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solely from observation of the projected system.
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Chapter 1

Introduction

The connection between the theory of dynamical systems and the long-time be-

havior of solutions of a priori infinite-dimensional continuum systems described

by partial differential equations is of great importance. Indeed, the application of

dynamical ideas to areas of mathematical physics such as turbulence theory and

fluid dynamics depends on this relationship. One views the equation of interest

as the generator of a semiflow or a flow on a suitable function space. Ergodic

theory and dimension theory may then be brought to bear on the analysis of

asymptotic behavior in both the deterministic and stochastic contexts.

My research is based on two general lines of inquiry. Intrinsic questions con-

cern the nature of the flow and its asymptotic properties. Examples of such

problems include global attractor existence, attractor dimension estimates, iner-

tial manifold existence, and the ergodic properties of invariant measures. The

second line of inquiry deals with measurement and reconstruction from experi-

mental data or a finite-dimensional truncation of the flow. One effectively projects

the phase space onto a finite-dimensional space in order to reconstruct dynamical

objects of interest and compute dynamical invariants. How accurately does the

projection of the dynamical system reflect the dynamical system itself? Can the
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accuracy of the projection be deduced solely from observation of the projected

system? We address problems with origins in both lines of inquiry.

In Chapter 2, we study the extent to which the Hausdorff dimension and

the dimension spectrum of a fractal measure supported on a compact subset of

a Banach space are affected by a typical mapping into a finite-dimensional Eu-

clidean space. Let X be a compact subset of a Banach space B with thickness

exponent τ(X) and Hausdorff dimension dimH(X). Let M be any subspace of

the Borel measurable functions from B to Rm that contains the space of lin-

ear functions and is contained in the space of locally Lipschitz functions. We

prove that for almost every (in the sense of prevalence) function f ∈ M , one

has dimH(f(X)) > min{m, dimH(X)/(1 + τ(X))}. We also prove an analogous

result for a certain part of the dimension spectra of Borel probability measures

supported on X. The factor 1/(1 + τ(X)) can be improved to 1/(1 + τ(X)/2) if

B is a Hilbert space. Since dimension cannot increase under a locally Lipschitz

function, these theorems become dimension preservation results when τ(X) = 0.

We conjecture that many of the attractors associated with the evolution equa-

tions of mathematical physics have zero thickness. The sharpness of our results

in the case τ(X) 6= 0 is discussed.

In Chapter 3, we consider the motion of an incompressible fluid confined to a

shallow basin with varying bottom topography. A two-dimensional shallow water

model has been derived from a three-dimensional anisotropic eddy viscosity model

and has been shown to be globally well posed in [40]. The dynamical system

associated with the shallow water model is studied. We show that this system

possesses a global attractor and that the Hausdorff and box-counting dimensions

of this attractor are bounded above by a value proportional to the weighted L2-
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norm of the wind forcing function. A weighted Sobolev-Lieb-Thirring inequality

plays the key role in obtaining the dimension estimate.

In Chapter 4, we study the extent to which the accuracy of a projection may

be deduced solely from observation of the projected system. Let A be a compact

invariant set for a map f on Rn and let φ : Rn → Rm where n > m be a

“typical” smooth map. When can we say that A and φ(A) are similar, based

only on knowledge of the images in Rm of trajectories in A? For example, under

what conditions on φ(A) (and the induced dynamics thereon) are A and φ(A)

homeomorphic? Are their Lyapunov exponents the same? Or, more precisely,

which of their Lyapunov exponents are the same? We address these questions

with respect to both the general class of smooth mappings φ and the subclass of

delay coordinate mappings.

In answering these questions, a fundamental problem arises about an arbitrary

compact set A in Rn. For x ∈ A, what is the smallest integer d such that there

is a C1 manifold of dimension d that contains all points of A that lie in some

neighborhood of x? We define a tangent space TxA in a natural way and show

that the answer is d = dim(TxA). As a consequence we obtain a Platonic version

of the Whitney embedding theorem.
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Chapter 2

The Effect of Projections on Fractal Sets and Measures in

Banach Spaces

Written in collaboration with Brian Hunt and Vadim Kaloshin, the material in

this chapter has been submitted for publication in Ergodic Theory & Dynamical

Systems.

2.1 Introduction

Many infinite-dimensional dynamical systems have been shown to have compact

finite-dimensional attractors [9, 20, 56, 61, 64]. Such attractors exist for a va-

riety of the evolution equations of mathematical physics, including the Navier-

Stokes system, various classes of reaction-diffusion systems, nonlinear dissipative

wave equations, and complex Ginzburg-Landau equations. When an attractor is

measured experimentally, one observes a ‘projection’ of the attractor into finite-

dimensional Euclidean space. This technique of observation via projection leads

to a natural and fundamental question. How accurately does the image of the

attractor reflect the attractor itself? We address this question from a dimension-

theoretic perspective and we consider the following problem. For an attractor
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of an infinite-dimensional dynamical system, how is its dimension affected by a

typical projection into a finite-dimensional Euclidean space?

One may define the dimension of an attractor in many different ways. Setting

aside dynamics, the attractor may be viewed as a compact set of points in a

metric space. Viewing the attractor in this light, the dimension of the attractor

may be defined as the box-counting dimension or the Hausdorff dimension of

the attracting set. Measure-dependent notions of attractor dimension take into

account the distribution of points induced by the dynamics and are thought to

be more accurately measured from numerical or experimental data. One often

analyzes the ‘natural measure,’ the probability measure induced by the statistics

of a typical trajectory that approaches the attractor. A natural measure is not

known to exist for arbitrary systems, but it does exist for Axiom A attractors

and for certain classes of systems satisfying conditions weaker than uniform hy-

perbolicity. See [32, 67] for expository discussions of systems that are known to

have natural measures.

The dimension spectrum (Dq spectrum) characterizes the multifractal struc-

ture of an attractor. Given a Borel measure µ with compact support X in some

metric space, for q > 0 and q 6= 1 let

Dq(µ) = lim
ε→0

log
∫

X

[
µ(B(x, ε))

]q−1
dµ(x)

(q − 1) log ε
, (2.1)

provided the limit exists, where B(x, ε) is the ball of radius ε centered at x. (If

the limit does not exist, define D+
q (µ) and D−

q (µ) to be the lim sup and lim inf,

respectively.) Let

D1(µ) = lim
q→1

Dq(µ),

again provided the limit exists. This spectrum includes the box-counting dimen-

sion (D0), the information dimension (D1), and the correlation dimension (D2).
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In particular, when q = 0 the dimension depends only on the support X of µ and

we write D0(X) = D0(µ). See Section 2.2 for a discussion of this definition and

its relationship to other definitions of Dq in the literature.

The goal of this paper is to extend the following theorems, as much as possible,

to infinite-dimensional Banach spaces. In all of the results in this paper, ‘almost

every’ is in the sense of prevalence, a generalization of ‘Lebesgue almost every’

to infinite-dimensional spaces. See Section 2.2 and [33, 34] for details.

Theorem 2.1 ([58]). Let X ⊂ Rn be a compact set. For almost every function

f ∈ C1(Rn,Rm), one has

dimH(f(X)) = min{m, dimH(X)}

where dimH(·) is the Hausdorff dimension.

Theorem 2.2 ([30]). Let µ be a Borel probability measure on Rn with compact

support and let q satisfy 1 < q 6 2. Assume that Dq(µ) exists. Then for almost

every function f ∈ C1(Rn,Rm), Dq(f(µ)) exists and is given by

Dq(f(µ)) = min{m,Dq(µ)}.

For each result, the space C1 can be replaced by any space that contains

the linear functions from Rn to Rm and is contained in the locally Lipschitz

functions. Theorem 2.1 extends to smooth functions a result of Mattila [45]

(generalizing earlier results of Marstrand [44] and Kaufmann [38]) that makes

the same conclusion for almost every linear function from Rn into Rm, in the

sense of Lebesgue measure on the space of m-by-n matrices. Strictly speaking,

Marstrand, Kaufmann, and Mattila considered orthogonal projections, but the

analogous results for general linear projections follow immediately. Sauer and
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Yorke [58] prove Theorem 2.2 for the correlation dimension (D2) and recover

(2.1) by invoking a variational principle for Hausdorff dimension [22]. Theorem

2.1 and its predecessors follow from a potential-theoretic characterization of the

dimensions involved. Roughly speaking, the dimension is the largest exponent for

which a certain singular integral converges. Theorem 2.2 follows from a similar

characterization of Dq for q > 1 [30].

The potential-theoretic approach only leads to a dimension preservation result

for Dq if 1 < q 6 2. For 0 6 q < 1 and q > 2, [30] gives examples for which

Dq is not preserved by any linear transformation into Rm. For 0 6 q < 1, the

construction is based on the discovery by Kan [59, 58] of a class of examples for

which the box dimension is not preserved by any C1 function.

When the ambient space is not finite-dimensional, one does not expect a di-

mension preservation result analogous to Theorem 2.1 or Theorem 2.2 to hold.

We use the thickness exponent to study the extent to which the dimension spec-

trum is affected by projection from a Banach space to Rm. This exponent, defined

precisely in Section 2.2 and denoted τ(X), measures how well a compact subset

X of a Banach space B can be approximated by finite-dimensional subspaces of

B, with smaller values of the thickness exponent indicating better approximabil-

ity. In general one has τ(X) 6 D+
0 (X), the upper box-counting dimension of X,

and equality is possible. We expect that the thickness exponent can be shown

to be significantly smaller than the box-counting dimension for many attractors

of infinite-dimensional systems. Studying the Hölder regularity of embeddings of

infinite-dimensional fractal sets into finite-dimensional spaces, [31] establishes a

bound on the amount the dimension may drop for a typical projection.

Theorem 2.3 ([31]). Let B denote a Banach space. Let X ⊂ B be a compact
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set with box-counting dimension d and thickness exponent τ(X). Let m > 2d be

an integer, and let α be a real number with

0 < α <
m− 2d

m(1 + τ(X))
.

Then for almost every (in the sense of prevalence) bounded linear function (or

C1 function, or Lipschitz function) f : B → Rm there exists C > 0 such that for

all x, y ∈ X,

C|f(x) − f(y)|α > |x− y|. (2.2)

For such a function f , one has

m− 2d

m(1 + τ(X))
dim(X) 6 dim(f(X)) 6 dim(X)

where dim(X) represents either the box-counting dimension or Hausdorff dimen-

sion.

This theorem generalizes earlier results in [5] and [23].

For a function f satisfying (2.2), the factor by which the dimension may drop

is the product of two terms, (m−2d)/m and 1/(1+τ(X)). The first term depends

on the embedding dimension m and converges to one as m→ ∞ while the second

term depends intrinsically on X via its thickness. We prove that the Hausdorff

dimension is preserved by a typical projection up to a factor of 1/(1 + τ(X)).

In particular, the factor (m− 2d)/m has been removed. We now state the main

theorem for compact subsets of Banach spaces. Because of the possibility of

dimension drop, the existence of Dq(µ) does not imply the existence of Dq(f(µ))

for functions f satisfying the conclusion of the theorem. We therefore formulate

the result in terms of the lower dimension D−
q .

Banach Space Theorem. Let B be a Banach space, and let M be any subspace

of the Borel measurable functions from B to Rm that contains the space of linear
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functions and is contained in the space of locally Lipschitz functions. Let X ⊂ B

be a compact set with thickness exponent τ(X). Let µ be a Borel probability

measure supported on X. For almost every f ∈M , one has

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)

}
,

and, for 1 < q 6 2,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}
. (2.3)

Notice that for sets with thickness zero, the Banach space theorem is a dimen-

sion preservation result. Every compact set X ⊂ Rn has thickness zero. Thus,

the Banach space theorem generalizes Theorems 2.1 and 2.2. Furthermore, it

strengthens Theorem 2.2, because for a prevalent set of functions, (2.3) holds

simultaneously for all 1 < q 6 2. On the other hand, suppose τ(X) > 0. The

Hausdorff dimension of X may be noncomputable in the sense that for any pos-

itive integer m and any subspace M of the Borel measurable functions from B

to Rm, dimH(f(X)) < dimH(X) for all f ∈ M . In other words, the Hausdorff

dimension of X cannot be ascertained from any finite-dimensional representation

of X.

The proof of the Banach space theorem uses only the most general informa-

tion about the structure of the dual space B ′. In specific situations, additional

knowledge about the structure of the dual space may yield improved theorems.

We show that this does indeed happen in the Hilbert space setting.

Hilbert Space Theorem. Let H be a Hilbert space, and let M be any subspace

of the Borel measurable functions from H to Rm that contains the space of linear

functions and is contained in the space of locally Lipschitz functions. Let X ⊂ H
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be a compact set with thickness exponent τ(X). Let µ be a Borel probability

measure supported on X. For almost every f ∈M , one has

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)/2

}
,

and, for 1 < q 6 2,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)/2

}
. (2.4)

As we have mentioned, examples in [30] preclude similar results for 0 6 q < 1

and q > 2. The case q = 1 is of interest because it corresponds to the commonly

used notion of information dimension, in the following sense. In general, the

limit (2.1) need not exist. However, D−
q (µ) is a nonincreasing function of q and is

continuous for q 6= 1 [4]. From this it follows that (2.3) and (2.4) hold for q = 1

if we define

D−
1 (µ) = lim

q→1+
D−

q (µ).

Next, we consider the sharpness of the Banach and Hilbert space theorems. In

[31], the authors give an example of a compact subset X of Hausdorff dimension

d in `p for 1 6 p <∞ such that for all bounded linear functions π : `p → Rm,

dimH(π(X)) 6
d

1 + d/q

where q = p/(p − 1). In these cases, τ(X) = d. Thus, the Hausdorff dimension

parts of the Banach and Hilbert space theorems are sharp, in the sense that there

is no better bound in terms of τ(X) that holds for all such spaces (notice that

q = 2 for the separable Hilbert space `2 and q → 1 as p→ ∞).

On the other hand, when p = 1, q is infinite, and the example in [31] does

not rule out the possibility of a dimension preservation result for subsets of `1

of arbitrary thickness. We demonstrate that such a result is not possible by
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constructing a compact subset X of Hausdorff dimension d in `1 such that for all

bounded linear functions π : `1 → R,

dimH(π(X)) 6
d

1 + d/2
.

In light of this example, we are somewhat pessimistic regarding the existence of

infinite-dimensional spaces for which a general dimension preservation theorem

holds. It is thus natural to consider the following fundamental question. Suppose

X represents the global attractor of a flow on a function space generated by an

evolution equation. Under what hypotheses on the flow does one have τ(X) = 0?

If one assumes that the flow is sufficiently dissipative and smoothing, then X

will have finite box dimension. We conjecture that similar dynamical hypothe-

ses imply that τ(X) = 0. Friz and Robinson [24] obtain a result of this type.

They prove that if an attractor is uniformly bounded in the Sobolev space H s

on an appropriate bounded domain in Rm, then its thickness is at most m/s.

This result implies that certain attractors of the Navier-Stokes equations have

thickness exponent zero. Roughly speaking, thickness is inversely proportional

to smoothness.

Section 2.2 reviews prevalence, the dimension spectrum, and the thickness

exponent. The main two theorems are presented and proved in Section 2.3.

In Section 2.4 we describe the counterexample to the dimension preservation

conjecture for subsets of `1 of arbitrary thickness.

2.2 Preliminaries

We discuss prevalence, the dimension spectrum, and the thickness exponent.
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2.2.1 Prevalence

Mathematicians often use topological notions of genericity when formulating the-

orems in dynamical systems and topology. In topological terms, ‘generic’ refers

to an open and dense subset of mappings, or to a countable intersection of such

sets (a ‘residual’ subset). In finite-dimensional spaces, there exists considerable

discord between the topological notion of genericity and the measure-theoretic

notion of the size of a set (see [33, 51] for examples). Prevalence is intended to

be a better analogue to “probability one” on function spaces where no Lebesgue

or Haar measure exists.

To motivate the definition of prevalence on a Banach space B, consider how

the notion of ‘Lebesgue almost every’ on Rn can be formulated in terms of the

same notion on lower-dimensional spaces. Foliate Rn by k-dimensional planes,

which by an appropriate choice of coordinates we think of as translations of

Rk ⊂ Rn by elements of Rn−k. If ‘Lebesgue almost every’ translation of Rk inter-

sects a Borel set S ⊂ Rn in full k-dimensional Lebesgue measure, then S has full

n-dimensional Lebesgue measure by the Fubini theorem. If Rn is replaced by an

infinite-dimensional space B, we cannot formulate the same condition because the

space of translations of a k-dimensional subspace is infinite-dimensional. How-

ever, we can impose the stronger condition that every translation of the subspace

intersects S in a set of full Lebesgue measure. A preliminary notion of prevalence

is obtained by declaring that a Borel set S ⊂ B is prevalent if there exists some

finite k and some k-dimensional subspace V such that every translation of V

intersects S in a set of full k-dimensional Lebesgue measure. In order to ensure

that a countable intersection of prevalent sets is prevalent, we must enlarge the

space of measures under consideration beyond Lebesgue measure supported on
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finite-dimensional subspaces.

Definition 2.4. A Borel set S ⊂ B is said to be prevalent if there exists a

measure µ on B such that

1. 0 < µ(C) <∞ for some compact subset C of B, and

2. the set S − x has full µ-measure (that is, the complement of S − x has

measure 0) for all x ∈ B.

A non-Borel set that contains a prevalent Borel set is also prevalent.

The measure µ may be a Lebesgue measure on a finite-dimensional subspace of

B. More generally, one may think of µ as describing a family of perturbations

in B. In this sense, S is prevalent if for all x ∈ B, choosing a perturbation at

random with respect to µ and adding it to x yields a point in S with probability

one. Prevalent sets share several of the desirable properties of residual sets. A

prevalent subset of B is dense and the countable intersection of prevalent sets

is prevalent. See [33] for details. One may formulate a notion of prevalence

appropriate for spaces without a linear structure [36]. This notion applies to the

space of diffeomorphisms of a compact smooth manifold.

2.2.2 The Dimension Spectrum

Let µ be a Borel probability measure on a metric space X. For q > 0 and ε > 0

define

Cq(µ, ε) =

∫

X

[µ(B(x, ε))]q−1 dµ(x)

where B(x, ε) is the open ball of radius ε centered at x.
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Definition 2.5. For q > 0, q 6= 1, the lower and upper q-dimensions of µ are

D−
q (µ) = lim inf

ε→0

logCq(µ, ε)

(q − 1) log(ε)
,

D+
q (µ) = lim sup

ε→0

logCq(µ, ε)

(q − 1) log(ε)
.

If D−
q (µ) = D+

q (µ), their common value is denoted Dq(µ) and is called the q-

dimension of µ.

For a measure µ such that Dq(µ) exists, the function q → Dq(µ) is called the

dimension spectrum of µ. For q = 0, D−
0 and D+

0 depend only on X. We write

D−
0 (X) and D+

0 (X) for the lower and upper 0-dimensions of X. For ε > 0, let

n(X, ε) be the minimum number of ε-balls required to cover X. Written in terms

of n(X, ε), D−
0 (X) and D+

0 (X) are given by

D−
0 (X) = lim inf

ε→0

logn(X, ε)

log(1/ε)
,

D+
0 (X) = lim sup

ε→0

log n(X, ε)

log(1/ε)
.

The values D−
0 (X) and D+

0 (X) are therefore equal to the lower and upper box-

counting dimensions of X, respectively.

For measures on Rn, one encounters the following alternative definition of the

dimension spectrum [27, 28, 54]. For ε > 0, cover the support of µ with a grid

of cubes with edge length ε. Let N(ε) be the number of cubes that intersect the

support of µ, and let the measure of these cubes be p1, p2, . . . , pN(ε). Write

D−
q (µ) = lim inf

ε→0

∑N(ε)
i=1 pq

i

(q − 1) log(ε)
,

D+
q (µ) = lim sup

ε→0

∑N(ε)
i=1 pq

i

(q − 1) log(ε)
.

For q > 0, q 6= 1, these limits are independent of the choice of ε-grids, and give

the same values as Definition 2.5. See [55] for a proof of this equivalence for q > 1.
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The grid definition of the dimension spectrum is not appropriate for measures on

general metric spaces. We therefore adopt Definition 2.5 as the natural notion in

the general case.

A potential-theoretic definition of the lower q-dimension D−
q (µ) for q > 1 is

introduced in [30]. For s > 0 the s-potential of the measure µ at the point x is

given by

ϕs(µ, x) =

∫

X

|x− y|−s dµ(y).

Definition 2.6. The (s, q)-energy of µ, denoted Is,q(µ), is given by

Is,q(µ) =

∫

X

[ϕs(µ, x)]
q−1 dµ(x) =

∫

X

(∫

X

dµ(y)

|x− y|s
)q−1

dµ(x).

For q = 2, the (s, q)-energy of µ reduces to the more standard notion of the

s-energy of µ, written

Is(µ) =

∫

X

ϕs(µ, x) dµ(x) =

∫

X

∫

X

dµ(x)dµ(y)

|x− y|s .

Sauer and Yorke [58] show that the lower correlation dimension D−
2 (µ) can be

expressed as

D−
2 (µ) = sup{s : Is(µ) <∞}. (2.5)

This characterization of D−
2 (µ) is used to establish the preservation of correlation

dimension. The following proposition generalizes (2.5) to the lower-dimension

spectrum for q > 1.

Proposition 2.7 ([30]). If q > 1 and µ is a Borel probability measure, then

D−
q (µ) = sup{s > 0 : Is,q(µ) <∞}.
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2.2.3 The Thickness Exponent

Let B denote a Banach space.

Definition 2.8. The thickness exponent τ(X) of a compact set X ⊂ B is de-

fined as follows. Let d(X, ε) be the minimum dimension of all finite-dimensional

subspaces V ⊂ B such that every point of X lies within ε of V ; if no such V

exists, then d(X, ε) = ∞. Let

τ(X) = lim sup
ε→0

log d(X, ε)

log(1/ε)
.

There is no general relationship between the thickness exponent and the Haus-

dorff dimension. A finite-dimensional disk has thickness exponent zero but can

have arbitrarily high dimension. A countable set, which necessarily has Haus-

dorff dimension zero, can have positive thickness. For example, one can show

that the compact subset {0, e2/ log 2, e3/ log 3, . . .} of the real Hilbert space with

basis {e1, e2, . . .} has an infinite thickness exponent. A definitive statement may

be made concerning the box-counting dimension D0.

Lemma 2.9 ([31]). Let X ⊂ B be a compact set. Then τ(X) 6 D+
0 (X).

Proof. Recall that the box-counting dimension D+
0 (X) may be expressed similarly

to τ(X), but in terms of the minimum number of n(X, ε) of ε-balls required to

cover X. For any such cover, X lies within ε of the space spanned by the centers

of the balls. Thus d(X, ε) 6 n(X, ε) for each ε > 0, and the desired inequality

follows.

2.3 Main Results

We begin with the main results for general Banach spaces.
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Theorem 2.10. Let B be a Banach space, and let M be any subspace of the Borel

measurable functions from B to Rm that contains the bounded linear functions.

Let X ⊂ B be a compact set with thickness exponent τ(X), and let µ be a Borel

probability measure supported on X. For almost every function f ∈ M ,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}

for all q ∈ (1, 2].

Corollary 2.11. Assume in addition that M is contained in the space of locally

Lipschitz functions, that τ(X) = 0, and that Dq(µ) exists (D−
q (µ) = D+

q (µ)) for

all q ∈ (1, 2]. Then for almost every function f ∈ M , Dq(f(µ)) exists and equals

min{m,Dq(µ)} for all q ∈ (1, 2].

Remark 2.12. For r > 1, the space M = Cr(B,Rm) satisfies the hypotheses of

Theorem 2.10 and Corollary 2.11.

The corollary follows immediately from Theorem 2.10 and the fact that for all µ

and all locally Lipschitz f , D+
q (f(µ)) 6 min{m,D+

q (µ)}.

Corollary 2.13. Let B be a Banach space. Let X ⊂ B be a compact set with

thickness exponent τ(X). For almost every function f ∈M ,

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)

}
. (2.6)

Proof. Let M(X) denote the set of Borel probability measures on X. The Haus-

dorff dimension ofX may be expressed in terms of the lower correlation dimension

of measures supported on X via the variational principle [22]

dimH(X) = sup
µ∈M(X)

D−
2 (µ).
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For each i ∈ N, there exists µi ∈ M(X) such that D−
2 (µi) > dimH(X) − 1/i.

Applying Theorem 2.10, there exists a prevalent set Pi ⊂ M of functions such

that for f ∈ Pi,

D−
2 (f(µi)) > min

{
m,

D−
2 (µi)

1 + τ(X)

}
.

The set
⋂∞

i=1 Pi is prevalent. For f ∈ ⋂∞
i=1 Pi, the bound (2.6) follows from the

variational principle.

Remark 2.14. No analogue of Corollary 2.13 holds for the box-counting dimen-

sion. Let n > m be integers and let d 6 m. Sauer and Yorke [58] construct

a compact set A ⊂ Rn such that D+
0 (A) = d and D+

0 (f(A)) < d for every

f ∈ C1(Rn,Rm).

Proof of Theorem 2.10. Fix 1 < q 6 2. Let L ⊂M denote the space of bounded

linear functions from B into Rm. We construct a ‘Banach brick’ Q ⊂ L of

perturbations and a probability measure λ on Q. For f ∈ M and π ∈ Q, write

fπ = f + π. Utilizing the potential-theoretic description of D−
q (µ) for 1 < q 6 2,

we must show that for any f ∈M , t > 0, and 0 6 s < min{m, t/(1 + τ(X))},

It,q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞ (2.7)

for λ-almost every π ∈ Q. The result follows because we can choose t arbitrarily

close to D−
q (µ).

We define the Banach brick Q as follows. For j ∈ N, let dj = d(X, 2−j) and let

Vj ⊂ B be a subspace of dimension dj such that every point of X lies within 2−j

of Vj. Fix σ > τ(X). By Definition 2.8 of τ(X), there exists C1 > 0, depending

only on X and σ, such that dj 6 C12
jσ. Let Sj be the closed unit ball in the

dual space V ′
j of Vj. There is no natural embedding of V ′

j into B′, but it follows

from the Hahn-Banach theorem that there exists an isometric embedding of V ′
j
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into B′. As such, we can think of Sj as a subset of B′. On the other hand,

V ′
j is linearly isomorphic to Rdj , and Sj corresponds to a convex set Uj ⊂ Rdj .

The uniform (Lebesgue) probability measure on Uj induces a measure λj on Sj.

Define the Banach brick Q by

Q =

{
π = (π1, . . . , πm) : πi =

∞∑

j=1

j−2φij with φij ∈ Sj ∀j
}
.

Since each Sj ⊂ B′ is compact, Q ⊂ L is compact. Let λ be the probability

measure on Q that results from choosing the elements φij randomly and indepen-

dently with respect to the measures λj on the sets Sj. (While the term “brick”

suggests that Q is the product of compact sets j−2Sj that are all transverse to

each other, these sets may have nontrivial intersection, in which case Q and λ

are still well-defined.)

Choose ρ > σ > τ(X). We will show that for 0 6 s < m,

Is(1+ρ),q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞

for λ-almost every π ∈ Q. Since ρ and σ can be arbitrarily close to τ(X), this

implies (2.7). Computing the (s, q)-energy of fπ(µ), we have

Is,q(fπ(µ)) =

∫

Rm

[∫

Rm

dfπ(µ)(v)

|u− v|s
]q−1

dfπ(µ)(u)

=

∫

B

[∫

B

dµ(y)

|fπ(x) − fπ(y)|s
]q−1

dµ(x).

Integrating the energy over Q and using the Fubini/Tonelli theorem and the fact
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that 0 < q − 1 6 1, we have

∫

Q

Is,q(fπ(µ)) dλ(π) =

∫

Q

∫

B

[∫

B

dµ(y)

|fπ(x) − fπ(y)|s
]q−1

dµ(x)dλ(π)

=

∫

B

∫

Q

[∫

B

dµ(y)

|fπ(x) − fπ(y)|s
]q−1

dλ(π)dµ(x)

6

∫

B

[∫

Q

∫

B

dµ(y)

|fπ(x) − fπ(y)|s dλ(π)

]q−1

dµ(x)

=

∫

B

[∫

B

(∫

Q

dλ(π)

|fπ(x) − fπ(y)|s
)
dµ(y)

]q−1

dµ(x).

We now estimate the interior integral.

Lemma 2.15 (Banach Perturbation Lemma). If s < m, there exists a con-

stant C2 depending only on s, σ, and ρ, such that for all x, y ∈ X,

∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C2

min{|x− y|, 1}s(1+ρ)
.

Proof. Set ζ = min{|x − y|, 1}. Choose j ∈ N such that 2 − log2 ζ 6 j 6

3 − log2 ζ. There exist points γj(x) and γj(y) in Vj satisfying |x − γj(x)| 6 2−j

and |y− γj(y)| 6 2−j. Estimating the distance between γj(x) and γj(y), we have

|γj(x) − γj(y)| > |x− y| − 2−j+1
> |x− y| − ζ

2
>

|x− y|
2

.

For π ∈ Q, write π = ξj + j−2φj where φj = (φ1j, . . . , φmj) ∈ Sm
j and ξj =

(ξ1j, . . . , ξmj) with

ξij =
∑

k∈N

k 6=j

k−2φik
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for each i. We fix ξj and integrate over φj ∈ Sm
j . We have

∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s

=

∫

Sm
j

dλm
j (φj)

|fξj
(x) − fξj

(y) + j−2φj(x− y)|s

6

∫

Sm
j

dλm
j (φj)

|j−2φj(x− y)|s

= j2s

∫

Sm
j

dλm
j (φj)

|φj(x− y)|s .

Let P ⊂ B′ be the annihilator of x − y. By the Hahn-Banach theorem, there

exists ψ ∈ B′ such that ψ(x− y) = |x− y| and ‖ψ‖B′ = 1. By restricting P and

ψ to Vj, we may think of them as belonging to V ′
j , and hence also to Rdj . Notice

that

|ψ(γj(x) − γj(y))|
|γj(x) − γj(y)|

>
|x− y| − ζ/2

|x− y| + ζ/2
>

|x− y|/2
3|x− y|/2 =

1

3
,

so ‖ψ‖V ′

j
>

1
3
. Let b be such that ‖bψ‖V ′

j
= 1 and set ψ̃ = bψ. By convexity, Sj

contains the cones with base P ∩Sj and vertices ψ̃ and −ψ̃. Let Cj be the union

of this pair of cones and let λ̃j denote the restriction of λj to Cj. We show that

j2s

∫

Sm
j

dλm
j (φj)

|φj(x− y)|s 6 j2s




∫
Cm

j

deλm
j (φj)

|φj(x−y)|s

∫
Cm

j
dλ̃m

j (φj)


 . (2.8)

Let S+
j = {γ ∈ Sj : γ = p + tψ̃ for some p ∈ P and some t > 0}. Let C+

j

be the cone with base P ∩ Sj and vertex ψ̃. We define functions g : [0, 1] → R

and h : [0, 1] → R giving the normalized volumes of slices of S+
j and C+

j . For

t ∈ [0, 1], let g(t) be the (dj −1)-dimensional volume of S+
j ∩ (P + tψ̃) normalized

by
∫

S+

j
dλj(γ), and let h(t) be the (dj − 1)-dimensional volume of C+

j ∩ (P + tψ̃)

normalized by
∫

C+

j
dλ̃j(γ). Since

∫ 1

0
g(t) dt =

∫ 1

0
h(t) dt = 1 and g(1) > h(1), there

exists c ∈ (0, 1) such that g(c) = h(c). It follows from the Brunn-Minkowski
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inequality [25] that the function g1/(dj−1) is concave. The function h1/(dj−1) is

linear, so we must have g(t) 6 h(t) for t 6 c and g(t) > h(t) for t > c. Observe

that if k : [0, 1] → R is decreasing, then

∫ 1

0

h(t)k(t) dt >

∫ 1

0

g(t)k(t) dt.

Verifying this, we have

∫ c

0

(h(t) − g(t))k(t) dt > k(c)

∫ c

0

(h(t) − g(t)) dt

= k(c)

∫ 1

c

(g(t) − h(t)) dt

>

∫ 1

c

(g(t) − h(t))k(t) dt.

The inequality (2.8) follows from the bound

∫ 1

0

· · ·
∫ 1

0

|α|−sg(α1) · · · g(αm) dα1 · · ·dαm

6

∫ 1

0

· · ·
∫ 1

0

|α|−sh(α1) · · ·h(αm) dα1 · · ·dαm,

(2.9)

where α = (α1, . . . , αm). The bound (2.9) follows from the observation because

|α|−s is decreasing in each of its m arguments. Let Wj be the right side of (2.8).

In order to estimate Wj, we use the (P, ψ̃) foliation given by

Cj,i = {Cj,i ∩ (P + αiψ̃) : αi ∈ [−1, 1]}

for each i = 1, . . . , m.

Lemma 2.16 (Banach Integral Asymptotics). Let m ∈ N and s < m. There

exists a constant K, independent of n ∈ N, such that

∫ 1

0
· · ·
∫ 1

0
(1−α1)n−1···(1−αm)n−1

|α|s
dα1 · · ·dαm

∫ 1

0
· · ·
∫ 1

0
(1 − α1)n−1 · · · (1 − αm)n−1 dα1 · · ·dαm

6 Kns, (2.10)

where α = (α1, . . . , αm).
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Proof. Since e−z > 1− z for all real z, and the denominator of (2.10) is n−m, the

ratio of integrals in (2.10) is bounded above by

nm

∫ ∞

0

· · ·
∫ ∞

0

exp (−∑m
i=1 αi(n− 1))

|α|s dα1 · · ·dαm.

Setting ui = αi(n− 1), this becomes

nm(n− 1)s−m

∫ ∞

0

· · ·
∫ ∞

0

exp (−∑m
i=1 ui)

|u|s du1 · · ·dum.

Since |u|−s is integrable in a neighborhood of 0 for s < m, the lemma is estab-

lished.

We are now in position to complete the proof of Lemma 2.15. Estimating the

ratio of integrals in Wj using the (P, ψ̃) foliation, it follows from Lemma 2.16

with n = dj 6 C12
jσ that there exists K, independent of j, such that

Wj 6 j2sK|x− y|−s
(
C12

jσ
)s

6 KCs
1j

2s|x− y|−s
(
2j
)σs

6 KCs
1j

2s|x− y|−s
(
8ζ−1

)σs

6 8σsKCs
1j

2sζ−s(1+σ)

6 8σsKCs
1 (3 − log2 ζ)

2s ζ−s(1+σ).

Thus, since ρ > 0, there exists C2 such that

Wj 6
C2

ζs(1+ρ)
.

We have established that
∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s 6
C2

ζs(1+ρ)

for all ξj, and hence by integrating over ξj that
∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C2

ζs(1+ρ)
.

The proof of the perturbation lemma is complete.
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Returning to the proof of Theorem 2.10, recall that 0 6 s < min{m, t/(1 +

τ(X))} and ρ > σ > τ(X) have been fixed. Applying the perturbation lemma,

we have

∫

Q

Is,q(fπ(µ)) dλ(π) 6

∫

B

[∫

B

(∫

Q

dλ(π)

|fπ(x) − fπ(y)|s
)
dµ(y)

]q−1

dµ(x)

6

∫

B

[∫

B

C2

min{|x− y|, 1}s(1+ρ)
dµ(y)

]q−1

dµ(x).

Therefore,

Is(1+ρ),q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞

for λ-almost every π ∈ Q. Since ρ and σ can be arbitrarily close to τ(X), this

implies (2.7) for fixed t. Because we can choose t arbitrarily close to D−
q (µ), there

exists a prevalent set Pq ⊂M such that for f ∈ Pq,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}
.

Let {qi} be a countable dense subset of (1, 2]. The set
⋂∞

i=1 Pqi
is prevalent. For

f ∈ ⋂∞
i=1 Pqi

, the continuity of D−
q on (1, 2] implies that

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}

for all 1 < q 6 2.

The proof of the perturbation lemma uses only the convexity of Sj. In specific

cases, additional information about the structure of the dual space may lead to

an improved perturbation lemma and hence to an improvement of the factor

1/(1 + τ(X)). We establish such an improvement for Hilbert spaces.

Theorem 2.17. Let H be a Hilbert space, and let M be any subspace of the Borel

measurable functions from H to Rm that contains the bounded linear functions.
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Let X ⊂ H be a compact set with thickness exponent τ(X), and let µ be a Borel

probability measure supported on X. For almost every function f ∈ M ,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)/2

}

for all q ∈ (1, 2].

Corollary 2.18. Let H be a Hilbert space. Let X ⊂ H be a compact set with

thickness exponent τ(X). For almost every function f ∈M ,

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)/2

}
.

Remark 2.19. For the example from [31] discussed in the introduction, this

Hausdorff dimension estimate is sharp.

Proof of Theorem 2.17. Let L ⊂M denote the space of bounded linear functions

from H into Rm. We must show that for any f ∈M and 0 6 s < min{m, t/(1 +

τ(X)/2)},

It,q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞

for λ-almost every π ∈ Q. The construction of the Hilbert brick Q follows that of

the Banach brick. Notice that each Sj is isometric to a Euclidean ball. The dual

space V ′
j embeds canonically into H ′ = H: an element of V ′

j acts on an element

of H by composition with the orthogonal projection onto Vj. Let ρ > σ > τ(X).

We will show that for 0 6 s < m,

Is(1+ρ),q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞

for λ-almost every π ∈ Q. The proof of this implication follows the argument

given in the proof of Theorem 2.10. We only need to apply the following improved

perturbation lemma.
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Lemma 2.20 (Hilbert Perturbation Lemma). If s < m, there exists a con-

stant C3, depending only on s, σ, and ρ, such that for all x, y ∈ X,

∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C3

min{|x− y|, 1}s(1+ρ/2)
.

Proof. Set ζ = min{|x− y|, 1}. Select j as before and note that

∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s 6 j2s

∫

Sm
j

dλm
j (φj)

|φj(γj(x) − γj(y))|s
.

Lemma 2.21 (Hilbert Integral Asymptotics). There exists K > 0, indepen-

dent of n ∈ N, such that for s < m,

∫ 1

0
· · ·
∫ 1

0

(1−α2
1
)

n−1
2 ···(1−α2

m)
n−1

2 dα1···dαm

|α|s∫ 1

0
· · ·
∫ 1

0
(1 − α2

1)
n−1

2 · · · (1 − α2
m)

n−1

2 dα1 · · ·dαm

6 Kn
s
2 .

Proof. The proof is similar to that of Lemma 2.16 and is left to the reader.

Let P be the annihilator of γj(x)−γj(y) in V ′
j . Foliating Sj into leaves parallel

to P and using Lemma 2.21 with n = dj 6 C12
jσ, we have

j2s

∫

Sm
j

dλm
j (φj)

|φj(γj(x) − γj(y))|s

6 Kj2s|γj(x) − γj(y)|−s
(
C12

jσ
)s/2

6 2sKj2s|x− y|−s
(
C12

jσ
)s/2

6 2sKC
s/2
1 j2s|x− y|−s

(
2j
)σs/2

6 2sKC
s/2
1 j2s|x− y|−s

(
8ζ−1

)σs/2

6 2s8σs/2KC
s/2
1 j2sζ−s(1+σ/2)

6 C3ζ
−s(1+ρ/2)

for some C3 > 0. We have established that

∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s 6
C3

ζs(1+ρ/2)
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for all ξj, and hence by integrating over ξj that
∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C3

ζs(1+ρ/2)
.

The proof of the perturbation lemma is complete.

2.4 Nonpreservation of Hausdorff Dimension

Theorems 2.10 and 2.17 are sharp in the following sense. Given d > 0, 1 6 p 6 ∞,

and a positive integer m, there is a compact subset X of Hausdorff dimension d

in `p such that for all bounded linear functions π : `p → Rm,

dimH(π(X)) 6
d

1 + d/q
,

where q = p/(p − 1) [31]. The cases p = ∞ and p = 2 show respectively that

Theorems 2.10 and 2.17 are sharp for bounded linear functions on these particular

Banach spaces. On the other hand, this class of examples does not rule out a

dimension preservation result in `1.

Here we construct a compact subset X of Hausdorff dimension d in `1 such

that for all bounded linear functions π : `1 → R,

dimH(π(X)) 6
d

1 + d/2
.

Let {ei} be the standard basis of `1, and let λ = 2−1/d. Consider the inductively

constructed sets Xk, defined as follows. Let X0 = {0} and X1 = {±p}, where

p =
1

2
(e1 − e2).

For the next step, construct the two points

p0 =
λ

4
(e3 − e4 + e5 − e6), and

p1 =
λ

4
(e3 + e4 − e5 − e6).
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Attach these points to the nodes of X1, forming the set

X2 = {p± p0, −p± p1}.

We now describe the construction of Xk+1 given Xk. Let

αk = 1 +
k−1∑

i=0

22i

.

Define the collection of 2k points

{
pβ1β2···βk

: β1, β2, . . . , βk ∈ {0, 1}
}

by setting

pβ1β2···βk
=

λk

22k

22
k
−1∑

i=0

(−1)

h
2
−γβ1···βk ·i

i

eαk+i,

where γβ1···βk
is the integer in [0, 2k) whose binary representation is β1 · · ·βk; that

is,

γβ1···βk
= β12

k−1 + β22
k−2 + · · ·+ βk.

Notice that ‖pβ1···βk
‖`1 = λk. Attach these points to the nodes of Xk, forming

Xk+1 =
{
(−1)β1p+ (−1)β2pβ1

+ · · ·+ (−1)βk+1pβ1···βk
: β1, . . . , βk+1 ∈ {0, 1}

}
.

Figure 2.1 illustrates the third step in the construction. Let X be the set of all

limit points of
∞⋃

k=0

Xk.

Equivalently,

X =
{
(−1)β1p+ (−1)β2pβ1

+ (−1)β3pβ1β2
+ · · · : β1, β2, β3, . . . ∈ {0, 1}

}
.

Proposition 2.22. For the set X ⊂ `1 constructed above,

dimH(X) = D+
0 (X) =

log 2

log(1/λ)
= d.
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0

−p

p

p + p0 − p00p − p0 − p01

p − p0 + p01 p + p0 + p00

−p + p1 + p10

−p + p1 − p10−p − p1 − p11

−p − p1 + p11

−p + p1−p − p1

p − p0 p + p0

Figure 2.1: The sets X0, X1, X2, and X3 consist of the nodes of the binary tree

above.

Proof. The set X can be covered by 2k balls of radius λk/(1 − λ) centered at

the points of Xk, so dimH(X) 6 D+
0 (X) 6 d. To show that dimH(X) > d, we

apply Frostman’s lemma [22, 47]. The binary tree X may be identified with the

set of binary strings S =
{
β = β1β2β3 · · · : β1, β2, β3, . . . ∈ {0, 1}

}
. Consider

the measure µ on X induced by the uniform probability measure on S. Since

every two points in X corresponding to different initial strings β1 · · ·βkβk+1 and

β1 · · ·βkβ
′
k+1 must lie at least 2λk apart, the measure of a ball of radius less than

λk is at most the measure of all strings in S starting with a given β1 · · ·βk+1,

which is 2−(k+1) = (λk)d/2. By Frostman’s lemma, dimH(X) > d.
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Proposition 2.23. For every bounded linear map π : `1 → R,

dimH(π(X)) 6
d

1 + d/2
.

Proof. Let s = d/(1 + d/2) = (1/d+ 1/2)−1. Let π ∈ `∞ and assume ‖π‖`∞ = 1.

We will show for each k > 0 that π(X) can be covered by a collection of 2k

intervals Ck = {I0, I1, . . . , I2k−1} such that

lim
k→∞

max
I∈Ck

diam(I) = 0

and
2k−1∑

j=0

diam(Ij)
s

remains bounded as k → ∞. It then follows that the s-dimensional Hausdorff

measure of π(X) is finite, and therefore that the Hausdorff dimension of π(X)

is at most s, as desired. The proposition is trivially true if s > 1, so assume

henceforth that s < 1. Then by convexity,

2−k
2k−1∑

j=0

diam(Ij)
s
6


2−k

2k−1∑

j=0

diam(Ij)




s

,

so it suffices to show that

2−k
2k−1∑

j=0

diam(Ij) 6 C42
−k/s

= C42
−k/2−k/d

= C42
−k/2λk

for some constant C4 independent of k.

Each interval Ij will be the convex hull of the image under π of the part Pj

of X corresponding to point j in Xk. As in the proof of Proposition 2.22, Pj is
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contained in a ball of radius λk/(1− λ). Thus in effect, we want to show that on

average (over j), π contracts Pj by a factor proportional to 2−k/2. Recall that

Nk =
{
(−1)βk+1pβ1···βk

: β1, . . . , βk+1 ∈ {0, 1}
}

is the set of points used to perturb the 2k points of Xk to form the 2k+1 points

of Xk+1. We seek an asymptotic bound on the quantity

Zk = sup
‖π‖`∞=1

1

2k+1

∑

s∈Nk

|π(s)|
‖s‖`1

= sup
‖π‖`∞=1

1

2k+1

∑

s∈Nk

|π(s)|
λk

.

Lemma 2.24. There exists C5 > 0 such that Zk 6 C52
−k/2.

Proof. For each β1 · · ·βk ∈ {0, 1}k, Nk contains pβ1···βk
and −pβ1···βk

. Define

N+
k =

{
pβ1···βk

: β1, . . . , βk ∈ {0, 1}
}
.

We reindex the elements of N+
k by γβ1···βk

, obtaining N+
k = {pi : i = 0, . . . , 2k−1}.

For each π = (πi) ∈ `∞, there exists a permutation σ such that πσ = (πσ(i))

satisfies the positivity condition

πσ(pi) > 0

for all i = 0, . . . , 2k − 1. Therefore, we express Zk in terms of N+
k , yielding

Zk = sup
‖π‖`∞=1

1

2k

2k−1∑

i=0

π(pi)

λk
.

Think of the points of N+
k as the rows of a 2k × 22k

matrix. The entry in row i,

column j of this matrix (starting the numbering at i = 0 and j = 0) is

pij =
λk

22k
(−1)[

j

2i ]eαk+j.

Let (sij) be the associated matrix of signs, defined by

sij = (−1)[
j

2i ].
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The set of columns of (sij) maps bijectively onto the set of vectors

{(
(−1)ρ1 , . . . , (−1)ρk

)
: ρ1, . . . , ρk ∈ {0, 1}

}
. (2.11)

We construct an element π∗ ∈ `∞ as follows. For 0 6 j < 22k

, set

π∗
αk+j =





1, if
∑2k−1

i=0 pij > 0;

−1, if
∑2k−1

i=0 pij < 0,

and set π∗
l = 0 for l < αk and l > αk + 22k

. Writing

rij = sijeαk+j and ri =

22
k
−1∑

j=0

rij,

we have

Zk =
1

2k

2k−1∑

i=0

π∗(pi)

λk
=

1

2k22k

2k−1∑

i=0

π∗(ri).

Since the columns of (sij) correspond bijectively to (2.11), Zk may be related

to the expected value of a binomially distributed random variable. Let Y be a

binomial random variable such that for 0 6 m 6 2k, the probability that Y = m

is given by (
2k

m

)(
1

2

)2k

.

Summing over m, we have

Zk =
1

2k22k

2k−1∑

i=0

π∗(ri)

=
1

2k22k

2k∑

m=0

(
2k

m

)
|2k − 2m|

=
1

22k

2k∑

m=0

(
2k

m

)
|1 − 2m/2k|

= E[|1 − 2Y/2k|],
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where E[·] denotes the expectation. By the central limit theorem, there exists

C5 > 0 such that

E[|1 − 2Y/2k|] 6 C52
−k/2.

The proof of Lemma 2.24 is complete.

Returning to the proof of Proposition 2.23, we show that for each k > 0, π(X)

can be covered by 2k intervals I0, . . . , I2k−1 such that

2−k
2k−1∑

j=0

diam(Ij) 6 C42
−k/2λk

for some constant C4 independent of k. Fix k > 0. For each string β1 · · ·βk, the

subtree

Xβ1···βk =
{
(−1)β1p + (−1)β2pβ1

+ · · · + (−1)βkpβ1···βk−1
+ (−1)βk+1pβ1···βk

+ (−1)βk+2pβ1···βk+1
+ · · · : βk+1, βk+2, . . . ∈ {0, 1}

}

can be covered by an interval Ij = Iγβ1···βk
containing

π
(
(−1)β1p+ (−1)β2pβ1

+ · · · + (−1)βkpβ1···βk−1

)

of length
∞∑

i=1

∑

βk+1···βk+i

∣∣π
(
(−1)βk+ipβ1···βk+i−1

)∣∣ .

Applying Lemma 2.24, we have

2−k
2k−1∑

j=0

diam(Ij) = 2−k
2k−1∑

j=0

∞∑

i=1

∑

βk+1···βk+i

∣∣π
(
(−1)βk+ipβ1···βk+i−1

)∣∣

=
∞∑

i=1

2−k
2k−1∑

j=0

∑

βk+1···βk+i

∣∣π
(
(−1)βk+ipβ1···βk+i−1

)∣∣

6

∞∑

n=0

2n+1λk+n · C5 · 2−(k+n)/2

= 2C5λ
k2−k/2

∞∑

n=0

(√
2λ
)n

.
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The assumption that s < 1 implies that λ < 1/
√

2. Setting

C4 = 2C5

∞∑

n=0

(√
2λ
)n

=
2C5

1 −
√

2λ
,

we have

2−k

2k−1∑

j=0

diam(Ij) 6 C42
−k/2λk. (2.12)

Finally, (2.12) implies that diam(Ij) 6 C42
k(1−1/s) for each j = 0, . . . , 2k − 1.

Acknowledgements. The first author thanks Jacob Sterbenz for numerous in-

sightful discussions.
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Chapter 3

The Global Attractor Associated with the Viscous Lake

Equations

The material in this chapter has been accepted for publication in Nonlinearity.

3.1 Introduction

We study the asymptotic behavior of the solutions of a two-dimensional shallow

water model with eddy viscosity for basins with varying bottom topography.

The shallow water model has been derived from a three-dimensional anisotropic

eddy viscosity model and has been shown to be globally well-posed in [40]. The

derivation exploits two main scaling assumptions. First, one assumes that the

ratio of the horizontal fluid velocity to the gravity wave speed is small, while the

ratio of the length scale of the top surface height variation to the basin depth

is much smaller still. Second, one assumes that the basin is shallow compared

with the horizontal length scales of interest. The viscous shallow water model

refines the lake system [6] and the great lake system [7]. These systems are

derived from three-dimensional Euler flow under the same scaling assumptions.

As Levermore and Sammartino [40] point out, the lake and great lake systems
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neglect several physical phenomena of crucial dynamical importance. The effects

of viscous stresses are restored in the viscous lake system.

The viscous shallow water model bears considerable structural resemblance to

the two-dimensional incompressible Navier-Stokes system. The study of the at-

tractor associated with the Navier-Stokes equations has motivated a considerable

amount of the theory of infinite-dimensional dynamical systems. Consider first

the two-dimensional incompressible Navier-Stokes system on a bounded domain

with Dirichlet boundary conditions. Invoking a Sobolev-Lieb-Thirring inequality,

one may show [9, 12, 64] that the dimension of the global attractor is bounded

above by a constant multiple of the Grashof number G, a nondimensional quantity

proportional to the L2-norm of the forcing function. The Sobolev-Lieb-Thirring

inequalities play an important role in the estimation of the trace of certain linear

operators arising in the study of infinite-dimensional dynamical systems and have

led to sharp bounds on attractor dimension in terms of the physical data. Lieb

and Thirring [41] prove the first such inequality, a powerful generalization of the

Sobolev-Gagliardo-Nirenberg inequalities for a finite family of functions which

are orthonormal in L2(Rn). Systems amenable to dynamical systems methods

include reaction-diffusion equations, nonlinear dissipative wave equations, com-

plex Ginzburg-Landau equations, and various fluid models.

Now consider the Navier-Stokes system on the torus T2. Using an L∞ estimate

of Constantin on collections of functions whose gradients are orthonormal [10],

one may improve the previous bound and show that the dimension of the global

attractor is bounded above by a value proportional to G2/3(1 + logG)1/3 in the

space-periodic case [13, 14, 15]. This estimate is consistent up to a logarithmic

correction with the predictions of the conventional theory of turbulence due to
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Constantin, Foias, and Temam [13].

One strives to establish sharp bounds on the attractor dimension, for physical

interpretation becomes especially significant once such bounds have been estab-

lished. Research in this direction has followed two streams of thought. Liu [42]

derives a lower bound in terms of the Grashof number when the domain is the

torus T2. A family of external forces is constructed such that

dim(A) > γG2/3.

Therefore, in the space-periodic case, the best available lower and upper bounds

agree up to a logarithmic correction. Alternatively, one may study a flow on the

elongated domain Ωα = [0, 2π/α] × [0, 2π] and investigate the aspect-ratio limit

α → 0. In the space-periodic case, a sharp estimate exists. Babin and Vishik

[2] choose a specific volume force for which a simple stationary solution can be

found. An estimate on the number of unstable modes around the stationary

solution yields the lower bound

dim(A) >
γ1

α
.

Ziane [68] establishes the sharpness of this lower bound by employing a version of

the Sobolev-Lieb-Thirring inequalities for elongated domains to derive the upper

bound

dim(A) 6
γ2

α
.

Doering and Wang [16] show that an application of a Lieb-Thirring inequality

with the domain-dependence of the prefactors carefully controlled produces a

sharp dependence of the attractor dimension on the length of the channel for

certain channel flows. The derivation of a sharp estimate in the case of a general

bounded domain with Dirichlet boundary conditions remains an open problem.
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Given the structural similarity between the Navier-Stokes equations and the

shallow water model, one suspects that a physically significant upper bound may

be established for the dimension of the attractor A of the shallow water system.

We initiate the study of this question in the present work. The Hausdorff and

box-counting dimensions of A are shown to be bounded above by a value propor-

tional to the weighted L2-norm of the wind forcing function. The key technical

innovation is the use of a new weighted Sobolev-Lieb-Thirring inequality. This

weighted inequality is crucial because the natural function spaces for the shallow

water system are the energy spaces with Lebesgue measure weighted by the basin

depth function.

Many interesting questions remain open. Is the linear-in-norm bound derived

in the present work sharp? Does this bound agree with any qualitative theoretical

picture? In particular, how does the attractor dimension scale with the aspect

ratio? Illumination of the physical significance of the scaling of an attractor

dimension estimate becomes especially meaningful when the estimate is sharp.

The use of inequalities akin to the L∞ estimates of Constantin [10] may lead to

an improved dimension estimate. Finally, for simplified geometries one might

obtain a sharp result via an argument similar in spirit to the work of Doering

and Wang [16] on channel flows.

The paper is organized as follows. In Section 3.2 we introduce the shallow

water model and discuss its mathematical structure. The existence of a global

attractor for the shallow water system is established in Section 3.3. Section 3.4

contains the derivation of the main attractor dimension estimate. We present the

weighted Sobolev-Lieb-Thirring inequality in Section 3.5.
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3.2 The Shallow Water Model

We consider an incompressible fluid that is confined to a three-dimensional basin

by a uniform gravitational field of magnitude g. In terms of the standard Carte-

sian coordinates with the positive z-axis oriented upward, the basin is defined by

its orthogonal projection onto the xy-plane, Ω, and by its bottom. The bottom

is defined by z = −b(x ) for x = (x, y) ∈ Ω. The domain Ω ⊂ R2 is assumed

to be bounded with a smooth boundary ∂Ω. We assume that b is a positive,

smooth function over Ω. Let the free top surface of the fluid at time t be given

by z = h(x , t). We assume that the free top surface never meets the bottom and

that the average level of the top surface is z = 0. The domain occupied by the

fluid at time t, denoted Σ(t), is given by

Σ(t) = {(x , z) ∈ R3 : x ∈ Ω − b(x ) < z < h(x , t)}.

The shallow water model governs the evolution of u(x , t), the horizontal fluid

velocity averaged vertically over x ∈ Ω at time t, and the top surface height

h(x , t). The system of equations is as follows.

∂tu + u · ∇xu + g∇xh = b−1∇x · [bν(∇xu + (∇xu)T −∇x · uI )] − ηu + f ,

∇x · (bu) = 0,

u(x , 0) = u0(x ),

u · n = 0 (for x ∈ ∂Ω),

νt · (∇xu + (∇xu)T ) · n = −βt · u (for x ∈ ∂Ω).

Here ν(x ) and η(x ) are a positive eddy viscosity coefficient and a non-negative

turbulent drag coefficient defined over Ω, I is the 2 × 2 identity, f (x , t) is the

wind forcing defined over Ω× [0,∞), n(x ) and t(x ) are the outward unit normal
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and a unit tangent to ∂Ω at x and β(x ) is a non-negative turbulent boundary

drag coefficient defined on ∂Ω.

We reformulate the shallow water equations as an abstract evolution equation

governing the velocity field u . It is natural to work with Sobolev spaces weighted

by the function b. The scalar-valued spaces are denoted Lp
b , W

s,p
b , and Hs

b with

norms ‖ · ‖Lp
b
, ‖ · ‖W s,p

b
, and ‖ · ‖Hs

b
, respectively. The vector-valued counterparts

are given by Lp
b , Ws,p

b , and Hs
b. The inner product between u , v ∈ L2

b is denoted

(u , v) and is defined by

(u , v) =

∫

Ω

bu · v dx =

∫

Ω

u(x ) · v(x ) dλ(x ),

where λ denotes the two-dimensional Lebesgue measure weighted by b. We define

the spaces

H = {u : u ∈ L2
b , ∇x · (bu) = 0, n · u = 0 for x ∈ ∂Ω},

V = {u : u ∈ H1
b , ∇x · (bu) = 0, n · u = 0 for x ∈ ∂Ω}.

When there is no possibility of confusion we write | · | = ‖ · ‖L2
b

and ‖ · ‖ = ‖ · ‖H1
b
.

Assume β(x ) > κ(x ) for all x ∈ ∂Ω, where κ is the curvature of ∂Ω. Suppose

that b and ν are smooth, positive functions such that bν > C > 0 for some

constant C. Under these assumptions, the bilinear form a(·, ·) : V × V → R

defined by

a(u , v) =
1

2

∫

Ω

bν(∇xu + (∇xu)T −∇x · uI ) : (∇xv + (∇xv)T −∇x · vI ) dx

+

∫

Ω

bνηu · v dx +

∫

∂Ω

bνβu · v ds

is coercive; that is, there exists α > 0 such that a(u ,u) > α‖u‖2 for all u ∈ V .

By the Lax-Milgram theorem, the operator A : V → V ′ defined by

〈Au , v〉 = a(u , v) (u , v ∈ V )
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maps V isomorphically onto V ′. This operator is a linear unbounded operator on

H with dense domain D(A) = H2
b ∩ V . The inverse operator A−1 is self-adjoint

and compact by virtue of Rellich’s theorem. Thus there exists an orthonormal

basis of H and a sequence (λj) such that





0 < λ1 6 λ2 6 · · · , λj → ∞,

Aw j = λjw j ∀j.

We define the trilinear form (·, ·, ·) on V by

(u , v ,w) =

∫

Ω

bu · ∇xv ·w dx ,

and the corresponding bilinear operator B(·, ·) : V × V → V ′ by

〈B(u , v),w〉 = (u , v ,w ).

The shallow water system is equivalent to the evolution equation

∂tu + Au +B(u ,u) = f , (3.1)

coupled with initial data

u(x , 0) = u0(x ). (3.2)

The shallow water system is shown to be globally well-posed in [40]. The following

is established therein.

Theorem 3.1 ([40]). Let Ω be smooth. Suppose that b(x ), ν(x ), and η(x ) are

non-negative functions over Ω. Suppose that b and ν are smooth, that bν > C > 0

for some constant C, and that β(x ) > κ(x ) on ∂Ω, where κ(x ) is the curvature

of ∂Ω at x . Let f ∈ L2
b and let T > 0. If u0 ∈ H, then there exists a unique

u ∈ C([0, T ], H) ∩ L2([0, T ], V )
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that satisfies (3.1) and (3.2). If u0 ∈ H2
b ∩ V , then one has moreover that

u ∈ L∞([0, T ],H2
b) ∩ C([0, T ], V ),

and

∂tu ∈ L∞([0, T ], H) ∩ L2([0, T ], V ).

We define the semigroup S(·) of continuous operators on H as follows. For

fixed t > 0, S(t) : H → H is given by S(t)u0 = u(t).

3.3 The Attractor

To demonstrate the existence of the global attractor A associated with {S(t) :

t > 0}, we show that the semigroup is dissipative and uniformly asymptotically

compact. Dissipativity in this context is characterized by the existence of a

bounded absorbing set in H. The existence proof relies on standard techniques.

We include the argument to fix notation and to establish estimates that are

needed for the dimension calculation.

Definition 3.2. Let C ⊂ H. We say that C is absorbing in H if for each bounded

set B ⊂ H there exists t1(B) such that S(t)B ⊂ C for all t > t1(B).

Definition 3.3. The semigroup S(·) is said to be uniformly asymptotically com-

pact if for each bounded set B ⊂ H there exists t0(B) such that

⋃

t>t0

S(t)B

is relatively compact in H.

We establish the uniform asymptotic compactness of the semigroup by estab-

lishing the existence of a bounded absorbing set in V and noting that V embeds
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compactly into H. One uses energy methods to produce absorbing sets in H and

V .

3.3.1 Absorbing Set in H

We will need the following orthogonality relation.

Lemma 3.4. For u , v , w ∈ V one has

(u , v ,w) = −(u ,w , v),

and thus one has the orthogonality relation

(u , v , v) = 0.

By Sobolev embeddings there exists a constant c1 such that

|u | 6 c1‖u‖.

Now ‖A−1‖L(V ′,V ) 6
1
α

so one has

‖u‖ 6
1

α
‖Au‖V ′ 6

c1
α
|Au |.

Set c2 = c1
α

and c3 = c21. Taking the scalar product of (3.1) with u in H, we

obtain

1

2

d

dt
|u |2 + a(u ,u) = (f ,u).

Bounding the right-hand side, we have

(f ,u) 6 |f | |u|

6 c1|f | ‖u‖

6
α

2
‖u‖2 +

c21
2α

|f |2 (Young’s inequality).
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We obtain

d

dt
|u|2 + α‖u‖2

6
c21
α
|f |2,

d

dt
|u |2 +

α

c21
|u |2 6

c21
α
|f |2,

d

dt
|u |2 6

(
− α

c3

)
|u |2 +

(c3
α
|f |2
)
.

An application of the classical Gronwall inequality yields the estimate

|u(t)|2 6 |u0|2 exp

(
− α

c3
t

)
+
c23
α2

|f |2
[
1 − exp

(
− α

c3
t

)]
.

Taking the upper limit, one obtains

lim
t→∞

|u(t)| 6
c3
α
|f | := ρ0.

We conclude that BH(0, ρ), the metric ball in H of radius ρ, is absorbing for

ρ > ρ0. For fixed ρ > ρ0 and a bounded set B ⊂ H, there exists t1(B, ρ) such

that S(t)B ⊂ BH(0, ρ) for all t > t1(B, ρ).

3.3.2 Absorbing Set in V

We need the following continuity property of the trilinear form (·, ·, ·).

Lemma 3.5. There exists a constant k such that for u ∈ V , v ∈ D(A), and

w ∈ H one has

|(u , v ,w)| 6 k|u | 1

2‖u‖ 1

2 ‖v‖ 1

2 |Av | 12 |w |. (3.3)

Proof. The proof is based on two key facts. The first is an interpolation inequality

known as Ladyzhenskaya’s inequality.

Lemma 3.6. For u ∈ H1
b(Ω) one has

‖u‖L4
b
6 c4|u|

1

2 ‖u‖ 1

2 .
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We also need an elliptic regularity estimate for the strong Stokes problem associ-

ated with the shallow water system. It is shown in [40] that for f ∈ Lp
b , p ∈ (1,∞),

the strong Stokes problem admits a unique solution u ∈ W2,p
b satisfying

‖u‖
W

2,p
b

6 c(‖f ‖L
p
b
+ ‖u‖L

p
b
). (3.4)

Notice that A−1, the operator mapping L2
b data to the solution of the strong

Stokes problem, may be extended as a linear continuous operator from Lp
b(Ω)

into W2,p
b (Ω) for all p ∈ (1,∞). For u ∈ V , v ∈ D(A), and w ∈ H, one has

∣∣∣∣
∫

Ω

u · ∇xv ·w dλ

∣∣∣∣ 6
2∑

i,j=1

∫

Ω

|ui(Divj)wj| dλ

6

2∑

i,j=1

‖ui‖L4
b
‖Divj‖L4

b
|wj|

6

2∑

i,j=1

c24|ui|
1

2 ‖ui‖
1

2 |Divj|
1

2‖Divj‖
1

2 |wj|

6 c24

(
2∑

i=1

|ui| ‖ui‖
) 1

2
(

2∑

i,j=1

|Divj| ‖Divj‖
) 1

2
(

2∑

j=1

|wj|2
) 1

2

6 c24|u |
1

2‖u‖ 1

2 ‖v‖ 1

2 ‖v‖
1

2

H2
b
(Ω)

|w |

6 c24c
1

2 (1 + c2)
1

2 |u | 12 ‖u‖ 1

2 ‖v‖ 1

2 |Av | 12 |w |.

Setting k = c24c
1

2 (1 + c2)
1

2 , the lemma is established.

We are now in position to establish the existence of an absorbing set in V .

Taking the scalar product of (3.1) with Au gives

1

2

d

dt
a(u ,u) + |Au |2 = (f , Au) − (u ,u , Au).

Applying the continuity estimate (3.3), we obtain

|(u ,u , Au)| 6 (|Au | 3

2 )(k|u | 12‖u‖)

6
3

8
|Au |2 + 2k4|u |2‖u‖4 (Young’s inequality).
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Bounding the scalar product (f , Au), one has

(f , Au) 6 |f | |Au| 6
|Au |2

4
+ |f |2.

Collecting these estimates, we obtain

1

2

d

dt
a(u ,u) +

3

8
|Au |2 6 |f |2 + 2k4|u |2‖u‖4

6 |f |2 + 2k4|u |2‖u‖2

(
a(u ,u)

α

)
,

and we conclude that

d

dt
a(u ,u) 6 2|f |2 + c5|u |2‖u‖2a(u ,u),

where c5 = 4k4

α
. In order to control ‖u(t)‖ as t → ∞ we invoke the uniform

Gronwall lemma.

Lemma 3.7 (Uniform Gronwall). Let g, h, and y be three positive locally

integrable functions on [t1,∞) such that y is absolutely continuous on [t1,∞) and

which satisfy

dy

dt
6 gy + h,

∫ t+r

t

g(s) ds 6 a1,

∫ t+r

t

h(s) ds 6 a2,

∫ t+r

t

y(s) ds 6 a3

for t > t1, where r, a1, a2, and a3 are positive constants. Then

y(t+ r) 6

(a3

r
+ a2

)
exp(a1) (t > t1).

Fix ρ > ρ0 and r > 0. Let B ⊂ H be a bounded subset of H. As we have seen,

there exists t1(B, ρ) such that S(t)B ⊂ BH(0, ρ) for all t > t1(B, ρ). We apply

the uniform Gronwall lemma with




y = a(u ,u)

g = c5|u |2‖u‖2

h = 2|f |2
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by producing constants a1, a2, and a3 valid for t > t1(B, ρ). One must first bound

the integral of ‖u‖2 over time intervals [t, t + r] with t > t1(B, ρ). Recall the

inequality

d

dt
|u|2 + α‖u‖2

6
c21
α
|f |2.

Integrating in time, we obtain

∫ t+r

t

d

ds
|u |2 ds+

∫ t+r

t

α‖u‖2 ds 6
c21
α
|f |2r,

∫ t+r

t

‖u‖2 ds 6
c21
α2

|f |2r +
|u(t)|2
α

6
c21
α2

|f |2r +
ρ2

α
.

The constants a1, a2, and a3 are defined as follows:

∫ t+r

t

g(s) ds 6 c5ρ
2

∫ t+r

t

‖u‖2 ds

6 c5ρ
2

(
c21
α2

|f |2r +
ρ2

α

)
:= a1,

∫ t+r

t

h(s) ds =

∫ t+r

t

2|f |2 ds = 2|f |2r := a2,

∫ t+r

t

a(u ,u) ds 6

∫ t+r

t

M‖u(s)‖2 ds (a(u ,u) 6 M‖u‖2)

6 M

(
c21
α2

|f |2r +
ρ2

α

)
:= a3.

The uniform Gronwall lemma yields the bound

α‖u‖2
6 a(u(t),u(t)) 6

(a3

r
+ a2

)
exp(a1),

valid for every t > t1(B, ρ) + r. We conclude that the ball in V of radius

[(a3

r
+ a2

) exp(a1)

α

] 1

2

is absorbing.
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3.4 Upper Bound on the Attractor Dimension

3.4.1 Uniform Lyapunov Exponents

Fix T = 1. According to the ergodic theory of dynamical systems, the attrac-

tor A is the support of a measure µ that is invariant under the action of S(T ).

The multiplicative ergodic theorem of Oseledec implies the existence of classical

Lyapunov exponents for µ-almost every u ∈ A. Because the classical Lyapunov

exponents may fail to exist, we employ the concept of uniform Lyapunov expo-

nents (see [9, 64]).

Definition 3.8. The semigroup {S(t)} is said to be uniformly quasidifferentiable

on A if for t > 0 and u ∈ A there exists a bounded linear operator L(t,u) : H →

H, the quasidifferential, such that

|S(t)v − S(t)u − L(t,u)(v − u)|
|v − u | 6 γ(t, |v − u |) for v ∈ A

where γ(t, s) → 0 as s→ 0.

Proposition 3.9. The semigroup {S(t)} associated with the shallow water system

is uniformly quasidifferentiable on A. The quasidifferential L(t,u(t)) solves the

linear variational equation






∂tξ = F ′(u(t))ξ

ξ(x , 0) = v(x )

(3.5)

uniquely, where F ′ denotes the Fréchet derivative of F . One has the uniform

bound

sup
u∈A

‖L(T,u)‖L(H,H) <∞.
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Proof. The result follows from the implicit function theorem and is analogous to

the corresponding result for the semigroup associated with the two-dimensional

Navier-Stokes system. See Theorem 7.1.1 of [3] or Chapter 13 of [56].

This proposition implies that the uniform Lyapunov exponents, denoted µj,

are well-defined. We relate these exponents to the evolution of the volume ele-

ment. Fix u0 ∈ A. Let v 1, . . . , vm be m elements of H and let ξi denote the

solution of the variational equation with initial data v i. The volume element

satisfies the evolution equation

‖ξ1(t)∧ · · · ∧ ξm(t)‖Vm
H

= ‖v1 ∧ · · · ∧ vm‖Vm
H

exp

(∫ t

0

Tr
(
F ′(u(τ)) ◦Qm(τ)

)
dτ

)

where Qm(t) = Qm(t,u0; v1, . . . , vm) is the orthogonal projector onto the space

spanned by ξ1(t), . . . , ξm(t). We introduce the quantities

qm(t) = sup
u0∈A

sup
v i∈H
|v i|61

i=1,...,m

(
1

t

∫ t

0

Tr
(
F ′(S(τ)u0) ◦Qm(τ)

)
dτ

)
,

qm = lim
t→∞

qm(t).

The uniform Lyapunov exponents satisfy

µ1 + · · · + µm 6 qm.

For the shallow water model we will establish the bound

qm 6 ψ(m) := −γ1m
2 + γ2

for some γ1 > 0, γ2 > 0. Applying Theorem III.3.2 of [9], one concludes that the

Hausdorff and box dimensions of A are bounded above by

N +
ψ(N)

ψ(N) − ψ(N + 1)

where N is the smallest integer such that ψ(N + 1) < 0 and ψ(N) > 0.
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3.4.2 The Estimate

The variational equation (3.5) is equivalent to

dξ

dt
+ Aξ +B(u , ξ) +B(ξ,u) = 0.

Fix τ > 0. Let {ϕj(τ) : j = 1, . . . , m} be an orthonormal basis of Qm(τ)H. One

has

Tr
(
F ′(S(τ)u0) ◦Qm(τ)

)
=

m∑

j=1

(F ′(u(τ))ϕj(τ),ϕj(τ))

= −
m∑

j=1

(Aϕj,ϕj) −
m∑

j=1

(ϕj,u ,ϕj).

Notice that the first term has the good sign. Gaining control of the second term

is the key to the estimate. Now

m∑

j=1

(ϕj,u ,ϕj) =

∫

Ω

m∑

j=1

2∑

i,k=1

ϕji(x )Diuk(x )ϕjk(x ) dλ(x ),

whence for almost every x ∈ Ω we have
∣∣∣∣∣

m∑

j=1

2∑

i,k=1

ϕji(x )Diuk(x )ϕjk(x )

∣∣∣∣∣ 6 |∇u(x )|ρ(x ),

where

|∇u(x )| =

(
2∑

i,k=1

|Diuk(x )|2
) 1

2

,

ρ(x ) =
2∑

i=1

m∑

j=1

(ϕji(x ))2.

Thus
∣∣∣∣∣

m∑

j=1

(ϕj,u ,ϕj)

∣∣∣∣∣ 6
∫

Ω

|∇u(x )|ρ(x ) dλ(x )

6 |ρ| |∇u| (Hölder)

6 |ρ| ‖u‖.
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At this point we have established the estimate

Tr
(
F ′(u(τ)) ◦Qm(τ)

)
6 −

m∑

j=1

(Aϕj,ϕj) + |ρ| ‖u‖.

Applying the weighted Sobolev-Lieb-Thirring inequality (3.11), there exists d1

independent of the family {ϕj} and of m such that

∫

Ω

ρ(x )2 dλ(x ) 6 d1

(
m∑

j=1

a(ϕj,ϕj)

)
.

Set ω = 1/c21. By the variational principle and the spectral estimate (3.10), there

exists d2 such that
m∑

j=1

a(ϕj,ϕj) > d2ωm
2.

Substituting, we have

Tr
(
F ′(u(τ)) ◦Qm(τ)

)
6 −

m∑

j=1

(Aϕj,ϕj) + ‖u‖
(
d1

m∑

j=1

a(ϕj,ϕj)

) 1

2

6 −
m∑

j=1

(Aϕj,ϕj) +
‖u‖2d1

2
+

1

2

m∑

j=1

a(ϕj,ϕj)

= −1

2

m∑

j=1

a(ϕj,ϕj) +
‖u‖2d1

2

6 −d2ωm
2

2
+

‖u‖2d1

2

and therefore

1

t

∫ t

0

Tr
(
F ′(u(τ)) ◦Qm(τ)

)
dτ 6 −d2ωm

2

2
+
d1

2

(
1

t

∫ t

0

‖u(τ)‖2 dτ

)
.

Define

ε := αω lim
t→∞

sup
u0∈A

1

t

∫ t

0

‖u(s)‖2 ds.

Integrating the estimate

d

dt
|u |2 + α‖u‖2

6
1

αω
|f |2
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in time, one has

1

t
|u(t)|2 +

α

t

∫ t

0

‖u(s)‖2 ds 6
1

t
|u0|2 +

1

αω
|f |2.

It follows that

ε 6 G2αω2,

where

G :=
|f |
αω

.

We conclude that

qm(t) 6 −d2ωm
2

2
+
d1

2
sup
u0∈A

1

t

∫ t

0

‖u‖2 dτ,

and thus

qm = lim
t→∞

qm(t) 6 −γ1m
2 + γ2,

where 



γ1 =
d2ω

2
,

γ2 =
d1ε

2αω
.

Applying the aforementioned Theorem III.3.2 of [9], one sees that the Hausdorff

and box dimensions of A are bounded above by
(
γ2

γ1

) 1

2

.

Notice that (
γ2

γ1

) 1

2

6

(
d1

d2

) 1

2

G.

3.5 The Weighted Lieb-Thirring Inequality and

the Spectral Estimate

We prove the spectral estimate for the operator A and outline the proof of the

weighted Sobolev-Lieb-Thirring inequality.
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Proposition 3.10. There exists a constant κ1 such that the eigenvalues λj of

the operator A satisfy

λj > κ1j.

Proof. The argument follows the proof of Theorem 4.11 of [11]. Recall that (w j)

denotes the sequence of eigenfunctions of A corresponding to the sequence (λj)

of eigenvalues of A. Let α1, . . . , αj ∈ R and let

w =

j∑

k=1

αkw k.

Interpolating between L2
b(Ω) and H2

b(Ω), one has

‖w‖L∞

b
(Ω) 6 k1|w |1/2

L2
b
(Ω)

‖w‖1/2

H2
b
(Ω)
.

The Agmon-Douglis-Nirenberg elliptic regularity estimate (3.4) gives

‖w‖H2
b
(Ω) 6 c(1 + c2)|Aw |

and hence

‖w‖L∞

b
(Ω) 6 k2|w | 12 |Aw | 12 . (3.6)

Bounding |Aw |2, we have

|Aw |2 =

j∑

k=1

λ2
kα

2
k

6 λ2
j

j∑

k=1

α2
k.

Applying this bound to (3.6), one has

‖w‖L∞

b
(Ω) 6 k2

(
j∑

k=1

α2
k

) 1

4

λ
1

2

j

(
j∑

k=1

α2
k

) 1

4

= k2λ
1

2

j

(
j∑

k=1

α2
k

) 1

2

.
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We have established that |w (x )|2 6 k3λj

∑j
k=1 α

2
k for almost every x ∈ Ω. In

fact, this holds for all x ∈ Ω by Sobolev embeddings. Let 1 6 i 6 2. One has

∣∣∣∣∣

j∑

k=1

αkw
(i)
k (x )

∣∣∣∣∣

2

6 |w(x )|2 6 k3λj

j∑

k=1

α2
k.

Setting αk = w
(i)
k (x ), we obtain

j∑

k=1

|w(i)
k (x )|2 6 k3λj.

Summing over i,
j∑

k=1

|wk(x )|2 6 2k3λj

for each x ∈ Ω. Integration over Ω yields the spectral estimate.

Proposition 3.11 (Weighted Lieb-Thirring Inequality). Let {ϕj ∈ V, j =

1, . . . , m} be an orthonormal set in H. For almost every x ∈ Ω set

ρ(x ) =
m∑

j=1

|ϕj(x )|2.

For p satisfying 1 < p 6 2 one has

(∫

Ω

ρ(x )
p

p−1 dλ(x)

)p−1

6 κ2

(
m∑

j=1

a(ϕj,ϕj)

)

where κ2 is independent of the family {ϕj} and of m.

Proof. One checks that the arguments given in [41] and the appendix of [64] may

be adapted to the case in which the weighted measure λ replaces the Lebesgue

measure. We proceed initially by assuming that the operator A satisfies the

following hypotheses.

• (H1) There exists a constant κ1 such that the eigenvalues λj of the operator

A satisfy λj > κ1j.
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• (H2) For each r > 0, the operator (A+r)−1 ∈ L(V ′, V ) extends as a linear

continuous operator from Ls
b(Ω) into V ∩ W2,s

b (Ω) for 1 < s < ∞. This

operator considered as an operator on L2
b(Ω) is positive.

• (H3) The eigenfunctions w j of A are uniformly bounded in L∞
b .

Hypothesis H3 is very strong as it is not true in general and often very difficult to

verify when true. Donnelly [17] shows that if an n-dimensional compact Rieman-

nian manifold M admits an isometric circle action, and if the metric is generic,

then one has eigenfunctions of the Laplacian corresponding to the eigenvalue γk

satisfying

‖φk‖∞ > Cγ
n−1

8

k ‖φ‖2.

Let p > 2 and let f ∈ Lp
b(Ω). The form

a(u , v) +

∫

Ω

(f + α)u · v dλ

is bilinear, continuous, and coercive on V for an appropriate choice of the translate

α. Therefore, H has an orthonormal basis consisting of eigenfunctions of the

Schrödinger-type operatorAf = A+f . Let (µj(f)) denote the increasing sequence

of eigenvalues of A+ f . Using the Birman-Schwinger inequality [60], one obtains

an estimate on the negative part of the spectrum of A + f in terms of a phase

space integral involving f . For 0 < β 6 1, there exists γ1 = γ1(β) such that

∑

µj<0

|µj| 6 γ1

[∫

Ω

(f−(x ))β+1dλ

] 1

β

.

This spectral estimate makes crucial use of (H3). The weighted Sobolev-Lieb-

Thirring inequality now follows by setting f = −αρ1/(p−1) for an appropriate

value of α and studying the unbounded operator Am
f on

∧m H defined by

Am
f (u1 ∧ · · · ∧ um) = (Afu1 ∧ u2 ∧ · · · ∧ um) + · · ·+ (u1 ∧ · · · ∧ um−1 ∧ Afum).
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The general weighted Sobolev-Lieb-Thirring inequality reduces to the case of the

negative Laplacian with periodic boundary conditions, an operator for which

(H1)-(H3) hold.

Remark 3.12. See [26] for other interesting generalizations of the Sobolev-Lieb-

Thirring inequalities.

Acknowledgements. The author thanks C.D. Levermore for posing the prob-

lem and for numerous insightful discussions, R. Pego for clarifying the spectral

theory of elliptic operators, and J. Sterbenz for pointing out the estimates in [17].
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Chapter 4

Learning About Reality From Observation

Written in collaboration with James A. Yorke, the material in this chapter has

been published by SIAM. Publication data: W. Ott and James A. Yorke,

Learning About Reality From Observation, SIAM J. Applied Dynamical Systems

2 (2003), no. 3, 297-322.

4.1 Introduction

In The Republic, Plato writes of people who are chained in a cave for all of

their lives, unable to observe life directly. Behind these people a fire burns and

real objects cast shadows on the cave wall for them to see. Forced to base

their knowledge of reality on inferences made from the shadows, they equate the

shadows with reality. While philosophers may vigorously debate epistemological

theory, it is certainly true that experimentalists are limited to observations that

may not encode the full complexity of their systems.

As Ruelle and Takens have observed, it is very difficult to directly observe

all aspects of the evolution of a high dimensional dynamical system such as a

turbulent flow. Out of necessity, it is frequently the case that experimentalists

study such systems by measuring a relatively low number of different quantities.
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We assume that all measurements have infinite precision in what follows. A

central experimental question is the following.

Question 4.1. Is the measured data sufficient for us to understand the evolution

of the dynamical system? In particular, does the measured data contain enough

information to reconstruct dynamical objects of interest and recover coordinate

independent dynamical properties such as attractor dimension and Lyapunov

exponents? How many exponents can be determined?

Let f : Rn → Rn be a map and suppose A ⊂ Rn is a compact invariant set.

Let φ : Rn → Rm be a smooth map. We always assume m > 0. We think of φ

as a measurement function measuring m physical quantities, and for each point

x in the state space Rn we say that φ(x) is the measurement associated with

x. Motivated by an experimental point of view, we say that observations are

deterministic if there exists an induced map f̄ on φ(A) such that the following

diagram commutes:

A
f−−−→ A

φ

y
yφ

φ(A)
f̄−−−→ φ(A)

The dynamics generated by f̄ may be thought of as the shadows that traverse

Plato’s hypothetical cave wall. The global goal is to infer as much as possible

about the dynamical system f from knowledge of the induced dynamics. In the

absence of induced dynamics, experimenters increase m by either making more

measurements or using delay coordinate maps. Assuming f̄ exists, there is a

considerable literature on how to compute the Lyapunov exponents associated

with the induced system. Do these values correspond to those of the full system?

What do we need to check to see this? We would like to state theorems of the
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following type.

Prototypical Theorem. For a typical measurement map φ, if the induced map

f̄ exists and has certain properties, then the measurement map φ preserves dy-

namical objects of interest and dynamical invariants of the full system may be

computed from the induced dynamics.

Under what conditions do our observations allow us to make predictions?

James Clerk Maxwell wrote of the fundamental importance of continuous depen-

dence on initial data [8, 35]:

“It is a metaphysical doctrine that from the same an-

tecedents follow the same consequents. No one can gain-

say this. But it is not of much use in a world like this,

in which the same antecedents never again concur, and

nothing ever happens twice.... The physical axiom which

has a somewhat similar aspect is ‘That from like an-

tecedents follow like consequents’.”

We ask what we can conclude if observations are deterministic and if the

induced map f̄ is continuous. Using a translation invariant concept of “almost

every” on infinite dimensional vector spaces described in Section 4.2, we obtain

the main C0 conclusion.

Notation 4.2. For a map ψ we denote the restriction of ψ to a subset S of the

domain of ψ by ψ[S]. Notice that this notation is not standard.

Let Fix(f̄) and Per2(f̄) denote the collection of fixed points and period two points,

respectively, of f̄ .

C0 Theorem. Let f : Rn → Rn be a map and let A be a compact invariant set.

For almost every map φ ∈ C1(Rn,Rm), there is an induced map f̄ satisfying
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1. f̄ is continuous and invertible, and

2. Fix(f̄) and Per2(f̄) are countable

if and only if the following hold.

1. The measurement map φ is one to one on A.

2. The sets Fix(f [A]) and Per2(f [A]) are countable.

3. The map f [A] is continuous and invertible.

Remark 4.3. If one can infer a property of A from a corresponding property

of φ(A), we say that the property is observable. The boundedness of A is

observable in the sense that if A is unbounded, then φ(A) is unbounded for

almost every φ ∈ C1(Rn,Rm). This applies to each of the embedding theorems

in this paper.

Remark 4.4. Our goal is to obtain results with few or preferably no assumptions

on f and A. Hypotheses should instead be placed on the observed objects, φ(A)

and f̄ . This point of view motivates the definition of a Platonic result.

Definition 4.5. A result is said to be Platonic if it contains no hypotheses

on the dynamical system f aside from the assumption of a finite-dimensional

Euclidean phase space.

Does a typical measurement function preserve differential structure? If f is a

diffeomorphism, A is a smooth submanifold of Rn and dim(A) is known a priori,

one may appeal to the Whitney embedding theorem [29]. This theorem states

that if A is a compact Cr k-dimensional manifold, where r ≥ 1, then there is a

Cr embedding of A into Rm where m ≥ 2k + 1. This situation is generic in the
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sense that the set of embeddings of A is open and dense in Cr(A,Rm). However,

the experimentalist lacking a priori knowledge of the structure of A cannot rely

on embedding theorems of Whitney type.

In Section 4.3 we define a notion of tangent space, denoted TxA, suitable for a

general compact subset A of Rn and we prove a manifold extension theorem. This

result allows us to prove a Platonic version of the Whitney embedding theorem

and to formulate a notion of diffeomorphism on A equivalent to the notion of

injective immersion on A. We formulate our C1 embedding theorems using this

notion of diffeomorphism. Our Platonic C1 theorem states that for almost every

φ ∈ C1(Rn,Rm), the existence of an invertible quasidifferentiable (see Section

4.6) induced map f̄ on φ(A) satisfying mild assumptions implies that φ is a

diffeomorphism on A.

Platonic C1 Theorem. Suppose f : Rn → Rn is a map. For almost every

φ ∈ C1(Rn,Rm), if there exists an invertible quasidifferentiable (see Section 4.6)

induced map f̄ on φ(A) satisfying

1. Fix(f̄) and Per2(f̄) are countable,

2. dimTy(φ(A)) < m ∀y ∈ φ(A), and

3. Df̄(y)[Tyφ(A)] is invertible ∀y ∈ φ(A),

then the measurement mapping φ is a diffeomorphism on A.

It is difficult for a scientist to measure a large number of independent quanti-

ties simultaneously. For this reason one introduces the class of delay coordinate

mappings. This mapping class was introduced into the literature by Takens [63].
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Definition 4.6. Let g ∈ C1(Rn,R). The delay coordinate map φ(f, g) : Rn →

Rm is given by

φ(f, g)(x) = (g(x), g(f(x)), . . . , g(fm−1(x)))T

Analogs of several of our embedding results hold for the class of delay co-

ordinate mappings. Since the delay coordinate mappings form a subspace of

C1(Rn,Rm), it should be stressed that the delay coordinate results do not fol-

low from the corresponding results about almost every φ ∈ C1(Rn,Rm). The

following result addresses the observation of differentiable dynamics.

Delay Coordinate Map Theorem. Let f be a diffeomorphism on Rn and let

A be a compact invariant set. For almost every g ∈ C1(Rn,R), if there is a

quasidifferentiable induced map f̄ satisfying

1.
⋃2m

i=1 Peri(f̄) is countable and

2. for each p ∈ {1, . . . , m} and y ∈ Perp(f̄) we have

Df̄ p(y)[Tyφ(f, g)(A)] 6= γ · I for every γ ∈ R,

then the delay map φ(f, g) is a diffeomorphism on A.

Assume that f and f̄ are quasidifferentiable and invertible on A and φ(A),

respectively, with invertible quasiderivatives at each point x ∈ A and y ∈ φ(A).

Suppose that φ is a diffeomorphism on A. We say that a Lyapunov exponent

λ(y, v) of f̄ at y ∈ φ(A) is true if it does not depend on the choice of quasideriva-

tive Df̄ and if it is also a Lyapunov exponent of f at φ−1(y) ∈ A. The works of

Eckmann, Ruelle, Sano and Sawada provide heuristic computational procedures

for obtaining m Lyapunov exponents for a trajectory (yk) of f̄ . They use the sub-

set of measurement mappings generated by so-called delay coordinate mappings,
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the mapping class considered in the famous, fundamental paper of Takens [63].

In particular, the Eckmann and Ruelle algorithm (ERA) [18] uses a linear fitting

of the tangent map and has proven to be computationally efficient in giving the

complete Lyapunov spectrum of many dynamical systems. Mera and Morán [48]

find conditions ensuring the convergence of this algorithm for a smooth dynamical

system on a C1+α submanifold supporting an ergodic invariant Borel probability

measure. Our exponent characterization theorem establishes a rigorous connec-

tion between the observed Lyapunov exponents and the Lyapunov exponents of

f [A]. Under our assumptions, an observed Lyapunov exponent λ(y, v) is a true

Lyapunov exponent if and only if v ∈ Tyφ(A).

Suppose A is a manifold of dimension d. Implementation of the full Eckmann

and Ruelle algorithm yields m observed Lyapunov exponents, d of which are

true. The remaining m − d exponents are spurious, artifacts of the embedding

process. In order to identify the d true exponents, one must either devise a

method to identify the spurious exponents a fortiori or modify ERA to completely

avoid the computation of spurious exponents. Several authors propose a modified

ERA in which the tangent maps are computed only on the tangent spaces and

not on the ambient space Rm. Mera and Morán [49] discuss the convergence

of the modified ERA. This technique eliminates the computation of spurious

exponents but requires that tangent spaces be computed along orbits. We propose

a new technique based on the exponent characterization theorem that allows

for the a fortiori determination of the spurious exponents without requiring the

computation of tangent spaces along orbits. We describe this algorithm in Section

4.7 following the statement of the exponent characterization theorem.
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4.1.1 The case of linear f and φ

We illustrate our ansatz with the case where f and φ are linear.

Proposition 4.7. Let f be linear on Rn and let A be an invariant subspace on

which f is an isomorphism. If the restriction of f to A is not a scalar multiple

of the identity, then for almost every φ ∈ Lin(Rn,Rm) in the sense of Lebesgue

measure, there is an induced map on φ(A) if and only if φ is an isomorphism on

A.

Key issues are raised by this proposition. Notice that if there exists c ∈ R for

which f(x) = cx for all x ∈ A, then y 7→ cy is the induced map on φ(A) even

if φ is not one to one on A. Since this is a theory of observation, when possible

the assumptions should be verifiable from observation. The following alternative

version of the proposition transfers the assumption onto the induced dynamics

in a manner that will be followed throughout this paper.

Proposition 4.8. Let f be linear on Rn and let A be an invariant subspace

on which f is an isomorphism. For almost every φ ∈ Lin(Rn,Rm), there is an

induced map on φ(A) and this induced map is not identically a scalar multiple of

the identity if and only if φ is an isomorphism on A and the restriction of f to

A is not a scalar multiple of the identity.

Remark 4.9. The hypothesis that f is an isomorphism on A is observable in

the sense mentioned earlier. The key point is that if f [A] is not one-to-one, then

for almost every φ ∈ Lin(Rn,Rm) there does not exist an injective induced map

f̄ on φ(A).
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4.1.2 What does “typical” mean?

The conclusions of the linear propositions hold for almost every linear φ with

respect to Lebesgue measure. In the general situation we will consider the space

of C1 measurement mappings. In order to prove versions of our prototypical

theorem, we must first clarify what we mean by a “typical” measurement mapping

φ. The notion of typicality may be cast in topological terms. In this setting,

“typical” would be used to refer to an open and dense subset or a residual subset

of mappings. For example, consider the topological Kupka-Smale theorem.

Definition 4.10. Let M be a smooth, compact manifold. A diffeomorphism

f ∈ Diffr(M) is said to be Kupka-Smale if

1. The periodic points of f are hyperbolic.

2. If p and q are periodic points of f , then W s(p) is transverse to W u(q).

Theorem 4.11 (Kupka-Smale [52]). The set of Kupka-Smale diffeomorphisms

is residual in Diffr(M).

The topological notion of typicality is not the appropriate conceptualization

for the experimentalist interested in a probabilistic result on the likelihood of a

given property in a function space. Any Cantor set of positive measure illustrates

the difference between the topological and measure theoretic notions of a small

set. The discord between topological typicality and probabilistic typicality is also

evident in the following dynamical examples.

Example 4.12. Arnold [1] studied the family of circle diffeomorphisms

fω,ε(x) = x + ω + ε sin(x) (mod 2π),
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where 0 ≤ ω ≤ 2π and 0 ≤ ε < 1 are parameters. For each ε we define the set

Sε = {ω ∈ [0, 2π] : fω,ε has a stable periodic orbit}.

For 0 < ε < 1, the set Sε is a countable union of disjoint open intervals (one for

each rational rotation number) and is an open dense subset of [0, 2π]. However,

the Lebesgue measure of Sε converges to 0 as ε→ 0.

There are even more striking examples where the Baire categorical and mea-

sure theoretic notions of typicality yield diametrically opposite conclusions about

the size of a set.

Example 4.13. Misiurewicz [50] proved that the mapping z 7→ ez on the complex

plane is topologically transitive, implying that a residual set of initial points yield

dense trajectories. On the other hand, Lyubich [43] and Rees [53] proved that

Lebesgue almost every initial point has a trajectory whose limit set is a subset

of the real axis.

Finally, we consider Lyapunov exponents. This example is particularly rele-

vant because the work of Eckmann, Ruelle, Sano, and Sawada on the computation

of these exponents motivated this paper.

Example 4.14 (Lyapunov Exponents). Let f : M → M be a C1 dif-

feomorphism on a compact finite-dimensional Riemannian manifold M . For

(x, v) ∈ TM , ‖v‖ 6= 0, the number

lim
n→±∞

1

n
log ‖Dfn(x)v‖

should the limit exist is called the Lyapunov exponent of f at (x, v), denoted

λ(x, v). We say that x ∈ M is a regular point for f if there are Lyapunov
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exponents

λ1(x) > · · · > λl(x)

and a splitting

TxM =

l⊕

i=1

Ei(x)

of the tangent space to M at x such that

lim
n→±∞

1

n
log ‖Dfn(x)u‖ = λj(x) (u ∈ Ej(x) \ {0} and 1 ≤ j ≤ l).

While the periodic points of f are always regular points, frequently the set of

regular points is a topologically small subset of M . Quite often this set is Baire

first category and it may even be finite [65]. From a measure theoretic point of

view the situation is completely different.

Theorem 4.15 (Oseledec Multiplicative Ergodic Theorem [65, 37]). The

set of regular points for f has full measure with respect to any f -invariant Borel

probability measure on M .

The Oseledec theorem holds in the more general context of measurable co-

cycles over invertible measure-preserving transformations of a Lebesgue space

(X, µ) [37]. Let f : X → X be an invertible measure preserving transformation

and let L : X → GL(n,R) be a measurable cocycle over X. If

log+ ‖L±1(x)‖ ∈ L1(X, µ)

then almost every x ∈ X is a regular point for (f, L).

The following example illustrates that Lyapunov exponents may not exist for

a residual set of points. Let p > 1 and q > 1 satisfy 1
p

+ 1
q

= 1 and p 6= q.
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Consider the Markov map f : [0, 1] → [0, 1] defined by

f(x) =






px, if 0 6 x < 1
p
;

qx− q
p
, if 1

p
6 x 6 1.

This transformation represents the full shift on two symbols with probabilities 1/p

and 1/q. Lebesgue measure is invariant under f and ergodic, thus the Lyapunov

exponent at Lebesgue almost every x ∈ [0, 1] exists and is equal to

log(p)

p
+

log(q)

q

by virtue of the Birkhoff ergodic theorem. On the other hand, we claim that no

Lyapunov exponent exists for a residual set of points. For n ∈ N, set

Vp,n(x) =
1

n
(|{0 6 i 6 n− 1 : f i(x) ∈ [0, 1/p)}|).

Fix α > 1/p and β < 1/p. Define for each N ∈ N the sets CN = {x : ∃n > N

for which Vp,n(x) > α} and DN = {x : ∃n > N for which Vp,n(x) 6 β}. The

set CN contains an open interval to the right of each preimage of 1/p, and thus

CN contains an open and dense subset of [0, 1]. Similarly, DN contains an open

interval to the left of each preimage of 1/p, and thus DN also contains an open

and dense subset of [0, 1]. No Lyapunov exponent exists for points in the residual

set
∞⋂

N=1

CN ∩DN

because Vp,n(x) does not converge for such points.

Motivated by the probabilistic interpretation of typicality, we will use the

notion of prevalence developed in [33, 34]. See the references given in [34] for

closely related concepts. The notion of prevalence generalizes the translation

invariant concept of Lebesgue full measure to infinite-dimensional Banach spaces.
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4.1.3 Overview of this paper

Section 4.2 develops the relevant prevalence theory and demonstrates that cardi-

nality and boundedness are observable properties. In §4.3 we define a notion of

tangent space suitable for general compact subsets of Rn and we prove the mani-

fold extension theorem. The manifold extension theorem is used in §4.4 to derive

a Platonic version of the Whitney embedding theorem. We present our embed-

ding theorems in §4.5 and §4.6 and our results on delay coordinate mappings and

Lyapunov exponents in §4.7.

4.1.4 The Transference Method

Schematically our embedding theorems are developed in the following way. Let f :

Rn → Rn be a dynamical system and let A be a compact invariant set. We want

to require no regularity assumptions about f nor do we wish to assume that f is

invertible. For a map g, a subset D of the domain of g and any property L, write

(g, L;D) to indicate that the restriction of g to D has property L. Let S denote

a collection of properties of a dynamical system. Let Q denote a collection of

properties of maps in the measurement function space C1(Rn,Rm). For example,

Q might consist of the assertion that φ ∈ C1(Rn,Rm) is a homeomorphism on

A. We are interested in the ability of the observer to make inferences; that is, in

results of the form

(f̄ ,L;φ(A)) ⇒ (φ,Q) for almost every φ, (4.1)

where L is a collection of properties of f̄ . In other words, the existence of an

induced map f̄ satisfying properties L implies that φ satisfies properties Q. We
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first prove

(f, S;A) ⇒ ((f̄ ,L1;φ(A)) ⇔ (φ,Q)) for a.e. φ.

The Platonic version of the theorem is obtained by replacing each assumption on

f with one on f̄ . For P ∈ S, we replace the assumption

(f, P ;A)

with one on f̄ , giving

(f̄ ,L1 ∪ S;φ(A)) ⇔ ((φ,Q) and (f, S;A)) for a.e. φ.

In particular, (4.1) holds with L = L1 ∪ S. In essence the Platonic version has

been obtained by transferring the hypotheses (f, P ;A) for P ∈ S onto the induced

dynamics. Prevalence statements allow for these transfers. Properties for which

this program may be implemented are said to be observable.

4.2 Prevalence

Let V be a complete metric linear space.

Definition 4.16. A Borel measure µ on V is said to be transverse to a Borel

set S ⊂ V if the following holds:

1. There exists a compact set U ⊂ V for which 0 < µ(U) <∞, and

2. for every v ∈ V we have µ(S + v) = 0.

For example, µ might be Lebesgue measure supported on a finite-dimensional

subspace of V .
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Definition 4.17. A Borel set S ⊂ V is called shy if there exists a measure

transverse to S. More generally, a subset of V is called shy if it is contained in a

shy Borel set. The complement of a shy set is called a prevalent set.

A subset of Rn is shy if and only if it has Lebesgue measure zero. For a map

φ contained in a prevalent subset S of a linear function space V , we say that φ

is typical. Employing the language of the finite dimensional case, we say that

almost every element of V lies in S (in the sense of prevalence).

Using the notion of prevalence, researchers have reformulated several topo-

logical and dynamical theorems. Sauer, Yorke, and Casdagli prove in [59] a

prevalence version of the Whitney embedding theorem.

Theorem 4.18 (Prevalence Whitney Embedding Theorem [59]). Let A

be a compact subset of Rn of box dimension d and let m be an integer greater

than 2d. For almost every smooth map φ : Rn → Rm,

1. φ is one to one on A and

2. φ is an immersion on each compact subset C of a smooth manifold contained

in A.

This theorem is not Platonic because the dimension assumption is on A. In

Section 4.4 we prove a Platonic Whitney embedding theorem as a corollary of

the manifold extension theorem.

The reformulation of a genericity theorem of Kupka-Smale type requires a

notion of prevalence for nonlinear function spaces such as the space of diffeomor-

phisms of a compact smooth manifold. Kaloshin in [36] develops such a notion

and proves a prevalence version of the Kupka-Smale theorem for diffeomorphisms.
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4.2.1 Cardinality Preservation

In Sections 4.5, 4.6 and 4.7 we will need to know how a typical smooth projection

affects the cardinality of a set. We show that for a set A ⊂ Rn, A and φ(A) have

the same cardinality for a.e. φ ∈ C1(Rn,Rm). We begin by assuming that A is a

countable set.

Proposition 4.19. Let A ⊂ Rn be countable. Almost every φ ∈ C1(Rn,Rm)

is one to one on A. In particular, if A is countably infinite, then φ(A) is also

countably infinite for almost every φ ∈ C1(Rn,Rm).

Proof. We write A = {xi : i ∈ N}. For i 6= j let Cij = {φ ∈ C1(Rn,Rm) : φ(xi) =

φ(xj)}. We first show that Cij is shy. Let B(xi, ri) be a metric ball such that

xj /∈ B(xi, ri). Let β : Rn → R be a C∞ map such that

1. β > 0 on B(xi, ri) and

2. supp(β) = B(xi, ri).

Let v ∈ Rm be a nonzero vector and let µ be the Lebesgue measure supported

on the one dimensional subspace

{tvβ : t ∈ R}.

For any φ ∈ C1(Rn,Rm), it is evident that φ + tvβ ∈ Cij for at most one t ∈ R.

Thus Cij is a shy subset of C1(Rn,Rm) because µ is transverse to it. The set

⋂

i,j∈N

i6=j

C1(Rn,Rm) \ Cij

consists of functions that map A injectively into Rm. This set is prevalent because

the countable intersection of prevalent sets is prevalent (see [33]).
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Plato would have us consider the prisoner’s question where the cardinality of

A is not known a priori. For a typical φ, does the countability of φ(A) imply the

countability of A? The next proposition answers this question affirmatively with

the help of the following lemma.

Lemma 4.20. Let A0 ⊂ Rn be an uncountable set. Lebesgue almost every func-

tion φ ∈ Lin(Rn,Rm) maps A0 to an uncountable set.

Proof. It suffices to consider the scalar case m = 1. For each φ ∈ Lin(Rn,R) there

exists a unique vector v ∈ Rn such that φ(x) = (x, v) for all x ∈ Rn. Suppose by

way of contradiction that the set

{φ ∈ Lin(Rn,R) : φ(A0) is countable}

has positive measure. This implies that there exist n linearly independent vectors

{vi : i = 1, . . . , n} such that the functions φvi
given by x 7→ (x, vi) map A0 to a

countable set. Let A1 be an uncountable subset of A0 such that φv1
(A1) = {y1}.

Inductively construct a collection of sets {Ai : i = 1, . . . , n} satisfying

1. Ai is uncountable for each i,

2. Ai ⊂ Ai−1 for each i, and

3. φvi
(Ai) = {yi}.

We have φvi
(An) = {yi} for each i, so An consists of one point. This contradiction

establishes the lemma.

Proposition 4.21. Let A0 be an uncountable set. For almost every

φ ∈ C1(Rn,Rm),

φ(A0) is uncountable.
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Proof. Once again it suffices to consider the scalar case m = 1. We show that

the set

S = {φ ∈ C1(Rn,R) : φ(A0) is countable}

is shy. Let {φei
} be a basis for Lin(Rn,R) and let µ be the Lebesgue measure on

Rn. Write α = (αi) for a vector in Rn and for φ ∈ C1(Rn,R) set

φα := φ+

n∑

i=1

αiφei
.

If S is not shy, there exists some g ∈ S such that

µ{α : gα(A0) is countable} > 0

where µ denotes n dimensional Lebesgue measure. Without loss of generality

assume that g(A0) is countable. There is at least one point y such that g−1(y)∩A0

is uncountable. Shrinking A0 if necessary, without loss of generality we may

assume that g maps A0 to a single point; that is, g is constant on A0. There exist

n linearly independent vectors {vi} such that the functions φvi
+ g map A0 to a

countable set. As in the proof of (4.20) we inductively construct a collection of

sets {Ai : i = 1, . . . , n} satisfying

1. Ai is uncountable for each i,

2. Ai ⊂ Ai−1 for each i, and

3. (φvi
+ g)(Ai) = {yi}.

We have (φvi
+ g)(An) = {yi} for each i, so An consists of one point. This

contradiction establishes the proposition.
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4.2.2 Preservation of Unboundedness

We now consider the question of how a typical smooth projection affects the

boundedness of a set. For a typical φ, does the boundedness of φ(A) imply that

A is bounded?

Proposition 4.22 (Unboundedness Preservation). Assume A ⊂ Rn is un-

bounded. Then φ(A) is unbounded for almost every φ ∈ C1(Rn,Rm).

Proof. It suffices to assume m = 1. We show that the set

V = {φ ∈ C1(Rn,R) : φ(A) is bounded}

is shy. As above, let µ be the Lebesgue measure on Rn and for φ ∈ C1(Rn,R)

and (αi) ∈ Rn write

φα := φ+

n∑

i=1

αiφei
.

If V is not shy, there exists some g ∈ V such that

µ{α : gα(A) is bounded} > 0.

Without loss of generality assume that g(A) ⊂ [−d, d] for some d > 0. There exist

n linearly independent vectors {vi} and scalars ci > 0 such that the functions

g + φvi
map A into [−ci, ci]. Thus A is contained in the set

n⋂

i=1

φ−1
vi

([−ci − d, ci + d]),

a bounded solid polygon. This contradiction establishes the proposition.

Remark 4.23. We conclude that for a typical φ ∈ C1(Rn,Rm), the boundedness

of φ(A) implies that A is bounded. That is, the boundedness of A is an observable

property.
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4.3 Enveloping Manifolds

Let A be a compact subset of Rn and let x ∈ A. We say that a C1 manifold M is

an enveloping manifold for A at x if there exists a neighborhood N(x) of x such

that M ⊃ N(x) ∩ A and if the dimension of M is minimal with respect to this

property. We demonstrate the existence of a C1 enveloping manifold M for each

x ∈ A.

Definition 4.24. Let DxA be the set of all directions v for which there exist

sequences (yi) and (zi) in A such that yi → x, zi → x, and zi−yi

‖zi−yi‖
→ v. The tan-

gent space at x relative to A, denoted TxA, is the smallest linear space containing

DxA.

We note that this is one of the two obvious ways to define the tangent space

at a point in an arbitrary compact subset of Rn. The other would be to fix

yi = x in the above definition, but the resulting tangent space would be too small

for our purposes. In general neither the tangent space itself nor its dimension

will vary continuously with x ∈ A. Nevertheless, the tangent space varies upper

semicontinuously with x ∈ A. More precisely, we have

Lemma 4.25. The function x 7→ dim(TxA) is upper semicontinuous on A. In

fact, TxA depends upper semicontinuously on x ∈ A in the sense that if xi → x

where xi ∈ A and vi → v where vi ∈ Txi
A then v ∈ TxA. In other words,

{(x, v) : x ∈ A, v ∈ TxA} is a closed subset of Rn × Rn. If TxA has constant

dimension on a set A0 ⊂ A, then TxA is continuous on A0 in the same sense.

Definition 4.26. The tangent dimension of A, denoted dimT (A), is given by

dimT (A) = max
x∈A

(dimTxA).
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Example 4.27. In Figure 4.1 the tangent space TpA is two-dimensional while

TxA is one-dimensional for all other points x ∈ A. Choosing (yi) ⊂ A and

(zi) ⊂ A such that yi → p, zi → p, and yi and zi lie on a vertical line for each i,

we obtain the tangent vector v ∈ TpA. Thus dimT (A) = 2.

zi

yi

v

p

A

Figure 4.1: A Cusp

We are now in position to state a surprising theorem.

Theorem 4.28 (Manifold Extension Theorem). For each x ∈ A there exists

an enveloping manifold M for A at x with TxM = TxA.

Conjecture 4.29. We believe that integrability is an intrinsic feature of the

definition of the tangent space. We therefore conjecture that a global version of

the manifold extension theorem holds. Namely, there exists a manifold M such

that dim(M) = dimT (A) and A ⊂ M .

Proof. Recall that for a map ψ we denote the restriction of ψ to a subset S of the

domain of ψ by ψ[S]. Let m = dim(TxA). There exists a compact neighborhood

N of x such that dim(TyA) ≤ m for all y ∈ N ∩ A. Let π denote the orthogonal

projection of Rn onto TxA. The projection map π induces the splitting Rn =

TxA⊕Ex. Using this splitting write (p, q) for points in Rn. If ((pi, qi)) is a sequence
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such that (pi, qi) ∈ N ∩A for each i and (pi, qi) → x then ‖qi+1−qi‖
‖pi+1−pi‖

→ 0. We may

assume N has been chosen sufficiently small so that π maps TyA injectively into

TxA for each y ∈ N ∩A and that π[N ∩A] is one to one. Hence we may define ψ

on π(N ∩A) by ψ(p) := q for (p, q) ∈ N ∩A. Repeated use of our main technical

tool, the Whitney extension theorem, will allow us to extend ψ to a C1 function

defined on a neighborhood in TxA of π(A∩N). We first state a C1 version of the

Whitney extension theorem for compact domains.

Definition 4.30. Let Q ⊂ Rm be a compact set and assume f : Q → Rk and

L : Q→ Lin(Rm,Rk) are given functions.

Notation 4.31.

1. R(y, z) := f(z)−f(y)−L(y)·(z−y)
‖z−y‖

(for all y, z ∈ Q, y 6= z).

2. For δ > 0, set

ρ(δ) := sup
y,z∈Q

0<‖z−y‖≤δ

‖R(y, z)‖.

The pair (f, L) is said to be a Whitney C1 function pair on Q if f and L are

continuous and if ρ satisfies

ρ(δ) → 0 as δ → 0. (4.2)

Notice that (4.2) is equivalent to the following uniformity condition stated by

Whitney in [66]: Given any w ∈ Q and ε > 0, there exists δ > 0 such that if

y ∈ Q and z ∈ Q satisfy ‖y − w‖ < δ and ‖z − w‖ < δ, then ‖R(y, z)‖ ≤ ε.

Theorem 4.32 (Whitney Extension Theorem [21, 39, 66]). Given a Whit-

ney C1 function pair (f, L) defined on a compact subset Q of Rm, there exists a

C1 function f̃ : Rm → Rk such that f̃ = f and Df̃ = L on Q.
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We now continue the proof of our manifold extension theorem. Let

d(y) = dim(TyA)

for y ∈ A∩N . For k ≤ m letXk = {y ∈ N∩A : d(y) = k}. We first find a function

whose graph is a C1 manifold which envelops Xm. For each y ∈ N ∩ A, the

tangent space TyA may be viewed as a subspace of TxA⊕Ex = Rn. For y ∈ Xm

define the linear operator Lm(y) : TxA → Ex as follows. For (v, w) ∈ DyA let

Lm(y)v = w. By linearity Lm(y) is determined on TyA. The linear operator Lm(y)

depends continuously on y ∈ Xm since TyA depends continuously on y ∈ Xm by

(4.25). The function pair (ψ, Lm) is Whitney C1 on π(Xm) because the uniformity

condition of Whitney is implied by (4.24). Notice that the Whitney extension

theorem can now only be used to extend ψ[π(Xm)] because no obvious candidate

exists for L(y) for y /∈ Xm. By applying the Whitney extension theorem, extend

ψ to a function ψ̃1 defined on π(N). Notice that if Xm = N ∩ A, the result is

proved since the graph of ψ̃1 constitutes an enveloping manifold for A at x.

The general case is handled inductively. Construct ψ̃1 as above and make the

nonlinear change of variable (p, q) → (p, q − ψ̃1(p)) := (p, ψ2(p)). Consider the

map ψ2[π(Xm)∪π(Xm−1)] and let y ∈ graph(ψ2[π(Xm)∪π(Xm−1)]). The tangent

space Ty(graph(ψ2[π(A)])) may be viewed as a subspace of TxA ⊕ Ex = Rn.

Define the linear map Lm−1(y) : TxA → Ex as follows. If y ∈ graph(ψ2[π(Xm)]),

set Lm−1(y) ≡ 0. If y ∈ graph(ψ2[π(Xm−1)]), enlarge Ty(graph(ψ2[π(A)])) to a

linear space T̃y of dimension m by adjoining one vector in TxA orthogonal to

Ty(graph(ψ2[π(A)])). For (v, w) ∈ T̃y let Lm−1(y)v = w. The linear operator

Lm−1(y) depends continuously on y ∈ graph(ψ2[π(Xm) ∪ π(Xm−1)]) by (4.25).

The function pair (ψ2, Lm−1) is Whitney C1 on π(Xm) ∪ π(Xm−1) because the

uniformity condition of Whitney is implied by (4.24). By applying the Whitney
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extension theorem, extend ψ2[π(Xm)∪π(Xm−1)] to a function ψ̃2 defined on π(N).

Make the nonlinear change of variables (p, q) → (p, q − ψ̃2(p)) = (p, ψ3(p)).

Assume now that the functions ψ̃1, ψ̃2, . . . , ψ̃k−1 and ψk have been constructed.

Consider the map

ψk

[
m⋃

i=m−k+1

π(Xi)

]
.

For each point y in the set

graph

(
ψk

[
m⋃

i=m−k+1

π(Xi)

])

the tangent space Ty(graph(ψk[π(A)])) may be viewed as a subspace of TxA ⊕

Ex = Rn. Define the linear map Lm−k+1(y) : TxA → Ex as follows. If y ∈

graph(ψk[π(Xm) ∪ · · · ∪ π(Xm−k+2)]), set Lm−k+1(y) ≡ 0. On the other hand, if

y ∈ graph(ψk[π(Xm−k+1)]), enlarge Ty(graph(ψk[π(A)])) to a linear space T̃y of

dimension m by adjoining k − 1 vectors in TxA orthogonal to

Ty(graph(ψk[π(A)])).

For (v, w) ∈ T̃y let Lm−k+1(y)v = w. By (4.24) and (4.25) the function pair

(ψk, Lm−k+1)

is Whitney C1 on the set
m⋃

i=m−k+1

π(Xi).

By applying the Whitney extension theorem, extend the function

ψk

[
m⋃

i=m−k+1

π(Xi)

]

to a function ψ̃k defined on π(N). Make the change of variables (p, q) → (p, q −

ψ̃k(p)) := (p, ψk+1(p)). After m+ 1 steps we obtain a map

Ψ :=

m+1∑

i=1

ψ̃i
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defined on π(N). The graph of Ψ constitutes an enveloping manifold M for A at

x.

Remark 4.33. Although our inductive procedure is canonical, observe that the

Whitney extension theorem makes no claim of uniqueness. Assume that (f, L1)

and (f, L2) are Whitney C1 function pairs defined on a compact subset Q of

Rm as in (4.32). Let y ∈ graph(f) and let π denote the orthogonal projection of

Rm×Rk onto Rm. The tangent space Ty(graph(f)) may be viewed as a subspace of

Rm×Rk. The linear operators L1(y) and L2(y) must satisfy L1(y)v = L2(y)v = w

for all (v, w) ∈ Ty(graph(f)). However, L1(y) and L2(y) are determined only for

(v, w) ∈ Ty(graph(f)). If v /∈ π(Ty(graph(f))), then L1(y) and L2(y) may be

such that L1(y)v 6= L2(y)v.

4.4 Platonic Embedology

Recall the prevalence version of the Whitney embedding theorem.

Theorem 4.34 (Prevalence Whitney Embedding Theorem [59]). Let A

be a compact subset of Rn of box dimension d and let m be an integer greater

than 2d. For almost every smooth map φ : Rn → Rm,

1. φ is one to one on A and

2. φ is an immersion on each compact subset C of a smooth manifold contained

in A.

The manifold extension theorem implies a Platonic version of this result. We

need a notion of diffeomorphism appropriate for a general compact subset A of

Rn.
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Definition 4.35. We say that a measurement map φ ∈ C1(Rn,Rm) is a dif-

feomorphism on A if φ is injective on A and if for each x ∈ A there exists

an enveloping manifold M for A at x that is mapped diffeomorphically onto an

enveloping manifold for φ(A) at φ(x).

We are now in position to formulate the Platonic Whitney embedding theorem.

Theorem 4.36 (Platonic Whitney Embedding Theorem). Let A ⊂ Rn be

compact. For almost every φ ∈ C1(Rn,Rm), if φ(A) satisfies dimT φ(A) < m
2
,

then φ is a diffeomorphism on A.

Conjecture 4.37. The Platonic Whitney embedding theorem remains valid un-

der the weaker assumption that dimT φ(A) < m.

The proof of this result requires an understanding of the relationship between

the box dimension of A and the dimension of the tangent spaces TxA for x ∈ A.

Working only with the definitions, the relationship is unclear. Illumination is

provided by the manifold extension theorem.

Lemma 4.38. Let A ⊂ Rn be compact. For each x ∈ A, there exists a neighbor-

hood N of x such that dim(TxA) > dimB(A ∩N).

Proof. Fix x ∈ A. By the manifold extension theorem, there exists an enveloping

manifold M for A at x and a neighborhood N of x such that M ⊃ N ∩ A. The

set N ∩ A is contained in a C1 manifold of dimension dim(TxA) and therefore

dim(TxA) > dimB(A ∩N).

We now commence with the proof of the Platonic Whitney embedding theo-

rem. Suppose there exists x ∈ A such that dim(TxA) >
m
2
. In this case we would

have that dim(Tφ(x)φ(A)) >
m
2

for almost every φ ∈ C1(Rn,Rm) as a consequence
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of the fact that almost every linear transformation has full rank. Therefore we

may assume that dim(TxA) < m
2
∀x ∈ A. By the manifold extension theorem

and the compactness of A, A is contained in a finite union
⋃k

i=1Mi of enveloping

manifolds such that dim(Mi) <
m
2

for each i. Box dimension is finitely stable, so

one has

dimB(A) 6 dimB

(
k⋃

i=1

Mi

)
= max

i
dimB(Mi) <

m

2
.

The prevalence version of the Whitney embedding theorem (4.18) implies that

almost every φ ∈ C1(Rn,Rm) is a diffeomorphism on A.

Remark 4.39. Suppose one only knows that dimB(φ(A)) < m
2

for a typical φ.

It is difficult to draw any conclusions in this case. Sauer and Yorke [58] exhibit

a compact subset A of R10 with dimB(A) = 3.5 such that dimB(φ(A)) < 3 for

every φ ∈ C1(R10,R6).

4.5 Observing A Continuous Dynamical System

Let f : Rn → Rn be a dynamical system and let A be a compact invariant set.

We make no a priori regularity assumptions about f . Let φ ∈ C1(Rn,Rm) and let

B ⊂ Rn be an open metric ball. Recall that if there exists a map f̄ : φ(A) → φ(A)

such that for x ∈ A the diagram

A
f−−−→ A

φ

y
yφ

φ(A)
f̄−−−→ φ(A)

commutes, then we say that f̄ is the induced map associated with f .

Remark 4.40. If f is continuous, then the existence of f̄ implies the continuity

of f̄ .
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Definition 4.41. The pair (x1, x2) ∈ A×A is coincident if φ(x1) = φ(x2). The

pair (x1, x2) ∈ A× A is said to be dynamically separated by B if

1. (x1, x2) is coincident and

2. x1 /∈ B, x2 /∈ B, f(x1) ∈ B and f(x2) /∈ B.

Definition 4.42. Let SB be the set of maps φ in C1(Rn,Rm) for which the

following hold:

1. There exists some pair (x1, x2) dynamically separated by B, and

2. for all such pairs we have φ(f(x1)) = φ(f(x2)).

Lemma 4.43. The set SB is a shy subset of C1(Rn,Rm).

Proof. We construct a measure transverse to SB. Let β : Rn → R be a C∞ map

such that β > 0 on B and supp(β) = B̄. Let v ∈ Rm be a nonzero vector. Let µ

be the Lebesgue measure supported on the one dimensional subspace

{tvβ : t ∈ R} .

For any φ ∈ C1(Rn,Rm) it is evident that φ + tvβ ∈ SB for at most one t ∈ R.

Thus SB is shy because µ is transverse to it.

Definition 4.44. Let Fix(f) denote the set of fixed points of f . Let Per2(f)

denote the set of periodic points of f of period 2.

Proposition 4.45. Suppose f [A] is continuous and invertible. Assume that

the sets Fix(f [A]) and Per2(f [A]) are countable. For almost every map φ ∈

C1(Rn,Rm) the following are equivalent:

(1) The map φ is one to one on A.

(2) The induced map f̄ exists (and is therefore continuous).
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Proof.

((1) ⇒ (2)) Define f̄ := φ ◦ f ◦ φ−1.

((2) ⇒ (1)) Let {Bi} be a countable collection of open metric balls such that if

x, y ∈ A satisfy x 6= y then there exists some Bi such that x ∈ Bi and y /∈ Bi.

Consider the following three sets:




G1 = {φ ∈ C1(Rn,Rm) : φ is one to one on Fix(f [A])}

G2 = {φ ∈ C1(Rn,Rm) : φ is one to one on Per2(f [A])}

G3 =

∞⋂

i=1

(SBi
)C

The set G1 is a prevalent subset of C1(Rn,Rm) by Proposition 4.19 because the

fixed points of f [A] are countable. Similarly, G2 is prevalent. The set G3 is a

prevalent subset of C1(Rn,Rm) because (SBi
)C is prevalent for each i by (4.43)

and because the countable intersection of prevalent sets is prevalent (see [33]).

Thus G1∩G2∩G3 is a prevalent subset of C1(Rn,Rm). Let φ ∈ G1∩G2∩G3 and

assume that φ is not one to one on A. It follows that no induced map f̄ exists.

Since φ /∈ SBi
for all i, there exists a metric ball Bi and a coincident pair (x1, x2)

dynamically separated by Bi such that φ(f(x1)) 6= φ(f(x2)).

Proposition 4.21 allows us to improve this result by transferring the dynamical

hypotheses onto the induced dynamics. We need a lemma indicating that the

existence of a point of discontinuity of f [A] precludes the existence of a continuous

induced map for a typical measurement function.

Lemma 4.46. Suppose f [A] is discontinuous at some point x ∈ A. Then for a.e.

φ ∈ C1(Rn,Rm), no continuous induced map exists.

Theorem 4.47. Let f : Rn → Rn be a map. For almost every map φ ∈

C1(Rn,Rm), there is an induced map f̄ satisfying
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1. f̄ is continuous and invertible, and

2. Fix(f̄) and Per2(f̄) are countable

if and only if the following hold.

1. The measurement map φ is one to one on A.

2. The sets Fix(f [A]) and Per2(f [A]) are countable.

3. The map f [A] is continuous and invertible.

Proof. We employ the transference method. If f [A] is continuous and invertible

and Fix(f [A]) and Per2(f [A]) are countable sets, then (4.45) implies the result.

If Fix(f [A]) or Per2(f [A]) is uncountable then Proposition 4.21 implies that the

statement of the theorem holds for almost every φ. Lemma 4.46 implies the result

if f [A] is discontinuous at some point. If f [A] is not invertible, then for almost

every φ ∈ C1(Rn,Rm) no invertible induced map exists.

We now consider the possibility of recovering differential information.

4.6 Observing Differentiable Dynamics

Assume that f is a diffeomorphism on Rn. The concept of a measurement function

φ being an immersion on A usually requires A to be a manifold, but there is now

an obvious extension.

Definition 4.48. We say the map φ ∈ C1(Rn,Rm) is an immersion on A if

Dφ(x)[TxA] : TxA→ Tφ(x)φ(A) is one to one for each x ∈ A.

Motivated by the theory of infinite-dimensional dynamical systems, we formulate

our C1 results using the notion of quasidifferentiability.
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Definition 4.49. The function f is said to be quasidifferentiable on the set A if

f [A] is continuous and if for each x ∈ A there exists a linear map Df(x) : Rn →

Rn, the quasiderivative of f at x, such that

f(xi) − f(yi) −Df(x)(xi − yi)

‖xi − yi‖
→ 0

for all sequences (xi) ⊂ A and (yi) ⊂ A such that xi → x and yi → x.

Remark 4.50. The function f is Whitney C1 if and only if f is quasidifferentiable

and the quasiderivative varies continuously. Since continuity is observable, the

C1 embedding results to follow may be formulated with ‘Whitney C1’ in place of

‘quasidifferentiable.’

We would like to prove under the assumptions of (4.45) that for almost every φ,

the existence of a quasidifferentiable induced map f̄ implies that φ is an injective

immersion on A. However, one extra hypothesis on f is needed; namely, that for

each x ∈ Fix(f [A]) we have

Df(x)[TxA] 6= γ · I for every γ ∈ R.

To see the need for this hypothesis, suppose that f is the identity map, A is

countable, and there exists x ∈ A such that dim(TxA) = n > m. In this case, the

identity map on φ(A) is the induced map for every φ ∈ C1(Rn,Rm), yet every φ

fails to be immersive at x.

Consider a countable set {Bi = B(yi, ri) of open metric balls in Rn that

separates points. Let T (A) = {(x, v) : x ∈ A, v ∈ TxA}.

Definition 4.51. Let WBi
be the set of measurement maps in C1(Rn,Rm) with

the following properties:
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1. There exists some point (x, v) ∈ T (A) such that v 6= 0, x /∈ B(yi, 2ri),

f(x) ∈ B(yi, ri), Dφ(x)v = 0, and

2. for all such points we have Dφ(f(x)) ◦Df(x)v = 0.

Lemma 4.52. The set WBi
is shy.

Proof. Let F1, . . . , Ft be a basis for the nm dimensional space of linear trans-

formations from Rn to Rm. Let β : Rn → R be a C∞ map with the following

properties: 



(1) β(x) = 1 for x ∈ B(yi,
5

4
ri)

(2) supp(β) = B(yi,
3

2
ri)

(3) 0 < β ≤ 1 on B(yi,
3

2
ri)

Let P be the subspace of C1(Rn,Rm) spanned by the collection {βFi : i =

1, . . . , t} and endow P with Lebesgue measure. For any φ, the set of vectors (αi)

for which

φ+ β
t∑

i=1

αiFi ∈ WBi

is a subset of P of measure zero.

Lemma 4.53. Let x ∈ Fix(f [A]) and assume that Df(x)[TxA] 6= γ · I for all

γ ∈ R. The set Zx of measurement mappings satisfying

1. ker(Dφ(x)) ∩ TxA 6= {0} and

2. Df(x)(ker(Dφ(x)) ∩ TxA) ⊂ ker(Dφ(x))

is a shy subset of C1(Rn,Rm).

Proof. Consider the orthogonal decomposition Rn = TxA ⊕ Ex. Let L be the

subset of Lin(Rn,Rm) consisting of maps that vanish on Ex and have norm at
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most one. Endow L with the normalized Lebesgue probability measure µ. For

any φ ∈ C1(Rn,Rm), we claim that

µ({F ∈ L : φ+ F ∈ Zx}) = 0. (4.3)

If dimTxA ≤ m then (4.3) follows from the fact that almost every linear transfor-

mation has full rank. If dim TxA > m, then it suffices to consider the scalar case

m = 1. Let d = dim(TxA) and let {φei
} be an orthonormal basis for Lin(TxA,R),

the unit ball of which we identify with L. Let φw represent Dφ(x)[TxA] with

respect to the basis {φei
}. For a map φv ∈ Lin(TxA,R) such that v + w 6= 0, it

is necessary that v + w be an eigenvector of Df(x)[TxA]T in order to have

Df(x)(ker(φv+w) ∩ TxA) ⊂ ker(φv+w).

If Df(x)[TxA]T does not have an eigenvalue of multiplicity d, then (4.3) holds.

Finally, notice that Df(x)[TxA]T has an eigenvalue of multiplicity d if and only

if Df(x)[TxA] is a scalar multiple of the identity.

Proposition 4.54. Suppose f is a diffeomorphism on Rn. Assume that

Fix(f [A]) and Per2(f [A])

are countable sets. Assume that for each x ∈ Fix(f [A]) we have

Df(x)[TxA] 6= γ · I for every γ ∈ R.

Then for almost every φ ∈ C1(Rn,Rm), if there is a quasidifferentiable induced

map f̄ then the measurement map φ is an injective immersion on A.

Proof. Consider the following sets:





G4 =
∞⋂

i=1

(WBi
)C

G5 =
⋂

x∈Fix(f [A])

(Zx)
C
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The sets G4 and G5 are prevalent by (4.52) and (4.53) respectively. For φ in the

prevalent set
5⋂

j=1

Gj,

the existence of a quasidifferentiable induced map f̄ implies that φ is an injective

immersion on A.

Once again Proposition 4.21 allows us to transfer some of the hypotheses of

this theorem onto the induced dynamics.

Theorem 4.55. Suppose f is a diffeomorphism on Rn. For almost every φ ∈

C1(Rn,Rm), if there is a quasidifferentiable induced map satisfying

1. Fix(f̄) and Per2(f̄) are countable and

2. For each y ∈ Fix(f̄), Df̄(y)[Tyφ(A)] 6= γ · I for every γ ∈ R

then the following hold.

1. The measurement map φ is an injective immersion on A.

2. Fix(f [A]) and Per2(f [A]) are countable.

3. For each x ∈ Fix(f [A]), Df(x)[TxA] 6= γ · I for every γ ∈ R.

Proof. It suffices to consider the cases in which the hypotheses of Proposition

4.54 fail to hold. If Fix(f [A]) ∪ Per2(f [A]) is uncountable, then for almost every

φ there cannot exist an induced map satisfying Fix(f̄) and Per2(f̄) are countable

by Proposition 4.21. Suppose there exist x ∈ Fix(f [A]) and γ ∈ R such that

Df(x)[TxA] = γ · I.
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For almost every φ ∈ C1(Rn,Rm), Dφ(x)[TxA] has full rank. If dim(TxA) > m

then the full rank of Dφ(x)[TxA] implies that Dφ(x) maps TxA onto Tφ(x)φ(A)

and therefore the existence of a quasidifferentiable induced map would imply

Df̄(φ(x))[Tφ(x)φ(A)] = γ · I.

If dim(TxA) < m then the full rank of Dφ(x)[TxA] implies that Dφ(x) maps TxA

injectively into Tφ(x)φ(A) and therefore surjectively onto Tφ(x)φ(A). In this case,

the existence of a quasidifferentiable induced map would imply

Df̄(φ(x))[Tφ(x)φ(A)] = γ · I.

Using the manifold extension theorem we strengthen this theorem by utiliz-

ing the previously introduced notion of a diffeomorphism on A. We recall that

definition here.

Definition 4.56. We say that a measurement map φ ∈ C1(Rn,Rm) is a dif-

feomorphism on A if φ is injective on A and if for each x ∈ A there exists

an enveloping manifold M for A at x that is mapped diffeomorphically onto an

enveloping manifold for φ(A) at φ(x).

Theorem 4.57. Suppose f is a diffeomorphism on Rn. For almost every φ ∈

C1(Rn,Rm), if there is a quasidifferentiable induced map f̄ satisfying

1. Fix(f̄) and Per2(f̄) are countable and

2. For each y ∈ Fix(f̄), Df̄(y)[Tyφ(A)] 6= γ · I for every γ ∈ R

then the following hold.
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1. The measurement map φ is a diffeomorphism on A.

2. Fix(f [A]) and Per2(f [A]) are countable.

3. For each x ∈ Fix(f [A]), Df(x)[TxA] 6= γ · I for every γ ∈ R.

Remark 4.58. Mera and Morán [48] provide a test for determining whether or

not observed trajectories of f̄ are consistent with the assumption that f̄ belongs

to a certain regularity class.

The C1 Theorem (4.57) is not Platonic because we assume that f is a diffeo-

morphism on Rn. We formulate a Platonic version of the C1 Theorem by selecting

new hypotheses on the induced map f̄ . The key modification is the replacement

of the dynamical assumption on the nature of Df̄(y)[Tyφ(A)] for y ∈ Fix(f̄) with

the structural assumption that dimTy(φ(A)) < m ∀y ∈ φ(A). The smoothness of

f becomes an observable in this new setting. After presenting several technical

preliminaries, we state and prove the main result. We assume only that f is a

map throughout this section.

Lemma 4.59. If dim Tx(A) > m for some x ∈ A, then for almost every φ ∈

C1(Rn,Rm) one has dimTφ(x)φ(A) > m.

Proof. The result follows from the fact that almost every linear transformation

from one finite-dimensional vector space to another has full rank.

Lemma 4.60. Suppose there exist sequences (xi) ⊂ A, (yi) ⊂ A, and x ∈ A such

that xi → x, yi → x and xi−yi

‖xi−yi‖
→ v ∈ TxA, but

(
f(xi) − f(yi)

‖xi − yi‖

)
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does not converge to a vector in Rn. For almost every φ ∈ C1(Rn,Rm), there

does not exist a quasidifferentiable induced map f̄ on φ(A) with dimTyφ(A) <

m ∀y ∈ φ(A).

Proof. We need to consider two cases. Assume that the sequence

(
f(xi) − f(yi)

‖xi − yi‖

)
(4.4)

has two limit points, v1 and v2. There cannot exist a quasidifferentiable induced

map f̄ on φ(A) if v /∈ ker(Dφ(x)[TxA]) and v1 − v2 /∈ ker(Dφ(f(x))[Tf(x)A]).

This condition is prevalent and therefore the lemma holds in the first case. Now

suppose that the sequence (4.4) tends to infinity. If either dim(TxA) > m or

dim(Tf(x)A) > m, then Lemma 4.59 implies that for almost every φ one does not

have dimTyφ(A) < m ∀y ∈ φ(A). If both dim(TxA) < m and dim(Tf(x)A) < m,

then for almost every φ it follows that Dφ(x)[TxA] and Dφ(f(x))[Tf(x)A] are

injective. For such a φ, the existence of a quasidifferentiable induced map f̄ on

φ(A) would imply

f̄ ◦ φ(xi) − f̄ ◦ φ(yi)

‖φ(xi) − φ(yi)‖
=
φ ◦ f(xi) − φ ◦ f(yi)

‖φ(xi) − φ(yi)‖
→ ∞,

a contradiction.

Theorem 4.61 (Platonic C1 Theorem). Suppose f : Rn → Rn is a map.

For almost every φ ∈ C1(Rn,Rm), if there exists an invertible quasidifferentiable

induced map f̄ on φ(A) satisfying

1. Fix(f̄) and Per2(f̄) are countable,

2. dimTy(φ(A)) < m ∀y ∈ φ(A), and

3. Df̄(y)[Tyφ(A)] is invertible ∀y ∈ φ(A),
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then the following hold.

1. The measurement mapping φ is a diffeomorphism on A.

2. The mapping f [A] is invertible.

3. The sets Fix(f [A]) and Per2(f [A]) are countable.

4. The dynamical system f is quasidifferentiable on A and Df(x)[TxA] is in-

vertible for all x ∈ A.

5. For each x ∈ A, dim(TxA) < m.

Proof. See Sections 4.5 and 4.6 for the definitions of the sets G1, G2, G3, and G4.

Let

G6 = {φ ∈ C1(Rn,Rm) : Dφ(x)[TxA] is injective for each x ∈ Fix(f [A])}.

If Fix(f [A]) is countable and dim(TxA) < m for each x ∈ A, then G6 is prevalent.

We employ the transference method to prove the Platonic C1 Theorem.

If f satisfies conclusions (2), (3), (4), and (5), then for φ in the prevalent set

(
4⋂

j=1

Gj

)
⋂

G6,

the existence of a quasidifferentiable induced map f̄ on φ(A) implies that φ is

an injective immersion on A. If f [A] is not invertible, then for almost every φ,

no invertible induced map exists. If Fix(f [A]) ∪ Per2(f [A]) is uncountable, then

Proposition 4.21 implies that no induced map satisfying hypothesis (1) exists for

almost every φ. If there exists x ∈ A for which dim(TxA) > m, then Lemma 4.59

implies that dimTφ(x)φ(A) > m for almost every φ and for such φ hypothesis (2)

is not satisfied.
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Suppose f is not quasidifferentiable on A. If f [A] is not continuous, then

Lemma 4.46 implies that for almost every φ there does not exist a quasidifferen-

tiable induced map f̄ on φ(A). If f fails to be quasidifferentiable on A because

the hypotheses of Lemma 4.60 are satisfied, then this lemma implies that for

a.e. φ there does not exist a quasidifferentiable induced map f̄ on φ(A) with

dimTyφ(A) < m ∀y ∈ φ(A). The remaining possibility is that for some x ∈ A

there exists a nonlinear map taking TxA into Tf(x)A. For a.e. φ, this precludes

the existence of a quasidifferentiable induced map f̄ . Finally, suppose f is qua-

sidifferentiable on A but Df(x)[TxA] is not invertible for some x ∈ A. In this

case for a.e. φ there does not exist a quasidifferentiable induced map f̄ on φ(A)

satisfying hypothesis (3).

We finish with theorems concerning delay coordinate mappings and Lyapunov

exponents.

4.7 Delay Coordinate Mappings and Lyapunov

Exponents

We state delay coordinate embedding versions of our results and prove the expo-

nent characterization theorem.

4.7.1 Delay Coordinate Maps

The following theorems do not follow from the previously established correspond-

ing theorems for the general class of smooth measurement mappings because the
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delay coordinate mappings form a subspace of C1(Rn,Rm). Nevertheless, their

veracity is established using essentially the same reasoning.

Theorem 4.62. Let f : Rn → Rn be a map. For almost every g ∈ C1(Rn,R),

there is an induced map f̄ satisfying

1. f̄ is continuous and invertible, and

2.
⋃2m

i=1 Peri(f̄) is countable

if and only if the following hold.

1. The delay coordinate map φ(f, g) is one to one on A.

2. The set
⋃2m

i=1 Peri(f [A]) is countable.

3. The map f [A] is continuous and invertible.

Theorem 4.63. Let f be a diffeomorphism on Rn. For a.e. g ∈ C1(Rn,R), if

there is a quasidifferentiable induced map f̄ satisfying

1.
⋃2m

i=1 Peri(f̄) is countable and

2. for each p ∈ {1, . . . , m} and y ∈ Perp(f̄) we have

Df̄ p(y)[Tyφ(f, g)(A)] 6= γ · I for every γ ∈ R

then the following hold.

1. The delay coordinate map φ(f, g) is a diffeomorphism on A.

2. The set
⋃2m

i=1 Peri(f [A]) is countable.

3. For each p ∈ {1, . . . , m} and each x ∈ Peri(f [A]), we have

Df p(x)[TxA] 6= γ · I for every γ ∈ R.
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4.7.2 Lyapunov Exponents

We conclude Section 4.7 with a discussion of Lyapunov exponents. Assume f

and f̄ are quasidifferentiable and invertible on A and φ(A), respectively, with

invertible quasiderivatives at each point x ∈ A and y ∈ φ(A). Suppose φ is a

diffeomorphism on A. Assume y ∈ φ(A) is a regular point for f̄ and recall that

this implies the existence of a decomposition

Rm =
l⊕

i=1

Ei(y)

such that

lim
k→±∞

1

k
log ‖Df̄k(y)v‖ = λj(y) (v ∈ Ej(y) \ {0} and 1 ≤ j ≤ l).

Since the set of regular points R(f̄) is invariant in the sense that

1. y ∈ R(f̄) ⇒ f̄k(y) ∈ R(f̄) for all k ∈ Z and

2. Df̄±1(Ei(y)) = Ei(f̄
±1(y)) for i = 1, . . . , l,

we associate the Lyapunov exponents λ1 > · · · > λl with the trajectory (yk).

Counting multiplicities, there are m Lyapunov exponents associated with (yk)

and we label them χ1, . . . , χm such that

χ1 > χ2 > · · · > χm.

In light of Remark 4.33 following the manifold extension theorem, we make the

following definitions.

Definition 4.64. We say that a Lyapunov exponent λ(y, v) of f̄ is a tangent

Lyapunov exponent if v ∈ Tyφ(A). A Lyapunov exponent λ(y, v) of f̄ is said to

be a transverse Lyapunov exponent if it is not a tangent exponent.
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Definition 4.65. A Lyapunov exponent λ(y, v) of f̄ is said to be a true Lya-

punov exponent if it does not depend on the choice of quasiderivative Df̄ and if

it is also a Lyapunov exponent of f at φ−1(y). We say that a Lyapunov exponent

λ(y, v) of f̄ is spurious if there exists a quasiderivative Df̄ for which

lim
k→±∞

1

k
log ‖Df̄k(y)v‖

either does not exist or is not a Lyapunov exponent of f at φ−1(y).

Theorem 4.66 (Exponent Characterization Theorem). Assume f and f̄

are quasidifferentiable and invertible on A and φ(A), respectively, with invertible

quasiderivatives at each point x ∈ A and y ∈ φ(A). Suppose φ is a diffeomorphism

on A. Assume that y ∈ φ(A) is a regular point for f̄ such that dimTzφ(A) =

dimTyφ(A) for all z ∈ (yk). The following characterizations hold for a Lyapunov

exponent λ(y, v) of f̄ .

1. If the exponent λ(y, v) is tangent then it is a true exponent.

2. If the exponent λ(y, v) is transverse then it is a spurious exponent.

The tangent exponents of f̄ correspond to the tangent exponents of f .

Remark 4.67. The tangent space Tyφ(A) admits the decomposition

Tyφ(A) =

l⊕

i=1

Vi(y)

where Vi(y) is a subspace of Ei(y) for i = 1, . . . , l.

Remark 4.68. From a computational point of view, one is interested in con-

structing algorithms to efficiently and accurately compute the Lyapunov spec-

trum and identify the true exponents. The existing technique ([18, 57, 49]) re-

quires that one modify the Eckmann and Ruelle algorithm by computing the
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tangent maps only on the tangent spaces and not on the ambient space Rm.

Assuming A is a smooth submanifold, Mera and Morán [49] state conditions un-

der which this modified ERA converges. Clearly this technique eliminates the

computation of spurious exponents. However, one has to compute the tangent

spaces along the entire orbit. In light of the exponent characterization theorem,

we propose a new algorithm that eliminates the need to compute these tangent

spaces.

Definition 4.69. A forward filtration of Rm is a nested collection of subspaces

∅ = F0(y) ⊂ F1(y) ⊂ F2(y) ⊂ · · · ⊂ Fm(y) = Rm

such that

lim
k→+∞

1

k
log ‖Df̄k(y)v‖ = χm−j+1

for v ∈ Fj(y) \ Fj−1(y).

Definition 4.70. A backward filtration of Rm is a nested collection of sub-

spaces

∅ = B0(y) ⊂ B1(y) ⊂ B2(y) ⊂ · · · ⊂ Bm(y) = Rm

such that

lim
k→−∞

1

k
log ‖Df̄k(y)v‖ = χj

for v ∈ Bj(y) \Bj−1(y).

Suppose that forward and backward filtrations have been computed. Assume

that one may determine computationally if a given (m−1)-dimensional subspace

of Rm contains Tyφ(A). For j = 1, . . . , m, compute the Lyapunov vector

vj ∈ Bj ∩ Fm−j+1.
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We now fix j and determine if vj ∈ Tyφ(A). If Span{vi : i 6= j} ⊃ Tyφ(A)

then vj /∈ Tyφ(A). If Span{vi : i 6= j} + Tyφ(A) then vj ∈ Tyφ(A) and χj is a

true Lyapunov exponent. The true Lyapunov exponents and Tyφ(A) have been

determined. It would be interesting to compare the performance of this algorithm

to that of existing ERA techniques.

Proof. Statement (1) follows from the fact that φ is a diffeomorphism on A. We

establish (2) with a perturbation argument. Let α > 1 and let d = dim Tyφ(A).

For each z ∈ (yk) there exists an enveloping manifold Mz for φ(A) at z with

TzMz = Tzφ(A) and dim(Mz) = d. Let

{B(z, rz) : z ∈ (yk)}

be a collection of metric balls such that

B(z, rz) ∩ φ(A) ⊂ Int(Mz).

By compactness there exists a finite subcover

{B(zi,
rzi

2
) : i = 1, . . . , N}

of (yk). We inductively construct a sequence {Df̄k : k = 1, . . . , N} of perturba-

tions of Df̄ . Let β : Rm → R be a C∞ map such that




(1) 1 ≤ β ≤ α,

(2) β(z) = α for z ∈ B(z1,
rz1

2
), and

(3) β(z) = 1 on Rm \B(z1, rz1
).

For each z ∈ B(z1, rz1
) ∩Mz1

, Rm admits the orthogonal decomposition

Rm = Tz(Mz1
) ⊕ Ez.

Using this decomposition we define Df̄1 as follows.
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1. Df̄1[φ(A) ∩ Rm \B(z1, rz1
)] = Df̄ [φ(A) ∩ Rm \B(z1, rz1

)]

2. For z ∈ φ(A) ∩ B(z1, rz1
), define Df̄1(z) by

Df̄1(z)v =






Df̄(z)v, if v ∈ Tz(Mz1
);

β(z)Df̄(z)v, if v ∈ Ez.

In this fashion we inductively construct the family of perturbations {Df̄k : k =

1, . . . , N}. For v ∈ (Tyφ(A))⊥ we have

lim
k→∞

1

k
log ‖Df̄k

N(y)v‖ ≥ λ(y, v) + log(α).

Since α > 1 was arbitrary, it follows that if λ(y, v) is transverse then it is spurious.
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