14]. It is widely believed that the activity of these cells is 

updated using self-motion signals (e.g. head rotation velocity as detected by 

vestibular sensors), spatial memory (e.g. associating landmarks with particular 

directions), or both [14, 41, 44, 78]. Beyond simply providing a readout of the current 

orientation, these neurons collectively maintain an estimate of the head orientation by 

sustaining its activity and by shifting this activity from one part of the neural 

population to another to represent changes in orientation. Accurate integration of 

velocity signals to compute position or orientation, however, requires carefully 

matched neural and synaptic properties.  Although biological neurons and their 

synaptic interconnections are assumed to be adaptive within any given system to 

compensate for mismatched characteristics, accurate calibration across all positions 

and rotation velocities is likely to be an elusive goal.   Due to the nonlinearities 

inherent in all components of the system, without calibration, angular velocity 
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integration is likely to be nonlinear, location-dependent, and prone to drifting towards 

attractor locations. On the other hand, experiments with rats show that when stable 

spatial landmarks are present, the response of the HD neurons does not drift, which 

led to the conclusion that simple associative learning is used to correct for drift in the 

activity of the network [13, 41]. 

Since its discovery in 1984, many theories have been postulated to explain how 

the HD system works and to provide a biologically-plausible neural circuit for its 

operation. Nearly all of the proposed models have suggested that the network of HD 

cells can be described to be a recurrent neural network which exhibits a continuum of 

stable attractor states. Each attractor is represented by the persistent activity of a 

subset of the neurons (i.e., a bump of activity) acting as a memory for a certain head 

orientation. In the absence of any head movement, the network remains in its latest 

state, maintaining the current estimate of head orientation. When the head rotates, 

angular velocity information is used by the network to move the bump of activity 

through the network to represent the new head orientation [43, 67, 68, 79, 80].   

Whereas most models for HD cells capture the general behavior of the system by 

adopting mean rate representations for the activity of neuron populations, some 

models use spiking neurons to model the HD system [81-83]. The operation of these 

models, however, relies on large neural populations with matched parameters to 

implement the HD system which makes them more suitable for software 

implementation rather than for analog hardware.  

In this chapter, we present how a recurrent network of spiking neurons can 

successfully achieve the same functional behavior of HD cells without using large 
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neural populations. Our model incorporates modifications to conventional HD models 

by using a disinhibition-based gating mechanism to allow precise control of the 

movement of the neural activity and thus angular velocity integration.  

4.2  HD System Model 

 

In this work, we are interested in developing a biologically-plausible model for 

the rat HD system that can be directly mapped onto neuromorphic analog hardware. 

To model biological HD cells using an artificial system, the system must exhibit some 

key features of the biological system: 1) the system should be capable of maintaining 

stable activity in the network (i.e., act as a memory) in the absence of external 

stimuli, and 2) head motion-related signals should be used to move the activity in the 

network smoothly from the current location to a new location representing the new 

orientation of the head in space [68]. The model we present here for maintaining 

stable bumps of activity is inspired from previously presented HD models in the 

literature (section I) and this model can be directly implemented in hardware with 

minimal difficulty.  To move the activity bump across the field of HD neurons in 

response to the head’s angular velocity, however, we propose a novel biologically-

plausible model.  

 

 

 

 

 



 

 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1 Stable Activity in the Network  

 

To create stable, sustained spiking activity in the absence of external stimulation, 

the HD system is modeled as a ring of recurrently interconnected neurons. Each 

neuron in the ring has a neighborhood of neurons with which it has fixed mutual 

connections whereas no direct connections exist with neurons outside of this 

neighborhood. The weights of the connections between the neuron and its 

neighborhood has a “Mexican-hat” shape, with two groups of projections: excitatory 

projections to nearest neighbors with decaying weights as the separation between the 

Fig 4.1. The synaptic projection pattern as a function of the relative interneuron distance. The actual strength is 

determined by a product of this kernel and a global current setting. A positive value indicates an excitatory 

connection, a negative value indicates an inhibitory connection and “0” indicates no connection. 
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neurons increases, and a group of inhibitory projections that are locally strong then 

decay with increasing interneuron separation. Fig ‎4.1 shows the projection pattern 

used in our experiments. A ring of neurons with such connectivity and a weak, 

constant input current driving them all to fire will exhibit activity in the shape of one 

or more groups of active neurons forming bumps of activity [84-86].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the HD system operation, a unique representation is needed for each direction 

in space and thus a single bump of active neurons is the desired pattern to avoid 

ambiguity.   To achieve this requirement, a soft winner-take-all (WTA) function is 

added to the network, in the form of a global inhibitory neuron which receives 

excitation from each neuron in the ring and projects inhibition back to all neurons in 

Fig 4.2. A ring of neurons with the interconnections shown for only one neuron for clarity. The neuron in the 

center of the ring is the global inhibitory neuron. The connectivity allows one group of neurons (“bump”) to be 

active at a time (shaded in black). The global inhibitory neuron (shaded gray) normalizes the total network 

activity through inhibitory feedback.  Additional neurons and connectivity for moving the bump activity are not 

shown.  
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the ring. In Fig ‎4.2 we show an example set of connections for one neuron in the ring 

with the minimal neighborhood connection width (for clarity in the illustration) of 

only one excitatory and one inhibitory neuron on each side.  This connection pattern 

is repeated for each neuron.  The excitatory and inhibitory neighborhoods for each 

neuron are programmable (via external spike routing processors) and extend to more 

than one connection in each pool (e.g., six excitatory and eight inhibitory in Fig ‎4.1).  

All neurons are biased to have an excitatory DC current which weakly drives them to 

become active and produce spikes in the absence of other inputs. The recurrent lateral 

excitation creates a neighborhood of support (of a size defined by the excitatory 

connectivity) for bumps of spiking activity that can be sustained without external 

input.  As neurons in the ring produce spiking activity, the global inhibitory neuron is 

excited and projects inhibition back to each neuron in the ring.  This global inhibition 

limits the activity in the ring to those neurons with the highest spiking rates (induced 

by recurrent input connections or external inputs). This soft “winner-take-all” 

function generally allows only one bump of activity to exist on the ring at a given 

time.  If the lateral connections are balanced, the bump of activity will remain at its 

current location on the ring.  
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In our network, each group of active neurons (attractor state) in the ring is 

associated with a certain head direction in the environment. As the head is turned 

(due to head movements or combined head-body movements), the system will 

receive input signals coding for the angular velocity of the head. This head velocity 

information is provided to the system as left and right speed signals which drive the 

bump to move around the ring to represent the new head direction.  This corresponds 

functionally to a mathematical integration of the head’s velocity information to 

compute the head angle. The neurons and connectivity used to perform this function 

are shown in Fig ‎4.3. 

The “bump neurons” in Fig ‎4.3 are the same neurons shown in Fig ‎4.2 with the 

bump-layer connections hidden.  At each location in the ring a “left-rotation” and a 

“right-rotation” neuron receive global head rotation signals.  For leftward (rightward) 

rotation, these signals produce spiking activity in just the left-rotation neuron (right 

rotation neuron) proportional to leftward (rightward) speed. 

Fig 4.3. Connectivity diagram of the bump movement neurons.  The arrow head indicates an excitatory 

connection and the circle-shaped head indicates an inhibitory connection.  The network connections that maintain 

bump activity (see Fig. 4.1) are not repeated here for clarity. 
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Fig 4.4. Schematic diagram showing the sequence of events for moving the bump of activity based on a left 

velocity signal (active connections are shown in black and the inactive ones in light gray). The top panel shows 

the stationary case with no velocity signal, the middle panel shows the activity in the network as a left rotation 

signal is applied and the bottom panel shows the activity in the network after it moves one neuron to the left in 

response to the velocity signal. 
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To move the bump at a particular speed, spiking activity with a rate proportional to 

the head turning rate is projected onto the bump neurons at the current location of the 

bump with a leftward or rightward shift of one neuron.  The spiking rate of this 

projection controls the rate at which the bump location will shift by one neuron.  To 

achieve this specific local pattern of projection using only global rotation signals, a 

disinhibition-based gating mechanism inspired by the operation of the superior 

colliculus in the saccadic eye movement is used [87].  In this circuit, active bump 

neurons disinhibit the local left-rotation and right-rotation neurons which then 

respond to the globally-supplied rotation speed inputs. All other rotation neurons in 

the ring are actively suppressed.  As a result, the activity of the disinhibition neurons 

appears as the negative of the bump activity. Fig ‎4.4 shows a cartoon example of a 

movement illustrating the sequence of events for shifting the bump location one 

position to the left in response to a left-rotation signal. In this figure, we show the 

active connections in black and the inactive connections in light gray. Initially, (in 

the top panel) there is a stable bump of activity centered on a group of neurons in the 

ring of bump circuits.  All of the neurons in the disinhibition circuit are active except 

the ones corresponding to the bump location. With no global velocity signal, 

however, the rotation neurons are not active. In the center panel, when the head is 

turning left, all left-rotation neurons receive input, but only those locations 

corresponding to the current bump location will respond.  These active neurons 

project excitation to bump neurons shifted one position to the left; this projection 

causes the activation of the neuron to the left of the current bump which was not 

firing previously. This activation disrupts the balance between the projection kernel 
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and the global inhibitory projection pattern; this balance allows only a certain 

number of neurons (3 as shown in Fig ‎4.4) to be active at a time to form the bump. 

The global inhibitor neuron is now driven with higher input (4 active bump neurons) 

thus projects back more inhibition to the bump neurons trying to shut down one of its 

active neurons. Moreover, the newly activated neuron (now at the left most edge of 

the active array) interacts with the right most neuron in the current bump location as 

they mutually inhibit each other with direct synaptic projection. Thus the level of 

inhibition on the right most neuron and left most neuron is higher than the other 

neurons in the array. The system would go back to a balanced state only when one of 

the active bump neurons shuts down. The newly activated left most neuron receives 

elevated inhibition levels but also receives excitatory input from the left rotation chip 

whereas the right most neuron receives only an elevated level of inhibition which 

eventually will shut it down and hence moving the bump one location to the left. 

Our model for moving the activity in the HD system is different than previously 

proposed models [43, 67, 68, 79-81] in that our synaptic projections are fixed and do 

not need to rapidly change to provide an asymmetrical projection and shift the bump 

of activity. Furthermore, many previous models move the bump by suppressing its 

“backside” but in our model, we move the bump by expanding the excitation in the 

direction of motion.  
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4.3  Circuits 

To build this system, we designed and fabricated a neuron chip consisting of an 

array of 32 integrate-and-fire (I&F) neurons using a neuron circuit slightly modified 

from Indiveri et al. [88]. The output activity of these neurons is read using the 

address-event-representation protocol AER [89].  For its input, each neuron has 14 

pulse-extender (PE) synapses (8 excitatory and 6 inhibitory) that use a principle of 

operation similar to that described by Arthur and Boahen [90].  Each one of these 

synapses has a unique digital address and an input AER system is used to activate 

them. We use a resistive ladder to generate the required bias voltages to control the 

weights of these synapses. Using three externally-supplied DC voltages (the top node, 

the bottom node, and an intermediate node), seven different DC biases are generated 

to control the weight of two matching-weight synapses on each neuron. To retain 

flexibility to investigate different lateral connection patterns between the neurons, no 

hardwired connections were implemented between the neurons on the chip; a digital 

processor was used to implement the connections by providing a look-up-table of 

interconnections and routing spikes back to the chip accordingly. This configuration 

allows a neuron to be connected with up to 14 neighbors, seven on each side with 

symmetrical connection weights.  

A global inhibitory neuron, that receives excitation from all 32 neurons using 

equally-weighted synapses, projects inhibition back to all neurons with equal weights. 

The global inhibitory neuron connections are hardwired on the chip with separate 

controls for the excitatory weights stimulating the neuron and the inhibitory weights 

back to the bump neurons. The global inhibitory neuron can also be activated or 
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Synapses

Neurons

AER

suppressed using a separate external control.  The membrane voltage of the global 

inhibitory neuron was externally monitored. 

Fig ‎4.5 shows a micrograph of the neuron chip; the chip is 1.5 mm x 1.5 mm and 

was fabricated using a commercially-available 0.5 μm CMOS (3-metal, 2-poly) 

process by the MOSIS chip fabrication service. 

 

 

 

 

 

 

 

 

 

 

 

4.3.1 Synapse Circuit 

Fig ‎4.6 shows the synapse circuit we used in our system.  The circuit operates as 

follows; as an AER Ack pulse (on the order of tens of nanoseconds wide) is received, 

the capacitor voltage VC1 (initially at 0V) charges up to Vdd.  After the pulse is 

removed, VC1 discharges back to ground through M2 and M3 at a rate controlled by 

the voltage VbiasN1. As VC1 rises, M6 turns ON, M5 turns OFF, and VC2 discharges 

to ground through M6 and M7 at a rate set by the voltage VbiasN2. When VC1 is 

Fig 4.5. Micrograph of the Neuron Chip. The chip has 32 I&F neurons, each with 14 Pulse Extender (PE) 

synapses. The activity is read from the chip using an AER interface. 



 

 77 

 

discharged close enough to ground, M6 turns OFF, M5 turns ON, and VC2 charges to 

Vdd through M4 and M5 at a rate controlled by VbiasP2.  During the time that C2 is 

discharged to ground and then charged back up to Vdd, M9 conducts the saturation 

drain current of M8 (defined by Vw) at the output of the synapse.  In an inhibitory 

synapse, the output current in M9 is mirrored to M11 and is drawn from the 

membrane capacitance of the postsynaptic neuron which results in the discharging of 

the membrane capacitance down towards ground.  In an excitatory synapse, the 

current from M9 is pushed directly into the membrane of the neuron charging it up 

towards Vdd. If another AER pulse stimulates the synapse before VC2 fully charges 

back to Vdd, (i.e. while the synapse’s output current is still ON) the duration of the 

output current pulse is extended. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6. Synapse circuit: VbiasN1, VbiasN2 and VbiasN3 control the charging and discharging of C1 and C2 and 

hence control the width of the pulse extender pulse. Vw is the weight of the synapse and controls the amplitude 

of the output current; for an excitatory synapse the output current is from the drain of M9, whereas for an 

inhibitory synapse, the output current is at the drain of M11. 
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With these controls, the synapse circuit is configured to produce an output current 

pulse on the order of a few milliseconds for each received AER spike. The duration of 

the output current pulse is controlled by the three biases (VbiasN1, VbiasN2, and 

VbiasP2). 

4.3.2 Neuron Circuit 

Fig ‎4.7 shows the neuron circuit , based closely on the neuron by Indiveri et al. 

[88]. In this schematic,  Cmem is the membrane capacitance of the neuron, I_Exc and 

I_Inh represent  the excitatory and inhibtory synaptic currents. The neuron’s DC bias 

current is provided by transistor M1 whose gate is controlled by the voltage Vinj. Vinj 

is a global parameter for all the neurons in the chip except for the global inhibitory 

neuron. Transistor M2 provides the leak current that continuously discharges the 

membrane capacitance, Cmem. This leak current is controlled by Vleak,  also a global 

parameter for all  neurons on the chip. M6 and M7 are a source follower that raises 

and adjusts the neuron’s threshold voltage for firing a spike. The circuit operates as 

follows; Cmem integrates the input currents of the neuron, resulting in a voltage 

Vmem.  When Vmem rises above the threshold voltage of the neuron controlled  by 

Vsf and the inverter (M10 and M11), V2 is pulled towards ground which activates the 

positive feedback current path through M3, M4, and M9 and accelerates the rise of 

Vmem and hence the spiking of the neuron. As V2 drops to ground, the inverter 

(defined by M17 and M18) switches state to output high which switches M20 (ON) to 

pull down on the AER request line (Req/). When the AER system acknowledges the 

request, it sends back an active-low signal (Ack/) to activate the inverter (defined by 

M14 and M15) through M12 and M13.  Pulling  V3 to a high state resets Vmem to 
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ground using M5. As Vmem drops to zero, V1, V2, and V3 switch states and the 

neuron is in the refractory period controlled by the discharging of Crefr through M16 

with a rate controlled by Vrfr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 System Implementation 

To construct the HD system, four neuron chips were used to perform the spike-

based computations and a set of dsPIC® microcontrollers (Microchip Inc.) were used 

to implement the required synaptic connectivity between neurons on the same chip 

and neurons on different chips. The dsPIC microcontroller was also used to record the 

activity in the system by sending spike information to a PC using a standard serial 

Ack/ 

Req/ 

V1 
V2 

V3 

Fig 4.7. Neuron circuit slightly modified from the one presented by Indiveri et al [88]. 
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connection. Fig ‎4.8 shows the block diagram of the neuromorphic HD system we 

implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.1 Bump Formation 

Fig ‎4.9 shows the setup we used to implement the lateral bump-layer ring 

interconnectivity. A dsPIC was configured to read output spikes from the bump 

neuron chip and route the spikes recurrently to multiple synapses at its input. The 

synaptic weights were set to implement a “difference-of-exponentials”-shaped 

connectivity pattern for each neuron with its nearest neighbors receiving the strongest 

Fig 4.8. Block Diagram of the HD system. The dsPICs are the boxes labeled PIC and the other boxes refer to 

multiple copies of our neuron chip. 
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excitatory connection and distant neighbors receiving inhibitory connections that 

decay in strength with distance. 

 

 

 

 

 

 

 

 

 

 

In addition to implementing the connectivity pattern between neurons, the 

microcontroller can “weave” externally-provided spikes into the stream of recurrent 

activity going into the chip. This feature is used to implement the connectivity 

between the rotation chips and the bump chip.  

4.4.2 Angular Velocity Integration 

The mathematical integration of angular velocity (i.e., moving the bump of 

activity) is implemented using two parts, the disinhibition circuit and the rotation 

circuits. 

4.4.2.1  Disinhibition 

The disinhibition neuron layer is a copy of the neuron chip which receives 

“one-to-one” inhibitory connections from the bump chip. On this chip, the global 

Fig 4.9. Testing setup showing the Bump chip, the routing microcontroller, and the serial connection to the PC. 

 

AER Out 

AER In 

Bump Chip 

Router dsPIC 

Serial Connection to PC 
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inhibitory neuron is suppressed and no lateral connectivity is implemented. A dsPIC 

microcontroller reads the activity of the bump chip and drives the inhibitory synapses 

at matching locations on the disinhibition chip. All disinhibition neurons are biased to 

have a tonic spiking response except when the bump neurons suppress this activity.   

This connection results in a spiking pattern on the chip that appears as the negative of 

the bump neurons.  

4.4.2.2  Left and Right Rotation 

The left and right rotation chips are copies of the neuron chip that receive a 

global excitatory input current proportional to the rotation rate; the left-rotation chip 

is driven only for leftward rotations and the right-rotation chip is driven only for 

rightward rotations.  The global inhibitory neuron is suppressed on each chip and no 

lateral connections are implemented. A dsPIC microcontroller reads the activity from 

the disinhibition neuron chip and drives the inhibitory synapse for the matching 

location on both chips.  In leftward rotation, for example, the neurons on the left-

rotation chip at the current bump location fire with a rate proportional to the leftward 

speed input.  Other neurons on the chip are suppressed by activity from the 

disinhibition neuron chip. A dsPIC microcontroller reads the activity from both 

rotation chips and routes these spikes into the bump neuron chip with a one-neuron 

leftward shift for spikes originating from the left-rotation chip and a one-neuron 

rightward shift for spikes originating from the right-rotation chip. 

Fig ‎4.10 shows the connectivity of the entire HD system used to collect the results 

presented in the following section. 
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4.5  Testing Results 

The neuron chip was fabricated using a commercially-available 0.5μm 2-poly, 3-

metal process using the MOSIS Service. The four neuron chips of the system together 

consume 1.5mW with a 5V power supply during normal operation. 

4.5.1 Creating a Stable Bump of Activity 

One of the main functions of the HD model is the formation and maintenance 

of a bump of neural activity that does not decay, spread uncontrollably, or drifts 

laterally around the ring. This bump of sustained activity acts as a working memory 

for the current estimate of spatial orientation in the HD system and moves around the 

ring of neurons as the orientation of the head in space changes. Most models of the 

Fig 4.10. HD System Connectivity: The neuron chips are labeled in the figure and  the other boards are the dsPIC 

microcontroller implementing the AER routing in the system. 
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HD system have assumed that the bump of active neurons have a Gaussian-shaped 

spatial activity distribution. In this work, we demonstrate the operation of our system 

in this mean rate regime as well as in a novel synchronous mode regime and report 

our results in this section. 

4.5.2 Mean Rate Mode of Operation 

In the mean-rate mode of operation, the aim is to operate the network such 

that the activity pattern has a Gaussian-like spatial distribution of firing rates around 

the ring of neurons.  To achieve analog-valued firing rates and avoid synchronization 

effects, all synapses are set to provide low-amplitude, long-duration currents to 

prevent the incoming spikes from imposing any significant temporal structure on the 

post-synaptic neuron firing times.  All neurons in the ring also receive an identical 

tonic input current that drives them (in the absence of other inputs) to fire at a very 

low rate. In Fig ‎4.11 we show raster plots of the activity recorded from the ring of 

neurons when the global inhibitory neuron was: 1) prevented from firing, and 2) 

permitted to fire. In the absence of the global inhibitory neuron feedback, we see the 

formation of multiple activity bumps due mainly to the lateral interconnections 

between the neurons.  In this case, the presence of multiple bumps on the ring helps to 

stabilize the entire pattern. Due to the projection kernel, each bump actively sustains 

itself and prevents the formation of another bump immediately next to it on either 

side through long range lateral inhibition.  This effectively “repels” other bumps.  

Due to the ring structure of the array, a steady-state pattern of bumps is quickly 

achieved that can counteract the drifting of individual bumps, resulting in an overall 

activity pattern that is stable. 
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When the global inhibitory neuron provides feedback, it creates a competition 

between the various bumps and the bump with the strongest drive (due to mismatch in 

this case) will remain active while the other ones will be suppressed. The operation of 

the global inhibitor reduces the firing rates of the neurons in the active bump.  The 

width of the bump is controlled by the width of the excitatory portion of the 

projection kernel for each neuron. In the example shown in Fig ‎4.11, a kernel that 

produces a four neuron-wide bump is used. More examples of width control are 

shown in the next section. In the case of one active bump, the stabilizing repulsion 

“force” from the other bumps around the ring is absent, hence, the bump is prone to 

Fig 4.11. Left panel, neural response spike rasters of the ring neurons to a constant input current with the global 

inhibitory neuron suppressed. Multiple bumps of activity are present. Right panel; response of the ring neurons to 

a constant input current with the global inhibitory neuron providing feedback. The bump is initiated at an 

unstable location but eventually drifts to a more stable location. With the global inhibition activated, the activity 

bump occurs with lower firing rates than the case shown in the left panel.  
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mismatch and can drift to stable locations on the ring.  An example of such drifting is 

shown in the right panel of Fig ‎4.11.   

4.5.2.1 Bump Stability in the Mean Rate Mode of Operation 

Mismatch between circuit elements is one of the major problems that we face 

in analog VLSI circuits. Fig ‎4.12 shows the response of the neurons in the bump chip 

for the same tonic input, ideally driving them all to fire at the same rate. The right 

panel of Fig ‎4.12 shows the frequency response of the neurons normalized by the 

average firing frequency of the group (80 Hz). The figure shows that there is a wide 

range of deviation from the average which shows the presence of mismatch in the 

response of the neurons. This mismatch in the response of the neurons can disturb the 

operation of our system especially in the mean rate mode of operation. Renart et al. 

[91] showed that in a simulated network of heterogeneous spiking neurons, bumps of 

activity are prone to drifting to global attractor states due to the mismatch between the 

neurons and synapses. Although they demonstrated that stabilization of the drift was 

possible with synaptic plasticity or dramatic increases in the network size, these 

approaches were not practical for our system and thus we did not investigate them.  

With only a small number of neurons in the ring layer (only 32 neurons) 

compared to the ring systems analyzed by Renart et al. (4096 neurons) [91], the effect 

of mismatch on the operation of our system can be dramatic. To study the extent of 

drifting in this system, we initiated a bump of activity (four neurons-wide) at each 

location in the ring and monitored the position of the activity bump. Fig ‎4.13 shows 

the evolution of the activity centroid (activity-weighted position computed using a 25 

msec integration window) initiated at each of the 32 possible locations around the 
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ring.  For illustration purposes, we show only the time intervals where significant 

drifts in the bump location occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.12. Left panel, rasters showing response of bump neurons all of them receiving the same tonic input. Right 

panel, deviation from mean firing freq by individual neurons. 
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Because the bump location represents the head orientation, the angular stability of 

the bump is crucial for a reliable memory of orientation. Movement of the bump 

should only occur with actual head movement.  As seen in Fig ‎4.13, when operating 

in the mean-rate mode of operation, we encountered instabilities at some locations. 

We attribute these instabilities to mismatched circuit properties and now describe the 

conditions under which this can occur.  

In the mean-rate mode of operation, the shape of the local interconnection pattern 

strongly influences the pattern of firing rates within the bump. Because the neuron 

firing rates are a steady-state solution of the recurrent projection pattern (which 

Fig 4.13. Each trace represents the centroid of the activity of a bump started at each of the 32 possible locations 

around the ring. The plot shows the presence of some global attractors; for example, the bumps with initial center 

of mass near neurons 6, 7, 8, 9, and 10 eventually migrate to a centroid near neuron 9. The plot shows the two 

time intervals where the drift in the bump occurred; the first is the first 0.5 sec of operation; then another window 

after 2.5 seconds until 5 seconds, after 5 seconds we did not see any other drift in the bump location. A neuron # 

wrap-around was used for better visualization of the attractor basins. 
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includes the spike generation nonlinearities) they cannot be simply studied 

analytically; however, we can gain some intuitive insights by examining typical 

solutions (e.g., Fig ‎4.11, right).  By using a projection pattern like that shown in 

Fig ‎4.1 (with an excitatory neighborhood of 3 neurons and inhibition beyond that), 

neurons near the middle of a bump (that is four neurons wide) receive excitation from 

both sides and receive no inhibition.  Neurons on the edge of the bump receive 

excitation only from one side and no inhibition.  The neurons just past the edge 

(which are not active, or “off-edge” neurons) receive strong inhibition from the 

opposite edge neuron and excitation from three bump neurons.  Because this off-edge 

neuron would inhibit the opposite edge neuron if it were active, these two neurons are 

in competition with each other and can exhibit the desired bistable behavior.  To 

ensure stability of the bump location, the off-edge neurons need to stay inactive when 

the bump neurons are active.  To achieve this, the net input current to the off-edge 

neurons on both sides must be zero or negative.  Because the difference in input 

current is relatively small for these two competing neurons, mismatch can upset the 

required relationship for stability.  If the off-edge neuron is receiving even a small net 

positive input current, the neuron will eventually produce a spike and inhibit the 

opposite edge neuron, shifting the centroid.  The right panel of Fig ‎4.11 shows an 

example where the bump was initiated at neurons 28, 29, 30, and 31 but ultimately 

drifts to a more stable location (neurons 27, 28, 29, and 30). The instability at neurons 

(28, 29, 30, and 31) can be related to the slow firing rate of neuron 31 (that can be 

attributed to mismatch) that is not strong enough to inhibit all of the excitatory input 

to neuron 27, leaving this neuron with a net excitatory input that is integrated over 
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time to ultimately generate a spike and shift the bump.  Since the global inhibition 

(which uses long current pulses) inhibits all neurons “equally”, it reduces firing rates 

for all neurons and thus provides the winner-take-all function, but it does not improve 

the margin for stability.  Although increasing the strength of the local inhibitory 

projection would increase stability, this will come at the cost of making it difficult to 

move the bump intentionally.   

Although we have demonstrated the ability to initiate and maintain bumps in a 

mean rate mode, this mode of operation suffered significantly from the problem of 

attractors and thus we did not test the system any further in this mode. The mean rate 

mode of operation may be suitable for large arrays of neurons where small drifts 

would not result in big errors of estimation or where learning could be applied 

efficiently to reduce drifting.  In small systems like ours, however, any small drift 

results in significant errors in the estimation of spatial orientation. 

4.5.3 Synchronized (Bursting) Mode of Operation 

A “synchronized” or “bursting” mode of operation, natural to models that use 

spiking neurons, resulted in the best control over the bump movement and minimal 

drift towards attractors. In this configuration, the strengths of the lateral excitatory 

connections were tuned to be relatively short and strong, encouraging neighboring 

neurons to fire soon afterwards. We explore this mode and its operation as a memory 

structure for modeling the HD system in the following sections. 
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The first demonstration is the formation of a bump of activity.  The neurons in the 

bump chip were all biased with the same DC bias to have a low tonic firing rate (this 

bias condition is maintained throughout the operation of the system). We monitored 

the activity of the bump neurons in two conditions: first with the global inhibition 

suppressed and then with the global inhibition allowed to fire.  The results are shown 

in Fig ‎4.14.  Without global inhibition, multiple bumps of activity appear on the 

network as discussed in the section (Mean Rate Mode of Operation) and their 

interaction helps to stabilize them all (as in Fig ‎4.11, left).  When the global inhibitory 

neuron is allowed to fire, it imposes a global competition on the active neuron groups 

and allows only one group of neurons (i.e., bump) to remain active. 

Fig 4.14. Left panel, neural response spike rasters of the ring neurons to a constant input current with the global 

inhibitory neuron suppressed. Multiple bumps of activity are present. Right panel, response of the ring neurons to 

a constant input current with the global inhibitory neuron providing feedback. A single, synchronously firing 

group of neurons emerges.  
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Fig ‎4.15 shows the time-evolution of the activity centroid (activity-weighted 

position computed using a 25 msec integration window) for bumps started at each of 

the 32 possible locations around the ring.  Throughout the course of operation, we did 

not see major drifting in the location of the centroid and the bump remained stable at 

all 32 possible locations around the ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.3.1 Bump Stability in the Synchronized Mode of Operation 

As discussed in the section (Bump Stability in the Mean Rate Mode of Operation), 

the stability of the bump location around the ring is a key issue for our system. In the 

synchronous mode of operation (unlike the mean-rate mode), we did not encounter 

Fig 4.15. Each trace represents the centroid of the activity of a bump started at each of the 32 possible locations 

around the ring in the synchronized mode of operation. The plot shows that the bumps initiated at all locations are 

stable (i.e., no drift was detected during the course of operation).  The same neuron # wrap-around as in Fig. 13 

was used. 
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drifting in the bump location with time. We attribute this stability to two factors: 1) 

the strong, pulsatile, excitation imposed by the lateral interconnections and 2) the 

strong, pulsatile inhibition imposed by the global inhibitory neuron.  Below we 

discuss details as they relate to bump stability. 

Consider the case where all neurons are initially at the same zero state, receiving a 

constant excitatory bias input.  If no other inputs are provided and the neurons and 

interconnections are identical, all neurons would integrate up to the threshold at the 

same time and fire synchronously.  If one group of neurons receives extra input 

current (e.g., from long-duration recurrent synaptic input or from external signals), 

the neuron with the largest input will spike first (“the winning neuron”) and it will 

provide a strong excitatory pulse of current to its nearest neighbors and a strong 

inhibitory pulse of current to its more-distant neighbors.  The strong lateral excitatory 

projection dramatically accelerates the winning neuron’s excitatory neighborhood, 

producing a group of near-synchronous spikes while strongly inhibiting (i.e., slowing 

down or resetting) the off-edge neurons.  When the synchronous group fires spikes, 

they excite the global inhibitory neuron to fire its spike very shortly after the active 

bump neurons.  Because the inhibition arrives while the active neurons are still in 

their refractory period, this inhibition does not affect their firing rate.  For non-firing 

neurons, however, this strong inhibitory pulse resets their membrane potential to zero. 

A byproduct of the synchronous mode is that the neurons will have identically high 

firing rates.  In the synchronous mode, the first neuron to fire excites its six nearest 

neighbors.  The second neuron to fire (ideally one of the first neuron’s direct 

neighbors) further excites the neighborhood, but suppresses neurons four locations 
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away.  Ultimately a group of four neurons will fire that do not receive any inhibition.  

By providing sufficiently strong local inhibition, we can ensure that the off-edge 

neurons never fire, to ensure stability.  Because this inhibition is short, it is unlikely to 

interfere with other external inputs that direct the intentional movement of the bump.  

This feature is important because it creates a larger parameter space over which 

stability is created without negative consequences for movement.  Furthermore, the 

four active neurons excite the global inhibitory neuron with a short latency such that 

the global inhibitory pulse can provide additional inhibition that also benefits stability 

without interfering with movements of the bump. Once the refractory period is over 

and the global inhibition has passed, all neurons begin integrating again towards 

threshold to start a new cycle. 

In this scheme, the global inhibitory neuron plays two roles: it discourages multiple 

bumps around the ring and it resets all neurons to their zero state after the bump 

neurons have fired a spike, erasing any residual charge in the “non-bump” neurons 

due to mismatch and preventing these “non-bump” neurons from firing over time.  

4.5.4 Controlling the Bump Width 

In the previous experiment we showed the emergence of a four-neuron-wide bump 

as a result of the local connectivity between the neurons and global inhibitor. The 

width is controlled by adjusting the span of the lateral excitatory-inhibitory projection 

pattern between the neurons in the ring;   wider projections produce a wider bump 

and narrow projections produce narrow bumps.  In Fig ‎4.16 we show three different 

examples of widths obtained by changing the recurrent projection pattern width.  

One interesting property of the synchronous case is that the firing rate of the group 
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is largely locked to the most active neuron in the group.  Wider bump widths, 

therefore, result in fewer neurons determining the bump firing rates thus reducing the 

variability seen around the ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.16. Activity bumps with variable widths of three, four, and five neurons wide. For the three neuron-wide 

bump, each neuron was connected to 10 others (four excitatory and six inhibitory). For the four neuron-wide 

bump each neuron was connected to 12 others (six excitatory and six inhibitory), and for the five neuron-wide 

bump each neuron was connected to 14 others (eight excitatory and six inhibitory). 
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Fig 4.17. System data, for rotating the bump to the left with variable speed. 
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4.5.5 System Data 

In Fig ‎4.17 we show the activity from all of the neuron chips in the system for the 

case of head rotation to the left that starts slowly then speeds up with time. The first 

(top) panel shows the spike activity recorded from the bump neuron chip, the second 

panel shows the spike activity from the disinhibition neuron chip, the third panel 

shows the left-rotation neuron chip, and the fourth (bottom) panel shows the spike 

activity from the right neuron chip. The bump is initially stationary at neurons 8, 9, 

10, and 11, while neurons on the disinhibition neuron chip show the inverse activity. 

When the global left-rotation signal is applied to the left-rotation chip, only neurons 

corresponding to the current bump location become active, resulting in the bump 

moving to the left. As the velocity signal increases the spiking rate on the left-rotation 

chip increases leading to an increase in the rotation speed of the bump. Throughout 

the experiment no right rotation signal was supplied to the system and thus there is no 

activity on the right rotation chip. 
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4.5.6 Moving the Bump 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

To demonstrate the ability to move the activity bump around the ring in both 

directions, a variable head velocity signal is introduced to the system.    Fig ‎4.18 

shows an example experiment where the bump was initially at neurons 1, 2, 3, and 4, 

and then moved around the ring with variable (manually-controlled) left-rotation 

speeds. When the left rotation signal was taken away, the bump stopped at its last 

location and remained stable there. After three seconds, the right-rotation was applied 

and the bump rotated around the ring in the other direction before coming smoothly to 

a stop when the speed signal was removed. 

Fig 4.18. Moving the bump around the ring in both directions with variable rotation speed. The bump starts at 

rest. At 6.2 sec, the system is fed with an increasing leftward rotation velocity until it reaches a maximum of 

153.2 deg / sec  at 10.4 sec. Starting from 14.8 sec, it is slowly brought back to a full stop at 16.6 sec. In the 

second part starting from 21.3 sec, an increasing right-ward rotation velocity is fed to the system until it reaches a 

maximum speed of 123.3 deg / sec at 22.3 sec. At 29.3 sec, the rightward velocity signal is decreased slowly until 

the system reaches a rest at 33.3 sec.  
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4.5.7 Drift in position estimation  

The HD system is an angular odometry system that maintains and updates the 

current estimate of head orientation by integrating angular velocity of the head. Two 

potential problems facing this system are inaccurate velocity integration and drift of 

the bump while the head is stationary.  The brain can partially overcome this drift by 

using information from other sensory cues (e.g. vision) to correct or recalibrate the 

HD system. If the animal finds itself in a “familiar” (previously visited and 

memorized) location and the HD system reading is in conflict with the recalled angle, 

the system will be strongly driven by the memorized orientation to force the activity 

of the HD system neurons to point to this orientation [41]. 

In Fig ‎4.19 we compare the evolution of head position as estimated by our system 

with the head position as estimated by a perfect integrator when driven with three 

different velocities. The data show that the bump velocity is not constant as it travels 

around the ring.  It should be noted that because the speed variation pattern is 

repeated on each cycle, these errors are primarily integration nonlinearities and not 

integrated noise.  This type of error, can lead to a drift in the estimated orientation 

when integrating multiple small turns as seen in the biological HD system. Fig ‎4.20 

shows the error between the estimated head orientation from our system and the 

corresponding perfect integrator for the three examples described in Fig ‎4.19.  To 

determine the expected drift error for any given movement, we can use Fig ‎4.20 by 

calculating the difference in drift errors between the start and stop orientations. For 

example, the worst-case movement at 29.7 deg/sec occurs when moving from 48 

degrees to 155 degrees, resulting in an expected error of -11.5 degrees. 
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Fig 4.19. The black, blue and green lines show the evolution head position as represented by the centroid of the 

bump of the activity as the system is driven to perform a 360   rotation around the ring using three different 

rotation speeds and the dotted gray lines show the expected head position if the same velocities were presented to 

a perfect velocity integrator system. 

Fig 4.20. The error in estimating the head position in degrees as coded for using our system vs. using a perfect 

integrator for the same three examples shown in Fig. 19.  
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4.5.8 Resetting the bump 

A noisy or weakly nonlinear integrator used in a spatial memory system (similar to 

what happens in the brain should be capable of resetting the position of activity to 

correct for the drift.  In this section we demonstrate that position-resetting is possible, 

moving the activity bump of the HD chip directly to different locations on the array 

of neurons. Throughout this experiment, the global inhibitory neuron is switched OFF 

and we rely on the individual neurons’ inhibitory synapses to provide the necessary 

inhibition for the experiment by directly stimulating them using AER pulses. The 

measurement was begun with no activity on the array.  At 8 seconds, a short burst of 

spikes  were sent to neurons 10, 11, 12, and 13 that created a stable bump of activity 

at these neurons that persisted beyond the stimulation. At 32 seconds, the bump was 

relocated to neurons 20, 21, 22, and 23 by projecting inhibition to all of the neurons 

in the array just prior to stimulation of the neurons of the new location.  The test was 

repeated at 48 sec to move the bump to neurons 5, 6, 7, and 8 using the same strategy 

as shown in Fig ‎4.21.  Although the global inhibitory neuron was suppressed during 

this experiment, it only needs to be suppressed transiently at the time of transition. 
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4.5.9 Characterizing the HD System 

The ability to create, sustain, and control the movement of a bump of activity on a 

ring of neurons provides the desired infrastructure for   creating an HD system. This 

system acts by integrating the head velocity to represent and maintain a memory of 

the head orientation in space. For this system to act as an integrator of head velocity, 

it is important to control the speed of the bump around the ring linearly with the head 

rotation velocity as described in the following equations. Let      (degrees) be the 

head’s orientation in space, with          . 

 

 

Fig 4.21. Resetting the Bump Location: Externally-provided stimulation input is shown in big black dots, spikes 

from the ring neurons are in gray dots and the inhibitory neuron spikes are in red along the top of the graph. 
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We can write the equation 

     

  
                               

for the change of      as a function of the head rotation velocity       (deg/sec). By 

integrating (1) we can compute the head’s orientation. 

         ∫        
 

  

              

   is the orientation of the head at the time the rotation started        . 

In the neuromorphic VLSI system, the head angle   is represented by the location 

of the activity bump on the ring of      neurons. The angle is therefore discretized into 

32 possible bump locations around the ring to represent the entire         range of 

angles for the HD system. Hence, the resolution of the system is 360/32 = 11.25º 

where the angle   , for example, is coded by activity at neurons 0, 1, 2, and 3, i.e. at N 

= 0.  Similarly, the angle 360 · (31/32) = 348.75º is coded by activity at neurons 31, 0, 

1, and 2, i.e. at N = 31. In general, the head orientation   (degrees) can be computed 

from the bump location   using 

                     

and the location N = n is defined as the activity being at neurons (n, n+1, n+2, and 

n+3), where          . Using difference equations to represent rates of change we 

could write  

  

  
 

   

  
(
  

  
)        
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Fig ‎4.22 shows the measured relationship between the average firing rate of the 

left- and right-rotation neurons on each chip and the bias voltage Vang (volts) used to 

control the Vinj bias of the left and right rotation chips. The angular velocity input is 

logarithmically represented by the applied bias voltage Vang that controls a charging 

current of a rotation neuron, driving it to fire spikes. Because the current is an 

exponential function of the applied voltage, the spiking rate of the neuron linearly 

reflects the magnitude of the charging current and thus the angular velocity input.    

                                           

  and   are constants, and       and       are the left and right rotation chips mean 

Fig 4.22. Average spiking rates on the rotation chips and the corresponding speed signal Vang. 
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firing rate, respectively.  While the measurements show a systematic mismatch 

between the response of the left and right rotation chips, it is possible to pre-

compensate for this mismatch at the input. 

In Fig ‎4.23, we show the relationship between the firing rates of the rotation chips 

and the bump rotation velocity we recorded from our system. This relationship is 

fairly linear throughout the entire range of operation. The rate of change of the bump 

location,        ⁄ , can be computed as a linear function of the left and right rotation 

speeds, encoded by the firing rate of the left and right rotation chip neurons 

  

  
                              

where   ,    are constants that can be determined by fitting straight lines to the data 

shown in Fig ‎4.23. Although signals for opposing directions should never be active 

simultaneously, the system is configured such that only one of the rotation chips is 

allowed to be active at a given time. 

From equations (4) and (6) we can also write, 

  

  
 

   

  
 (                )         

In other words, the angular rate of change of the bump location is linearly dependent 

on the firing rate of the neurons in the left and right rotation chips in our system. 

One important specification of the system is the usable range of head rotation 

velocities. In Fig ‎4.23 we show that the linearity of operation is maintained over a 

wide range of head rotation speeds from as slow as one neuron per second (11.25 

deg/sec) to as fast as 50 neurons per second (562.5 deg/sec). The system is relatively 

well-matched for the two rotation directions. 

Equations (6) and (7) show how the system uses the two head rotation velocity 
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inputs to drive the bump of activity around the ring, acting as a mathematical 

integrator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6  Conclusions 

In this chapter we present a neuromorphic VLSI system based on a recurrent, 

spiking neuron network that can create and maintain a stable, self-sustaining, activity 

pattern that can be used to mathematically integrate global rotation signals.  The 

dsPIC® microcontrollers are programmable and allow the implementation of the 

AER routing in the system to have the flexibility to investigate different connectivity 

schemes. A fixed routing scheme could be easily implemented using simple digital 

Fig 4.23. The average bump velocity measured in (Neurons per Sec.) as a function of average spiking rates on the 

rotation chips. The vertical bars represented one standard deviation from the average. 
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logic which will result in significant reduction in the power consumption and the 

entire system could be integrated onto a single chip.  

An important observation of this work is that the mean-rate mode of operation is 

vulnerable to the problem of drifting towards attractors produced by the mismatch 

found in the neuron and synapse circuits, making it difficult to move the bump of 

activity in a controlled fashion.  Drifting is avoidable with minimal mismatch and 

careful parameter tuning. On the other hand, in the “synchronized” mode of 

operation, the cyclical hard reset of the bump neurons by the inhibitory neuron 

prevents the small mismatches from building up over time, reducing drift [23].  

Movement of the bump, however, now requires a stronger “kick”, which can easily be 

provided by the spiking left and right movement neurons. 
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Chapter 5 :  Online Error Correction in HD System 

5.1  Introduction 

In most animals, the neural mechanisms used to perform navigation are not well 

understood but many discoveries in mammals suggest the use of a combination of 

internal estimates of their position in space (e.g., odometry using place cells, head 

direction cells, and grid cells) and available sensory information in the environment 

(e.g. vision, audition, olfaction, etc…)[47, 72].  In the absence of external sensory 

cues, animals can navigate successfully, but errors accumulate over time. When 

sensory cues are present in the environment, such drifts in navigation have not been 

observed [41, 92, 93]. These findings suggest that, when animals do not have sensory 

signals for navigation, they rely on internal estimates of their position in the 

environment to navigate and that this estimate is noisy. In contrast, the presence of 

navigational sensory cues is used to continuously correct for drift. 

In the previous chapter we presented a neuromorphic HD system, that worked 

nicely, however, it suffered from noise which leads to noisy integration and error in 

estimating the orientation of the head in the environment. In this chapter, we present a 

mixed hardware and software system that offers a biologically-plausible model of 

how the brain could integrate spatial memory (e.g., echolocation sensing of the 

environment) with an internal estimate of its position in space (e.g., head orientation 

as estimated by our neuromorphic head direction (HD) cell system to keep the noisy 

estimate of the orientation aligned with the environment. 
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Target 1

Target 2

Target 3

5.2  System Model 

Our demonstration system is a mixed software-hardware system that solves a one-

dimensional version of the problem described earlier; maintaining an internal estimate 

of head orientation following rotations. Fig ‎5.1 shows a schematic of the setup we are 

using, we have a sonar head mounted on a rotating platform from which we can 

measure the rotation velocity. The rotation velocity signal is integrated by the HD 

system to continuously update the estimate of the head orientation. The head is 

equipped with a sonar system that can detect objects and report their range. 

A detailed block diagram of the system is shown in Fig ‎5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1. A simple sonar transducer is mounted on a rotating platform from which the rotation velocity can be 

measured. The grey cone represents the effective field of view of the sonar. For simplicity in this demonstration, 

the targets are classified based on their radial distance from the head. 
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Fig 5.2.  System block diagram. The blocks enclosed in the dashed-line box are implemented in software and the 

other blocks are in hardware. The black arrows indicate predefined non-plastic synaptic connections, the arrows 

in grey show the plastic synaptic connections, and the white arrows indicate non  -plastic connections used as 

teacher signals to guide the learning process. 
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5.2.1 Sonar Object Detection and Object Cells 

The sensory input to this system is an air-coupled, ultrasonic sonar mounted 

on a rotary platform that acts as the “head” in our system. The sonar sends short 

ultrasonic pings (~ 0.5 ms) in a relatively narrow beam and uses the echo time to 

determine the distances of different objects.  For simplicity in our example, we used 

2.5 inch diameter polyvinyl chloride pipes (a.k.a., “poles”) as objects and used the 

distance as a cue for identity.   Following a sonar ping, the echo envelope waveform 

from the receiver is provided to a simple perceptron [94] array whose outputs indicate 

which object has been detected or whether no object has been detected.  The “no 

object cell” is a special cell that is inhibited by all of the other object cells and only 

becomes active when no targets are detected. 

5.2.2 Head Direction Cell System 

We use a neuromorphic VLSI-based HD system (that is fully described in 

[95]) that integrates angular velocity signals (rate-encoded digital pulses, or “spikes”) 

to maintain an estimate of the head orientation. In the present system, angular 

velocity signals are generated from the angle encoder of the sonar platform.  Due to 

transistor fabrication mismatch and practical limitations of calibration (drift in 

parameters, nonlinearities, etc.), however, this system suffers from errors in the 

integration process which accumulate over time.   

5.2.3 Conjunctive Cells 

Conjunctive cells were first discovered in the entorhinal cortex of rats [96]. 

These cells are thought to integrate information about location, direction and distance 
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to provide the necessary information to move the activity in the grid-cell network. In 

our working model, we extend the definition slightly to include information about 

objects in the environment (i.e. sonar objects) to form a combined representation for 

the environment that can be used to correct for any drift in the HD representation 

similar to the model presented in  [67] where visual objects were used to perfrom he 

correction for the drift. The conjunctive cells receive excitatory connections from the 

HD cells to mirror their activity but also project excitation back to the HD cells to 

move their activity to correct for any drift when more reliable information about 

orientation (i.e., sensory-triggered memory) is available.  The conjunctive cells also 

receive plastic excitatory connections from the object cells to learn the association 

between detected objects and orientations.  The plastic connections are modified 

using a simple Hebbian learning rule. Moreover, the “no object cell” does not send 

any projection to the conjunctive cell layer to avoid activating any conjunctive cells 

when no target is present. 

5.2.4 Expectation Cells 

The expectation cells are a set of neurons that learn the association between 

orientation and sensory input like the conjunctive cells, but they instead reflect the 

activity of the object cells (i.e., sensory input).   These cells learn to recreate the 

object cell pattern present at each orientation through weak excitatory projections 

from the object cells (teacher signal) and plastic connections from the conjunctive 

neurons.  If, at a particular orientation, the sensory system does not detect an object 

that was previously seen there, the expectation cells reactivate the expected pattern. 
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The expectation cell layer has a recurrent set of connections that implement a winner-

take-all function that allows only one neuron to be active at a time. 

5.2.5 System Operation 

Our system is designed to continuously learn the environment in which it is 

operated, but when a priori knowledge about the space exists it compares its 

expectations about the environment with the information coming from its sensors to 

determine whether to learn a new association, to fix its internal estimate for its 

location, or understand that it is lost and should not learn new associations until it can 

realign itself with the environment.  

The system is initialized with all plastic synapses set to zero, indicating that 

no objects are associated with any direction.  This includes the “no object” state.  

Rotating the sonar platform generates rotational velocity signals that are provided to 

the HD system and subsequently integrated to an estimate of position.   During the 

first rotation of the sonar around the environment, the conjunctive cells are only 

driven by the HD cells since no objects have been associated with any position.  As it 

rotates, the object-to-conjunctive (OC) synapses rapidly learn to activate the 

conjunctive cells (i.e., orientation) associated with the observed objects.  At the same 

time, the conjunctive-to-expectation (CE) synapses rapidly learn to activate the 

expectation cells (i.e., object identification) associated with each orientation.  Note 

that the “no object” cell does not have an OC synapse, but does excite its “twin” in 

the expectation cell group, thus learning to expect the “no object” situation. 

When the sonar does not detect any objects, the “no object” cell in the object 

cell group will be active and the activity in the conjunctive neurons directly reflects 
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the HD neurons. The learning rule weakens the connections from inactive object cells 

to the conjunctive cell layer (OC synapses).  In parallel with this learning, the weak 

one-to-one excitatory connection from the object cell layer to the expectation cell 

layer excites the expectation layer's “no object” cell.  Once this occurs, Hebbian 

learning strengthens the connection between the active conjunctive layer cells and the 

active expectation layer “no object” cells, thus learning that no object is at this 

orientation.   

When the sonar system detects the presence of a known object (recognized but 

not seen in the environment before), the object cell corresponding to the sensed object 

will be active.  Hebbian learning begins to strengthen the OC synapse from the active 

object cell to the active conjunctive cell and drives any conjunctive cells that were 

previously associated with this object cell (if any).  If the OC projection from the 

active object cell projects to a different set of conjunctive neurons than those that are 

active, more than one set of conjunctive neurons can become active, leading to a reset 

condition.  (We discuss this in more detail below.)  The projections from the 

conjunctive cells to the expectation cells (CE synapses) are designed to be much 

stronger than the ones from the object cells to the expectation cells.  Additionally, the 

winner-take-all function within the expectation cell group will ensure that the 

expectation cells will normally be driven by the conjunctive cells.  
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As the sonar platform system is rotated, errors in the HD estimates begin to 

accumulate. During normal operation we can identify three distinct cases: 

1. The same cells are active in both the expectation and object cell groups, 

meaning that the HD estimate is aligned with its memory of the sensory 

experience.        

2. An object cell is active but a different expectation cell is active in the 

expectation cell group (typically the “no object” cell), meaning that the sensory 

system has found an object while the spatial memory did not expect that object 

based on its current estimate of orientation. If the object already has an 

association in memory, we allow this memory to override the current HD 

estimate of orientation. 

3. An expectation cell is active, but the “no object” cell is active in the object cell 

group, meaning that we know that the HD estimate of orientation has drifted 

but there isn’t enough information yet to fix the estimate.  In this case, we 

simply suppress Hebbian learning so that previously learned associations for 

the currently estimated orientation are not lost. 
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5.3  Results 

We have tested the system using different combinations of object number and 

orientations. For all of these cases, the system was able to successfully learn the 

environment and correct for accumulating errors in the HD estimate of orientation.  In 

this section we show the activity in the different groups of cells for the three cases 

discussed in section II.  The results presented here are from an experiment with 4 

objects in the environment placed at (0˚, 337.5˚, 315˚, and 292.5˚). 

5.3.1 Properly Aligned. 

In this case, the expectation cell and object cell groups are aligned in their 

activity, implying that the HD estimate of orientation is either aligned with the actual 

orientation or there is insufficient data to suspect otherwise. For these two cases 

Fig ‎5.3 shows an example of the activity in the system. 

5.3.2 Disoriented. 

In this case, it is known that the HD estimate of orientation is not accurate, 

however, there is not enough information to correct the error. The system suppresses 

the learning process to avoid losing previously acquired memories.  Fig ‎5.4 shows the 

activity of the cells in this case. 
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Fig 5.3. This figure shows the activity in the system when the HD estimate is aligned with the actual orientation 

in space.  The left panel shows a schematic for the arena with the targets as red circles. The black arrow 

represents the actual head position and the blue arrow is the position as estimated by the HDS. The center panel 

shows the HD and Conjunctive cells. Although in practice the HD system activates a contiguous group of four 

neurons when indicating a location, for simplicity we only show the activity of one cell active for each position 

on both networks. The right panel shows the Object and Expectation cells, the top cell (in red) is the “no object” 

cell and each of the bottom cells represents one of the four targets. (a) shows the case when the head is pointing 

towards target #1 and (b) shows the case when the head is not pointing towards any target. 

(a) 

(b) 



 

 118 

 

5.3.3 Reset Condition. 

Here, the system knows that the HD estimate of orientation is not accurate and 

can recall the previously learned orientation for that object.  This information is 

stored in the OC synapses which are used to abruptly move (or “reset”) the activity in 

the HD system to a remembered location. Fig ‎5.5 shows an example for this case 

where the HD system was estimating the head to be pointing at 270˚ where no object 

is placed, however the sensory data show that the head is pointing towards target 4 

which is placed at 292.5˚ so the HD is reset to the remembered orientation. 

5.3.4 System Performance. 

In this section we show the performance of the system in the presence of learning and 

compare it to the case where no learning was applied. Fig ‎5.6 shows the results of an 

experiment where we had 2 targets in the space at (45˚ and 100˚). In both cases, the 

HD estimate of the position is aligned with the actual position at the beginning of the 

experiment. Due to the noisy integration in the HD system, the estimate accumulates 

some integration errors and begins drifting away from ground truth. In the case 

without learning, the errors accumulate and the orientation error grows larger over 

time.  In contrast, the learning case shows that the first encounter was sufficient to 

reset the HD system to the same orientation in future encounters. 
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Fig 5.4. The system is disoriented. Based on the current HD estimate, the system was expecting to see object #4, 

however the live sensory data shows no target in sight.  

Fig 5.5. The system will reset. Based on the HD estimate of orientation, the system was not expecting to see a 

target, however, the sensory data show the presence of object #4. The system will reset the HD system to point 

toward the position of object #4. Note that the activity in the conjunctive cells reflect both the HDS’ estimate and 

the stored orientation. 
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5.4  Conclusion 

In this chapter we have presented an extension to the neuromorphic head-

orientation odometry system presented in chapter 4 that uses spatial memory to 

improve and maintain the accuracy of its estimate. Sensory cues in the environment 

are associated with different orientations and are capable of correcting errors when 

these cues are encountered again. Beyond the specific corrections provided by the 

memory, these memories could also provide longer time-constant corrections in 

integration gain. This system is built as part of a biologically inspired navigation 

system that can be mounted on a mobile robot and it represents one important 

Fig 5.6. Left panel shows the results from an experiment with 2 targets present at (45˚ and 100˚), as the HDS 

drifts, spatial memories of the targets locations are used to reset it to the accurate head position. Right panel 

shows the case with no correction, the HDS’ estimate accumulates error with time with no means to correct it. 



 

 121 

 

mechanism (of many) that could explain how biological neurons with all of their 

variability and noise can be used reliably for navigation in everyday environments. 
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Chapter 6 :  Grid Cell System 

6.1  Introduction 

Discovered in 2005, grid cells revolutionized the way we think about the space 

encoding in the mammalian brain [19].  These cells respond periodically as the 

animal walks in an environment such that the response fields form a hexagonal grid 

anchored to the environment without being influenced by environmental cues. Neural 

recordings have revealed that cells in different layers exhibit different spatial 

frequencies in their firing fields [19]. The discovery of these cells changed the way 

we think about place cells and led to novel theories on how the place cells of the brain 

can be formed. One of the leading theories about how grid cells are used is to sum the 

activity from different spatial frequencies like a Fourier series to produce a pulse-like 

place cell response [72]. Fig ‎6.1 shows the response of 4 grid cells from the 

entorhinal cortex of a rat, modified from [19]. In chapters 2 and 3 we went over the 

neurobiology of these cells and over the models proposed for how they can be 

formed.  In our quest to build neuromorphic VLSI system that can be used for spatial 

navigation, we built head-direction cells [97] and online, sensor-based realignment of 

orientation estimates [98].  In this chapter, we describe our efforts to develop a 

compact VLSI circuit for modeling a population of grid-cells.  
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Fig 6.1. Response of 4 grid cells from the entorhinal cortex of a rat, modified from [19]. 
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6.2  Modeling the Grid Cells 

In chapter 3 discussed the available models for the grid cell operation. There are 

two main classes of models for grid pattern formation; one suggests that the grid 

pattern is created by attractor dynamics due to feedback interconnections in the MEC 

formation and the other suggests that the grid pattern is a result of constructive 

interference of multiple subthreshold oscillations injected into the network’s neurons 

[72, 73]. In this chapter, our implementation of the grid cells is based on the model 

using attractor dynamics. In the continuous attractor models, a single position in 

space is represented by an attractor state in the system. As the animal moves, the 

network activity shifts to “nearby” attractors. 

6.3  Simulating Grid Formation 

We used Matlab to simulate this model; we used a sheet of (25 x 25) neurons, 

with toroidal boundary conditions and random initial interconnection weights. For 

this sheet of neurons to exhibit grid like activity, the neurons need to be 

interconnected using a difference of Gaussians-like weight pattern. We have tested 

the hypothesis described in [72], for the development of such weight pattern in the 

entorhinal cortex starting from random initial connections; the hypothesis assumes 

that spontaneous waves of activity (similar to the ones forming the retinotopic map 

[72]) occur at the entorhinal cortex during development and simple Hebbian learning 

is applied to modify the connections. In our simulations we have obtained a 

difference of Gaussians connection pattern as required for the grid formation. We 

monitored the evolution of the activity in the network from random initial activation 

levels till it reached a steady state level which showed a grid like activity over the 
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entire sheet. The biological grid cells have multiple spatial frequencies; this can be 

obtained by varying the width of the interneuron excitatory connections, by varying 

the frequency of the spontaneous waves of activity used to generate the weights. 

Fig ‎6.2 shows two examples for the weight pattern generated for the neuron at 

location (0, 0) on the sheet. Fig ‎6.3 shows the response field of a neuron in a virtual 

arena for the weight patterns from Fig ‎6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.2. Two examples of interconnection weights for neuron at location (0, 0) on a 2D sheet of neurons used to 

simulate grid cells activity. 

Fig 6.3. Firing rates (in Hz) of one simulated grid neuron over a virtual arena using the connection weights 

schemes shown in Fig 6.2, showing that the spatial frequency of the response grid changes by changing the width 

of the connection matrix for the neurons on the sheet. The neuron in the left panel is connected to its neighbors 

using the weight pattern shown in Fig 6.2 (left) and the one in the right panel uses the weights from Fig 6.2 (right 

panel). 
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6.4  The Grid Circuit 

To simulate the grid cell network, we designed and fabricated a two-dimensional, 

current-mode, pixel-array circuit that implements the attractor system using mutual 

excitatory and inhibitory projections between each pixel and its neighbors. The pixels 

are arranged on a Cartesian grid with continuous (i.e., toroidal) boundary conditions 

to eliminate edge effects in the operation of the system. Although the output from 

each pixel is a digital spike, the core pattern generation circuits are operated as analog 

circuits.  To save significant chip area, however, we have implemented a clocked 

pixel-readout for the spiking neurons that conform to the address-event protocol 

(AER) [89] for integration into other AER-based systems. When a pixel generates a 

spike, its address and a communication request signal are sent off the chip and when 

the receiving system has captured the information it sends back an acknowledge 

signal. We used minimum size transistors for the digital circuits, for the analog 

circuits we used transistors with (W/L = 9/9 λ). 

6.4.1 Chip Organization 

Fig ‎6.5 shows the connectivity diagram of one pixel of the 16 x 16 array.  To 

implement the desired attractor network, each pixel sends and receives excitation 

locally and inhibition more distally.  By controlling the relative strengths and widths 

of the excitatory and inhibitory kernels, the shape of the activity in the array can be 

controlled.  Each pixel directly interacts with its four nearest neighbors (above, 

below, right, and left) in the grid (we used the letters N, S, E, and W to label these 

connections). A set of current diffusor [99] circuits implement and control the spread 

of the inhibitory and excitatory kernels.  
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Fig 6.4. Micrograph of the Grid Chip. The chip has an array of 16 x 16 analog pixels. Scanner circuits are used to 

select pixels, allowing the activity of each pixel to be read out in the form of AER pulses 

Fig 6.5. Diagram showing the connectivity of one pixel. The 16 x 16 array is formed by tiling this pixel. Each 

pixel receives row and column select lines, is connected to each of its neighbors by six local signal lines two of 

which go through pFET diffusors (small shaded box), and shares a global output voltage line (Vmem).  
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The output current level at each pixel is integrated onto a local capacitor to mimic a 

neural membrane capacitance. To implement the synchronous spiking readout, a 2D 

scanner that uses a clk signal generates Col_Sel and Row_sel signals to address the 

pixels to send the capacitor voltage to a common spike-generation mechanism.  If the 

local capacitor voltage exceeds a threshold, a spike is generated and the membrane 

voltage is reset.  

6.4.2 The Pixel 

Fig ‎6.6 shows the schematic of the pixel circuit. Each pixel consists of a core 

circuit (M13 and M14 near the center) and four main circuit blocks (the ‘projection 

network’, ‘inhibitory input’, ‘excitatory input’, ‘readout’). The drain current of M14 

represents a constant excitatory input current to the pixel which is controlled by the 

global voltage signal Vin_pixel for all pixels on the chip. The current flowing in M13 

is the output current of the pixel which differs between pixels due to the extensive 

interconnectivity. 

6.4.3 Projection Network 

This network mirrors the pixel’s output activity (the current in M13) to both 

the excitatory kernel (using pFETs M2, M4, M6, and M8) and the inhibitory kernel 

(using pFETs M1, M3, M5, and M7) which project directly to the four nearest 

neighbors. The current going to the excitatory network additionally goes through a 

differential pair (not shown) that is used to control the center of the excitatory 

projection kernel.  In this paper we only address the case where the excitatory 

component of the kernel is centered. 
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Fig 6.6.  Pixel Circuit. The pixel circuit consists of the central node (between  M13 and M14) and four circuit 

blocks that implement the inhibitory and excitatory projection kernels and a readout circuit. 
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6.4.4 Inhibitory Input 

The inhibitory component of the interconnection kernel is created by summing 

the four nearest-neighbor inhibition currents (“Inh_Input_x”, where x varies with 

direction) and adding them to the current diffusor network (at node “Inh”) to compute 

the local average inhibition (via the connections “Inh_Mesh_x”).  A copy of this local 

average inhibitory current is then used to inhibit the pixel locally. The local average 

inhibitory current is found at the drain of M11 and is mirrored to the central summing 

node via the pFET mirror (M9 and M10). The same computation is applied to the 

currents arriving from the neighbors in other directions.  

6.4.5 Excitatory Input 

This network is similar in operation to the inhibitory network. Like the 

inhibitory network, neighboring excitatory currents are summed and a local average 

excitatory current is computed at the node labeled “Exc” using the diffusor network.  

Similarly, the diffusor transistor gate voltage controls the width of the excitatory 

kernel.  In this case, however, the current is not mirrored so that the excitatory current 

adds in same direction as the constant bias current transistor M14. 

6.4.6 Readout 

To observe the spatial pattern of current in the array, a two-dimensional 

scanner circuit is used to scan the array pixel by pixel.  A pixel is selected when 

Col_Sel is logic high and Row_Sel is logic low, activating the readout circuit of that 

pixel. The output current of the pattern formation network flowing in M13 is mirrored 

to M17 which charges a capacitor C1. M24 operates as a source-follower when the 
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pixel is selected and a voltage-shifted version of the capacitor voltage appears at the 

node Vmem, a common readout node to all pixels of the array. The biasing circuit for 

M24 is discussed in the next section. If a pixel drives Vmem above a threshold, an 

output spike is sent off-chip and a reset signal will be generated to reset the pixel’s 

capacitor.  Details of the generation of these signals are discussed in a later 

subsection. The Vb_reset signal creates a refractory period to control how long the 

pixel has to wait before it is allowed to begin integrating again. 

6.4.7 Request Generation 

Fig ‎6.7 shows the circuit that receives the output voltage of the pixel (Vmem) 

and decides whether to generate an output spike or not. M25 is the bias transistor for 

the source-follower circuit (M24) in each pixel. The input voltage Vmem is buffered 

by a follower circuit (M26-M30) and compared to a threshold voltage by a wide-

range transconductance amplifier (M31-M39).  This comparator’s output pulls 

Req_bar logic low only if the output voltage is higher than the threshold voltage, 

triggering a request to the AER system. 

6.4.8 Reset Generation 

Fig ‎6.8 shows the circuit that generates the Reset signal after a pixel has 

triggered a request for an output spike. After the AER system sends out the address of 

the pixel that generated the spike, the AER system pulls the Ack_bar signal logic low, 

which in turn will pull the Reset line to logic low.  Reset is a global signal (connected 

to all pixels) but only the pixel selected by Col_Sel and Row_Sel in Fig ‎5.2 will reset 

and all other pixels are not affected. 
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Fig 6.7. Request generation. M25 provides the bias for the source-follower transistor in every pixel (M24 in Fig. 

1). The voltage output from the selected pixel is buffered and compared to Vref_diff, to generate a Req_bar 

signal when the pixel voltage is higher than the spiking threshold. 

Fig 6.8. Reset generation. The Ack_bar signal coming from the AER system pulls the Reset signal low.  The 

Reset signal can only be raised high by the rising edge of a new clk cycle as the scanner selects the next pixel. 
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To raise the Reset signal, the positive edge of the scanner clk signal is to create a 

logic-low voltage pulse through C2 that raises Reset using the pFET M43.  The bias 

voltage V_pull_up controls the time required for the gate of M43 to be pulled back to 

DVdd.  As pixels are selected and fire output spikes, the Reset line is only raised at 

the end of the cycle, preventing multiple output spikes per clock cycle.  

6.5  Chip Results 

A 1.5mm x 1.5mm chip was fabricated using a commercially-available 0.5 µm 

CMOS process.  We have tested the functionality of the chip to generate grid-like 

patterns, by providing a constant current to all of the pixels and selecting the control 

voltages for the diffusor networks to create narrow excitatory kernels and wider 

inhibitory projection kernels. We used a clk frequency of 100 KHz to scan the activity 

of the pixels. 
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Fig 6.9. Raster plot of 0.2 sec of activity recorded from the chip, this raster translates to the patterns shown in Fig 

6.10. The rasters show pixels firing at different frequencies which create analog bumps of activity on the chip.  
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Fig 6.10. Reconstructed grid cell circuit activity pattern on the chip at three different spatial frequencies. The 

brightness of the pixel represents the rate of spikes generated by the pixel (spikes/sec). 
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The activity of the chip was recorded as AER spikes with the 16 x 16 array of pixels 

resulting in addresses from 0 to 255. Fig ‎6.9 shows example raster plots of the spiking 

activity as recorded from the chip.  Since the chip is organized in rows and columns it 

is simple to construct 2D images using the spike rate as intensity.  The spike 

generation is linear with the local pattern current, thus the image reflects the spatial 

pattern linearly. Fig ‎6.10 shows example grid patterns of activity on the chip for three 

different spatial frequencies. These three plots were recorded from the same chip by 

changing only the two parameters controlling the width of the excitatory and 

inhibitory projection kernels. 

6.6  Modeling the Chip Connectivity 

In order to qualitatively describe the operation of the chip, we present in this section, 

a mathematical analysis of the connectivity pattern on the chip.  

The chip has two resistive networks (one for excitation and the other for inhibition) 

connecting the pixels, in the analysis we are using superposition to compute the 

operation of the circuit. 

6.6.1 1-Dimensional Analysis 

To simplify the analysis we will start by a 1-Dimensional array of pixels and 

study the effects of the interconnections on the activity of the network. For n pixels, 

each pixel i has an input current xi and an output current yi. The current yi is directly 

projected to the neighboring pixels i-1 and i+1, each one of these neighbors diffuses 

back a part of that current to the pixel i through the diffuser networks, an excitatory 

part ayi and an inhibitory part byi. Moreover, each neighboring pixel i-1 and i+1 
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sends a copy of its current yi-1 and yi+1 to the pixel i, a part of that current diffuses 

back to the original pixels and another part act on the pixel i itself cyi-1 and cyi+1 

excite the pixel i and dyi-1 and dyi+1 inhibit the pixel. Putting all these currents 

together and applying Kirchhoff’s current law at the node i we get 

                                       (1) 

When we apply Kirchhoff’s current law at each pixel we get 

b = 1 – 2*a, d = 1 – 2*c (2) 

This is a system of linear equations that can be solved for   ’s  

[

  

  

 
  

]   [

                 
                 

     
                 

]  [

  

  

 
  

] (3) 

Assuming a 16 x 1 array of pixels with circular boundary conditions to mimic 

the connectivity on the chip and running a numerical simulation for this 1-D version 

of the system we show the unit step function of the connectivity and the effect of 

changing the α and β factors which represent the diffusion factor in the excitatory and 

inhibitory networks. Fig ‎6.11 shows the response of a 16 x 1 array of pixels 

interconnected as described in equation (2) for an impulse input at pixel 8. The figure 

shows that the response of the circuit exhibits the difference of Gaussians pattern 

required for creating the grid-pattern. 

6.6.2 2-Dimensional Analysis 

Using the same concept we applied for the 1-D analysis in the previous 

section, we present here a 2-D system of equation describing the connectivity in the 



 

 138 

 

network as well as some numerical simulations from Matlab that replicate some the 

data we recorded from the chip. 

Using the same terminology as the previous section with and addition of an 

index variable j for the other dimension, we can write the steady state equation 

linking the output of the pixel yij with its input xij as follows. 

                                                        

                (4) 

The constraints defined in (2) become  

b = 1 – 4*a, d = 1 – 4*c (5) 

Fig ‎6.12 shows Matlab simulation for a 16 x 16 array where a grid-like response 

emerges on the array, similar to what we record from the chip. 

To study the stability of the system, we evaluated the condition number for the 

system of equations described by (4) over the entire parameter range of a and c the 

results of that analysis is shown in Fig ‎6.13. The analysis shows that the system is 

stable over the blue strip in the figure which is a narrow band where a and c values 

are close and is mostly unstable otherwise. 
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Fig 6.12. Matlab generated response of a 16 x 16  array of pixels using the model of the interconnection on the 

chip showing the emergence of grid-like patterns on the pixels (a = 0.17, b = 0.2) 

Fig 6.11. Matlab generated response of a 16 x 1 array of pixels using the model of the interconnection on the chip 

for an impulse input at pixel 8. (a = 0.17, c = 0.2) 
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6.7  Moving the Grid Pattern 

The chip that we designed for emulating the grid cells, we had two objectives, the 

first was to create grid-like patterns of activity over the pixels of the chip, and the 

second was to move the patterns of activity over the chip in a controlled way using 

only analog displacement velocity signals. In the chip presented in this chapter we 

had circuits that were designed to realize this functionality, and we did the proper 

simulation of the functionality of these circuits before sending it out to foundry.  

Unfortunately, when testing the chip, those circuits did not perform as well as we 

expected and we were not able to move the grid pattern over the chip in a controlled 

way.  The mismatch appeared to be significant enough that the movement controls 

did not move the pattern, but appeared to grow the bump size in the desired direction 

Fig 6.13. Condition Number results for the system of Equations described in (4) for the entire range of parameters 

of a and c. 
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until the pattern catastrophically bloomed into a stripe spanning the entire chip. To 

characterize for the level of mismatch on the chip, we ran Monte Carlo simulations on 

the operation of the circuits we have on the chip. Varying the threshold voltage of 

transistors, we noticed that when the mismatch in the transistors’ threshold exceeds 

15%, the movement of the grid pattern becomes distorted and the movement becomes 

irregular or stuck at certain locations. 

Since the operation of the grid cells was crucial for the creation of place cells, we 

decided to move to software based grid cells and use that as the basis of creating the 

place cells as we discuss in the next chapter. 

6.8  Conclusion 

In this chapter we have presented a neuromorphic chip that can produce the 

spatially-periodic, hexagonal activity patterns believed to exist in the grid cell layers 

of entorhinal cortex. Multiple spatial frequencies were demonstrated.  The grid 

patterns were stable and did not drift with time. Although the pixels exhibit 

significant mismatch, the large-scale pattern is quite evident. 
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Chapter 7 :  Place Cell System 

7.1 Introduction 

Spatial navigation is a critical survival skill for many animals. Neurophysiological 

studies in mammals of the mechanisms underlying this skill have revealed a variety 

of neurons that support internal models of position that integrate both internally-

generated (e.g., vestibular and proprioceptive signals) and externally-generated (e.g., 

vision or sonar) cues. As we discussed earlier, a subset of neurons in the hippocampus 

are neurons  called “place cells” which become active when the animal is in a 

particular spot in a given environment [11].  Those cells are thought to be activated 

by the convergence of activity from both a translational and rotational internal 

estimate of the animal’s movements [72].   In addition, sensory cues in the 

environment are used to “anchor” the response fields to reference objects in the world 

to correct for drifts in the estimate.  The internal  orientation estimate is performed by 

the “head-direction cell” system [42] and the internal translational estimate is 

performed by the “grid-cell” system [96]. Together they provide the information 

needed to produce the place-cell responses. Using inputs from multiple spatial 

frequencies to create place cells is similar to a Fourier construction of a bump of 

activity [72].  

The biological data show that the formation of stable place cell responses in a 

certain environment can develop during the first encounter of the animal in this space 

[47]. This fast emergence of place cell responses without extensive experience 

implies that the animal did not slowly create the place fields based solely on the 
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sensory information in the space. The odometry data is always available, however, 

since it comes from measurements of its own motion and motor signals, and can be 

used to create the place cell responses. On the other hand, the place cell system can 

quickly learn to link sensory cues (landmarks) in the space to the place fields; rotating 

salient cues in an environment with stable place fields result in a corresponding 

rotation in the place cell responses. 

In previous chapters, we presented our implementation for a neuromorphic head 

direction cell system and grid cell system. In this chapter, we discuss how the place 

cells can be created using the activity from grid cells and head direction cells.  

The results we present in this chapter are mainly from simulations using MATLAB® 

to test our ideas and plan its implementation in future hardware. 

7.2  Head Direction Cells to Place Cells 

Head direction cells serve to keep track of an animal’s orientation in a given 

space. This information is extremely valuable in spatial navigation to guide the 

direction of movement of the grid activity pattern across the grid cell layers [47]. In 

the next section we discuss how grid cells can be used to create place cells. 

 

7.3 Grid Cells to Place Cells 

As discussed earlier, response fields of Grid Cells have been found to have 

different spatial frequencies. It has been proposed that the grids of activity have been 

move over the sheet of neuron to follow the animal’s displacement in the 

environment [100]. The grid patterns associated with neurons in the entorhinal cortex 
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are thought to be a result of the connectivity between the neurons as described in the 

previous chapter.  

There are two main theories regarding the velocity input to the activity of grid 

cells [71, 72]. The first theory states that each layer of Entorhinal cortex has a 

different connectivity pattern, creating the different spatial frequencies of the grids 

and that the velocity signal drives all the layers equally to produce the motion. The 

second theory states that all the layers of the entorhinal cortex that exhibit grid cells 

have similar connectivity patterns and that the different spatial frequencies emerge 

from the drive of the velocity to the grid cells. It is still not known which one of these 

two theories is true if any. Since our aim is to create place cells, we have investigated 

both theories in our simulations and in this section we present the results.  

7.3.1 Grid Cells with Similar Velocity Drive and Different Connectivity  

In this section we test the first assumption that states that the displacement 

velocity signal drives the different layers of the entorhinal cortex equally, thus the 

difference in the spatial frequencies between the grid layers is due only to the 

connectivity patterns between the neurons of each layer. 

In our simulations we address the reverse of the problem, by considering the 

following question, if we have a group of grid cells and an agent moving randomly  in 

an environment, can a place cell be created at a specific location in the environment 

using grid cell activity alone?  In the section to follow, we use Hebbian-learning to 

find the projection weights from neurons in the grid cell layer to a place cell such that 

a place field can be formed in the selected location.  
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In this case, we have grid cells with three different spatial frequencies. The 

spatial frequencies were picked arbitrarily with one constraint that they are multiple 

harmonics of the same base frequency. The initial phases of the grids are picked at 

random for the initial position of the agent in the space. The agent moves around 

randomly in the space; whenever it enters into the desired place field for the place 

cell, a teacher signal forces the place cell to fire and Hebbian-learning strengthens the 

projections from the active grid cells to the place cell. If the agent is at a location 

outside the place field but the place cell is activated, an anti-Hebbian learning rule 

“unlearns” that location. The size of the arena, the location of the place field, and the 

initial position of the agent in the arena are arbitrarily chosen.  

Fig ‎7.1 shows the three grid cells we used in this simulation in which the three 

cells have different spatial frequencies. The cells’ activity is discrete with three levels 

of activity. Fig ‎7.2 shows two examples of place fields that were trained in our 

system. We are able to train cells with place fields as small as one pixel and as large 

as 10 x 10 pixels over the training arena. In the bottom panel of Fig ‎7.2 an extra 

region of sensitivity was created in the place field. Such anomalies occurred in our 

system as the desired place fields were made larger. Fig ‎7.3 shows the weight 

matrices that produce the place fields shown in Fig ‎7.2. The left column of Fig ‎7.3 

corresponds to the place cell on the top in Fig ‎7.2 
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Fig 7.1. The response of the three grid cells used to create the place cell. We have three different spatial 

frequencies for the grid cells’ responses. 
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Fig 7.2. Two examples for place fields that system was able to learn, the place field can be as small as one pixel 

or as big as 10 x 10 pixels. 
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Fig 7.3. Weight matrices for the two place cells shown in Fig 7.2 
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7.3.2 Grid Cells with Similar Connectivity and Different Velocity Drive 

In this case, we reversed the variables from the previous case. We used only 

one connectivity pattern for all of the grid layers, however, the velocity signals had 

different weights on the activity of the grid cells. The grid cell layer consisted of three 

cells similar to the case shown in the previous section. We kept the setup of the 

experiments the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.4. The grid cell response used to create the place cells in this experiment. 
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Fig 7.5. Two examples for place fields that system was able to learn, the place field can be as small as one pixel 

or as big as 10 x 10 pixels. 
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Fig 7.6. Weight matrices for the two place cells shown in Fig 7.5 
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Fig ‎7.4 shows the response of the grid cell we used in this experiment. Using 

three different initial phases (randomly chosen) we generated the grid cells activity 

for the experiment. Fig ‎7.5 shows two examples of place fields we were able to train 

in the system. We could train cells with place fields as small as one pixel and as large 

as 10 x 10 pixels over the training arena. As the place field of the place cells gets 

bigger, we noticed that an ambiguity in the place field started to emerge. Fig ‎7.6 

shows the weight matrices that result in the place fields shown in Fig ‎7.5, the left 

column of Fig ‎7.6 corresponds to the place cell on the top in Fig ‎7.5. 

7.4  Conclusions 

In this chapter we presented a simulation of how the grid cells can be used to 

create place cells. From our experience, the construction of place cells from grid cells 

is computationally simple and does not require a lot of training; we were able to 

obtain stable place fields within 1000 iterations into the experiments. The fact that we 

were able to create place cells from grid cells implies that the formation of place cells 

in the brain could be explained based on the activity of the grid cells. 
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Chapter 8 :  Conclusions and Future Directions 

This dissertation was focused on the study of the neurobiological structures 

involved in performing spatial navigation in mammals. The animal of interest was the 

big brown bat, however, due to the lack of neurobiological data from that specific 

species, we adopted models from the rat literature with the assumption that both 

animals have similar brain structures. Over the course of the thesis, new 

neurobiological findings in the echolocating bat assured our initial assumptions 

regarding the similarities between the two species.  

The neural structures involved in representing spatial layout of the environment in 

the brain of mammals can be broken down into the head direction cell system, the 

grid cell system and the place cell system.  The head direction cells keep track of the 

orientation in the environment, the grid cells keep track of the displacement in the 

environment and the place cells keep track of the absolute location in the 

environment.  

Our goal was to use our understanding of the neural structures to design 

neuromorphic VLSI circuits that mimic the computation of these circuits. We were 

able to design a neuromorphic head direction cell system. The system we developed 

was driven only by analog (asynchronous spikes) rotation velocity signals and was 

able to integrate the velocity signals into position, mimicking the biological head 

direction cell system. The neuromorphic VLSI head direction cell system we 

designed was noisy (both spatially and temporally) and similar to its biological 

counterpart, the position estimate would drift with time. To solve  that problem, we 

combined information from a sonar system (sensory) with the head direction system 
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in a hybrid (hardware / software) system that was able to associate the location of 

cues in the environment and use that knowledge to correct for the drift in the head 

direction cell system estimate. 

Following the head direction cell system we designed a grid cell system. To 

reduce the system complexity, we went from spike-based computation to a 

completely analog core with a spiking representation at the output that was generated 

by a comparator while scanning all of the neurons sequentially The neuromorphic 

VLSI grid cell system successfully generated grid-like patterns of activity whose 

spatial frequency is controlled by parameters on the chip, however, the patterns could 

not be moved over the chip. Our built-in mechanism for controlled pattern movement 

suffered from big levels of mismatch on the chip which resulted in the grid patters 

being very stable and not movable. 

Since our aim was to understand the neural circuitry involved in spatial navigation 

we went ahead and moved our grid cells to the software domain to test our ability to 

create place cell based on grid cell activity. Our simulation showed that place cells 

can indeed be formed using as few as three grid cells. We tested two hypotheses for 

place cell formation from grid cells, and showed that both of them did produce place 

cells. With the formation of place cells, we have been able to model the most relevant 

parts of the neural circuits that, to our knowledge, contribute to the encoding oif space 

in the brain of the rats.  

For future directions we can suggest that the place cell system be moved from the 

software domain back to the hardware domain to have a completely hardware based 

system. Also we think that the system should be tested as a whole using a robotic 
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platform which will be challenging from the perspective of tuning all the pieces of 

hardware and have them work together at the same time. Our overall approach, for 

the head-direction system when applied to hardware is low power (internal to the 

chips) and would be suitable for micro-aerial vehicles, which is one of the  next 

platforms on which our system will be tested. 

Finally, our knowledge about the computational algorithms performed by the brain 

changes by the day with new stunning discoveries. To benefit from the biological 

superiority of computation, we must keep an eye out for discoveries coming from the 

neuroscience which might lead to revolutionary ways to our engineering techniques.   
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