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Working memory, the ability to maintain and manipulate information, is a 

core cognitive function important for everyday life. The capacity of working-memory 

differs across individuals, with working-memory capacity a reliable predictor of 

general fluid intelligence, verbal and mathematical abilities, and classroom 

achievement. However, research has been inconclusive on whether working-memory 

is a unitary domain-general construct, or multi-component domain-specific construct. 

Most theories had until recently thought that working-memory was a fixed ability; 

however, recent research suggests that working-memory is malleable and can be 

improved through cognitive training. These training-induced improvements have also 

been shown on untrained cognitive tasks, such as general fluid intelligence, attention, 

reading, and math. My research examines the structure of working-memory, validates 

newly designed web-administered working-memory assessments, and investigates the 

malleability of domain specific working-memory training. 
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Chapter 1: Introduction 

The construct of working memory (WM) has been the focus of much research 

over the last couple decades. Many cognitive models regarding WM processing and 

the organization of WM exist in the literature (see Miyake & Shah, 1999). The 

prevailing view from most models is that WM involves both processing and storage 

and is limited in capacity. However, the nature of the processing component and its 

underlying structure are still debated. 

WM and the limitations to its functioning is commonly assessed through 

complex span tasks (Daneman & Carpenter, 1980; Engle, Tuholski, Laughlin, & 

Conway, 1999; Unsworth & Engle, 2005), which allows one to estimate the WM 

capacity (WMC) of that individual (for review see Conway et al., 2005; Oberauer, 

2005). The use of complex span measures, along with a variety of other cognitive 

tasks that tap various component’s of cognitive functioning have helped identify the 

structure and function of WM (Miyake, Friedman, Emerson, Witzki, & Howerter, 

2000; Ackerman, Beier, & Boyle, 2002; Kane et al, 2004). Additionally, these 

complex span tasks have proven to be useful individual difference measures. For 

example, WM span measures have been shown to be reliable predictors of 

performance on a variety of tasks and abilities, including tasks that assess general 

fluid intelligence (gFI) (Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; 

Conway, Kane, & Engle, 2003; Unsworth & Engle, 2005), SAT performance (Engle, 

Tuholski, Laughlin, & Conway, 1999) , visual spatial ability (Kane et al., 2004), 

attention (Bleckley et al., 2003), inhibition (Miyake, Friedman, Emerson, Witzki, & 

Howerter, 2000), reading ability (Daneman & Carpenter, 1980; Friedman & Miyake, 
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2004), verbal ability (Kane et al., 2004), mathematical achievements (Ashcraft & 

Kirk, 2001; Conway et al., 2005; D’Amico & Guarnera, 2005; Bull, Espy & Wiebe, 

2008; Kyttälä & Lehto, 2008), and decision making (Dougherty & Hunter, 2003).  

Complex span tasks, as well as other WM and cognitive tasks, have also been 

used as training tasks aimed at improving WM ability (Jaeggi, Buschkuehl, Jonides, 

& Perrig, 2008; Olesen, Westerberg & Klingberg, 2004; Chein & Morrison, 2010; 

Atkins et al., under review). Although previously considered a stable function, recent 

research has suggested that WM is malleable throughout one’s lifetime. The 

malleable nature of WM has been demonstrated using cognitive training procedures. 

Prior work has shown the effectiveness of WM training across multiple age groups 

ranging from early childhood (Thorell, Lindqvist, Bergman, Bohlin, & Klingberg, 

2009) to elderly adults (Mahncke et al., 2006), with improvements on the both the 

trained WM tasks, and the untrained WM measures (Olesen, Westerberg & 

Klingberg, 2004; Chein & Morrison, 2010). Many studies have shown that the 

training induced improvements transfer to untrained cognitive measures, such as 

measures of gFI (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008), measures of WM 

(Olesen, Westerberg & Klingberg, 2004; Chein & Morrison, 2010) and measures of 

inhibition (Atkins, et al. under review). However, not all cognitive training 

experiments have led to improvements on untrained tasks (Owen et al., 2010; 

Shipstead, Redick, & Engle, 2010). Therefore, the precise nature in which WM is 

malleable remains subject to debate. 

The purpose of my research is twofold. First, my research investigated the 

structure of WM, examining whether WM is a unitary-construct or multi-component 
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construct. As part of this work, I validated two newly designed assessments of 

working memory capacity. Second, my research examines the malleability of working 

memory and the transfer of training-induced improvements to untrained measures of 

cognitive ability. 

Working Memory 

WM is a core cognitive process that handles the processing and manipulation 

of information. Multiple theoretical perspectives exist regarding WM and its limited 

capacity (see Miyake & Shah, 1999). One of the most debated aspects is whether WM 

is a unitary, domain general process or a domain specific process consisting of verbal 

WM (vWM) and visual-spatial WM (vsWM). 

In an influential paper, Baddeley and Hitch (1974) proposed their multi-

component WM model, which consisted of a domain general central executive 

component and two domain specific slave systems for the storage of information: the 

visual spatial sketchpad for visuo-spatial information and the phonological loop for 

verbal information. This model is not unitary, and allows for capacity limits for each 

component (Baddeley & Logie, 1999). More recent versions added the episodic 

buffer to integrate information from subsystems and long-term memory (Baddeley, 

2000), whereas other versions (cf. Logie, 1995) added a processing component to the 

visual spatial sketchpad. This later model considers the visual-spatial sketch pad  

more broadly as visual-spatial WM (vsWM). 

In contrast, Engle, Kane and Tuholski (1999) theorize WM to be capacity-

limited controlled attention, which is assumed to be a domain free unitary process that 

uses multiple domain specific stores. They define WM capacity (WMC) as the 
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domain general component of the WM system (Conway & Engle, 1996; Engle, 2001; 

Engle, 2002). 

Baddeley’s WM model exemplifies the multi-component perspective, whereas 

Engle’s attentional control model exemplifies the unitary-component perspective, but 

not all models take a clear stance. Cowan’s embedded processes model of WM (1995, 

2005) views WM as a single cognitive process that maintains information in an 

unusually accessible state. His model defines the focus of attention as a region of 

privileged and immediate access, which is embedded in the activated component of 

memory, which itself is embedded in long-term memory (storage). The information 

held in the focus of attention is highly accessible conscious information, but the 

amount of information held there is limited. The short-term system is not limited in 

capacity, but information in this state can be forgotten due to interference and/or 

decay. Attentional control processes are required for the manipulation of WM 

contents and for the focusing, updating, switching, and inhibiting of that content. 

Central to the evaluation and testing of these and other theories of WM are the 

set of procedures for measuring WM capacity. The prevailing approach is to use so-

called complex span tasks to measure WM. These tasks involve interleaving a to-be-

remembered letter or image with a secondary task, after which the person is required 

to recognize the to-be-remembered items in the order in which they were presented. 

For example, in the automated reading span (adapted from Daneman & Carpenter, 

1980), the to-be remembered letters are interleaved with sentences that must be read 

and classified on whether they make sense or not. The most commonly administered 

WMC tasks maintain the dual task design and apply different stimuli: math operations 
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are used in operation span (Turner & Engle, 1989; Unsworth & Engle, 2005), 

auditory sentences in listening span, and symmetry decisions in symmetry span (Kane 

et al., 2004). The interleaving of the processing and memory tasks creates 

competition regarding to which task the participant should be allotting their 

attentional resources. Participants are instructed to both maintain the to-be-

remembered items, while performing well on the secondary task, for which they are 

constantly reinforced. Although complex WM spans provide a single unitary score for 

both the processing and the memory task, research has shown that the domain of the 

storage (verbal or visual) has greater influence than the domain of the processing. 

That is, a mixed domain complex span task with spatial to-be-remembered items and 

verbal processing items will correlate more strongly with spatial tasks, and a mixed 

domain complex span task with verbal to-be-remembered items and spatial 

processing tasks will correlate more strongly to verbal tasks (Shah & Miyake, 1996).  

Efforts have been made in recent years to automate complex WM span tasks. 

In prior research, researchers administered the complex span tasks in one-on-one 

setting for each participant, a time consuming prospect. Although the current complex 

span tasks have been adapted for automatic computerized administration, this 

presentation still requires laboratory setting and is labor intensive. An additional 

difficulty with the automatic complex span task administration is the individualized 

speed parameter, in which the time allotted for responding is individualize, and 

therefore different for each participant. Also the dual tasks nature of the complex span 

tasks can be confusing to participants. Experiment 1 presents and validates two newly 

designed measures of WM that tap into vsWM and vWM. These new WM measures 
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are fully automated, programmed using Flash and constructed using a single task. 

Furthermore, these tasks were designed to permit internet administration. 

Neurobiology of Working Memory 

Complex span tasks are not the only way to measure WMC. Vogel and 

Michizawa (2004) used electroencephalography, the recording of the electrical 

voltages along the scalp caused by neuronal firing, to assess vsWM on a delayed-

match-to-sample task. Participants were shown a center fixation with an arrow 

pointing right or left indicating which side to remember, and then an array of colored 

squares on both sides of the screen. After a delay participants were asked to indicate 

whether the subsequent array was the same or different. Vogel and Michizawa (2004) 

observed a large negative voltage over the contralateral hemisphere to the memorized 

array, primarily over the lateral occipital and posterior parietal regions, which 

persisted from ~200msec after presentation until the end of the retention interval. 

Most importantly, they found that amplitudes of the negative voltages were based on 

the participant’s individual ability to maintain the information. For example, a 

participant with a WMC of four items would show an increase in negative voltage 

amplitude, when the number of items to remember increased from two to three and 

from three to four. However, increasing the number of items beyond four did not 

elicit an additional increase in the negative voltage amplitude, as it exceeded the 

participants’ WMC. These results suggest a neurological capacity limit for the 

maintenance of information, which corresponds to the individual’s WMC. 

Using a paradigm similar to that used by Vogel and Michizawa (2004), Todd 

and Marios (2004) utilized functional magnetic resonance imaging (fMRI) to examine 
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the blood-oxygen-level-dependent (BOLD) activation in the brains of participants 

partaking in a delay-match-to-sample task. BOLD, while not a direct measure of the 

neuronal activity, is a measure of the metabolic properties of the neurons and has 

been shown to be reliably correlated with neuronal activity (Huettel, Song, & 

McCarthy, 2009). Todd and Marios showed that vsWMC was related to activation in 

the posterior parietal cortex, the same region implicated in the Vogel and Michizawa 

study. These results support the hypothesis that the posterior parietal area is actively 

involved with vsWM tasks and implies a relationship between the neuronal activation 

in the parietal regions and the limit of WM capacity. 

However, the parietal area is not the only brain region implicated in WM. 

Prefrontal (PFC) regions have long been implicated in WMC tasks (Goldman-Rakic, 

1987; D’Esposito, Postle, & Rypma, 2000; Fuster, 2001; Kane & Engle, 2002; Curtis 

& D’Esposito, 2003; for review see D’Esposito, 2007). For example, Curtis and 

D’Esposito (2003) suggest that the PFC is involved in the maintenance of information 

by directing attention to storage regions in the parietal cortex. They review findings 

from different fMRI experiments showing the involvement of PFC in WM tasks 

manipulating of the delay between presentation and response and the memory load 

presented. They suggest that the PFC does not itself store the memory representation 

of the future response, but instead directs top down attention to the stored 

representation in the parietal regions. 

The results from D’Esposito and colleagues (D’Esposito, Postle & Rypma, 

2000; Curtis & D’Esposito, 2003; D’Esposito, 2007) along with the results from 

Vogel and Michizawa (2004) and Todd and Marios (2004) suggest that multiple brain 
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regions are involved in the maintenance of information in WM. Consistent with this 

notion, Smith and Jonides (1998) argued for multi-component model of WM. In their 

model, Smith and Jonides (1998) argue for the presence of domain-specific storage 

(vsWM: inferior parietal lobe (IPL), vWM: left posterior parietal) and rehearsal 

components (vsWM: superior parietal (SPL), vWM: inferior frontal gryus (IFG)), and 

a domain-general executive processing component (PFC). Similarly, Thomason et al., 

(2009) found differential patterns of BOLD activity where the vsWM activated 

bilateral occipital, right IPL, right SPL, and right IFG more than vWM, whereas 

vWM activated left IFG and left mid temporal more than vsWM. In a review paper, 

D’Esposito (2007) highlights the PFC as the source for active manipulation of 

information in both vWM and vsWM. According to D’Esposito (2007), a network of 

brain regions, among them PFC, is critical for the active maintenance of 

representations necessary for goal directed behavior, where the PFC directs top-down 

attention to the stored representations in the parietal regions (cf. Cowan, 1995). In 

addition, Klingberg (2006) illustrated the importance of both the frontal and parietal 

regions, as well as the white matter connections between them, in the development of 

vsWMC. He reviews research relating vsWMC to increases in BOLD activation in 

the intraparietal cortex and the posterior part of the superior frontal sulcus (collected 

during vsWM tasks), and shows that fractional anisotropy (a measure of the 

myelination of the axon) is positively correlated to the BOLD activation in these 

frontal-parietal regions. 

Aside from frontal and parietal cortical regions, recent research has shown 

that the basal ganglia and the anterior cingulate are activated during WMC tasks. For 



 9 
 

example, McNab and Klingberg (2008) adapted the delayed match-to-sample task 

(used by Vogel & Michizawa, 2004; and Todd & Marios, 2004), and added a cue 

prior to the presentation of the first array which indicated which items were to-be-

remembered and which items were to-be-ignored. The second array presented a 

question mark in a prior array location, and participants responded yes or no to 

whether a target was in that location in the prior array. They found that performance 

of the cued-delay match to sample was related to activation in the prefrontal cortex 

and the basal ganglia. They also found that memory storage is related to activity in 

the parietal cortex. They hypothesized that the prefrontal cortex and basal ganglia 

wield attentional control over vsWM storage located in the parietal cortex. These 

findings implicate a network of brain regions related to WMC. 

Malleability of Working Memory 

While much work has focused on testing theoretical and neurocognitive 

accounts of WM, there is a long-standing debate regarding whether WM is a stable 

individual difference ability, or whether it is open to change. The traditional view is 

that WM, like other cognitive abilities, is largely immutable (Neisser et al., 1996). 

However, recent research has led to a shift in the perception of WM as stable. 

Research has shown that it is possible to train WM and increase a person’s WMC (for 

review see Morrison & Chein, 2011). The potential for WM training and for the 

transfer of training-induced improvement is not limited to children or impaired 

populations but exists throughout the lifespan of a typically achieving person 

(Greenwood, 2007; Mercardo, 2008). For example, Mahncke et al. (2006) 

demonstrated that elderly participants who underwent cognitive training improved on 
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measures of auditory WM assess using the Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS). Olesen, Westerberg, and Klingberg (2004) 

demonstrated improvements in Span board, a vsWM measure, following WM training 

in normal adults. Jaeggi, Buschkuehl, Jonides, and Perrig (2008) extended these 

finding of the training improvements to assessments of gFI, as measured by the 

Ravens and Bomat tasks.  

Of great importance is that not only has WM training shown improved 

performance on the trained tasks but also on other non-trained tasks. Klingberg, 

Fossberg, and Westerberg (2002) showed that vsWM training in children with 

attention deficit hyperactivity disorder (ADHD) led to improvements on untrained 

measures of gFI (Ravens), vsWM assessments (span board task), and a response 

inhibition measure (the stroop task). Klingberg, Fossberg and Westerberg (2002) also 

observed a reduction of head movements in children, a clinically relevant measure of 

ADHD, following the WM training. Similarly, Thorell, Lindqvist, Bergman, Bohlin 

and Klingberg (2008) showed that after cognitive training, pre-school children 

improved on vsWM (spatial span), vWM (word span), and inhibition (continuous 

performance task). Also, Chein and Morrison (2010) showed that WM training 

improvements transferred to inhibition, as measured by stroop, and reading 

comprehension, as measured by the Nelson-Denny reading test. 

Although there is no consensus among researchers that WM training 

generalizes and leads to benefits (Owen et al., 2010; Shipstead, Redick, & Engle, 

2010), many studies on WM training have shown transfer of training-induced 

improvements following individually adaptive training. For example, training has 
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been shown to lead to improvements on untrained measures of gFI (Raven: 

Klingberg, Fossberg & Westerberg, 2002; Raven: Olesen, Westernberg, & Klingberg, 

2004; Raven & Bosmat: Jaeggi, Buschkuehl, Jonides, & Perrig, 2008), WM measures 

(Span board: Klingberg, Fossberg & Westerberg, 2002; Span Boad: Olesen, 

Westernberg, & Klingberg, 2004; OSpan & SymSpan: Chein & Morrison, 2010; 

OSpan, SymSpan, Listening Span, & Rotation Span: Atkins et al., under review), and 

inhibition measures (Stroop: Klingberg, Fossberg & Westerberg, 2002; Olesen, 

Westernberg, & Klingberg, 2004; Klingberg et al., 2005; Stroop & Antisaccade: 

Atkins et al., under review).  

However, it is important to note that not all studies involving cognitive 

training have led to improvements on other cognitive abilities. In fact, Owen et al. 

(2010) did not show any transfer of improvements among participants who underwent 

cognitive training administered online. Shipstead, Redick, and Engle (2010), in a 

review the training literature, are skeptical whether the transfer of improvements 

following training represents changes in WMC or task learning, and are critical of the 

methodology of training studies. These inconsistencies raise questions about the 

robustness of WM training and its generalizability.  

In a study examining both WM and inhibition training groups, Thorell, 

Lindqvist, Bergman, Bohlin, and Klingberg (2009) demonstrated that WM training 

led to improvements in children’s WM abilities, as measured by span board and word 

span tasks, and their attentional abilities, as measured by go/no-go omission and the 

continuous performance task . In contrast, participants in the inhibition training group 

did not show any improvement on the transfer tasks. These findings suggest that the 
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generalization of improvements, and any sustainable benefits, from the training is 

likely dependent upon the nature of the cognitive training administered. 

There are indications that the training-induced improvements are long-lasting. 

Atkins et al. (under review) showed transfer of training-induced improvements to 

untrained WM and inhibition tasks, immediately following the training. This 

improvement persisted when measured three months following the cessation of the 

training, whereas the control group did not show any sustained benefit. These 

findings of training persistence are consistent with Klingberg et al. (2005), who found 

that children with ADHD exhibited improvement on measures of WM and attention 

as well as a reduction in behavioral symptoms, both immediately after cognitive 

training and three months after the cessation of the training. Importantly, Holmes, 

Gathercole and Dunning (2009) not only show persistence of the WM improvements 

six month after the training, they also at the six-month follow-up, show improvements 

in mathematical ability (mathematical reasoning from the Wechsler Object Number 

Dimension). A task which had not shown transfer effects at the post-training 

assessment. 

The persistence of the behavioral assessed improvements over long periods of 

time implies a permanent change in the underlying cortical structures. Several studies 

support this possibility. Temple et al. (2003) trained dyslexic children and showed the 

transfer of improvements to untrained assessments of reading and language. These 

cognitive improvements were related to increases in BOLD activation in the left IFG, 

the right temporal and parietal regions, and the anterior cingulate gyrus (areas which 

previously exhibited deficits). Similarly, Olesen, Westerberg, and Klingberg (2004) 
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found BOLD increases in prefrontal and parietal areas in young adults following 

cognitive training. Dahlin, Stigsdotter-Nelly, Larsson, Bäckman and Nyberg, (2008) 

also administered a cognitive training, and found that that the improvements 

following training only transferred  to task that rely on the neural network engaged 

during the training. They showed that the transfer of improvements was mediated by 

the striatum activation. 

BOLD is not the only imaging technique used to examine the brain following 

WM training. Takeuchi et al. (2010) examined the structural connectivity among the 

prefrontal and parietal regions using diffusion tensor imaging (DTI) and showed that 

there were improvements in the white matter fiber tracks following WM training. 

Also, McNab et al. (2009) demonstrated cortical restructuring following training on a 

neurotransmitter level, observing changes in dopamine D1 receptor binding potential 

following cognitive training, indicating a translocation of the D1 receptor from the 

basal ganglia regions. This finding is consistent with McNab and Klingberg (2008), 

which implicated the basal ganglia as the filter for irrelevant information in a WM 

task.  

It is important to note that not all studies show an increase in BOLD activation 

following an increase in performance. In fact, some studies show a decrease in brain 

activation following training (Dahlin, Bäckman, Stigsdotter-Neely & Nyberg, 2008). 

Garavan et al. (2000) found that practice on a vsWM task produced decreases in 

BOLD activity in frontal and parietal lobes. A meta-analysis by Chein and Schnieder 

(2005) revealed similar decreases in BOLD activation following task learning, as the 

brain became more efficient. The nature of changes in the BOLD signal following 
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training is not well understood, as some studies show increases in BOLD activation 

(Temple, et al., 2003; Olesen, Westerberg & Klingberg, 2004) and others show 

decreases in BOLD activation following the training (Garavan et al., 2000; Chein & 

Schneider, 2005). There are many factors related to both experimental design and the 

physiology that may explain these differences. The critical point, however, is that 

training has consistently been shown to lead to changes in the brain, both in terms of 

BOLD activation and in terms of structure.  

The presented research indicates WM’s importance for everyday functions, 

and establishes the potential benefits from WM malleability. Much of this research 

implies that WM is a general process that can be further subdivided into domain 

specific components, such as vsWM and vWM. The subdivision of WM has both 

behavioral and neuronal support. Therefore, the goals for this research were (1) to 

examine whether vWM and vsWM are indeed separate components, and to validate 

new WM measures designed to tap vWM and vsWM separately, (2) to test whether 

vsWM can be improved through intensive training, and (3) whether this vsWM 

training will lead to improvements on untrained cognitive tasks, such as vsWM, 

vWM, inhibition, gFI, spatial abilities and mathematical abilities. Experiment 1 was 

designed to investigate the subdivision of WM to vWM and vsWM, while validating 

the new WM measures. Based on the results from Experiment 1, Experiment 2 was 

designed to investigate the malleability of vsWM, the neural changes following 

vsWM training, and the transfer of improvements to untrained cognitive tasks. 
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Chapter 2: Block Span & Letter Number Sequencing: 
Validation and Confirmation 

The purpose of this experiment was to investigate the nature of WM, and 

whether it represents a domain general construct or domain specific constructs. 

Structural equation modeling was employed to examine the structure of the WM 

latent variable, which required the assessment of multiple tasks presumed to assess 

the same construct in order to reduce the task specific contribution to derive the latent 

variable. Therefore, while investigating the underlying properties of WM, this study 

also establishes the reliability and validity of newly adapted measures of WMC. The 

two newly redesigned tasks are Block-span, a vsWMC measure (inspired by corsi 

blocks: Milner, 1971), and Letter-number-sequencing, a vWMC measure (inspired by 

Letter-number-sequencing from Wechsler Memory Scale: Wechsler, 1997). In 

contrast to complex WM span tasks, these measures only require the participant to 

undergo a single task and, therefore, allow those taking the assessment to focus on the 

task at hand and not divide their attentional resources. The new tasks were designed 

under the premise that WM is a multi-component construct, and therefore Block-span 

is viewed as a vsWM task and Letter-number-sequencing as a vWM task. The 

validation and confirmation of these redesigned, automated, and web deployable 

measures of WM ability would enable easier assessments and standardization of the 

WMC administration (Atkins, Harbison, Bunting & Dougherty, in preparation).  
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Method 

Participants 

Native English speaking participants for the study were recruited from the 

undergraduate participant pool at the University of Maryland, College Park. Out of 

the 264 participants who were consented, 244 (148 female, Mage=19.45±2.65) 

completed all three 1.5-2 hour study sessions, and received course credit for their 

participation. 

Assessment Materials 

Table 1. Tasks administered for the Block-span and Letter-number-sequencing 
validation study. 
Construct Measure Presentation Software 
Visual Spatial Working Memory   
 Block-span Python 
 wBlock-span Flash 
 SymSpan Eprime 1.2 
 RotSpan Eprime 1.2 
 NavSpan Eprime 1.2 
Verbal Working Memory   
 Letter-number-sequencing Python 
 wLetter-number-sequencing Flash 
 OSpan Eprime 1.2 
 RSpan Eprime 1.2 
 RunSpan Eprime 2.0 
General Fluid Intelligence   
 RavensO Eprime 1.2 
 RavensE Eprime 1.2 
 WASI Eprime 1.2 
Spatial Abilities   
 AFOQTrb DirectRT 
 VZ2p1 DirectRT 
 VZ2p2 DirectRT 
Verbal Abilities   
 AFOQTa DirectRT 
 AFOQTrc DirectRT 
 RL3 DirectRT 
Math Abilities   
 AFOQTm DirectRT 
 RG1 DirectRT 
  RG2 DirectRT 
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Table 1 presents the twenty-two cognitive assessments administered and the 

presentation software used to administer the tasks. Both Block-span and Letter-

number-sequencing were administered twice per participant.   

Block-Span: In this task participants are required to remember the serial order 

in which a sequence of black blocks appeared in a 4 x 4 grid, where each trial is 

characterized by a set of 1 to J such sequences, and where each sequence consists of 2 

to K blocks (1≤J ≤ 5 and 2≤K≤ 4). Each block within a sequence is flashed for one 

second, one at a time, in one of the cells within the 4 x 4 grid. The end of one 

sequence and the start of a new sequence within a set is indicated by flashing the 

entire grid for 1 second. There is a 1 second delay between the grid being flashed and 

the presentation of the first block of the next sequence. After the final sequence 

within a set, participants are prompted to indicate (via mouse click) the spatial 

location (in serial order) of each block within the first sequence of the set, then spatial 

location (in serial order) of each block within the second sequence of the set, and so 

forth for all sequences within the set (see Figure 1). This procedure is then repeated 

for the next set of sequences for the duration of the task. The Block-span score is 

based on correctly indicating the location of the serially highlighted blocks (Atkins, 

Harbison, Bunting, Teubner-Rhodes & Dougherty, 2009). 
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Letter Number Sequencing: In this task, participants were presented with a 

series of characters (letters and numbers) and were required to remember and 

restructure the characters, outputting first numbers in ascending order, then the letters 

in alphabetic order (see Figure 2). The Letter-number-sequencing task consists of a 

set of 1 to J sequences of characters, where each sequence consists of 2 to K 

characters (1≤J ≤4 and 2≤K≤8). The task presents each character one at a time in the 

center of the screen for 500msec, followed by a 500msec blank screen. The top of the 

screen lists the sequence number being presented. The end of one sequence of 

characters and the start of a new sequence within a set is indicated by an asterisk 

presented in the center of the screen for 500msec followed by a 500msec blank 

screen. After the final sequence within a set, participants are prompted to output the 

numbers and then letters of the first sequence of the set, then the numbers and then 

Figure 1. Trial from the Block Span task.
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letters of the second sequence of the set, and so forth for all sequences within the set. 

For example, if presented with “7”, then “T”, then “1”, then an “*”, and then “H”, 

then “3”, and then “B”, the participants should first output “17T” and then “BH3”. 

This procedure is then repeated for the next set of sequences for the duration of the 

task. Letter-number-sequencing is scored based on correct recollection of the serial 

reordering of the characters (Atkins, Harbison, Bunting, Teubner-Rhodes, & 

Dougherty, 2009). 

 

Figure 2. A trial from Letter Number Sequencing. 
 
Verbal WM Tasks: 

Automated Operation Span: Participants were asked to recall a series of 

letters. In between the presentation of the letter, they had to respond via the keyboard 

whether the presented solution to the math problem is true or false. Following the 

keyboard response to the problem, a blank screen was presented for 500 msec, 

followed by a letter for 650 msec. Immediately following the letter, either another 

math problem appeared, or the recall cue appeared. For the recall cue, participants 
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were presented with a letters and had to recall the letter in the serial order in which 

they were presented. Set sizes ranged from two to seven math problem-letter displays 

per trial, for a total of fifteen trials and three practice trials. Correct scores were 

computed by counting the total number of correctly recognized letters in the correct 

serial position (Unsworth, Schrock, & Engle, 2004). 

Automated Reading Span: Participants were asked to recall a series of letters. 

In between the presentation of the letters, they had to respond via the keyboard 

whether the sentence presented on the screen was sensible or not. Following the 

keyboard response to the sentence, a blank screen was presented for 500 msec, 

followed by a letter for 650 msec. Immediately following the letter, either another 

sentence appeared, or the recall cue appeared. For the recall cue, participants were 

presented with letters and had to recall the letter in serial order in which they were 

presented. Set sizes ranged from two to seven sentence-letter displays per trial, for a 

total of fifteen trials, and three practice trials. Correct scores were computed by 

counting the total number of correctly recognized letters in the correct serial position. 

Automated Running Span: Presents auditory sequences of letters (F, H, J, L, 

N, P, R, T, V, X, Z), with each letter presented for 333 msec. The auditory sequence 

ends unpredictably and participants are asked to output the last six letters heard. Each 

auditory sequence contained between 12-20 letters, and participants were presented 

with 3 practice sequences and 20 trial sequences. Correct scores were computed by 

counting the total number of correctly outputted letters in the correct serial position 

(Bunting, Cowan & Saults, 2006; Broadway & Engle, 2010). 
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Visual Spatial WM Tasks: 

Automated Symmetry Span: Participants were asked to recall the location on a 

4x4 matrix of a series of red squares presented serially. In between the presentation of 

the red squares, they had to respond via the keyboard whether a presented image is 

symmetrical or not along the vertical axis. Following the keyboard response to the 

presented image, a blank screen was presented for 500 msec, followed by a matrix 

with a red square for 650 msec. Immediately following the matrix, either another 

image appeared, or the recall cue appeared. For the recall cue, participants were 

presented with a matrix and had to indicate the serial order of the location of the red 

block in the matrix. Set sizes ranged from two to five symmetry matrix displays per 

trial, for a total of twelve trials and three practice trials. Correct score was computed 

by counting the total number of correctly recognized arrows in the correct serial 

position. 

Automated Rotation Span: An automated version of the Rotation Span task 

(Kane et al., 2004), was administered. Participants had to recall a series of short or 

long arrows originating at the center of the screen, and in between the presentation of 

the arrows, they had to respond via the keyboard whether the letter presented was 

normal or mirror-reversed. The letters used were capital G, F, & R, rotated at 0°, 45°, 

90°, 135°, 180°, 225°, 270°, or 315°. Participants needed to rotate the letter to 

respond correctly. Following the keyboard response, a blank screen was presented for 

500 msec, followed by a short or long arrow for 1,000 msec. When the arrow 

disappeared, either another letter appeared, or the recall cue appeared. For the recall 

cue, participants were presented with two circles of arrows, one long and one short, 
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with each arrow originating from the center and pointing in a direction. Using the 

mouse, participants recalled the arrows presented, both size and direction, in the serial 

order of presentation. Set sizes ranged from two to five rotated letter-arrow displays 

per trial, for a total of twelve trials. Correct scores were computed by counting the 

total number of correctly recognized arrows in the correct serial position. 

Automated Navigation Span: An automated version of the Navigation Span 

task (Kane et al., 2004), was administered. Participants had to recall a series of the 

paths in which moving balls moved across the screen, and in between the presentation 

of the moving balls, participants had to mentally navigate along the edges of a block 

letter “E” or “H” and indicate whether the next corner would be an inner or outer 

corner via the keyboard. The starting point and direction of navigation varied among 

trials. After navigating the entire letter, the participant indicated that he was finished 

via button press. Following the keyboard response, a blank screen was presented for 

500 msec, followed by a ball that journeyed across the screen (varying in starting 

point and direction of movement). Immediately following the ball’s movement, either 

another letter appeared, or the recall cue appeared. For the recall cue, participants 

were presented with paths of movement, varying in movement origin and path, and 

asked to indicate, using the mouse, the serial order of the presented moving balls. Set 

sizes ranged from two to five letter navigation-ball movement displays per trial, for a 

total of twelve trials. Correct score was computed by counting the total number of 

correctly recognized movement pathways in the correct serial position. 
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Spatial Ability Tasks: 

ETS Paper Folding: A multiple-choice test of spatial reasoning ability from 

the Kit of Factor-Referenced Cognitive Tests (Ekstrom, French, Harman, & Dermen, 

1976). Two practice items, followed by ten test items were presented to participants. 

Each item presented a square of paper being folded along different dimensions 

between one to four times, after which a hole was punched through the folded paper. 

Participants had to decide among five options what the paper would look like when 

unfolded. These items represent ETS VZ2. Part 1 and part 2 were presented on 

different sessions. 

AFOQT Rotated Blocks: Three practice items then ten test items were 

presented to participants. Each item depicted a three dimensional block at various 

degree of orientation. Participants had to indicate which of the five presented blocks, 

was the depicted block from a different orientation. These items were provided for 

research use from Kane (personal communication) and represent items 332-334, 336-

338, 340-342 and 344 from the AFOQT.  

Verbal Ability Tasks: 

ETS Inference: A multiple-choice test of verbal logical reasoning from the Kit 

of Factor-Referenced Cognitive Tests (Ekstrom, French, Harman, & Dermen, 1976). 

One practice item and ten test items were presented to participants. Each item 

presented a passage, one to three sentences in length, about a topic. Participants chose 

which of the five presented sentences could be inferred from the passage without 

assuming any additional information or knowledge. These items represent part 1 of 

ETS RL3. 
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AFOQT Reading Comprehension: One practice item and fourteen test items 

were presented to participants. Each item presented a passage, one to three sentences 

in length, about a topic. Participants chose which of the 5 presented sentences could 

be inferred from the passage without assuming any additional information or 

knowledge. These items were provided for research use from Kane (personal 

communication) and represent items 1-6, 8-11,13,14,16,19,20,22,24,25 from the 

AFOQT. 

AFOQT Verbal Analogies: One practice item and eighteen test items were 

presented to participants. Each item presented an incomplete analogy. Participants 

chose which of the five presented words or phrases could best complete the presented 

analogies. These items were provided for research use from Kane (personal 

communication) and represent items 1 to 6, 8 to 11,13,14,16,19,20,22,24, and 25 

from the AFOQT. 

Math Ability Tasks: 

AFOQT Math: Two practice items and fifteen test items were presented to 

participants. Each item presented a math problem. Participants chose which of the 

five presented answers was correct. 

ETS Arithmetic Aptitude Test: A multiple-choice test of arithmetic aptitude 

from the Kit of Factor-Referenced Cognitive Tests (Ekstrom, French, Harman, & 

Dermen, 1976). One practice item and fifteen test items were presented to 

participants. Each item presented an arithmetic problem. Participants chose which of 

the 5 presented options answered the problem. These items represent part 1 of ETS 

RG1.  
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ETS Mathematic Aptitude Test: A multiple-choice test of mathematical 

aptitude from the Kit of Factor-Referenced Cognitive Tests (Ekstrom, French, 

Harman, & Dermen, 1976). One practice item and fifteen test items were presented to 

participants. Each item presented a mathematical word problem. Participants chose 

which of the five presented options answered the problem. These items represent part 

1 of ETS RG2. 

General Fluid Intelligence: 

Advanced Raven’s Matrices: Two practice items and eighteen test items were 

presented to participants. Each item presented eight black and white figures arranged 

in a 3 by 3 grid with one figure missing. Participant chose among eight presented 

options the figure that best completed the pattern (Raven, Raven & Court, 1998). 

Even and odd items were presented on different visits. 

Wechsler Adult Scale of Intelligence Matrices: One practice item and 

seventeen test items were presented to participants. Each item presented colorful or 

black and white figures with one figure missing. Participant chose among five 

presented options the figure that best completed the pattern (Wechsler, 1999). 

Design and Procedure 

The experiment took up to six hours (allowing for breaks) over three testing 

sessions. The testing sessions were conducted 1-7 days apart. Participants partook in 

at least six cognitive tasks per session, a verbal WM span, a spatial WM span, a 

spatial ability assessment, a verbal ability assessment, a math ability assessment, and 

a gFI assessment. Block-span and Letter-number-sequencing were always presented 

first or fourth on the first visits, and in reverse position on the second visit. A subset 
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of the participants also partook in online web versions of Block-span and Letter-

number-sequencing on the third session after the completion of the listed tasks. The 

cognitive assessments were presented to participants in a pseudo-random order based 

on individualized permutations that counterbalanced the task across participants, such 

that two span tasks were not presented sequentially and two modality types (verbal or 

spatial) were not presented sequentially. 

All the cognitive assessments were computerized and presented using E-prime 

1.2 or 2.0 (Schneider, Eschman & Zuccolotto, 2002), DirectRT (Jarvis, 2006), or 

Python (www.python.org) and required no researcher administration, beyond 

initiating each task. The study was administered in groups of up to seven participants. 

The dataset for 189 participants is complete for all tasks administered; 55 

participants are missing one or more of the data points due to technical administration 

issues. Due to a programming error, no data were recorded for the WASI and 

therefore it was excluded from all analysis. 

Results of the Laboratory Assessments 

The underlying cognitive structure was examined using a latent variable 

analysis to see whether Block-span and Letter-number-sequencing along with the 

other WM tasks measure a unitary WM ability or multi-component vsWM and vWM 

abilities. A latent variable analysis requires multiple tasks that measure the same 

construct, as each task measures some element of the construct along with other task 

specific variation. Examining multiple tasks that measure the same construct in LVA 

allows the task specific variation to be reduced; retaining the construct elements 

thereby reveals a clearer representation of the construct. This analysis, while 
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requiring multiple tasks per construct of interest, allows for conclusions about the 

underlying processes and the variable structure, as opposed to making task specific 

conclusions about the dataset.  

To conduct the latent variable analysis, Block-span and Letter-number-

sequencing must first be shown to be good psychological measures (internal 

consistency, test retest reliability), to measure WM at all (construct validity), and to 

predict performance on other tasks similar to other WM tasks (criterion validity).  

Table 2. Descriptive statistics for all the tasks administered in Experiment 1. 

Construct Measure N M Median SD 

Spatial Working Memory    
 Block-span 243 53.16 52.00 13.19 
 wBlock-span 58 1476.55 1410.00 597.21 
 SymSpan 241 18.85 19.00 9.72 
 RotSpan 243 20.20 22.00 10.72 
 NavSpan 212 22.08 22.00 9.11 
Verbal Working Memory    
 Letter-number-sequencing 242 187.81 191.00 41.94 
 wLetter-number-sequencing 58 630.52 665.00 306.18 
 Ospan 242 45.81 49.00 19.08 
 Rspan 243 35.21 36.00 18.24 
 RunSpan 243 48.47 49.17 11.74 
General Fluid Intelligence    
 RavensO 240 49.72 50 20.70 
 RavenE 244 44.22 38.89 19.61 
Spatial Abilities     
 AFOQTrb 241 38.34 40.00 22.11 
 VZ2p1 238 53.92 54.55 18.74 
 VZ2p2 243 53.54 54.55 15.62 
Verbal Abilities     
 AFOQTa 244 58.11 58.33 17.64 
 AFOQTrc 243 59.85 64.29 20.81 
 RL3 244 58.57 60.00 20.77 
Math Abilities     
 AFOQTm 242 20.66 20.00 10.95 
 RG1 243 31.00 33.33 12.55 

  RG2 241 23.83 21.43 11.81 
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Internal Consistency 

Cronbach’s alpha coefficients were computed between the trials of Block-

span and also between the trials of Letter-number-sequencing to examine the 

measurement properties of the tasks. Both Block-span and Letter-number-sequencing 

were found to be highly reliable tasks (Block-span: 16 items Cronbach α = 0.76; 

Letter-number-sequencing: 102 items Cronbach α = 0.92). The next step is to 

examine whether the Block-span and Letter-number-sequencing tasks measure a 

stable property.  

Test Retest Reliability 

Test-retest reliability on Block-span and Letter-number-sequencing was 

computed based on participants’ performance on the first and second session. Both 

Block-span and Letter-number-sequencing demonstrated high test-retest reliability 

across sessions, Block-span: r(242)=0.70, p<0.001 and Letter-number-sequencing: 

r(241)=0.73, p<0.001, indicating that both Block-span and Letter-number-sequencing 

are reliable. Table 3 provides descriptive statistics for Block-span and Letter-number-

sequencing (see Table 2 for descriptive statistics for all administered tasks). 

Table 3. Descriptive statistics for Block-span and Letter-number-sequencing for both 
test and retest administrations. LowerQ= lowest quartile; UpperQ= highest quartile. 
Measure N M Median SD Skew Kurtosis LowerQ UpperQ 

Block Span       

Test 243 53.16 52 13.91 0.47 0.1 44 61 

Retest 244 53.76 52 14.93 0.25 0.07 44 63.75 

Letter Number Sequencing      

Test 242 187.81 191 41.94 -0.65 0.31 164 216 

Retest 244 197.86 203.5 45.23 -0.2 0.31 164.25 232 
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Construct and Criterion Validity 

Block-span and Letter-number-sequencing are significantly correlated with all 

other complex WM span tasks (r’s=0.23 to 0.56, all p’s<0.0001). In addition, Block-

span, being a spatial task, relates more strongly to the spatial WM tasks (r’s=0.39 to 

0.56), compared to the vWM tasks (r’s=0.29 to 0.36), and Letter-number-sequencing, 

being a verbal task, relates more with the vWM tasks (r’s=0.45 to 0.46) than to the 

vsWM tasks (r’s=0.23 to0.43). These results indicated that Block-span and Letter-

number-sequencing are valid WM measures as they are strongly correlated to all 

other WM tasks. The pattern of results shows that Block-span is strongest in 

relationship to the spatial WM tasks and Letter-number-sequencing is strongest in 

relationship to the verbal WM tasks, and the implication is that Block-span and 

Letter-number-sequencing have good construct validity for measuring spatial and 

verbal WM respectively. 

Criterion validity was assessed when examining the relationship between the 

WM task and Ravens, a measurement of gFI. Block-span and Letter-number-

sequencing are as predictive of the gFI measurement (Block-span: r’s=0.34 to 0.39, 

p’s<0.001; Letter-number-sequencing: r’s=0.27 to 0.37, p’s<0.001) as are the other 

WM assessments in this study (r’s=0.22 to 0.37, p’s<0.001-0.05). Table 4 shows the 

correlation between the WM tasks and the gFI measurements.  

The gFI measurement, Ravens, was administered twice using odd and even 

item numbers (RavensO and RavensE). The Ravens test-retest were only correlated at 

r=0.56, therefore any correlation with gFI would be capped at that level. The block-

span and letter-number-sequencing correlations were therefore corrected for the 
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attenuation, such that rcorrected= runattentuated/sqrt(rWMtest-retest*r RAVENSodd-even). Therefore, 

the correlations corrected for the attenuation are as follows: RavensEven: block-span: 

r=0.54 and letter-number-sequencing: r=0.42; RavensOdd: block-span: r=0.62 and 

letter-number-sequencing: r=0.58. 

Table 4. Correlations between Block-span, Letter-number-sequencing, the complex WM 
span tasks and Ravens. The n is in parenthesis. All r’s are significant at p<0.05; bolded r’s are 
significant at p<0.001. 

  

Block
-span 

Sym-
Span 

Rot-
Span 

Nav-
Span 

Letter-
number-
sequencing 

O-
Span 

R-Span 
Run-
Span 

Raven
O 

Raven
E 

Block-span -          

SymSpan 0.47 (240) -         

RotSpan 0.39 (242) 0.38 (240) -        

NavSpan 0.56 (211) 0.41 (210) 0.48 (211) -       

Letter-number-
sequencing 

0.42 (241) 0.28 (239) 0.23 (241) 0.43 (210) -      

OSpan 0.36 (241) 0.29 (239) 0.24 (241) 0.46 (210) 0.45 (240) -     

RSpan 0.33 (242) 0.41 (240) 0.20 (242) 0.4 (211) 0.46 (241) 0.63 (241) -    

RunSpan 0.29 (242) 0.15 (240) 0.17 (242) 0.26 (211) 0.46 (241) 0.38 (241) 0.42 (242) -   

RavenO 0.39 (239) 0.31 (237) 0.31 (239) 0.37 (208) 0.37 (238) 0.24 (238) 0.23 (240) 0.24 (239) -  

RavenE 0.34 (243) 0.33 (241) 0.28 (243) 0.31 (212) 0.27 (242) 0.22 (242) 0.24 (243) 0.24 (243) 0.56 (240) - 

 

A further analysis of criterion validity assumes a domain specific WM 

component and examines the relationships between the domain specific reasoning 

tasks and the new WM measures, Block-span and Letter-number-sequencing (see 

 

Table 8 for the full correlation matrix). As expected Block-span is as strongly 

correlated to the spatial ability tasks as are the other spatial WM tasks (see Table 5). 

Similarly Letter-number-sequencing is as strongly correlated to the verbal ability 

tasks, as are the other verbal WM tasks (see Table 6). The results from the correlation 

with the math abilities tasks were less clear. One of the math tasks, AFOQTm, was 

only very weakly correlated with the other math tasks and did not correlate with any 
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of the WM tasks. However, the other math tasks, RG1 and RG2, showed weak 

positive correlations with Block-span and Letter-number-sequencing and similar 

correlations with the other WM tasks. In fact, the relationship between RG1 and 

Block-span is the strongest relationship of the all WM measures to the math tasks 

(r(241)=0.33, p<0.001) (see Table 7).  

Table 5. Correlations between the spatial reasoning tasks and the vsWM tasks. The n is 
in parenthesis. All r’s are significant at p<0.05; bolded r’s are significant at p<0.001. 
  AFOQTrb VZ1p1 VZ2p2 

AFOQTrb -      

VZ2p1 0.42 (235) -  

VZ2p2 0.35 (240) 0.49 (237) - 

Block-span 0.41 (240) 0.36 (237) 0.27 (242) 

SymSpan 0.36 (238) 0.32 (235) 0.13 (235) 

RotSpan 0.28 (240) 0.35 (237) 0.23 (242) 

NavSpan 0.42 (211) 0.38 (209) 0.29 (212) 

 
Table 6. Correlation between the verbal reasoning tasks and verbal WM tasks. The n is 

in parenthesis. All r’s are significant at p<0.01; bolded r’s are significant at p<0.001. 
  AFOQTa AFOQTrc RL3 

AFOQTa -      

AFOQTrc 0.50(243) -  

RL3 0.43 (244) 0.42 (243) - 

Letter-number-sequencing 0.33 (242) 0.28 (241) 0.21 (242) 

OSpan 0.39 (242) 0.22 (241) 0.23 (242) 

RSpan 0.33 (243) 0.28 (242) 0.19 (243) 

RunSpan 0.38 (243) 0.30 (242) 0.17 (243) 

 



 32 
 

 
Table 7. Correlation between the mathematical reasoning tasks and the WM tasks. The 

n is in parenthesis. Underlined r’s are not significant, not underlined r’s are significant at 
p<0.01; bolded r’s are significant at p<0.001. 
  AFOQTm RG1 RG2 

AFOQTm -     
RG1 0.20 (241) -  
RG2 0.19 (239) 0.35 (240) - 
Block-span 0.12 (241) 0.33 (242) 0.24 (240) 
Letter-number-sequencing 0.09 (240) 0.28 (241) 0.18 (2439 
OSpan 0.09 (240) 0.16(241) 0.12 (239) 
RSpan 0.01 (241) 0.12 (242) 0.18 (240) 
RunSpan 0.06 (241) 0.22 (242) 0.12 (240) 
SymSpan 0.13 (239) 0.16 (240) 0.18 (239) 
RotSpan -0.03 (241) 0.27 (242) 0.14 (240) 
NavSpan -0.01 (210) 0.21 (211) 0.25 (210) 

 
 

Table 8. Correlations between all the tasks in Experiment 1. The n is in parenthesis. 
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Factor Analysis and Model Comparison 

Block-span and Letter-number-sequencing showed moderate to strong 

positive correlations with the other WM measures. They also showed moderate 

domain specific correlations for the spatial and verbal reasoning abilities. Lisrel 8.8 

was used to conduct all factor analyses. An exploratory factor analysis (maximum 

likelihood, promax rotated) was conducted on all the study tasks1, producing a three 

factor solution, with Block-span loading with SymSpan, RotSpan, and NavSpan on 

one factor, Letter-number-sequencing loading with OSpan, RSpan, and RunSpan on 

the second factor, and Ravens, AFOQTa, AFOQTrc, RL3, and VZ2 loading on the 

third factor. AFOQTrb loaded equally on the first and third factors (see Table 9 for 

exploratory factor loadings). The pattern of factor loadings implies a vsWM factor, a 

vWM factor, and a factor related to reasoning abilities (see Table 10 for the 

correlation between the factors). The exploratory factor analyses further strengthens 

the correlation result suggesting domain specific components for WM and Block-span 

being a vsWM task and Letter-number-sequencing being a vWM task. 

                                                 
1 Only one of VZ2 and the Ravens administrations was added into the analysis. 



 34 
 

Table 9. Exploratory factor analysis for the WM measures in Experiment 1, n=200. Factor 
loading <.3 are suppressed. 

Measure   vsWM vWM Reasoning/ Abilities 

 M SD Factor1 Factor2 Factor3 Unique Variance 
Block-
span 52.67 13.37 0.72   0.45 
Letter-
number-
sequencing 187.58 40.54  0.57  0.51 
OSpan 45.43 18.93  0.71  0.41 
Rspan 34.86 18.28  0.75  0.40 
RunSpan 48.54 11.99  0.55  0.64 
SymSpan 18.99 9.71 0.60   0.64 
RotSpan 20.92 10.20 0.67   0.60 
NavSpan 21.93 9.22 0.72   0.41 
Ravens 43.69 19.24   0.45 0.65 
AFOQTa 6.35 2.47   0.92 0.30 
AFOQTrc 6.35 2.47   0.57 0.63 
RL3 6.35 2.47   0.51 0.74 
AFOQTrb 2.38 1.45 0.45  0.32 0.61 
VZ2 3.71 1.44   0.32 0.78 

 

Table 10. Correlation between the factors in the exploratory factor analysis. 

 vsWM vWM Reasoning

vsWM -    
vWM 0.65 -   
Reasoning 0.364 0.371 -  

 

Structural equation modeling was used to test whether Block-span and Letter-

number-sequencing and the other WM tasks represent a single latent variable or 

multiple latent variables. Lisrel 8.8 was employed to conduct the path model used to 

confirm the latent nature of WM. The single unitary WM model consisted of a single 

latent variable with loading for all the WM tasks. The multi-component WM model 

consisted of two latent variables, one for the verbal WM with loadings for all the WM 

tasks involving letters and verbal information (Letter-number-sequencing, OSpan, 

RSpan, and RunSpan), and one for the visual spatial domain with loading for all the 
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WM tasks of visual spatial nature (Block-span, SymSpan, RotSpan, and NavSpan) . 

See Figure 3 for the path models and factor loading.  

The unitary WM model does not provide a good fit for the data, χ2(20, 

N=202) =96.69, p=0.0001, CFI =0.91, NFI=0.89, NNFI=0.88, GFI=0.87, 

SRMR=0.08, AGFI=0.77, RMSEA=0.16, as indicated by the model fit indices. For a 

good model fit, the model fit indices should be as follows: Incremental fit indices: 

CFI≥0.95, NFI≥0.9 and NNFI≥0.95; Absolute fit indices: GFI≥0.9 and SRMR≤0.8; 

Parsimonious model fit indices: AGFI≥0.9 and RMSEA≤0.06. As indicated, the 

unitary WM model is not a good fit for the data, as only one absolute index (SRMR) 

indicates a good fit, whereas all the other fit indices indicate that the model is not a 

good fit for the data. In contrast, the multi-component WM model does provide a 

good fit χ2(19, N=202)=32.4, p=0.028, CFI =0.98, NFI=0.96, NNFI=0.98, GFI= 0.96, 

SRMR=0.04, AGFI=0.93, RMSEA<0.06, as all the model fit indices indicate that it is 

a good fit for the data. Furthermore, the multi-component WM model did 

significantly better than the unitary model of WM, χ2difference (1,N=202)=64.29, 

p<0.0001. This finding suggests that WM can be subdivided to multiple components. 

It is important to note that the subcomponents of WM are strongly correlated 
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(r=0.69), reflecting the possibility of a general process engaging the subcomponents. 

 

Figure 3. Path models for the confirmatory factor analysis. Panel a: the unitary model of 
WM. Panel b: Domain specific model of WM. 

Results of the Web Assessments 

In the previous section, Block-span and Letter-number-sequencing were 

shown to be valid, reliable assessments of vsWM and vWM when assessed in a 

laboratory format. The following analysis examines versions of Block-span and 

Letter-number-sequencing constructed for online, web based administration. 

Participants 

Fifty-eight participants (26 female, Mage=19.41±1.3) completed a web 

administered version of Block-span and Letter-number-sequencing at the end of their 

third visit.  
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Web Assessed Block-span and Letter-number-sequencing 

The online Block-span and Letter-number-sequencing versions were 

programmed in Flash so that they could be administered online within the web 

browser. The tasks were adapted for web administration, and the differences are 

described below. 

wBlock-span: The task presented a 4 X 4 grid of blue squares and highlighted 

a yellow square (Figure 4). Participants saw “wait” on the bottom of the screen when 

they were viewing the block sequences and “go” when they were requested to input 

the sequences. Immediate feedback was given for performance by a green (correct) or 

red (incorrect) flash of the pressed block, scores were given for correct responses, and 

sequential correct responses doubled the score allotted. Participants underwent 

sixteen trials, four trials in each of the block levels (2, 3, 4, and 5). 

 
Figure 4. A trial for the web Block Span. 
wLetter-number-sequencing: The task presented a series of black characters in 

a white window presented at the top of a virtual keyboard (Figure 5). Above the white 

window, there was an indication of the round, sequence, and score. Participants 

pressed the start button and the characters were presented one at a time in the 

window. After the presentation a blue square highlighted first the numbers, then the 

letters section above the keyboard, and participants inputted the number and letters in 

the sequence. Feedback was presented for each sequence (correct or incorrect in the 

window), and scores were given for correct responses, and sequential correct 
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responses doubled the score allotted. Participants underwent thirteen trials, seven with 

one sequence of 2,3,4,5,6,7,and 8 characters respectively and six trials of two 

sequences of 2, 2, 3,4, 5, 6 respectively. 

 

 
Figure 5. A trial from the web Letter Number Sequencing. 

Web Task Reliability 

The test retest reliability between the laboratory and the web assessed versions 

of Block-span and Letter-number-sequencing was computed to examine the 

relationship between the laboratory administered task and the one designed for web 

administration. As before, Block-span and Letter-number-sequencing demonstrate 

strong test-retest reliability between the laboratory and the web administration, 

Block-span: r(57)=0.73 to 0.67, p<0.001 and Letter-number-sequencing: r(57)=0.47 

to 0.592, p<0.001. These results indicate that the web administrations of the Block-

span and Letter-number-sequencing tasks are stable, reliable measures. Table 11 

                                                 
2 Letter-number-sequencing task show a significant difference between the correlations Test-Retest and 
the Test-web (t(55)=3.23, p<0.01). However, the difference between the Retest-Test and the Retest-
web is not significant (t(55)=1.66, p=n.s). Therefore, the web-Letter-number-sequencing did not differ 
from the most recent laboratory testing, but from the initial introduction to the Letter-number-
sequencing task. A change in the instructions to the web Letter-number-sequencing has been made for 
clarity purposes. 
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shows the correlation between all the administrations of Block-span and Letter-

number-sequencing. 

Table 11. Correlations between the Block-span and Letter-number-sequencing 
administrations. The n is in parenthesis. 
Block Span    Letter Number Sequencing  

  Test Retest Web    Test Retest Web 
Test -    Test -   
Retest 0.76 (58) -   Retest 0.74 (58) -  
Web 0.73 (58) 0.67 (58) -  Web 0.47 (58) 0.59 (58) - 

 

Construct and Criterion Validity 

The correlations between the wBlock-span and wLetter-number-sequencing 

show an overall pattern of relationship similar to that of the laboratory versions, 

where wBlock-span is more strongly correlated with the vsWM tasks and wLetter-

number-sequencing is more strongly correlated with the sWM tasks (Table 12, all 

p’s<0.05 except for Block-span-RunSpan). One difference is the lack of a relationship 

between wBlock-span and RunSpan. At present, I can only speculate about the lack 

of relationship, but future analysis should look into this relationship, or lack thereof.  

Table 12. Correlations between wBlock-span, wLetter-number-sequencing, ravens and 
the WM tasks. The n is in parenthesis. 
  wBlock-span wLetter-number-sequencing 

wLetter-number-sequencing 0.37 (58) - 
SymSpan 0.47 (57) 0.42 (57) 
RotSpan 0.26 (58) 0.53 (58) 
NavSpan 0.31 (57) 0.36 (57) 
OSpan 0.28 (58) 0.59 (58) 
RSpan 0.27 (57) 0.40 (57) 
RunSpan -0.03 (58) 0.26(58) 
Ravens 0.23 (57) 0.35 (57) 
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Discussion 
This experiment introduced two newly designed domain specific assessments 

of WM ability, Block-span and Letter-number-sequencing, in both laboratory and 

online web deliverable versions. The new WM tasks were found to have stable, 

reliable measurement properties and strong positive relationships to other validated 

vsWM and vWM tasks. Construct validity for the new WM was evident in the 

correlations with other WM tasks and abilities to which WM is known to relate. The 

pattern of correlation strengths suggests a multi-components model of WM, as Block-

span was more strongly correlated to the vsWM tasks and the visual spatial ability 

tasks, and Letter-number-sequencing was more strongly correlated to the vWM tasks 

and the verbal ability tasks. Furthermore, both exploratory and confirmatory factor 

analysis shows Block-span loading with the other vsWM tasks and Letter-number-

sequencing with the vWM tasks.  

A latent variable analysis using SEM model comparison showed that that a 

unitary WM model does not provide a good fit for the data, whereas the multi-

component WM model, with two latent variables (vsWM and vWM) provides a very 

good fit for the data. The significant difference on the comparison between the 

models provides additional support for the multi-component model of WM. The 

multi-component WM model showed that Block-span loaded strongly on the vsWM 

factor and Letter-number-sequencing loaded strongly on the vWM factor, providing 

further evidence of the construct validity of Block-span and Letter-number-

sequencing.  

The finding of a two-factor solution (vsWM and vWM) replicates the WM 

findings of Kane et al.’s (2004), which also producing a two-factor model for vWM 
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and vsWM. Similar to the Kane et al. study, the WM SEM also revealed a strong 

relationship between the vsWM and vWM latent variables (r=0.69, Kane: r=0.84). 

Kane et al. argued that the strong relationship between the domain specific WM 

components reflected a general component which they labeled “attention”, and 

conducted additional SEM to examine the relationship short-term-memory and WM 

have to executive attention and storage components.  

However, the controlled attention perspective cannot be conclusively 

supported by results of the current study. In fact, other researchers have shown results 

inconsistent with this perspective. Friedman and Miyake (2004) argue against the 

controlled attention perspective, as it has difficulties with accounting for the lack of 

relationship between response-distractor inhibition and resistance to proactive 

interference. Additional difficulties lie in the dissociation found between 

manipulation of vWM and vsWM measures (Shah & Miyake, 1996), as well as the 

asymmetrical interference patterns, where the visual interference tasks engage more 

executive processes then verbal interference tasks (Ricker, Cowan & Morey, 2010). 

The current study’s’ findings are consistent with a growing body of behavioral and 

neuronal evidence providing support for the multi-component domain specific 

distinction in WM (Smith, Jonides, & Koeppe, 1996; Smith & Jonides, 1997; Hartley 

& Speer, 2000; Baddeley, 2000; Klingberg, 2006; D’Esposito, 2007; Tomasi, et al., 

2007; Bull, Espy & Wiebe, 2008; Thomason, et al., 2009). 

To conclude, the multi-component domain-specific model of WM, with a 

vsWM and a vWM component, showed a good fit for the data.  Block-span loaded 

with the vsWM measures and Letter-number-sequencing loaded with the vWM 
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measures.  Block-span and Letter-number-sequencing are valid, reliable WM 

measures, with strong construct validity and good criterion validity, and can be 

successfully deployed online to measure vsWM and vWM respectively.  
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Chapter 3: Malleability of WM. 
The second aspect of WM that this research investigates is the malleability of 

WM. While some studies have shown WM improvements and the transfer of training-

induced improvements to other cognitive tasks following WM training, not all studies 

of WM training have shown transfer. This study addresses the malleability of WM 

within the domain specific framework derived from the previous experiment, and 

devised vsWM training tasks.  

As in the previous experiment, the training tasks were designed to be 

administered online and were adapted from two measures of vsWM: Block-span and 

ShapeBuilder. Most studies of WM training administer training, in individual or 

group settings with the researcher or with parent present. This type of administration 

is resource demanding. One of the goals of this study was to test whether online WM 

training, where task performance is self-motivated and performance competes with 

real-world distractions, can lead to cognitive improvements.  

The effectiveness of WM training is measured not only by improvements in 

the trained tasks but also by transfer to other tasks. The goal of WM training is to 

demonstrate improvement on both the trained and untrained tasks. I hypothesize that 

transfer will be limited to behavioral tasks that have an overlapping neural network 

with the trained tasks, so called process-specific cognitive tasks (Dahlin, Stigsdotter-

Neely, Larsson, Bäckman, & Nyberg, 2008). Tasks that rely on different neural 

networks should show no benefit from the training.  
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In this Experiment the process-specific tasks are examined through behavioral 

measures3. However, the neuronal networks engaged via the assessed tasks are used 

to conceptualize process-specificity. Therefore, prior literature examining task 

specific brain activation, as well as latent variable analyzes on behavioral measures, 

serve to infer the relationship between the neural network of the trained task and the 

behavioral cognitive tasks.  

The vsWM training was designed to engage the frontal-parietal network, 

which has been implicated in a multitude of WM and inhibition tasks (Edin et al., 

2007; McNab et al., 2008; Klingberg, 2010). For that reason, vsWM tasks and visual 

inhibition task are unambiguously process-specific tasks. However, the factor 

analysis conducted in the first experiment shows domain-specificity for WM abilities, 

and separates the vsWM, from the vWM, and from general abilities (Ravens and the 

Verbal and Spatial abilities). Therefore, the definition of process-specificity for some 

tasks can be unclear, thus process-specificity will be treated as a continuum based on 

the strength of the relationship, not a dichotomy.  

This experiment assessed cognitive ability, behaviorally and neuronally, using 

fMRI for the trained task, before and after the online WM training, and examined 

whether online WM training led to neuronal changes in the brain and to behavioral 

process-specific transfer. 

                                                 
3 A larger set of data exists to examine process-specific neuronal transfer. That data will be reported 
elsewhere. 
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Method 

Participants 

Participants were recruited from Georgetown University and the surrounding 

community via the Georgetown research volunteer program and flyers placed around 

campus. Participants were right-handed individuals, aged 18-30, native English 

speakers, with normal or corrected-to-normal vision, who had no personal history of 

neurological, neuropsychiatric, and/ or psychiatric disorders and or learning 

disabilities, and were not taking medication related to neuropsychiatric and/ or 

psychiatric disorders and or learning disabilities. Other restrictive criteria included 

that participants not have metal in their body, and that female participants were not 

pregnant, as confirmed by a pregnancy test.  

The study duration was seventeen experimental hours, separated into three 

and a half hours for each pre and post assessment sessions and ten hours of online 

computer training, for which participants were compensated $215. Participants also 

entered a raffle for every new high score achieved on the training; the raffle grand 

prize was a $200 gift card. Out of the forty-five participants who consented to be in 

this study, thirty-six completed the study. One of the participants who completed the 

study was ambidextrous, and was removed from the analyses. Participants were 

randomly assigned either to the vsWM training group (N=18; 12 female; Mage = 

2223.11±3.83 years) or to the placebo control group (N = 17; 11 female; Mage = 

22.88±3.33 years).  
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Pre-training and Post-training Assessments 

The following assessments were administered both pre-training and post-

training (see Table 14 for reliability coefficients and Table 15 for descriptive 

statistics): 

wLetter-number-sequencing: described in Experiment1 

OSpan: described in Experiment1 

SymSpan: described in Experiment1 

Ravens : described in Experiment1 

ShapeBuilder: Participants need to remember and reproduce the serial order, 

shape, and location in which a sequence of shapes appears in a 4 x 4 grid, when each 

trial is characterized by a set of two to four shapes. Each shape within a sequence is 

flashed for one second, one at a time, in one of the cells within the 4 x 4 grid. After 

the presentation of a sequence, participants are prompted to reproduce the sequence 

(via mouse click and drag from a palette surrounding the grid) with respect to the 

serial order, spatial location, color, and shape type of each presented shapes. This 

procedure is repeated for the next set of sequences for the duration of the task. Shape 

Builder is scored based on correct recollection of the serial location of shapes, with 

extra points for the shape type and color. 

Verbal Fluency: Participants were given a minute to generate all the words 

they can think of that match the presented instruction. The instructions were: Words 

beginning with “F”; Words beginning with “A”, Words beginning with “S”, Things 

you can eat or drink, People’s first name, Animals. The number of correct items 

generated per category was collected. 
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Mental Math: One practice item and sixty test items, ten trials for each of six 

levels of mathematical difficulty, were presented to participants. Participants had to 

compute the answer to the mathematical problem, when items were presented 

sequentially in the center of the screen. Measures of accuracy and reaction time were 

collected. 

ModMath: Eight practice items, followed by eighty test items, forty problems 

for each of two levels of mathematical difficulty, were presented to participants. 

Participants had to indicate whether the solution of the mod math problem on the 

screen was true or false (Beilock & Carr, 2005). Measurements of accuracy and 

reaction time were collected. 

Mental Rotation: Participants were presented with two two-dimensional 

shapes presented simultaneously and were asked to indicate whether the two shapes 

are same or different. A same classification meant that they were rotated on the 

picture plane, whereas a different classification meant that they were mirror images. 

Participants classified 150 shape-pairs, half were mirror images and half were rotated 

images. Equal numbers of trials were presented for 0°, 45°, and 135° orientations. 

Accuracy and reaction time were collected.  

Stroop: Participants were asked to indicate, via button press, the ink color of 

the series of characters presented on the screen. The series of characters was 

presented in Green, Blue, Red or Yellow ink, and was constructed from the words 

Blue, Green, Yellow and Red for the congruent and incongruent trials, and from a 

series of three, four, five or six asterisks for the baseline trials. The series of 

characters remained on the screen until participant response. A 750 msec fixation was 
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presented between the character series. Participants went through a practice session of 

eight congruent and four baseline trials. The task consisted of 24 baseline trials, 24 

incongruent trials, and 144 congruent trials. The accuracy and reaction time for the 

correctly identified congruent, incongruent and baseline trials answered correctly 

were collected. 

Posner Cueing: Participants were presented with an auditory (administered 

with headsets), then visual cueing tasks (adapted from Facoetti et al., 2005) in 

separate blocks. A cue (white noise or smiley face) was presented to the left or right 

field, and following a short delay (auditory 60msec, visual 100msec) or a long delay 

(auditory 210msec, visual 250msec) a stimulus was presented on either the left or 

right field. The stimulus (40msec) was either a go stimulus (highbeep or green dot) or 

a nogo stimulus (low buzz or red dot). For the go stimulus participants were 

instructed to press the left or right arrows keys to indicate the stimulus position(as 

opposed to a single space bar response used in the Facoetti et al. study), for the no go 

stimulus they were instructed to not respond. The resulting design was a 2 (Short or 

Long) X 2 (Go or NoGo) X 2 (Congruent or Incongruent). The 96 trials, per modality, 

were evenly distributed across the conditions and were randomly presented. The trial 

started with a 500msec fixation in the center of the screen, then a cue was presented 

for 40msec, then a delay (60-250msec), followed by the stimulus (40msec) and the 

1500msec response period. The accuracy and reaction time for the correctly identified 

congruent and incongruent trials were collected. 
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Gray Oral Reading Test 4 (GORT4): Stories 11, 12, 13 and 14 were presented 

to the participant to read aloud (Wiederholt & Bryant, 2001). Auditory coding of 

pronunciation errors was conducted by two raters.  

Word Identity (WI) and Word Attack (WA): Word Identity, consisting of 36 

words, and Word Attack, consisting of 29 nonwords from the Woodcock Johnson III 

were administered (Woodcock, McGren & Mather, 2001). Auditory coding of 

pronunciation errors was conducted by two raters.  

Both groups underwent the same assessment battery, at pre-training and post-

training (Table 13). AB task versions were used when available. Two versions of the 

task administration order were created, and used alternately between assessment 

sessions (Appendix A). The assessment battery was composed of behavioral 

cognitive assessments and cognitive tasks administered in the MRI scanner. One of 

the vsWM training tasks, ShapeBuilder, was administered as a behavioral assessment, 

and the other vsWM training task (Menmosyne/Block-span) was modified and 

administered in the MRI scanner. 
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Table 13. Pre-training and post-training tasks administered behaviorally and in the 
MRI scanner and the relationship between the task and the vsWM training. 
Type of Transfer Pre/Post MRI Tasks Type of Transfer Pre/Post Behavioral Tasks 

Training Specific SimonSays (Block-span) Training Specific Shape Builder 
Process Specific Guess Dot Process Specific SymSpan 

 Colorful Dots  OSpan 

   Letter-number-sequencing 

   Mental Rotation 

   Posner Cueing 

   Stroop 

   Mental Math 

   Modular Math 

   Ravens 

  Process Non-
Specific 

Grey Oral Reading Test 

  Word ID & Word Attack 

   Verbal Fluency 

   Picture, letter, digit naming 

    

 

Simon Says:  

SimonSays is a modified version of Block-span, as is Memnosyne. While in 

the MRI, participants were presented with a sequence of blue or black dots, from two 

to seven in length, presented on a 4 X 4 grid. When blue dots were presented, 

participants were instructed to reproduce the locations of the dots in serial order 

(memory load conditions). When black dots were presented, participants were 

instructed to press randomly on the top row (control position). Trials began with a 

jittered presentation (1000, 2000, 3000 or 4000msec) of a center fixation, followed by 

red grid (250msec). Dots were sequentially presented (800msec), with a red grid 

(200msec) between dot presentations. A black grid (200msec) was presented after the 

final dot in the sequence, ending the sequence. A green grid was then presented 

(6,000 or 12,000 msec), and participants indicated their responses using a MRI 

compatible joystick (Figure 6). Each MRI run consisted of twenty-four dot sequences, 



 51 
 

three in each of the eight conditions (six load conditions: 2, 3, 4, 5, 6, 7 blue dots & 

two control conditions: 4 & 7 black dots). Four runs of 7.3 minutes were administered 

per MRI session.  

 
Figure 6. SimonSays memory load trial for 4 dots; duration is presented next to the 

image (msec). The memory loads trials varied from 2-7 blue dots. In the control trial the dots 
would be black but otherwise the presentation is identical. 

 

Training Tasks 

The online training was administered though a web-site belonging to Prof. 

Dougherty, http://www.thehygeneproject.org/damlabbeta/index.php/increaseintellect. 

Each participant received a login and password, was instructed to train for a 

maximum of an hour a day, and was allowed three weeks in which to complete the 

ten hours of online training. For both groups the training alternated between the two 

training tasks, so that during a fifteen minute session participants engaged in one task 

for eight minutes (Memnosyne or Sentencical) and the other for seven minutes 
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(ShapeBuilder or NumberPiles). Before and after each session, participants could 

view a progress chart for that training task, which illustrated that tasks’ scores by 

session, showed a star on their overall high score, and a line for their average score 

(Figure 7). In addition, each training task listed the score on the screen at all times to 

enhance performance. Adherence to the training was monitored remotely by the 

researcher, who sent reminder emails if the participant had not trained for 3 days. 

 

Figure 7. Progression charts of the online training, showing how the session score is indicated, 
how the highest score is indicated and how the average score is indicated.. 
 

vsWM Training Tasks and Assessments 

Memnosyne. Memnosyne is the vsWM training task adapted based on the 

Block-span assessment of WMC (Atkins et al., 2009). Participants were presented 

with a series of yellow blocks highlighted on a 4 X 4 blue block grid and asked 

reproduce the location of the yellow blocks in serial order (Figure 8, panel a). 

Memnosyne adapted in degree of difficulty to the performance level of each 

participant. Both the number of blocks and speed of presentation increased with 
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performance. Points were awarded for correct block locations in the correct serial 

position. Points increased for sequential correct identification, and a difficulty bar 

indicated the level of difficulty (Harbison, Dougherty & Atkins, patent IS-2009-052). 

Shape builder. ShapeBuilder-training requests participants to remember and 

reproduce the serial order of colored (red, blue, yellow, or green) shapes (diamond, 

triangle, square, or circle) presented sequentially on a 4 x 4 grid (Figure 8, panel b). 

The ShapeBuilder training adapted to the performance level of each participant by 

increased or decreased difficulty. The number of shapes and speed of shape 

presentation adapted with performance. Points were awarded for correct locations, 

shapes, and colors in the correct serial position. Partial credit was awarded for correct 

location and color but incorrect shape, or correct location and shape but incorrect 

color. Points increased for sequential items correctly identified (location, color and 

shape) (Dougherty, Atkins & Dowling, patent IS-2009-053). 

 
 
A) 
 
 
 

 
B) 

 
 
 
Figure 8. Memnosyne and ShapeBuilder training tasks. Participants are presented with 

a series of block or shapes and have to reproduce them in serial order. 
 
Placebo Control Training Tasks 

Sentencical task. The participant was asked to read sentences that were 

presented on the screen one character at a time in rapid succession. Once the entire 

sentence was presented and the participants had indicated that they had read the 
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sentence by clicking the continue button, they were then presented with a yes/no 

question regarding the presented sentence. An example of a sentence would be “The 

graduating student promised to bring in cake.”, and the question would be “Did the 

student promise to bring in cake?” The sentences and subsequent questions were 

randomly selected from a bank of 2110 sentences and questions4 and included simple 

and complex comprehension questions, general knowledge questions, and trivia 

questions. Participants received points for correctly answering the yes/ no question 

regarding the sentences. Points were awarded for correctly answering the yes/no 

question. Points increased for consecutive correct answers (Figure 9). 

Number Piles. The NumberPiles training requested participants to sum two digits to a 

stated target number. The task started with the bottom two rows of blocks with digits 

presented on the center of the screen and a target number presented on the right side 

of the screen (Figure 9). Participants were requested to click and highlight two digit 

blocks that sum to reach the target number. If correctly summed and highlighted, the 

block will explode and disappear from the screen and the participants will be awarded 

points and assigned a new target number. If the highlighted blocks do not sum to the 

target number, their sum is presented briefly in both boxes. During the entire task 

additional digit blocks slowly fall from the top of the screen. Points were awarded for 

every target number reached (Dougherty & Atkins, patent IS-2009-055).  

                                                 
4 Sentencical sentences and questions are available upon request to S.M. Atkins. 
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A)  
 
 
 
 
 
 
 
 
 
 
 
 
B) 
 
 
 
 
 
 
 
 
 

Figure 9. Sentencical and NumberPile training tasks. Panel A) Sentencical trials. Panel 
B) Number piles trials.    
 

Design and Procedure 

Participants came to the MRI lab four times, twice for the pre-training 

assessment and twice for the post-training assessment. One of the visits for each 

assessment time was behavioral and one was conducted in the MRI scanner. The 

post-training assessments were conducted one to seven days from the completion of 

the online training. The behavioral assessments were administered using E-prime (1.2 

& 2.0 professional), DirectRT, and Prof. Dougherty’s web site for online assessments, 

http://www.thehygeneproject.org/damlabbeta/index.php/increaseintellect.  E-prime 
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(2.0 professional) was used to present the stimuli for the cognitive tasks administered 

in the MRI scanner.  

MRI Data Acquisition:  

Images were acquired with a 3T Siemens scanner, using a standard 12-channel 

head coil. Head movement was minimized with the use of cushions. Visual stimuli 

were projected onto a screen via a mirror attached to the outside of the head coil. 

Participants’ responses were recorded using an optical joystick positioned in the 

participants’ right hand. The BOLD functional images were acquired using the echo 

planar imaging (EPI) method. The following parameters were used for scanning: time 

of echo (TE)= 30ms, flip angle= 90o, field of view (FOV)= 205x205mm, slice 

thickness = 3.2mm, gap=0.8mm, voxel size=4x4x4mm, number of slices=33 (whole 

brain: bottom to top); time of repetition (TR)= 2000ms. Four runs of 187 repetitions 

each were administered. In addition, structural T1 weighted 3D (MPRAGE) images 

were acquired (TR= 1900ms, TE= 2.52ms, flip angle= 9o, voxel size= 1x1x1mm, 176 

axial slices) using an identical orientation as the functional images.  

MR image analysis:  

Data analysis was performed using Statistical Parametric Mapping (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm). The functional images were time series corrected, 

spatially realigned to the mean, corrected for head movements, co-registered with the 

anatomical image, and normalized to the standard T1 Montreal Neurological Institute 

(MNI) template volume. Data was then smoothed with an 8 mm isotropic Gaussian 

kernel. A high pass filter with a cutoff period of 128 seconds was applied. The 
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preprocessing of the data was conducted on the four pre-training runs and the four 

post-training run simultaneously. 

Behavioral Results 

Training Improvements 

The training performance in both groups was normalized to the reflect 

improvements from the first session of training in that task (Zi=(Xi-X1)/SD1). The 

length of the training was used to compare the two groups, where each session of 

Sentencical and Memnosyne was eight minutes long, and each session of 

ShapeBuilder and NumberPiles was seven minutes long. The difference in 

performance improvements is then computed by subtracting the average performance 

of the beginning sessions (the average of session two and three) from the average 

performance of the end sessions (the average of session thirty-nine and forty). A 2 X 

2 X 2 mixed repeated measure design for assessment time (Pre, or Post), task 

(train8min, or train7min) and group (vsWM training or Placebo Control) showed a 

significant main effects for time of assessments (F(1,33)= 64.76,p<0.001 ηp
2=.66) 

and for task (F(1,33)= 84.50,p<0.001 ηp
2=.72),  and a significant task by group 

interaction (F(1,33)= 55.09,p<0.001,ηp
2=.63) and a significant time by group 

interaction (F(1,33)= 63.51,p<0.001,ηp
2=.66). The three-way interaction was not 

significant, nor was it expected to be. The improvements on the training tasks were 

significantly different between the training groups. Improvements on the Memnosyne 

training task were significantly greater than on the Sentencical training task (t(33) 

=5.24, p<0.01). Likewise, improvements on Shape Builder training were significantly 
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greater than improvements on the Number Piles task (t(33) =8.41, p<0.001). Figure 

10 shows the normalized performance improvement scores for each session.  

 
Figure 10. The mean group improvements by training tasks for each session. The raw 

scores for each session were normalized to the first session, to reflect improvements. 

Individual Differences 

Although the Memnosyne and ShapeBuilder improvements are strongly 

related (r(17)=0.46, p<0.05), participants in the vsWM training group did not improve 

to the same degree on both tasks (Figure 11). 

 
Figure 11. Individual differences among the vsWM training participants on the training 

task improvements. 
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Training Specific Transfer 

The training improvement curves show that participants in the vsWM training 

group improve on the trained tasks. However, do these training effects transfer? The 

first step in addressing this question is to see whether the improvements transfer to 

non-adaptive versions of the task. I refer to this as training-specific transfer.   

Training specific transfer was evident both on the assessment version of 

ShapeBuilder and on SimonSays (modified Block-span/Memnosyne).  

A mixed 2 X 2 repeated measures ANOVA for assessment time (Pre, Post) by 

training group (vsWM Training, Placebo Control) was employed for both training 

specific tasks. ShapeBuilder showed a significant main effect for time of assessments 

(F(1,33)= 81.15,p<0.001 ηp
2=.71) and a significant time by training condition 

interaction (F(1,33)= 39.37,p<0.001,ηp
2=.54). Indeed, as shown in Figure 12 (panel 

A), there is no difference between the groups at pre-training, but there is a difference 

at post-training with participants in the vsWM group showing greater performance 

then the placebo control group (t(33)=6.7, p<0.01). Furthermore, the vsWM group 

showed an increase in performance (t(17) =10.23, p<0.01) but not the placebo control 

group (t(16) =2.08,p=n.s.).  

Similar results are found when examining the time it took participants to 

complete the ShapeBuilder assessment (Figure 12 panel B). The mixed 2 X 2 

repeated measures ANOVA with the response time for ShapeBuilder showed a 

significant main effect for time of assessments (F(1,33)= 12.06,p<0.01 ηp
2=.27), and 

a significant time by group interaction (F(1,33)= 6.57,p<0.05,ηp
2=.17). Again no 

differences on the response time for the ShapeBuilder task exist at pre-training, 
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however post-training there is a significant difference between the groups 

(t(33)=6.06, p<0.001). The vsWM training group significantly decreased in the 

response time for ShapeBuilder from pre-training to post-training, (t(17)=3.98, 

p<0.01), yet the placebo control group did not differ in response time for 

ShapeBuilder (t(16)=0.71, p=n.s.).  

  
 A. ShapeBuilder Score   B. Response time for ShapeBuilder 

Figure 12. Pre and post performance on (A) the ShapeBuilder Assessment and (B) the 
response time for ShapeBuilder, for both the vsWM training and the placebo control groups. 
Error bars reflect standard errors of mean. 
 

The transfer of training-induced improvements to the accuracy for the 

SimonSays task is also training specific, as SimonSays and Memnosyne are both 

modified versions of Block-span. SimonSays accuracy was examined separately for 

the high memory load (MemHigh) and the low memory load trials (MemLow). Each 

participant’s score was given by percent correct. The percentage data underwent 

arcsine transformation, and entered into a 2 X 2 X 2 mixed repeated measure design 

for assessment time (Pre, or Post), trial type (MemHigh, or MemLow) and training 

group (vsWM Training, Placebo Control).  The results show a significant main effect 

for trial type (F(1,33)= 760.08,p<0.001 ηp
2=.96), and a significant time by task 

interaction (F(1,33)= 13.16,p<0.01,ηp
2=.29), and a significant time by task by group 

interaction (F(1,33)=11.92,p<0.01, ηp
2=.27). The pre-training MemHigh trials 
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showed no difference between groups, yet the vsWM training group improved in 

performance on the MemHigh trials from pre-training to post-training, (t(17)=2.90, 

p<0.05) and the placebo control group did not (t(16)=0.2, p=n.s.) (Figure 13 panel A). 

There were no group, or time of assessment differences on the SimonSays MemLow 

trials (Figure 13 panel B). 

  
A. MemHigh SimonSays Trials.   B. MemoLow SimonSays Trials. 
Figure 13. Pre and post accuracy for (A) the MemHigh trials and (B) the MemLow trials 

in the SimonSays task. Error bars reflect standard errors of mean. 
 
Table 14. Reliability coefficients for the behavioral assessments. 

Assessment Cronbach α Data Source 

ShapeBuilder 0.72 Current Study 
SymmetrySpan 0.86 Kane et al., 2004 
OperationSpan 0.78 Unsworth, Heitz, Schrock & Engle 2005 
LetterNumberSequencing 0.67 Current Study 
Mental Rotation 0.94 Current Study 
PosnerCueing Aud 0.93 Current Study 
PosnerCueing Vis 0.98 Current Study 
Stroop 0.75 Current Study 
Mental Math 0.86 Current Study 
Mod Math 0.89 Current Study 
Ravens 0.84 Current Study 
Verbal Fluency 0.84 Current Study 
GORT 0.85-0.99 Wiederholt, J.L. & Bryant, B.R. (2001).  
Word ID 0.94 Woodcock, R. W., McGrew, K. S., & Mather, N. (2001).  
Word Attack 0.87 Woodcock, R. W., McGrew, K. S., & Mather, N. (2001).  
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Table 15. Descriptive statistics for the assessments in Experiment 2. 
   vsWM training    Placebo Control 
  Pre  Post   Pre  Post  
Assessment N M SD M SD N M SD M SD 
Shape Builder           

Score 18 1,566 491 2,780 476 17 1,535 472 1,753 510 
RT 18 339,889 47,297 293,000 23,988 17 370,353 43,564 363,294 42,634 

SimonSays           
HML Accuracy 18 58.84 6.95 64.83 7.94 17 60.08 7.05 59.84 8.68 

SymSpan           
Score 18 17.67 8.50 22.56 8.30 17 17.00 11.76 24.47 9.88 
SymTime 18 6,171 3,758 3,783 2,499 17 5,568 2,879 3,959 1,820 
SymQuestRT 18 713 96 668 114 17 792 133 778 202 
SymProbRT 18 1,621 587 1,209 598 17 1,732 846 1,340 507 

OSpan           
Score 18 53.78 16.28 47.44 16.50 17 45.41 19.11 50.53 17.35 
MathTime 18 5,597 2,259 4,975 1,492 17 5,093 2,292 4,754 2,952 
OperMathRT 18 994 154 907 132 17 1,101 175 1,067 202 
OperProbRT 18 2,061 631 1,817 318 17 2,077 784 1,701 389 

Letter-number-
sequencing 

          

Score 18 532 244 603 230 17 581 240 729 166 
RT 18 338,444 58,535 299,000 43,804 17 360,529 62,557 349,765 111,032 

Mental Rotation           
Accuracy 18 66.49 17.59 73.83 10.59 15 68.38 17.78 70.57 20.47 
RT 18 1,964 270 1,751 331 15 1,939 330 1,808 166 

Posner Cueing           
Visual Short 16 80.21 38.24 88.54 28.85 17 78.92 39.76 63.73 45.73 
Visual Long 16 81.77 36.92 90.10 24.19 17 80.39 35.59 62.25 46.60 
Auditory Short 16 67.71 24.70 85.94 15.43 17 77.45 17.12 85.78 16.34 
Auditory Long 16 70.31 21.07 89.06 12.06 17 77.45 16.61 83.33 16.67 

Stroop           
IncongRT 17 1,158 190 1,046 157 17 1,073 278 990 283 
CongRT 17 784 103 733 134 17 704 144 675 148 
BaselineRT 17 854 123 806 143 17 791 164 740 161 

Mental Math           
Accuracy 18 61.76 7.85 65.46 5.65 15 60.11 8.85 64.22 7.81 
RT 18 1,740 244 1,639 226 15 1,866 501 1,895 291 

Modular Math           
RT High 18 5,268 1,401 4,647 1,381 16 6,009 2,074 4,923 1,908 
RT Low 18 2,078 429 1,723 373 16 2,140 256 1,711 343 
Score High 18 16.72 2.61 17.25 1.39 16 17.06 1.68 16.84 1.64 
Score Low 18 19.25 1.86 19.56 0.38 16 19.43 0.50 19.16 0.81 

Ravens           
Accuracy 18 58.95 5.88 62.04 23.04 17 58.82 23.16 59.48 18.19 

GORT           
Accuracy 18 64.44 15.80 65.28 17.86 17 67.65 9.21 72.94 11.60 
Errors 18 1.74 2.51 1.46 1.79 17 2.09 1.66 1.88 1.22 
RT 18 60,146 13,581 60,176 5,734 17 62,784 7,402 63,117 8,671 

Word ID           
Score 18 33.83 2.28 33.67 1.91 17 32.65 3.06 31.94 3.63 
RT 18 10,074 4,027 8,052 4,005 17 9,192 1,988 7,549 2,319 

Word Attack           
Score 18 27.61 2.70 27.21 2.09 17 26.76 2.70 27.06 1.78 
RT 18 8,595 3,520 6,631 3,689 17 7,737 1,589 6,134 1,647 

Verbal Fluency           
FAS 18 17.23 4.07 18.56 3.27 17 16.41 5.62 17.63 4.86 
Semantic 18 28.22 5.67 29.33 4.92 17 25.96 5.76 27.76 5.39 
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Process Specific Transfer 

Process-specific transfer should occur when the training task and the assessed 

task have overlapping processing networks, and the degree of overlap should 

determine the degree of process-specific transfer. The analyses examining process-

specific transfer were conducted under the hypothesis that vsWM training would lead 

to improvements and therefore employed one-tailed tests. 

For the present study, all cognitive tasks that relate to vsWM are considered 

process-specific, even tasks whose relationship to the training tasks is ambiguous. 

While it is conceivable that not all process-specific tasks show training-induced 

improvements (due to the strength of the overlapping network with the training task), 

process non-specific tasks should not show any improvements or it would call to 

question whether participants increase in general due to Hawthorne effects. 

Indeed, not all the process-specific tasks showed training-induced 

improvements in this study. Process-specific improvements were not evident in the 

Letter-number-sequencing5 score. Similarly no differences were evident in OSpan. 

Letter-number-sequencing and OSpan are vWM tasks, whose lack of transfer could 

be attributed to loading on the verbal as opposed to visual spatial domain. 

 However, no process-specific transfer was found for SymSpan, another 

vsWM task. SymSpan’s process-specificity was not ambiguous and was expected to 

show process specific training improvements. Therefore, this finding was unexpected, 

as previous training studies had showed process-specific transfer to SymSpan 

following twenty hours of training (Atkins et al., under review). One possible 

                                                 
5 The letter-number-sequencing task had issues with instruction presentation. 
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explanation is that the present study only had participants train for 10 hours, as 

opposed to the prior study that used 20 hours of training.  

Similarly, Ravens did not show significant training-induced transfer (Figure 

14). This finding is consistent with the factor analysis in Experiment 1, where Ravens 

loaded on the ability factor and not with the vsWM factor. This finding is also 

consistent with Chein and Morrison (2010) lack of transfer to Ravens. However, this 

finding is not consistent with other training studies that do show transfer to Ravens 

(Jaeggi, Buschkuehl, Jonides, & Perrig, 2008). Looking at the mean accuracies at 

both times shows that the placebo-control group does not change from pre to post 

(less than 1%) whereas the vsWM training group increased by over 3%. Needless to 

say, that slight increase is not an indication of training-induced transfer in this study; 

however, it does have implications for future studies.  

Verbal fluency in a 2 X 2 X 2 mixed repeated measure design for assessment 

time (Pre or Post), task measure (Letters or Semantic retrieval), and group (vsWM 

training or Placebo Control) showed a main effect for time of assessment 

(F(1,33)=154.67, p<0.001, ηp
2=.82) and a main effect for the measures (F(1,33)=9.23, 

p<0.001, ηp
2=.22). No between group differences were observed. Research has shown 

the verbal fluency task to be related to WMC (Rosen & Engle, 1997), but the task is 

verbal in nature and does not show transfer. 
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Figure 14. The pre-training and post-training Ravens accuracy. Error bars reflect 

standard errors of mean. 
 

The incongruent Stroop trials also did not show any process-specific transfer, 

a 2 X 2 mixed repeated measure design for assessment time (Pre or Post), and group 

(vsWM training or Placebo Control) showed a main effect for time of assessment 

(F(1,32)=8.16, p<0.01, ηp
2=.2), but no group differences. Stroop is a response 

inhibition task based on the conflict of reading the word and naming the ink color. 

Previous studies have been inconsistent regarding the transfer of training-induced 

improvements to Stroop task. With some training studies showing transfer of 

improvements to the Stroop task following training (Klingberg, Fossberg, & 

Westerberg, 2002; Atkins et al., under review), yet other studies show no transfer of 

improvements on the Stroop task following training (Dahlin, Stigsdotter-Nelly, 

Larsson, Bäckman & Nyberg, 2008; Thorell, Lindqvist, Bergman, Bohlin, & 

Klingberg, 2009).  

Process-specific transfer was evident in the Posner cueing task. The mixed 2 X 2 X 2 

X 2 repeated measure design for assessment time (Pre,or Post), modality (Visual or 

Auditory), delay (Long or Short) and group (vsWM or PlaceboControl),  showed a 

significant assessment time by group interaction (F(1,30)=5.28, p<0.05, ηp
2=.15) (see 

Figure 15) and a significant assessment time by modality interaction (F(1,30)=5.18, 
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p<0.05, ηp
2=.15). As can been seen when examining the modalities separately (Figure 

16), the visual Posner cueing task showed improvements for the vsWM training 

group between pre-training and post-training, whereas the placebo control group did 

not improve (Figure 16 panels A & B). The vsWM training group improvement in the 

post-training minus pre-training difference score was evident in both the long delay 

(t(31)=2.27, p<0.05) and short delay trials (t(31)=1.89, p<0.05). The auditory Posner 

cueing (Figure 16 panels C & D) showed significant improvements for the post-

training minus pre-training difference in the long delay trials (t(31)=1.90, p<0.05). 

Whereas the short delay suggests similar improvements the difference score was not 

significant (t(31)=1.45, p=n.s). No other main effects or interactions were significant.  

 
Figure 15. Pre-training and post-training overall accuracy for the Posner cueing task. Overall 
accuracy was computed by averaging accuracy across delay length for both modalities. Error 
bars reflect standard errors of mean. 

    
A) Visual Short Delay   B) Visual Long Delay 
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C) Auditory Short Delay   D) Auditory Long Delay 
Figure 16. Pre-training and post-training accuracy scores for the Posner cueing task for 

Visual- short delay (panel A), Visual-long delay (panel B), Auditory-short delay (panel C), and 
Auditory-long delay (panel D). Error bars reflect standard errors of mean. 
 

The mathematical tasks are considered process-specific, as research has 

shown that math calculations requires the involvement of the IPS and PFC (Dehaene, 

Piazza, Pinel, & Cohen, 2003; Dehaene, Molko, Cohen, & Wilson, 2004; Dehaene, 

2009). And the mental math results suggest the existence of process-specific transfer. 

The mental math levels were combined (see Appendix B for the individual level 

charts), and accuracy was arcsine transformed, while RT was log transformed6. A 

mixed 2 X 2 X 2 mixed repeated measures design for assessment time (Pre, Post) by 

measurement type (1-Acc (to align the direction of improvements), RT) by training 

group (vsWM, Placebo Control) showed a significant main effect for time of 

assessments (F(1,33)= 4.76,p<0.05 ηp
2=.13) and a main effect for measurement type 

(F(1,33)= 108238.14,p<0.05 ηp
2=1.00)  (Figure 17). The interactions were not 

significant. Although both training groups improved on their accuracy in the mental 

math task from pre-training to post-training (vsWM: t(17)=3.27,p<0.05; Placebo: 

t(16)=3.5, p<0.05), only the vsWM training group improved on their RT from pre-

training to post-training (vsWM: t(17)=2.1, p<0.05; Placebo: t(16)=0.40, p=n.s.). The 

                                                 
6 In all analyses using log transformations the test result did not differ when using raw RT’s or log 
transformed RT’s. 
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pre-training mental math RT showed no group differences, but post-training showed a 

significant difference between the training groups (t(33)=2.09, p<0.05), where the 

vsWM group exhibited faster RT following training (vsWM: Mpre=1,740 

Mpost=1,638; Placebo: Mpre=1,873 Mpost=1,835). However, the difference of the post-

pre RT was not significant (t(33)=1.28, p=n.s). 

    
A) MentalMath Accuracy  B) MentalMath RT 
Figure 17. Pre training and post training MentalMath accuracy (panel A) and RT (panel 

B). Error bars reflect standard errors of mean. 
 
The ModMath task results do not show process-specific transfer. The mixed 2 

X 2 X 2 design for assessment time (Pre, Post) by trial type (High, Low) by training 

group (vsWM, Placebo Control) on the  arcsine transformed score showed only a 

main effect for trial type (F(1,33)= 201.96,p<0.001 ηp
2=.86). Interestingly enough, 

performance on both the high and low difficulty trials improves in the vsWM training 

group from pre-training to post-training, whereas performance decreases in the 

placebo control group (Figure 18). This is particularly interesting as the Placebo 

Control group trained on simple math with the Number Piles training task, whereas 

the vsWM training group had no mathematical training. 
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A. ModMath Low Difficulty  B. ModMath High Difficulty  
Figure 18. Pre training and post training ModMath scores for the low (panel a) and high 

difficulty (panel b) trials. Error bars reflect standard errors of mean. 
  
The mental rotation task is unambiguously a process-specific task, as mental 

rotation has been shown to be related to WM ability, and reliably involves the 

activation of the parietal cortex, and many studies have also implicated the PFC 

(meta-analysis: Zacks, 2008). The mental rotation task analysis combined RT7 and 

accuracy for all rotated images relative to the images with no-rotation (Rot0) (see 

Appendix C for individual level descriptives). The RT was Log transformed and the 

accuracy underwent arcsine transformation. In a 2 X 2 X 2 mixed repeated measure 

design for assessment time (Pre, Post) by task measure (1-Acc, RT) by training group 

(vsWM training, Placebo control) on the log transformed RT showed a significant 

main effect for time of assessment (F(1,30)= 43561.29,p<0.05 ηp
2=.99), and a time by 

group interaction (F(1,30)= 5.35,p<0.05 ηp
2=.15), and a marginally significant three-

way interaction for measure by assessment time by group interaction (F(1,30)= 

3.39,p=0.075 ηp
2=.10). The vsWM training group improved significantly from pre-

training to post-training in both accuracy (t(17)=2.12, p<0.05) and RT (t(17)=1.98, 

p<0.05), whereas the placebo control group did not show any pre-training to post-

                                                 
7 Two participants were excluded from this analysis, as they did not respond correctly to any items in 
the level and therefore did not provide RT data. 
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training improvements on either measure (t(14)=1.1, p=n.s.; RT: t(14)=1.6, p=n.s.) 

(Figure 19).  

   
A. Mental Rotation Accuracy  B. Mental Rotation RT 
Figure 19. Pre training and post training MR accuracy (panel a) and RT (panel b). 

Error bars reflect standard errors of mean. 
 

Process Non-Specific Tasks 
Process non-specific tasks are tasks that are not expected to show any transfer 

of the training-induced improvements. They are included to demonstrate a lack of 

transfer, so that the transfer shown in the process specific tasks will not be attributed 

to general motivation on the part of the participant. That is not to say that these tasks 

will never show training-induced improvements, but that these tasks rely more on 

acquired knowledge and could benefit from the WM training in the long term, 

through ease of knowledge acquisition that potentially follows WM training.  

The Word ID and Word Attack tasks show significant main effects for time of 

assessment with the RT measure, where participants in both groups are getting faster 

at the task (F(1,33)=47.06, p<0.001, ηp
2=.59), and a main effect for the differences 

between Word attack and Word ID for both RT (F(1,33)=110.1, p<0.01, ηp
2=.77) and 

score (F(1,33)=274.2, p<0.01, ηp
2=.89). No between group differences were observed 

(see Table 15 for descriptive statistics). 
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Similarly, in a 2 X3 X 2 mixed repeated measure design for assessment time 

(Pre or Post), task measure (Reading Errors, Accuracy or Reading Time), and group 

(vsWM training or Placebo Control), GORT showed a main effect for time of 

assessment (F(1,33)=1938.16, p<0.001, ηp
2=.98), a main effect for the measures 

(F(2,32)=1211.96, p<0.001, ηp
2=.99), and a main interaction of measure by time 

(F(2,32)=1213.17, p<0.001, ηp
2=.99). No between group differences were observed 

(see  Table 15 for descriptive statistic). 

The predictions for the process non-specific tasks were for a lack of transfer, 

and indeed the null hypothesis cannot be rejected in the above analyses. However, the 

hypothesis testing employed above cannot provide support for the null hypothesis, 

therefore Bayesian statistics were employed to examine whether there is support for 

the null hypothesis for the process non-specific tasks. The Bayes factors (BF) 

estimate the probability of the null versus the probability of the alternative 

hypothesis. Assuming equal priors, the BF provides an estimate of the posterior 

probability of the null hypothesis given the data relative to the probability of the 

alternative hypothesis given the data (Olejnik & Algina, 2003; Wagenmakers, 2007; 

Rouder, Speckman, Sun, Morey & Iverson, 2009; Masson, 2011).  The current study 

evaluated the alternative hypothesis (interaction effect from the repeated measure 

design of each task) compared to the null hypothesis (Masson, 2011), and produced 

Bayes factors in favor of the null for all process non-specific tasks (see Table 16), 

providing supporting evidence for the lack of transfer effects to these tasks. 
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Table 16. Bayes Factors for the process non-specific assessments. Bayes factors above 1 indicate 
odds in favor of the null hypothesis, whereas bayes factors under 1 indicate odds in favor of the 
alterntaive hypothesis. 

Assessment Bayes Factors 

Word ID 5.66 

Word Attack 5.81 

GORT  

Accuracy 5.27 

Reading Time 5.91 

Reading Errors 5.91 

Imaging Results 

The analysis of the fMRI data was conducted on the SimonSays (modified 

Block-span/Memnosyne) task. Behavioral improvements on the SimonSays task were 

shown earlier as part of the training-specific transfer of improvements. The changes 

in neural activity while partaking in the SimonSays tasks reveal the neural network 

engaged during the training. The fMRI analysis of the images rendered while 

partaking in SimonSays was first conducted as a whole brain analysis, examining the 

activation of the entire brain, and then as a region of interest analysis (ROI), 

examining the IPL and PFC regions that are part of the targeted network.  

Whole Brain Analysis 

Whole brain analysis allows us to examine the task specific pattern of brain 

activation. This allows for confirmation of the task activation, and provides a 

referencing for the ROI analysis. The fMRI analysis was conducted on the sustained 

response for the low memory load trials (MemLow), containing 2, 3 or 4 blue dots, in 

contrast to the sustained response for the low control trials (ConLow) containing 4 

black dots, and on the sustained response for the high memory load trials (MemHigh), 

containing 5, 6, or 7 blue dots, in contrast with the sustained response for the control 



 73 
 

high trials (ConHigh), containing 7 black dots. The MemLow and ConLow contrasts 

did not yield any significant findings, on the pre-training or post-training assessments.  

Therefore the focuses of this presentation are the MemHigh and ConHigh 

contrasts. The pre-training fMRI data showed no group differences in the brain 

activation during MemHigh>ConHigh contrast or the ConHigh>MemHigh contrast.  

Table 17 shows brain areas that survived FDR p<0.05 for the MemHigh>ConHigh 

and the ConHigh>MemHigh contrasts for both groups. Table 17. Pre-training brain 

activation for the MemHigh>ConHigh and the ConHigh>MemHigh contrasts, for 

both groups, p<0.001uncorrected, k=10. Volume information is presented for the first 

listed cluster and identified by letter for subsequent areas belonging to that cluster. 
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Region BA x Y z vol t 

MemHigh > ConHigh       

Parietal       

R. Superior parietal/ Precuneus 7 18 -64 58 28,018a 11.77 

L. Superior parietal/ Precuneus 7 -16 -64 50 a 10.77 

R. Inferior parietal 40 38 -48 54 a 9.24 

L. Inferior parietal 40 -34 -42 42 a 9.63 

Frontal       

L. Middle frontal gyrus 6 -28 -4 58 a 10.58 

R. Middle frontal gyrus 6 24 -2 48 3,871b 8.99 

R. Middle frontal gyrus 11 24 48 -10 47 5.92 

R. Middle frontal gyrus 10 42 42 24 481 5.49 

R. Inferior frontal gyrus 47 34 26 -4 b 5.15 

Sub-cortical       

R. Putamen  24 4 16 b 5.9 

R. Putamen  30 18 6 b 5.59 

R. Thalamus  24 -28 12 b 5.89 

R. Thalamus  20 -12 18 b 5.67 

ConHigh>MemHigh       

Parietal       

L. Superior/ Inferior parietal 7 -36 -74 46 1,327c 7.03 

L. Supramarginal 40 -64 -46 26 c 3.76 

L. Precuneas/ Posterior Cingulate 29 -4 -52 10 17,409d 6.05 

R. Supramarginal gyrus 40 58 -64 26 d 8.75 

Frontal       

L. Superior Medial 10 -2 54 0 d 8.1 

L. Superior Medial 9 -12 56 30 d 7.49 

R. Superior Medial 10 10 60 14 d 7.51 

Cingulate       

R. Anterior Cingulate 32 6 28 -10 d 7.34 

L. Anterior Cingulate 32 -4 38 -10 d 7.91 

R. Posterior Cingulate 31 2 -48 32 1,778 6.59 

L.Middle Cingulate 24 -2 -8 38 268 5.42 

Temporal       

R. Middle Temporal 21 54 -16 -12 d 7.26 

L. Middle Temporal 21 -58 -12 -16 c 8.16 

L. Temporal Lobe/Angular Gyrus 39 -48 -74 30 c 10.56 

 
The MemHigh>ConHigh contrast shows brain areas more active during the 

memory trials (Figure 20, panel a), whereas the ConHigh>MemHigh (Figure 20, 

panel b) shows activity in areas commonly associated with the activation of the 

brain’s default mode (Raichele, et al., 2001; Buckner, Andrews-Hanna, & Schacter, 

2009) that are more active during the control trials. The default mode is a network of 

brain areas active during rest, or non demanding tasks. Therefore, an increase in 
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default network activity during the MemHigh trials at post-training would indicate 

that the MemHigh trials are less demanding.  

A) MemHigh>ConHigh: Right, left, front, and back views of the brains’ activation. 

 
B) ConHigh>MemHigh: Right, left, front, and back views of the brains’ activation. 

 
C) MemHigh>ConHigh (red) and ConHigh>MemHigh (blue). 

 
Figure 20. Pre-training brain activity combined for both groups, p<0.001uncorrected, 

k=10. 
 

The neural effects of the training are evident in the post-training minus pre-

training data, where both the MemHigh>ConHigh and the ConHigh>MemHigh show 

group differences in the brain activation (Table11).  
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Table 18. Post-training minus pre-training brain activation, for vsWM training group> 
Placebo-control and the Placebo Control>vsWM training group, p<0.005uncorrected, k=10.  
 Region BA x y z vol t Interaction 

vsWM Training> Placebo Control    
Parietal R. Inferior parietal/ Supramarginal 40 62 -30 24 60 3.35   

 L. Inferior parietal 40 -30 -30 32 634a 3.73 3-way  

 R. Postcentral  46 -16 24 178b 3.95 2-way  

Frontal/Insula L. Frontal  -24 6 30 a 4 3-way  

 L. Frontal  -30 -14 32 a 4.6 3-way  

 R. Frontal 44 62 6 8 67 4.01   

 R. Postcentral  32 -20 28 b 3.36   

 R. Insula 13 38 8 -12 11 3.05   

 R. Insula 22 46 10 -4 27 3.07 2-way  

 L. Insula 13 -36 0 -8 112c 3.97 2-way  

Cingulate R. Middle Cingulate  12 -2 34 46 3.87 2-way  

 L. Middle Cingulate  -16 -10 36 a 3.37 3-way  

 R. Middle Cingulate 31 16 -28 36 93 4.67 3-way  

 L. Middle Cingulate  -10 2 34 a 3.13 2-way  

 R. Posterior Cingulate 23 6 -26 18 43d 3.18 3-way  

 L. Posterior Cingulate  -14 -46 16 21 3.62   

Temporal L. Superior Temporal 22 -58 -2 10 247e 3.69   

 L. Superior Temporal 22 -56 6 0 e 3.33   

 L. Parahippocampus  -38 0 -22 161f 3.67   

 L. Hippocampus  -30 -14 -14 f 3.62 2-way  

 L. Fusiform 19 -36 -50 -10 31 3.76 2-way  

Sub-cortical L. Putamen  -34 -12 -2 c 3.3 2-way  

 R. Thalamus  22 -30 16 24 3.33   

 L. Thalamus  -6 -24 20 d 3.36 3-way  

Placebo Control >vsWM Training   

Parietal L. Inferior parietal 40 -56 -48 46 21g 3.16   

 L. Inferior parietal 40 -52 -60 44 g 2.96 3-way  

 L. Superior parietal 7 -34 -76 44 119h 3.44 3-way  

 L. Superior parietal 7 -40 -66 50 h 3.29 3-way  

 L. Precuneas 39 -48 -68 36 h 3.16 3-way  

Frontal L. Superior frontal 10 -16 58 30 326i 4.67 3-way  

 L. Superior frontal 9 -10 54 42 i 3.51 3-way  

 R. Superior frontal 9 16 58 36 769j 3.54 3-way  

 R. Superior frontal 8 22 42 48 107k 4.45 3-way  

 L. Middle frontal 10 -38 56 14 i 3.16   

 L. Middle frontal 10 -28 54 22 i 2.94   

 L. Middle frontal 9 -48 24 40 39 3.53   

 L. Inferior frontal Tri. 46 -46 48 4 26 3.38   

 L. Medial frontal Sup. Motor 8 -6 20 50 61 4.15   

 R. Superior Medial frontal 8 8 52 46 k 3.3 3-way  

 R. Superior Medial frontal 10 10 62 24 j 3.59   

 R. Medial frontal orbital 11 8 52 -10 J 4.14   

Cingulate R. Anterior Cingulate  0 48 6 j 3.14 3-way  

 L. Anterior Cingulate 32 -2 42 -10 j 3.2 3-way  

 L. Anterior Cingulate 32 -4 34 30 91 3.48   

Temporal R. Superior Temporal 22 62 -56 20 10 3.59 3-way  

 L. Middle Temporal  -54 -46 -8 20 3.4 3-way  

 
The activation difference between the post-training and the pre-training on the 

MemHigh>ConHigh contrast is presented for both the vsWM Training 
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group>Placebo Control group (Figure 21 panel A) and the Placebo Control 

group>vsWM Training group (Figure 21 panel B). The vsWM training groups 

increased in activation in areas associated with the default network and decreased in 

activation in parietal and frontal regions, in comparison to the placebo control group 

(Figure 21 panel C). 

A) vsWM Training>PlaceboControl: Right, left, front, and back views of the brains’ 
activation. 

 
B) PlaceboControl>vsWM Training: Right, left, front, and back views of the brains’ 

activation. 

 
C) vsWM Training>Placebo Control (blue) and PlaceboControl>vsWM Training (red). 

 
Figure 21. Group differences on the difference between post-training and pre-training in 

the MemHigh>ConHigh contrast; p<0.05 uncorrected, k=10.  

ROI Analysis 

ROI analyses examine the brains’ activation in regions of interest defined a-

priori. For this study, the ROI are bilateral parietal and frontal regions (BA 7, 39, 40 

& BA 8, 9, 44, 45, 46, 47), which have been implicated many times in WM tasks 

(Klingberg, 2000; D’Esposito, Postle, & Rypma, 2000; Olesen, Westerberg, & 
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Klingberg, 2004; Todd & Marois, 2004; D’Esposito, 2007; Tomasi, Chang, Caparelli 

& Ernst, 2007; McNab & Klingberg, 2008). These regions were anatomically selected 

using the automatic anatomical labeling atlas. Additional regions to examine are the 

default network regions, which include BA 24, 9, 10, 32, 29, 30, 23, 31, 39, 40, 21 

and the hippocampal regions. These default network regions have been shown to 

change based on task demands (Raichle, et al., 2001; Buckner, Andrews-Hanna & 

Schacter, 2008). Some of the general regions (as defined by BA) for the default mode 

and task activation supposedly overlap. In those cases, the specific activation of the 

examined cluster was classified based on pre-training activation in the MemHigh or 

ConHigh trials. Parameter estimates (6mm spheres) were extracted from post-training 

minus pre-training difference for regions that SPM indicated showed differences in 

activation on either the vsWM training>Placebo control or the Placebo control> 

vsWM training contrast. Pre-training parameter estimates were extracted for those 

regions showed no group differences (Figure 22; all p’s>0.1). Therefore, the 

differences between the groups at post-training and at post-training minus pre-training 

(Figure 23) are believed to reflect the changes related to the training.  
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A)  

B)  
Figure 22. Parameter estimates for pre-training, showing no group differences. Error 

bars reflect standard errors of mean. Panel A are regions that showed task related activations, 
panel B are regions associated with the default mode network. Data for these charts was 
extracted directly from SPM. 

 
The vsWM training groups increased in activation in areas associated with the 

default network (Figure 23 panel B) and decreased in activation in parietal and frontal 

regions (Figure 23 panel A), in comparison to the placebo control group (t(33)=|4.33 

to 2.65|, all p’s<0.05) . 
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A)  

B)  
Figure 23. Parameter estimates for the post-training minus pre-training differences. 

Panel A is the vsWM training> Placebo Control. Panel B is the Placebo Control>vsWM training. 
Error bars reflect standard errors of mean. Data for these charts was extracted directly from 
SPM. 
 

The ROI analysis is constructed as three-way interactions (depicted in Figure 

21), between the time of assessment (Pre and Post), the trial type (MemHigh and 

ConHigh), and the training group (vsWM training and placebo-control). To better 

understand the source of the differences, the parameter estimates of the brain 

activation were extracted for the forty-six regions listed in Table 18, for the pre-

training MemHigh, the pre-training ConHigh, the post-training MemHigh, and the 

post-training ConHigh. The extraction used a 6mm sphere from a map with p=1. The 

threshold was set high in order to capture all the voxels that SPM used for the 

analysis. The parameter estimates for each region was subjected to a mixed repeated 

measure ANOVA, with time (pre, or post) and trial type (MemHigh, or ConHigh) as 

repeated within group variables and the group type (vsWM training or placebo-
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control) as the between group variable. Twenty of the forty-six regions showed 

significant three-way interactions between time, group and type (Table 19), and an 

additional eight regions showed significant two-way interactions between time and 

group (Table 20 & Figure 25). The relationship on the parameter estimates between 

MemHigh minus ConHigh for both groups at both time points is presented in Figure 

24, vsWM training> Placebo Control regions (panel A), and for Placebo 

Control>vsWM training regions (panel B). The vsWM group shows decreases in 

activation at post-training for regions typically active during demanding tasks and 

increases in activations in areas associated with the default network activation. 
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Table 19. Statistics for regions showing a three-way interaction: trial type, assessment time and 
training group. 

        vsWM Training Placebo Control 3 way interaction 
Region x y z Pre β Post β Pre β Post β F p ηp

2 
Parietal           

L. Inferior -30 -30 32 0.52 0.29 0.40 0.71 9.23 0.01 0.22 
L. Inferior -52 -60 44 -1.81 -1.30 -1.07 -1.94 5.10 0.05 0.13 
L. Superior -34 -76 44 -1.42 -0.68 -1.17 -2.36 8.54 0.01 0.21 
L. Superior -40 -66 50 -2.24 -1.33 -0.72 -1.82 7.15 0.05 0.18 
L. Precuneas -48 -68 36 -2.22 -1.24 -1.76 -3.15 11.21 0.01 0.25 

Frontal/Insula          
L. Frontal -24 6 30 0.31 0.12 0.09 0.38 6.74 0.05 0.17 
L. Frontal -30 -14 32 0.32 0.13 0.16 0.42 6.79 0.05 0.17 
L. Superior -16 58 30 -1.59 -0.99 -1.22 -2.68 8.63 0.01 0.21 
L. Superior -10 54 42 -1.83 -0.97 -1.70 -2.92 5.78 0.05 0.15 
R. Superior 16 58 36 -1.06 -0.85 -1.05 -2.32 4.58 0.05 0.12 
R. Superior 22 42 48 -1.43 -0.70 -0.54 -1.61 9.72 0.01 0.23 
R. Superior Medial 8 52 46 -1.29 -0.95 -0.97 -2.01 5.54 0.05 0.14 

Cingulate           
L. Middle -16 -10 36 0.24 0.18 0.11 0.54 6.55 0.05 0.17 
R. Middle 16 -28 36 0.17 -0.18 -0.24 -0.03 6.47 0.05 0.16 
R. Posterior 6 -26 18 0.31 0.05 -0.13 0.29 6.32 0.05 0.16 
R. Anterior  0 48 6 -2.50 -1.55 -2.17 -3.66 6.93 0.05 0.17 
L. Anterior  -2 42 -10 -3.19 -1.47 -2.54 -3.81 9.24 0.01 0.22 

Temporal           
R. Superior 62 -56 20 -1.59 -0.76 -1.39 -2.06 7.38 0.05 0.18 
L. Middle -54 -46 -8 -1.05 -0.38 -0.44 -1.10 11.41 0.01 0.26 

Sub-cortical          
L. Thalamus -6 -24 20 0.28 0.08 -0.15 0.28 5.56 0.05 0.14 
 

Table 20. Statistics for the regions that showed a time by group interaction. 
        vsWM Training Placebo Control Time by Group interaction 
Region x y z Pre β Post β Pre β Post β F P ηp

2 
Parietal           

R. Postcentral 46 -16 24 -0.06 -0.36 -0.49 -0.35 9.39 0.01 0.22 
Frontal/Insula          

R. Insula 46 10 -4 0.17 -0.39 -0.01 -0.38 4.59 0.05 0.12 
L. Insula -36 0 -8 -56.89 -0.46 -40.87 -0.58 6.33 0.05 0.16 

Cingulate           
R. Middle 12 -2 34 0.21 -0.04 -0.02 0.02 4.40 0.05 0.12 
L. Middle -10 2 34 0.35 0.10 -0.08 -0.08 7.71 0.01 0.19 

Temporal           
L. Hippocampus -30 -14 -14 -0.65 -0.56 -0.64 -0.30 6.36 0.05 0.16 
L. Fusiform -36 -50 -10 -0.14 -0.23 -0.18 -0.08 6.43 0.05 0.16 

Sub-cortical          
L. Putamen -34 -12 -2 0.12 0.07 -0.20 -0.14 5.90 0.05 0.15 
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A)  
 

B)  

 
Figure 24. The parameter estimates of activation for the regions that show three-way 

interactions between time of assessment, trial type and training group. Panel A are the areas 
associated with decreases in activation, panel B are areas associated with the default mode 
network. Error bars reflect standard errors of mean. 
 

The post-training decreases in brain activation for task demanding areas, and 

increases in activation for areas related to the default network imply that the vsWM 

group is more efficient in performing the high memory load trials and therefore needs 

to recruit less neural resources to perform the task. 
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Figure 25. The parameter estimates of activation for the eight brain regions showing a significant 
two-way interaction between time of assessment and training group. Error bars reflect standard 
errors of mean. 

Brain Behavior Correlations  

Correlations between the BOLD activation in the twenty regions with the 

significant 3-ways interactions (post-minus-pre, MemHigh vs ConHigh, and the 

vwWM vs PlaceboControl groups), were examined with the pre and post behavioral 

assessments, letter-number-sequencing, ShapeBuilder, Ravens, and SimonsSays 

HighMem accuracy. The pre-training data was collapsed across group assignment, as 

participants had not yet been assigned to a group. The pattern of activation is not 

consistent across regions within tasks. Future analysis will examine the correlations 

between the task based BOLD activation and the training and assessment measures. 

Letter-number-sequencing: Pre-training there were no significant correlations 

of the BOLD activation with letter-number-sequencing. Post-training only the vsWM 

training group displayed significant correlations with the post BOLD activation. 

Moderate correlation (r=0.49 to 0.58, p<0.05), for the L frontal, the right posterior 

cingulate and bilaterally for the middle cingulate.  

ShapeBuilder: Pre-training there were no significant correlations of the BOLD 

activation with Shape Builder. Post-training, the vsWM training group displayed 

significant correlation with the left inferior parietal and the left middle cingulate 
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(r=0.5 to 0.6, p<0.01), whereas the placebo control group displayed significant 

correlations with the left precuneas and IPL regions, the right temporal, bilateral 

anterior cingulate, and bilateral superior frontal regions (r=0.52 to 0.67, p<0.05). 

Ravens: Pre-training Ravens score showed significant negative correlations 

with BOLD activation in the left precuneas, bilateral superior frontal, bilateral 

anterior cingulate and right medial superior frontal (r=-0.34 to -0.50, p<0.05). Post-

training showed only significant correlations in the vsWM training group, with 

bilateral superior frontal, and the right medial superior frontal (r=-0.48 to -0.65, 

p<0.05). 

SimonSays HighMem: Pre-training SimonSays for the high memory load trials 

showed significant correlations to the left middle cingulate (r=0.34, p<0.05). Post-

training in the vsWM training group, there were moderate to strong correlations (r=-

0.5 to 0.65, p<0.05) that switched direction based on region; right superior cingulate 

and the left thalamus showed a positive relationship, whereas the left superior frontal 

region showed a negative one. In the placebo control group, the post-training Raven’s 

score positively correlated with the BOLD activation in the left  inferior and superior 

frontal and the right superior temporal (r=0.5 to 0.55, p<0.05). 
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Discussion 

This experiment investigates the malleability of WM, and the transfer of 

improvements to trained and untrained tasks. The results suggest that WM can be 

improved via training. The training specific tasks depict the improvement in 

performance on a non-adaptive version of the trained task. The pattern of results for 

the process-specific transfer is mixed, as the degree of network overlap of the training 

with the tasks differs. OSpan, while an assessment of WM, is verbal in nature and 

loaded on a separate factor than the vsWM in the first study. The same applies to 

Letter-number-sequencing, verbal fluency and Stroop, as they all involve verbal 

material. Ravens, although a spatial reasoning task, also did not load with the vsWM 

tasks in the latent variable analysis; it loaded with the reasoning ability tasks. It was 

somewhat surprising that the online vsWM training did not lead to transfer on the 

SymSpan task, as prior training studies have found process-specific transfer to 

complex span tasks (Atkins et al., under review).  

There are many possible reasons for the lack of transfer, one being the 

duration of training. The cognitive training that showed process specific transfer to 

the complex WM tasks used twenty hours, whereas the current training is only ten 

hours. Future research should examine the issues with regard to the lack of predicted 

process-specific transfer in the complex WM span tasks. 

Additional evidence for process-specific transfer to the visual spatial network 

was found in the Posner cueing improvements. The Posner cueing improvements 

were primarily in the visual presentation, although transfer was also evident in the 

long auditory trials. This stronger benefit to the visual modality is consistent with 
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degree of process-specific transfer, as the relationship of the visual Posner cueing to 

the vsWM training would be stronger than the auditory version. Process-specific 

transfer was also evident in the mental rotation task, a task known to be related to 

vsWM (Zacks, 2008). Benefits were also evident in the response time on the math 

problems in the mental math task, suggesting that the 10 hours of vsWM training did 

induce process-specific improvements to untrained cognitive tasks.  Additionally, no 

transfer was found to the process non-specific tasks, confirms that there was no 

Hawthorne effect and that there was no general motivational increase to perform 

better at the end of the study.  

The neural network targeted by these vsWM training tasks is the frontal-

parietal network. Many studies have shown this network to be engaged during WM, 

executive control, and attentional processes (Smith & Johnides, 1997; Olesen, 

Westerberg, & Klingberg, 2004; D’Esposito, 2007; McNab et al., 2008; Klingberg, 

2010). The vsWM training group exhibited decreases in parietal and prefrontal 

regions related to task performance, compared to the placebo control group. This 

reduction in brain activity suggests that the participants in the vsWM training group 

became more efficient at performing the task and, therefore, needed to recruit fewer 

resources to complete the task.  

Research has at times shown that frontal eye fields can predict behavioral task 

performance (Hayes, Petrov & Sederberg. 2011). Therefore, it is important to note 

that the task activation regions were not frontal eye-fields regions (x:-24 to -40 or 21 

to 40; y:-6 to 1; z: 44 to 51). In fact, in the stated analysis, the HighControl should 

show greater frontal eye field activation than the HighMemory, as the HighControl 
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contained sequences of 7 dots always, and the HighMemory contained sequences of 

5, 6 or 7 dots. Therefore, eye movement is not a factor that needs to be accounted for 

in the task analysis. 

Additional support to this hypothesis comes from the increased activity in the 

vsWM training group following the training in regions associated with the default 

mode network. The increase in default mode activity during the memory trials, for the 

vsWM training group, implies that the vsWM training group does not find the task as 

demanding as it was prior to the training, again supporting the hypothesis that the 

vsWM training group is more efficient when performing the demanding memory task. 
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Chapter 4: General Discussion 
The work presented here investigated the underlying structure of WM and its 

malleability. This research investigated whether WM is a unitary domain general 

construct or a multi-component domain specific construct, and presented two new 

measures of WMC, Block-span and Letter-number-sequencing. The presented 

research also investigated the malleable nature of WM, through vsWM training, and 

examined the transfer of training-induced improvements to untrained cognitive tasks. 

The first major finding from this work is that WM is a multi-component 

construct. Experiment 1 both verified Block-span and Letter-number-sequencing as 

valid, reliable measures of vsWM and vWM respectively, and provided supporting 

evidence for the multi-component domain specific perspective of WM. The latent 

variable analysis used structural equation modeling to examine the unitary model of 

WM and the multi-component model of WM. The multi-component model of WM, 

with a vsWM component and a vWM component, provided a good fit to the data, as 

indicated by all model fit indices, whereas the unitary domain general model provided 

a relatively poor, and significantly worse, fit to the data.  

This finding replicates the findings of Kane et al.’s (2004, fig3). Indeed, 

similar to the Kane et al. study, Experiment 1 also revealed a strong relationship 

between the vsWM and vWM latent variables (r=0.69), although it is weaker than 

that found in the Kane study (r=0.84). Kane et al. argued that the strong relationship 

between the domain specific WM components reflected a general component which 

they labeled “attention”. In order to highlight the executive attention variable, Kane et 

al. (2004) added short-term memory measures into their latent variable analysis. The 



 90 
 

addition of the short-term memory measures resulted in a three factor solution for 

executive attention and verbal and visual storages.  

The current data cannot replicate the additional analyses conducted by Kane et 

al. (2004), as short-term memory measures were not collected. While the SEM for the 

WM tasks suggested a two-factor solution (vsWM and vWM), the full exploratory 

factor analysis produced a three factor solution, consisting of vWM, vWM and 

reasoning ability tasks. This is consistent with a growing body of behavioral and 

neuronal evidence which provides support for the multi-component domain specific 

distinction in WM (Smith, Jonides, & Koeppe, 1996; Smith & Jonides, 1997; Hartley 

& Speer, 2000; Baddeley, 2000; Klingberg, 2006; D’Esposito, 2007; Tomasi, et al., 

2007; Bull, Espy & Wiebe, 2008; Thomason, et al., 2009). 

The second major finding is that WM can be improved through training. This 

finding adds to the growing literature regarding the malleability of WM (Olesen, 

Westerberg & Klingber, 2004; Klingberg et al., 2005; Jaeggi, Buschkuehl, Jonides, & 

Perrig,2006; Dahlin, Stigsdotter-Neely, Larsson, Bäckman, & Nyberg, 2008; Holmes, 

Gathercole & Dunning, 2009; McNab et al., 2009; Chein & Morrison, 2010; Atkins et 

al., under review).  This study has shown that it is possible to improve vsWM with 10 

hours of adaptive training, and show transfer of the improvements to behaviorally 

assessed, non-trained, cognitive tasks that rely on the same network as the trained 

tasks. These improvements on the training tasks and the transfer tasks occur only in 

the vsWM training group, not the Placebo Control group. The training-induced 

improvement transferred to the mental rotation task, to the Posner cueing task and the 

results suggest some degree of transfer to the mental math task.    
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This study also shows that the WM training administered in an online format 

can lead to improvements; this is in direct contrast to the results from Owen et al, 

(2010). Owen et al, (2010) conducted a training study that administered both online 

training tasks and online pre-testing and post-testing. Owen and colleagues did not 

find training improvements or training induced transfer in their study, even though 

they had a sample size of over 11,000 participants. However, their study has several 

methodological issues. First, they recruited participants from a website intending to 

debunk the theory of cognitive training (‘Band goes the theory’). Second, they 

included participants who complete between both assessment test and at least two 

training sessions during the 6 week training period. Each participant trained on six 

training task during a 10 minute session. Therefore, participants who completed two 

training sessions saw each of the training tasks twice, and trained for a total of 3-5 

minutes per task, with a total training time of 20 minutes. Research implies that the 

degree of training improvement is directly related to the duration of the training 

(Jaeggi, Buschkuehl, Jonides & Perrig, 2008). Therefore, the duration of training in 

the Owen et al (2010) study should not lead to improvements and transfer as one does 

not really train in the task. An additional issue is the training adaptively and task 

difficulty. The online training in the Owen et al (2010) study consisted of six tasks 

during 10 minutes, leaving just a couple minutes for each of the training tasks. That 

brings up the question of whether participants are training in an adaptive or 

demanding task. Adaptive training brings participants to their threshold performance 

level, and maintains that difficulty until participants achieve that difficulty level 

(Mahncke et al., 2006). For example, in my study participants did not hit their 
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threshold until the second or third training session, and each of my sessions was 7 or 

8 minutes in duration. Therefore, I doubt that participants, who trained for two 

sessions, ever reached their threshold performance levels on the trained tasks.     

The results from the Owen et al (2010) study highlight the difficult of 

conducting good training studies. Recruiting participants with a pre-conceived notion 

of what the study is investigating leads participants to behave based on the 

predictions (Boot, Blakely & Simons, 2011). In my second experiment, all people 

were recruited and randomly placed into one of two groups of training. The study did 

not require or question participants regarding expertise in other types of computer 

games of any kind. In addition, the assessment battery was designed to relate to tasks 

trained upon by both groups, maintaining the perception for participants in both 

training groups that their training expected to yield improvements. The vsWM 

training group trained on vsWM tasks (Memnoysne and ShapeBuilder), and the 

placebo control group trained on reading and math tasks (Sentencical and Number 

piles). The pre-training and post-training assessment battery contained tasks involving 

vsWM tasks, reading and math tasks, so both groups would be equally likely to 

expect improvements.    

Another pitfall that training studies must avoid is the Hawthorne effect 

(Shipstead, Redick & Engle, 2010), in which participants might be inclined to 

improve on their performance to appease the researcher. One way of getting around 

the Hawthorne effect is to include tasks to which you are not expected to show the 

transfer. Predicting the lack of transfer allows one to examine whether the participant 

exhibited a generalized post-testing improvement, or only improvements on the tasks 
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specifically predicted to improvement after training. In the presented training study, 

process specific tasks were predicted to show training-induced improvements 

following the vsWM training, whereas, process non-specific tasks were predicted to 

not show any improvement following training. A- priori predictions regarding the 

transfer of improvements and including assessment tasks predicted to show no- 

transfer effects, addresses whether the Hawthorne effect in the training data.  

The results from the online vsWM training study present a theoretical 

framework for distinguishing between training-specific, process-specific, and process 

non-specific transfer of the training-induced improvements. Examining the transfer of 

improvements based on processes, as opposed to more surface properties within the 

near and far transfer framework, provides additional information about the 

expectations and underlying sources of the transfer of improvements.  An assessment 

task was considered process specific based on the overlap in the brain network active 

during that assessment task and the frontal-parietal network targeted by the training 

tasks, not just whether the transfer task and the training task shared surface task 

properties or were in the same modality. Behaviorally, process specific tasks should 

load on the same factor as the trained tasks. Therefore, the process specificity 

classification also takes into account factor analyzes on behavioral data, which 

typically imply a distinction between modalities (Kane et al., 2004; Experiment 1 of 

the current study). The modality aspect is therefore only one of the aspects that will 

eventually define whether a task is process specific or not.  At times these 

expectations make clear prediction regarding the transfer of improvement, as they did 

with visual Posner cueing, and the mental rotation task. Yet at times, different 



 94 
 

theoretical perspectives predict different transfer patterns, as was evident in OSpan, a 

WM task that relies on a similar network as the vsWM task (McNab et al., 2008), but 

loaded on a different factor in the first experiment.  

The third major finding is that WM training produced decreases in BOLD 

activation in areas associated with task demand, the parietal and frontal regions. 

These finding are consistent with other finding in the literature regarding a decrease 

in activation following training (Garavan, et al. 2000; Chein & Schnieder, 2005; 

Dahlin, Bäckman, Stigsdotter-Neely & Nyberg, 2008). In addition, these finding 

show increases in activation in areas associated with the default mode network 

(middle and posterior cingulate, medial frontal and temporal regions), similar to the 

findings of Olesen, Westerberg & Klingberg (2004). This finding might help clarify 

the inconsistencies in the literature regarding whether activation should increase or 

decrease following training, as the direction of the activation change depends on the 

exact task and definition of the ROI, as default mode will at times activate the parietal 

regions.  

Decreases in the BOLD activation following training are predicted to be the 

result neural plasticity, the ability of the brain to continuously update based on past 

experiences. Neural plasticity has been suggested to influence processing by 

improving the processing of select neurons or by the inhibition of non-selective 

neurons, and has been shown on occur after short duration (habituation, priming or 

repetition suppression) or after long durations (learning or training) (Kourtzi & Grill-

Spector, 2005). Plasticity on short duration, similar to priming, are thought to reflect 

stimulus-response learning, where on the subsequent encounter of the stimuli 
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bypasses the response processing stage (Horner & Henson, 2008). However, long 

term plasticity is thought involve a reduction of the cognitive load created by the task, 

and therefore leads to a reduction in the extent and magnitude of cortical activation 

(Chein & Schneider, 2005). The current training study led to long term plasticity 

evident by decreases in regions of task related activation and increase in default mode 

activation, support the theoretical perspective of greater efficiency in the recruitment 

of brain resources following WM training. 

Both of the presented experiments showed that it is possible to administer cognitive 

assessments and training over the web. The advantages of deploying experiments via 

the web is threefold. First, there is no proprietary software that restricts other 

researchers’ usage. Second, it reduces the time and resources each  researcher must 

devote to face to face meetings and administration of tasks. Third, it allows to 

administer the training outside of a tightly controlled laboratory setting, Experiment 2 

has shown that cognitive training can be effectively removed from the laboratory 

setting and the requirement of individualized interactions. For cognitive training to 

have a large scale impact and be deployable to target populations and society in 

general, it needs to be mass distributable in a format that allows for limited 

interaction. This research shows that it is possible.  

Future Experiments and Analyses 

Very few studies provide clear and unequivocal conclusions of research 

questions. The research presented here is part of a series of studies examining the 

underlying structure of WM, modeling performance during WM tasks, designing and 
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validating additional WM measures, and furthering our understanding of the nature 

and process of WM training.  

The research on the malleability of WM administered additional cognitive 

tasks that were designed to investigate process-specific transfer in the brain, as well 

as allow for usage of functional connectivity to examine the neural network 

underlying the tasks. Diffusion-tensor-imaging was also collected to allow the 

examination of the changes in white matter tracks following the vsWM training. 

Similarly, the high resolution structural images collected can be used as to examine 

voxel-based-morphology pre-training and post-training, to investigate the volumetric 

changes to grey matter following the vsWM training.  

Future experimental designs should investigate the effects of WM training 

duration and the relationship between specific training tasks on the improvement 

following the training, with respect to domain specific versus domain general 

abilities. Additional research is needed to investigate the differences in the adaptivity 

of the WM training progression. These are important research questions that will 

further our understanding of how to design and administer WM training and better 

create WM assessments and most importantly further our understanding of the core 

cognitive process called WM.  
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Appendix A: WM Malleability: Assessment Order  

The two versions of the ordering of the cognitive tasks presented at the pre 

and post training sessions for the second study.  

Order A    Order B 
1) OSpan     ShapeBuilder 
2) SymSpan    Letter-number-sequencing 
3) Letter-number-sequencing  Stroop 
4) ShapeBuilder    GORTa 
5) ModMathB    Word ID & Attack a 
6) Stroop     Ctop &VF 
7) Posner     MentalMath 
8) MentalMath   Mental Rotation 
9) RavensE    Posner 
10) Mental Rotation   SymSpan 
11) Ctop &VF    RavensO 
12) Word ID & Attack b   OSpan 
13) GORTb    ModMathA 
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  Appendix B: WM Malleability: Mental Math Descriptives 

Descriptive statistics for the different levels in the Mental Math task. 
  vsWM Training (n=18)  Placebo Control (n=15) 

#Level 
  

Pre   Post     Pre   Post   

   Example M SD M SD   M SD M SD 

Accuracy          

1 5+4-6 92.22 8.78 93.89 6.98  91.33 11.87 92 10.14 

2 12-11+23 48.89 11.32 53.33 9.7  46.67 13.45 54.67 13.02 

3 4*3/2 93.33 12.37 94.44 5.11  88 10.82 94 9.1 

4 15*12/10 55 8.58 56.11 9.78  57.33 7.04 54.67 6.4 

5 15*2/10+4 62.22 15.17 66.11 13.78  56.67 19.15 61.33 19.59 

6 10/5*20/2 18.99 13.67 28.89 16.76  20.67 15.34 28.67 20.31 

RT          

1 5+4-6 1480.56 333.64 1354.83 278.75  1468.35 349.81 1528.71 339.6 

2 12-11+23 1808.46 522.31 1713.16 432.65  1860.31 824.93 2130.4 519.56 

3 4*3/2 1266.78 289.07 1162.44 274.29  1229.06 411.06 1202.05 311.35 

4 15*12/10 1246.23 347.2 1249.75 264.97  1380.54 501.95 1370.59 338.47 

5 15*2/10+4 2139.61 536.26 1932.78 443.58  2512.14 867.77 2374.42 472.44 

6 10/5*20/2 2713.67 750.67 2524.43 595.49   2973.17 1089.78 2905.53 683.02 
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Appendix C: WM Malleability: Mental Rotation Descriptives  

Descriptive statistics for the different degrees of rotation in the Mental 
Rotation task. 

 
  vsWM Training (n=18)  Placebo Control (n=15) 

    Pre   Post     Pre   Post   

    M SD M SD   M SD M SD 

Accuracy          

 Rot0 91.31 19.36 97.76 5.00  94.67 14.16 92.07 19.52 

 Rot45 78.19 15.55 77.74 15.62  76.58 17.86 79.31 15.23 

 Rot135 70.45 16.89 73.17 18.12  74.13 13.70 72.55 18.09 

 Mir0 80.55 19.43 87.52 9.83  78.44 16.53 86.69 10.41 

 Mir45 70.13 14.95 74.60 19.93  65.48 16.57 73.97 21.84 

 Mir135 62.16 18.34 63.57 20.40  62.75 18.53 64.67 21.26 

RT           

 Rot0 1443.89 248.29 1318.80 237.49  1489.37 279.29 1355.36 222.75 

 Rot45 1984.41 314.51 1731.79 369.26  1948.44 276.85 1807.85 224.32 

 Rot135 2214.68 359.19 2006.76 474.88  2193.15 454.78 2072.62 360.78 

 Mir0 1829.24 302.15 1839.89 642.98   1809.01 340.15 1857.91 703.75 

 Mir45 2103.88 344.05 1892.23 652.69   2019.16 315.76 1729.95 396.61 

  Mir135 2208.71 360.24 1946.14 505.93    2174.48 543.63 1966.06 446.14 
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Glossary 

ADHD= attention deficit hyperactive disorder 

AFOQTa= Airforce officer qualifying test verbal analogies. 

AFOQTm= Airforce officer qualifying test mathematical knowledge. 

AFOQTrb= Airforce officer qualifying test block rotation. 

AFOQTrc= Airforce officer qualifying test reading comprehension. 

AGFI= adjusted goodness of fit index. 

BOLD= blood oxygen level dependant. 

CFI= comparative fit index. 

DTI= diffusion tensor imaging. 

FDR= false discovery rate corrected. 

fMRI= functional magnetic resonance imaging. 

FWE= family wise error rate corrected. 

gFI= general fluid intelligence. 

GFI= goodness of fit index. 

GORT= Gray oral reading test. 

IFG= inferior frontal gyrus. 

IPL= Inferior parietal Lobe. 

MNI= Montreal neurological institute 

MRI= magnetic resonance Imaging. 

msec= milliseconds 

NavSpan= automated navigation span. 

NFI=normed fit index. 
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NNFI= non-normed fit index. 

OSpan= automated operation span. 

PFC=prefrontal cortex. 

Ravens= advanced raven progressive matrices; E for even trials; O for odd trials. 

RG1= ETS arithmetic aptitude test. 

RG2= ETS mathematic aptitude test. 

RL3= ETS inference test. 

RMSEA=Root Mean Square Error of Approximation. 

ROI= region of interest. 

RotSpan= automated rotation span. 

RSpan= automated reading span. 

RT=reaction time 

RunSpan= running span. 

Sec=seconds. 

SRMR= standard root mean square residuals. 

SVC= small volume corrected. 

SymSpan=automated symmetry span. 

vsWM= visual spatial working memory. 

vWM= verbal working memory. 

VZ2= ETS paper folding, p1= part 1; p2=part 2. 

WASI= Wechsler abbreviated scale of intelligence: matrices. 

WM= working memory. 

WMC= working memory. 
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