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The concept of computer integrated manufacturing has been the primary focus
of research in the manufacturing community, to achieve high product quality
and productivity. The need to continually improve on manufacturing processes
necessitates the identification and modeling of all factors that affect product
quality in the manufacturing process. The sources of machine tool vibration
during the machining process is one such set of significant factors that is of
interest.

This thesis work attempts to explain the effect of the non-homogeneous dis-
tribution of workpiece material microstructure on machining quality. The main
contributions of this thesis are (1) that two stochastic models, using the concepts
of sample variance and Markov chains, are used to simulate the microhardness
distribution, (2) that an algorithm is developed for the calculation of the sample
shape function, critical to the sample variance model, and (3) that a computer
simulator has been built to simulate the turning process, which takes the cut-

ting conditions and the microstructural image of the material as its inputs, and



evaluates the machining performance. The validity of the models in describing
random excitation has been confirmed by comparison of dynamic force values
obtained from experiments and from simulation.

This integrated approach of analyzing the machining process provides the
production engineer with a tool for estimating the optimal cutting conditions for
a given material. It also provides the design engineer a method of selection of

materials based on their ability to be machined to a required surface finish.
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Chapter 1

Introduction

1.1 Background

The use of machining in the manufacturing cycle of both metallic and non-
metallic parts has always been wide. Different machining processes have been
used efficiently for many years and the quality of the parts made has always
mmproved. The high surface finish requirement of machined surfaces necessitates
a better understanding of the machining process.

A lot of research has been done to develop models to describe different machin-
ing operations in the past years and significant progress been made in developing
controls to improve the machining performance. The results have been very en-
couraging and have almost always kept machining process abilities in hand with
the product requirements. The surface finish requirements of the industry are

always tied up with the cutting dynamics of the machining process. Thus this



has often been the topic of study for many researchers. Most of the research
has always been to address the problems in machining in a macroscale. Mathe-
matical models for cutting processes have existed for a long time. Merchant [1]
after extensive research on cutting forces formulated the composite cutting force
- diagram which explains the relationship between cutting force components in
orthogonal cutting. Kronenberg [3] established numerous relationships between
different cutting parameters and the cutting force with the help of results from
his experimental research. It was, in fact, Kronenberg who first established a
concrete relationship between the material hardness and the cutting force. It
is this relationship that forms the basis for the establishment of cutting force
variation based on microhardness distribution, explored in this thesis.

The main apparent factors that affect surface finish in machining are the tool
geometry and the dynamic characteristics of the cutting process. It is fairly easy
to predict the nature of the finished surface with the knowledge of these factors.
But in practical machining, it is observed that the surface finish obtained is very
different from that predicted by such a model. This nature of the machined
surface is because of many other factors like tool vibration, chip formation and
flow, material properties, tool wear, etc. Some of these factors can be controlled
during the machining operation, but others like tool vibration require proper
mathematical models to describe them, before any effective controls can be built

in.

Tool vibration was one of the greatest concerns of machine tool researchers



in the fifties and the sixties. The desire to characterize the tool vibration and
control it resulted in a lot of significant work during that period. The machine
tool structure was often modeled as a single or two degree of freedom spring
- mass - damper system. Arnold [4] used the popular Van der Pol model, to
relate the cutting velocity variation to the vibration in the cutting tool structure.
The effect of regeneration was characterized by Tobias and his co-workers [5].
Regeneration arises when successive cuts overlap in a machining process. He
introduced the concept of the overlap factor to account for this effect. The
formulation of the stability chart by the use of such models was also done by
Tobias [6]. He later refined the model by the incorporation of the coupling
coefficient and the penetration rate factor to explain the effects of regenerative
feedback in a more accurate way. Tlusty (7], first by himself and later with
Polacek [8], used the mode coupling theory for exploring the stability limits in
machining processes. Merritt [2] modeled the cutting process by both, a single
and a two degree of freedom model, and was able to explain the cause of self-
excited chatter that occurs during machining. He employed the classical control
system approach to model the regenerative effect as a feedback loop with a time
lag. He was able to simplify the formulation of the lobed borderlines on the
stability charts.

Tool vibration is caused by factors which can be categorized into determinis-

tic and random factors. The dynamic response of the tool as a result of the load

due to the nominal cutting area of the workpiece can be accurately predicted and



hence is called the deterministic tool vibration. All the work by the researchers
mentioned earlier in characterizing vibrations helps explain only this determinis-
tic part. It is seen in practical machining that this does not completely account
for the vibration present. This is because of the other component - the random
vibration. The attempts in the building of a complete and accurate model to
characterize the random tool vibration have only resulted in limited success. It
is very important to identify the cause of the random vibration and model its
nature, before it can be controlled.

The main cause of the random vibration in machining is due to the vari-
ation in the cutting force caused by the non-homogeneous distribution of the
microhardness in the workpiece material. Zhang and Kapoor [12], [13] proposed
the relationship between the material microstructure and the random vibration
occuring in machining. A model to describe the material microstructural dis-
tribution in the longitudinal direction was also proposed by Zhang and Hwang
[15]. The prediction of cutting forces during machining, its dynamic nature and
its effects on the structural dynamics of the machine tool has always been an
important field of research for scientists in the field of machining. A study of
the nature of the microstructure of the workpiece material can help describe the
nature of the random excitation of the tool cutting it. If the random excitation
is accurately modeled, it can be effectively used to design controls for minimizing

them and hence improve surface finish of machined surfaces.

This thesis work aims at addressing this problem of characterizing random



vibration and relating it to surface finish. The work can be divided in terms of

the various functional models used to address this issue. They are the following:

e Material Description Models
a) Sample Variance Model
b) Markov Models
- Single Distribution
- Multiple Distribution
e Tool Vibration Evaluation Model

e Surface Evaluation and Surface Topography Generation Model

The material description model explains a statistical way of describing and
quantifying the nature of the material microhardness distribution. This model
is then used to describe the nature of the force variation in the turning process.
Since the focus of this research is in the characterization of random vibration
caused due to material micro-nonhomogeneity, the accuracy of this model is crit-
ical. The model essentially has two approaches to describe the material distribu-
tion. The first approach, referred to as the ”"sample variance theory”, describes
the nature of the microstructural variation within a revolution of the workpiece,
while another stochastic model which applies the "Markov chains” principle, de-
scribes the same along the feed direction. Together, they very effectively describe
the random excitation that occurs during machining.
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1.2 Presentation Outline

This thesis is organized into six chapters. This first chapter was an introduction
to the topic describing briefly some earlier work done in related fields. It also
represents an attempt in highlighting the need for work in this field and the
significance of this research.

The second chapter explains the models employed for the description of the
microstructure of the material. This lays the most important foundation for
this thesis. The two important models - the sample variance model and the
Markov models form the basis on which the random excitation to the cutting
tool structure is characterized. Since these models are used to recreate different
materials for use in the simulation of the cutting process, it is explained in detail.
This also forms one of the most important contributions of this thesis work. The
sample variance model describes the material microstructure in the cross section
of a cylindrical bar. The Markov models, on the other hand, augments the sample
variance model, to account for longitudinal trends commonly present in rolled
materials.

The third chapter i1s an adaptation of the popular dynamical description of a
typical machine tool structure to the turning process, as used here. The nature
of the cutting force, its dynamical nature due to random hardness variation and
the resultant nature of the tool vibration are covered in this chapter. The model

to recreate the surface produced for visual analysis on a computer and for surface



analysis for the different surface finish parameters is also described.

The fourth chapter explains the way these models were implemented for com-
puter simulation of the cutting process. The simulation program essentially
consists of three modules. The first module explains the way pictures of the
microstructure are analyzed to arrive at the different parameters that are used
for the excitation of the tool structure. The second module explains the method
of evaluating the tool response to the excitation from the material. Finally, the
surface evaluation module describes the method of evaluation of the workpiece
surface obtained as a result of the tool response.

The fifth chapter presents the results obtained by the use of the different
models and the attempts at validating them experimentally. The results of the
computer simulation runs for different cutting conditions are presented. These
results are then compared with the results obtained from cutting tests that were
performed. The chapter also explains the results of the experiments performed
using different grades of steel having different microstructures. An analysis of
the cutting forces generated during machining is also made. The forces measured
during the cutting experiments are compared with the forces generated from the
simulation package and the effectiveness of the different models evaluated. Thus
the capacity of the model to describe the nature of the random vibration for
materials of different microstructures is demonstrated.

The sixth chapter is a brief presentation of the conclusions from the work

done. The significance of the results and the ways these results can be used for



improvements in the cutting process are also presented. Recommendations for
improvement of the simulation package and possible directions for future work

are also presented in this chapter.



Chapter 2

Material Microstructure

Modeling

Mathematical modeling of a machining process to describe random vibration
includes modeling of the material which forms the source of the random excitation
and modeling of the tool structure to describe the nature of vibration and its
effect on the nature of the surface generated. In order to model the material
effectively two important concepts of stochastic processes of sample variance and
Markov chains have been used. A typical material of cylindrical rolled metal bars
exhibits two different distributions, one along its cross section and another along
the longitudinal (rolled) direction. The sample variance approach models the
material distribution along the cross section while the Markov chain approach
models the nature of any longitudinal trends in the microstructure present in

rolled materials that exhibit elongated grain structure.



2.1 Sample Variance Model

The workpiece material has a distinct nature of its microstructure. The mi-
crostructure is dependent on the material composition, purity and the method
of fabrication. These factors cause the microstructure to differ from material to
material and from grade to grade. The hardness of these microconstituents often
differ resulting in a non-homogeneity in the local microhardness of the material.
It i1s this non-homogeneity of the distribution of the material’s microstructure
that is almost always the primary cause of random vibration in the cutting pro-
cess. It is, thus, critical to develop a statistically sound mathematical model that
can very accurately describe the material’s microstructure distribution. It is for
this reason that the sample variance theory is used.

The sample variance theory was originally proposed by Dankwerts [9] in 1952
to describe the distribution of the constituents of mixtures. The theory has since
been improved and used by other researchers like Scott [10] and Tucker [11] in
the field of polymer processing. Since the nature of a nonhomogeneous mixture
1s similar to the microstructure of steel, such a model was used as a basis for the
description of the material microstructure of the workpiece material for a boring
process, by Zhang and Kapoor [12]. The nature of the tool vibration during the
boring operation was accurately modeled by them, with the help of this model.
This model has been improvised and used in this thesis. An algorithm has

been developed for the calculation of the sample shape function, a geometrical
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Figure 2.1: Nature of the material removed

parameter used by this model, given any set of cutting conditions. It is for this
reason that the model developed by them, has been described here.

The sample variance model treats the metal being cut as a series of discrete
blocks, referred to as samples, that together comprise the material removed by
the cutting operation. This concept is illustrated in Figure 2.1 which shows a
cylindrical bar being turned on a lathe.

As the tool comes into contact with the different samples which contain vary-
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Figure 2.2: Digitized image of cross section of 4340 steel bar

ing ratios of the phases of the material having different hardness, the cutting
force varies resulting in vibration in the tool. Figure 2.2 shows a cross section
of a 4340 alloy steel bar. The photograph is taken from a microscope and digi-
tized. The dark regions represent the pearlite structure, while the bright regions
are the ferrite structures. Similar analyses along the longitudinal direction can
give a complete picture of the distribution of the microstructure in steel, as seen
from Figure 2.3. It is very important here to again emphasize that the model’s
application is not limited to just carbon steels, but can be applied to any metal
or nonmetal that exhibits nonhomogeneous microstructure. Carbon steel, which
has just two phases - pearlite and ferrite, has been taken as an example for the

study and hence, the model is described with reference to this material.
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Figure 2.3: Digitized image of longitudinal section of steel

The distribution of the microstructure in steel is dependent on the compo-
sition, manufacturing process and type of heat treatment. These factors can
change the nature of the microstructure yielding different sizes and shapes of
different phases present. Hence for any mathematical model, to accurately rep-
resent the structure, it should describe the size, shape and the distribution of the

microstructure.

2.1.1 Nature of Samples

The force variation due to the microhardness is considered to be a result of only
the samples passing through the shearing zone. It is therefore, necessary to
characterize the size and nature of the hardness distribution of these samples.

The shape of the sample has a direct bearing on the sample variance and this

13



is demonstrated later in this thesis. The shape of the sample is a function of the
cutting parameters. Figure 2.1(c) shows the material removed from one revolu-
tion of the workpiece during turning. The material removed is a parallelepiped,
with the depth of cut and feed as the dimensions describing its cross-section, and
the length being the circumference of the cylinder. This length is divided into a
number of sections, each representing a smaller parallelepiped, referred to as the
sample. Since the feed in turning is almost always the smallest dimension the
parallelepiped may be approximated to a cuboid without loss in accuracy. The
number of sections into which the material removed is divided into, i.e. the num-
ber of samples, determines the size of the sample. The model has to accurately
describe the nature of the random tool vibration. The frequency of this ran-
dom excitation is directly related to the number of samples. The sample number
should, therefore, be such that the frequency of excitation is greater than, and a
multiple of the frequency of tool response. Hence, for the most accurate descrip-
tion of the excitation, the number of samples is based on the frequency of tool
vibration determined experimentally. The most significant frequency obtained
from the power series expansion is used for the calculation of the frequency of
excitation. The relationship between the frequency of excitation and the number

sample is expressed as [12]
N, = F. *2+60/N (2.1)
where N is the number of samples, F,,,,; the maximum value of the significant

frequencies of vibration obtained from the power series expansion of the cutting

14



force data, and N is the spindle speed in revolutions per minute.

2.1.2 Microhardness Distribution

The hardness of an individual sample is the compositional weighted average of its
microconstituents. Such a linear relationship has been established empirically.
In a two phase material like low carbon steel (pearlite and ferrite), the mean

hardness of the i’th sample is given by

>N 1 (volume; * hardness;) (2.2)

Hsi =

totalvolume ’

where the summation is made over the different pixels that comprise the cross sec-
tion. The distribution of the microstructure in the material is a random variable,
as this microstructure is a result of the variations in the manufacturing process
of steel. Thus, depending on the nature of the microstructural distribution, the
sample has different mean hardness. In order to find the mean hardness of the
sample, it is necessary to know the microstructural distribution and the hard-
ness values of the different phases. The distribution of the microstructure can
be obtained by microscopic analyses of the samples. The samples are sectioned,
the sections polished and etched to expose the true nature of the microstructure.
This surface is then analyzed under a microscope, and the picture digitized and
stored in a computer. The hardness of the different phases present in the ma-
tenial is found by the use of the Vickers microhardness tester. The distribution,
together with the hardness values of the phases, is sufficient to describe the mean
hardness of the sample.

15



The mean hardness varies from sample to sample. This is because the different
samples exhibit different microstructural distribution. As described earlier, this
sample mean hardness is a random variable. The variation of the means of the
sample mean hardness follow a normal distribution, according to the central
limit theorem. Thus, it can be described statistically by a mean and a standard
deviation for the normal distribution.

It is easy to see that the mean of the sample mean hardness is the same as the
mean of the population distribution. However, the sample mean variance (and
hence the standard deviation) varies from that of the population. It is therefore
necessary to determine this variance. It is also important to note that the value
of the sample mean variance is a function of the sample shape. Every time the
cutting parameters of feed, depth of cut and speed are changed, the sample size
and shape change and hence the change in the sample variance. This relationship
between the cutting parameters and their effect on the sample mean hardness

distribution, and thus on the random vibration is one of the contributions of this

thesis work.

2.1.3 Sample Variance

The sample variance can be calculated by the conventional method, wherein the
mean of the samples is individually calculated over an entire range of samples to
evaluate the variance. However, this method is not very practical. Analyzing the

microstructure of the samples individually, for each of the samples and using that

16



for sample variance calculations involves a tremendous amount of time. Another
serious drawback is that the sample variance cannot be calculated on-line for
variations in the cutting parameters during a machining process. As mentioned
earlier, any change in the cutting parameters affects the sample shape and hence
the sample variance. The distribution of the mean hardness is thus affected.
Although the mean remains the same, the sample variance does change.

The sample mean variance theory is used here to facilitate the calculation
of the sample variance as the sample shape and size vary. This theory [11],
originally used to describe the nature of mixtures, relates the distribution of
the components of a mixture and the size of samples to arrive at the sample
concentration variance. This situation is analogous to the present study of the
microhardness distribution.

There are two important functions that are involved in the sample variance
calculation. They are the correlation coefficient function, which describes the
nature of the distribution of the microconstituent distribution, and the sample
shape function, which relates the shape of the sample to the sample variance. It
1s, therefore, imperative that the meaning of these two functions be understood
before any relationship between these functions and the sample mean hardness

variance is presented.

17



2.1.4 Correlation Coefficient Function

In statistics, the correlation coefficient function measures the strength of the
linear relationship between two variables [19]. In the case of microstructural dis-
tribution, it can be used to describe the segregation of the different phases of the
material in the workpiece, each of these phases being a random variable. In other
words, it explains the probability of the hardness of different points at different
distances being the same or different. This can account for a meaningful descrip-
tion of the size and spatial distribution of the pearlite and ferrite structures in
steel.

A fairly good description of the nature of the microstructure can be obtained
by making an analysis of the variance of the microconstituents of a large number
of the samples, each being of the same size. In such an analysis the coordinates
of the location from which the sample is taken is often ignored, even if known.
Had the spatial distribution of the microstructure been known to be completely
random or perfectly segregated, this would not matter. But as is evident from
the nature of the microstructure from the Figure 2.2, this is not the case. Hence
the limitation on the information of the microstructure, that can be provided
by the sample variance. Moreover, the process is incapable of estimating sam-
ple variance of the samples of other different sizes. The correlation coeflicient
function is used widely in statistics to explain such relationships.

The following description makes the use of this correlation coefficient function

clearer. Suppose an element is selected at random from the material. It can have
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a 100% composition of one of the phases with a certain probability 'P’ associated
with it, the number "P’ being the volumetric composition of that particular phase
in the overall material. If another element were to be chosen in the vicinity of
the first element, the probability of this element having the same composition
would almost always vary and would be a function of the distribution of the
microstructure. The probability of this being the same composition would be
given by

Pc(g+ 1) =1lc(g) =1) = p+ (1 = p)p(r) (2.3)

where P is the probability that component 'c’ is 100% or 1 at a position 'q +
r’ given the composition is 100% or 1 at position ’q’ [10]. The term ’q’ is the

' is the vector position with

vector position with respect to an origin, while ’r
reference to the first element. p(r) is the correlation coefficient function that
characterizes the distribution of the components and is determined empirically
from image analysis of the digitized pictures of the microstructure. It can be seen
that p(r) approaches 1 as r approaches 0 and for microstructures of the form of
steel, where there is no long range segregation, p(r) becomes 0 as r approaches
infinity. When p(r) has a value 1 there is said to be perfect correlation, while a
p(r) value of 0 implies absence of correlation.

The concept of correlation coeflicient function can be better understood with
the help of Figure 2.4. Figure 2.4(a) shows the correlation coefficient function of

a set of spheroidal particles. Figure 2.4(b) is the correlation coefficient function

of elongated strips. The difference between the two functions is obvious. Also
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Figure 2.4(c) shows another set of spheroidal particles, but of a much larger size.
The correlation coefficient function approaches zero much slower than that for
the smaller particles in Figure 2.4(a).

Mathematically, the correlation coefficient function, p(r), between points '1’

and ’2’ at a distance 'r’ between them is given by

E[(Hy — pa)(Hz = pa)] (24)

2
O

p(r) =

where p, is the mean hardness of elements in a population, Hy,H,, the hardness
at the different elements of the population and o2, the variance of the population

distribution.

2.1.5 Sample Shape Function

In order to introduce a spatial relationship of the microstructure distribution,
the concept of a sample shape function is used. The use and the meaning of this

function becomes clearer as the equation for the sample variance is derived [12].

2

a

The population variance ¢ is given by the standard statistical equation

ol = E[(H, - ,ua)2] (2.5)

a

where H; is the hardness of the i’th element of the material (pixel in a digitized

picture) and g, is the mean hardness of all such elements of the population.

2
3

The sample variance o] is given by

07 = El(ke; = 15)] (2.6)
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where p,; is the mean hardness of the j’th sample, and f, is the mean of the

means of these samples.

But according to the central limit theorem in statistics, i, = g, Therefore,

o) = E[(ps; — pa)?] (2.7)

When the sample variance is measured with reference to two different samples,

'k’ and ', we have

g, = E[(/‘sk"l‘a)(l‘sl“/‘a)]

1 1 '
= Bl [ (Hie = pa)aVe [ (Ha = pa)aV’]

1 M ,
= 'MZ Vi/‘,/v,(Hik — o) (Hi — pg)dV'dV (2.8)

since V' = V.
Also, the correlation coefficient function between two points 'k’ and 1’ is given

by

covartance(k,l
plr) = ; 2( )

a9

El(Hiu — pa)(Hy — pa)]

2
g,

Therefore, we have the relationship,

E((Ha — pa)(Hu — pa)] = p(r)o?
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Equation 2.8 can then be expressed as

2
ot=2e [ [ plr)aviav (2.9)

From this relationship, it is obvious that the sample variance is a function of
the sample shape. As the shape changes, due to the different volumes, we get a
different value for the sample variance. Hence, a function called as the sample
shape function is used to make the model flexible to such changes in the sample
shape.

Consider a spherical shell of radius 'r’, with a thickness 'dr’, centered at the
corners of one of the samples, as shown in Figure 2.5. A function called as the
volume fractional function is defined to describe the sample bounds. The volume
fractional function W*(z,r), is the fraction of the volume of the shell described
above, centered at a point 'x’, that lies inside the sample. Figure 2.6 explains
the method of calculation of the volume fraction function for a typical sample.
The figure explains the method of calculation of the volume fractional function
when the center of the shell lies on one of the faces of the sample or if the shell
is completely inside the sample. However, in the calculation of the sample shape
function the volume fractional function needs to be calculated for some shells
whose centers lie inside the sample, but have portions outside the sample. This
is illustrated by one such shell shown in Figure 2.7. This necessitates analytical
calculation of such volumes.

Consider a shell of radius 'r’, centered inside the sample, as shown in Figure

2.7. Let the sample extend by distances ’h;’, "h,’ and hs’ in the three directions
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Figure 2.6: Calculation of volume fractional function by computer program
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Front View Right View

Figure 2.7: Calculation of volume of shell inside sample

marked x, y and z in the figure. In order to calculate the sample shape function,
the volume of the shell inside the sample is needed. The volume of a part of a
shell that is at a distance "ho’ from the center, as shown in Figure 2.8 is derived

here.

T

v= [ nz*dh (2.10)

6o
where, 0y = Tan™' —2 —. But,
r¢—h¢
r = rxCosl
z4+dzr = r*Cos(0+ db)

h = r*Sind

h+dh = r«Sin(0+ do)
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Figure 2.8: Calculation of volume of a part of a sphere
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dh = h+dh—h
= r[Sin(6 + df) — Sinf]
= r[Sin0Cos(db) + Sin(d8)Cos — Siné)
For small 8, Cos(df) ~ 1 and Sin(d6) ~ df. Thus,

dh = r[Sinf+ d0Cos8 — Sinb)

= r(Cos0.d0

The volume of the part of the sphere 1s,

v o= 500339.d0
o
2 Sm300 35“100 ,
= wri[= - - 2.11
3T T (2.11)

The volume fractional function for a shell that has a portion extending out

of the sample in only one direction is given by

W*(z,r) =V —v (2.12)

where V is the volume of the shell and is given by V = %7:'7'3.

However, if the shell extends in more that one direction as explained earlier,
the solution is more complex and involves a number of integrations. Solving
these numerically on the computer would slow down the simulation significantly,
as hundreds of thousands of such calculations are made in order to calculate the
sample shape function. Therefore, an approximation for the volume of the shell

inside the sample has been made. The approximate solution is given by

1 h
Wia,r) = V—u =l - 51— =)
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1 hl 2.2 1 h2 2.2
ol =5 =) =50 )
(1 - 2y27) (2.13)

r T

1 Iy
+- (0~

where v; is given by Equation 2.11 , 6p; = T'an™} 7-55-;:;-.
LT

The equation calculates the volume of the shell by eliminating any common
regions in the parts of the shell that lie outside the sample in any two or three
directions. The exponent has been chosen based on empirical studies. The
approximation has been found to be good and the results are very close to the
actual values. Also, any small errors exist only in the cases where the shell
extends out of the sample in more than one direction. This case occurs a very
small percentage of times in the calculation of the sample shape function, at low
values of 'r’. When the value of "1’ is large the sample shape function are near
zero and hence the errors do not affect the sample shape function. Hence, the
approximation is very useful and makes computation rapid.

Consider an element of the sample as shown in Figure 2.9. The volume of

the element in spherical coordinates 1s given by
dv = (rSingd0)(rdé)(dr) (2.14)

Thus, in spherical coordinates, the inner integral in Equation 2.9 can be ex-
pressed as

/,,/)(r)dV’=/¢/0/rp(r)r25m¢drdod¢

Since the original integral has limits within the volume of the sample, the

integrals with respect to 0 | r and ¢ also have to be specified, to limit points of
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analysis to be within the sample boundaries. It is important to note that 'r’ only
represents the distance between the volume increment dv’ and the increment dv
specified by the outer integral. If x’ is the location of this incremental volume,
W*(z,r), as described earlier, gives the volume fraction function. With the use
of this function, the integrals with respect to 6 and ¢ can be eliminated as they
are a function of the radius 'r’ and the location ’x’ only. The inner integral can

now be expressed as
/ YV = / PYW* (2, r)drridr (2.15)
o

The upper limit of the integral being oo does not affect this integral, as any
value for the function W* with large 'r’ will only be zero, as no volume of the shell
is inside the sample. The sample variance can be expressed using this function

as

ol = iro, //_0 yriW*(z,r)drdV

dro? foo 1 .
= V“ /rzop(r)rz—‘;/vW'(m,r)dvdr (2.16)

The order of integration has been changed and terms in the inner integral
which depend only on 'r’, have been grouped together. Defining W(r), the sample

shape function as

1 r= /
—/Vw (z,7)dV (2.17)

Wi(r)= 7

The expression for the sample variance reduces to

2 40
o2 = 4’;”0 o(r)W (r)r2dr (2.18)
r=0
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The nature of the sample shape function is unique for a fixed sample shape. It
can be evaluated by the help of numerical routines that calculate these volumes.
The advantage of these kind of analysis is that the computer support system for
the analysis and control of the machining process can easily calculate the sample
variance for any different set of operating conditions used for the machining
process.

An important requirement for the model is for it to be immune to different
magnification factors so that the different correlation coefficient functions ob-
tained due to different magnifications of the microstructure will not significantly
alter the description of the microstructure. It is important here to note that the
correlation coefficient function and the sample shape function are both varying
with respect to the pixel dimensions of the digitized image. Hence, at different
magnifications the pixels of the image represent different dimensions. With a
change in the magnification, the correlation coefficient function changes. But
this change is nullified by a corresponding opposite change in the sample shape
function so as to yield a constant value of the sample variance. Thus this model
1s effective for any magnification of the microstructure. A detailed analysis to
prove the immunity of the model to the magnification factor is presented in the
chapter on results.

The sample mean and the sample variance together completely describe the
nature of the samples that are removed by the cutting tool during the machining

operation. Hence a model can be built that simulates the cutting operation with
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the generation of random hardness representing the workpiece material. This
variation is then converted to variations in the cutting forces and consequently
into random vibration. This vibration is then related to the nature of the finished
surface obtained. The mathematical model to bring about this transformation
forms a very important part of this thesis work and is presented in the next

chapter.

2.2 Markov Models

The microstructure of rolled steel bars exhibit a very different nature in terms of
its size, shape and distribution along its longitudinal direction. This is primarily
because of the nature of the material flow during the rolling process. The main
effect of cold rolling, in terms of the microstructure, is elongation of the ferrite
grains [20]. Figure 2.3 shows the nature of the microstructure in the longitudi-
nal direction. The pearlite grains tend to get broken into fragments, groups of
fragments being elongated in the rolling direction. A similar microstructure is
present in most other multiphase steels and metal alloys.

The model to describe the nature of the microstructure distribution has to
account for these kind of patterns observed. The sample variance model described
earlier will not be an accurate model by itself, as this model does not take this
longitudinal pattern into account. Hence, another model which uses the concept

of Markov chains is used to characterize the microstructure.
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The Markov chain model tries to establish the relationship between the sam-
ples adjacent to each other in the direction of feed. The transition of the cutting
process from sample to sample, with the completion of the first cutting revolu-
tion of the workpiece is made to be a function of the structure of the adjacent
sample in the feed direction.

Markov processes are stochastic processes which probabilistically describe the
changes of states (51,5, ...., Sn) of systems, with respect to time. At any partic-
ular time instant the change of state is said to occur between events (q1, g2, -..., ¢t)-
Discrete, first order, Markov chains have their probabilistic description truncated

to just the current and the predecessor states i.e.
Plg: = Sillqi-1 = Si, qi-2 = Sk, -..] = Plae = Sjllge-1 = Si] (2.19)

Also, the type of probabilities considered here have their probabilities indepen-
dent of time, thus being described by the state transition probabilities, p;; of the

form

pi; = Plge = Sjllg-1 = Si; 1 < 4,5, < N (2.20)

where N is the number of states, p;; > 0 and Z;V:l pij = 1. Markov processes are

similar to Markov chains except that the state space is not discrete [21].
Hidden Markov processes can be defined as double embedded stochastic pro-

cesses with an underlying stochastic process that is not observable i.e. hidden,

but can only be observed through another set of stochastic processes that pro-

duce the sequence of observations. The meaning of the hidden Markov process

33



becomes clearer as the explanation of the model’s application is made to the
machining process.

In the case of microstructure distribution the different states represent dif-
ferent regions of the distribution of the microhardness at different cross sections
along the material’s axis. If a set of samples are taken from each of any ten differ-
ent cross sections of a rolled steel bar, it i1s very likely that the samples from each
revolution have ten different means and variances of this microhardness. But
from a statistical point of view they can very easily be grouped into distributions
having a mean and variance very close to that of the group members, by the use of
the test on means, as explained later in the chapter. These groups of microhard-
ness represent the different states of the hidden Markov process. Thus, based on
the probability of occurrence, the particular cross section being machined at any
instant in time can be expected to be in one of these states. Also, the nature of
the distribution of adjacent cross sections is determined probabilistically based
on certain transition probabilities.

For a complete description of a hidden Markov process, five characteristics

are necessary.

1. N, the number of possible states which correspond to the number of

groups of microhardness distribution,

2. M, the number of distinct observation symbols per state, which is
infinite in this case, as the microhardness within a state can be any
number that falls in the normal distribution that characterizes the
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state,
3. The state transition probability distribution P = p;;,

4. Observation symbol probability distribution in each state. This prob-
ability is described in terms of a normal distribution of microhardness

for each of the states,

5. The initial state distribution =; = P[g; = Si};1 < ¢ < N, which in

this case is the distribution as decided by the sample variance theory.

To apply this model to characterize the microhardness distribution all these
parameters need to be determined.

The concept of Markov chains has been applied to the modeling of material
microstructure in two different ways. The first model approaches the material
only on the concept of Markov chains. The sample mean hardness distribution
in the direction of feed after the first revolution of the workpiece is determined
by the state transition probability. Thus, with the proper selection of states and
the state transition matrix, the longitudinal pattern existing in the workpiece
material is reconstructed. The second model assumes that the hardness distri-
butions of each of the material's cross section falls into a small finite number of
distributions which are represented by the states of the Markov process. The
selection of a particular distribution for any revolution is governed by the state
transition matrix. Given the distribution for the revolution, the mean hardness

of the sample is based on the normal distribution. Thus the selection of the sam-
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ple mean is based on the results of the two stochastic processes, hence a hidden

Markov process. These two models are described in the following sections.

2.2.1 Markov Chain Model

In this model the description of the microstructure in the longitudinal direction is
probabilistically related, directly, to the adjacent sample along the feed direction,
i.e. in the previous revolution. There is just one normal distribution that forms
the basis for sample mean hardness generation. This mean hardness distribution
is obtained experimentally from image analysis of the sample sections in the
transverse direction. However, this distribution is divided statistically into a
finite number of regions that represent the states of the Markov chains. For
example, if the distribution is divided into three divisions as shown in Figure
2.10, then the states of the Markov chain represent the hardness bands in the
distribution. The state boundaries are decided based on statistical "tests on
means” performed on the images of the longitudinal sections of the material. A
detailed description of this statistical test is presented in the appendix.

The nature of the longitudinal trend in the distribution of the microstructure
in the material can be easily accounted for by the proper selection of the state
transition matrix for the system. The state transition matrix consists of the
probabilities of the adjacent sample moving from one state to another. These
probabilities can be got from pictures of the microstructure of the samples. The

method of formulating the state transition matrix is explained later in the chap-
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ter.

2.2.2 Hidden Markov Model

This model, as explained earlier, is based on the concept that the distribution
of the microstructure within a revolution is the same. Also, the number of such
distributions is finite. This is very often the case in rolled multiphase metal bars
which is the the type of material under study. For instance, the distribution
of pearlite and ferrite in carbon steels usually fall into three to four normal
distributions of the sample mean hardness, within a particular cross section. This
is because of the fact that during the manufacture of rolled steel the concentration
of microstructure is a result of a finite number of repeated, localized thermal
or stress conditions present in the roll mills. Thus, when a rolled steel bar is
sectioned and the microstructures analyzed, their sample mean hardness very
often fall into three or four normal distributions, within statistically significant
spreads. These distributions are represented as states of the model.

The nature of the sample hardness distribution for every revolution is depen-
dent on the distribution in the previous revolution. The change in distribution
1s governed by the transition matrix for the hardness distributions.

The selection of these states is a statistical process. A number of tests of
different hypotheses are made and their validity checked based on such concepts
in statistics. Appendix A briefly covers these concepts on test of hypotheses

[23, 24]. The number of images of the sample sections are taken from different

38



m
Ny
m
NS
lflf
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representative regions of the material. The images are divided into sections
based on the dimensions of the sample as shown in Figure 2.11. The mean
hardness of these sections and the variance of the hardness of these sections are
calculated. These means are then compared against one another and checked
for statistically significant differences. It is almost always found that these mean
hardness fall into a finite number of distributions. It is these distributions that
are represented as states explained earlier. Given the states, the probability of

the samples assuming these distributions needs to be analyzed. This is quantified
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Figure 2.13: Assignment of distributions to cross sections of the material

by the state transition matrix. The formulation of the state transition matrix
that exactly represents the nature of the sample hardness occurrences in the
material is key to the success of this concept of a statistical model for the material
microstructure.

The distributions, as seen from Figure 2.12, overlap each other for a small
region with certain hardness values common to more than one distribution,
within the given sigma-limits. This is because the variations in the conditions
producing these different distributions during the material processing do not

drastically vary. Also the chances of the sample mean hardness along adjacent
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samples lying in the same part of the distributions, even if the distributions
are different, are very high. This is analogous to the condition in the-material
description by the use of the Markov chains. Hence it would be very useful to use
the strengths of that model to enhance the performance of the hidden Markov
model. This can be done by the incorporation of the substates of the process.
The substates of the process are the different regions of the normal distributions.
Each of these distributions is divided on a similar basis into a equal, finite number
of regions based on either the spreads or the areas enclosed, similar to the states of
the Markov chain described earlier. The change of substates within distributions
is again governed by another state transition matrix referred to as the transition
matrix for the substates. An assumption is made here that the state transition for
the distribution and transition matrix for the substates are mutually exclusive.
This implies that the transition for substates between adjacent samples along
the feed direction are independent of the transition of the states (distributions)
between these revolutions. This assumption has been tested on the samples
studied and holds good as is evident from the Figure 2.14. However, for materials
where the distributions do not follow this pattern, a transition matrix for the
substate calculated on individual basis for such distributions, needs to be used.
The concept and structure of the hidden Markov model remains the same while
the nature of the transition between the substates, which is critical for the success
of the model to describe the stochastic process is greater in number, one for each

distribution.
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Since the states, substates and events have been decided, the only parame-
ter that is now required for the complete description of this model is the state
transition matrix. The determination of the state transition matrix is done ex-
perimentally. Pictures of the microstructure in the longitudinal direction are
divided into many sections, the dimension of each of these sections being decided
by the dimensions of the sample as explained earlier. The mean hardness of these
sections calculated on the basis of the microconstituents seen within the sections
are grouped with respect to the distributions (states). The sample means and
the states they fall into, for a representative section, are calculated. The repre-
sentation of these sections into the different distribution or the state depending
upon the nature of the model is referred to as the state map and is shown in

Figure 2.14.

2.2.3 Formulation of State Transition Matrix

The state transition matrix consists of the probabilities of transition between
the different states in the state space. The transition matrix is represented as
P = {pi;} where

Py = P[q, = SJ”(]!—I = Si] (2.21)

S: and S; being any two states in the state space, ¢, and ¢,_; are the events at
timest and (t—1) respectively and N is the total number of states constituting the
state space [25]. These probabilities form the foundation on which the simulation
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of the material microstructure is built. The formulation of the matrix is done
from pictures of the material’s microstructure in the longitudinal direction.
The transition probabilities exhibit the following two properties since they

obey standard stochastic constraints.

pi; = 0

N

o =1 (2.22)
i=1

In order to determine these probabilities the expected duration of the states

need to be determined. The expected duration in a particular state is given by

Bd) = 3 dP(d)

(2.23)
1 - pi;

where P;(d) is the probability density function of duration ’d’ in state ’i’. The

transition probability p;; can then be calculated as
pi=1-—— (2.24)

The expected duration in the same state is obtained from the state represen-
tation (state map) of the image. The average duration of stay in a particular

state E(d;) is given by

E((l,’) = 1\,

(2.25)

where d;(7) is the duration of the state ’i’ occuring at the j’th instance. K is the
total number of occurrences of the state.
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The determination of the probability of changing to a different state from
a given state is made in a slightly different way. For a two state model the

determination of this probability is straight forward and is given by
piillizi =1 — pis

However, very often, the number of states present are more than two and so
further analyses need to be made. The images are again analyzed for instances
of the transition between any two different states from the state representation
of the image. If d;; is the number of instances of transition from state i’ to
'}’ obtained from the state representation of the microstructure, the transition

probability is given by
iy d

The steel specimens used in this thesis showed significant longitudinal trends.

pijllizs = (2.26)

Hence the probability of transition between non-neighboring states was found
to be almost zero. But, since the patterns did not yield exact zero values for
transition probabilities between non-neighboring states, these small probabilities
have been considered in the model in order to accurately represent the material

distribution.
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Chapter 3

Surface Generation Modeling

Integration of the sample variance theory and the hidden Markov method forms
a very effective way of characterizing the microstructure of the workpiece mate-
rial. As explained in the earlier chapters, the variation of the hardness of the
microstructure and thus the samples cause a variétion of the cutting force which
is the source of vibration to the tool. Thus, before any prediction of the nature
of the machined surface is made, based on the nature of the material, a realistic
model is necessary to describe the dynamic nature of the force and the vibration
of tool structure during the cutting process. The first part of this chapter ex-
plains the model used to describe the dynamics of the tool structure. Once the
description of the dynamic structure is made and the nature of the tool response
understood, the response of the tool needs to be translated to its effects on the
nature of the surface generated. The second part of this chapter is devoted to

the characterization of the generated surface and the method of calculation of
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Figure 3.1: Dynamic model of the tool structure

the surface finish parameters that quantify the quality of the generated surface.

3.1 Modeling of Cutting Process

The tool structure used for turning can be modeled as a two-degree of freedom
lumped mass - spring - damper system as shown in Figure 3.1 [2]. Such a model
was originally proposed by Merritt for the study of chatter in machine tools.
The model has since been widely used by many other researchers for different
machine tool structures. The model has also been used by Zhang and Kapoor
[13] to describe the dynamics of the boring machine system. The nature of the
tool vibration due to the random excitation caused by the hardness variation
was also studied by them successfully. It is important to note that these models

are based on the assumption that the rigidity of the workpiece is very high and
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thus any vibré,tion of the workpiece is very low and can be neglected. The only
vibration is caused due to the vibration of the tool post, which almost always
is the weakest member in the machine tool. Before any further discussion is
made on the modeling of the cutting force and the nature of the tool structure,
the nature of the forces present during metal cutting needs to be completely
understood. The following section is a brief description of the cutting force and

its components.

3.1.1 Cutting Force

Cutting forces play a very significant role in metal cutting. It is specially im-
portant here in this study of the effect of the material microstructure on surface
finish. It is the variation of the forces caused by the different microhardness of
the samples that induce random vibration in the tool and hence affect surface
finish. Hence a detailed analysis of the cutting force relations are made here.
Orthogonal cutting, which assumes forces in two directions is assumed for the
turning process. The direction of rotation in this type of cutting is such that
the cutting direction is perpendicular to the cutting edge. Although this is not
the exact situation when turning of the outer surface of a cylinder, this is fairly
accurate. Looking at the continuous chip as an isolated free body, Merchant [1]
established several cutting force relationships by resolving the resultant cutting
force (F;) into three force systems. Figure 3.2 is the Merchant’s cutting force

diagram which shows the three force systems [18].
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Figure 3.2: Merchant’s composite cutting force diagram

The three systems comprise of the following:

1. The main cutting force (Fp), in the direction of the cutting velocity
(tangential to the workpiece in the case of turning) and the force

component normal to it in the direction of feed called the feed force
(Fo);

2. The frictional force (F¢) acts along the face of the tool and the normal
component (N¢);

3. The shearing force (F's), acting in the shear plane and the compressive

force (Ng) normal to it, together comprise the third force system.

The relationship between the three force systems can be expressed in terms

of the shear angle, the rake angle and the angle of the resultant force as is shown
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in the diagram. The force system that is analyzed in this thesis is the first one.
The other two force systems can be expressed as a function of these two forces
and the three angles - rake angle (a), shear angle (¢) and the friction angle ()
[18]. The two forces Fp and F can be determined experimentally by the use of
dynamometers as explained later in the thesis.

From the Merchant’s diagram a very popular relationship between the cutting
area and the cutting force can be derived. An important term called the unit
cutting force is very often used in cutting force relations. The unit cutting force
(K.), is an established constant that relates the cutting area (b * t) with the

cutting force Fe.

Fe=K,+wxa (3.1)

where ‘w’ is the width of cut and ‘¢’ the thickness of cut, measured in the
direction normal to the cutting direction.

As can be seen from Equation 3.1, from a static cutting point of view the
cutting force is a constant and is proportional to the uncut chip thickness. This,
however, is inadequate to describe the nature of the cutting force in reality.
The cutting force varies continually due to the dynamic nature of the machine
- workpiece structure. There is often a lot of vibration and the thickness of the
workpiece cut is constantly varying, thus making the cutting force fluctuate. It
is, hence, necessary to model the dynamics of the tool - workpiece structure. It
is assumed that the workpiece is large and properly supported and hence rigid.

Thus the cause of the vibration is only due to the nature of the tool structure.
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The cutting force generated can be modeled as comprising of three compo-
nents. They are the components due to the nominal chip load, regenerative chip
load and the random excitation due the hardness variation. These three com-
ponents are described separately and then integrated to yield the overall system

dynamical equations.

3.1.2 Nominal Chip Load

As explained earlier, the cutting force from a static point of view, referred to as
the nominal chip load, is directly proportional to the ideal cutting area. It can

also be expressed in terms of the feed (f) and the depth of cut (d) as

Fp = K, xw=x*a

= K,xfxd (3.2)

Defining K., a constant called as cutting stiffness, as K. = K, * w we have
the equation for the cutting force as Fp = K, * a. However, ’a’ is not a constant
and is dynamically varying about a value, called the uncut chip thickness, Up.

The system response is in the form of tool displacement y(t), at any time ‘t’,
in the direction normal to the cutting velocity. Considering this, the uncut chip
thickness is a function of time and can be expressed as U(t) = Uy — y(t). It is
now necessary to describe the model to explain the nature of y(t).

Assuming that the machine tool model is a second order system, if ¢;(1) and

g2(t) are the two principal modes (mutually perpendicular) that describe the tool
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displacement, then the cutting force can be decomposed as follows:

mgi(t) + c1gi(t) + krqi(t) = Kc[Uo —y()]Cos(a - B)

ma(t) + c2ga(t) + kaqa(t) = K[Uo —y(t)]Sin(a - B) (3.3)
The effective tool displacement y(t) is given by

y(t) = qi(t)Cosa + ¢o(t)Stna (3.4)

3.1.3 Regenerative Chip Load

The dynamic variation of the tool position in the radial direction causes the
uncut chip thickness to fluctuate about the ideal position. The movement of the
tool away from this position causes a lump to be left on the workpiece, while a
movement towards the workpiece causes a decrease in the uncut chip thickness.
Since in most machining processes the cutting edge overlaps regions already cut
partially, this causes the uncut chip thickness to vary a revolution or ‘T’ seconds
later. Hence, to describe the turning process accurately, this has to be accounted
for. An overlap factor, p , is used to account for this effect [2]. The overlap
factor defines the fraction of the previous cut that overlaps the present cut. It
has a value 1 for plunge cutting, while it is 0 for thread cutting. But for most
practical cases of surface turning it is between these two bounds. The effect
of the overlapping load due to tool displacement in the previous revolution is

referred to as the regenerative chip load.
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Accounting for this, the uncut chip thickness is given by
U(t) = Uo(t) — y(t) + py(t = T) (3.5)
where T = £, N is the r.p.m. of the rotating workpiece. Thus,
U(s) = Uo(s) ~ y(s) + pe™"'y(s) (3.6)

The displacement of the tool from the nominal depth of cut is modeled as
a primary negative feedback. The effect of the residual uncut chip thickness
from the previous revolution, referred to as regenerative feedback, has to be
represented by a time delay feedback. Modeling of the structure in this form
makes the system nonlinear. In order to linearize the system, the feedback is

instead treated as a separate input along with the nominal chip load, Uj.

Yres = L * y(t - T) (37)

3.1.4 Random Excitation

It is obvious that the cutting force is in some form proportional to the hardness
of the material being cut. When a tool is cutting a hard material the induced
force is much larger than that when cutting a soft material. When a perfectly
homogeneous material is being machined the deflection caused by the constant
cutting force remains more or less constant. But when the material is non-
homogeneous, due to the impulsive variation of the cutting force when cutting

microstructures (or samples) of different hardness, a vibration is set up in the
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tool post structure. It is very important to model this source of vibration to
explain the nature of the machined surface. Since the material’s microstructure
is grouped into samples, the variation of the cutting force is in effect a function
of the sample mean hardness variation. Also, the mean hardness variation is
a random variable. Hence the nature of the vibration caused by the excitation
source is also random.

Meyer in 1908 [27] studied the effect of strain hardening of materials being
cut on the cutting force generated and came up with what is popularly called
as the Meyer exponent. This exponent has since widely been used in developing
relations between cutting force and hardness and tensile strength of materials.
Kronenberg [3] researched further into this topic and arrived at some corncrete
relationships between cutting force and hardness values. He found that the cut-
ting force constant C, was a function of the Brinell’s hardness of the material.
He introduced another constant called as the "exponent of Brinell’s hardness”
(tn) which explains the relationship between the cutting force constants of ma-
terials of different hardness. The relationship between the cutting forces F) and
F, while cutting materials of hardness BHN; and BHN, is given by

BHN,

= (5N, (3.8)

As explained earlier in the sample variance description of the material, the
cutting tool i1s assumed to be cutting different samples at discrete intervals of
time. Since the mean hardness of the sample (u,) vary about the mean (u,), the
cutting force also varies about an equilibrium value which is the cutting force
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Figure 3.3: Block diagram of dynamical model of cutting process by Merritt
value while cutting a sample with hardness (g,). In order to account for this
random variation in the equation for cutting force, the variation level is calculated

for the force about the equilibrium value. For a tool operating at the nominal

cutting depth, the contribution due to the hardness variation is given by

F\ = Kawa[(f—j—i)t" —1] (3.9)

The value of the exponent of Brinell’s hardness for carbon steels is about 0.45

[3]-

The complete description of the cutting force, including all the three compo-

nents is given by

F =K+ w[(a—y(t)) + yres + ax (E2) = 1)] (3.10)
Ha
The system can be expressed in the block diagram form as shown in the

Figure 3.3 and 3.4. Figure 3.3 is the block diagram of the system used by
Merritt [2], while Figure 3.4 is the modified block diagram incorporating the

random excitation.
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Figure 3.4: Modified block diagram to incorporate random excitation
The dynamical equation description of the system represented by Equations
3.3 and 3.4 are modified to incorporate the effects of residual chip load and the
random variations in the cutting force. The modified dynamical equations are

given by

mg + g+ kg = [K,wla — y(t) + yres] + Kawa[(-::—s—)t" —1]]Cosa

a

m+ e+ kg = [K,w[a—y(t) + yres] + K,,wa[(ﬁs—)t" —1]]Sina

a

y(t) = q@Cosa+ ¢Sina (3.11)

These equations can be represented in the state space form as follows:

() = qt)

zao(t) = qi(t)

z3(t) = qAt)

z4(t) = 4aft) (3.12)
Differentiating and expressing in a matrix form,

X = AX+BU

y = CX (3.13)
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where

( 0 1 0 0 \
~{k2+KawCosaCos(a=f)) —¢ ~(K.wSinaCos(a—p0)) 0
A= m m m
0 0 0 1
\ —(KawCosaSin{(a—p)) 0 =(k2+KawSinaSin(a—0F)) :92)

[0 )
KawCos(a—f)

m

0

KawSin(a—p) )

m

Cz(Cosa 0 Sina 0)

The effect of the random hardness variation on the cutting force is accounted
for by associating it with the thickness of cut. The nominal uncut chip thickness
‘a’ 1s scaled by a factor equal to the hardness variation effect. This scaled thick-
ness of cut in this thesis is referred to as the “equivalent uncut chip thickness”,
(Ue).

U, = a(E2)t (3.14)

The system is treated as a single input system by combining the inputs due to
the equivalent chip thickness and the residual chip thickness (y,.s). The input U
is therefore a 1 x 1 matrix. U(!) = U. + y,es- In order to simplify the derivation

of the equation of the response of the system (y), the equations are transformed

into another state space by the transformation matrix P, such that X = PQ
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where Q is the matrix of the transformed variables. The matrix P consists of
the eigen vectors of the matrix A chosen such that the product P7'AP = J, the
Jordan form of A. If the eigen values of the matrix A have o, and o, as their real

parts and w; and w, for their imaginary parts then the matrix J has the form

(

—01 wi 0 0 \
—Ww; —0 0 0
J =
0 0 —09 (55}

\ 0 0 —w —02 )

Thus we have

Q = P 'APQ+ P'BU
= JQ+ BU

y = C'Q (3.15)

In the derivation of the solution to the set of equations given above, Q, is pre-
sented in appendix. The response along the two principal modes ¢;(t) and ga(t)
which in the state space representation are z;(t) and z3(t) are obtained by trans-
forming the variables into the original system as X = P~'Q. With the knowledge
of X, the tool response can be calculated as y = CX.

This completes the analyses of the dynamical machining system and the na-
ture of the tool response to the different excitations. These responses need to
be transformed into its effects on the resultant machined surface and analysis of

the nature of the surface generated needs to be done for evaluating the accuracy
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of the model and also for effective use of the model to predict the surface finish.

The method of making this transformation is explained in the following section.

3.2 Evaluation of Surface Finish

The model described in the earlier section, covered in detail, the nature of the
tool vibration in response to the different sources of excitation. The responses
by themselves cannot be of any physical significance to a machinist. It has
to be translated to its effects on the machined surface. This is done by the
calculation of some popularly used surface parameters. These parameters will
first be described here before the methodology of calculating them from the tool

response is made.

3.2.1 Surface Texture

Surface texture refers to the fine irregularities (peaks and valleys) of a surface
produced by the forming process {28]. The texture comprises of two components,
roughness and waviness. The irregularities of the process that are a result of the
dynamic motion of the tool comprise the roughness, where as the more widely
spaced irregularities produced due to external sources of vibration in the machine
tool are termed waviness.

Surface topography is a term that describes the overall resulting surface, com-

prising of the two surface texture components along with the errors of forrm and
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Figure 3.5: Surface characteristics

flaws on surfaces. Errors of form are long-period or noncyclic deviations in the
surface profile which usually are a result of the errors in machine guideways or
spindles or uneven wear in the machine. Flaws on the other hand are irregulari-
ties like cracks, pits and scratches that are discrete and occur rarely. Under ideal
conditions the error of form and flaws do not occur. Hence, according to ANSI
standard B46.1 only roughness and waviness are considered when a description
of the surface finish is made for a machining process. Another term that is often
used in the description of the surfaces is ‘lay’. Lay is the term used to refer
to the direction of the dominant pattern of texture of surfaces. In the case of
turning of a cylindrical bar it is the circumferential direction of the bar. Figure
3.5 illustrates these terms. The set of parameters that are used for the evaluation
of surfaces are referred to as the surface statistics. To completely describe the
nature of surfaces produced by different manufacturing processes two types of de-

scriptors are necessary - the surface parameters and surface statistical functions.
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Figure 3.6: Method of calculation of (R,) and RMS values

The surface parameters which comprise of height, wavelength and shape param-
eters quantify the surface statistics with a single number while surface statistical
functions are functions that yield an array of information about the surface. Each
of these surface parameters or functions are used for different applications. How-
ever, three important parameters evaluated for most applications are roughness
average (R,), rms roughness (R,) and peak-to-valley. We limit our analysis of
machined surfaces only with respect to these important parameters. Since the
machining tests described later are conducted under controlled conditions, these
parameters adequately describe the surface.

The roughness average (/2,) is the most widely used measure of surface finish.

Figure 3.6 describes the method of calculation of R,. It is given by the equation

1 L .
R, = Z/(; ly(z)|dz (3.16)
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or

= —Z |yl (3.17)

1—1

where y; is the i’th deviation from the mean line as shown in Figure 3.6.

The rms value of roughness is given by
R, = L/ }(z)dz]*® (3.18)

or

1 N

3.2.2 Surface Generation and Evaluation

The surface generated in the presence of tool vibration, given the excitation
model and the dynamical equations, is a function of the instantaneous location
of the edge of the tool cutting edge, along the direction of vibration. The time
history of the tool vibratory response, y(t), together with the geometrical shape of
the tool tip, can be used effectively to generate the coordinates of the machined
surface in the computer simulation. The surface generation is done on lines
parallel to that of the boring machine model by Zhang and Kapoor [14]. The
tool nose i1s assumed to be an arc of the circle with the radius being the tool
nose radius. The tool moves in a spiral trajectory defined by the feed rate and
the diameter of the workpiece. Also, due to the vibration of the tool, there is

a movement of the tool to and away from the nominal depth of cut. These two

motions are together required to generate the surface topography of the machined
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Figure 3.7: Geometrical representation of adjacent revolutions

surface.

The ideal surface generated is shown in Figure 5.14. It is necessary to keep
track of the coordinates of the centers of the arcs representing the tool nose, at
different instants in time. The coordinates of the set of points that describe the
surface are calculated with respect to the center coordinates. The nature of the
surface generated in the presence of chatter is shown in Figure 5.18. The centers
of adjacent arcs described by the tool nose, taken along the same trace, in the
direction of feed, are not at the same level with respect to their Z-coordinates.
They are offset by a distance equal to the tool response y(t) at that instant
in time. Correspondingly, the arcs are created as shown in Figure 3.7. It is
necessary to find the points of intersection of two adjacent arcs in order to be
able to exactly locate the peaks on the surfaces. The coordinates of the points of

intersection of arcs with centers C) and C, respectively are given by the solution
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to the two simultaneous equations

(Cize = X)? + (Cr. — 2)? R?

R (3.20)

(Coz = X)* +(Co: — 2)°

The coordinates of the consecutive centers along the feed direction is given by,
(Ci1z =05f,C1, =Y )and (Cop = 1.5f , C2. = Y(t+7T)), where T’ is the time
for one revolution of the workpiece and is given by T' = 913, "N’ being the spindle
speed in r.p.m. It is important to note that the component of the response of
the tool in the direction of depth of cut is the one that describes the nature of
the surface. Thus the response Y (¢) = y(t)SinC, as seen from Figure 3.8.

With the information of the time history of the tool response, the circumfer-
ential location of the tool nose and the points of intersection of all adjacent circles
that represent the tool nose at different feeds along the surface of the workpiece
is calculated. These points can then be used to create the three dimensional
view of the generated surface as when opened up, so that the circumference lies
along a plane. The purpose of the surface topography generation is purely for
user perception of the nature of the surface. This can be easily understood by
any user even without any understanding of the surface statistics.

The different surface parameters can then be calculated by the use of the
equations presented earlier. Traces taken by the use of a profilometer or a Taly-
surf are simulated on the computer by calculating the parameters based on the
coordinates of the points lying in the same direction along the feed.

The material description models together with the surface generation and
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evaluation models completely describe the approach taken to relate the material
microstructure with the surface finish. These models have to be translated into
computer jargon for the creation of a simulation package that can be used for
cutting analysis. The ﬁature of the simulation package and the working details

are covered in the following chapter.
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Chapter 4

Structure of Machining System

Simulator

In order to test ana derive meaningful results from the mathematical models
developed, a systematic study needs to be done. This necessitates extensive sim-
ulation on computers for the different materials and cutting conditions. More-
over, one of the main objectives of the thesis work being carried out is to be able
to use computers to simulate the machining operation under different cutting
conditions, analyze material properties and hence, be able to use the simulator
to select machining parameters for the best possible surface finish.

The computer simulation model is essentially built on the basis of the models
described earlier in Chapter 3. The siimulation package consists of three impor-
tant modules. The first module is the image processing and analysis module

which 1s capable of analyzing pictures of the microstructure and establishing the
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material descriptive parameters like mean and variance of the population and
distribution of the microstructure. It also forms the basis for the construction of
the state transition matrices for the hidden Markov models. The second module
is the tool vibratory response evaluation module. This model takes its input in
the form of material descriptors, cutting conditions and other dynamical system
parameters to arrive at the response of the tool for different excitations from the
workpiece material. The output of this module is used by the third module which
is the surface topography generation and surface evaluation module. This model
evaluates the cutting performance under given conditions and offers quantitative
measures for the system performance. It also has the capability of displaying
the nature of the surface obtained graphically, to augment surface parameters as
a means of evaluation of the machined surface, for the user. A comprehensive
description of the three modules is presented later in the chapter.

The computer programs used for the simulation are created with the execution
time in perspective. The main body of the simulation is coded in C-language.
However, the popularly available math package “MATLAB” has been widely used
too, for many math calculations and as a means of graphical display. Some other
subroutines for some other mathematics have been invoked from IMSL, another
popular math library. The alternative C-routines have also been included so as
to make the simulator minimally dependent on software availability and thus

portable. A comprehensive flow chart for the simulation is presented in Figure

4.1.
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Figure 4.1: Flow chart for the computer simulation
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4.1 Material Analysis Module

The microstructure of the material in analyzed with the help of pictures taken
from the microscope. These images are scanned and digitized. The digitized
images are then stored in the form of binary files in the computer. This is
the only process in the simulation wherein the analysis cannot be made on-
line. However, since the microstructure for a particular grade of the material
manufactured under identical conditions is similar, these pictures taken from
different sections of the material are representative of the whole material. The
binary image files are then read by the image analysis programs to arrive at
the mean and variance of the population. The sample variance calculation is
then made based on these images and the models described in Chapter 2. The
program then analyses the pictures of the material in the longitudinal direction
to detect any existing trends. If such trends are present then the appropriate
Markov model can be applied for the calculation of the different states and the
state transition matrices. The output of this module then forms the input to the

second module - the tool vibratory response evaluation module.

70



4.2 Tool Vibratory Response Evaluation Mod-

ule

This module simulates the actual cutting process. The input to the module is
in the form of cutting conditions, material descriptors and various system pa-
rameters. The model generates random numbers for the instantaneous material
sample mean hardness based on the material description model chosen. The in-
dividual responses of the tool for the different excitations are calculated. The
resultant response of the tool is obtained by the principle of superposition, since
the system is linear. The tool response is in the form of the deviation from the
ideal position (equilibrium or stable position). It is this deviation that is fed into
the surface topography generation module for analysis of the generated surface.
The tool vibratory response is calculated based on the dynamical system model
described in Chapter 3. The three components of the cutting force - the nominal
chip load, the regenerative chip load and the random excitation are all incorpo-
rated into the machining system model. Since the tool response is also based on
the random excitation, the material analysis module communicates its output to
the tool vibratory response module. Figure 4.2 is a combined flow chart for the

tool vibratory response module and the material module.
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Figure 4.2: Flow chart for the tool vibration and material models
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4.3 Surface Evaluation Module

This forms the most important module for the user as it is this model that
communicates the nature of the machined surface to the user. One of the main
objectives of the thesis is to be able to evaluate the machined surface based on
the different cutting conditions and to use these results in the improvement of
the machining process. Thus this model tries to evaluate the surface by the
calculation of the different surface parameters and simultaneously generates a
three dimensional view of the generated surface. The surface topography is
done by the calculation of the different points that describe the surface with the
knowledge of the tool’s instantaneous location and the tool nose geometry. The
graphics abilities of MATLAB are used here to display the surface. The surface
parameters are the actual quantities used for the comparison of the different
surfaces generated in this thesis, while the plots of the surfaces have been used
for a visual perception of the nature of the surface and also to detect any possible
flaws or irregularities that cannot be detected or directly described by the surface
parameters. If any such deviations or flaws are detected then they can be easily

noticed and any corrective measures can be immediately taken.
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Chapter 5

Results and Discussion

This chapter presents the results of the detailed analyses done to validate the
theoretical issues addressed in this thesis. The results of work done in order to
analyze the nature of the material are presented in the first section. The second
section presents results obtained from the simulator, to explain the importance
of a few concepts that are critical to the material description model. The third
section presents the results obtained from the simulator for the machining op-
eration and compares them with those obtained from actual cutting tests. A
detailed analysis of the nature of the cutting force variation during machining

process is also presented.
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5.1 Analysis of Material Microstructure

5.1.1 Imaging process of Material Microstructure

The nature of the random vibration that occurs during the machining process is
dependent on the microstructural distribution and the microstructural hardness.
The materials that formed the subjects of the study were chosen based on the
variety of their microstructure. These materials chosen were in the form of
rolled bars, as this is one of the popularly used forms of material on lathes. A
number of cross sections of the bar were taken from different locations on the
bar. They were cut into small pieces and mounted on specimen holders by the
use of epoxy resins. These materials were then ground and polished to yield a
perfectly flat surface. Figure 5.1 shows the polished specimens mounted on to
plastic rings. These surfaces were then etched to remove the outer deformed
layers that result from the grinding and polishing operations. This reveals the
microstructure of the material. The sections were viewed under a microscope with
a magnification of approximately 100X - 200X. The nature of the microstructure
needs to be analyzed by the computer image analysis program to quantify the
distribution in the form of a correlation coeflicient function for the material.
Hence these pictures were then digitized and fed as binary input files to the
simulation. In order to get reliable values for the correlation coefficient function
and to be assured of the consistency in the microstructural distribution, a number

of such sections were analyzed from different regions of the bar. The analysis
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Figure 5.1: Material samples mounted on rings {or microscopic analysis
also included a study of the sections in the longitudinal (rolled) direction, to
identify the existence of any trends or consistent pattern. If such patterns exist
then then they form the input to the Markov models, so that the description of

the material microstructure is very close to the existing patterns.

5.1.2 Test for Microhardness

Another important part of the material microstructure study is the identification
of the hardness of the microconstituents of the material. The description of the
material variation, by itself, is worthless, if the hardness values of the microstruc-
ture is not identified. Thus, hardness tests were performed by the use of Vicker's

microhardness tester.



|
E 14.25um

Figure 5.2: Indentation on microstructure from microhardness tester

The Vicker’s hardness tester consists of a 136° diamond pyramid that is used
to make the indentations on material. The hardness tester has facilities to view
the microstructure and make indentations on only certain chosen grains. A very
small load, which in the case of the steels was 10 grams, was used to make the
indentations. The low load facilitates the making of indentations only on a local
microconstituent, while not covering the other neighboring microconstituents. A
picture of one such indentation is shown in Figure 5.2.

The length of the diagonals of the indentation made together with the load

applied can be used to measure the material hardness by the use of the equation

HardnessVicker's = 183# (5.1)
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where P is the applied load in kilograms and d is the mean value of the diagonal
of indentation in mm. A load of 10g was used for the microhardness tests. Since
Brinell’s hardness number (BHN) is used in this thesis, the Vicker’s hardness

number was converted to BHN using standard tables. Table 5.1 shows the hard-

Material | Phase | Mean Diagonal of Hardness
Indentation (um) | HV | BHN
Steel Ferrite 14.25 91.3 87
(1018) | Pearlite 10.5 168.2 | 161
Steel Ferrite 13.5 101.75 | 96
(4340) | Pearlite 8.5 256.66 | 243
Aluminum 13.75 98 94

Table 5.1: Hardness values obtained from tests

ness values for the different phases obtained for the materials analyzed in this
thesis.

The nature of the material microstructure distribution, its microhardness
values together with the cutting condition, yield a value of sample variance for

the material as described in Chapter 2.
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5.2 Sample Variance Analyses

The following section presents results obtained from the simulator that address
the nature of the variation in the sample variance as a function of different condi-
tions in the machining operation. Although these results are not directly related
to the surface finish obtained, they form the basis of the material description
model, and hence have a very strong bearing on the nature of the excitation to

the cutting tool.

5.2.1 Effect of Material Microstructure Distribution

An important area of focus of this research is the study of the effect of the
different material microstructure on the tool random vibration. Hence, three
different materials were used for the cutting tests. They are 6061 aluminum,
1018 low carbon steel and 4340 alloy steel. These materials were chosen as
they exhibit different microstructures and are also commonly used on the shop
floor. Figure 5.3 shows the digitized image of the cross section of these three
materials. As can be seen from the figures, these three materials exhibit distinct
microstructures. The correlation coefficient functions for two of these these three
materials are also presented in Figure 5.4. The correlation coeflicient function
for aluminum is not presented as the microstructure is very much uniform. It is
seen that 4340 steel has a higher value for the correlation coefficient function at

low values of ‘r’.
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~For any particular cutting conditions, these three materials exhibit three dif-
ferent sample variance. In fact, the aluminum sample 'should not actually have
any sample variance associated with it, as it is homogeneous in its microcon-
stituents. However, due to the presence of impurities and other extraneous con-
ditions there are very small regions that make the microstructure discontinuous.
Hence, it yields a very small value for the sample variance which can be ne-
glected. The hardness of the microstructure varies for each of these samples and
hence the sample variances need to be compared between materials with this in
perspective. Since the cutting conditions for each of these tests are the same,
they all have the same sample shape functions. Hence, the sample variance is
a function of the population variance (o?) and the correlation coefficient func-
tions only. The population variance is the dominant term of these two. It is
important, here, to reiterate the physical significance of the Equation 2.14 which
implies that the sample variance is a fraction of its population variance, with the
fraction being determined by the size and distribution of the microstructure. By
looking at the sample variance values obtained for the three different materials, it
1s evident that for the same cutting condition different materials exhibit different
sample variances. The sample was found to have a higher value of its population
variance. Hence, although the 4340 steel samples have a higher correlation co-
efficient function, it is seen that for all cutting conditions, the low carbon 1018
steel has the highest values of the sample variance. Aluminum does not yield any

sample variance as the material is uniform in its microstructure. Consequently,
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the random vibration is maximum in the 1018 steel, as is evident in the surface

finish values obtained, which is presented later in the chapter.

5.2.2 Effect of Cutting Parameters

The most significant use of this model is in its capacity to predict random vibra-
tion for any set of cutting parameters. The different cutting parameters result in
different sample shapes. The nature of the sample shape affects the nature of the
sample shape function and hence yield different sample variances. In order to
minimize the number of such analyses, the concept of three level factorial design
has been adopted in this work for studying the effect of different parameters on
the surface finish. A brief description of this tool in experimental design is pre-
sented in the appendix. The three most important parameters that are almost
always the most common variables in a cutting process - the cutting speed, feed
and the depth of cut have been used as the parameters of the factorial design.
The eight set of parameters that have been used here are shown in Figure 5.5,
which is a graphical representation of the factorial design.

Figures 5.6 , 5.7 and 5.8 illustrate the effects of changes in cutting conditions
on the sample shape function. The values for the different cutting conditions
chosen are some common practical values used on the shop floor. The figures
indicate that the feed has the most significant effect on the sample shape function.
This is because the feed is almost always the smallest of the three dimensions

that describe the sample. Hence an increase in feed has the greatest impact in
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Figure 5.5: Graphical representation of factorial design
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Figure 5.6: Sample shape functions for different depths of cut
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Figure 5.7: Sample shape functions for different feeds

increasing the volume of the sample lying in the shell of a much larger radius, as
described in Chapter 2.

The practical significance of this observation is better understood when the
effect of the variation of the sample shape function is observed on the sample vari-
ance. The sample variance values are a function of the population variance, the
correlation coefficient function, the sample volume and the sample shape func-
tion. For a given material, the correlation coefficient function and the population
variance are constant. An increase in any of the cutting conditions increases the
sample volume and the sample shape function. The increase in volume is much
larger than that of the increase in the sample shape function. Hence, the sample

variance decreases. However, the decrease in sample variance for a change in feed
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Figure 5.8: Sample shape functions for different spindle speeds

86



is the lowest, as the increase in the sample shape function is the greatest. This
implies that for low feeds, the sample variance remains rather high and hence
causes a high degree of random vibration.

The sample variance values for the cutting conditions investigated are shown
in Figure 5.9. A pseudo-empirical model was developed based on the concepts
of factorial design. It is presented in Equations 5.2 and 5.3.

For 4340 steel:

o = 12.8313 — 2.1688z; — 3.2863z, — 2.6713z3 + 0.763871z,

s

+07013$2$3 + 07838.’171.’133 - 0.1238(171272;133 (52)

For 1018 steel:

o} = 20.77 — 3.2525z, — 5.44z, — 3.923 + 0.7725z, x4

8

+0.8751224 + 0.4425x, 23 — 0.0475x, 7923 (5.3)

where z;,7; and z3 represent the levels of feed, depth of cut and spindle speed
chosen, respectively. They have values of —1 or +1 for the lower and higher
levels of the cutting conditions respectively. The model is in agreement with
the earlier discussion on the effects of cutting conditions on sample variance. [t
can be noticed that the role of random vibration is maximum for the condition
where all these three cutting conditions are the lowest. The proof for this claim
is presented in the form of a comparison of the surface indices for these materials

machined under identical conditions, later in the chapter.
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Figure 5.9: Sample variance values for steel specimens
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5.2.3 Effect of Magnification Factor

In order to derive meaningful results from any image analysis model, the model
needs to be immune to the value of the magnification factor chosen. An analysis
was, therefore, performed on a 1018 steel sample. A variation in the magnification
factor only affects the correlation coefficient function. The correlation coefficient
function obtained at three different magnification factors is presented in Figure
5.10. All the three magnification factors used yielded the same sample variance,
for a given set of cutting conditions. Use of a larger factor yields larger correlation
coeflicient functions and sample shape functions, which is inversely proportional
to the decrease in the pixel dimensional value. Consequently, Equation 2.14

averages out these variations to yield a constant value for the sample variance.

5.3 State Transition Matrix

The state transition matrices for the material were calculated as explained in
Chapter 2. The matrix has to be calculated dynamically for each cutting condi-
tion as the sample size 1s a function of the cutting conditions. One such matrix
calculated for the cutting condition-1 for 1018 steel is presented in Table 5.2.
The hidden Markov model has, in addition to the above state transition ma-
trix, another state transition matrix for the assignment of distributions between
revolutions, associated with it. The transition matrix obtained for the distribu-

tion for 1018 steel is presented in Table 5.3.
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State

1 2 3

1]0.2828 | 0.6495 | 0.0677

2 10.1240 | 0.7209 | 0.1551

3 | 0.0556 | 0.6608 | 0.2836

Table 5.2: State transition matrix for cutting condition - 1

Distribution

1 2 3 4

1103530425 | 0.2 |0.022

210.184 | 0.612 | 0.124 | 0.08

3| 0.05 | 041 | 0.31 | 0.23

4 0 0.13 | 0.42 | 0.45

Table 5.3: State transition matrix for assignment of distribution
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Figure 5.11: Experimental setup for cutting tests

5.4 Results from Cutting Tests

The validity and soundness of the models used can only be proved by the use of
actual cutting data and information on suwiface characteristics. Hence a number
of tests were performed on different materials having different microstructures.
The three different materials chosen for the microstructural study were the ones
used for the cutting tests. The culting parameters used were also the same as
those used in the computer simulations.

A Methods Slant Junior CNC lathe was used to perform the expernnents.
Figure 5.11 illustrates the set-up used for the cutting tests. The computer control

on the lathe and the high aceuracy reduces a lot of noise that can otherwise be
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significantly present in an experiment. Some other factors that very often affect
the surface finish in machining like tool wear and built-up-edge were to a large
extent avoided in these experiments. Tool wear was not really a problem as a
new insert was used for each of the tests. The short duration of the tests cannot
cause any significant tool wear that can affect surface finish.

Built-up edge is a phenomenon that often affects the surface finish of ma-
chined parts. The adhesion of the material removed onto the rake face during
machining is called as built up edge. It is subsequently removed from the tool
abruptly when it reaches a large volume. This usually occurs during low cutting
speeds. When the cutting speeds are high, the temperature in the interface be-
tween the tool rake face and the chip is also high and so the material removed
is very plastic. Hence, this phenomenon does not occur. In order to avoid the
éffects of built up edge, high cutting speeds were used. The results obtained
from the experiments, therefore, reflect almost only the true effects of the three
cutting conditions chosen.

The simulator was used to simulate the machining operation under the dif-
ferent cutting conditions described in the factorial design. The effects of these
parameters were then evaluated in terms of the tool vibration, nature of cutting
forces generated and the surface generated. These results have to be compared
with some experimental results before the model can be put to practical use.

The turning process has been simulated with each of these sets of cutting

parameters on a particular material and the surfaces generated evaluated. The
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different statistical models described in Chapter 2 have all been tested on the
same set of conditions, to compare the performance of the models.

The material descriptive values obtained for the different cutting conditions
shown in the factorial design model (Figure 5.6) were used as inputs to the ran-
dom excitation models for all the three materials. The Roughness Average (R,)
values so obtained are compared with the experimental values. The measurement
of the surface parameters for the machined surface was performed at National
Institute for Standards and Technology. A Talysurf complete with a data acqui-
sition system was used to take traces and obtain these surface parameters. An
optical profilometer was also used for the measurement of some of the surfaces.
Figure 5.12 is a picture of the Talysurf arrangement and Figure 5.13 shows the
optical profilometer used. The traces obtained from the profilometers for 4340
steel are presented in Figure 5.14. The experimental Roughness Average (R,)
values are presented in Figure 5.15.

An empirical model was derived from the experimental data for each of the
three materials machined. The models so formulated are presented here, after
excluding insignificant factors based on the levels of standard error obtained from
repetitive traces.

For aluminum:

R, = 0.9225 4+ 0.33z, — 0.03z, — 0.02z4

+0.11xy29 + 0.022523 (h.4)
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Figure 5.12: Talysurf used for surface measurements

Figure 5.13: Optical profilometer used for two-dimensional traces

95



Tool Displacement Direction (man)  Tool Displacement Direction (mm)

Tool Displacement Direction (mm)

Tool Displacement Direction (mm)

Surface Trace for Cutting Condition - 1

0.005] i \ L
o PRI Iy
0.003 A Al . %Jm ’
ol Yy | VV
0.002]
0.0017 1 2 3
Feed Direction (mm)
Surface Trace for Cutting Condition - 2
0.0077] T - ]
2226 b ¥ & i 'y 1 i ‘ 1 ; | S ‘ IA‘ I“
005 ]
L
0:002_.‘( V}U - - [;/“l\/‘vl v’ Iulvv A ¥/ \7L
0.001 )
000074 2.0 3.0
Feed Direction (mnm)
Surface Trace for Cutting Condition - 3
0.007
0.006 ']V
0.005 MWNWMWV \ \
0.004 ¥ ¥
0.003 | /
0.002
0 3
Feed Direction (mm)
Surface Trace for Cutting Condition - 4
0.008]
00061} —A A A
0.004.!\ "'"’"l&f “Vh }\J ’!
0.002:’ — 1 \_/_____.,V ‘! -
0.000 2 3

Feed Direction (mm)

Figure 5.14: Traces obtained from optical profilometer
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For 1018 steel:

R, = 1.44875 + 0.4338z; — 0.0313x; + 0.02125z3
For 4340 steel:

R, = 1.0825 + 0.2925z; — 0.08z, + 0.085z;,

+01275(L‘2$3 + 0.17.'131133 - 01275.T1 T3 ( E))

where r;,r, and z3 represent the levels of feed, depth of cut and spindle speed
chosen, respectively.

It is evident from the empirical models that an increase in the feed increases
the R, value. This trend is in agreement with the Equation 5.7 for the ideal R,

value obtained from the geometric motion of the tool (3].

_ 32f°
" R

R, pm, (5.6)

where ‘f” i1s the feed in mm/rev and ‘R’, the tool nose radius in mm. However,
the effect of feed on the surface roughness is not completely accounted for by
the geometric motion. As the feed decreases, the value of the sample variance
increases, as explained earlier. Hence, the random vibration increases and so
does the roughness average. But this increase in R, value is overcome by a
much larger decrease in R,. due to the geometric motion of the tool. Hence,
the coefficient for the feed is positive. It is important to note that the effect of
material microstructure on tool vibration is more pronounced for lower feeds.
Increase in depth of cut or spindle speed decreases the sample variance, as

shown earlier in Figures 5.6, 5.7 and 5.9. Hence, the random vibration and
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consequently the R,; value decreases. The empirical model for 4340 steel is in
agreement with this hypothesis as it shows significant negative coeflicients for
these two cutting conditions. The model shows high interactions. However,
in the case of 1018 steel, the effect of increased spindle speed is in increasing
the R, value, although marginally. The explanation offered by the material
microstructure models is not complete. Since the coefficient is very low, it is not
in complete violation of the models. The effect of depth of cut is in agreement
with the excitation model used.

Tables 5.4, 5.5 and 5.6 show the comparison of the experimental and simulated
values for the three different materials analyzed. A pseudo-empirical model is

developed for the simulated R, values and is presented here. For aluminum:
R, = 0.8563 + 0.4013z; + 0.0038z5 + 0.00375z3 + 0.00875z,
—0.0037522x3 — 0.00125z, 23 + 0.01125z, 2273 ' (5.8)
For 1018 steel:
R, = 1.455+0.39z; — 0.0625z; — 0.05z3 + 0.0125z, 24
+0.0075x9x3 + 0zy235 + 0.03752, T273 (5.9)
For 4340 steel:
R, = 1.0025 - 0.425z; — 0.0425z, — 0.03z3 — 0.005z, z,
+0.01lzyz3 — 0.0075z1z3 + 0.0075z1 22T (5.10)

where z;,z, and z3 represent the levels of feed, depth of cut and spindle speed
chosen, respectively. The results obtained from the simulator are in reasonable
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Test Number| Measured Ra IS{;m\?;?;z‘:

il 0.46 0.45
t2 1.32 1.26
3 0.44 0.47

t4 1.34 1.28

t5 0.71 0.46

© 112 1.29

7 0.76 0.46

8 1.23 1.26

Table 5.4: Comparison of experimental and simulated Ra values for aluminum

agreement for the steel specimens. The high R, value obtained for cutting con-
dition 7 for 4340 steel, however, is beyond the prediction from the simulator.
The values obtained from simulation show similar trends in the surface finish
obtained experimentally, with the variation in cutting conditions. The model for
aluminum, which does not exhibit random vibration because of its microstruc-
ture, shows considerable deviation from the experimental values, especially at
lower depths of cut. In order to interpret this phenomenon typical to aluminum,
further work needs to be done to completely understand the workpiece material
behavior during machining.

The dynamic system constants used in this thesis are estimates based on the
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Figure 5.15: Experimental surface roughness (Ra) values

101



Test Number| Measured Ra slgggge]:l

t1 045 0.52
2 1.28 1.36
t3 0.51 0.56
t4 1.36 1.4

5 0.52 0.59
6 1.33 1.42
t7 1.42 0.64
{8 1.34 1.53

Table 5.5: Comparison of experimental and simulated Ra values for 4340 steel
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Ra Value from Ra Value from [ Ra Value from

Test Number| Measured Ra | gy 11040 Markov model | Markov model

(Single Dist.) |(Multiple Dist.)
t1 1.00 0.75 1.12 0.91
©2 1.88 1.48 1.93 1.79
3 1.02 0.87 1.16 1.07
u 1.92 1.56 1.99 1.80
ts 1.09 0.92 1.21 1.12
t6 1.91 1.64 2.4 1.80
t7 1.06 0.99 1.24 1.16
t8 1.82 1.71 2.06 1.99

Table 5.6: Comparison of experimental and simulated Ra values for 1018 steel

experimental work done in the measurement of forces during the machining op-
eration. Table 5.7 shows the dynamical system constants used in the model. The
values chosen were based on the experimental cutting force data. A power spec-
trum analysis of the cutting force data was performed and the power spectrum
plotted, as shown in Figure 5.16. The two most significant frequencies of 100 Hz
and 275 Hz correspond to the fundamental frequencies of the machine system.
The values of ‘K’ and ‘m’ chosen were such that the frequencies of the machine
system matched the true frequencies determined experimentally. This method
was found to be quite effective as the values chosen were found to describe the
system response in an accurate manner. The simulation software is very flexible

as it allows for the easy changes of the system constants and hence can be widely
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Dynamical stiffness in first principal mode, K; =4 x 105N /m
Dynamical stiffness in second principal mode, K;= 1.8 x 10 N/m
Damping constant in first principal mode, C;= 14142 N.s/m
Damping constant in first principal mode, C2= 75.68 N.s/m
Equivalent Mass = 2 kg.

Angle between the first mode and the horizontal o = 60°

Angle between the resultant force and the horizontal B =45°

Power

2500

2000

1500

1000

500}

0 50 100 150 200 250 300 350 400 450 500

Table 5.7: Dynamic constants used in the model

Power Spectrum of Cutting Force

T T T T T

Frequency (Hz)

Figure 5.16: Power spectrum of the cutting force
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Figure 5.17: Ideal surface topography

used for any other machine systems which can be modeled on similar lines.

Figures 5.17 and 5.18 show simulated machined surfaces generated under

ideal conditions and in the presence of random excitation, respectively. Compar-

isons of these surfaces were made with surfaces analyzed experimentally. In order

to get a three dimensional profile of the machined surface a three-dimensional pro-

filometer was used. Figure 5.19 is a picture of the profilometer. The profilometer

is essentially a probe instrument with an indexing arrangement, fully integrated

into a digital data acquisition system. Figure 5.20 shows the three-dimensional

profile of the machined surface obtained experimentally. It was found that the

simulation resulted in surfaces that very closely resembled the actual surfaces

generated.
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Figure 5.18: Surface topography in presence of random excitation

Figure 5.19: Three-dimensional profilometer
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Figure 5.20: Surface topography of an experimental surface

The displacement of the cutting tool during the machining process is another
measure of the nature of the machining process. It clearly illustrates the nature
of the vibration occuring in the tool and hence explains the nature of surface
generated. The effects of the different excitation models presented in Chapter 3
can be seen easily by analyzing the tool response. Figure 5.21 is the tool response
obtained from the simulator in the absence of random vibration. The plot shows
that after the effects of the initial excitation due to the entry of the tool into
the workpiece dies out, the tool remains in an equilibrium position. This would
result in the ideal Ra value for the workpiece. But as seen experimentally, the Ra
value is very different from the ideal values. Figure 5.22 illustrates the nature of
the tool response in the presence of random excitation. Figure 5.23 is an enlarged

plot of the simulated tool response by the use of the sample variance excitation
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Figure 5.21: Tool response in absence of random excitation
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Figure 5.22: Tool response in presence of random excitation
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Figure 5.23: Tool response described by sample variance model
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Figure 5.24: Tool response described by hidden Markov model
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model] after the response due to the initial excitation dies out. Figure 5.24 is a
similar plot which was generated by the use of the hidden Markov model. It is
very difficult to directly measure the displacement of the tool dynamically during
the cutting process. The measurement of the response based on post-machining
analyses of the workpiece is also very difficult, as the curvature of the workpiece
together with the spiral path of the tool resulting from a combination of feed and
rotation of the workpiece, makes it almost impossible for most profilometers to
trace the tool path, without sophisticated fixtures. Hence in order to validate the
excitation models, an analysis of the dynamic force signals during the machining
process was adapted.

Cutting forces generated during the machining operation are perhaps the best
indicators of the nature of the machining operation. It is, therefore, important
to analyze the variation in forces in order to evaluate the effectiveness of the
mathematical models used for the tool excitation.

The measurement of cutting forces essentially consists of a set-up comprising

of three main components. They are the following:

e A sensor or transducer, in the form of a strain gage, that measures the

cutting force, based on the deflection of the tool,
e An amplifier to magnify the signal,
e A digital data acquisition system.

The transducer for the force system consists of a set of strain gauges mounted
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Figure 5.25: Schematic representation of force measurement system

on the tool holder. These strain gauges sense the deflection of the tool due to
the force on the holder. These deflections are converted to measurable electric
voltage signals through a bridge amplifier system. The measured voltage signals
are amplified and sent to the digital data acquisition system. A calibration pro-
cess establishes a relationship between the voltage signals and the cutting force
components. Figure 5.25 is a schematic representation of the force measurement
system. Figure 5.26 is a picture of the setup for the force measurement.

The strain gauges used are the CEA-06-062uw-350 type. They have excellent
heat dissipation and a suitable gauge factor for the experiments. The strain

gauges are mounted on the top - bottom and left - right regions of the tool
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Figure 5.26: Experimental setup for measurement of cutting forces

holder. They are capable of measuring the two significant components of the
cutting force - the tangential force (Fp) aud the feed force (Fg), as described in
the system of forces in Chapter 2 and illustrated in Figure 3.2. A Wheatstone
bridge is used in order to vary the resistance changes which the strain gages
undergo when subjected to strains. The layout of the bridge circuit is as shown
in Figure 5.27[17]. The voltage output of the bridge circuit, AE,.., due to the

resistance changes of ARy, AR,, AR, and AR, is given by

Al = Ey, ! ‘)('ARl _ ‘AHB + AR:} _ A]{4)
Tl ekl et

where, F;, = bridge supply voltage and r = £2. The term (
. 3 PP g ",

(H’:r)g) 18 an index

of the bridge circuit efliciency[29]. The maximum bridge circuit efficiency is
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Figure 5.27: Schematic of a wheatstone bridge circuit
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attained when R; = Ry, orr = 1.
The calibration of the strain gauges had been performed and the transfor-
mation matrix, for the conversion of the voltage signals to the cutting force,

formulated. The transformation matrix, T, is defined as

[ ]_ InPUt _ ‘/out
"7 Output ~ F

or in the matrix form as

|

AV,

AF. AF:
7] =

AV, AV,

AF. AF;

The force matrix is calculated for the voltage signals using the relation

[F] = (inv[T3])[V]

After calculation of the transformation matrix the relationship is expressed as

F, 35.678 0 Vz
F, 0.4313 39.2153 Vi
The tool with the cutting force measurement system described here, was
used for the cutting tests. Tests were performed for the eight different cutting
conditions shown in the factorial design and the voltage readings obtained from
the strain gages recorded. These values were then converted to cutting force
values in both the tangential and the feed directions, as explained earlier.
Figure 5.28 shows the plot obtained from one such force measurement, with
respect to time. In order to validate the use of the different models, these forces
were then compared with the forces generated by the simulator. Figure 5.29
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Experimental Cutting Force Data for Three Revolutions
43 Y T — T

Force (N)

1

0.05 0.1 0.15 02 0.25

36
0

Time (sec)

Figure 5.28: Force variation obtained experimentally

shows the force readings generated by the purely deterministic model. It is ob-
vious that the deterministic model fails to account for the excitation present
beyond the second and third revolutions of the workpiece, when both the re-
sponses due to the initial excitation and due to the regenerative excitation dies
out. This strongly confirms the presence of the random excitation in the ma-
chining process.

The force values obtained for the sample variance model from the simulator
are as presented in Figure 5.30. These can be compared with the experimental
force values presented in Figure 5.28. It can be seen that the model is much
more efficient than the purely deterministic model, as the nature of the random

excitation has been fairly well simulated. However, the frequent change in the
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Figure 5.29: Cutting force described by the deterministic model
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Figure 5.30: Cutting force described by sample variance model
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Force Data from Computer Simulation using Hidden Markov Model
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Figure 5.31: Cutting force described by the hidden Markov model

mean value of the forces between revolutions is not accounted for by this model.
It is this phenomenon that justifies the use of the Markov models.

Figure 5.31 is the force variation for the same cutting process as obtained
from the hidden Markov model. The change of the mean force level that is often
observed in cutting processes is fairly well described. The change in the mean
value is due to the hardness distribution in the steel bars. Although, the change
in the hardness is not accurately a function of the number of revolutions, the
hidden Markov model is indirectly able to simulate such variations by changing
the mean value of the sample mean hardness, as described in Chapter 3. The
similarity in the nature of the simulated and experimental force justifies the use

of the excitation models.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

This section presents the important conclusions drawn from the thesis. The
highlights of the different models and the nature of the results obtained from
them are summarized.

This thesis represents an attempt at characterizing and modeling the effects
of the material microstructure on the nature of the cutting process and hence,
on the machined surface. Three statistical models have been used to quantify

the micromechanical and metallurgical aspects of machining performance.

e The Sample Variance model has been used to describe the distribution of

the material microstructure in adjacent regions (samples) of the material,
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along the circumferential direction.

The Markov chain model is used to describe the distribution of the mi-
crostructure in materials that exhibit strong longitudinal trends. The
model quantifies the relationship between adjacent samples in the feed di-

rection by the use of transition probabilities.

The hidden Markov model quantifies the variation in the mean levels of the
sample mean hardness at different locations along the cylindrical bar, by
the assignment of different distributions to the different revolutions of the
workpiece. The sample mean hardness is determined based on two transi-
tion matrices - the first determines the mean hardness for the revolution,
while the second determines the relationship between adjacent samples in

the direction of feed.

The estimation of the sample variance involves the calculation of the sample

shape function which makes the sample variance relevant to the three machining

parameters, i.e., feed, depth of cut, and spindle speed. An algorithm has been

developed and implemented on a computer to estimate the sample variance based

on a given set of cutting conditions.

The material microhardness distribution for the samples forms an important

source of disturbance, which excites the machine tool structure during machining.

A dynamical system model is developed and implemented on computer to simu-

late the tool motion under random excitation. A two degree of freedom model,
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with second order dynamics in each of the two modes, is used. The tool response
due to the excitation is translated into its effects on the surface produced.

A two-level factorial design approach has been used to evaluate the pre-
dictability of the simulator. Three different cutting conditions of feed, depth
of cut and spindle speed have been used as variables in evaluating their effects
on the machining performance. Three different materials - aluminum, 1018 steel
and 4340 steel, with different nature of their microstructure have been used for
the analyses. Empirical models have been developed to help interpret the results
obtained.

The nature of the microstructure of aluminum is homogeneous and hence
does not act as a source of random excitation during machining. The steel
samples, however, exhibit non-homogeneity and act as a significant source of
random vibration. The sample variance, which is directly related to the extent
of random tool motion, was found to decrease with increase in any of the cutting
conditions. The decrease caused by feed was found to be the least, indicating
random vibration is significant when operating at low feeds. This effect of feed
on surface finish is sometimes not observed due to the fact that the geometrical
motion of the tool with small feeds leads to a better surface finish.

Finally, the cutting forces generated during the machining process are simu-
lated and used to reinforce the validity of the different excitation models. Com-
parison of these simulated forces with the cutting forces measured during the

machining tests justifies the use of the hidden Markov approach, which provides
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a better prediction of machining performance, as evidenced in machining 1018
steel.

In summary, the contributions of the thesis are in improvising the sample
variance model in order to make the model more receptive to changes in cutting
conditions, development of a Markov model that accurately models the longi-
tudinal trends together with the variations in the mean hardness levels of the
material, experimental validation of the models used and the development of a
comprehensive simulator that predicts surface quality, given any microstructure
and material microstructure. The simulator is, thus, a tool that can be used
to describe and analyze the nature of the tool response due to both the deter-
ministic and the random excitations. Hence, it can be a very useful tool for a
process engineer in predicting machining performance. If the simulator is linked
to a database of the microstructure of popular engineering materials, it can also
be very useful to a design engineer in the selection of materials based on their

machinability.

6.2 Recommendations

A few recommendations for directions of future work are proposed in this section.

1. The material description models presented in this thesis have been
applied only to the turning process. Material microstructure can also

play a significant role in other machining processes, such as milling
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and grinding. Application of the developed methodology to the other
machining processes may provide a wide scope of application for the

simulator.

. Modern materials like ceramics and composites often display non-
homogeneous distribution of their microstructure. This characteristic
may pose difficulties in effectively machining these materials because
of the presence of random excitation. By incorporating advanced an-
alytical methods such as finite element method, into the developed
model, we may gain a better understanding of the material removal

mechanisms.

. Making the simulator more user friendly and interactive, by the cre-
ation of an effective window-based interface can be an interesting di-
rection of work. Creation of a database of sample shape functions
for commonly used cutting conditions and microstructural images for
widely used materials can make the simulator more efficient and rapid

1n 1ts responses to any analysis.

. The simulation package accounts for some of the most important fac-
tors affecting surface finish in machining. However, all analyses are
done assuming an ideal condition in terms of tool wear. Tool wear can
have very significant effects on the surface texture generated. The sim-
ulator needs to incorporate this effect to be considered as a complete
tool for machining quality prediction.
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Appendix A

Statistical Test on Means

The test on means is used in this thesis as a basis for decisions on the selec-
tion of states of the hidden Markov process. The states of the hidden Markov
process represent different distributions representing different revolutions of the
workpiece.

The test on means is a statistical tool used to compare the relationship be-
tween two means of different samples. The test of means has a null hypothesis
(Ho) which states that the two means are equal within a confidence interval (a).
The alternative hypothesis (H;) states that the means are not the same [24].
Stated mathematically,

110 Ly = [

]1] i ?é 2

The objective of the test is to confirm or reject the null hypotheses. This is done

by the use of a parameter 't’ as explained here.
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In the case of the two lots being compared having the same variance, the test

parameter tg is given by
Y1~ Y2
/1 1
Sp — + v

where §; and g, are the two means being computed from the two samples of size

t(]:

n1 and ng. S, is the estimate of the variance and is given by

ny —1)SE + (ny — 1)52
ny +ng —2

5=t

S1 and S; being the two individual sample variances. The decision of accepting
or rejecting the null hypothesis is based on a comparison of ¢, with the value from
the t-distribution for n; + ny, — 2 degrees of freedom. Given a confidence interval
(or significance level, a) the null hypothesis is rejected if |to| > ta/2,ni+ny—2 18
the upper a/2 percentage point of the t-distribution with ny + ny — 2 degrees of
freedom.

If the two sample variances are different then the test parameter ¢4 is given

by
t() = y12_ y22
S S.
w Tt

The comparison of ¢y is made with ’t’ calculated on the basis of 'v’ degrees of
freedom, where v’ is given by [23]

s? 52
Gr+32)°

v= 5 2
()2 (%)

L 'lz

ny+1 ny+1
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Appendix B

Derivation of Tool Vibratory

Response

The solution to the set of dynamical Equations 3.16 can be got by transform-
ing the equations into the frequency domain by taking the Laplace transform.

Expanding the matrices and taking the Laplace transform we get

!

U]B; + Wi B; Bl ,
— — u{0
@i(s) 2+ 2015+ (o} + w%)u(s) + s2 + 2018 + (0% + w?) [su(s) = w(0)]
B 1 K B 1 Ci a1B
Qa(s) = s(s + o) [wf + wy I+ 2+ 20,5 + (0} + wf)[ w? wy I+
1 8 o K B;(a% + wf)] + B;
s(s?+ 2015+ (0f +wi)) W Wy s(s+o1)
GzB:; +UJ;_)B; B:;
= —u(0
Q3(S) 32 + 20_23 + (03 + wg)u(s) + 32 + 20_23 + (0_3 + W%) [SU(S) U( )]
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302] 1 - C’; azB

Q4(s) .s(s To )[“ Wy +t 3 + 2025 + (03 + wi)" Wi ]
1 - 0K By(of + wQ)] N B;
s(s2+ 205 + (0} +wi))" Wi wa s(s + 02)

(B.1)

where K = —w;(01B; + w,B;) and K' = —wy(03 B, + wy By).

Two assumptions are made here. The initial states of the system are assumed
to be zero. All the inputs are assumed to be in the form of step inputs. These
assumptions hold true for the machining system under consideration. Taking
Laplace inverse of the the above equations, we get the solution to the tool motion

in terms of the transformed variables, Q(t).

B; B; of +wf B, _
Q) = DaT@ Ty VI TP —oitgin(wt + 1)) + —Lem Sinuwt
01 + W Wy w1

K

Q2(t) = (1\1 FB)(1 e - — L et Sin(way/1 - ()t
0 Wni V 1 - Cl

K

‘22 (1- ! e~ Sin(way/1 — (Bt + ¢1))]

“ai VI—(E

B +w, By~ \oitw B
Qa(t) = BTl VIETE oitgin gt + ¢o)] + 2 Sinwnt
o5 + wy ) ws
1, . , K,
Qa(t) = —(Ky+ Bl — ™) - ——— ?—— ~Gen2t Sin(wnay/1 — ()t
02 Wy2 1 - (:2

1\’1 I —(qw :
_22{1 — = Genat Sin(waay/1 — (3t + 62)]
Wra \/ 1 — sz

(B.2)
where

¢ = C03_1C1
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K, = £+Blal

wf (]
e 2 2
, —0A  Bi(o] +wj)
.[\2 = 3 ot
wl (-()1
¢ o
1 = =
Vo? +ui
2 2
Wwnp = 07 +wi

and the other coefficients for Q3 and @4 similarly defined.
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Appendix C

Factorial Design of Experiments

The factorial design for experimentation is a concept that emerged as an offshoot
of Taguchi quality methods. This design for performing experiments aims at
minimizing the number of experiments to be performed for determining the effects
of the different experimental factors on the outcomes of interest, usually the
quality of the machined surface. The design selects a fixed number of levels
(usually two) for each of a number of variables (factors) and then experiments
with all possible combinations of these factors [24].

A two level factorial design is chosen for experimental work in this thesis.
Three factors that are the most significant variables in any machining operation
- the feed, the depth of cut and spindle speed are chosen as the factors to be
analyzed. The two different levels for each of these factors are chosen. This yields
a possible 2% combinations of the experimental factors that need to be analyzed.

The two levels are represented by (-) and (+) signs in Table C.1. This can be
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' FACTORS Output
Experiment (Surface
Number Feed Depth of Cut Spindle Parameters)

L (mm/rev) (mm) Speed (rpm) _

1 - - - yl

2 + - - y2

3 - + - y3

4 + + - y4

5 - - + y5

6 + " + y6

7 - + + y7

8 + + + y8

Table C.1: Setup of factorial design

graphically represented by the vertices of a cube. Figure 5.5 shows this graphical
representation. The effects of each of these factors can then be calculated as
explained here. The effect of any factor, for example, the feed is the average
change in the surface parameter value (the output) as the feed is changed from

(-) level to (4) level. Thus, the effect of feed E; is given by

E, = Yo=Y+ Y4 —Ys+ Yo — Ys + Yz — Y7
- 8
_ —“Y1+ Y2 Y3+t ys—ys+ys —yr+ys
8

As can be seen from the above equation, the effects can be calculated based

on the sign associated with the different levels in the table. The effects of depth
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of cut and spindle speed are calculated in a similar way.

The two and three factor interactions can also be calculated by making similar
calculations by assigning signs that result from the product of the signs of the
factors representing the surface roughness for any particular cutting condition.
These effects are then used to express the R, value resulting from the use of

different cutting conditions.

3. E; E
R, = Aug.+27X,-+§X1X2
=1

Ew. . E E
+—2—§X2X3+—13X1X3+ 12

5 5 5 X1 X2 X3
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