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Abstract. Current approaches to handling adversary attacks against
data aggregation in sensor networks either aim exclusively at the de-
tection of aggregate data corruption or provide rather inefficient ways to
identify the nodes captured by an adversary (e.g., O(cn) messages, in the
worst case, for detecting c captured nodes in a network of n nodes). In
contrast, we propose a distributed algorithm for efficient identification
of captured nodes; i.e., O(c log3n) over a constant number of rounds.
Our algorithm does not assume a fixed upper bound on the number of
captured nodes. We formulate our problem as a combinatorial group test-
ing problem and show that this formulation leads not only to efficient
identification (and subsequent removal) of captured nodes but also to a
precise cost-based characterization of when in-network aggregation re-
tains its assumed benefits in a sensor network operating under persistent
attacks (i.e., where an adversary continues to corrupt data aggregates
until captured nodes are identified).

1 Introduction

Data aggregation is generally believed to be a fundamental communication prim-
itive in resource-constrained, wireless sensor networks. In principle in-network
aggregation of sensor data can drastically reduce network communication. To
accomplish this, nodes are organized as a tree – called the aggregation tree –
that is rooted at a Base Station (BS). In response to BS queries, nodes aggregate
the critical data they receive from their descendents along with their own data,
and forward the partial aggregate to their ancestor node in the aggregation tree.

Motivation. An undesirable effect of aggregation is that an aggregator node
that is captured by an adversary could report arbitrary values as its aggregation
result, thereby controlling not only its own measurements but also that of all the
nodes in its entire aggregation sub-tree. As a consequence, an adversary who can
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capture nodes selectively (e.g., close to the base station) could corrupt the entire
network aggregation process, while incurring minimal cost and effort. Therefore,
to achieve reliable aggregation, and, in particular, to assure the integrity of
aggregation process it is important (i) to detect the adversarys presence in the
network (i.e., by discovering aggregated-data corruption) and (ii) to identify and
remove (e.g., revoke) the captured nodes that corrupt data aggregates.

Most recent work on secure data aggregation has focused exclusively on effi-
cient detection of integrity breaches in the aggregation process by captured nodes
(e.g. [8, 2, 12, 9, 6]). While detection of integrity breach is the first necessary step
in achieving secure data aggregation, it does not provide a fully adequate re-
sponse to malicious-node behavior; i.e., detection of integrity breaches alone
does not unambiguously identify and remove malicious nodes from the network.
Any countermeasure against an aggregation adversary based exclusively on de-
tection of corrupt aggregate results would leave the network unprotected against
repeated attacks that deny service to the base station. An effective approach to
handling this problem would (i) identify corrupted nodes and remove them from
the aggregation process (e.g. node revocation), and (ii) ensure continued, but
gracefully degraded aggregation services, even during an attack period. Identi-
fication and removal of corrupted nodes have the added benefit of acting as a
deterrent against some potential adversaries who might avoid the risk of being
identified.

Problem. We consider an aggregation scenario where a subset of nodes is
corrupted by an adversary. A corrupted node can (i) insert a false data into the
network or (ii) if it is an aggregating node, output a false aggregation result.
The goal of the corrupted node is to convince the BS to accept an invalid value.
Since the network cannot protect against the insertion of incorrect data into
the network without assuming specific distributions on the environmental data
[12, 11], we simply assume that all valid sensor inputs r must be within a given
range r1 < r < r2. Our objective is to (i) detect an attack in the network, (ii)
identify malicious nodes, (iii) ensure graceful degradation of the aggregate with
respect to the number of corrupted nodes in the network, while (iv) retaining
the efficiency advantages of data aggregation.

A straight-forward method of achieving the first three stated objectives with-
out retaining in-network aggregation, henceforth called the baseline scheme, would
be to detect the presence of malicious behavior in the network [6, 2], and then
require each aggregate node to directly transmit their data without aggrega-
tion along with a message authentication code (MAC) to the BS. By excluding
in-network aggregation, we would trivially remove any attacks on the aggre-
gation process. The BS could then identify any malicious nodes that inject a
false data by range testing the received data. If the corrupted nodes are per-
sistently malicious, the BS could identify all corrupted nodes. Furthermore, the
BS itself could reconstruct the network aggregate by disregarding the data of all
malicious nodes and finally guarantee the correctness of this network aggregate
based on the security of the MAC protocol and the data validity verification.
Although the baseline scheme would satisfy the first three objectives mentioned



above, it would do so at the cost of removing in-network data aggregation and
the associated communication efficiency. For this reason, we do not consider the
baseline scheme to be a useful solution. Nevertheless, we use the baseline scheme
as a practical lower bound on the performance of any secure aggregation solution
that satisfies our three objectives above. That is, any efficient solution must have
better performance than the baseline scheme; otherwise, the baseline scheme be-
comes preferable, and the entire notion of in-network data aggregation ceases to
be useful in hostile environments.

Related Work. We first focus on existing literature for integrity verification of
in-network data aggregation and then briefly introduce the field of group testing.

In-network Aggregation. Hu and Evans [8] propose aggregation verification
through re-computation of the aggregate by up-stream nodes (essentially central-
ized verification using a sliding window). This approach is effective for a limited
range of attacks as it assumes an upper bound t on the number of corrupted
nodes in the system. An adversary can escape detection by compromising more
than t nodes. At the limit, as the bound t approaches the size of the network
n, the communication cost incurred approaches that of the baseline scheme and
in-network data aggregation ceases to be useful.

Yang et al. [12] propose a scheme that probabilistically divides the network
into aggregating groups and considers a group suspicious if its aggregate is an
outlier. This approach requires the restrictive assumption that an event is glob-
ally visible across the network and generates similar readings in all nodes. In
practice, however, most events and monitoring regions are localized (e.g. bush-
fire detection or perimeter monitoring). Furthermore, suspicious aggregates are
attested via centralized verification, therefore incurring communication costs in
the order of network size.

Chan et al. [2] propose a fully distributed aggregation verification algorithm,
called the Secure Hierarchical In-network Aggregation (SHIA), which detects the
existence of any misbehavior in the aggregation process. The scheme perfectly
satisfies its objective as a detection mechanism; however the protocol design is
not intended to address our problem as it does not aim either at the identifica-
tion and removal of adversary nodes, or at providing continuous, but gracefully
degraded, service under attack. Similarly, the work of Frikken and Dougherty [6],
which improves the performance of SHIA, aims only at the detection of attacks
against the aggregation process.

Haghani et al. [7] extend SHIA to allow the identification of malicious node
once an attack is detected. A misbehaving node is detected via successive polling
of the layers on a commitment tree (generated during the aggregation process)
by the base station. Although this work is closest to ours in spirit, it is different in
the following three fundamental ways. First, it incurs high communication cost as
it not only relies on centralized identification but also each run of the algorithm
identifies only one malicious node. In the worst case, to detect c malicious nodes
in a network of size n, O(nc) messages are generated per link. In contrast the
cost of our scheme is logarithmic in n over a constant number of rounds. Second,
the performance analysis and adversary model presented excludes a comparison



with the baseline scheme (where identification of adversary nodes incurs a cost
of only O(n)) as the adversary attacks only the aggregation process. Hence, it
is not clear at what point the proposed scheme ceases to be useful. Finally, [7]
does not provide network service during the period of the attack.

Group Testing: The identification of corrupted nodes is directly related to the
problem of group testing, which aims to identify the defective items of a given
set through a sequence of tests. Each test is on a subset of items and indicates
whether the subset contains a defective item. In combinatorial group testing,
there is a constant number of defectives in a set. This number can be either
known or unknown at the time of testing. Group testing is efficient when the
number of defectives in a sample space is small compared to the total number of
samples [4]. This is an analogous setup to untrusted sensor networks which are
characterized as large, densely packed network of sensor nodes.

Our Contributions. We propose a divide-and-conquer approach to trace and
remove malicious nodes from the network that achieves the four objectives stated
above. At a high level, the approach recursively (i) partitions the suspicious sub-
set of the network, (ii) runs a ‘test’ in each partition to check the correctness of
the sub-aggregation value, (iii) if the result is bad, the set remains suspicious,
else it is considered good and the associated sub-aggregate value is retained.
Hence, the algorithm allows for the incremental reconstruction of lost data from
sub-aggregated value, over the course of its execution. The algorithm terminates
when it has isolated all the malicious nodes in the network. The partition test
is a secure aggregation primitive; we show the requirements for this primitive
and present a modified version of SHIA [2, 6] with relaxed assumptions for this
primitive. The identification algorithm is designed and optimized with respect
to the communication cost for an arbitrary number of malicious nodes. We prove
the correctness of the algorithm and evaluate its performance using an analysis
method inspired by the field of combinatorial group testing [4]. Our results illus-
trate the relationship between the efficiency of malicious-node identification and
the number and distribution of these nodes. In particular, we define a precise
cost-based threshold when in-network data aggregation ceases to be useful in
hostile environments.

2 Preliminaries

System Model. Consider a multihop network of untrusted sensor nodes and a
single trusted base station. The system administrator or user that resides outside
the network interacts with the network through the BS interface. For brevity,
subsequently we refer to any requests made by this external entity via the BS,
as simply requests by the BS.

We assume that each sensor has a unique identifier v and a unique secret
key shared with the base station, Kv. The sensor network continuously monitors
its environment and measures some environmental data. We divide time into
epochs; during each time epoch, the BS broadcasts a data request to the nodes



in the network and nodes forward their data response back to the BS. Data can
be forwarded individually or as an aggregate.

We model node corruption in the network as a function of the number c and
the distribution of the corrupted nodes. Each sensor node v belongs either to
the good set G or the malicious/corrupted set M . A network instance is defined
as N = {∀v in network : v ∈ G ∨ v ∈ M} where |M | = c and G = N \M . The
collection of all N for a given c, constitutes a family of networks Nc.

For the purpose of computing the aggregate, we assume that the sensed en-
vironment (e.g. temperature or humidity) changes minimally with respect to the
duration of the identification algorithm. This is a practical assumption as once
malicious activity is detected, the identification algorithm is promptly executed.
Moreover the algorithm terminates after a small, constant number of rounds
(logarithmic in network size).

Adversary Model. We assume that the network is deployed in an adversarial
environment where the adversary can corrupt an arbitrary number of nodes.
Once a node is corrupted, the adversary has total control over the secret data of
the node as well as the subsequent behavior of the sensor node. We assume that
a corrupted node persistently misbehaves by inducing the base station to accept
an ‘illegal’ value. An illegal value is defined based on the adversary objectives
which is to induce the BS to accept a data value which is not already achievable
by direct data injection. A direct data injection attack occurs when an adversary
modifies the data readings reported by the nodes under its direct control, under
the constraint that only legal readings in [r1, r2] are reported [2]. In the case of
a single data values, this means that the data value transmitted is outside the
legal reading of [r1, r2]. We call this a false data injection attack.

In the case of data aggregation, the objective of the adversary is to tamper
with the aggregation process such that the BS accepts an aggregation result
which is not achievable by the direct data injection. We refer to this type of
attack as a false aggregation attack. An aggregation protocol is considered secure
if the adversary cannot successfully launch such an attack [2].

It is possible to reduce our adversary to only attack the aggregation pro-
cess (similar to [7]). Although our protocol can be adapted to this model3, an
important feature of our model is that it allows comparison with the baseline
scheme.

Performance Measure. We use link cost as a metric to analyze our algorithm.
Link cost is defined as the total number of messages transmitted over a particular
link in the network. Node congestion can be derived as a function of worst link
cost and the maximum node degree in the network. Link cost is a commonly
used measure in sensor and ad hoc networks as it determines how quickly nodes
in the network exhaust their energy supply. Such nodes are often core to the
connectivity or the functionality of the network and their loss can lead to network
partitioning or denial of service.

3 This can be done by forcing the algorithm to terminate when suspicious partitions
are of size two and revoking both nodes in the group.



3 Identification Algorithm

The main objective of our algorithm is to recursively isolate the malicious nodes
in the network and thus render the adversary inoperative. The algorithm is
initiated once misbehavior is detected in the network (e.g. via [2]) and is executed
over a number of rounds, following an intuitive divide-and-conquer approach.
In each round the algorithm partitions the suspicious subsets of the network
and performs a partition test (defined in next section) on the newly formed
groups. The number of subsets a suspicious group is partitioned into is called
the partition degree. The partition test consists of nodes aggregating their data
and verifying the integrity of their aggregation process. The test has two outputs:
‘pure’ if all the nodes in the partition are good and ‘impure’ if there is at least
one malicious node in the group. The algorithm terminates when there are no
more remaining impure groups.

By distributing the localization of the malicious nodes, the scheme simply
keeps track of the lower bound on the number of malicious nodes in the network
and increases the bound only when the findings of the scheme up to that point
imply that this is valid.

Algorithm 1 Identification

Input: All the nodes in the network N ∈ Nc, partition degree m > 1, where m
is an integer, representing the number of partitions a group divides into in each
iteration.
Output: A result set M of malicious nodes and a result set G of good nodes,
such that M ∪G = N

Let t = 1 be the lower bound on the number of malicious nodes in the network
and S = ∪ti=1Si denote the current set of suspicious nodes, S1 = N .

1. For j = 1, · · · , t, BS requests partition Sj to be divided into m disjoint
partitions (using partition rule algorithm 2). The collection of subdivided sets
form the current collection S. Set t to be the cardinality of set S.

2. For j = 1, · · · , t, if |Sj | > 1, the nodes in partition Sj partition themselves
into groups of size n

m and execute partition test. BS verifies the purity of each
partition.

3. The BS learns the status of each node for the following round (details are
provided in the next section). For j = 1, · · · , t, if Sj is pure (i.e. all the nodes are
good), then G = G∪Sj; else if Sj is impure (i.e. there is at least one misbehaving
node) and a singleton set, then M = M ∪Sj and decrement t. Adjust the indices
of the remaining sets, {Sj} appropriately, to include only sets that are impure
and non-singleton. If t > 0, go to step 1 (next round), else quit as all malicious
nodes have been traced.

We can model the divide-and-conquer approach of algorithm 1 as the pruning
process of an m-ary tree T where each tree vertex is associated with a partition
test. The root of tree T is associated with the input set N and each round i
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Fig. 1. Identification algorithm on an input of 12 nodes, m = 2.

is associated with level (i + 1) of the tree. This is because the identification
algorithm is initiated when misbehavior is detected in the network and therefore
the test at level 1 has been already executed. If a partition X is tested pure,
then all the descendants of the associated vertex are pruned; otherwise the set
X is re-partitioned. Figure 1(b) presents an unpruned identification tree for a
network of 12 nodes and partition degree m = 2. Figures 1(c) and (d) show how
the tree can be pruned when the network contains one and six corrupted nodes
respectively. Figure 1(a) shows how the identification tree corresponds to the
recursive isolation of the captured nodes on the physical network.

Next we define a novel partition rule inspired by [3]. This algorithm partitions
the network such that the identification tree contains at most one incomplete
subtree. Intuitively a complete tree of n nodes executes less or equal number
of tests than an incomplete tree of n nodes as the complete tree contains less
vertices (where each vertex corresponds to one test).

Algorithm 2 Partitioning Rule
Input: Set X, maximum number of partitions m.
Output: Result sets {Xi}, such that ∪Xi = X.

Let i = 1 denote the new subset (Xi) to be determined.
1. Choose Xi to contain mdlogm |X|e−1 nodes.
2. Update set X = X \ Xi to exclude the newly formed subset. If less than m
subsets have been formed and X contains more than m−1 nodes, then increment
i and go to Step 1.
Else if X is not a singleton set, increment i and let Xi include the remaining
nodes in X.
Else if X is a singleton set, then X cannot be partitioned anymore.



3.1 Partition Test

The test that nodes perform in each newly formed partition is a fundamental
step in our algorithm. There are two types of tests depending if the partition is
a singleton or otherwise.

Tests for Non-singleton Partitions In all non-singleton partitions (that is,
partitions which contains more than one node), data is aggregated and the parti-
tion leader directly transmits (via multi-hop) the partition aggregate to the base
station. The base station then verifies the integrity of the aggregation process
and hence the integrity of the nodes within the partition. Algorithm 1 can be
composed with any aggregation-verification algorithm that does not depend on
a fixed partition and provides provable guarantees (e.g. modified versions of [2]
or [8]). In particular an administrator can interchange algorithms and choose
the most appropriate algorithm for varying settings and assumptions. In this
work, we propose and use a modified version of SHIA [6, 2]. Before we present
our extension, we will first provide an overview of SHIA and describe how we
modify the algorithm.

SHIA extends the aggregate-commit-prove framework of [9]. In the aggregate-
commit phase of the algorithm, a cryptographic commitment tree (hash tree) is
built based on the sensor readings and the aggregation process. This forces the
adversary to choose a fixed aggregation topology and set of aggregation results.
In the prove phase of the algorithm, each sensor independently verifies that the
final aggregate has incorporated its sensed reading correctly. Specifically each
sensor reconstructs the commitment structure and ensures that the adversary
has not modified or discarded the contributions of the node.

SHIA cannot be used as is because it assumes that the base station knows the
exact set of nodes which are alive and reachable. We propose a new algorithm
Group SHIA (GSHIA) (presented in appendix A) which includes two additional
properties. First, nodes should be able to organize themselves into groups of size
g, where g is arbitrarily defined by the BS. This can be easily achieved as the
‘delay aggregation’ approach of SHIA develops an aggregation tree one node at
a time. Since the root node of the aggregation tree knows the size of its subtree,
it can declare a partition complete when it has g nodes or it cannot add any
more nodes to its partition.

The second property we propose, is that the base station should be able
to verify the integrity of the aggregation process for a group of unknown size
and membership set. This property can be implemented through the use of a
Bloom filter [1] that summarizes the membership information of the partition.
The BS then verifies the membership set by exhaustively searching through the
possible nodes. The change we propose places most of the membership resolution
burden on the BS, which is generally assumed to be powerful. However we can
reduce the computation burden by noting that algorithm 1 is nested (i.e. each
new partition is a proper subset of an older impure partition) and therefore the
space of possible partitions in each round is reduced by a factor of m. Further



improvements can be made if the base station knows the topology of the network
a priori, using efficient schemes such as [10].

We can also improve the communication burden that is placed on the nodes
due to the Bloom filter by noting that the BS does not require the filter output
of every partition (although the partition tag, defined in appendix A, is needed
for every partition). For example if a given partition is halved, the BS only needs
to know the filter output of only one of the new partitions; the other partition
can be trivially resolved. More exact knowledge of the topology information can
also reduce the need for the filter output.

Tests for Singleton Partitions If a partition contains exactly one sensor
node, the node v transmits its measured data xv along with a MAC tag σv
computed using Kv. Upon receiving 〈v, xv, σv〉, the base station verifies the tag
and ensures that xv is valid. The base station assumes node v has misbehaved
if xv is not in the correct range but the tag verifies correctly.

3.2 Computing Aggregate

An important feature of our algorithm is that the network aggregate can tolerate
malicious nodes and in fact, the aggregate degrades gracefully with the attack. In
particular, dual to the intuition that the algorithm recursively isolates the cor-
rupted nodes, is that the algorithm also increasingly identifies the uncorrupted
nodes in the network. The BS can then use the data from the nodes determined
to be uncorrupted to reconstruct the network service.

Recall our assumption that the sensed environment of the network changes
slowly with respect to the identification algorithm. Since the algorithm converges
very fast (e.g. in a network of 1000 nodes, it converges in at most 10 rounds),
we can assume that the sensed environment is in fact constant over the lifetime
of the algorithm. This allows us to improve the quality of the network aggregate
in each successive round by incorporating the aggregates of pure groups. The
amount that the aggregate improves in each round is dependent on the number
of malicious nodes in the network as well as the degree of the decision tree.
In algorithm 3 we present the aggregate update algorithm when the aggrega-
tion function is addition. We can easily extend this to other low-order statistics
functions, such as min/max, averaging, etc.

Algorithm 3 Aggregate Update in Round i
Input: Aggregate Ψi−1 from round i− 1, set {Ψ [j]} of the aggregates of all pure
partitions from round i.
Output: Aggregate Ψi of round i, where Ψi = Ψi−1 +

∑
j Ψ [j].

3.3 Security Analysis

In the following, we first show the correctness of the proposed algorithm and in
section 4, we propose a mathematical framework to analyze the communication
cost associated with providing our security solution.



Theorem 1. Given an input set of nodes N and partition degree m, algorithm
1 outputs two resulting sets of corrupt nodes M and of good nodes G, such that
M ∪G = N .

– (Completeness) If node v ∈ N and v is corrupt, then v ∈ M , i.e. no false
negatives.

– (Soundness) If node v ∈M , then v is corrupt, i.e. no false positives.

Proof. Let T be the identification tree that algorithm 1 generates. For any cor-
rupted node v ∈ N , any vertex u in T which contains v, tests impure. This is
because a corrupted node is persistently malicious and the partition test t(·) is
perfect (i.e. the test result is always correct). Each impure vertex in T is either
divided into smaller partitions if it is a non-singleton set, or is added to the
set M if it is a singleton set. Since the algorithm converges when t = 0 or when
there are no more impure non-singleton partitions, then by convergence time the
algorithm must have found all corrupt nodes and added them to set M . Thus
the algorithm is complete.

Additionally, the algorithm is sound since if node v ∈ M , then there exists
a vertex u in identification tree T which is associated with a singleton set {v}
and that {v} is impure. Thus v must be malicious.

Corollary 1. Algorithm 1 isolates all c corrupt nodes within dlogm |N |e rounds.

We can trivially prove this as the leaf at the highest level of identification tree T
defines the round duration of the algorithm. In particular note that T is rooted at
a vertex associated with node set N and the root node (at level 1) is processed
in round 0. Also in each round, the active vertices are divided into m equal
partitions and at most one of the partitions contains a smaller number of nodes.
It is thus easy to see that T has leaves on levels dlogm |N |e+ 1 and dlogm |N |e.

4 A Theoretical Model for Cost Analysis

In this section, we derive the cost associated with the security guarantees of the
proposed protocol. We first formulate the communication cost in terms of an
optimization problem. We then analytically solve this problem by introducing a
novel mathematical framework, inspired by [4, 5] and evaluate our results using
an example network of 4096 nodes. For a complete analysis of the problem,
finally we look at the best and average case cost of the system.

The link cost of the algorithm is a function of the number of partitions
that are generated in each round (referred to as partition cost) as well as the
aggregation-verification cost of each partition (referred to as the test cost of each
partition). It is important to distinguish between the two costs because partition
cost is characterized solely by the identification algorithm, whereas test cost is a
function of the aggregation-verification primitive adopted and can be improved
upon. We emphasize that the total cost derived in this section are based on the
use of GSHIA (apprendix A) as our primitive.



4.1 Cost Upper Bound Definition

Let N be a network instance with c corrupted nodes, N ∈ Nc, input to the algo-
rithm and let the algorithm terminate in τ = dlogm |N |e rounds. Let P (i,m,N)
denote the number of partitions in round i where each partition is of size
T (j,m,N), j = 1, · · · , P (i,m,N). We formulate the total communication cost
G(m,N) of the algorithm as:

G(m,N, c) =
τ∑
i=0

P (i,m,N)∑
j=1

T (j,m,N) (1)

We define worst case communication cost of the algorithm as the maximum cost
of the algorithm for all distributions of c corrupt nodes in the network :

G(m, c) = max
N∈Nc

C(m,N, c) (2)

Finally we can define the optimization problem for our proposed identification
algorithm:

G(c) = min
m>1

G(m, c) (3)

The parameters which achieve G(c) are called the minimax parameters of the
identification algorithm. The goal of the network administrator is to find the
minimax parameter m for a given network N without knowing the number of
corrupt nodes c.

The primary parameter in equation 3 is partition degree m. Towards solving
equation 3 we consider the effect of m on the different components of cost.
Test cost for singleton and non-singleton groups are O(1) and O(log g) (refer
to appendix A) respectively, where g is the size of the group. Thus test cost is
logarithmically related to 1

m .
Next we present some results relatingm with partition cost. This is of particu-

lar interest as our results can be applied to other divide-and-conquer algorithms.
In fact the isolated problem of optimizing partition cost is equivalent to an in-
stance of combinatorial group testing problem, where the number of defectives
is unknown and we optimize the algorithm to minimize the number of tests per-
formed. In appendix B, we present some existing results in combinatorial group
testing for m = 2. Inspired by these results, in the following, we extend this work
for the general m-ary case. To the best of our knowledge this is the first time
the m-ary case has been considered.

4.2 Theoretical Results

Upper bound when n is a power of m The following theorem proves the
upper bound of the partition cost for different m-ary identification algorithms,
where the number of nodes in the network n is a power of m.



Theorem 2. Let n be a power of m > 1. Then for c corrupted nodes in n
nodes, 1 ≤ c ≤ n, the number of partitions generated is tightly upper bounded by
m

1−m +mc(log n
c + 1

m−1 ).

Proof. Let tree T be the m-ary identification tree whose root vertex is associated
with a set of size n, which is a power of m. According to the algorithm, every
internal vertex must be associated with an impure set and there must exist
exactly c impure leaves. We sum up the total number of pure leaves in T as
follows. Let u denote the height of tree T , u = logm n. Each level i has mi−1

vertices, where at most c are impure. Level v = dlog ce is the first level with at
least c vertices and let w = v − log c. The total number of impure nodes γ in T
is:

γ =
v∑
i=1

mi−1 + c(u− v + 1)

=
(1−mv)

1−m
+ c(log n− (w − log c) + 1)

=
1

1−m
+ c(log

n

c
− w + 1− mw

1−m
)

≤ 1
1−m

+ c(log
n

c
+

m

m− 1
)

since 0 ≤ w < 1 and f(w) = −w − mw

1−m is a convex function. For 0 ≤ w ≤ 1,
f(w) is maximized at w = 0, 1, where f(0) = f(1) = 1

m−1 . Therefore there are
at most γ− c = 1

1−m + c(log n
c + 1

m−1 ) impure internal nodes in T . Each internal
node has exactly m children, therefore T has at most m

1−m + mc(log n
c + 1

m−1 )
nodes.

The following theorem computes the upper bound of the total cost of the
identification scheme when n is a power of m (equation 1).

Theorem 3. Let n be a power of m > 1. Then for c corrupted nodes in the n
nodes, 1 ≤ c ≤ n/m, the total cost G(m,n, c) of the identification algorithm is
upper bounded by

∑u
i=1H[i] where H is a sequence of size u = dlogm ne, defined

as:

H[i] =
{
mi−1(log n

mi−1 + 1) if i < v
mc (log n

mi−1 + 1), if i ≥ v (4)

where v = dlogm ce and log denotes log2.

Proof. Let tree T be the m-ary identification tree whose root vertex is associated
with a set of size n. Let sequence element H[i] represent the total cost of the
identification algorithm in level i of the identification tree T . Each level i of T
has mi−1 vertices, where at most c are impure. Also each vertex at level i has
exactly n

mi−1 nodes. Level v of T is the first level where T has at least c vertices.
Therefore at level i < v, all mi−1 vertices are impure. Since each test has a cost
of at most (log p+m), where p is the number of nodes tested, the total cost of



each level i < v is upper bounded by mi−1(log n
mi−1 + m). Now consider level

i ≥ v. Then each level has at most mc impure nodes of size mi−1. Therefore
total cost of each level i ≥ v is upper bounded by mc(log n

mi−1 +m).

Upper bound when n is not a power of m In the general case when n is not
a power of m, we cannot use the approach of [3] (which they solved for m = 2)
as the number of possible ways the corrupted nodes are distributed within each
subtree explodes (analogous to the combinatorial, ball in the bucket problem).
Instead we propose a novel model, inspired by the work of Fiat and Tassa [5]
in the context of dynamic traitor tracing (DTT)4. We introduce the notion of a
path trace, defined with respect to a particular corrupted node. The path trace
traces the identification path of that node in the identification tree T . Informally
we say a path trace D for corrupted node u is rooted at the vertex v in tree T
that the identification algorithm separates it from the other corrupted nodes in
the network. The trace includes all the vertices in the path between v and the
leaf vertex associated with set {u}. Therefore each time an impure vertex v′ in
T has more than one impure child, then the algorithm learns that the node set
at v′ contained more than one corrupted node, and thus a new tree trace D′ is
generated. Figure 2 shows the paths generated for an example identification tree.
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Fig. 2. Path traces for corrupted nodes 5,8,13 and 14.

Note that although a path trace is not unique to a given node, the set of path
traces generated is unique. We can therefore determine the set of path traces in
a network without associating them to a particular corrupted node.

Claim. A path trace of length ` generates m` partitions where there are m
partitions of sizes {m`−i}, i = 1, · · · , `.

Proof. The path trace is a path on an m-ary tree and each internal vertex on
the path has (m − 1) other siblings that are also tested. Also a path trace of
length ` has a root vertex associated with m` nodes. Thus at level i of the path,
the vertex is associated with m`−i nodes.
4 The DTT model is different from our model as in each round in DTT, only one

receiver node misbehaves.



Consider an identification tree T generated by algorithm 1, for a network of
n nodes.

Claim. Let n = mh where h ∈ Z+. Then define sequence P as:

P = {h, {h− 1}m−1, {h− 2}m(m−1), {h− 3}m
2(m−1), · · · } (5)

where {y}x denotes the value y repeated x times. The first c elements in P
represent the tight upper bound on the length of the path traces generated
when n contains c corrupted nodes.

Proof. Since n contains at least one corrupted node, the first path trace D1 is
rooted at the root of T and thus has length h. A new path trace is generated any
time a vertex in T contains more than one impure child. We want to maximize
the lengths of the path traces. Therefore on level 2 of T , up to (m−1) path traces
can be generated of length (h − 1); at level 3, up to m(m − 1) path traces can
be generated of length (h− 2), and so on. In general, in level i, up to mi(m− 1)
path traces of length (logm n − (i − 1)) can be generated. Since one path trace
is associated with each corrupted node and there are c corrupted nodes, the set
of lengths associated with the generated path traces can be represented by the
first c elements of P .

Theorem 4. Let mh−1 < n < mh where h ∈ Z+. Then define sequence P ′ as:

P ′[i] =


P [i] if i < x

P [i]− 1 if (i > x & P [i] > 0)
0 otherwise

(6)

where P is the sequence defined in equation 5 and the index x is defined as,

x =
⌈
n−mh−1

m− 1

⌉
(7)

The first c elements in P ′ represent the tight upper bound on the length of the
path traces generated when n contains c corrupted nodes.

Proof. It is trivial to show that the number of internal nodes x at level h are
defined as in equation 7. Thus there are (mh−1 − x) leaves in level (h− 1) and
(n−mh−1 + x) leaves in level h.

To find the upper bound of the lengths of the path traces, min(x, c) of the
path traces are associated with a corrupted node at level (h+ 1) and thus they
correspond to a identification tree for mh nodes. The path traces corresponding
to the remaining corrupted nodes have leaves at level h and correspond to a
identification tree for mh−1 nodes.

We can use theorem 4 to derive the tight upper bound on the total cost of the
identification algorithm. Consider identification tree T generated by algorithm
2, for a network of n nodes. Let T contain α complete m-ary trees and one



incomplete m-ary tree, with respective depths d1, · · · , dα+1. Let P1, · · · , Pα+1

correspond to the set of potential path traces for each of the (α + 1) respec-
tive subtrees using claims 4.2 and 4. Then let sequence P be composed of
the non-increasing ordered set of the path traces {Pi, · · · , Pα+1}, i.e. P =
{h, (h − 1)a1 , (h − 2)a2 , · · · }, where a1, a2, · · · are dependent on the size of the
subtrees. If n contains c corrupted nodes, then the length of the generated path
traces are bounded by the first c elements in P . We can use claim 4.2 and se-
quence P to compute the size and number of the partitions that algorithm 2
generates in the worst case and derive total cost by summing the cost of the c
path traces.

Finally we derive a closed form expression for the loose upper bound on the
total cost of the network. This is purely for the purposes of comparison of our
work with existing solutions.

Theorem 5. For c corrupted nodes in a network of size n, the identification
algorithm 1 has a communication link cost of O(c2 log3 n).

Proof. Consider the identification tree corresponding to the identification algo-
rithm, which is of height log n (theorem 3.1). Then for the worst distribution of
corrupted nodes in the network, there exists at most mc partitions in each level.
Since partition cost is O(log p) for a partition of size p, then the total cost can
be loosely bounded by:

mc

logn∑
i=0

log
n

mi
= mc

(
logn∑
i=0

log n−
logn∑
i=0

logmi

)

= mc

(
log2 n− logm

logn∑
i=0

i

)

= mc(log2 n− logm log n
2

(log n+ 1) = O(c log2 n)

Since according to theorem 4.1 and claim 4.2, partition cost of n nodes is
O(c log n), then total cost is bounded by O(c2 log3 n).

4.3 An Example

To gain a better intuition of the results and the interaction of partition and
test cost as part of total cost, we compute the cost associated with handling an
adversary attack in a network of 4096 nodes and analyze the graceful degradation
of the network service. For test cost, we use the cost derived by [2]. Although [6]
improves on the cost bound (from O(log2 n) to O(log n)), they do not determine
a fixed cost characteristic. Consider an adversary that corrupts an arbitrary
number c of corrupted nodes.

Figures 3(a) and 3(b) graph the maximum partition cost and total cost of the
m-ary identification scheme, when m = 2, 4, 8, 64. The baseline scheme is used
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Fig. 3. (a) Partition cost and (b-c) total cost of identification.

in both graphs as a lower bound for when the proposed identification scheme is
effective and efficient. Figure 3(a) verifies the intuition that for a fixed number of
corrupted nodes in the network c, the number of generated partitions increases
with the partition degree m. This increase plateaus when the the identification
scheme needs to test every single vertex on the identification tree. In this network
configuration, best partition cost (i.e. minimum cost) is achieved when m = 4.

The performance of the m-ary identification scheme is best shown in figure
3(b) where the link cost for different values of m is compared with the base-
line. As partition degree m becomes larger, the scheme performs better than the
baseline scheme for larger number of corrupted nodes, i.e., 7 (for m = 2), 12
(for m = 4), 14 (for m = 8) and 28 (for m = 64). However, when c < 6 smaller
partition degrees perform better. Therefore to optimize total cost (equation 3)
a network administrator choose an appropriate partition degree depending on
probability of attack, vulnerability of the network as well as the necessary ra-
pidity of the response (since response time is O(logm n)).

The effect of partition cost on the total cost is also evident in figure 3(b). In
particular the best total cost when c > 6 is obtained when m = 64. It is thus
clear that the test cost is the dominant term in the total cost of the scheme. This
is a promising result as test cost is only dependent on the cost of the aggregation-
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Fig. 4. Data availability at the BS over successive rounds.

verification primitive. More efficient primitives yield better results. In contrast
the fixed cost associated with the scheme, the partition cost, is relatively small.

Figure 4 shows the rate of improvement of the network service over the course
of the protocol execution. Data is normalized by simply looking at the number
of nodes that contribute to the network aggregate in a particular round. The
maximum available data for a network of size n with c corrupted nodes, is n− c.
Although most of the figures follow intuition, they are interesting because they
show the rate of improvement of the data availability in the network and how
the availability changes across different partition degrees. Fixing the number of
corrupted nodes c, as m is reduced, data becomes available in later rounds. For
example, for 8 corrupted nodes, the first available data occurs in rounds 3 (for
m = 2), 2 (for m = 4) and 1 (for m = 8). This is because in the worst case, for
example when m = 4, all four partitions generated in the first round are impure.
The second round is the first round which contains more partitions than c and
therefore the BS is guaranteed to obtain correct data.

4.4 Lower Bound and Average of Partition Cost

Up to now, we have focused on the upper bound or worst case partition cost.
To gain an understanding for the behavior of the algorithm in practice, it is



important to also analyze the lower bound and average behavior of the partition
cost.

Average. Computing the average partition cost when the number of malicious
nodes in the network is fixed leads to a state space size exponential in the number
of nodes in the network. To see this, observe that the number of possible states in
each round is equivalent to the classic combinatorial balls-in-the-buckets problem
where the balls and the buckets correspond to the nodes and partitions in the
network respectively; furthermore there are two types of balls (good nodes and
bad nodes). Then the total number of possible states can be computed by the
product of the number of states in each round. This leads to a combinatorial
explosion in the number of states and therefore is hard to compute exactly.

Lower Bound. The lower bound of the partition cost can be obtained by
minimizing the number of vertices in the identification tree T . According to the
algorithm, every internal vertex of T must be associated with an impure set and
there must exist exactly c impure leaves. Partition cost can be minimized when
both the number of pure leaves and the internal vertices in T are minimized.
Figure 5 presents two different distributions of 3 corrupted nodes in the network
which yield maximum and minimum partition cost.
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Fig. 5. Partition cost depends on how the corrupted nodes are distributed in the net-
work.

Figure 6(a) and 6(b) respectively graph the lower and upper bounds of the
partition cost and the total cost of the identification algorithm for a network of
1024 nodes. In the best case, the performance of the identification algorithm is
better than the baseline even up to 96 corrupted nodes. However in the worst
case, the scheme performs worst than the baseline scheme when simply 3 nodes
are corrupted.

5 Conclusion and Future Work

Adversary attacks against data aggregation in ad hoc networks can have disas-
trous results, whereby a single corrupted node can affect the perceived measure-
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Fig. 6. Bounding (a) partition cost and (b) total cost for binary identification algo-
rithm.

ments of large portions of the network by the base station. Current approaches
to handling such attacks either aim exclusively at the detection of attack [2, ?] or
provide inefficient ways of identifying corrupted nodes in the network, with re-
spect to the baseline scheme. In this work, we presented a group-based approach
to handling adversary attacks in aggregation applications. The proposed scheme
provides an efficient method in identifying corrupted nodes while ensuring con-
tinuous, but gracefully degraded service during the attack period. Our analysis
results in a precise cost-base characterization of when in-network aggregation
retains its assumed benefits in a sensor network operating under persistent at-
tacks. Our scheme is most effective when the adversary has corrupted a small
fraction of the nodes in the network.

Although our work provides promising results in divide-and-conquer handling
of attacks in aggregation applications, we have assumed a simplified adversary
model. In the following we identify several directions to improve our scheme.

Intermittent Adversary. An important assumption in our analysis of the
proposed framework is that the adversary persistently misbehaves. Although this
is a promising first step, in practice an adversary can be adaptive and can change
its behavior to avoid detection. In particular, instead of always misbehaving, the
adversary can choose to misbehave intermittently and ‘hide’ in certain rounds.
Although our algorithm can handle an intermittent adversary in most cases, a
corrupted node can escape detection by hiding in special cases (see appendix C).
We plan to extend our scheme to handle intermittent adversaries.

Localized Adversary. We have clearly shown that the cost of the identifi-
cation scheme is directly related to the distribution of the corrupted nodes on
the aggregation tree. identification cost increases as nodes are more uniformly
distributed along the aggregation tree (viz. figure 5), and similarly on the phys-
ical routing tree ([6] show that the aggregation tree is built so that physically
neighboring nodes are also neighbors on the aggregation tree). Alternatively,
cost can be minimized when corrupted nodes are distributed so that they form
a contiguous cluster. This is a promising observation as in practice an adversary
is localized – compromising uniformly in the network requires not only a greater



deal of network access, but also increased risk of physical detection. We can
therefore expect the cost of identification to be closer to the lower bound (best
case) than the upper bound (worst case). We plan on providing more concrete
analysis and simulations to confirm our expectation.

Detection Error. Many networks can tolerate detection error if the said
error is insignificant, yet can dramatically improve the cost of detection. In our
problem, a detection error occurs when a good node is mislabeled by the testing
algorithm (a false positive). It is interesting to investigate the effect and best
approach of introducing false positives into the system.
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A Group SHIA

For the sake of brevity, we only describe the differences between SHIA and GSHIA
and we refer the reader to [2] for details and analysis of SHIA. GSHIA has four main
phases: query dissemination, grouping, aggregation-commit and result checking.



Query Dissemination. The request message the BS broadcasts also includes the
following grouping information: the size of the new partitions as well as the ID of the
groups that were found impure in the previous round.

Aggregation-Commit. Nodes within a group compute a cryptographic commitment
structure over their data values and the aggregation process as in SHIA. Also to allow
the resolution of the group memberships, each leaf vertex also computes a Bloom
filter that probabilistically summarizes the node membership set. The filter is then
forwarded to the parent internal vertex, who aggregates the filters using the bit-wise
OR function. Additionally each leaf vertex computes an authentication tag over a fixed
message and forwards this to its parent node. The tags are aggregated using the bit-
wise XOR function to form the group tag. The group filter and tag are used by the BS
to determine the group membership sets.

Grouping. In this phase, node grouping is conducted through the selection of leader
nodes for each group. This phase is executed in parallel with the aggregation-commit
phase. Whenever a node performs the aggregation and commitment operations, it also
determines if it is a group leader by comparing the group size with the target size
broadcast by BS in the request message. If a node is selected as group leader, then
all the nodes in its subtree which do not as yet belong to a group become its group
members. The group leader then computes a message authentication code (MAC) and
forwards the group aggregates and commitments along with the MAC to the BS without
further aggregation along the way. If the node is not selected a group leader, it simply
forwards its aggregation and commitment values to its parent node, where they are
aggregated further. In this way, groups are iteratively generated starting from the leaf
nodes and approaching the BS or the root of the network spanning tree. At the end of
the aggregation-commit process, all remaining nodes which do not belong to a group
are grouped together with the BS acting as their group leader.

Result Checking. At the end of the aggregation-commit and grouping phases, each
group leader has reported their aggregation results and commitment values to the base
station. The base station first determines the group size and the membership set of
each group. This is done by narrowing down the potential membership sets of a group
based on the location of the group leader, the group size and the group Bloom filter.
The correct membership set can be verified by the aggregated group tag. Once the
membership set of a group has been determined, the group size can also be verified.
The BS then authenticates the final commitment values of each group and disseminated
them to the respective groups.

The result checking is the distributed verification process as in SHIA, where each
group verification code is forwarded to the BS by the group leader. When the BS re-
ceives all the group confirmation codes, it accepts the group aggregates if it can verify
that all group members have individually verified the correctness of the aggregation
protocol. The BS discards any group aggregate which is not verified by all group mem-
bers and classifies the associated group as suspicious. The final network aggregate is
computed over all groups which are deemed correct.

Communication Complexity. The aggregation verification process has a link conges-
tion of O(logn) where n is the size of the group [6]. GSHIA introduces the following
additional messages in the query dissemination and aggregation-commit phases of the
scheme: (1) group IDs, (2) Bloom filter output and (3) group tag. Messages (2) and
(3) are fixed size and message (1) depends on the number of active partitions in the
network, m. Thus the final link congestion for GSHIA is O(logn+m).



Security Analysis of Grouping. We must show that a malicious node cannot force the
BS accept a false grouping. A group membership set is summarized via the Bloom filter.
The BS can verify that the filter output has not been changed by verifying the validity
of the group tag, which is the XOR of the MACs of the group members. Assuming
that the MAC scheme is secure, then a malicious node can at best forge the group tag
with negligible probability. Hence if the BS can verify the group tag associated with
the Bloom filter and ensuring that each node in the network belongs to at most one
group, it knows with overwhelming probability that the grouping is correct.

B Group Testing Results for m = 2

Du and Hwang [3] presented a bisecting algorithm, where at each step, if an impure
set X is discovered, then the algorithm bisects X and tests the resulting two subsets
X1 and X2. They propose the following partitioning rule:

Algorithm 4 Improved Bisecting Rule
Input: Set X.
Output: Result sets X1, X2, such that X1 ∪X2 = X.

Bisect X into subsets X1 and X2, where X1 contains 2dlog |X|e−1 nodes and X2 =
X \X1.

This rule partitions the network such that the identification tree is made up of one
complete and one incomplete binary subtree. Figure 1 uses this rule to partition the
network of 12 nodes. We adapt the following theorem, proved by Du and Hwang [3] for
our problem. We refer the reader to the original paper for the proof of the theorem.

Theorem 6. Given an input set of nodes N, partition degree 2 and the bisecting rule
defined by algorithm 4, identification algorithm 1 produces at most 2c(log2

|N|
c

+ 1) + 1
partitions before outputting all the corrupted nodes.
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Fig. 7. Comparison of the analytical and numerical bounds with the baseline scheme.

Figure 7 shows the behavior of the partition cost of the binary identification algo-
rithm when the Du and Hwang’s partition rule is used and compares this cost with the



total cost of the baseline scheme. The figure shows that when considering the partition
cost of the identification algorithm alone, the identification algorithm performs better
than the trivial solution for up to 128 corrupted nodes. Therefore if an adversary cor-
rupts more than 128 nodes in the network (or 1

8
th of the total nodes in the network)

then aggregation is not a useful primitive for a secure and defensive network.
The figure also compares the analytical partition cost obtained from theorem 6

and the partition cost computed using the tight bounds in theorem 4, which yields
exact results. Although the analytical curve follows the numerical curve faithfully, it
does produce significant error for c > 128, where c denotes the number of corrupted
nodes. The experimental curve reaches a plateau at c = 128. This can be explained as
if c = 128, the worst distribution of corrupted nodes requires the testing of every single
node; consequently no extra test is required for c > 128.

C Intermittent Adversary Analysis

In the following, we analyze the behavior of the proposed identification scheme for an
intermittent adversary first in a setting where the adversary corrupts a single node in
the network and then when it corrupts c > 1 nodes. For simplicity we assume binary
identification (i.e. m = 2), though our analysis can be trivially extended to the m-ary
case. Consider a corrupted node u1 in set S = {u1, · · · , un} that misbehaves. Since S
tests impure, in the following round τ , the identification algorithm bisects S into sets
S1, S2 and tests the purity of each set. Without loss of generality, assume u1 ∈ S1.

When only a single node is corrupted.
If u1 misbehaves in round τ , S1 test impure and S2 tests pure. The algorithm traces the
location of the malicious node to S1 and repartitions S1 in round (τ + 1). Otherwise if
u1 behaves correctly, both S1, S2 test pure. Since the detector knows there must exist
at least one bad node in S (as it tested impure), it assumes correctly that the adversary
is ‘hiding’. The detector can then choose to keep the suspicious sets S1, S2 isolated until
the hidden corrupted node misbehaves and the algorithm can further trace it.
Detector Strategy: The detector follows algorithm 1 except that it advances to the next
round only when malicious behavior is detected; otherwise the detector repeats the
same round.

When c > 1 nodes are corrupted.
Assume nodes u1, · · · , uc ∈ S are all corrupted. We consider two cases in round τ ,
when nodes u1, · · · , uc all choose to behave correctly, or when at least one of u1, · · · , uc

misbehaves. In the former case, since the detector knows that there must exist at least
one bad node in S, it assumes the adversary is hiding and thus keeps the suspicious
sets isolated and waits for the hidden node(s) to misbehave again (this reduces the
strategy to the single corrupted node setting). In the second case when at least one of
u1, · · · , uc misbehaves in round τ , then the identification trace follows the misbehaving
nodes. Assume u1 ∈ S1. If S1 tests impure, then S1 remains a suspicious set in round
(τ + 1) and u1 can still be detected in future rounds. However if S1 tests pure (and
S2 tests impure), then u1 escapes identification. This is because all the detector knows
is that there is at least one corrupted node in S and subset S2 has tested impure; it
cannot make any other conclusions about the existence of any hidden nodes.

Therefore, an intermittent corrupted node u can escape identification by hiding in
round τ if set S1 which contains u does not have any other misbehaving nodes and at
least one other set Si ⊂ S \ S1 tests impure.
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