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Ad-hoc wireless networks distinguish themselves from their traditional wired

counterparts by three unique characteristics: mobility, lack of infrastructure, and

shared wireless channel. These properties have gained popularity in various military

and civilian applications, but have also introduced challenging problems in terms of

ensuring satisfying network performance and network security. Ad hoc networks are

a fertile ground for new threats and security problems. We start by demonstrating

how new covert attacks can be launched by using the ad hoc network protocols.

In particular, nodes in ad-hoc wireless networks have to cooperate with each other

in order to accomplish many networking functions such as routing and channel ac-

cess. We observe that covert information can be conveyed during the cooperation

procedure. It is very difficult to eliminate or even detect these covert channels.

Simulation results show that performance of these covert channels depends on vari-

ous network characteristics. Anonymous communication has been considered as one

possible way of fighting covert threats. In fact, anonymity and privacy by them-



selves have attracted intensive attention as important societal issues and desirable

security features. One of the key components in most anonymous routing protocols

is anonymous trapdoors, for which we propose a new construction scheme based

on pairing-based cryptographies. More careful analysis has shown that anonymity

could be in conflict with other secure properties and secure mechanisms, such as ac-

countability and intrusion detection. We propose a solution that can flexibly trade

off anonymity against accountability according to the needs of individual applica-

tions. The basic idea is to distribute the real identity of a given user among a set

of pseudonyms in such a way that only a sufficient number of pseudonyms can lead

to the recovery of the identity. Users authenticate each other anonymously under

pseudonyms. When the number of times a user is caught misbehaving exceeds the

threshold, the user’s real identity can be recovered from the pseudonyms that had

been used. Thus, accountability is enforced.

As conclusion, we propose to jointly investigate and incorporate all different

secure properties by using various secure mechanisms across multiple protocol layers

of the network.
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Chapter 1

Introduction

Ad-hoc wireless networks distinguish themselves from their traditional wired

counterparts by three unique characteristics: mobility, lack of infrastructure, and

shared wireless channel. These properties have gained popularity in various military

and civilian applications, but have also introduced challenging problems in terms

of ensuring satisfying network performance and network security. Ad hoc networks

are a fertile ground for new threats and security problems.

In this dissertation, we focus on two security problems: covert channels and

anonymous communication, both related to hiding information in wireless ad hoc

networks.

1.1 Covert Channels in Ad Hoc Networks

Covert channels are concealed communication paths whose usage or even the

very existence is not anticipated in the original design of a communication system[1].

Covert communication happens when one user intentionally manipulates and em-

beds information into some properties of the system in such a way that the extra

information can be detected by specific designated users in the system.

Most of the past studies on covert channels have been concentrated on multi-

level computer systems or wired computer networks. However, wireless commu-
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nication networks involve a fundamentally new and ubiquitous environment with

new and different variables that can be manipulated in order to convey covert in-

formation. The absence of fixed infrastructure and central control puts the burden

of network organization and maintenance on the terminal nodes themselves. The

decentralized style of operations empowers the nodes to manipulate the system indi-

vidually. Since the nodes control their own behavior, they may manipulate the sys-

tem parameters through legitimate operations in such a way that covert information

can be embedded and conveyed. At the same time, the high degree of randomness

in ad-hoc networks, due to factors such as node mobility, provides camouflage for

the covert operations.

Anonymous communication was first suggested in [2] as one possible way of

fighting covert threats. In fact, anonymity and privacy by themselves have attracted

intensive attention as desirable security features.

1.2 Anonymous Communication in Ad Hoc Networks

Privacy has always been an important real world societal issue. User privacy

in the cyberspace is needed for various reasons from enabling the e-commerce appli-

cations to supporting the freedom of speech ([3, 4, 5, 6]). Preserving privacy under

the inherently open wireless communication networks ([7, 8, 9, 10, 11, 12, 13, 14])

has demonstrated even more challenging problems. The open wireless medium vul-

nerable to both eavesdropping and jamming has posed great challenges in protecting

the communication between users.
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In Chapter 3, we propose a new construction scheme of anonymous trapdoors.

Anonymous trapdoor is utilized in most of the current wireless anonymous commu-

nication schemes ([11, 7, 13]) to hide the receiver identities. An anonymous trapdoor

is a special token generated by a trapdoor function. The function is difficult to invert

unless you are the designated receiver who has some secret information related to

the trapdoor. In other words, only the designated receiver can open the trapdoor.

Anonymity further requires that the other users not only cannot open the trapdoor,

but neither can they recognize who has the capability.

1.3 Anonymous Authentication with Distributed Anonymity Revo-

cation

Unfortunately, anonymity can be misused. A compromised user can abuse

anonymity and launch malicious attacks without being detected. On the other hand,

accountability ensures that events of interest can be linked to specific users such that

responsibility can be assigned if something goes wrong. Without accountability, it

would be impossible to know who caused the observed or suspected malfunction and

what counteractions should be taken against whom in order to contain the damage.

Obviously, anonymity and accountability are two conflicting properties by def-

inition. Existing anonymous communication schemes combat this problem by re-

voking anonymity when misbehavior is detected. Revocation of anonymity depends

on the existence of centralized authority(CA), who maintains the mapping between

user identity and user pseudonyms. However, in ad hoc networks, it cannot always
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be assumed that such a centralized control is constantly available. It is crucial

for the network users to be able to identify the misbehaving nodes by themselves

and take proper counteractions. Current anonymous communication protocols for

ad hoc networks, ANODR [11] and MASK [14] for example, either do not support

anonymity revocation at all [11] or rely on some centralized control to do so [14].

We propose an anonymous authentication architecture with distributed anonymity

revocation. The anonymity revocation protocol does not depend on the existence of

any on-line trusted third parties. Instead, given enough information about a user’s

pseudonyms, anybody can revoke the anonymity of that user.

1.4 Outline of Thesis

This dissertation is structured as follows. It starts with Chapter 2 by demon-

strating how new covert attacks can be launched through manipulating the ad hoc

network protocols. We investigate the ad-hoc wireless networks’ susceptibility to

covert channels through the use of standard routing and MAC protocols. To support

anonymous communication, a new construction scheme of anonymous trapdoors is

introduced in Chapter 3 with detailed analysis of its properties. Based on the same

cryptographic primitives used for the trapdoor, an anonymous authentication ar-

chitecture with distributed anonymity revocation is introduced in Chapter 4. We

discuss future work and conclude in Chapter 5.
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Chapter 2

Covert Channels in Ad Hoc Networks

This chapter investigates ad-hoc wireless networks’ susceptibility to covert

channels that can be formed through manipulating the network protocols. It is very

difficult to eliminate or even detect these covert channels. Simulation results show

that performance of these covert channels depends on various network character-

istics. Countermeasures against these covert channels are needed and also should

adapt to the network changes to take full effect.

2.1 Motivation

Covert channels are concealed communication paths whose usage or even the

very existence is not anticipated in the original design of a communication system[1].

Covert communication happens when one user intentionally manipulates and em-

beds information into some properties of the system in such a way that the extra

information can be detected by specific designated users in the system. A covert

channel, to be useful, does not need high bit rate or high capacity or even low loss

rate. It is generally satisfactory if it can transmit a few bits per second with some

positive probability. For example, only a few bits are needed to disclose the time of

an attack or the PIN number of a personal bank account. However, a covert channel,

to be effective, must be difficult to detect. This is a paramount requirement.
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Existence of the covert channels violates both secrecy and integrity properties

of trusted systems [15]. For example, in a multilevel trusted system, users with

higher secret clearance are not allowed to send data to users with lower clearance.

But a covert channel existing between the two different clearance levels can be

used to communicate sensitive information. Under the “Trusted Computer System

Evaluation Criteria (TCSEC)” of US Department of Defense [16], rigorous covert

analysis is required for high assurance security systems.

Most of the past studies on covert channels have been concentrated on multi-

level computer systems or wired computer networks. However, wireless commu-

nication networks involve a fundamentally new and ubiquitous environment with

new and different variables that can be manipulated in order to convey covert in-

formation. The absence of fixed infrastructure and central control puts the burden

of network organization and maintenance on the terminal nodes themselves. The

decentralized style of operations empowers the nodes to manipulate the system in-

dividually. Since the nodes control their own behavior, they may manipulate the

system parameters through legitimate operations in such a way that covert infor-

mation can be embedded and conveyed. At the same time, the high degree of

randomness in ad-hoc networks, due to factors such as node mobility, provides cam-

ouflage for the covert operations. It is hard to tell whether the nodes’ activities are

legitimate responses to the network changes or unexpected covert operations. The

shared wireless medium facilitates the covert reception procedure further. For most

cases, a covert receiver only needs to passively monitor the channel to obtain the

covert information and hence is fully protected from detection.
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This chapter demonstrates the ad-hoc wireless networks’ susceptibility to covert

channels through the use of standard routing and MAC protocols [17].

2.2 Covert Operations through the Use of Reactive Routing Proto-

cols

One of the most basic problems in the operation of ad-hoc networks that has

attracted a great deal of attention is to design route algorithms that can dynamically

adapt to network topology changes and provide correct routes between communicat-

ing users in a timely and efficient manner. There have been many such algorithms

developed over the past 10 to 15 years (e.g. see [18, 19, 20, 21, 22, 23, 24]). A

class of routing protocols well-suited to ad-hoc networks is the so-called reactive

protocols, like AODV [21] and DSR [22]. Both of these are rooted in the logic of

the algorithm developed in [19, 20]. With that logic, in lieu of periodic flooding of

routing information, reactive initiation of routes occurs according to need. A source

sends route request messages only when the source needs to communicate with a

destination provided that a valid route to the destination is not already available.

The route request is broadcast in the network until it reaches the destination or

some intermediate users who possess a route to the desired destination.

Covert channels can be built by taking advantage of the on-demand mechanism

which allows the nodes to manipulate their own routing packets. In this section, I

use the AODV protocol as an example. Four covert transmission mechanisms are

presented that make use of different entries and properties of the routing packets.
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Three of them have some limitations for their implementation. The fourth, however,

seems to be perfectly implementable and is further evaluated through simulation.

The first three will be briefly discussed to illustrate how covertness can be achieved,

but will focus mostly on the fourth one. Performance of such covert channels depends

on multiple factors, such as network size, user mobility, traffic rate, and transmission

range. Simulation results show that the mobility of users, usually harmful to data

network performance, turns out to be beneficial to the covert communication. Other

on-demand routing protocols, including most of the secure routing protocols, share

similar susceptibility properties to covert channel attacks. I focus on the AODV

protocol since it is one of the most prominent protocols under consideration today,

and not because I want to single it out in terms of vulnerability.

2.2.1 Overview of AODV

This section reviews those characterizations of AODV that are needed for the

description of the covert attacks. For full details of the protocol, please refer to [21].

2.2.1.1 The On-demand Mechanism

The main idea of AODV is to avoid the large amount of periodic route control

traffic by issuing route queries based on nodes’ actual demands. In fact the root of

this idea can be found in [19, 20]. When a source needs to communicate with some

destination, for which a valid route is not already available, the source initiates a

route discovery procedure by broadcasting a route request for the destination. The
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route request propagates through the network until it reaches the destination node

or some intermediate nodes that can provide the reply, provided the network is

connected.

2.2.1.2 Sequence Number

The AODV protocol inherits the concept of destination sequence number from

the destination sequenced distance vector (DSDV) routing algorithm [18] to ensure

that the discovered routes are free from loops. Each node i in the network maintains

a nondecreasing sequence number Seqi. Node i may increment its sequence number

under only two circumstances:

• Immediately before it initiates a route discovery;

• Immediately before it originates a route reply as a destination node in response

to a route request by another node.

In the routing table, each route entry is associated with the last known des-

tination’s sequence number. When a route request is constructed, this last known

destination sequence number is attached to the route request (an unknown sequence

number flag is set if no sequence number is known). The sequence number of the

source is also enclosed in the route request to facilitate establishing the reverse route.

Let “Src” and “Dest” stand for source and destination. The route request (RREQ)

and route reply (RREP) messages contain the following information respectively:

< IDDest, SeqDest, IDSrc, SeqSrc, Hop Count, . . .> and

< IDDest, SeqDest, IDSrc, Hop Count, lifetime, . . .>.
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The dots indicate additional fields that are not of interest here. When a node

is presented with two valid routes to the same destination, it always chooses the

fresher route, i.e. the one associated with larger destination sequence number. If

the two routes are of the same freshness, the one with smaller hop count is chosen.

The Lifetime value specifies the time after which the routing information is invalid.

It is further explained next.

2.2.1.3 Route Table Management

In order to control the dissemination of stale route information, each valid

route is also associated with a Lifetime value, which is the time after which the

route is invalidated. The lifetime of a valid route is initially determined from the

route control packets and later updated whenever the route is used to transmit data.

An invalidated route is removed from the route table after a fixed period of time.

2.2.1.4 Route Maintenance

Movement of nodes causes link breaks and new node encounters. Once a

neighbor is found to be unreachable, the node first invalidates all the routes that have

that neighbor as their next hop. Then it forwards to all the affected upstream active

neighbors a route error message, which contains those disconnected destination

identities along with their last known sequence numbers. Receivers of the error

message subsequently follow the same procedure and relay the error message to

their upstream active neighbors. When the error message arrives at the source, the

10



source re-initiates the route discovery process if the route is still needed.

2.2.1.5 Expanding Ring Search Technique

The AODV protocol uses an additional feature, called expanding ring search,

to control the broadcast of the route requests. The source node initially puts a time

to live (TTL) value in the IP header of the route request and sets a timeout for

receiving the route reply. The TTL value specifies how many hops the route request

can travel away from the source. When the route request times out without receiving

a reply, the route request is broadcast again with an incremented TTL value. This

continues until the TTL value reaches a threshold. Later attempts eventually set

their TTL values to be the network diameter so that they can traverse the entire

network, if necessary.

2.2.2 Covert Channels in AODV

The AODV protocol provides routes between mobile nodes reactively by exe-

cuting the route discovery process as outlined above. However, the route information

carried in the route control packets can be used to convey additional information,

which is independent of the original intention of the protocol design.

There are four covert channels immediately obvious in the use of AODV. Three

of them have some limitations for their implementation. The fourth, however, seems

to be perfectly implementable. The reason the first three are discussed is to show the

rich variety of possibilities for covert transmission and to demonstrate the limitations
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of some obvious covertness possibility in ad hoc networks.

2.2.2.1 Timing the Route Request

If a node can distinguish delays between successive route requests originated

by a source, extra information can be deduced from the timing chosen by the source.

It is quite common for covert channels to rely on timing information.

Implementing this channel requires synchronization between the source and

the covert information receiver, which is not easily achieved in an ad-hoc wireless

network. Plus, such a channel is seriously noisy since the source can never guarantee

an exact time when its route request arrives at a particular node. In a multi-hop

ad-hoc wireless network, the route requests can even arrive out of their transmis-

sion order. So, relying on the timing of route requests for covert transmission is

problematic.

2.2.2.2 The Source Sequence Number in the Route Request

There are two different ways to convey covert information through manipulat-

ing the source sequence number field in the route requests.

The first one is to embed the covert information into the increments of the

source sequence number between successive route requests. Before constructing a

route request, the node increases its sequence number to a specific value such that

the increment represents the covert symbol to be transmitted. However, this covert

operation is easily detectable by the arbitrary size of increase in the node’s sequence

12



number. Also, use of this covert mechanism may lead to the rapid exhaustion of the

size of the sequence number field in the control packets.

The second choice is to embed the covert information into the increments of the

source sequence number within a fixed period of time. A node controls the increment

by constructing a number of route requests within this period. Similar to the timing

channel described in Section 2.2.2.1, this covert channel requires synchronization

between the covert transmitter and receiver, since they have to agree on the time

to start counting. It also suffers from the field size exhaustion deficiency mentioned

above. So, this covert channel choice is problematic as well.

2.2.2.3 The Lifetime Field in the Route Reply

When a node constructs route replies as an intermediate node, the lifetime

entry in the route requests is computed from the corresponding lifetime entry in its

routing table. The lifetime entry in the routing table indicates when is the last time

that the route was used. Receivers of this route reply may derive extra information

through looking into how recently the route was used by its constructor.

Exploiting this channel requires the covert transmitter to construct the route

replies regularly which means the covert transmitter has to receive the correspond-

ing route requests regularly. However, other nodes’ demand for routes can not be

directly controlled by the covert transmitter and receiver. Even if the other nodes

do send the request, the reply is unicast back to the corresponding inquirer. So

the probability that the covert receiver misses the reply is high. If the covert re-

13



ceiver sends these route requests itself, the frequent sending of the requests may

cause exposure and discovery. Thus, this alternative for covertness has also serious

drawbacks.

2.2.2.4 The Destination ID Field in the Route Request

Covert information also can be embedded in the destination identity of route

request messages. For a network with N nodes, up to log2(N−1) bits of information

can be deduced by noting which destination is requested at any given time.

This covert channel does not require synchronization between the covert trans-

mitter and receiver. Order of reception is enabled through the source sequence

number contained in the route request. Plus, the covert information is carried by

the route requests which are broadcast in the network. So the probability of loss

is expected to be lower than that of the previous methods. For these reasons, this

covert channel is considered a fruitful option for covert communication and hence,

it is examined in detail.

The following assumptions have been made:

1. The covert transmitter and receiver share an alphabet which can be composed

of any node IDs except the covert transmitter’s ID;

2. Covert symbol i is transmitted, if the covert transmitter originates a route

request for destination i;

3. The covert transmitter controls its own demands for routes. Other than that,

it complies with AODV;
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4. Apart from the covert transmitter, all the other nodes issue route discoveries

based on their actual demands.

5. The covert receiver passively monitors the channel and observes route re-

quests issued by the covert transmitter, if these requests reach the covert

receiver.

Assumption (3) allows the covert transmitter to generate route requests for any

destination. However, the covert transmitter has to comply with the AODV protocol

when sending the route requests. For example, a route request can be sent only when

no valid route to the destination is already available, and the covert transmitter can

not exceed the route request transmission rate specified by the AODV protocol.

Otherwise, use of the covert channel is easily detectable by monitoring whether the

AODV protocol is violated by any network users.

Covert transmission depends on the availability of the route to the intended

node. When the route with the desired destination ID (as required by the covert

message) is not already available at the covert transmitter, the covert transmitter

can construct and broadcast a route request for the destination. The covert symbol

is thus broadcast as part of the request. If a valid route to the intended node is

already available, the covert transmission process is stuck. Notice that although

the covert transmitter does not generate any RREQs when it is stuck, it still may

construct RREPs as the destination in response to RREQs by other nodes. The

covert transmitter increases its sequence number by 1 each time it constructs a new

RREQ or a new RREP as the destination.

15



Figure 2.1: the covert transmission procedure through the use of AODV
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Fig. 2.1 shows the covert transmission procedure as consisting of an initial-

ization phase and two operational phases, separated by dash-dotted lines. In the

figure, current S stands for the sequence number of the covert transmitter, last S is

the sequence number of the covert transmitter at the most recent time the covert

transmitter tried to make a covert transmission, and D is the covert symbol to

transmit. The covert transmission procedure can be described as the following:

1. Transmitting: The covert transmitter reads in the next covert symbol to

transmit. Assume it is D. The covert transmitter checks if it already has

a valid route to the desired destination D. If not, the covert transmitter

constructs and sends out a RREQ for destination D, and goes back to the

beginning of this step to read the next covert symbol to transmit. If a valid

route to the desired destination D is already available, the covert transmission

is stuck. The covert transmitter enters the waiting phase.

2. Waiting: the covert transmitter stays in this phase until either the route

to the destination D becomes invalid or it receives a RREQ from another

node for which it is the requested destination. In the first case, the covert

transmitter directly goes back to the beginning of step (1) to resume the

covert transmission. In the second case, the covert transmitter first constructs

and sends back the corresponding RREP, and then goes back to step (1).

Either way, the covert symbol D that the covert transmission was stuck upon

is skipped without ever been transmitted.

As it will be further explained next, in order to enable reordering at the covert
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receiver’s side, the covert transmitter’s sequence number is used as index of the

covert symbols. One sequence number identifies one covert symbol’s position in the

covert stream. In case that the covert transmitter’s sequence number is increased by

more than 1 between two consecutive covert transmissions, for instance by ∆ + 1,

then ∆ covert symbols in the covert stream have to be skipped correspondingly

without being transmitted.

Covert reception is a passive procedure in which the covert receiver monitors

the channel and observes route requests originated by the covert transmitter (as

well as by other nodes). Although this covert channel is noise free, it is subject to

symbol loss. First of all, the route requests are not guaranteed to be captured by

the covert receiver for reasons such as intermediate nodes constructing the reply and

stopping the forwarding of the route requests, or the expanding ring search technique

controlling the dissemination of the route requests, or the covert transmitter and

covert receiver simply not being connected. Additionally, the skipping of covert

symbols during the transmission procedure is another cause of symbol loss.

So, each RREQ from the covert transmitter carries a covert symbol and the

corresponding sequence number of the covert transmitter when the covert symbol

was injected into the network. The covert receiver arranges the received covert

symbols in the increasing order of the covert transmitter’s sequence number. Any

gap between two successive source sequence numbers implies loss of covert symbols.

In the next section, performance of this covert channel is evaluated under

various network conditions through simulation. But before that, I would like to

reemphasize here that it is not only AODV that is vulnerable to covert communi-
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cations. Other on demand routing protocols have similar vulnerabilities, including

most of the secure routing protocols. It is discussed in Section 2.2.5 the vulnerability

of other reactive routing protocols to covert attacks.

2.2.3 Performance Evaluation

Performance of the covert channel is evaluated through simulation. A packet

level discrete event simulator is developed to measure the covert channel performance

under a variety of conditions. Although the simulation results are only isolated

data points which can not describe the covert channel completely, the purpose is to

demonstrate quantitatively some of the covert channel characteristics.

2.2.3.1 Simulation

The network is simulated as a group of nodes moving around in a 500×500m2

square area according to the random way point mobility model [22]. Traffic streams

are generated at each node according to independent Poisson processes with the

same traffic rate in terms of packets per second. The destination is randomly selected

among all the nodes in the network except the source itself. All packets are 64 bytes

long.

Simplified assumption has been made about the MAC protocol that there is

no MAC layer channel contention. Inclusion of a detailed MAC protocol would

have a moderate effect on the performance of the covert channel, but it is not

considered here. All the nodes have a common maximum transmission range. The
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channel capacity is 2Mbits/sec. Transmission is successful if the receiver is within the

maximum transmission range of a transmitter. Otherwise, packets are lost. Since the

purpose is to evaluate the routing protocol’s susceptibility to covert communications,

these are reasonable MAC layer simplifications.

The simulated network contains N nodes. Each node has a unique ID that

takes the values 0, 1, . . . , N − 1. Node 0 is the covert transmitter and node 1 is

the covert receiver. The covert transmitter and covert receiver share an alphabet

composed of IDs of all the nodes except the covert transmitter, i.e. 1, 2, . . . , N − 1.

It is assumed that the input symbols are equally probable.

The AODV protocol parameters are chosen according to the default values

given in [21], except that most of the simulation results are obtained without ap-

plying the expanding ring search technique. The purpose here is to study the fun-

damental potential of AODV for hosting covert communication.The expanding ring

search technique is considered as a protocol parameter that may affect this poten-

tial. Its effect is studied by running a separate set of simulations with the expanding

ring search technique applied.

The performance of interest includes transmission rate, channel throughput,

probability of loss, and detectability of the covert communication. Denote SymbolTransmitted

and SymbolReceived to be the average number of covert symbols transmitted and re-

ceived per second, respectively. The transmission rate T is defined as the average

number of covert bits transmitted per second and the covert throughput R as the
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average number of covert bits received per second, which are given by:

T = SymbolTransmittedlog2(N − 1) (2.1)

R = SymbolReceivedlog2(N − 1). (2.2)

The probability of loss P is calculated as

P = (T − R)/T (2.3)

The covert communication is implemented without applying any physical layer

channel coding/decoding algorithms. The throughput may increase if appropriate

coding is applied.

2.2.3.2 Simulation Results

Simulation results are obtained under multiple varying parameters, namely,

the network size, the maximum speed and maximum pause time of the nodes, the

traffic rate, and the transmission range. To study the effect of each of them, the

simulation results are organized in groups. Within each group, there is only one

varying parameter with the others fixed to their default values. The default values

of those varying parameters are given in TABLE 2.1. For different network sizes, the

maximum transmission range is calculated in such a way that there is on average π

neighbors within a node’s transmission range.

Each data point is the average of 10 independent runs. Each was executed for

900 seconds of simulation time, except that for the case of network size of 257, the

simulation time was 125 seconds.
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Figure 2.2: Covert Channel Performance in AODV
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Table 2.1: Default Values of the Simulation Parameters

Parameters DefaultV alues

network size 65
pause time 100 sec

max speed 10 m/s

max transmission range 62.5 m

traffic rate per source 5 packets/sec

Fig. 2.2(a) presents the covert channel performance relative to the network

size. Larger network size means larger input alphabet. The covert transmission

rate and throughput increases as the network size grows. However, growth of the

network also means larger distance between the covert transmitter and covert re-

ceiver, in terms of hop count. The route requests are more likely to be answered by

intermediate nodes. The covert transmission gets less chance to be freed from stuck

status. As a result, the probability of loss is greater and the channel throughput

decreases.

Fig. 2.2(b) and 2.2(c) illustrates the effect of nodes mobility on the covert

channel. Higher mobility of the nodes causes more link breakage, thus providing

more excuses for covert transmission while fewer intermediate nodes are able to

generate the route replies. The covert channel performs better as the network mo-

bility increases.

Fig. 2.2(d) presents the covert channel performance in regard to the transmis-

sion range. When the transmission range is small, the network is so poorly connected

that the route requests can not reach every node. The probability of loss is close to

1. Plus, if the covert transmitter can not receive a route request for itself, the covert
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transmitter tends to stay stuck for a longer time. The transmission rate is low and

the covert throughput is even lower. As the transmission range increases, the prob-

ability of loss decreases and transmission rate increases. But, when the transmission

range becomes 800m, the network is fully connected. The covert transmitter has no

excuses for covert transmission and the covert throughput drops back to zero

The presence of network traffic is a prerequisite for covert information trans-

mission since it generates the need for routes, including the route to the covert

transmitter. Note that when covert transmission is stuck, more RREQs for the

covert transmitter means more opportunities to come out of the stuck state. So,

the transmission rate increases as the traffic rate increases. This is reflected in Fig.

2.2(e).

All of the above results are obtained without applying the expanding ring

search technique. In Fig. 2.2(f) these results are compared against the case of using

the technique. The TTL start value, increment step, and threshold are equal to 1, 2,

and 7 respectively, as suggested in [21]. Since the expanding ring search technique

suppresses the distribution of the route requests, it increases the probability of loss.

Also, the transmission rate is lower because the covert transmitter is less likely to

receive route requests for itself. The covert channel throughput is reduced to about

half of its original value.
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2.2.4 Detectability

Consider the detection of covert communications as composed of three com-

ponents: determination of whether there is a covert transmission going on, deter-

mination of the identity of the covert receiver, and determination of the identity

of the covert transmitter. Our covert channel provides absolute protection on the

covert receiver’s identity and it is very difficult to decide whether the covert channel

is actually in use.

As described in the previous parts of this chapter, the reception procedure of

the covert operation is simply to passively monitor the route requests originated by

the covert transmitter. So the covert receiver is fully protected from exposure.

To detect the covert transmissions and the covert transmitter ID, there are

two ways: through observing some abnormality in the network or observing an

abnormality in the behavior of the covert transmitter. Since the covert transmission

affects only the covert transmitter’s own routing and data transmission process, its

effect on the whole network is expected to be rather unnoticeable. Finding out

which node is the covert transmitter might be somewhat easier.

What the covert transmitter does for covert transmission is manipulating its

demand for routes. It is important for the covert transmitter to justify its demands

by actually using the routes. Otherwise, the destination may become suspicious

when it notices that no traffic is ever received from the route requested. The covert

transmitter has to use the routes to send some legitimate traffic. For example, the

covert transmitter may send a data query if the destination hosts a database, or
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click a couple of links if the destination hosts a website.

When a route is broken or when the covert transmitter increases its sequence

number, the covert transmitter always checks for opportunities for covert transmis-

sion. One may observe that the covert transmitter constructs more route requests

immediately after constructing a route reply as the destination. The covert trans-

mitter can combat this kind of detection by delaying the route request for a random

period of time, at the cost of smaller covert channel throughput and longer delay.

Also, without extra caution, the covert transmitter may issue route requests

at a different rate from other nodes. When the network is stable, the covert trans-

mission tends to get stuck, and the covert transmitter might issue less route requests

than the other nodes. When the network is mobile, the covert transmitter has many

excuses for covert transmissions and might issue more route requests than the other

nodes. The covert transmitter can take counter actions against this type of detec-

tion by regulating its rate of issuing route requests and keeping it close to the rates

of other nodes, possibly at the cost of decreasing covert channel throughput.

2.2.5 Covert Channels in Other Reactive Routing Protocols

As mentioned earlier, it is not only AODV that is vulnerable to covert commu-

nications. Other on demand routing protocols have similar vulnerabilities, including

most of the secure routing protocols. In this section, several other reactive routing

protocols are analyzed in terms of their vulnerability to covert attacks.

The Dynamic Source Routing (DSR [22]) protocol, in contrast to the AODV,
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uses source routing instead of hop-by-hop routing. Each packet carries, in its header,

the complete sequence of nodes that compose the route to the destination. To

reduce the cost of route discovery, nodes cache the routes that they have learned or

overheard from others. As demonstrated in [25], the aggressive caching mechanism

used by DSR brings less routing overhead, i.e. lower number of routing packets,

than that of AODV. Since in my scheme, the covert information is embedded in the

routing packets, it is expected that the covert operation does not perform as well in

DSR as in AODV.

The Zone Routing Protocol (ZRP [24]) is a hybrid routing protocol that exe-

cutes reactively within a zone of certain radius from the source, and proactively for

destinations that are not in the zone. Note that when the zone radius goes from

one hop to infinite hops, the ZRP execution mode changes from pure reactive to

pure proactive. The covert channel capacity would decrease then from some posi-

tive value to zero. The relationship between the zone radius and the covert channel

capacity is an interesting problem.

Secure routing has received increasing attention. A group of secure routing

protocols (Secure-AODV [26], Ariadne [27], SRP [28]) have been designed with the

purpose of protecting the route discovery procedures from malicious node behavior.

One general method used is to extend routing packets with digital signatures so

that the integrity and authenticity properties of the routing information are, hope-

fully, guaranteed. But, the contents of the routing packets remain the same and are

broadcast in the network unencrypted. The covert transmitter still has the freedom

of embedding covert bits into its routing packets as described before. Thus, from
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the point of view of immunity-against-covert-channel, these secure routing protocols

are not better than their nonsecured versions. What is more, the secure routing pro-

tocols generally discourage route caching and intermediate nodes replying. This in

turn encourages broadcasting of the route control packets and might result in better

performance for the covert channel. What is even worse is that the cryptographic

techniques that have been used may bring in even more covert channels. When

digital signatures are used, covert ideas similar to those in [29] also apply here.

Other secure mechanisms have been proposed without involving cryptographic

techniques in the route discovery procedures. Instead of protecting the routing

packets, the ultimate goal is to guarantee correct data packet forwarding. As long

as the route discovery procedures remain unchanged, the same covert channels can

be embedded in these protocols. In addition, cryptographic tools may still be used

for other purposes, such as to generate digital signatures [30]. The same ideas as in

[29] may apply.

The ANODR (ANonymous On Demand Routing with Untraceable Routes for

Mobile Ad-hoc Networks [11]) protocol is designed to provide “untraceable” routes

between a source and its destination. Identity of a particular transmitter is hidden

from the other nodes. Our covert operations no longer work here, because the

covert receiver can not even tell which packets are from the covert transmitter. So,

ANODR is less vulnerable to covert operations. But such immunity comes at a cost.

As shown in [11], ANODR performs worse than AODV in many aspects, including

packet delivery ratio, end-to-end delay, and control overheads. However, it does offer

immunity to the particular covert channel attack described here. The reduction in
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performance is the price paid to acquire this immunity.

In this section, it is discussed in detail how covert operation can be achieved

through the use of routing protocols. However, covert operation can also be im-

plemented through the use of MAC protocols. In the next section, a class of MAC

layer covert operations will be described. When the MAC layer covert channel oper-

ates conservatively, the covert operations can be absolutely undetectable. However,

by nature of the MAC layer, these covert channels have the limitation that covert

communication can only happen between nodes that are neighbors of each other.

2.3 Covert Operation through the Use of Splitting Algorithms

Nodes in ad-hoc networks have to share the wireless channel. Media Access

Control (MAC) protocols are designed to address this issue. Depending on how

the access to the channel is coordinated among active nodes, MAC protocols can

be classified as contention-free where a dedicated server/node arranges the channel

access among all the nodes in a centralized way, or contention-based where individ-

ual nodes make their own transmission decisions and resolve collisions by carefully

choosing the retransmission time.

We focus on the contention-based class of MAC protocols since it offers in-

dividual nodes more powerful control over the system. A node can embed extra

covert information into the system by controlling its own actions during the col-

lision resolution procedure. It is presented in detail how covert operation can be

implemented based on one specific class of collision resolution algorithms, referred
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to as splitting algorithms [31]. We realize that splitting algorithms have not been

used in the design of ad-hoc network MAC protocols, and in fact, they have not

been implemented yet as MAC protocols in any real application. However, there

is no serious reason why they may not be adopted in the future. In addition, the

basic idea of splitting algorithms is simple and easy to explain. They offer the best

platform to present the covert ideas described in this dissertation. These ideas can

then be incorporated in other MAC protocols in some modified form.

2.3.1 Overview of the Splitting Algorithm

Assume the classical collision channel that is slotted with instant feedback of

‘i(idle)’, ‘s(success)’, and ‘c(collision)’. Collision happens when two or more nodes

transmit in the same slot. The basic idea of a splitting algorithm is to divide collided

nodes into smaller subsets, each of which then retransmits in turn. Successive colli-

sions result in nodes splitting into smaller subsets, thus the probability of collision

happening again is reduced. This procedure continues until all the collided packets

are successfully transmitted, and this period is referred to as one collision resolution

period (CRP). Such algorithms have been intensely studied in the past [32, 33, 34].

Splitting algorithms can differ from each other in several aspects, from the

number of subsets they split into, to the handling of new arrivals during a CRP, etc.

I start from the basic form, and introduce two of the modified versions later.
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Figure 2.3: The Basic Binary Tree Algorithm

2.3.1.1 The Basic Binary Tree Algorithm

In the basic binary tree algorithm, after a collision, the competing nodes decide

independently to join one of two subsets with equal probability. Transmissions

among the two subsets are resolved in turn. Packets that arrived during the current

CRP are blocked and wait for transmission until the new CRP starts.

This procedure can be better represented by a tree structure. Fig. 2.3 shows

an example of a two-node collision. Denote the two subsets as left and right subset.

After the first collision, the two nodes happened to join the same left subset. Colli-

sion happened again which means further splitting. This time, they joined different

subsets. And two successes were observed. Coming back to the first right subset,

since there is no remaining blocked node, the channel is idle.

One important feature of this algorithm is that any node in the system can

keep track of and reconstruct the splitting tree by monitoring the channel feedback.

Later, I will show that this is the essential property for the realization of the covert

channels.
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2.3.1.2 Improvement 1

This improvement consists of two parts. The first part is based on the obser-

vation that if an idle is observed in the first subset’s transmission, it is guaranteed

that the second subset is going to suffer a collision. So one time slot can be saved

by splitting the second set before the actual collision occurs. Another observation

is that if the first subset suffered a collision, then the second subset is expected

to contain a small number of packets. This has motivated the second part of this

improvement: instead of coming back to resolve the second subset, the algorithm

can merge the second subset into the waiting group and work on it in the next CRP.

2.3.1.3 Improvement 2

In the basic binary tree algorithm, during a CRP, the new packet arrivals are

blocked and get to be transmitted in the beginning of the next CRP. In the event

that the previous CRP has taken a very long time, the number of waiting packets is

expected to be large. They are going to continue to collide with each other before

they are split into small enough subsets. One possible solution is to directly split

this waiting set, i.e. root of the tree, into multiple j subsets. By estimating how

many nodes are in the root set, the number j is chosen such that the expected

number of packets per subset is slightly greater than one.
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2.3.1.4 Unblocked algorithms

All the splitting algorithms described above require every node to monitor the

channel feedback and to keep track of each CRP. This is undesirable when receivers

are turned off, especially in wireless networks that strive to save battery power. One

way to avoid this disadvantage is to transmit new packets immediately in the next

slot after their arrival. This way, only currently transmitting nodes need to track

the collision resolution procedure. Since the new arrivals are no longer blocked, this

type of algorithms is called unblocked stack algorithms.

2.3.2 Covert Operations through the Use of Splitting Algorithms

Covert transmission can be realized via controlling the splitting procedure.

Upon collision, the covert transmitter decides which subset to join according to the

covert symbol it wished to transmit. For example, ‘1’ is transmitted if it joins the

left subset, and ‘0’ is transmitted if it joins the right subset. In other words, the

covert transmitter deviates from the rules followed by the other nodes but presents

legitimate behavior that would correspond to the actual protocol rules. Its deci-

sions, unknown to anyone else, are actually based on the covert symbol it wishes to

transmit. Using the same example for the basic binary tree algorithm and assuming

that one of the two collided nodes is a covert transmitter, Fig. 2.4 demonstrates

how two covert bits “10” are transmitted in a CRP.
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Figure 2.4: Covert Operation through MAC Protocol

To receive the covert information, the covert receiver needs only to passively

monitor the channel feedback. It does not need to actively participate in the channel

access competition. In the presented example, the covert receiver detects a successful

transmission from the covert transmitter in the fourth slot. From the past channel

feedback, the covert receiver can decide that the corresponding transmitting subset

is “LR”, thus concludes that covert bits ‘1’ and ‘0’ were transmitted. This is because

any receiver can retrieve the “left”–“right” pattern in the transmission of any packet.

Given that the covert source has the same probabilistic distribution as the

random splitting process, single use of this covert channel is impossible to detect,

which makes this covert channel meet its first-priority requirement. Another obvi-

ous observation is that performance of this covert channel depends on how often the

covert transmitter transmits and how often the covert transmitter meets collisions

when transmitting. In fact, the covert transmitter can smoothly adapt its trans-

mission rate and choose to run at higher rate at the risk of been detected through
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the suspiciously atypical and aggressive transmission behavior. Three different op-

eration modes are proposed that allow the channel undetectability to be traded off

against throughput.

2.3.2.1 The Conservative Mode of Covert Operation

Assume that packet arrivals at each node are identically and independently

distributed. The covert transmitter transmits only when it has a packet to send.

The covert transmitter is different from the other nodes only in the way that it

makes its splitting decisions according to the covert source requirement instead

of the agreed-upon protocol method. Given that the covert source has the same

probabilistic distribution as the protocol splitting process, use of this covert channel

is absolutely undetectable (the used protocol rule is based on random decision or on

time of arrival —as in the FCFS version [33]— which is also random).

2.3.2.2 The Aggressive Mode of Covert Operation

One limitation of the conservative mode is that occurrence of the covert trans-

mission depends on actual packet arrivals. If no new packet has arrived at the covert

transmitter before the start of a new CRP, the covert transmitter will not be able

to do covert transmission in that CRP. The aggressive mode solves this problem

by allowing the covert transmitter to generate new packets such that the covert

transmitter can participate in each and every CRP. Under this mode, the covert

transmitter transmits a packet in the first slot of every CRP.
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Obviously, running in the aggressive mode exposes the covert transmitter in a

way that may facilitate its detection. Note that the covert receiver always remains

safe from detection.

2.3.2.3 The Strategic Mode of Covert Operation

The aggressive mode is mostly useful when the traffic is light. It is observed

that the covert transmitter’s effort is wasted if nobody collides with it. But the

covert transmitter still suffers from the high risk of exposure by transmitting those

packets. It would be more risk-throughput efficient if collisions can be guaranteed

for the extra packets transmitted. A simple strategy can be taken by letting the

covert transmitter jump into a CRP when it observes collision in the first slot of

that CRP. The covert transmitter simply pretends that it is one of the originally

collided nodes.

More complicated strategies can provide intermediate covert transmission rate

by adapting the dummy packet generation rate according to the covert transmitter’s

eagerness to transmit and its willingness to get exposed.

2.3.3 Properties of the Covert Channel in Splitting Algorithms

In this section, I summarize some of the properties of the covert channel

through the use of splitting algorithms. Performance of the covert channel is eval-

uated through simulation next in Section 2.3.5.

This covert channel is error free. Given correct channel feedback, the covert
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receiver always can successfully track the CRP.

Throughput of the covert channel depends on multiple factors. First, upon

each collision, the covert transmitter can embed at most log2s covert bits in its split

decision. The covert throughput is upper-bounded by log2s bits per slot, where s is

the number of subsets that the collided nodes are divided into. Second, the covert

transmitter has to transmit data packets to convey its covert information. At most

one packet can be transmitted in one CRP. Third, only when covert transmitter’s

data packet collides with other nodes’ transmission can the covert transmitter embed

one covert symbol into its splitting decision. The number of covert symbols sent in

one CRP is equal to the number of collisions the covert transmitter meets before

its successful transmission. So, the transmission rate also depends on the length

of the CRP. Finally, not all of the slots are devoted to solving the collisions that

involve the covert transmitter. For the rest of the time, the covert transmitter is

either waiting for its turn to transmit, or waiting for the end of the current CRP.

The covert throughput can be thus approximated by:

throughput ≈ fCRP

cCRP

lCRP

log2(s) (2.4)

where

• fCRP is the frequency of the covert transmitter participating in CRPs;

• cCRP is the number of collisions the covert transmitter encounters in a CRP;

• lCRP is the length of the CRP;

• s is the number of subsets that collided nodes are divided into.

Based on (2.4), the following observations can be made. First, when the traffic
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rate is low, fCRP is small and the covert throughput is limited by covert transmitter’s

data packet transmission rate. Second, when the traffic rate is very high, almost

all the users participate in each CRP. According to the results of Janssen and Jong

in [34], for large number of users, m, (2.4) can be rewritten as (2.5) below, which

indicates that the covert throughput is expected to decrease; namely, for high traffic

rate and large number of users,

throughput ≈
log2(m − 1)

m
ln(s) (2.5)

2.3.4 Detectability

Overall, it is very difficult to detect this covert channel. The covert receiver

is guaranteed to be undetectable since it only passively monitors the channel to

track the collision resolution procedure. The covert transmitter is also undetectable

when it operates in the conservative mode. In fact, some splitting algorithms use

different splitting criteria. The first-come-first-serve (FCFS) algorithm [33] uses the

packet arrival times to decide which subset the packet should join in. Sagduyu and

Ephremides [35] include the node residual battery energy into its decision factors

to save the nodes’ energy and lengthen the network lifetime. Still, none of this

information is directly known to the other nodes except the owner itself. The trans-

mission decision is made by a node locally. It is unclear what factors have influenced

this decision. As a result, use of this covert channel is very difficult to detect espe-

cially when the covert source has similar distribution as the splitting decision does.

When the covert transmitter runs under the aggressive or strategic mode, its ab-
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normally active transmission could expose the use of the covert channel and its own

identity. This trade-off can be made based on the particular circumstances of each

application.

2.3.5 Performance Evaluation

To evaluate the performance of the covert channel, a packet-level discrete event

simulator is developed. The covert channel performance is measured under a vari-

ety of conditions including variable number of nodes, traffic rate, covert operation

modes, and various versions of the splitting algorithm. Again, the simulation results

are only isolated data points which do not describe the covert channel completely;

the purpose here is to demonstrate quantitatively some of the covert channel char-

acteristics.

The collision resolution protocol is simulated with finite number of sources,

denoted as N . Each source can have at most one packet waiting in the middle of

a CRP and at most one other packet waiting to be transmitted in the next CRP.

Packet arrivals at each user are i.i.d. Poisson processes, with mean λ/N packets per

slot. The total average traffic rate is λ packets per slot. The performance metric of

interest is covert throughput, which is defined as the average number of covert bits

transmitted per slot.

The covert channel is implemented and evaluated based on the basic binary

tree algorithm under all the three modes. Features of the first and second im-

provements are added into the binary tree algorithm separately. The unblocked

39



algorithm is implemented as in [32]. Only the conservative mode is implemented for

the variations of the binary tree algorithm.

Extra care has to be taken to implement the covert channel in the unblocked

type of algorithms, where there is no longer a clear definition of “start” and “end” of

the collision resolution periods. To correctly track the splitting history of the covert

transmitter, the covert receiver needs to know when the covert transmitter started

to transmit the packet. A practical solution is to use a specific node’s success as the

synchronization signal. The covert transmitter always starts its transmission right

after it observes a packet is successfully sent by that node. There is an advantage in

using the covert receiver’s own success, which allows the covert receiver to control the

covert transmission rate by adjusting its own transmission rate. The covert receiver

transmits valid packets upon their arrivals, and the covert transmitter joins the

collision resolution procedure right after covert receiver’s success. Dummy packets

are created when necessary.

The simulation warms up with 20 CRPs. It lasts at least 1,000,000 slots

and terminates at the end of the first CRP after the 1, 000, 000th slot, except for

the unblocked algorithm where the simulation warms up with 100 time slots and

terminates at the 1, 000, 000th slot.

Fig. 2.5 presents the covert channel performance in the binary tree algorithm

under all three described operation modes. It is consistent with the observations

made in Section 2.3.3). Light traffic implies rare collisions, and thus it holds back

covert transmission rate, especially for the conservative mode in Fig. 2.5(a). On the

other hand, with high traffic rate and large network, collisions happen frequently.
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However, large portion of time is used to resolve the collisions that do not involve

the covert transmitter. As a result, the covert throughput is not good either. The

aggressive operation mode, shown in Fig. 2.5(b), effectively improves the through-

put when the traffic is light. Meanwhile, the strategic mode does not exhibit as

significant throughput improvement in Fig. 2.5(c). This is because in the aggressive

mode, the covert transmitter not only makes use of every CRP with collisions, but

also creates collisions through its aggressive transmission. Overall, the best through-

put is obtained at high traffic rate and small number of users in the network. The

best covert throughput is about 0.3 bits/slot.

Fig. 2.6 presents the covert channel performance under different variations of

the splitting algorithms. The first improvement to the basic binary tree algorithm

does not affect the splitting tree very much except that it reduces the CRP length

by saving some slots of collisions and idleness . As a result, the covert throughput

increases. The second improvement splits the root of tree depending on how many

nodes are expected to be in the root. This improvement takes effect when the

traffic rate is high and many new arrivals occur during the last CRP. By splitting

the new arrivals immediately, extra collisions are avoided and covert transmission

is held back. In Fig. 2.6(b), the covert throughput drops steeply as the traffic rate

increases above a certain value. Fig. 2.6(c) illustrates the case of the unblocked

algorithm. It shows similar features as it does with the blocked algorithm. But the

covert throughput is not as good, especially at high traffic rate. This is the cost of

synchronization between the covert transmitter and receiver. Our synchronization

scheme requires the covert transmitter to wait until it observes a success from the
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Figure 2.5: Covert Throughput under the Basic Binary Tree Algorithm
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Figure 2.6: Covert Throughput under Various Splitting Algorithms

covert receiver before each transmission.
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2.3.6 Covert Channels in Other MAC Protocols

The splitting algorithms resolve the collision by dividing collided nodes into

smaller subsets. There are other contention based MAC protocols that resolve the

collision using different methods [36, 37, 38, 39, 40]. In the basic ALOHA protocol

[36], nodes can transmit anytime they want. If collision happens, they each wait a

random waiting period before the next attempt. Slotted ALOHA [37] improves the

channel efficiency by using slotted channel and nodes can access the channel only at

the start of a slot. The CSMA (Carrier Sense Multiple Access) technique allows a

node to avoid some of the collisions by sensing the channel for on-going transmission

[38]. If the channel is already in use, the node will back off its transmission for a ran-

dom period of time. The MACA (Medium Access Collision Avoidance) protocol [39]

proposes a virtual sensing technology by using the RTS and CTS (Request-to-Send

and Clear-to-Send) control packets. When the RTS packets from two or more nodes

collide, each collided node adopts a random exponential back-off scheme. The IEEE

802.11 MAC protocol uses both physical sensing and virtual sensing technologies

[40]. Upon collision, the random back-off time at each node is determined by the

DCF (Distributed Coordination Function).

One common idea behind these protocols is that the retransmission decisions

are made randomly by each individual node involved in the collision. Similar covert

operations can be implemented by manipulating the retransmission decisions. Re-

ception of the covert information is possible by observing the channel and the trans-

missions made by the covert transmitter. For example, covert information can be
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conveyed through manipulating the channel idle period preceding the covert trans-

mitter’s transmission. The covert transmitter transmits a data packet only when

the channel has been idle for a particular period of time which is determined by

the covert symbol to transmit. Or, the covert information can be encoded in the

number of collisions observed between two successful transmissions of the covert

transmitter. The covert receiver in both examples can retrieve the covert informa-

tion by passively monitoring the channel. Variations of these MAC protocols have

been proposed to improve the back-off strategies. As long as the back-off scheme

remains distributed and random, similar covert ideas may be applied in some mod-

ified form. The resulting covert channels may have different throughput and suffer

different degrees of detectability.

2.4 Conclusion

It has been clearly demonstrated that covert communication can occur via con-

trolling ad-hoc network protocols. Performance of the covert channels depends on

various network parameters. Although the channel throughput is very poor compar-

ing to normal data communication, use of these channels are very difficult to detect.

Future investigation is necessary which includes, but is not limited to, a complete

evaluation of the proposed covert channels, including theoretical analysis to decide

the bounds on the covert channel throughput, and the design of countermeasures

against the covert attacks. We believe there is rich potential for discovering and

then exploring new covert channel attacks as well as defending against them.
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Chapter 3

An Anonymous Trapdoor for Anonymous Communication in Ad Hoc

Networks

3.1 Motivation

Privacy has always been an important real world societal issue. User privacy

in the cyberspace is needed for various reasons from enabling the e-commerce appli-

cations to supporting the freedom of speech ([3, 4, 5, 6]). Preserving privacy under

the inherently open wireless communication networks ([7, 8, 9, 10, 11, 12, 13, 14])

has demonstrated even more challenging problems. Wireless communication is vul-

nerable to both eavesdropping and jamming due to the open wireless medium.

Specifically, traffic pattern information and/or changes in traffic pattern infor-

mation can be inferred by observing when and where a packet, encrypted or not, is

transmitted between which users. Protection of such traffic information is critical

for many sensitive applications. For example, in military applications, a sequence

of packets transmitted by the commander may indicate a forthcoming action. Or,

in a civil application, a psychiatric patient may not want to be noticed that he/she

frequently visits some medical assistance webpage. Or, two collaborating compa-

nies may want to hide the fact that they are communicating. It is the objective of

anonymous communication to conceal such traffic information from adversaries.
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Referring to the terminology introduced by Pfitzmann and Kohntopp [41],

there are three types of anonymous communication properties that can be provided:

1) Sender-anonymity, which means it is impossible to identify the sender of a par-

ticular message; 2) Receiver-anonymity, which similarly means it is impossible to

identify the receiver; 3) Sender-receiver-anonymity, which means it is impossible to

determine whether any two users in the network are communicating. For multi-hop

ad hoc networks, sender and receiver also stand for source and destination. It is

worth noting here that sender-receiver-anonymity is provided when either of the

first two kinds of anonymity is assured.

None of the routing protocols mentioned in the previous chapter support

anonymity. Routing information is carried in plain-text in both routing control

packets and data packets, because intermediate nodes need to know who is the

destination before they can decide where to forward the packets. An anonymous

routing protocol is needed which can establish and maintain the connection between

the source and destination without disclosing their identities to any other nodes, not

even to those on the relaying path.

A novel concept of anonymous trapdoor has been utilized in most of the cur-

rent wireless anonymous communication schemes ([11, 7, 13]) to hide the receiver

identities. An anonymous trapdoor is a special token generated by a trapdoor func-

tion. The function is difficult to invert unless you are the designated receiver who

has some secret information related to the trapdoor. In other words, only the des-

ignated receiver can open the trapdoor. Being anonymous further requires that the

other users not only cannot open the trapdoor, but neither can they recognize who
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does have the capability. By substituting the receiver ID in a packet with an anony-

mous trapdorr that only the receiver can open, a packet can be broadcast locally

without specifying in clear-text who the receiver is. Similarly, the destination ID in

the route request can be replaced with an anonymous trapdoor for the destination.

Note that when a user receives a route request, it does not have to know exactly

who is the requested destination, but only need to decide whether it is the destina-

tion itself. Any user except the destination will realize that it is not the destination

when it fails to open the trapdoor, but cannot decide who is the destination. Such

anonymous trapdoor can be implemented with cryptographic functions. The cost

of constructing and opening the trapdoors depends on the type of cryptographic

functions available at the application layer.

A novel trapdoor construction is proposed in this chapter. Construction of the

trapdoor is based on a simple adaptation of the secret handshake scheme introduced

in [42], which is reviewed next.

3.2 Cryptographic Primitives

This section introduces those cryptographic primitives utilized for construction

of the proposed anonymous trapdoors. For more information, refer to [43] and

references within.
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3.2.1 Hash Function

A hash function H(x) transforms an input string x, which can have any length,

to a fixed-size output string y. The output y is referred to as the hash value of x.

The following properties are desired for a well designed cryptographic hash function:

1) Easy to compute. 2) One way. Given an output y, it is computationally infeasible

to find some input x such that H(x)=y. 3) Collision resistant. For strong collision

resistance, it is computationally infeasible to find any two inputs that have the

same hash value. Weak collision resistance requires that given an input x1, it is

computationally infeasible to find another different input x2 such that H(x1) =

H(x2). As implied in the collision resistance requirements, a hash function does not

guarantee a one-to-one mapping between the input and output.

One major application of cryptographic hash functions is to generate message

digests. The hash function transforms a long message of arbitrary length into a much

shorter and fixed-length string, referred to as the message digest. Then expensive

cryptographic operations can be performed on the short message digest rather than

the original message to reduce computational cost. For example, computing the

digital signature for a long message of arbitrary length is a very expensive operation.

Instead of calculating the digital signature over the original message directly, it is

much more efficient to hash the message first and then calculate the digital signature

based on the short, fixed-length message digest.
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3.2.2 Trapdoor Function

Similar to hash function, trapdoor function is also a one way function that

is hard to invert unless (which makes it different from hash function) you have

some special secret information. A trapdoor function does provide one-to-one map-

ping between the input and output space although inverting the mapping requires

knowledge of the secret information.

An anonymous trapdoor further ensures that without that special secret in-

formation, not only you cannot open the trapdoor, but also you cannot tell who

can. Based on this property, a packet can be protected with a trapdoor that only

the intended receiver can open. Then the packet is broadcast to the network. While

the protected packet reaches many users, only the intended receiver can open the

trapdoor and retrieve the content of the packet. However, nobody can tell which

user is the receiver.

3.2.3 Pairing Function

Our trapdoor construction is based on pairing functions, which is a bilinear,

non-degenerate map ê : G×G → G′, where G and G′ are two groups of large prime

order q. The following properties are satisfied:

1. Bilinearity:

∀P,Q ∈ G,∀a, b ∈ Z∗
q

ê(aP, bQ) = êab(P,Q)

2. Non-degeneracy: P 6= 0 ⇒ ê(P, P ) 6= 1
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3. Computability: ê(P,Q) is efficiently computable.

In particular, modified Weil [44] pairing and Tate [45] pairing are two such

bilinear maps, for which it is also assumed that the Bilinear Diffie-Hellman problem

(BDHP) is hard, i.e., given P, aP, bP, cP in G, it is hard to compute êabc(P, P ).

Based on the bilinearity property and the BDHP assumption, pairing function

has found increasing applications in cryptography, ranging from key agreement [46],

to identity based encryption [44], to secret handshakes [42]. In this work, pairing

function is used to implement anonymous trapdoors [47].

3.3 Pairing-based Trapdoor

3.3.1 The Bootstrapping Phase

Construction the anonymous trapdoor uses a bilinear, non-degenerate, and

computable pairing function ê : G×G → G′, for which the BDHP is assumed to be

hard. G and G′ are two groups of large prime order q. Assume there are two collision

resistance hash functions H1 and H2: H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → {0, 1}β

(such as SHA-1). β is a fixed integer that represents the length of the output hash

value. The 6-tuple < q,G,G′, ê, H1, H2 > is public known to every user.

The system administrator picks a random number t ∈ Z∗
q and declares it to

be the system secret. Then, the administrator equips each user i with a set of

paired values: {< PsdNymi,j, tH1(PsdNymi,j) >, forj = 1, 2, . . . m}, where the
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PsdNymi,j’s are one-time-use pseudonyms of user i, and tH1(PsdNymi,j) is the

secret point corresponding to PsdNymi,j. The set is of size m. In addition to the

pseudonyms, the administrator also equips each user i with a unique identity and

the corresponding secret point: < IDi, tH1(IDi) >.

Before entering the network, each user i is initiated with the following public

information < q,G,G′, ê, H1, H2 >, and the following private information < IDi,

tH1(IDi) > and {< PsdNymi,j, tH1(PsdNymi,j) >, forj = 1, 2, . . . m}. However,

user does not know the value of system secret t.

Denote x1 ‖ x2 as concatenation of string x1 and x2. Encryption of x us-

ing the key K is represented as K(x), and decryption is represented as K−1(x).

Construction of the proposed pairing-based trapdoor is described in the following

section.

3.3.2 Pairing-based Trapdoor Construction

Now let us consider Alice as the source who wants to communicate with Bob.

Alice needs to find a path to Bob and may have to rely on other users on the path to

relay her packets. On one hand, Alice does not want them know who she is and who

she is communicating with. On the other hand, the other users need to know where

to forward Alice’s packet. Alice establishes such a path by using a pseudonym for

herself and hiding Bob’s identity in the anonymous trapdoor.

Alice first picks an unused pseudonym PsdNymAlice and constructs the trap-
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door as follows:

< PsdNymAlice, CNymAlice,Bob, KAlice,Bob(IDBob) >, (3.1)

where






CNymAlice,Bob = H2(ê(tH1(PsdNymAlice), H1(IDBob)) ‖ 0)

KAlice,Bob = H2(ê(tH1(PsdNymAlice), H1(IDBob)) ‖ 1).

(3.2)

The second part of the trapdoor,CNymAlice,Bob, is the pseudonym for the con-

nection between Alice and Bob. The connection pseudonym and the secret key

KAlice,Bob bind the source pseudonym with the destination ID through the pairing

function. Such a binding can only be recognized by the destination. Both the

connection pseudonym and the secret key have to be calculated with either Alice’s

secret point related to her pseudonym or Bob’s secret point related to his identity.

A third party cannot guess the value of KAlice,Bob. In addition, although the connec-

tion pseudonym CNymAlice,Bob is public, nobody can tell that it is related to Bob’s

identity. For a user other than the source and destination, he can at most determine

that the trapdoor cannot be opened by himself but cannot obtain any information

about who can.

Recalling the on-demand routing mechanism described in chapter 2, upon

receiving a route request, a user checks the destination ID entry. If the user is the

destination or knows of a path to the destination, the user constructs and sends

back reply. Otherwise, he rebroadcasts the request. Both of the destination ID and

source ID are carried in plain-text. To anonymize the route request packet, these
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entries can be replaced by an anonymous trapdoor like Eq. 3.1. Then the trapdoor-

protected route request is broadcast throughout the network. An intermediate user

who received the request cannot open the trapdoor, thus will continue to forward

the route request. When the route request arrives at the destination Bob, Bob will

be able to open the trapdoor and respond as the destination. Since intermediate

users do not know who is inquired in the route request, they can no longer generate

replies even if they do have routes to the destination. In the next subsection, the

procedure of opening an trapdoor is described.

3.3.3 Open Trapdoor

When a user X receives a route request, it first checks whether it has seen the

request before, for example by checking whether it has seen the source pseudonym

before. If so, this request is ignored and discarded. Otherwise, user X takes as

inputs the source pseudonym and its own secret point, and calculates:

CNymPsdNymAlice,X = H2(ê(H1(PsdNymAlice), tH1(IDX)) ‖ 0) (3.3)

If user X is not the requested destination, the connection pseudonym calculated

using X’s secret point will not equal to the connection pseudonym carried in the route

request:

CNymPsdNymAlice,X = H2(ê(H1(PsdNymAlice), tH1(IDX)) ‖ 0)

= H2(ê(tH1(PsdNymAlice), H1(IDX)) ‖ 0)

6= H2(ê(tH1(PsdNymAlice), H1(IDBob)) ‖ 0)
︸ ︷︷ ︸

CNymAlice,Bob

. (3.4)
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When destination Bob receives the route request, he will try to open the

trapdoor just like any other users:

CNymPsdNymAlice,Bob = H2(ê(H1(PsdNymAlice), tH1(IDBpb)) ‖ 0)

= H2(ê(tH1(PsdNymAlice), H1(IDBob))
︸ ︷︷ ︸

CNymAlice,Bob

(3.5)

Bob finds out that the connection pseudonym he calculates is equal to the

one carried in the route request. Bob further confirms that he is the requested

destination by calculating the secret key:

KPsdNymAlice,Bob = H2(ê(H1(PsdNymAlice), tH1(IDBob)) ‖ 1)

= H2(ê(tH1(PsdNymAlice), tH1(IDBob)) ‖ 1)
︸ ︷︷ ︸

KAlice,Bob

(3.6)

Bob gets the same secret key that was used to encrypt the third part of the

trapdoor. Bob can successfully decrypt it can find its own ID in the decrypted

content. So Bob confirms that he is the destination and should send back a route

reply. For any user X who is not Bob, given

< PsdNymAlice, CNymAlice,Bob, KAlice,Bob(IDBob) >,

user X cannot learn any information about IDBob except that it is not his own

identity IDX .

3.3.4 Proof of Opening Trapdoor

When secure routing is desired, a proof of opening the trapdoor shall be pro-

vided in the route reply, such that the source can verify the route reply is indeed
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created by the destination. A simple proof can be calculated as the follows:

Proof = H2(ê(H1(PsdNymAlice), tH1(IDBob)) ‖ 2) (3.7)

However, this proof can be verified by only the source. Forged route replies

can still be injected into the network. Although the source will finally reject the

reply, propagation of the fake reply still consumes communication and computation

resources. It is more desirable if a proof can be verified by any intermediate user on

the route.

A globally verifiable proof is provided by slightly modifying the trapdoor. In

fact, another layer of hash is applied over NymAlice,Bob. The new trapdoor becomes

< PsdNymAlice, CNym′
Alice,Bob, KAlice,Bob(IDBob) >,

where CNym′
Alice,Bob = H2(CNymAlice,Bob). Accordingly, the same hash operation

is performed when a user tries to decide if it is the destination. Because of the

one-way property of the hash function, it is difficult to find another input that

produces CNym′
Alice,Bob. However, the destination user with its own secret point

can easily calculate CNymAlice,Bob just as the source did. So, the destination uses

CNymAlice,Bob as its proof of opening the trapdoor, i.e. Proof ′ = CNymAlice,Bob.

Any forwarding user who has recorded the trapdoor can verify the proof by checking

if H2(Proof ′) = CNym′
Alice,Bob.

The proof of opening the trapdoor does not carry the destination identity in

plain-text, so it reserves the property of destination anonymity.
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3.4 Perfect Anonymity vs. Computational Anonymity

Recall that the anonymous trapdoor consists of the 3-tuple of <source pseudonym,

connection pseudonym, encrypted destination identity>. The anonymity property

requires that given a trapdoor, no third party beside the source and destination is

able to tell which user’s identity, out of a set of known user identities, was used to

create the trapdoor.

Anonymity of a given trapdoor construction scheme can be assessed under an

information-theoretical framework similar to the one proposed by Shannon in 1949

[48] to evaluate the secrecy of a cryptosystem. In Shannon’s framework, the secrecy

of a cryptosystem is evaluated as the amount of information about a randomly

chosen message an attacker can derive from the cipher text. A cryptosystem is

said to achieve perfect secrecy if the attack gains no information from the cipher

text. Following the same framework, anonymity of a given trapdoor construction

scheme can be assessed as the amount of information about a randomly chosen

identity (drawn out of a set of known identities with some probability distribution)

an attacker obtains after being given a trapdoor constructed using that identity.

Perfect anonymity is achieved if the no information about the destination identity

can be derived from the trapdoor.

However, perfect anonymity cannot be achieved using our trapdoor construc-

tion scheme. Theoretically, the trapdoor contains all the necessary information to

calculate the destination identity. (For example, the destination identity can be

found by performing a brute force search through all possible combinations of user
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identities and integers s ∈ Z∗
q and finding the pair which, combined with the source

pseudonym, generates the same trapdoor.) A more practical goal is to make sure it

is computationally infeasible to do so.

The same problem exists for the notion of perfect secrecy. In fact, achieving

perfect secrecy under this information theoretical model has been proved impractical[48].

It requires that for every bit of information to be exchanged secretly, one bit of shared

secret information is already established between the communication parties. No

practical method has been found which can generate, exchange, and store such large

amount of secret information. Insteads, security of a practical encryption scheme

usually relies on the hardness of some well-known mathematical problems: for which

no polynomial time solution is known (yet). By showing that the problem of break-

ing the cryptosystem can be reduced to solving the hard mathematical problem, it is

proved to be computationally infeasible to recover the key and the original message.

3.5 Anonymous Authentication and Key Establishment

Two notable side benefits of our trapdoor construction are automatic anony-

mous authentication and key establishment. Alice and Bob agree on the same

secret key KAlice,Bob (Bob calculates KPsdNymAlice,Bob which is equal to KAlice,Bob) if

and only if both Alice and Bob are legitimate users who have obtained their secret

points from the system administrator. Intractability of the BDHP ensures that given

a collection of pseudonyms and the corresponding secret points, the system secret

t can not be deduced with non-negligible probability. Without knowing the system
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secret t, it is hard to find pseudonym and the corresponding secret point that can

the confirmation. In the mean time, Alice and Bob have established a shared secret

key, KAlice,Bob, for future transactions.

3.6 Related Work

3.6.1 Secret Handshakes

The proposed anonymous trapdoor is based on a simple adaptation of the

secret handshake protocols [42]. The pairing function together with one-time user

pseudonyms are used to perform secret handshakes. The secret handshake allows two

users to authenticate each other as valid group members and set up a shared secret

key after exchanging their pseudonyms. User pseudonyms are randomly generated

independent of the user real identities and each pseudonym is used only once so

that it is impossible to link a pseudonym to the user’s real identity or to relate two

pseudonyms to the same user. An authenticated and secure communication channel

is established between two users without disclosing their real identities to anyone,

not even to each other.

However, the secret handshake requires exchange of messages in both direc-

tions before the secret key can be calculated by both users. The two users have to

exchange their pseudonyms before the shared secret key can be established. As a

result, although the secret handshake scheme provides powerful anonymity proper-

ties, it cannot be applied directly for the problem of anonymous multi-hop routing.

On one hand, the source needs to find a path and establish the connection to the
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destination before any message can be exchanged. On the other hand, at least two,

the source and destination pseudonyms, have to be exchanged before the connection

can be established. This results in the chicken and egg problem. The proposed new

anonymous trapdoor breaks this loop by replacing the destination pseudonym used

during key calculation with its real identities so that messages only need to be passed

in one direction: from the source to the destination, which is done through broad-

cast. The one-time source pseudonym is kept to protect both source anonymity.
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Chapter 4

Anonymous Authentication with Distributed Anonymity Revocation

4.1 Motivation

Chapter 3 has described a new anonymous trapdoor construction scheme based

on pairing functions. With the new trapdoor, it is possible to establish an anony-

mous communication connection between a pair of users in the wireless network.

Unfortunately, anonymity can be misused. A compromised user can abuse

anonymity and launch malicious attacks without being detected. The same is true

for a selfish user. Even if the misbehavior is detected, since it is conducted under

pseudonyms, the attacker or selfish user can dodge detection and continue its action

by simply switching to new pseudonyms. On the other hand, most misbehavior

detection and responding schemes ([49, 50, 51, 52]) depend on accountability. Ac-

countability ensures that events of interest can be connected to specific users such

that responsibility can be assigned if something goes wrong. Without accountability,

it would be impossible to know who caused the observed or suspected malfunction

and what counteractions should be taken against whom in order to contain the

damage.

Obviously, anonymity and accountability are two conflicting properties by def-

inition. Existing anonymous communication schemes combat this problem by re-

voking anonymity when misbehavior is detected. Revocation of anonymity depends
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on an assumed existence of centralized authorities(CA), who maintain the map-

ping between user identity and user pseudonyms. When evidence of misbehavior is

presented, the real identity behind the pseudonyms is recovered and all the related

pseudonyms are revoked. Availability of an on-line CA is critical for instant intruder

identification.

However, in ad hoc networks, it cannot always be assumed that such a central-

ized control is constantly available. Users may obtain their anonymous credentials

from the CA before joining the ad hoc network. It is inappropriate to assume that

users can keep constant access to the CA. Current anonymous communication pro-

tocols for ad hoc networks, ANODR [11] and MASK [14] for example, either do not

support anonymity revocation at all or rely on some centralized control to do so.

For example, ANODR users generate their own uncertified pseudonyms which are

absolutely unlinkable to their real identities. Better accountability is provided in

MASK, as neighboring users authenticate each other under pseudonyms generated

by a trusted authority. The trusted authority maintains a list of pseudonyms asso-

ciated with each individual user. Later if a pseudonym is detected misbehaving, the

trusted authority can link it to the particular user. The trusted authority revokes

the anonymity of a user by broadcasting the complete list of its pseudonyms to the

entire network. However, it cannot always be assumed that such a trusted authority

is constantly available, in which case it is crucial for the network nodes to be able

to identify the misbehaving nodes by themselves and take proper counteractions.

Furthermore, maintaining the long list of revoked pseudonyms is expensive both

communication-wise and storage-wise.
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In this chapter, I describe an anonymous authentication architecture with

distributed anonymity revocation. The anonymity revocation protocol does not

depend on the existence of any on-line trusted third parties. Instead, given enough

information about a user’s pseudonyms, anybody can revoke the anonymity of that

user. Assume that each user has a unique identity. Based on the cryptographic

concept of threshold secret sharing, user pseudonyms are generated by decomposing

the user identity using the threshold secret sharing scheme([53, 54]). Anybody

collecting enough pseudonyms of a given user can recover that user’s identity, and

thus revoke the user’s anonymity.

Once the identity of a user is recovered and distributed, all the pseudonyms

of the user, used or unused, are automatically revoked due to the fact that they

contribute to the same identity. This is an obvious advantage over the traditional

solutions, where a long revocation list has to be maintained for all the arbitrarily-

unlinkable pseudonyms.

This chapter is organized as follows. In Section 4.2, an existing anonymous au-

thentication scheme, called secret handshakes, is introduced. The secret handshake

scheme was already mentioned briefly in the previous chapter as related works. This

section provides a more detailed description of the secret handshake protocol, based

on which a new anonymous authentication protocol with distributed anonymity re-

vocation is proposed. The basic idea behind the design is explained in Section 4.3.

A new cryptographic primitive, the threshold secret sharing scheme, is also intro-

duced in Section 4.3. It is described in detail in Section 4.4 the new anonymous
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authentication with distributed anonymity revocation protocol. Its properties with

regard to anonymity and accountability is analyzed in Section 4.5. Related work

is reviewed in Section 4.6. Section 4.7 concludes this chapter with a summary and

some pointers to future work.

4.2 Secret Handshakes

Our anonymous authentication is based on an existing anonymous authenti-

cation protocol, referred to as the secret handshake scheme [42]. Here, we briefly

review the secret handshake scheme.

The secret handshake schemes in [42] are realized based on the same pairing-

based cryptography that is already introduced in Chapter 3.2. The system is set

up very similarly to that for the trapdoor constructions. The system administrator

first generates a set of public parameters < q,G,G′, ê, H1, H2 >, which is known by

every user. The system administrator picks a random number t ∈ Z∗
q and declares

it to be the system secret. Then, the administrator equips each user i with a set

of {< PsdNymi,j, tH1(PsdNymi,j) >, forj = 1, 2, . . . m}, where PsdNymi,j’s are

again one-time-use pseudonyms of user i, and tH1(PsdNymi,j) is the corresponding

secret point. The difference is that for mutual anonymous authentication, users do

not necessarily have to have the secret point related to their real identities.

Let Alice and Bob be two users who wish to authenticate each other. The secret

handshake proceeds as follows. Alice and Bob each pick an unused pseudonymous

credentials, denoted as < PsdNymAlice, tH1(PsdNymAlice) > and
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< PsdNymBob, tH1(PsdNymBob) > .

1. Alice sends Bob her pseudonym with a random nonce nounceAlice.

Alice
PsdNymAlice, nounceAlice

// Bob

2. Bob recieves Alice’s pseudonym and calculates the secret value

SBob = ê(H1(PsdNymAlice), tH1PsdNymBob). (4.1)

Bob picks another random nonce nounceBob and calculates

V0 = H2(SBob||PsdNymAlice||PsdNymBob||nounceAlice||nounceBob||0).

(4.2)

Bob sends Alice his pseudonym, the random nounceBob, and the value V0.

Alice Bob
PsdNymBob, nounceBob, V0

oo

3. Alice receives Bob’s pseudonym and calculates

SAlice = ê(tH1PsdNymAlice, H1(PsdNymBob)). (4.3)

Alice confirm that

V0 = H2(SAlice||PsdNymAlice||PsdNymBob||nounceAlice||nounceBob||0).

(4.4)

Alice calculates

V1 = H2(SAlice||PsdNymAlice||PsdNymBob||nounceAlice||nounceBob||1).

(4.5)

Alice sends Bob the value V1.

Alice
V1

// Bob
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4. Bob confirms that

V1 = H2(SBob||PsdNymAlice||PsdNymBob||nounceAlice||nounceBob||1).

(4.6)

Notice that the secret value SAlice is equal to SBob, if and only if both Alice

and Bob are legitimate users who have obtained their secret points from the system

administrator. Denote this common secret value as SAlice,Bob. Various security

properties of the secret handshakes have been proved in [42]. For more details,

please refer to the original paper. Now, Alice and Bob can set up a shared secret

key for future transactions as

KAlice,Bob = H2(SAlice,Bob||PsdNymAlice||PsdNymBob||nounceAlice||nounceBob||2).

(4.7)

4.3 Basic Idea and the Threshold Secret Sharing

The secret handshake scheme described earlier allows two users to authenticate

each other secretly. An eavesdropper observing the authentication process cannot

learn anything, including the identities of the two parties. Many proposals have

utilized this property of secret handshakes for anonymous communications, such

as MASK [14]. The strong anonymity property was achieved through the use of

arbitrarily-unlinkable pseudonyms during the secret handshakes.

Instead, I propose to construct user pseudonyms with certain embedded rela-

tionship. Given enough information, this relationship can be rediscovered and used

to link all the related pseudonyms together. I will show that such pseudonyms can
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be constructed using the threshold secret sharing scheme, which is introduced in the

next section.

The new anonymous authentication architecture still allows users to authenti-

cate each other under the pseudonyms. Upon joining the network, each user obtains

a set of secret points corresponding to their pseudonyms. The secret points are calcu-

lated according to the secret handshake scheme[42]. Following the secret handshake

procedure in [42], two users can successfully authenticate each other and establish a

shared secret key, if and only if both of them have obtained their pseudonyms and

the secret points from the system administrator.

The new anonymous authentication architecture provides strong anonymity

against eavesdroppers. Two rounds of secret handshakes are performed during the

authentication procedure. The second secret handshake is performed only if the first

handshake is successful. Exchange of messages during the second secret handshake

is protected with the key established during the first handshake. This ensures that

anybody observing the authentication procedure can obtain only part of the user

pseudonyms, which does not help to recover the user identity.

The new anonymous authentication architecture ensures that even if a user’s

identity is already discovered by the adversaries, its transactions with other benign

users remain anonymous. In other words, although the user may be recognized

when directly interacting with an adversary, its transactions with other benign users

remain unrecognizable to the adversary.

We introduce the threshold secret sharing scheme next.
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4.3.1 Threshold secret sharing

In order to be able to recover the user identity from its pseudonyms, there must

be certain relationship embedded in these pseudonyms. Given enough information,

this relationship can be rediscovered and used to link all the related pseudonyms

together. Such pseudonyms can be constructed based on the threshold secret sharing

scheme proposed by Shamir[53] in 1979. The original application was robust key

management for crypto-systems. The basic idea is that given a piece of secret

information, such as the user identity, construct n related pieces, generally referred

to as secret shares, such that:

1. any k out of the n pieces will reveal the secret, but

2. any k − 1 or fewer pieces are not enough for reconstructing the secret.

Shamir’s scheme is perfect, in the sense that any fewer than the threshold

number of shares reveals absolutely no information about the secret [54]. Now we

review the scheme in more details.

Shamir’s secret sharing scheme is based on interpolation of a polynomial de-

fined over a finite field, GF (p), where p is a large prime number. Given k points

in the two dimensional plane, (xi, yi) for i = 1, 2, ..., k, there is a unique polynomial

F k−1(xi) of degree k−1 such that F k−1(xi) = yi for all i. Without loss of generality,

we can assume that the secret D is an element in GF (p). A (k, n) threshold secret

sharing scheme works as follows:

1. pick a random k − 1st degree polynomial F k−1(x):

F k−1(x) = ak−1x
k−1 + ak−2x

k−2 + ... + a1x
1 + a0 (4.8)
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where a0 is the secret D. So, F k−1(0) = a0 = D.

2. the n shares Di = (xi, yi) are calculated by evaluating F k−1(x) at n distinct

points xi, xi 6= 0:

Di = (xi, yi) = (xi, F
k−1(xi)) (4.9)

Given any subset of k of these Di pairs, it is computationally easy to solve for

a0 = D in Eq. (4.8). Knowledge of k − 1 pairs, however, does not suffice in order

to calculate D. In fact, no subset of fewer than k shares can determine any partial

information about the secret.

One observation to be made here is that a secret share is actually composed of

a pair of values, i.e. the input value x and the polynomial evaluated at x . Without

the second part, the value of x alone does not carry any information about the

secret. With some careful design, this fact is utilized in our authentication protocol

to ensure anonymity. More details will be provided with the formal introduction of

the authentication protocol in section 4.4.

4.4 The AADAR Protocol

4.4.1 Pseudonym generation

In the bootstrapping phase, the SA first determines a pair of public and private

keys < PubK, PrvK >, two groups G and G′ of the same prime order q, a Weil/Tate

pairing mapping function ê, and two collision resistant hash functions H1 : {0, 1}∗ →

G and H2 : {0, 1}∗ → {0, 1}β. Then, SA picks a system secret t. In the end, each

node has the knowledge of < PubK, q,G,G′, ê, H1, H2 >, but does not know the

68



value of the private key PrvK or the system secret t.

For each user, say Alice as an example, the SA generates a certificate for

her identity IDAlice : cert(IDAlice) = {IDAlice}PrvK , where {IDAlice}PrvK denotes

IDAlice signed by key PrvK. Then, the TA picks a random polynomial of or-

der k − 1: F k−1
Alice(x) = aAlice,k−1x

k−1 + aAlice,k−2x
k−2 + ... + aAlice,1x + aAlice,0 and

aAlice,0 = cert(IDAlice).

A set of pseudonymous credentials of the form

{< PsdNym
(1)
Alice,i, ScrP t

(1)
Alice,i, PsdNym

(2)
Alice,i, ScrP t

(2)
Alice,i >, . . .} are constructed as

follows:

• PsdNym
(1)
Alice,i’s are distinctive non-zero random numbers in G;

• ScrPt
(1)
Alice,i = tH1(PsdNym

(1)
Alice,i) is the secret point with regard to PsdNym

(1)
Alice,i;

• PsdNym
(2)
Alice,i = F k−1

Alice(PsdNym
(1)
Alice,i) is the polynomial evaluated at

PsdNym
(1)
Alice,i;

• ScrPt
(2)
Alice,i = tH1(PsdNym

(1)
Alice,i||PsdNym

(2)
Alice,i) is the secret point corre-

sponding to the concatenation of PsdNym
(1)
Alice,i and PsdNym

(2)
Alice,i.

Alice presents only PsdNym
(1)
Alice,i during the first secret handshake. If and

only if the first secret handshake was successful, Alice transmits PsdNym
(2)
Alice,i en-

crypted with the key established during the first handshake. The binding between

PsdNym
(2)
Alice,i and PsdNym

(1)
Alice,i is verified if the second secret handshake is suc-

cessful. The random value PsdNym
(1)
∗,∗ of two users shall not collide. Otherwise,
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anonymity may be tampered since two pseudonyms with the same PsdNym
(1)
∗,∗ but

different PsdNym
(2)
∗,∗ obviously belong to different users. In the next subsection, it

is described how anonymous authentication is realized under the pseudonyms.

4.4.2 Anonymous Authentication

The anonymous authentication protocol consists of two rounds of secret hand-

shakes. Two users authenticate each other by exchanging pseudonyms. It is im-

portant to have two rounds of secret handshakes in order to ensure anonymity.

Notice that anybody having enough shares of the pseudonyms can recover the user

identity. Exchange of the pseudonyms must be protected from arbitrary eaves-

droppers. With the two-round mechanism, only part of the pseudonym is sub-

ject to eavesdropping during the first handshake. Once two users establish the

shared secret key, exchange of the remaining part of the pseudonym can be pro-

tected by encryption. Assume Alice and Bob are the two users who want to au-

thenticate each other. Alice and Bob each pulls out one unused pseudonym, say

< PsdNym
(1)
Alice,i, ScrP t

(1)
Alice,i, PsdNym

(2)
Alice,i, ScrP t

(2)
Alice,i > and

< PsdNym
(1)
Bob,j, ScrP t

(1)
Bob,j, PsdNym

(2)
Bob,j, ScrP t

(2)
Bob,j >.

The superscripts ‘(1)’ and ‘(2)’ are used to distinguish messages exchanged in the

first and second secret handshakes.
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Alice
PsdNym

(1)
Alice,i

, nounce
(1)
Alice

// Bob

PsdNym
(1)
Bob,j

, nounce
(1)
Bob

, V
(1)
0

oo

V
(1)
1

//

Figure 4.1: AADAR: The First Round of Secret Handshake

The first secret handshake involves only < PsdNym
(1)
Alice,i, ScrP t

(1)
Alice,i > and

< PsdNym
(1)
Bob,j, ScrP t

(1)
Bob,j > and follows the same procedure as the original scheme

of [42]. As demonstrated in Fig. 4.1, the random nonces nounce
(1)
Alice and nounce

(1)
Bob

are picked by Alice and Bob individually. V
(1)
0 and V

(1)
1 are values calculated by Bob

and Alice according to their secret points, each to be verified by the other party.

During the handshake procedure, Alice and Bob calculate a shared secret value:

S
(1)
Alice,Bob = ê(ScrPt

(1)
Alice,i, H1(PsdNym

(1)
Bob,j))

= ê(H1(PsdNym
(1)
Alice,i), ScrP t

(1)
Bob,j). (4.10)

Then, V
(1)
0 and V

(1)
1 are calculated and confirmed as:







V
(1)
0 = H2(S

(1)
Alice,Bob||PsdNym

(1)
Alice,i||PsdNym

(1)
Bob,j||nounce

(1)
Alice||nounce

(1)
Bob||0)

V
(1)
1 = H2(S

(1)
Alice,Bob||PsdNym

(1)
Alice,i||PsdNym

(1)
Bob,j||nounce

(1)
Alice||nounce

(1)
Bob||1).

(4.11)

Based on S
(1)
Alice,Bob, Alice and Bob also calculate a shared secret key as:

K
(1)
Alice,Bob = H2(S

(1)
Alice,Bob||PsdNym

(1)
Alice,i||PsdNym

(1)
Bob,j||nounce

(1)
Alice||nounce

(1)
Bob||2)

(4.12)

71



Once V
(1)
0 and V

(1)
1 are successfully confirmed, Alice and Bob know that they

possess the same secret key K
(1)
Alice,Bob. This key is used during the second secret

handshake to protect the pseudonyms from eavesdroppers.

Alice
K

(1)
Alice,Bob

{PsdNym
(2)
Alice,i

}, nounce
(2)
Alice

// Bob

K
(1)
Alice,Bob

{PsdNym
(2)
Bob,j

}, nounce
(2)
Bob

, V
(2)
0

oo

V
(2)
1

//

Figure 4.2: AADAR: The Second Round of Secret Handshake

The second handshake proceeds as demonstrated in Fig. 4.2 K
(1)
Alice,Bob{·}

denotes · encrypted with the shared secret key K
(1)
Alice,Bob. nounce

(2)
Alice, nounce

(2)
Bob,

V
(2)
0 , and V

(2)
1 have similar meaning as above. Another shared secret value S

(2)
Alice,Bob

can be calculated by Alice and Bob as:

S
(2)
Alice,Bob = ê(ScrPt

(2)
Alice,i, H1(PsdNym

(1)
Bob,j||PsdNym

(2)
Bob,j))

= ê(H1(PsdNym
(1)
Alice,i||PsdNym

(2)
Alice,i), ScrP t

(2)
Bob,j) (4.13)

Similarly, V
(2)
0 and V

(2)
1 are calculated and confirmed as:







V
(2)
0 = H2(S

(2)
Alice,Bob||PsdNym

(2)
Alice,i||PsdNym

(2)
Bob,j||nounce

(2)
Alice||nounce

(2)
Bob||0)

V
(2)
1 = H2(S

(2)
Alice,Bob||PsdNym

(2)
Alice,i||PsdNym

(2)
Bob,j||nounce

(2)
Alice||nounce

(2)
Bob||1)

(4.14)

Validity of the whole pseudonyms is confirmed if and only if both V
(2)
0 and

V1(2) are successfully verified. Just like the first secret handshake, Alice and Bob
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can calculate another shared key based on S
(2)
Alice,Bob:

K
(2)
Alice,Bob = H2(S

(2)
Alice,Bob||PsdNym

(2)
Alice,i||PsdNym

(2)
Bob,j||nounce

(2)
Alice||nounce

(2)
Bob||2)

(4.15)

4.4.3 Anonymity Revocation

As discussed earlier, anonymity can be misused. Some traditional security

solutions, such as ([49, 50, 51, 52]), no longer work when anonymity is enforced.

This is because these solutions rely on accountability, which is incompatible with

anonymity by definition. To combat this problem, we propose a scheme that offers

distributed anonymity revocation when misbehavior is detected. In our scheme,

identity of a misbehaving node can be recovered once it is caught misbehaving more

than a certain number of times (in this case, the secret sharing threshold k).

In our scheme, each user in the system maintains two blacklists : one list

of misbehaving pseudonyms and another list of revoked identities. Each entry

in the list of revoked identities is also associated with the corresponding polyno-

mial F (k−1)(·) used to decomposed that identity. Without loss of generality, as-

sume Alice detects that Bob is misbehaving. Alice has one of Bob’s pseudonyms:<

PsdNym
(1)
Bob,j, PsdNym

(2)
Bob,j >, which is also a share of Bob’s real identity. Alice

adds this share to the list of misbehaving pseudonyms she has maintained. When

this list is of size at least k, Alice can try to recover the real identity of misbe-

having nodes by running the polynomial interpolation with every combination of k

pseudonyms. If the reconstructed secret does not form a valid certificate, i.e. not in
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the form of cert(IDX), Alice decides that these k pseudonyms do not belong to the

same user. Otherwise, Alice determines that a misbehaving user X with identity

IDX is recovered. The corresponding polynomial F k−1
X (·) is also reconstructed from

the pseudonyms. Alice adds the IDX and the polynomial F k−1
X (·) into the list of

revoked identities.

Denote the size of the list of misbehaving pseudonyms as z. For z ≥ k, Alice

has to run
(

z

k

)
number of polynomial interpolations. Obviously, as z grows, the

number of polynomial interpolations to be performed is O(zk). However, we expect

z to be bounded by (k − 1) · Nadversary + Ninnocent, where Nadversary is the number

of adversaries in the network and Ninnocent is the number of innocent pseudonyms

mistakenly observed as misbehaving. We also observe that when one identity is

recovered, all the related pseudonyms can be removed from the list. Thus the list

of misbehaving pseudonyms contains only the suspected pseudonyms of those users

whose identity has not been recovered yet.

To prevent the identified adversaries from further participating in the network

operation, Alice has to verify that a pseudonym < PsdNym(1), PsdNym(2) > does

not belong to one of the identified adversaries. This can be realized by ensuring:

1. < PsdNym(1), PsdNym(2) > is not already in the list of misbehaving pseudonyms

2. ∀ID in the list of identified adversaries,

PsdNym(2) 6= F k−1
ID (PsdNym(1)). (4.16)

Our anonymity revocation scheme ensures that once the identity of a node is

recovered, all of its pseudonyms, used or unused, can be linked together. This offers
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an efficient system for anonymity revocation in comparison with other solutions

where a long revocation list has to be maintained for all the arbitrarily-unlinkable

pseudonyms.

4.4.4 Blacklist Exchange

Ad-hoc network users are mobile users. So are the adversaries. A single honest

user may have not collected enough pseudonyms of a given adversary before it moves

away. A smart adversary may dodge identification by carefully “distributing” its

attacks across the whole network, while never leaving enough evidence to one single

honest user.

A smart adversary can also prevent identification by reusing its pseudonyms

to limit the disclosure of its pseudonyms. Our two-level authentication scheme has

been designed to prevent an adversary from forging pseudonyms. However, used

pseudonyms are valid ones that can be reused to authenticate adversaries without

any trouble. A given user can only refuse to authenticate a pseudonym that is

already on its own blacklist, while the adversary can cheat different users under the

same pseudonym. The adversary’s identity remains undiscovered even if every user

in the network has detected it misbehaving under that single same pseudonym.

Both of the problems can be solved through sharing the lists of misbehaving

pseudonyms and revoked identities. This allows more effective adversary identifi-

cation and prevent pseudonym reuse by the adversary. Each time a user detects a

misbehaving pseudonym, it can inform other users by broadcasting a revoke mes-
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sage.

It is important to ensure authenticity of the revoke messages. Distribution of

bogus revoke messages with invalid pseudonyms consumes not only communication

but also computation resources. Any identity reconstruction effort involving invalid

pseudonyms will be unsuccessful. We propose to employ Paterson’s ID-based sig-

nature scheme [55] as a simple extension of the original protocol. The following

additional operations are performed by the SA during the bootstrapping phase:

1. Picks an element P ∈ G and calculates Ppub = tP .

2. Chooses another collision-resistant hash function

H3 : G → {0, 1}β.

3. Makes < P,Ppub,H3 > known to every user.

The revoke message in our scheme has the format of

< REV OKE, [PsdNymreporter, PsdNymmisbehaver]PsdNymreporter
>

PsdNymmisbehaver is the reported misbehaving pseudonym. PsdNymreporter

is the pseudonym of the reporter. [M ]ID stands for signing message M using the

identity ID. The signature is a pair of value (R,S). To generate the signature, user

ID picks a random number k ∈ Z∗
q and calculates:







R = k · P

S = k−1(H2(M) · P + H3(R) · tH1(ID))

(4.17)

To verify that (R,S) is a valid signature generated by user ID for M , the
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verifier confirms that

ê(R,S) = ê(k · P, k−1(H2(M) · P + H3(R) · tH1(ID)))

= ê(P,H2(M) · P + H3(R) · tH1(ID))

= ê(P, P )H2(M) · ê(Ppub,H1(ID)H3(R) (4.18)

Furthermore, to prevent the reporter from injecting fake misbehaving pseudonyms

into the blacklist. Authenticity of the PsdNymmisbehavior also needs to be verified.

This can be enabled by attaching a signature on PsdNymmisbehavior generated by

PsdNymmisbehavior itself. Such a signature can be obtained during the anonymous

authentication procedure. Two users may exchange their self-generated signatures

on their own pseudonyms right after the second secret handshake is successfully

performed.

4.4.5 Packet-based Pseudonyms

After the two secret handshakes, Alice and Bob can securely communicate

with each other using their pseudonyms and the secret key. However, the same

pseudonyms will link together all the communications and transactions between

Alice and Bob. The same approach of MASK[14] can be adopted to ensure unlinka-

bility between two packets or two transactions. Alice and Bob calculate a sequence

of shared keys and pseudonymous identifiers as:







PsdNym
(γ)
Alice,Bob = H2(S

(2)
Alice,Bob||nounce

(2)
Alice||nounce

(2)
Bob||1 ∗ γ + 1)

K
(γ)
Alice,Bob = H2(S

(2)
Alice,Bob||nounce

(2)
Alice||nounce

(2)
Bob||1 ∗ γ)

(4.19)
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where γ, and PsdNym
(γ)
Alice,Bob and K

(γ)
Alice,Bob denote the γth pseudonymous identifier

and the corresponding shared secret key. A new pair of < PsdNym
(γ)
Alice,Bob, K

(γ)
Alice,Bob >

is used for every packet transmitted or transaction performed between Alice and

Bob. The maximum number of such pairs should be small enough such that the

probability of collision is negligible.

4.5 Discussion

In this subsection, I will discuss some properties of the protocol, design choices,

and several enhancements.

4.5.1 Two Rounds of Secret Handshakes

It can be immediately observed that during the first handshake, Alice and

Bob used only parts of their pseudonyms, which are absolutely-unlinkable random

numbers in G. An eavesdropper who overhears these cannot obtain any information

about user identities. For the second handshake, exchange of the remaining parts of

the pseudonyms is secured using the newly established secret key K
(1)
Alice,Bob. Since

the key K
(1)
Alice,Bob is particularly linked to Alice and Bob, nobody else can obtain

the key or the pseudonyms. The authentication procedure is anonymous against

eavesdroppers who can be either outsiders or compromised insiders.

It is more complicated when one of Alice and Bob is compromised, say Bob.

Bob can recover Alice’s identity by repeatedly performing authentication with Alice
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for at least k different pseudonyms of Alice. From then on, whenever Alice authen-

ticates with Bob, Bob can link the pseudonyms to Alice. As a result, Bob can link

all his own authentication experiences with Alice. However, Bob also discloses his

own pseudonyms and risks his own privacy.

On the other hand, our scheme is more robust than it first appears. In fact,

communications and transactions between benign users remain anonymous even if

one or both of their identities have been recovered by the adversaries. Again, this

is because of the two-round secret handshake mechanism. For example, the secret

handshake procedure between Alice and Carl remains unrecognizable to Bob, even

if he has recovered the identities of both Alice and Carl. Our scheme ensures robust

anonymity of communications and transactions within the group of benign users.

4.5.2 Distributed Adversary Identification

As recognized above, the fact that an internal spy may recover user’s identities

posts threats against the system anonymity. This problem can be alleviated by

further dividing the capability of re-identification across the network users. First,

every pseudonym is encrypted before loaded to users. Secret points are calculated

from the encrypted pseudonyms correspondingly. The encrypted pseudonyms have

to be decrypted before being used to reconstruct the user identity. Then, according

to the schemes of [56] or [57], the decryption capability can be shared by the network

users such that it requires the cooperation of a minimum number of users to decrypt

the pseudonyms. Assume that the minimum number is D. Now, a user has to

79



convince at least another D − 1 users to help it decrypt a misbehaving pseudonym.

The user can do so by presenting evidence of misbehaviors. Honest users refuse to

help the decryption unless proper evidence is provided. As a result, it requires that

at least D users to be compromised in order to decrypt the pseudonyms and recover

other users’ identities.

However, extra care has to be taken to ensure the distributed decryption pro-

cedure does not introduce new breaches of anonymity. We suggest a separate set of

identities, unlinkable to the ones for data communication, to be used for the purpose

of distributed decryption.

4.5.3 Threshold

One important property of our scheme is the flexible trade-off between anonymity

and accountability through adjusting the design parameter k. On one hand, a given

adversary may be identified if it has been caught misbehaving at least k time. The

smaller k is, the sooner an adversary can be identified. On the other hand, spies can

recover the real identity of honest users, once they obtain at least k pseudonyms of a

given user. The smaller k is, the easier for spies to breach the user anonymity. More-

over, benign users may be mistaken as misbehavers, for reasons such as dynamic

channel status. The number of unwanted identification of benign users increases as

k decreases, and vice versa. The proper value of k should be determined according

to the application requirements. Larger k is preferred for privacy sensitive applica-

tions, and smaller k is preferred when fast misbehavior detection and misbehaver
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identification are critical.

4.5.4 Pseudonym Reloading

As users are preloaded with limited number of pseudonyms, they either have

to reuse their pseudonyms, or there will be a time when a user has to go back to the

trusted authority to be reloaded with a fresh set of pseudonyms. Note that although

each user having access to its own pseudonyms may reconstruct the polynomial func-

tion and generate pseudonyms for themselves, they much obtain the corresponding

secret points from the SA. Without the corresponding secret points, users can no

longer be authenticated using the pseudonyms. This prevents a compromised user

from introducing arbitrary pseudonyms into the system.

There are two options when constructing the new set of pseudonyms:

1. A new random polynomial of order k − 1 is picked for the same secret, and

the new set of pseudonyms is calculated using this new polynomial.

2. The same polynomial is used, but it is evaluated at different random points.

The major difference between these two options is whether the new pseudonyms

can be combined with the old ones when reconstructing the user identity. Option 1)

suggests that a different polynomial is used, so the new set of pseudonyms cannot

be combined with the old ones. Option 2) is the opposite case. A disadvantage

of option 1) is that an adversary can dodge detection by reloading its pseudonyms

whenever k − 1 pseudonyms from the same set are used. Option 2) prevents this

problem, but provides less confidence in users’ anonymity. A spy who has collected

81



any k pseudonyms of the same user can recover the user’s real identity. On the other

hand, option 1) requires the spy to collect at least k pseudonyms from the same set.

And more importantly, with option 1), an exposed user regains anonymity once it

gets reloaded with the new set of pseudonyms.

Which option to take depends on the interests of the actual applications.

In applications where protecting anonymity is more important than detection of

misbehaving users, option 1) is preferred, while the opposite is true for option 2).

4.5.5 An example application of Secure and anonymous routing

In this section, we discuss an example application our anonymous authen-

tication architecture to provide secure and anonymous routing in ad-hoc wireless

networks. We consider the case when compromised or selfish users agree to forward

the data packets but fail to so. It is critical to detect such misbehaviors under all

the constraints of anonymous communication.

Without anonymity in consideration, a group of secure routing protocols ([49,

51, 52]) have been designed to defend agaisnt such misbehaviors. The so-called

Watchdog mechanism is initially proposed in [51], and later extended in ([49, 58].

The basic idea is based on the use of passive acknowledgment (PACK): a node

can confirm that its neighbor has received a packet by overhearing it forwarding

that packet. However, this PACK mechanism cannot be applied to anonymous

communications. This is because to ensure anonymity, hop-by-hop encryptions are

generally applied to the packets to prevent transmission of the packet from being
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traced according to its payloads. This prevents a node from being able to monitor

its neighbors’ transmissions.

Solutions proposed in ([52, 59]) makes use of active acknowledgments and re-

ports. HADOF[52] is based on the source routing protocol DSR [22]. Source in

HADOF collects traffic statistic reports from the intermediate users in order to de-

tect misbehaving users on the route. On the other hand, the secure data forwarding

(SDF) scheme [59] is based on the distance-vector routing protocol AODV [21]. In

SDF, the destination generates ACKs that can be verified by the source and every

intermediate user. For every packet, if the source or an intermediate user receives

neither the destination ACK nor a misbehaving report from its downstream within

a certain amount of time, it will generate a misbehaving report about its downlink

and send it upstream to the source. When the source detects its own downlink

misbehaving or receives a misbehaving report from the downstream, the source can

issue a new secure route request avoiding the misbehaving users. Because SDF does

not rely on source routing, which is the case for most anonymous routing protocols,

we suggest employing SDF as the misbehavior detection mechanism to implement

secure and anonymous routing protocols.

4.6 Conclusion

In this chapter, we observe that existing anonymous communication protocols

designed for ad hoc networks have not been able to accommodate accountability,

they are seriously vulnerable to other forms of threats, such as the Denial-of-Service
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attack. Based on this observation, we presented an anonymous authentication ar-

chitecture with distributed anonymity revocation. While it is impossible to pro-

vide perfect anonymity and accountability at the same time, our scheme provides

a framework that allows flexible trade-off between these two security requirements.

Anonymity is provided, and can be revoked, through using pseudonyms, which are

specially constructed according to the threshold secret sharing schemes. Based on

the secret handshake approach, our authentication protocol ensures anonymity of

benign users against eavesdroppers. A special property of our scheme is that trans-

actions between benign users are strongly protected in terms of anonymity, even if

both users’ identities are already recovered by adversaries.

Future work includes designing and implementing communication protocols

under the same framework. In particular, we plan to investigate how anonymous and

yet secure routing protocols can be implemented through this approach. Another

closely related topic is intrusion detection, especially distributed intrusion detection.

As accountability is provided, more efforts are needed to adapt current (or design

new) intrusion detection schemes to work under the same framework.
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Chapter 5

Conclusion

It has been clearly demonstrated that covert communication can occur via

controlling ad-hoc network protocols. Performance of the covert channels depends

on various network parameters. In case of the covert channel based on AODV, net-

work mobility turns out to be beneficial to the covert channel performance. Larger

network population allows more information conveyed in each covert transmission,

but it also increases the probability of loss. Very high and very low maximum trans-

mission powers both suppress the covert transmission. Data traffic generates the

need for routes, thus high traffic rate helps the covert communication. For the covert

channel based on the splitting tree algorithm, the covert transmission is error free.

Better throughput is obtained under smaller network size and higher traffic rate. At

low traffic rate, the covert transmitter can improve the throughput by aggressively

transmits dummy packets, at the cost of being more easily detectably. The cover

transmitter can also make strategic moves according to its own eagerness to trans-

mit and willingness of being exposed. Various improvements to the basic splitting

algorithms do not eliminate the covert channel, although they have different affects

on it.

To support anonymous communication in wireless ad hoc networks, a novel

construction of anonymous trapdoor has been presented. The new trapdoor con-
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struction scheme requires simple key management, provides strong anonymity, sup-

ports anonymous authentication and key establishment, and thus is most compatible

with other secure routing schemes.

Finally, it is observed that existing anonymous communication protocols de-

signed for ad hoc networks have not been able to accommodate accountability.

Based on this observation, an anonymous authentication architecture with dis-

tributed anonymity revocation is proposed. While it is impossible to provide perfect

anonymity and accountability at the same time, our scheme provides a framework

that allows flexible trade-off between these two security requirements. Anonymity

is provided, and can be revoked, through using pseudonyms, which are specially

constructed according to the threshold secret sharing schemes. Based on the se-

cret handshake approach, our authentication protocol ensures anonymity of benign

users against eavesdroppers. A special property of our scheme is that transactions

between benign users are strongly protected in terms of anonymity, even if both

users’ identities are already recovered by adversaries.

Future work includes incorporating the new trapdoor into a complete anony-

mous routing protocol, and evaluating the routing performance. Given the proposed

distributed anonymity revocation architecture, current intrusion detection schemes

can be adapted (or new schemes are to be designed) to work under the same frame-

work. A joint investigation is needed that incorporates all different secure properties

using various secure mechanisms across multiple protocol layers of the network.
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