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Successful implementation of fault-tolerant quantum computation on a system

of qubits places severe demands on the hardware used to control the many-qubit

state. It is known that an accuracy threshold Pa exists for any quantum gate that

is to be used for such a computation to be able to continue for an unlimited number

of steps. Specifically, the error probability Pe for such a gate must fall below the

accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4

has emerged as a challenging target for hardware designers. I present a theoretical

framework based on neighboring optimal control that takes as input a good quantum

gate and returns a new gate with better performance. I illustrate this approach

by applying it to a universal set of quantum gates produced using non-adiabatic

rapid passage. Performance improvements are substantial comparing to the original

(unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions

detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below

the target threshold of 10−4.



After applying the neighboring optimal control theory to improve the per-

formance of quantum gates in a universal set, I further apply the general control

theory in a two-step procedure for fault-tolerant logical state preparation, and I

illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-

step preparation procedure is as follow: Step 1 provides a one-shot procedure using

neighboring optimal control theory to prepare a physical qubit state which is a high-

fidelity approximation to the Bell state |β01⟩ = 1/
√
2 (|01⟩+ |10⟩). I show that for

ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error

probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block

of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-

tolerantly prepares the logical Bell state
∣∣β01⟩ for the C4 quantum error detection

code.



QUANTUM GATE AND QUANTUM STATE PREPARATION
THROUGH NEIGHBORING OPTIMAL CONTROL

by

Yuchen Peng

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Victor Yakovenko, Chair/Advisor
Dr. Frank Gaitan, Co-Advisor
Professor Christopher Lobb
Professor Frederick Wellstood
Professor Jacob Taylor
Professor Christopher Jarzynski



c⃝ Copyright by
Yuchen Peng

2016



Preface

The main purpose of this thesis is to study the application of neighboring

optimal control (NOC) in quantum computation. Two applications of neighboring

optimal control theory are discussed: (i) quantum gate preparation, and (ii) logical

quantum state preparation.

The structure of this thesis is as follow. In Chapter 1 I review some background

knowledge of quantum computing that are required for the rest of the discussion.

The general theory of neighboring optimal control is introduced in Chapter 2, which

takes as input a good quantum gate, and returns a new gate with better performance.

In Chapter 3 I illustrate the NOC approach by applying it to improve the gate

performance of all quantum gates in a universal set produced using a form of non-

adiabatic rapid passage, known as twisted rapid passage (TRP). I examine both

ideal and non-ideal controls, and show that under suitable conditions, all gate error

probabilities fall well below the target gate error probability threshold of 10−4. In

Chapter 4 I introduce a two-step procedure for logical quantum state preparation. In

Step 1, the general NOC theory is applied to prepare a high-fidelity approximation

to a target physical qubit state. Taking these high-fidelity approximated states as

input, in Step 2 I then introduce a quantum circuit that fault-tolerantly prepare
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the target logical state. I illustrate this procedure by fault-tolerantly prepare a

logical Bell state
∣∣β01⟩ = 1/

√
2
(∣∣01⟩+ ∣∣10⟩) . For completeness, Appendix A briefly

reviews the form of the non-adiabatic rapid passage used to produce the initial

universal set of quantum gates examined in Chapter 3 and to provide the input

nominal control for physical Bell state preparation in Chapter 4, and Appendix B

describes the noise model and simulation protocol that are used to examine phase

jitter effects in the non-ideal control discussion for both gate preparation and state

preparation.
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Chapter 1: Introduction to Quantum Computation

In computational complexity theory [1,2], an algorithm for solving a particular

problem is considered as efficient, if the resources (such as time and hardware) it

takes to solve the problem grow polynomially in the size of the input to the problem.

A problem is tractable [2] if an efficient algorithm to solve it exists. On the other

hand, to solve problems for which no efficient classical algorithms are known, even

a relatively small size of inputs would require a huge amount (super-polynomial,

typically exponential) of computational resources. A well-known example for such

problems is factoring large numbers [3]. In fact, it is the difficulty of this problem

that leads to the belief in the security of the famous RSA public-key cryptosystem,

as inverting the encryption process of RSA is closely related to the problem of

factoring large numbers [4].

Perhaps one of the most amazing recent predictions of quantum mechanics

is that quantum systems can be exploited to provide huge computational power in

certain situation. That is, by making use of quantum properties such as interference

and entanglement, a quantum computer could provide an exponential speed-up in

solving some problems for which no efficient classical algorithm is known. Examples

for such speed-up include Shor’s algorithm for the problem of factoring large numbers

1



[5].

The theory of quantum computation involves the study of such computational

systems. In the recent decades, proposals on implementation of quantum computa-

tion using many different physical systems have been raised, among which are ion

traps, optical photons, nuclear spins and superconducting systems [6–9]. With that

said, significant technical obstacles still stand in the way towards the goal of building

a practical quantum computer. One of the major difficulties is that quantum com-

puters tend to be much more susceptible to errors than classical computers. This is

for two reasons. First, modern computer hardwares are extremely reliable, with a

typical failure rate below one error in 1017 operations [10]. It is presently very hard

to control multiple interfering quantum systems to that precision. Second, modern

digital computers store information in discrete values of 0 and 1, and achieve consid-

erable fault-tolerance automatically by resetting values back to 0 or 1 depending on

which one is closer. In contrast, quantum information is stored in a quantum com-

puter as a state vector that lives in a Hilbert space, and the amplitudes are allowed

to take continuous values, thus naively making the digital technique inapplicable.

In this Chapter I review some concepts of quantum computation that are

necessary for the discussions in this thesis. Section 1.1 introduces the basic concepts

of the circuit model of quantum computation, including qubits, quantum gates and

quantum circuits. Following that, Section 1.2 defines the concept of universal set

of quantum gates, from which a quantum computer being able to execute gates

can simulate any quantum computation to any desired accuracy. Section 1.3 then

introduces the important concept of fault-tolerant quantum computation [11]. I
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give an example of quantum error-correcting code, which protects the data stored

in qubit against noise by redundant encoding [12]. I close the Chapter by discussing

the quantum threshold theorem. If the quantum gate error probability is below a

threshold, the process of error correction will remove more error than was produced,

thus ensuring that quantum computation can continue for an arbitrary number of

operations. For a more detailed introduction to quantum computation, the reader

is referred to Nielsen and Chuang’s textbook on quantum computation [10].

1.1 Qubits, Gates, and Circuits

Just as a classical computer is built from a classical digital circuit, a quantum

computer is built from a quantum circuit. In this section I briefly review the basic

elements of a quantum circuit: the quantum bits, for storing quantum information,

and the quantum gates, for manipulating the state of the quantum bits, and describe

the diagram notations for the quantum computation circuits.

1.1.1 Quantum Bits

In a classical computer, the basic unit for information storing and processing

is bit. A bit can take two discrete values: logical zero 0, or logical one 1. In a

quantum computer, the analog for a bit is a qubit, short for quantum bit. A single

qubit could in principle be realized by any two-level quantum system. A qubit has

two basis states, state |0⟩ and state |1⟩, corresponding to logical 0 and logical 1 of

a bit, respectively. A common choice is to denote |0⟩ as the ground state of the

3



system and |1⟩ as an excited state. In addition to these two states, a single qubit

can in general be in any quantum superposition of the two basis states:

|ψ⟩ = α |0⟩+ β |1⟩ . (1.1)

where the coefficients α and β are complex numbers satisfying the normalization

condition |α|2 + |β|2 = 1. Therefore, the state |ψ⟩ of a qubit is a unit vector in

a two-dimensional Hilbert space H2. The two states |0⟩ and |1⟩ are known as the

computational basis states (CBS), which form an orthonormal basis for this vector

space. In matrix notion, I write the state |ψ⟩ as

|ψ⟩ = α |0⟩+ β |1⟩ =

 α

β

 , (1.2)

where I implicitly write |0⟩ as (1, 0)T and |1⟩ as (0, 1)T (here T represents matrix

transpose).

The superposition property is a fundamental difference between a quantum

computer and a classical one. The difference between the possible states for a

single classical bit and for a single qubit can be visualized using a Bloch sphere (see

Figure 1.1). Since a state is normalized, I rewrite the superposition state |ψ⟩ as

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩
)
, (1.3)

where γ, θ, ϕ are real numbers. The overall phase factor eiγ can be ignored for

a single qubit since it does not have observable effects. On the sphere, a classical

bit can only be at either the “north pole” or the “south pole”, where |0⟩ and |1⟩

are respectively. In contrast, a qubit can be represented by any point on the entire

sphere’s surface.
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Figure 1.1: The Bloch sphere representation of a qubit [13].

For a two-qubit system, the computational basis states are constructed by

taking the direct product of the two single-qubits computational basis states. That

is, a two-qubit system has four computational basis states (CBS): |00⟩, |01⟩, |10⟩,

|11⟩, where I rewrite |0⟩ |0⟩ as |00⟩, |0⟩ |1⟩ as |01⟩ and so on. The possible states for

a pair of qubits are superpositions of these four computational basis states:

|ψ2⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ . (1.4)

where the coefficients satisfy the normalization condition |α00|2 + |α01|2 + |α10|2 +

|α11|2 = 1. Geometrically, the two-qubit state |ψ2⟩ is a unit vector in a four dimen-

sional Hilbert space.

In general, for an n-qubit system, where n ≥ 2, the computational basis

states are constructed by taking all possible direct products of the n single-qubit

computational basis states:

|x1x2 · · · xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · |xn⟩ (1.5)

where x1, · · · , xn = 0, 1. The total number of CBS states for the n-qubit system is

2n. Therefore, the state space for the n-qubit system is a 2n dimensional Hilbert

5



space Hn
2 , which is the direct product of the n single-qubit Hilbert space H2

Hn
2 = H2 ⊗H2 ⊗ · · · ⊗H2. (1.6)

Note that the dimensionality of the state space grows exponentially with the number

of qubits. In contrast, for an n-bit classical computer the classical “state space” has

dimension n, which only grows linear with the number of bits.

In addition to superposition, another non-trivial property of a quantum system

is entanglement [14]. Multiple-qubit states could be classified as separable or non-

separable, i.e. whether or not the state can be decomposed as a direct product of

single-qubit states. For example, the following two-qubit state

1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) = 1

2
(|0⟩+ |1⟩) (|0⟩+ |1⟩) (1.7)

is separable. On the other hand, there are states that cannot be written as direct

product of single-qubit states. For instance, the following two-qubit state

1√
2
(|00⟩+ |11⟩) (1.8)

cannot be decomposed as the product of single-qubit states. Such a state is said

to be entangled. The entangled state in Eq. (1.8) is known as one of the four Bell

states. Because of their entanglement property, the Bell states are an essential

resource in quantum teleportation [15], which is a key ingredient for some schemes

of fault-tolerant quantum computing. I will discuss this in Chapter 4.
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Table 1.1: The truth table for the classical two-bit controlled-NOT gate (CNOT ).

Input Output

00 00

01 01

10 11

11 10

1.1.2 Quantum Gates

In a classical computer, the information stored in bits is manipulated by logical

gates. A logic gate enacts a Boolean function on the information input, converting

it to the output result. The action of a logical gate is defined by its truth table. For

examples, the truth table for a single-bit gate, the NOT gate X, is simply 0 → 1

and 1 → 0; on the other hand, for a two-bit gate, the controlled-NOT gate CNOT ,

has truth table showed in Table 1.1.

The analog in a quantum computer is quantum gates. To apply a quantum

gate on a qubit, a classical control field F(t) is applied to the qubit for a chosen time

T . The evolution of the qubit state |ψ⟩ is then governed by Schrodinger equation

i~
d

dt
|ψ(t)⟩ = H[F(t)] |ψ(t)⟩ , (1.9)

where H[F(t)] = H(t) is the Hamiltonian. Because of the Schrodinger dynamics,

the starting or “input state” of the qubit |ψin⟩ and the ending or “output state”

7



|ψout⟩ are related by a unitary transformation

|ψout⟩ = U |ψin⟩ . (1.10)

The effect of this unitary transformation is to apply a quantum gate on the input

state |ψin⟩, converting to the output state |ψout⟩. Therefore, a quantum gate can be

represented by a unitary matrix: a 2×2 unitary matrix for single-qubit gate, a 4×4

unitary matrix for two-qubit gate, and so on. Note that this unitarity requirement

for quantum gates implies some crucial differences with classical gates: for example,

a classical gate may be reversible or irreversible, while all quantum gates must be

reversible.

The follow up are examples of a few important quantum gates:

1. The NOT Gate X, which has the same form as the Pauli matrix σx:

X ≡

 0 1

1 0

 . (1.11)

The action of the X gate is to interchange the amplitudes of |0⟩ and |1⟩ of the

single-qubit input state. Suppose |ψ⟩ = α |0⟩ + β |1⟩ is the input state, the

output state from the X gate is

X

 α

β

 =

 β

α

 . (1.12)

Note that the eigenstates for the X gate are |±⟩ ≡ 1/
√
2(|0⟩ ± |1⟩), with

eigenvalue ±1, respectively. These two states form another orthonormal basis

for the state space, which is know as the X-basis.
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2. The Z gate, which has the same form as the Pauli matrix σz:

Z ≡

 1 0

0 −1

 . (1.13)

The action of the Z gate is to flip the sign of the |1⟩ component of the input

single-qubit state, while remaining the |0⟩ component untouched. In other

words, the CBS states |0⟩ and |1⟩ are the eigenvector of the Z gate with

eigenvalues +1 and −1, respectively. Therefore the CBS is also known as the

Z-basis.

3. The Hadamard gate H:

H ≡ 1√
2

 1 1

1 −1

 . (1.14)

The action of the Hadamard gate is to perform a transform between the Z

basis states and the X basis states: it converts |0⟩ to |+⟩ = 1/
√
2, (|0⟩+ |1⟩),

and |1⟩ to |−⟩ = 1/
√
2(|0⟩ − |1⟩). This action can be visualized using the

Bloch sphere representation: the Hadamard gate first performs a rotation on

the single-qubitinput state about the ŷ axis by 90◦, and then another rotation

about the x̂ axis by 180◦.

4. The two-qubit controlled-NOT gate UCN :

UCN ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

1

2
(I + σz)⊗ I +

1

2
(I − σz)⊗ σx, (1.15)

9



..|ψ⟩

Figure 1.2: The diagram notation of a quantum wire is a straight line, with time

progressing from left to right.

where I is the 2× 2 identity matrix.

The action of the UCN gate on a two-qubit input state is to use the first qubit

as control and the second qubit as target. If the control qubit is in state |0⟩,

the target qubit state is left untouched; on the other hand, if the first qubit is

in state |1⟩, a NOT gate is acted on the target qubit state.

1.1.3 Quantum Circuits

The basic elements in a quantum circuit are the qubits and the quantum gates.

A quantum circuit is an abstract pictural representation of a quantum computation.

It is formed by quantum wires which carry quantum information stored in the qubit

around, and quantum operations such as quantum gates and measurements that

manipulate the quantum information and provide readout [10]. In this subsection I

describe the diagram notions for these elements.

Quantum wires are the world lines for qubits. A quantum wire for a single

qubit is represented by a single straight line in the circuit diagram, with the initial

state on the left, evolving to the right as time progresses (see Figure 1.2).

A Quantum gate is usually represented by a square box applied to its target

qubits. A little different notation is used for the controlled-U gate, which is a

10



..

H

.

(b)

.

X

.

(a)

.

Z

.

(c)

.

(d)

.=.

X

Figure 1.3: The diagram notations of some common quantum gates: (a) the NOT

gate X, (b) the Hadamard gate H, (c) the Z gate, and (d) two representations for

the controlled-NOT gate UCN .

multiple qubit gate that has several qubits as control and k (k ≥ 1) qubits as

target. An example presented before is the controlled-NOT gate. The action of the

controlled-U gate is to apply the gate U to the target qubits if the control qubit

is in |1⟩ state, while leaving the target qubits untouched if the control qubit is in

|0⟩ state. The diagram notation for a controlled-U gate consists of solid dots on

the control qubits, and a boxed gate U on the target qubits, with a straight line

connecting the two. Figure 1.3 shows the notation for some common quantum gates.

Quantum measurements. In quantum mechanics, an observable is associated

with a Hermitian operator A, i.e. A† = A. One can decompose the observable A by

its eigenvalues:

A ≡
∑
m

λm |ψm⟩ ⟨ψm| , (1.16)
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..

A

.

M

Figure 1.4: The diagram notation of measuring the observable A. The measurement

result is represent by M on the double-line.

where λm is the mth eigenvalue of the observable A, with corresponding eigenvector

|ψm⟩.

If one performs a measurement of the observable A on a qubit in state |ψ⟩

(which is sometimes referred as “measure in the A-basis”), the result obtained is

a probabilistic value M , whose possible values are the eigenvalues λm of A. The

probability that measurement result λm occurs is given by

p(m) = ⟨ψ| ψm⟩ ⟨ψm| ψ⟩ , (1.17)

and the post-measurement state is given by

⟨ψm| ψ⟩ |ψm⟩√
⟨ψ| ψm⟩ ⟨ψm| ψ⟩

=
⟨ψm| ψ⟩ |ψm⟩√

p(m)
. (1.18)

As shown in Figure 1.4, the diagram notation for measurement in the A-basis

is a meter with A at its bottom-right. The result M of measurement is classical

information, and the output is distinguished from a qubit state by a double-line

wire.

1.2 Universal Set of Quantum Gates

An important concept for classical computers is a universal set of logical gates,

which is a set of finite number of logical gates such that every Boolean function can

12



be implemented using gates in this set. A well-known universal set consists of a

two-bit the NAND gate.

For quantum computers, a similar conclusion applies [16]. A finite set GU of

quantum gates is said to be universal, if an arbitrary quantum gate can be approxi-

mated to any precision using a finite series of gates in GU [17]. A well-known set [18]

of universal quantum gates consists of the Hadamard gate H, the phase gate S, the

π/8 gate T and the two-qubit CNOT gate UCN . The phase gate S and the π/8 gate

T are single qubit gates and are defined as follow:

S ≡

 1 0

0 i

 ; T ≡

 1 0

0 exp(iπ/4)

 . (1.19)

In Chapter 3 I discuss a different universal set of quantum gates.

There are two main reasons that people are particularly interested in the uni-

versal set of quantum gates rather than an arbitrary quantum gate. First, the com-

putational complexity of a quantum algorithm may be represented by the size of its

circuit implementation, in which only gates from a given universal set are allowed.

Second, it is sufficient to use the quantum gates in the universal set to implement

universal computation. In particular, when the gates are noisy and fault-tolerance

is to be studied, it is sufficient to study the fault-tolerant implementation for the

quantum gates in the universal set.

13



1.3 Quantum Error Correction and Fault-tolerant Quantum Compu-

tation

So far I have only discussed ideal qubits and quantum operations. The phys-

ical implementations of quantum computation devices are subject to various types

of errors. A qubit can become thermally equilibrated with the environment and

can be subject to phase randomization due to decoherence. These timescales are

characterized by the relaxation time T1 and the decoherence time T2, respectively.

The quantum gates can only be executed with a limited precision, and the quantum

measurement may be faulty, and so on. It thus becomes desirable to study whether

it is possible to (i) protect the information stored in qubits against noise, and (ii)

conduct reliable quantum computation when only a faulty set of universal opera-

tions is available. The field of quantum error-correcting codes and fault-tolerant

quantum computation has been developed to study this question, and the answer

provided is a “yes”: in principle, quantum computation can tolerate a finite amount

of noise and still retain its computational advantages.

In this Section I review some important results of quantum error correction

and fault-tolerant quantum computation. Section 1.3.1 gives an overview of the

quantum error correction theory and the stabilizer formalism. Section 1.3.2 reviews

the fault-tolerance protocol for quantum computation. And finally, Section 1.3.3

summarizes the results and presents the quantum error threshold theorem.
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|0⟩

Figure 1.5: The encoding quantum circuit for the 3-qubit bit-flip code.

1.3.1 Quantum error-correcting Codes

Quantum error-correcting codes protect quantum states against noise by en-

coding them with redundancy. Before going into the conceptual details about the

theory, I first illustrate the basic idea of quantum error-correcting codes using a few

simple examples.

One important error that could occur to a single-qubit state is the bit-flip

error, that the single-qubit state |ψ⟩ = α |0⟩ + β |1⟩ is taken to the state X |ψ⟩ =

α |1⟩ + β |0⟩. One way to protect the information stored in the single-qubit state

against bit-flip error is to encode every single-qubit state |ψ⟩ with a corresponding

three-qubit logical state
∣∣ψ⟩. This involves substituting the single-qubit CBS states

|0⟩ and |1⟩ with the logical CBS states
∣∣0⟩ and ∣∣1⟩ (codewords):

|0⟩ →
∣∣0⟩ ≡ |000⟩ ; |1⟩ →

∣∣1⟩ ≡ |111⟩ . (1.20)

This encoding process must be done for all superposition states and can be done

using the circuit presented in Figure 1.5.

Suppose one perfectly encodes the single-qubit state |ψ⟩ = α |0⟩ + β |1⟩ into∣∣ψ⟩ = α
∣∣0⟩ + β

∣∣1⟩. The encoded three-qubit state
∣∣ψ⟩ is then sent through a

noisy channel, in which a single bit-flip error may occur to one of the three qubits
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with probability p. The error correction on
∣∣ψ⟩ is done by the following two-step

procedure:

1. Syndrome measurement: one performs two measurements on the encoded s-

tate, the first of the observable Z1Z2 ≡ Z ⊗ Z ⊗ I, and the second of the

observable Z2Z3. Measuring Z1Z2 gives +1 if the first and second qubits are

the same, and −1 otherwise. Similarly, measuring Z2Z3 gives +1 if the second

and third qubits are the same, and −1 otherwise. Therefore this gives four

possible syndromes (I use the pair (m1,m2), m1,m2 = ±1 to represent the

measurement results of Z1Z2 and Z2Z3). Then, to O(p)

(+1,+1) : no bit-flip error occurs;

(+1,−1) : bit-flip error occurs to the third qubit;

(−1,+1) : bit-flip error occurs to the first qubit;

(−1,−1) : bit-flip error occurs to the second qubit;

(1.21)

2. Recovery: once one of the four syndromes is detected, one can apply the proper

action to recover the initial state as follow: if the measurement result (+1,+1)

occurs, do nothing; if the measurement result (+1,−1) occurs, flip the third

qubit by applying X to it; if the measurement result (−1,+1) occurs, flip

the first qubit; and if the measurement result (−1,−1) occurs, flip the second

qubit.

This error-correction procedure works given that bit-flip error occurs on at

most one of the three qubits, which happens with probability 1 − 3p2 + 2p3. The
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Figure 1.6: The encoding quantum circuit for the 3-qubit phase-flip code.

probability of two or three qubit error occurring, which would not be corrected is

3p2−2p3, which is smaller than p if p < 1/2. In other words, the error is corrected to

O(p). Therefore, for sufficiently small p (p < 1/2), the error-correcting code reduces

the error probability from O(p) to O(p2).

Another interesting single-qubit error is the phase-flip error, that the single-

qubit state |ψ⟩ = α |0⟩+β |1⟩ is taken to the state Z |ψ⟩ = α |0⟩−β |1⟩, flipping the

relative phase between |0⟩ and |1⟩. It can be shown that the bit-flip error and the

phase-flip error are related: in theX-basis, the operator Z takes |+⟩ ≡ (|0⟩+|1⟩)/
√
2

to |−⟩ ≡ (|0⟩ − |1⟩)/
√
2, and vice versa, i.e. the phase-flip in the Z-basis acts like a

bit-flip in the X-basis. Therefore, the error-correcting procedure to protect against

phase-flip error works just like that for bit-flip error, but within the X-basis. For

example, consider the logical basis states
∣∣0⟩ = |+++⟩ and

∣∣1⟩ = |− − −⟩. The

encoding circuit for the phase-flip error-correcting code is presented in Figure 1.6

(recall that the Hadamard gate accomplishes transform between the Z-basis and

the X-basis):

The error syndrome measurement and recovery procedure is similar to that

for the bit-flip error as well, by replacing Z1Z2 with H⊗3Z1Z2H
⊗3 = X1X2 and
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Z2Z3 with H⊗3Z2Z3H
⊗3 = X2X3. For example, if the measurement of X1X2 yields

+1 and X2X3 yields −1, this indicates a phase-flip occurs on the third qubit, and

applying a Z operator to the third qubit recovers the state from the phase-flip error.

The phase-flip error-correcting code also corrects phase-flip error to O(p).

Combining the 3-qubit bit-flip error-correcting code and the 3-qubit phase-flip

error-correcting code together, one ends up with a 9-qubit code, known as the Shor

code [12]. The codewords of the Shor code are given by

|0⟩ →
∣∣0⟩ = (|000⟩+ |111⟩) (|000⟩+ |111⟩) (|000⟩+ |111⟩)

2
√
2

;

|1⟩ →
∣∣1⟩ = (|000⟩ − |111⟩) (|000⟩ − |111⟩) (|000⟩ − |111⟩)

2
√
2

.

(1.22)

Figure 1.7 shows the quantum circuit for encoding a single-qubit state |ψ⟩ using

the codewords of the Shor code. The encoding process is done via first encoding

the single qubit state using the phase-flip code: |0⟩ → |+++⟩ and |1⟩ → |− −−⟩,

and then encoding each of these three-qubit states using the bit-flip code: |+⟩ →

(|000⟩+ |111⟩) /
√
2 and |−⟩ → (|000⟩ − |111⟩) /

√
2 . By construction, the Shor code

is able to detect and correct the single-qubit bit and phase flip errors. I now show

that the Shor code protects against an arbitrary single-qubit error.

Assume that an arbitrary error occurs to the ith qubit of the 9-qubit code
∣∣ψ⟩,

taking it to E
∣∣ψ⟩, where E is a unitary operator, which only affects the ith qubit

state while leaving the other qubit states untouched. One can expand E as a linear

combination of the identity Ii, the bit-flip Xi, the phase-flip Zi, and the product of

bit-flip and phase-flip XiZi:

E = e0Ii + e1Xi + e2Zi + e3XiZi. (1.23)
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Figure 1.7: The encoding quantum circuit for the Shor code.

The state E
∣∣ψ⟩ can thus be written as a superposition of the four states:

∣∣ψ⟩,Xi

∣∣ψ⟩,
Zi
∣∣ψ⟩ and XiZi

∣∣ψ⟩. After error syndrome measurement, the post-error state E
∣∣ψ⟩

collapses into one of these four states, and one can thus perform corresponding

recovery operation to recover the original state
∣∣ψ⟩. I note that although the errors

can take forms in a continuum, the error-correcting procedure which is able to correct

a discrete set of errors, known as the error basis, can correct an arbitrary error that

can be written as a linear combination of the error basis. A useful error basis is the

n-qubit Pauli group Pn, which consists of the 4n tensor products of Pauli matrices

σx, σy, σz and the 2×2 identity I, together with an overall phase of ±1 and ±i. Any

n-qubit unitary operator could be expressed as a linear combination of the elements

in the Pauli group Pn.

I now summarize some conclusions about quantum error-correction illustrated

by the examples above. In general, quantum error-correction protects the infor-
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mation stored in k-qubit quantum states against a set of error. It does this by

encoding them into a quantum error-correcting code, which is a 2k dimensional

subspace C of a 2n dimensional Hilbert space Hn
2 , where n > k to provide redun-

dancy. The subspace C is known as the code space, or the [n, k] error-correcting

code, whose basis states are known as the basis codewords. The states in the code

space are called the logical states, and the unitary operations on the logical states

as the logical gates, to distinguish them from the original unencoded k-qubit states

and quantum gates. For example, for a code that encodes k qubits, the logical

operator Zj, j = 1, ..., k plays the role of a logical Pauli σz operator on the jth log-

ical qubit state, if Zj

∣∣x1, ..., xj−1, 0, xj+1, ..., xk
⟩
=
∣∣x1, ..., xj−1, 0, xj+1, ..., xk

⟩
, and

Zj

∣∣x1, ..., xj−1, 1, xj+1, ..., xk
⟩
= −

∣∣x1, ..., xj−1, 1, xj+1, ..., xk
⟩
, where x1, ..., xk = 0, 1.

Assume that the original (unencoded) state is subject to an error probability

of O(p). After the encoding process, a syndrome measurement is applied to diagnose

the type of error that occurs to the code. It is required that different error syndromes

label different orthogonal subspaces of the Hilbert space Hn
2 , which means (1) that

different correctable errors are distinguishable, and (2) that orthogonal codewords

|c⟩, |c′⟩ are mapped to orthogonal states E |c⟩, E |c′⟩, so that the erroneous states

can be corrected. This requirement is summarized as the quantum error-correction

condition: suppose {
∣∣ψi⟩} are the basis codewords for a quantum code C(S), and

E is a set of unitary operations known as the error set, such that ∀E ∈ E can be

written as a linear combination of a basis {Ea}. Then E is a correctable set of errors
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for the code C(S) if the quantum error-correction condition

⟨
ψi
∣∣E†

aEb
∣∣ψj⟩ = Aabδij (1.24)

holds for all Ea, Eb ∈ {Ea}, where Aab is a Hermitian matrix. For a code that

is able to correct a set of errors E , once the error syndrome is determined, one

can apply an operation corresponding to the error syndrome to reduce the error

probability in the output encoded state to O(pt+1), where the error probability p is

below a threshold, and t is the number of errors that the code is able to correct. In

this subsection I assume that error-correction operations are faultless; in the case

that error-correction operations are themselves faulty, a fault-tolerant protocol is

required, which is discussed in the following subsection.

Another important concept for a quantum error-correcting code is the distance

d. Define the weight of an operator in Pn to be the number of tensor factors which

are not I. The distance d of a code is defined as the minimal weight of operator E,

such that the following equation

⟨
ψi
∣∣E ∣∣ψj⟩ = A(E)δij (1.25)

is violated, where {ψi} is a basis for the code, and A(E) is a Hermitian matrix

independent of i and j. In other words, the distance of a code is the minimum

number of single-qubit Pauli operations it takes to get from one codeword to another.

By replacing E in Eq. (1.25) by E†
aEb which have equal weights t, immediately from

Eq. (1.24) it yields that for t ≤ ⌊(d− 1)/2⌋, the errors {Ea} are correctable, where

the floor function ⌊x⌋ refers to the greatest integer that is no larger than x. Thus,
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a code with distance d can correct up to t = ⌊(d− 1)/2⌋ errors. A quantum error-

correcting code that uses n qubits to encode a k-qubit state, and has distance d, is

denoted by [n, k, d]. For example, the Shor code shown in the previous example is

a [9, 1, 3] error-correcting code.

Describing an error-correcting code by its codewords can be clumsy. Gottes-

man [19] developed a formalism that is able to provide a compact description of

a wide class of quantum codes, known as the stabilizer formalism. To define the

stabilizer formalism, I next to review a few essential concepts. A state |ψ⟩ is said

to be stabilized by an operator M if it is the eigenstate of M with eigenvalue 1,

i.e. M |ψ⟩ = |ψ⟩. A stabilizer S is a Abelian subgroup of Pn, such that ∀M ∈ S

and ∀ |ψ⟩ ∈ C(S), then M fixes |ψ⟩, where C(S) is a subspace of Hn
2 . For the

subspace C(S) to be nontrivial, i.e. it contains state other than the null vector 0,

it is required that −I /∈ S, which also indicates that ±iI /∈ S.

I can now give the formal definition of stabilizer code: let C(S) be a 2k di-

mensional non-trivial subspace of Hn
2 , which is stabilized by S, then C(S) is called

an [n, k] stabilizer code, and S is the stabilizer of C(S).

There is one last concept I need to define: the generators of a group S are a

subset of elements of S such that every element of S can be expressed as the product

of finitely many generators and their inverse (here I require that the generators are

independent, i.e. one generator cannot be expressed as the product or inverse of

the other generators). For example, for the single-qubit Pauli group P1

P1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}, (1.26)
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the generators are simply the Pauli matrices. Given the generators of a group every

element in the group can be specified. For an [n, k] stabilizer code C(S), its stabilizer

S has (n− k) independent generators g1, ..., gn−k, and I write S = ⟨g1, ..., gn−k⟩.

A merit of the stabilizer formalism is that to specify the error-correction prop-

erties of a stabilizer code C(S), it is sufficient to specify the generators g’s of its

stabilizer S. To see this, I use the [9, 1, 3] Shor code as an example, which has 8

independent generators as shown in Eq. (1.27) below:

g1 = Z1Z2I3I4I5I6I7I8I9

g2 = I1Z2Z3I4I5I6I7I8I9

g3 = I1I2I3Z4Z5I6I7I8I9

g4 = I1I2I3I4Z5Z6I7I8I9

g5 = I1I2I3I4I5I6Z7Z8I9

g6 = I1I2I3I4I5I6I7Z8Z9

g7 = X1X2X3X4X5X6I7I8I9

g8 = I1I2I3X4X5X6X7X8X9.

(1.27)

Given the generators, the stabilizers S = ⟨g1, ..., g8⟩ of the Shor code is fully deter-

mined, and the code space C(S) is the two-dimensional subspace that is stabilized

by S.

In principle, any two orthonormal vectors in the space C(S) can be chosen as

the logical computational basis states, and I determine the logical computational

basis states as follow: first, choose the logical Z ∈ P9, such that Z is independent

and commutes with all the generators g1, ..., g8. It can be verified that the following
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choice of Z

Z = X1X2X3X4X5X6X7X8X9 (1.28)

satisfies the condition. I then choose the logical computational basis states |x⟩,

x = 0, 1 to be the states with stabilizer

⟨
g1, ..., g8, (−1)xZ

⟩
, (1.29)

such that Z
∣∣0⟩ = ∣∣0⟩ and Z

∣∣1⟩ = −
∣∣1⟩. This choice just yields the codewords in

Eq. (1.22). In addition, I choose the logical X ∈ P9 such that X
†
Z X = −Z. This

condition ensures that X has the effect of a NOT gate acting on the encoded state.

It can be verified that the following choice of X

X = Z1Z2Z3Z4Z5Z6Z7Z8Z9 (1.30)

satisfies the condition. Thus, by specifying the generators of the stabilizer, the

codewords and the logical Pauli operations Z and X can be determined. Note that

another approach to determine the codewords from the generators of the stabilizer

is by constructing the following state(∑
M∈S

M

)
|ψ9⟩ , (1.31)

where |ψ9⟩ is an 9-qubit state. The state given by Eq. (1.31) is in the code space

C(S) for any |ψ9⟩. To determine the codeword
∣∣0⟩, one simply needs a state |ψ9⟩

such that the state given by Eq. (1.31) is nonzero. A common choice for |ψ9⟩ is

just |000000000⟩. Once
∣∣0⟩ is determined, simply acting X on

∣∣0⟩ gives the other

codeword
∣∣1⟩.
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In addition, to perform the error-correction operation for a stabilizer code, one

simply needs to perform measurement of each generator of the stabilizer g1, ..., gn−k.

Since elements of the Pauli group either commute or anticommute, a correctable

error E ∈ Pn either commutes or anticommutes with a generator g, and I define

fg(E) =


0, if [g, E] = 0

1, if {g, E} = 1.

(1.32)

If E occurs to the encoded state, the measurement result of gl will be (−1)fgl (E).

Measuring each generator gives the error syndrome that corresponds a unique set

of errors which act the same on the encoded states. Then, applying the inverse of

any error in the set uniquely determined from the error syndrome reduces the error

probability in the output encoded state to O(pt+1).

To sum up, an [n, k, d] quantum error-correcting code uses n qubits to encode

the k-qubit states, and can correct up to t = ⌊(d− 1)/2⌋ errors. The stabilizer

formalism provides a compact description for a wide variety of error-correcting codes,

and by specifying the generators of the code, the error-correction property of a

stabilizer code is fully determined.

1.3.2 Fault-tolerant Conditions

In the previous section I assumed that the process of encoding and error-

correction are done perfectly. However, in practice the quantum operations used

for encoding and error-correction are themselves subject to error. In addition, if

decoding is required for applying quantum gates on the states, the decoded states

are again vulnerable to noise during the time they are decoded. Fortunately, the
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Figure 1.8: Two quantum circuits. (a) This circuit applies physical gates and mea-

surements on the unencoded states; if each component in the circuit fails with

probability p, the output is subject to an error probability of order O(p). (b) A

simulation of the same circuit in (a) by applying encoded fault-tolerant 1-gadgets

on encoded states using the 9-qubit Shor code. The fault-tolerant procedures ensure

that the error probability at the output is of order O(p2)

theory of fault-tolerant quantum computation shows that under certain conditions,

one can perform reliable logical operations directly on the encoded quantum states,

even with faulty gates. I now present the conditions that are required for achieving

fault-tolerant computation.

The basic idea of fault-tolerant quantum computation [11] is to perform com-

putation by acting with encoded logical quantum gates on the logical quantum states

that are encoded using a quantum error-correcting code. That is, on a circuit repre-

sentation, the original (unencoded) qubit states are replaced by codeblocks encoded

using an error-correcting code, and the original (unencoded) gates are replaced by
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the encoded gates acting on the encoded states. The encoded gates are designed in

such a way, that a single failure on one codeblock does not spread to more than one

error in other codeblocks in the circuit. This protocol for applying encoded gates

is known as a fault-tolerant procedure. Error-correction is also performed repeat-

edly on the encoded states, in a fault-tolerant fashion such that the procedure of

error-correction does not introduce more errors to the codeblocks than it is able to

correct. Similarly, there are fault-tolerant protocols for encoded state preparation

and for performing measurements. In general, the encoded operations are imple-

mented by “gadgets” that consist of elementary physical faulty operations (I refer

physical operations on unencoded states as level-0 gadgets, and the corresponding

encoded operation as level-1 gadgets). The fault-tolerant protocol for any 1-gadget

is to design the gadget in such a way that a single error in the gadget produces no

more than one error in each codeblocks output from the gadget.

Figure 1.8 illustrates the fault-tolerant protocol for quantum computation by

presenting a particular quantum circuit. The first (original) circuit applies un-

encoded gates and unencoded measurements on the unencoded states, and is not

fault-tolerant. The second circuit achieves fault-tolerance by replacing unencoded

qubit states with codeblocks encoded using the Shor code, and by replacing the

0-gadgets by the fault-tolerant 1-gadgets.
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1.3.3 Quantum Threshold Theorem

As I discussed above, quantum computation can have better robustness to er-

rors than the physical circuits by applying fault-tolerant encoded operations on log-

ical states encoded using a quantum error-correcting code. By recursively applying

the fault-tolerant scheme, one can construct a hierarchy of codes within codes [20],

in which the codeblock at the higher level is built from logical qubits encoded at the

previous level. In addition, for each level of code in the hierarchy, one can construct

the corresponding level of gadgets, such that the gadgets at the higher level are

constructed by a fault-tolerant procedure that implements the encoded version of

the gadgets in the previous level. The code from such a construction is known as

the concatenated code. Suppose the failure probability of components at the zeroth

(physical) level of a code that corrects t errors is p, then, it can be shown that the

failure probability at the first code level is of order O(pt+1), and at the second code

level O(p(t+1)2), and so on. The order of the failure probability grows exponential-

ly with the level of the code hierarchy. This conclusion brings us to the quantum

threshold theorem [21]: provided the error probability of the physical hardwares p

falls below a threshold Pa, by applying fault-tolerant encoded operations on encod-

ed states using concatenating error-correcting code, quantum computation can be

carried out with arbitrarily small error probability.

To summarize, with the development of the theory of quantum error-correcting

code and fault-tolerant quantum computation, it is now well-established that reli-

able quantum computing is possible in principle, even in the presence of decoherence
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and imperfect gates [20,22–28]. In spite of this important result, significant techni-

cal obstacles currently stand in the way of building a scalable quantum computer.

One major challenge is finding a way to implement a high-fidelity universal set of

quantum gates from which an arbitrary quantum computation can be constructed.

As specified by the quantum error threshold theorem [21], an accuracy threshold

Pa provides a quantitative measure of the accuracy demanded of a quantum gate.

Specifically, if a quantum gate is to be used in a reliable quantum computation, the

probability Pe that it produces a single error must be less than the accuracy thresh-

old: Pe < Pa. The accuracy threshold is a function of the quantum error-correcting

code used to protect the computational data, and the fault-tolerant procedures used

to control the spread of errors during the computation. Estimates of Pa vary widely,

from as small as 10−6, to as large as a few times 10−3 [19,29]. Over the years, the val-

ue Pa ∼ 10−4 has emerged as a challenging target for quantum hardware designers.

Thus, one of the central problems in quantum control is finding a way to implement

a universal set of quantum gates whose gate error probabilities are all less than the

threshold value of 10−4, so as to satisfy the condition of the error-threshold theorem

to achieve reliable quantum computation.

One of the goals of this thesis is to establish a quantum control profile that

is able to produce a universal set of quantum gates with error probabilities falling

below the threshold of 10−4. I apply the theory of neighboring optimal control

introduced in Chapter 2 to achieve this goal.
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Chapter 2: Theory of Neighboring Optimal Control

2.1 Introduction

To perform a quantum gate, a control field F(t) is applied to a quantum system

over a time T (−T/2 ≤ t ≤ T/2), causing a time-varying unitary transformation

U(t) to act on the quantum state. When designing a quantum gate, the task is

to find the control field F(t) that applies a target gate Utgt to the quantum state

(viz. U(t = T/2) = Utgt). In optimal control theory [30], the task is to find a

control field profile F∗(t) that produces a high-fidelity approximation U(t) to the

target gate Utgt, while simultaneously minimizing a cost function that depends on

the state U(t) and control field F(t). The control profile F∗(t) is called the optimal

control, and the corresponding unitary U∗(t) is called the optimal (state) trajectory.

Note that a perturbation of the dynamics can cause an optimal trajectory and

control to become non-optimal. However, if the perturbation is small, the optimal

control problem can be linearized about the original optimal solution, and a family

of perturbed optimal trajectories determined from a single feedback control law. In

the literature this classical perturbed control problem is referred to as neighboring

optimal control [31].

In this chapter I will present a general theoretical framework for applying
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the neighboring optimal control that takes a good quantum gate U0(t) as input,

and returns a better one U(t). It is assumed that a control field profile F0(t) that

produces a good approximation U0(t = T/2) to a target gate Utgt is known. I extend

the strategy of neighboring optimal control to the dynamics of a quantum system

and use it to determine the control modification ∆F(t) that produces an improved

approximation U(t = T/2) to the target Utgt. In Section 2.2 I derive the equation

of motion for the gate modification δU(t) = U †
0(t)U(t); Section 2.3 constructs the

cost function whose minimum determines the optimal gate modification; Section 2.4

varies the cost function to determine the equations that govern the optimization;

and Section 2.5 presents two strategies for obtaining their solution. In Section 3 I

illustrate the general method by using it to improve the performance of the gates in

a universal set of quantum gates.

2.2 Gate modification dynamics

Consider a Hamiltonian H(t) = H[F(t)], which is a functional of a three-

dimensional control field F(t) = F0(t)+∆F(t) that contains a small variation ∆F(t)

about a nominal control field F0(t). Expanding the Hamiltonian H(t) about F0(t)

gives

H(t) = H[F0(t)] +
3∑
j=1

δH

δFj

∣∣∣∣
F0

∆Fj +O(∆2)

≡ H0(t) +
3∑
j=1

Gj∆Fj(t) (2.1)
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(the second equality holds to the order of O(∆F(t)). Here Gj = δH/δFj|F0
is an

N ×N matrix obtained by taking the functional derivative of H[F(t)] with respect

to Fj(t) evaluated at F0(t), and N is the dimension of the Hilbert space. For

example, suppose H(t) is the Zeeman Hamiltonian H(t) = −σ · F(t), where the

1, 2, 3 components of σ are the x, y, z Pauli matrices, respectively. Then, a simple

calculation gives Gj = −σj.

The Schrodinger equation for the propagator U(t) is (~ = 1)

i
dU

dt
= H[F(t)]U. (2.2)

For H(t) = H[F(t)], the propagator U(t) becomes a functional of the control field

F(t). Throughout this chapter I assume that the nominal control field F0(t) acts

for a time −T/2 ≤ t ≤ T/2 and gives rise to a propagator U0(t) via

i
dU0

dt
= H0(t)U0, (2.3)

which provides a good approximation U0(t = T/2) to a target gate Utgt [32].

I now introduce the gate modification δU(t) by writing U(t) = U0(t)δU(t).

Inserting Eq. (2.1) into Eq. (2.2), and substituting for U(t) gives

i
d

dt
(U0δU) =

[
H0(t) +

3∑
j=1

Gj∆Fj(t)

]
U0δU +O(∆2). (2.4)

Inserting Eq. (2.3) into Eq. (2.4) gives the equation of motion for δU(t):

i
d

dt
δU =

[
3∑
j=1

(
U †
0GjU0

)
∆Fj

]
δU +O(∆2)

=

[
3∑
j=1

Gj∆Fj

]
δU. (2.5)
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Here Gj = U †
0(t)GjU0(t) is an N × N matrix. The initial condition for Eq. (2.5)

is δU(−T/2) = I, which follows from the definition of δU(t) and U(−T/2) =

U0(−T/2) = I. By assumption, U0(t) already gives a good approximation to the

target gate Utgt, and so I look for a gate modification δU(t) that is close to the

identity:

δU(t) = I − iδA(t) +O(∆2). (2.6)

Note that δA(t) is Hermitian, and δA(−T/2) = 0. Substituting this expression for

δU(t) into Eq. (2.5) gives

d

dt
δA =

3∑
j=1

Gj∆Fj +O(∆2). (2.7)

It proves useful to write the N ×N matrix δA(t) as an N2-component column

vector ∆x(t). This is done by concatenating the columns {δA ·,j(t) : j = 1, · · · , N}

of δA(t) into a single column vector:

∆x(t) =


δA ·,1(t)

...

δA ·,N(t)

 . (2.8)

I also construct an N2 × 3 matrix G(t) as follows. First I take each N ×N matrix

Gj(t) and convert it into an N2-component column vector Gj(t) in a similar fashion

as δA(t). I then insert Gj(t) into the j-th column of G(t):

G(t) =


...

...
...

G1(t) G2(t) G3(t)

...
...

...

 . (2.9)
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Finally, I introduce the column vector ∆F(t):

∆F(t) =


∆F1(t)

∆F2(t)

∆F3(t)

 . (2.10)

With these definitions, Eq. (2.7) is transformed into the equation of motion for

∆x(t):

d

dt
∆x = G(t)∆F(t), (2.11)

where the rhs is the matrix product of Eqs. (2.9) and (2.10), and the initial condition

∆x(−T/2) = 0 follows from δA(−T/2) = 0.

2.3 Dynamical optimization problem

In optimal control theory [30] the problem is to determine a control field profile

F∗(t) that optimizes system performance relative to a set of design criteria. A cost

function is introduced that quantifies the degree to which a particular assignment of

the control and system variables satisfies these criteria, with an optimal assignment

being one of minimum cost [33]. The cost function J used in my gate optimization

contains three contributions: (i) a terminal cost J1 that vanishes when the final

propagator U(t = T/2) equals the target gate Utgt; (ii) an integral cost J2 that

insures the control field and state modifications, respectively, ∆F(t) and ∆y(t) (de-

fined below) remain small at all times; and (iii) a Lagrange multiplier integral cost

J3 that insures the optimization does not violate the Schrodinger dynamics of ∆y(t).
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1. Terminal cost J1: As shown in Ref. [34], and summarized in Appendix A,

Tr P = Tr
[ (
U †(T/2)− U †

tgt

)
(U(T/2)− Utgt)

]
, (2.12)

is a convenient upper bound on the gate error probability Pe which is clearly mini-

mized when U(T/2) = Utgt. I will use it as a terminal cost:

J1 = Tr
[ (
U †(T/2)− U †

tgt

)
(U(T/2)− Utgt)

]
. (2.13)

The cost J1 enforces the criterion that U(T/2) = Utgt softly, allowing it to be

violated, but penalizing violations with non-zero cost. By assumption, U0(T/2) is a

good approximation for Utgt, and therefore

U †
0(T/2)Utgt = I − iδβ +O(∆2), (2.14)

where δβ is a Hermitian matrix. Recall that U(t) = U0(t)δU(t) and δU(t) = I −

iδA(t) +O(∆2). Expanding J1 to second order gives:

J1 = Tr
[ (
δA†(T/2)− δβ†) (δA(T/2)− δβ)

]
. (2.15)

By writing δβ as a (constant) N2-component vector ∆β as was done with δA(t) in

Eq. (2.8), I re-write J1 as the product of a row and a column vector

J1 =
(
∆x†(T/2)−∆β†) (∆x(T/2)−∆β) . (2.16)

Defining the column vector ∆y(t) as

∆y(t) = ∆x(t)−∆β, (2.17)

J1 becomes the square-magnitude of ∆y(T/2)

J1 = ∆y†(T/2)∆y(T/2). (2.18)
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Note that since ∆β is a constant vector, ∆y(t) also satisfies Eq. (2.11):

d

dt
∆y = G∆F. (2.19)

The initial condition for Eq. (2.19) is ∆y(−T/2) = −∆β which follows from E-

q. (2.17) and ∆x(−T/2) = 0. It proves convenient in the following to work with

∆y(t) instead of ∆x(t).

2. Integral cost J2: The second cost term J2 is an integral cost that penalizes

large values of ∆F(t) and ∆y(t) for all times t:

J2 =

∫ T/2

−T/2
dt

[
∆y†(t)Q(t)∆y(t) +

1

2
∆FT (t)R(t)∆F(t)

]
. (2.20)

Here Q(t) and R(t) are positive-definite Hermitian matrices, but otherwise, are

unconstrained [35]. The cost J2 is minimized by vanishing state and control modi-

fications ∆y(t) = 0 and ∆F(t) = 0. Non-vanishing ∆y(t) and ∆F(t) are allowed to

occur, but they are penalized with non-zero cost. Thus J2 acts to softly enforce the

criterion of small state and control modifications.

3. Integral cost J3: Finally, I require that the optimization obey the Schrodinger

dynamics of ∆y(t). This criterion is enforced as a hard constraint which cannot be

violated by introducing a Lagrange multiplier ∆λ(t) such that:

J3 =

∫ T/2

−T/2
dt
[
∆λ†(t) {G(t)∆F(t)−∆ẏ(t)}+ h. c.

]
= − ∆λ†∆y

∣∣T/2
−T/2 +

∫ T/2

−T/2
dt
[(

∆λ†(t)G(t)∆F(t) + ∆λ̇
†
(t)∆y(t)

)
+ h. c. ] . (2.21)
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Note that I have done an integration by parts in going from the first to the second

line; a dot over a symbol indicates a time-derivative; and h. c. indicates the Hermi-

tian conjugate of the proceeding term.

4. Total cost J: Combining all three costs gives

J =
[
∆y†(T/2)∆y(T/2)−∆λ†(T/2)∆y(T/2)

]
+

∫ T/2

−T/2
dt

[
∆y†(t)Q(t)∆y(t) +

1

2
∆FTR(t)∆F(t)

]
+

∫ T/2

−T/2
dt
[(

∆λ̇
†
(t)∆y(t) + ∆λ†(t)G(t)∆F(t)

)
+ h. c. ] . (2.22)

As I’ll illustrate in Section 2.4, appropriate variation of J gives the equations that

govern the optimization, including the feedback control law. Note that I have

dropped the ∆λ†(−T/2)∆y(−T/2) contribution to J that arises from the surface

term in Eq. (2.21) as it has zero variation since ∆y(−T/2) = −∆β is a constant

with zero variation.

2.4 Euler-Lagrange equations for optimal control

A necessary condition for optimal control is that the first-order variation of

the cost function J vanish. This is most easily worked out by taking functional

derivatives of J with respect to ∆y(T/2), ∆y(t), ∆F(t), and ∆λ(t), and setting

these derivatives equal to zero. This leads to the equations of motion that govern

the optimization. It follows automatically from the positive-definite quadratic na-
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ture of J that its second-order variation is positive, making the extremum solution

found from the first-order variation the desired minimum cost solution.

1. Variation of ∆y(t): Taking the functional derivative of J with respect to

the surface term ∆y(T/2) and setting the result equal to zero gives

∆y†(T/2)−∆λ†(T/2) = 0.

Solving for ∆λ(T/2) gives:

∆λ(T/2) = ∆y(T/2). (2.23)

Next, taking the functional derivative of J with respect to ∆y(t) and setting the

result equal to zero gives

∆y†(t)Q(t) + ∆λ̇
†
(t) = 0.

Solving for ∆λ̇(t) gives (recall Q(t) is Hermitian):

d

dt
∆λ(t) = −Q(t)∆y(t). (2.24)

Eqs. (2.23) and (2.24) define an initial value problem for the Lagrange multipli-

er ∆λ(t), where the “initial” time is t = T/2. Note that taking the functional

derivative of J with respect to ∆y†(t) or ∆y†(T/2) simply gives the adjoint of these

equations and so provides no new information.

2. Variation of ∆F(t): Taking the functional derivative of J with respect to

∆F(t) and setting it equal to zero gives:

∆FT (t)R(t) + ∆λ†G(t) = 0.
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Solving for ∆F(t) gives (recall R(t) is positive-definite and Hermitian):

∆F(t) = −R−1(t)G†(t)∆λ(t). (2.25)

Eq. (2.25) relates the control modification ∆F(t) to the Lagrange multiplier ∆λ(t).

Note that for the second strategy presented in Section 2.5, this equation will be

transformed into a feedback control law.

3. Variation of ∆λ(t): By design, J3 was added to the cost function to insure

that the Schrodinger dynamics of ∆y(t) is not violated by the optimization process.

Taking the functional derivative of the first line of Eq. (2.21) and setting the result

equal to zero gives

d

dt
∆y(t)−G(t)∆F(t) = 0, (2.26)

which is Eq. (2.19) as required. As discussed before, its initial condition is

∆y(−T/2) = −∆β. (2.27)

2.5 Solution Strategies

This section describes two strategies for solving the Euler-Lagrange equations

of motion for optimal control (Eqs. (2.23)-(2.27)). Each strategy provides a way to

determine ∆λ(t) without directly integrating Eqs. (2.23)–(2.24). The first is based

on an ansatz for the Lagrange multiplier ∆λ(t), while the second relates ∆λ(t) to

∆y(t) through the Ricatti matrix S(t).

In Chapter 3 I use the neighboring optimal control formalism to improve the

performance of all gates in the universal set of gates introduced in Section 3.1.2.
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Strategy 1 will be used to improve all one-qubit gates, while Strategy 2 will be used

to improve the sole two-qubit gate in the set.

2.5.1 Strategy 1 – Lagrange multiplier ansatz

This subsection presents an approach to solving the Euler-Lagrange (EL) e-

quations for optimal control, in the case that the quantum system of interest is

a single qubit. This approach is based on the following ansatz for the Lagrange

multiplier:

∆λ(t) = − exp [−(t+ T/2)/10]w, (2.28)

where −T/2 ≤ t ≤ T/2, and w is a 4-component constant column vector that is

determined by demanding that: (i) the gate modification δA(t) = i[δU(t) − I2×2]

satisfies the Schrodinger equation (viz. Eq. (2.7)), where In×n is the n-dimensional

identity matrix; and (ii) δA(T/2) = δβ+O(∆2), where δβ = i[U †
0(T/2)Utgt−I2×2]+

O(∆2) (see Eq. (2.14)). Note that, because of the second requirement, it follows

from Eq. (2.6) that

δU(T/2) = I2×2 − iδA(T/2) +O(∆2)

= I2×2 − iδβ +O(∆2)

= U †
0(T/2)Utgt +O(∆2),

and consequently, the new gate U(T/2) = U0(T/2)δU(T/2) satisfies:

U(T/2) = U0(T/2)
[
U †
0(T/2)Utgt

]
= Utgt +O(∆2). (2.29)
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Thus, by choosing the column vector w in this way, the EL Eqs. (2.26) and (2.27)

are insured to be satisfied, and the new gate U(T/2) is the target gate Utgt to

second-order in small quantities as desired.

I next choose R(t) = I3×3, so that Eq. (2.25) gives the control modification:

∆F(t) = exp [−(t+ T/2)/10]G†(t)w. (2.30)

Once w is determined, EL Eq. (2.25) is satisfied.

Finally, choosing Q(t) to be a diagonal matrix, Eq. (2.24) determines Q(t)

from the ansatz for ∆λ(t) and the solution ∆y(t) of Eqs. (2.26) and (2.27). With

this choice, the EL Eq. (2.24) is satisfied. Thus, once w is known, the strategy’s

construction insures that all EL equations are satisfied, and yields the control and

gate modifications ∆F(t) and ∆y(t). Note that Strategy 1 has the following signif-

icant benefit. By introducing an ansatz for ∆λ(t), computation of the control and

gate modifications ∆F(t) and ∆y(t) becomes independent of Q(t). Thus Strategy 1

does not actually require Q(t) in Eq. (2.24)to be computed.

I now describe how w is determined. Begin by inserting Eq. (2.30) into E-

q. (2.7):

d

dt
δA =

3∑
j=1

Gj∆Fj

= exp [−(t+ T/2)/10]
3∑
j=1

Gj

(
G†w

)
j
. (2.31)

For simplicity I rewrite the term
∑3

j=1Gj

(
G†w

)
j
on the RHS of Eq. (2.31) as I. I
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show below that

I ≡
3∑
j=1

Gj

(
G†w

)
j

=

 w1 − w4 2w3

2w2 w4 − w1

 .

(2.32)

Note that in deriving the result in Eq. (2.32) I explicitly assumed that the dy-

namics of the single qubit quantum system here is driven by the Zeeman Hamiltonian

H(t) = −σ · F(t). Following the development in Section 2.2, for this Hamiltoni-

an, Gj = −σj, where the 1, 2, 3 components of σ are the x, y, z Pauli matrices,

respectively, and

Gj = U †
0GjU0 = −U †

0σjU0,

with

U0 =

 U0,11 U0,12

U0,21 U0,22

 ≡

 u0,1 u0,2

 . (2.33)

It follows from the unitarity of U0 that u0,1 and u0,2 form an orthonormal set:

u†
0,iu0,j = δij.

It proves useful to define the vector pairs (e1, e2), (f1, f2), and (g1,g2) as fol-
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lows:

σxU0 =

 e1 e2

 ;

σyU0 =

 f1 f2

 ;

σzU0 =

 g1 g2

 .

(2.34)

With these preliminaries, I then write Gj as

G1 =−

 u†
0,1e1 u†

0,1e2

u†
0,2e1 u†

0,2e2

 ≡

 γ1;1 γ1;2

 ;

G2 =−

 u†
0,1f1 u†

0,1f2

u†
0,2f1 u†

0,2f2

 ≡

 γ2;1 γ2;2

 ;

G3 =−

 u†
0,1g1 u†

0,1g2

u†
0,2g1 u†

0,2g2

 ≡

 γ3;1 γ3;2

 ,

(2.35)

which gives

G1 =

 γ1;1

γ1;2

 ;G2 =

 γ2;1

γ2;2

 ;G3 =

 γ3;1

γ3;2

 , (2.36)
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and

G =

 G1 G2 G3

 =

 γ1;1 γ2;1 γ3;1

γ1;2 γ2;2 γ3;2

 . (2.37)

Writing

w =



w1

w2

w3

w4


=

 ω1

ω2

 (2.38)

gives

G†w =


γ†
1;1ω1 + γ†

1;2ω2

γ†
2;1ω1 + γ†

2;2ω2

γ†
3;1ω1 + γ†

3;2ω2

 ≡


π1

π2

π3

 . (2.39)

With these definitions, the calculation of the matrix elements of I is simplified.

Below I show explicitly the calculation of the matrix element I11. Calculation of

the remaining three matrix elements is similar and so I simply quote the final result

for these matrix elements at the end of this subsection.

Inserting Eqs. (2.35)–(2.39) into I =
∑3

j=1Gj

(
G†w

)
j
gives
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I11 = (G1)11(G
†w)1 + (G2)11(G

†w)2 + (G3)11(G
†w)3

= −u†
0,1e1π1 − u†

0,1f1π2 − u†
0,1g1π3

= w1

[
(u†

0,1e1)(e
†
1u0,1) + (u†

0,1f1)(f
†
1u0,1) + (u†

0,1g1)(g
†
1u0,1)

]
+w2

[
(u†

0,1e1)(e
†
1u0,2) + (u†

0,1f1)(f
†
1u0,2) + (u†

0,1g1)(g
†
1u0,2)

]
+w3

[
(u†

0,1e1)(e
†
2u0,1) + (u†

0,1f1)(f
†
2u0,1) + (u†

0,1g1)(g
†
2u0,1)

]
+w4

[
(u†

0,1e1)(e
†
2u0,2) + (u†

0,1f1)(f
†
2u0,2) + (u†

0,1g1)(g
†
2u0,2)

]
Incorporating Eqs. (2.33)– (2.34) finally gives (after a moderate amount of algebra)

I11 = w1 − w4. (2.40)

Similar calculations give:

I21 = 2w2 (2.41)

I12 = 2w3 (2.42)

I22 = w4 − w1. (2.43)

This completes the derivation of Eq. (2.32).

Next, using Eq. (2.32) in Eq. (2.31) gives

d

dt

 δA11 δA12

δA21 δA22

 = exp [−(t+ T/2)/10]

 w1 − w4 2w3

2w2 w4 − w1

 . (2.44)
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For constant w1, w2, w3 and w4, Eq. (2.44) is easily integrated to get

δA11(t) = 10 (w1 − w4)A(t)

δA21(t) = 20w2A(t)

δA12(t) = 20w3A(t)

δA22(t) = 10 (w4 − w1)A(t),

(2.45)

where

A(t) = 1− exp [−(t+ T/2)/10] . (2.46)

For the one-qubit gate numerical simulations presented in Chapter 3 I use

T = 160 [36]. Thus A(T/2) = 1 − exp(−16) = 1 + O(10−7). Combining this with

the requirement that δA(T/2) = δβ gives

w1 − w4 =
δβ11
10

w2 =
δβ21
20

w3 =
δβ12
20

w4 − w1 =
δβ22
10

.

(2.47)

Recall that U †
0(T/2)Utgt = I − iδβ +O(∆2) so that

Tr
[
U †
0(T/2)Utgt

]
= 2− i T r δβ +O(∆2)

= 2− i (δβ11 + δβ22) +O(∆2). (2.48)

In Section 3.3.1 I show that for all one-qubit gates of interest in this thesis,

Tr
[
U †
0(T/2)Utgt

]
= 2 +O(∆2), so that

δβ11 + δβ22 = 0. (2.49)
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Combining Eq. (2.49) with the choice w1 = −w4, reduces Eqs. (2.47) to

w =
∆β

20
, (2.50)

where, recall,

∆β =



δβ11

δβ21

δβ12

δβ22


. (2.51)

Eqs. (2.50) and (2.51), together with δβ = i[U †
0(T/2)Utgt − I], determine w.

As I noted above, this then determines the control modification ∆F(t), and solution

of the Schrodinger equation determines ∆y(t) which gives the gate modification

δU(t). The new control field is F(t) = F0(t)+∆F(t), and the new gate is U(T/2) =

U0(T/2)δU(T/2). I implement Strategy 1 in Section 3.3.1.1 to improve all the one-

qubit gates in the universal quantum gates set introduced in Section 3.1.2.

2.5.2 Strategy 2 – Ricatti equation and the control gain matrix

This section presents a general approach to solving the Euler-Lagrange (EL)

equations for optimal control, with no preassumption about the quantum system

dynamics. I implement this strategy in Section 3.3.1.2 to improve the two-qubit

gate in the universal quantum gates set introduced in Section 3.1.2.

Eq. (2.24) shows that ∆y(t) acts as the source for the Lagrange multiplier

∆λ(t). I look for a solution of Eq. (2.24) of the form

∆λ(t) = S(t)∆y(t), (2.52)
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where S(t) is known as the Ricatti matrix. Note that once S(t) has been determined,

Eq. (2.25) becomes the feedback control law

∆F(t) = −R−1(t)G†(t)S(t)∆y(t)

= −C(t)∆y(t) (2.53)

which relates the state modification ∆y(t) to the control modification ∆F(t). The

matrix C(t) = R−1(t)G†(t)S(t) is known as the control gain matrix.

To obtain the equation of motion for S(t) I differentiate Eq. (2.52), and then

use Eqs. (2.24) and (2.26) to substitute for ∆λ̇ and ∆ẏ. One finds

Ṡ∆y = ∆λ̇− S∆ẏ

= −Q∆y− SG∆F

= −Q∆y− SG(−R−1G†S∆y)

=
[
−Q+ SGR−1G†S

]
∆y. (2.54)

Identifying the coefficients of ∆y on both sides of Eq. (2.54) gives the Ricatti equa-

tion [37]:

dS

dt
= −Q+ SGR−1G†S. (2.55)

The “initial” condition for S(T/2) is found from Eqs. (2.23) and (2.52):

∆y(T/2) = ∆λ(T/2) = S(T/2)∆y(T/2),

from which it follows that

S(T/2) = I. (2.56)

Note that by introducing the Ricatti matrix S(t) I have transformed the prob-

lem of finding the Lagrange multiplier ∆λ(t) to that of finding S(t). This is a good
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strategy as the Ricatti equation is independent of both ∆y(t) and ∆F(t) and so can

be solved once and for all. This is not the case with Eq. (2.24). The equations that

determine the path and control modifications ∆y(t) and ∆F(t) are thus Eqs. (2.17),

(2.26), (2.27), (2.53), (2.55), and (2.56). Note that substituting the feedback control

law (Eq. (2.53)) into Eq. (2.26) obtains

d

dt
∆y = −GC∆y. (2.57)

Once the Ricatti matrix S(t) is known, the control gain matrix C(t) is known,

and Eq. (2.57) can then be integrated for ∆y(t). With ∆y(t) in hand, Eq. (2.53)

determines the control modification ∆F(t), and so the improved control F(t) =

F0(t) + ∆F(t). Note that if all the eigenvalues of GC are positive, then ∆y(t →

∞) = 0, and so from Eq. (2.17), that ∆x(t→ ∞) = ∆β. This, in turn implies that

δU(t→ ∞) = U †
0Utgt, and finally, U(t→ ∞) = Utgt as desired.

In Chapter 3 I show how the NOC theory introduced above can be used to

implement a robust and high-fidelity approximation to each gate in a universal set

of quantum gates.
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Chapter 3: Application of NOC to Improve Quantum Gate Perfor-

mance

In Chapter 2 I described a general theoretical framework for improving the

performance of a good quantum gate based on neighboring optimal control (NOC).

This NOC method takes as input a nominal control F0(t) that enacts a unitary

transformation U0(t) such that U0,f = U0(T/2) is a good approximation to a tar-

get gate Utgt, and derives the equations of motion (EOMs) Eqs.(2.23-2.27) which

determine the optimal solution by minimizing the cost function Eq. (2.22). Two

strategies for obtaining the solution to the EOMs were presented, and finally, the

determined optimal control modification ∆F(t) provided an improved approxima-

tion U(t = T/2) to the target Utgt.

This chapter illustrates the general method by applying it to improve the

performance of all gates in a universal set of quantum gates GU . The gates I chose

are produced using a form of non-adiabatic rapid passage that has been studied in

the literature [34, 38–44]. I stress that the method introduced in Section 2 is not

limited to this particular family of input gates - any other good gate, or set of gates,

could serve as the input for the method.

In the following, I use: (i) Strategy 1 to determine the performance im-
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provements for all the one-qubit gates in GU , and (ii) Strategy 2 for the two-qubit

controlled-phase gate. Section 3.1 briefly reviews the background material on twist-

ed rapid passage. Section 3.2 summarizes the numerical simulation procedure for

improving the performance of the TRP gates using the NOC method. Section 3.3

presents the NOC performance gains under ideal control, and examines the band-

width required to implement the ideal controls, while Section 3.4 considers the

robustness of these improvements to some typical control imperfections. I show

that under suitable conditions, all gate error probabilities fall well below the target

threshold of Pa = 10−4.

3.1 Twisted Rapid Passage

In an effort to make this chapter more self-contained, here I briefly review

relevant background material on twisted rapid passage (TRP). For a more detailed

presentation, the reader is directed to Refs. [34,38,42,43]

3.1.1 TRP profiles

To introduce TRP [34,38], I consider a single-qubit interacting with an external

control-field F(t) via the Zeeman interaction Hz(t) = −σ · F(t), where σi are the

Pauli matrices (i = x, y, z). TRP is a generalization of adiabatic rapid passage

(ARP) [45]. In ARP, the control-field F(t) is slowly inverted over a time T with

F(t) = at ẑ + b x̂. In TRP, however, the control-field is allowed to twist in the

x-y plane with time-varying azimuthal angle ϕ(t), while simultaneously undergoing
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inversion along the z-axis: F0(t) = at ẑ + b cosϕ(t) x̂ + b sinϕ(t) ŷ. Here −T/2 ≤

t ≤ T/2 and I consider TRP with non-adiabatic inversion.

As shown in Ref. [34], when a qubit is subject to the TRP Hamiltonian, the

qubit undergoes resonance when

at− ~
2

dϕ

dt
= 0. (3.1)

For polynomial twist, the twist profile ϕ(t) takes the form

ϕn(t) =
2

n
Btn. (3.2)

In this case, Eq. (3.1) has n− 1 roots, though only real-valued roots correspond to

resonance. Ref. [38] showed that for n ≥ 3, the qubit undergoes resonance multiple

times during a single TRP sweep: (i) for all n ≥ 3, when B > 0; and (ii) for odd

n ≥ 3, when B < 0. For the remainder of this chapter I consider only B > 0, and

to quartic twist for which n = 4 in Eq. (3.2). During quartic twist, the qubit passes

through resonance at times t = 0,±
√
a/~B [38]. It is thus possible to alter the time

separating the resonances by varying the TRP sweep parameters B and a.

Ref. [38] showed that these multiple resonances have a strong influence on

the qubit transition probability, allowing transitions to be strongly enhanced or

suppressed through a small variation of the sweep parameters. Ref. [46] calculated

the qubit transition amplitude to all orders in the non-adiabatic coupling and found

they can be expressed as the following diagrammatic series:

T−(t) = �6

�
+ �6

�
?�6

�

+ �6

�
�?6

�
?�6

�
+ · · · . (3.3)
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Lower (upper) lines correspond to propagation in the negative (positive) energy-

level, and the vertical lines correspond to transitions between the two energy-levels.

The calculation sums the probability amplitudes for all interfering alternatives [47]

that allow the qubit to end up in the positive energy-level given that it was initially

in the negative energy-level. As discussed before, varying the TRP sweep param-

eters varies the time separating the resonances. This in turn changes the value of

each diagram in Eq. (3.3), and thus alters the interference between the alternative

transition pathways. It is the sensitivity of the individual alternatives/diagrams to

the time separation of the resonances that allows TRP to manipulate this quantum

interference.

Zwanziger et al. [39] observed these interference effects in the transition prob-

ability using NMR and found excellent quantitative agreement between theory and

experiment. It is this link between interfering quantum alternatives and the TRP

sweep parameters that I believe underlies the ability of TRP to drive high-fidelity

non-adiabatic one- and two-qubit gates.

3.1.2 TRP universal quantum gates set

The universal set of quantum gates GU that is of interest here consists of the

one-qubit Hadamard and NOT gates, together with variants of the one-qubit π/8

and phase gates, and the two-qubit controlled-phase gate. These gates are defined

as:
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1. Hadamard:

Uh = (1/
√
2) ( σz + σx) =

1√
2

 1 1

1 −1

 ; (3.4)

2. NOT:

Unot = σx =

 0 1

1 0

 ; (3.5)

3. Modified π/8:

Vπ/8 = cos (π/8) σx − sin (π/8) σy =

 0 eiπ/8

e−iπ/8 0

 ; (3.6)

4. Modified phase:

Vp = (1/
√
2) ( σx − σy ) =

 0 eiπ/4

e−iπ/4 0

 ; (3.7)

5. Modified controlled-phase:

Vcp = (1/2)
[(
I1 + σ1

z

)
I2 −

(
I1 − σ1

z

)
σ2
z

]
=



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


. (3.8)

The universality of GU was demonstrated in Ref. [42] by showing that its gates could

construct the well-known universal set comprised of the Hadamard, phase, π/8, and

CNOT gates.
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3.2 Simulation Procedure

As is well-known, the Schrodinger dynamics is driven by a Hamiltonian H(t)

that causes a unitary transformation U(t, t0) to be applied to an initial quantum

state |ψ(t0)⟩. In this chapter, I assume that the Hamiltonian H(t) contains terms

that independently Zeeman-couple each qubit to a TRP control-field F0(t). Assign-

ing values to the TRP sweep parameters (a, b, B, T ) fixes the control-field F0(t),

and in turn, the actual unitary transformation Ua = U(t0+T, t0) applied to |ψ(t0)⟩.

Ref. [42] used optimization algorithms to find TRP sweep parameter values that

produced an applied one-qubit (two-qubit) gate Ua that approximates a desired tar-

get gate Utgt sufficiently closely that its error probability (defined below) satisfies

Pe < 10−4 (10−3) [48]. In the following, the target gate Utgt will be one of the

gates in the universal set GU . Since GU contains only one- and two-qubit gates, the

simulations will only involve one- and two-qubit systems.

For one-qubit simulations, the nominal Hamiltonian H1
0 (t) is the Zeeman

Hamiltonian Hz(t) introduced in Section 3.1.1. Ref. [34] (see also Appendix A)

showed that it can be written in the following dimensionless form:

H1
0 (τ) = (1/λ) {−τσz − cosϕ4(τ)σx − sinϕ4(τ)σy}

= −σ · F0(τ), (3.9)

where F0(τ) is the dimensionless TRP control field; τ = (a/b)t; λ = ~a/b2; and for

quartic twist, ϕ4(τ) = (η4/2λ)τ
4, with η4 = ~Bb2/a3. In this Section, I show how

the neighboring optimal control framework introduced in Section 2 can be applied to
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improve the performance of the TRP-generated one-qubit gates: Hadamard, NOT,

modified phase, and modified π/8.

For the two-qubit simulations, the nominal Hamiltonian H2
0 (t) contains terms

that Zeeman-couple each qubit to the same TRP control-field F0(t), and an Ising

interaction term that couples the two qubits. Alternative two-qubit interactions

can be considered, though all simulation results presented in this chapter assume an

Ising interaction between the qubits. I note here that the energy difference between

the two upper energy levels and the two lower energy levels are the same. To break

a resonance-frequency degeneracy ω12 = ω34 for transitions between, respectively,

the ground and first-excited states (E1 ↔ E2) and the second- and third-excited

states (E3 ↔ E4), the term c4|E4(t)⟩⟨E4(t)| was added to H2(t).

Combining all of these factors, I arrive at the following (dimensionless) two-

qubit Hamiltonian (see Ref. [42] or Appendix A for further details):

H2
0 (τ) = [−(d1 + d2)/2 + τ/λ]σ1

z

+ [−d2/2 + τ/λ]σ2
z

−(d3/λ)
[
cosϕ4σ

1
x + sinϕ4σ

1
y

]
−(1/λ)

[
cosϕ4σ

2
x + sinϕ4σ

2
y

]
−(πd4/2)σ

1
zσ

2
z + c4|E4(τ)⟩⟨E4(τ)|. (3.10)

Here: (i) bi = ~γiBrf/2, ωi = γiB0, γi is the coupling constant for qubit i, and

i = 1, 2; (ii) τ = (a/b2)t, λ = ~a/b22, and η4 = ~Bb22/a3; and (iii) d1 = (ω1−ω2)b2/a,

d2 = (∆/a)b2, d3 = b1/b2, and d4 = (J/a)b2, where ∆ is a detuning parameter. I

present results for the two-qubit modified controlled phase gate below.
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Given an applied gate Ua, a target gate Utgt, and the initial state |ψ⟩, it is

possible to determine (see Ref. [34] or Appendix A) the error probability Pe(ψ) for

the TRP final state |ψa⟩ = Ua|ψ⟩, relative to the target final state |ψtgt⟩ = Utgt|ψ⟩.

The gate error probability Pe is defined to be the worst-case value [49] of Pe(ψ):

Pe ≡ max|ψ⟩ Pe(ψ). Introducing the positive operator P =
(
U †
a − U †

tgt

)
(Ua − Utgt),

Ref. [34] showed that the error probability Pe satisfies the upper bound Pe ≤ Tr P .

Once Ua is known, Tr P is easily evaluated, and so it is a convenient proxy for Pe

which is harder to calculate. Tr P also has the virtue of being directly related to the

gate fidelity Fn = (1/2n) Re
[
Tr
(
U †
aUtgt

) ]
, where n is the number of qubits acted

on by the gate. It is straightforward to show [42] that Fn = 1 − (1/2n+1) Tr P .

The simulations calculate Tr P , which is then used to upper bound the gate error

probability Pe. Note that minimizing Tr P is equivalent to maximizing the gate

fidelity Fn.

The procedure for solving the EL equations for optimal control was briefly

described in Section 2.5. The one-qubit TRP gates presented in Ref. [44] and the

two-qubit TRP gate presented in Ref. [42] will serve as the good gates that are

to be improved. For convenience, the TRP sweep parameters for these gates are

presented in Appendix A, along with their associated gate error probabilities and

fidelities. For a particular target gate Utgt belonging to GU (see Section 3.1.2), the

TRP sweep parameters corresponding to Utgt determine the TRP control field F0(τ)

which then drives the nominal Hamiltonian H0(τ) (see Eqs. (3.9) and (3.10) for one-

and two-qubit gates, respectively). The nominal Hamiltonian in turn produces the

initial good approximate gate U0(τ0/2,−τ0/2) that is to be improved. Here τ is
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the dimensionless time introduced above, and τ0 ≡ aT/b. For each gate in GU ,

its TRP approximation U0(τ0/2,−τ0/2) is also reproduced in Appendix A. For the

two strategies introduced in Section 2.5, the numerical simulation implements the

following procedure:

1. For both Strategies, integrate the Schrodinger equation with the nominal

Hamiltonian H0(τ) to obtain U0(τ0/2,−τ0/2); calculate ∆β using Eq. (2.14).

For Strategy 1, also calculate w using Eq. (2.50).

2. For both Strategies, calculateGj(τ) = U †
0(τ)GjU0(τ), where I have abbreviated

U0(τ,−τ0/2) as U0(τ), and Gj(τ) = δH/δFj|F0(τ); form G(τ). For Strategy 1,

skip Step 3, go to Step 4.

3. For Strategy 2, set R(τ) = I3×3 and S(τ) = I16×16, where In×n is the n × n

identity matrix. The Ricatti equation then requires Q(τ) = G(τ)G†(τ). The

resulting control gain matrix is C(τ) = G†(τ).

4. (a) For Strategy 1, use Eq. (2.30) to determine the control modification

∆F(τ).

(b) For Strategy 2, solve Eq. (2.57) with initial condition Eq. (2.27) for

∆y(τ); substitute ∆y(τ) and C(t) into the feedback control law (E-

q. (2.53)) to determine ∆F(τ).

5. For both Strategies, with the improved control field F(τ) = F0(τ)+∆F(τ), nu-

merically integrate the Schrodinger equation to determine the new propagator

U(τ,−τ0/2), and the improved gate U(τ0/2,−τ0/2).
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6. For both Strategies, calculate Tr P for the new gate. This gives: (i) an upper

bound on the new gate error probability Pe ≤ Tr P , and (ii) the new gate

fidelity F = 1− (1/2n+1)Tr P .

3.3 Ideal Results

Here I illustrate the use of neighboring optimal control to improve the perfor-

mance of a good quantum gate. In this section I examine performance improvements

under ideal control, while Section 3.4 considers the robustness of these improvements

to some important control imperfections.

3.3.1 Gate Performance Improvement: Ideal Control

As noted in Section 2.5, I use: (i) Strategy 1 to determine the performance

improvements for the one-qubit gates in GU ; and (ii) Strategy 2 for the two-qubit

modified controlled-phase gate. I found that both strategies produce a gate sat-

isfying U(τ0/2) = Utgt + O(∆2). Here I use the numerical simulation procedure

described in Section 3.2 to determine the small residual error in a one/two-qubit

gate U(τ0).

3.3.1.1 One-qubit Gates

For a given one-qubit TRP gate, the nominal control field F0(τ) is fixed by

the parameters λ, η4 and τ0 = aT/b. This determines the nominal Hamiltonian
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H0(τ) = −σ · F0(τ), and numerical integration of the Schrodinger equation

i
d

dτ
U0 = H0(τ)U0 (3.11)

determines the nominal state trajectory U0(τ). In all one-qubit simulations τ0 = 160

[50]. Following the simulation protocol, U0(τ) is used to determine δβ and w, as well

as the matrix G(τ). Eq. (2.30) is then used to determine the control modification

∆F(τ), and thus the improved control field F(τ) = F0(τ) + ∆F(τ). The new

Hamiltonian is H(τ) = −σ · F(τ), and numerical integration of the Schrodinger

equation

i
d

dτ
U = H(τ)U (3.12)

determines the improved state trajectory U(τ). The improved one-qubit gate is then

U(τ = τ0/2). With the new gate in hand I determine Tr P which then provides an

upper bound on the gate error probability Pe ≤ Tr P . If so desired, one can also

calculate the gate fidelity F = 1 − (1/4)Tr P . Below I present values for the TRP

sweep parameters η4 and λ I used to provide the good gate U0(τ0/2), together with

the NOC performance gains for ideal control, for all the one-qubit gates in GU .

Hadamard gate

The TRP sweep parameters values I used to produce a good approximation

to the Hadamard gate are λ = 7.820 and η4 = 1.792× 10−4. These values, together

with the dimensionless inversion time τ0 = 160, fix the TRP control field F0(τ)

which then implements the following unitary gate:

U0,H =

 0.7112 + 0.0000 i 0.7030− 0.0016 i

0.7030 + 0.0016 i −0.7112 + 0.0000 i

 .
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with TrP = 1.12× 10−4, and thus a gate error probability Pe ≤ 1.12× 10−4.

To apply the NOC, I first need to verify that the Strategy 1 illustrated in

Section 2.5.1 is applicable, i.e. to check if Tr
[
U †
0(τ0/2)Utgt

]
= 2 + O(∆2) holds.

With U0(τ = τ0/2) = U0,H and Utgt = UH = (1/
√
2) (σx + σz), then

Tr
[
U †
0(τ0/2)Utgt

]
= 2 + 6.7615× 10−5.

Recall that δβ = i
[
U †
0(τ0/2)Utgt − I

]
. Using the max-norm ∥U∥ = maxi,j |Uij|, it

can be shown that ∥δβ∥ = 0.0081. This sets the scale for small quantities introduced

in Section 2: ∆ = ∥δβ∥. Thus ∆2 = 6.561× 10−5, and so

Tr
[
U †
0(τ0/2)Utgt

]
= 2 +O(∆2),

and so Eq. (2.49) is verified.

Numerical integration of the Schrodinger equation (see Eq. (3.11)) withH0(τ) =

−σ ·F0(τ) and F0(τ) fixed by the TRP sweep parameter values λ and η4 given above

determines the TRP state trajectory U0(τ). With U0(τ) known, w = ∆β/20 and

the matrix G(τ) are determined, and Eq. (2.30) then determines the control modifi-

cation ∆F(τ). Finally, an improved gate U(τ = τ0/2) is produced by the improved

control field F(τ) = F0(τ) +∆F(τ), with TrP = 1.04× 10−8, and thus a gate error

probability satisfying Pe ≤ 1.04× 10−8. I see that use of NOC has produced a four

order-of-magnitude reduction in the gate error probability compared to the starting

TRP gate for which Pe ≤ 1.12×10−4. The error probability for the improved gate is

four orders-of-magnitude less than the target accuracy threshold of 10−4. Because

Pe is so small, I do not write out the unitary matrix produced by the numerical
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simulation as it agrees with the target Hadamard unitary matrix to 6 significant

figures.

NOT gate

The TRP sweep parameters λ = 6.965 and η4 = 2.189 × 10−4 produce the

following unitary gate, which is a good approximation to the NOT gate:

U0,NOT =

 −0.0014 + 0.0000 i 1.0000 + 0.0054 i

1.0000− 0.0054 i 0.0014 + 0.0000 i

 .

with TrP = 6.27× 10−5.

With U0(τ = τ0/2) = U0,NOT and Utgt = UNOT = σx, I find that

Tr
[
U †
0(τ0/2)Utgt

]
= 2 + 3.2000× 10−5.

Here ∥δβ∥ = 0.0054 and so ∆2 = 2.92× 10−5. Thus

Tr
[
U †
0(τ0/2)Utgt

]
= 2 +O(∆2).

Implementing the above numerical simulation protocol using the TRP approx-

imation to the modified phase gate as the starting point returns an improved gate

with TrP = 8.58×10−9, and thus a gate error probability satisfying Pe ≤ 8.58×10−9.

I do not write out the unitary matrix produced by the numerical simulation as it

agrees with the target NOT gate to 6 significant figures.

Modified π/8 gate

The TRP sweep parameters λ = 8.465 and η4 = 1.675 × 10−4 produce the
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following unitary gate, which is a good approximation to the Vπ/8 gate:

U0,π/8 =

 −0.0061 + 0.0000 i 0.9204 + 0.3910 i

0.9204− 0.3910 i 0.0061 + 0.0000 i

 .

with TrP = 2.13× 10−4.

With U0(τ = τ0/2) = U0,π/8 and Utgt = Vπ/8 = cos(π/8)σx − sin(π/8)σy, I find

that

Tr
[
U †
0(τ0/2)Utgt

]
= 2 + 1.2034× 10−4.

Here ∥δβ∥ = 0.0091 and so ∆2 = 8.2810× 10−5. Thus

Tr
[
U †
0(τ0/2)Utgt

]
= 2 +O(∆2).

Implementing the above numerical simulation protocol using the TRP ap-

proximation to the π/8 gate as the starting point returns an improved gate with

TrP = 1.06 × 10−8, and thus a gate error probability satisfying Pe ≤ 1.06 × 10−8.

I do not write out the unitary matrix produced by the numerical simulation as it

agrees with the target modified π/8 gate to 6 significant figures.

Modified phase gate

The TRP sweep parameters λ = 8.073 and η4 = 1.666 × 10−4 produce the

following unitary gate, which is a good approximation to the modified phase gate:

U0,P =

 0.0051 + 0.0000 i 0.7171 + 0.6969 i

0.7171− 0.6969 i −0.0051 + 0.0000 i

 .

with TrP = 4.62× 10−4.

With U0(τ = τ0/2) = U0,P and Utgt = VP = (1/
√
2) (σx − σy), I find that

Tr
[
U †
0(τ0/2)Utgt

]
= 2 + 2.3131× 10−4.
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Here ∥δβ∥ = 0.0054 and so ∆2 = 2.0449× 10−4. Thus

Tr
[
U †
0(τ0/2)Utgt

]
= 2 +O(∆2).

Implementing the above numerical simulation protocol using the TRP approx-

imation to the modified phase gate as the starting point returns an improved gate

with TrP = 1.08×10−8, and thus a gate error probability satisfying Pe ≤ 1.08×10−8.

I do not write out the unitary matrix produced by the numerical simulation as it

agrees with the target modified phase gate to 6 significant figures.

3.3.1.2 Two-qubit Modified controlled-phase gate

As seen in Appendix A, the two-qubit nominal Hamiltonian H2
0 (τ) I used to

produce a good approximation to the two-qubit modified controlled phase gate Vcp

is specified by the TRP sweep parameters λ, η4, and τ0, as well as the parame-

ters d1, . . . , d4 and c4. All two-qubit simulations used τ0 = 120. Table 3.1 lists

the values for the control parameters that I used to determine the two-qubit nom-

inal Hamiltonian H2
0 (τ) to produce a good approximation to the target modified

controlled-phase gate Vcp. Ref. [42] describes the optimization procedure used to

determine the control parameter values appearing in Table 3.1.

The unitary gate generated by the TRP control field fixed by the parameters
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Table 3.1: The nominal two-qubit gate used in this paper is the modified controlled

phase gate Vcp studied in Ref. [42]. For the reader’s convenience, I tabulate the

control parameter values and gate performance reported in that work. The control

parameter values listed for λ, η4, d1, . . . , d4, and c4 were found using simulated

annealing; the TrP upper bound on the gate error probability was found using

numerical simulation of the two-qubit Schrodinger dynamics; and the gate fidelity

F follows from Tr P (see Section 3.2). The dimensionless inversion time τ0 = 120.

λ η4 d1 d2 d3 d4 c4 TrP F

5.1 2.4× 10−4 11.702 -2.6 -0.41 6.6650 5.0003 1.27× 10−3 0.99984

in Table 3.1 is:

Re(U0,cp) =



0.9998 0.0155 0.0041 0.0028

−0.0154 0.9997 −0.0003 0.0021

0.0042 −0.0002 −0.9999 −0.0038

−0.0026 −0.0021 −0.0037 0.9999


;

Im(U0,cp) =



0.0052 −0.0108 −0.0031 −0.0017

−0.0109 0.0064 −0.0084 0.0068

0.0030 0.0084 0.0060 −0.0079

−0.0018 0.0068 0.0079 0.0026


.

with TrP = 1.27× 10−3, where U0,cp = U0(τ = τ0/2).

The state trajectory U0(τ) determined by the two-qubit nominal Hamiltonian

H2
0 (τ) fixed by the dimensionless control parameters appearing in Table 3.1 then

serves as the input for the NOC method. I now implement Strategy 2 to determine

a control modification ∆F(τ) to improve the two-qubit gate performance. For S-

trategy 2 , Step 2 of the six step numerical procedure (see Section 3.2) requires the
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three matrices G1, G2, and G3. These follow from the functional derivatives of H2
0 (τ)

with respect to the components of the control field F(τ):

G1 = d3

[
cos

(
(
d1b2
b1 − b2

+ d1)τ

)
σ1
x + sin

(
(
d1b2
b1 − b2

+ d1)τ

)
σ1
y

]
+

[
cos

(
(
d1b2
b1 − b2

)τ

)
σ2
x + sin

(
(
d1b2
b1 − b2

)τ

)
σ2
y

]

G2 = d3

[
cos

(
(
d1b2
b1 − b2

+ d1)τ

)
σ1
y − sin

(
(
d1b2
b1 − b2

+ d1)τ

)
σ1
x

]
+

[
cos

(
(
d1b2
b1 − b2

)τ

)
σ2
y − sin

(
(
d1b2
b1 − b2

)τ

)
σ2
x

]

G3 = d3σ
1
z + σ2

z .

(3.13)

As noted in Step 3 of the procedure for Strategy 2, I chose R(τ) = I3×3 and

S(τ) = I16×16, where In×n is the n × n identity matrix. Satisfying the Ricatti

equation then required Q(τ) = G(τ)G†(τ). Carrying out the remaining steps in

the numerical procedure for Strategy 2, the improved gate produced by the NOC

improved control is:

Re(Ucp) =



1.0000 0.0001 0.0000 0.0024

0.0000 1.0000 −0.0001 0.0000

0.0001 0.0001 −1.0000 −0.0001

−0.0024 0.0000 0.0000 1.0000


;
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Im(Ucp) =



0.0055 0.0001 0.0000 −0.0016

−0.0001 0.0014 0.0004 0.0000

−0.0001 −0.0004 0.0003 0.0000

−0.0017 0.0000 0.0000 0.0015


.

with TrP = 5.21×10−5, and an error probability Pe satisfying that Pe ≤ 5.21×10−5,

where Ucp = U(τ = τ0/2). The reader can directly examine the NOC improvement

in Ucp by comparing the above unitary gate with the unimproved TRP two-qubit

gate U0,cp found in Ref. [42].

I summarize the simulation results of the NOC improved gate performance

for all target gates in GU in Table 3.2. For comparison, I include the TrP upper

bound on the gate error probability Pe for all gates with and without the neighboring

optimal control improvements. I see that for all one-qubit gates in GU , NOC reduce

the gate error probability by four orders-of-magnitude (viz. 10−4 → 10−8), while for

the two-qubit gate, Pe was reduced by two orders-of-magnitude (viz. 10−3 → 10−5).

NOC has thus substantially improved TRP gate performance, producing gates with

error probability falling well below the target accuracy threshold of 10−4.

3.3.2 Control Bandwidth

I now examine the bandwidth needed for the control modifications ∆F(t) so

that the NOC performance in Table 3.2 can be realized. To provide context, I

note that arbitrary waveform generators (AWG) are commercially available with

bandwidths as large as 5 GHz [51]. I assume that the TRP inversion time for one-
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Table 3.2: Simulation results for all target gates in the universal set GU for ideal

control. The first column lists the target quantum gates, while the second column

lists the Tr P upper bound for the gate error probability Pe for gates whose perfor-

mance is improved using neighboring optimal control (NOC). The third column lists

the Tr P upper bound for the starting TRP gates which do not use NOC. NOC has

reduced the error probability for all one-qubit gates by four orders-of-magnitude,

and by two orders-of-magnitude for the two-qubit controlled-phase gate. Although

not included in the Table, the gate fidelity Fn for an n-qubit gate can be determined

from Tr P using Fn = 1− (1/2n+1)Tr P .

Target Gate Pe ≤ TrP (with NOC) Pe ≤ TrP (without NOC)

NOT ≤ 8.58× 10−9 ≤ 6.27× 10−5

Hadamard ≤ 1.04× 10−8 ≤ 1.12× 10−4

Modified π/8 ≤ 1.06× 10−8 ≤ 2.13× 10−4

Modified phase ≤ 1.08× 10−8 ≤ 4.62× 10−4

Modified controlled-phase ≤ 5.21× 10−5 ≤ 1.27× 10−3

68



qubit gate is 1µs, and for two-qubit gate is 5µs. I estimate the (dimensionless)

bandwidth of the control field modification ∆F(τ) by determining the frequency

ω0.1 at which the Fourier component module |∆Fx(ω0.1)| is 10% of the peak value

|∆Fx(0)|, where ∆Fx(ω) is the Fourier transform of ∆Fx(τ), the x-component of the

control field modification ∆F(τ). To convert the dimensionless bandwidth ω0.1 into

a physical bandwidth ω0.1, note that the physical inversion time T corresponds to a

dimensionless inversion time τ0. Therefore, for the one-qubit gates with a physical

inversion time T = 1µs and dimensionless inversion time τ0 = 160, the physical

bandwidth ω0.1 is related to the dimensionless bandwidth ω0.1 by:

ω0.1

ω0.1

=
1/T

1/τ0
=

160

1µs
= 160MHz. (3.14)

For the two-qubit gate with a physical inversion time T = 5µs and dimensionless

inversion time τ0 = 120, the connection between physical and dimensionless band-

width is

ω0.1

ω0.1

=
1/T

1/τ0
=

120

5µs
= 24MHz. (3.15)

With these preliminaries out of the way, I present the bandwidth results for

all the NOC improved gates in GU .

1. Hadamard gate: Figure 3.1 shows the x-component of the dimensionless

control field modification ∆Fx(τ) as a function of the dimensionless time τ for the

Hadamard gate as target. Figure 3.2 shows its Fourier transform module |∆Fx(ω)|.

Examination of the numerical data used to produce Figure 3.2 gives ω0.1 = 4.0.

Thus, it follows from Eq. (3.14) that the physical bandwidth needed to implement
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Figure 3.1: The x-component dimensionless control modification ∆Fx(τ) used to

implement a neighboring optimal control improved approximation to the Hadamard

gate. Here τ is the dimensionless time.

the control modification ∆F(t) for the Hadamard gate is ω0.1 = (160MHz)(4.0) =

640MHz. This is within the range of some commercially available AWGs.

2. NOT gate: Figure 3.3 shows the x-component of the dimensionless control

field modification ∆Fx(τ) as a function of the dimensionless time τ for the NOT

gate. Figure 3.4 shows its Fourier transform module |∆Fx(ω)|. Examination of the

data used to produce Figure 3.4 gives ω0.1 = 0.8. Eq. (3.14) then gives a physical

bandwidth of ω0.1 = 130 MHz.

3. Modified phase gate: Figure 3.5 shows the x-component of the dimen-
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Figure 3.2: The Fourier transform module |∆Fx(ω)| of the x-component dimension-

less control modification ∆Fx(τ) for the Hadamard Gate as target. Here ω is the

dimensionless frequency.

sionless control field modification ∆Fx(τ) as a function of the dimensionless time

τ for the modified phase gate. Figure 3.6 shows its Fourier transform module

|∆Fx(ω)|. Examination of the data used to produce Figure 3.6 gives ω0.1 = 1.9,

which, using Eq. (3.14), gives a physical bandwidth of ω0.1 = 300 MHz.

4. Modified π/8 gate: Figure 3.7 shows the x-component of the dimension-

less control field modification ∆Fx(τ) as a function of the dimensionless time τ for

the modified π/8 gate. Figure 3.8 shows its Fourier transform module |∆Fx(ω)|.

Examination of the data used to produce Figure 3.8 gives ω0.1 = 1.3, which, using
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Figure 3.3: The x-component of the dimensionless control field modification ∆Fx(τ)

for the NOT gate versus the dimensionless time τ .

Eq. (3.14), gives a physical bandwidth of ω0.1 = 210 MHz.

5. Modified controlled-phase gate: Figure 3.9 shows the x-component

of the dimensionless control field modification ∆Fx(τ) as a function of the di-

mensionless time τ for the modified controlled-phase gate. Figure 3.11 shows its

Fourier transform module |∆Fx(ω)|. Examination of the data used to produce Fig-

ure 3.11 gives ω0.1 = 34, which, using Eq. (3.15), gives a physical bandwidth of

ω0.1 = 820 MHz.

To summarize, Table 3.3 lists the dimensionless and physical bandwidth re-

quired to implement the control modification for each of the target gates in GU . I

note here that the bandwidth required to implement the neighboring optimal control
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Table 3.3: Bandwidth requirements for neighboring optimal control improved quan-

tum gates. The dimensionful values assume a one-qubit (two-qubit) gate time of 1µs

(5µs). Note that the bandwidth for the nominal TRP control field F0(t) is less than

1% of the bandwidth of the control modification ∆F(t). I thus use the bandwidth

for ∆F(t) as the total bandwidth. Column 1 lists the target gates in GU ; column 2

the dimensionless bandwidth ω0.1; while column 3 gives the dimensionful bandwidth

ω0.1.

Target Gate ω0.1 (dimensionless) ω0.1 (MHz)

NOT 0.80 130

Modified π/8 1.3 210

Modified phase 1.9 300

Hadamard 4.0 640

Modified controlled-phase 34 820
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Figure 3.4: The Fourier transform module |∆Fx(ω)| of the x-component dimension-

less control field modification for the NOT gate versus the dimensionless frequency

ω.

performance improvements for all gates in GU is within the range of commercially

available AWGs. Note that Eqs. (3.14-3.15) indicate that the dimensionful band-

width ω0.1 scales as 1/T in the TRP inversion time T . Thus, if relaxation an depha-

seing do not prevent it, one can reduce the bandwidth of the control modification

∆F(t) by increasing the TRP inversion time (viz. gate time) T .

3.4 Robustness to Control Imperfections

In this section I examine the robustness of the neighboring optimal control

(NOC) performance gains found in Section 3.3 to two important control imper-
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Figure 3.5: The x-component of the dimensionless control field modification ∆Fx(τ)

for the modified phase gate versus the dimensionless time τ .

fections. In Section 3.4.1 I examine the impact of control parameters with finite

precision; while in Section 3.4.2 I consider phase noise in the nominal control field.

3.4.1 Finite Parameter Precision

The NOC formalism introduced above requires an input state trajectory U0(τ)

that yields a good approximation to a target gate Utgt. The control modification

∆F(τ) determined by the formalism is optimum for U0(τ), or equivalently, for the

nominal control F0(τ). Alteration of the nominal control field F0(τ) → F′
0(τ) alters

the state trajectory U0(τ) → U ′
0(τ), with the result that the control modification

∆F(τ) may no longer be optimal for the altered trajectory U ′
0(τ). Because the
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Figure 3.6: The Fourier transform module |∆Fx(ω)| of the x-component dimension-

less control field modification for the modified phase gate versus the dimensionless

frequency ω.

hardware used to produce F0(τ) has limited precision, it becomes important to

determine the degree of precision to which the control parameters must be specified

if the NOC performance gains are to survive the limitation of finite-precision control.

For the one-qubit gates in GU , the optimum values for the TRP sweep param-

eter λ and η4 presented in Section 3.3.1.1 are used to produce the nominal control

filed F0(τ) and state trajectory U0(τ), for which the nominal gate U0(τ0/2) is a

good approximation to the target gate in GU , with the gate error probability sat-

isfying Pe ≤ TrP ∼ 10−4. For these control parameter values, NOC determines

the control modification ∆F(τ) (see Section 3.3.1) which produces a new gate with

76



-80 -60 -40 -20 0 20 40 60 80
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-4



F x()

 

 

Figure 3.7: The x-component of the dimensionless control field modification ∆Fx(τ)

for the modified π/8 gate versus the dimensionless time τ .

Pe ≤ TrP ∼ 10−8. To examine the robustness of this performance improvement, I

shift λ (η4) away from its optimum value by 1 in its fourth significant digit, while

keeping η4 (λ) at optimum. This shift causes F0(τ) → F′
0(τ). I then numerically

simulate the Schrodinger dynamics driven by the Hamiltonian H(τ) = −σ · F′(τ),

where the new control field F′(τ) = F′
0(τ) +∆F(τ), and ∆F(τ) is the NOC modifi-

cation that corresponds to the nominal control field F0(τ). The TrP upper bound

for the gate error probability Pe of the new gate U(τ0/2) yielded by this new control

field F′(τ) is then calculated. Below I present how the TrP upper bound for the

gate error probability Pe varies as I change λ (η4) by one in its least significant digit,

while keeping η4 (λ) at optimum, for all one-qubit gates in GU .
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Figure 3.8: The Fourier transform module |∆Fx(ω)| of the x-component dimension-

less control field modification for the modified π/8 gate versus the dimensionless

frequency ω.

Hadamard gate: For the Hadamard gate, the optimum TRP control param-

eters are λ = 7.820 and η4 = 1.792 × 10−4. For these control parameter values,

the control modification optimum ∆F(τ) determined by NOC yields an improved

gate with Pe ≤ 1.04 × 10−8. Shifting λ (η4) away from its optimum value by 1

in its fourth significant digit while keeping η4 (λ) at optimum causes the control

F(τ) → F′(τ) = F′
0(τ) + ∆F(τ), and the resulting TrP upper bound for the gate

error probability Pe of the gate yielded by this new control can be calculated from

numerical simulation. Tables 3.4 and 3.5 show how the Tr P upper bound for the

gate error probability Pe changes due to a small shift in λ (η4) away from its opti-
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Table 3.4: Sensitivity of TrP to a small variation of λ away from its optimum value

for the one-qubit Hadamard gate. For all λ values, η4 is maintained at its optimum

value η4 = 1.792×10−4. Column 2 (3) shows the variation of Tr P when the control

field includes (omits) the NOC control modification ∆F(τ).

λ TrP (with NOC) TrP (without NOC)

7.819 2.62× 10−4 8.15× 10−4

7.820 1.04× 10−8 1.12× 10−4

7.821 4.44× 10−4 2.07× 10−3

Table 3.5: Sensitivity of TrP to a small variation of η4 away from its optimum value

for the one-qubit Hadamard gate. For all η4 values, λ is maintained at its optimum

value λ = 7.820. Column 2 (3) shows the variation of Tr P when the control field

includes (omits) the NOC control modification ∆F(τ).

η4 TrP (with NOC) TrP (without NOC)

1.791× 10−4 5.75× 10−3 2.86× 10−2

1.792× 10−4 1.04× 10−8 1.12× 10−4

1.793× 10−4 7.76× 10−3 3.11× 10−2
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Figure 3.9: The x-component of the dimensionless control field modification ∆Fx(τ)

for the modified controlled-phase gate versus the dimensionless time τ .

mum value. For comparison, I also show how Tr P changes when the new control

field does not contain the NOC modification: F′(τ) = F′
0(τ). It is clear from these

Tables that both λ and η4 must be controllable to better than one part in 10, 000

if the NOC performance gains are to be realized. Such control parameter preci-

sion is attainable using an AWG with 14-bit vertical resolution (viz. one part in

214 = 16, 384). Such AWGs are available commercially [52]. Note that 13-bit preci-

sion corresponds to a precision of one part in 213 = 8192, and so to an uncertainty

in the fourth significant digit. Thus with less than 14-bits of precision, Tables 3.4

and 3.5 indicate that the NOC performance gains will be washed out by the un-

certainty in the least significant digit of λ and η4. Lastly, notice that the NOC
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Figure 3.10: The x-component of the dimensionless control field modification

∆Fx(τ) for the modified controlled-phase gate versus the dimensionless time τ ,

zoomed for τ ∈ [−60,−40].

improved Hadamard gate outperforms the unimproved nominal TRP gate, even in

the presence of finite precision control parameters.

NOT gate: For the NOT gate, NOC delivered a gate with Pe ≤ 8.58×10−9. In

Tables 3.6 and 3.7 I show how the Tr P upper bound on the gate error probability

(Pe ≤ Tr P ) changes due to a small shift in λ and η4 away from its optimum

value, respectively. I show the variation in Tr P when the NOC modification is

both included and omitted. As with the Hadamard gate, both λ and η4 must be

controlled to better than one part in 10, 000 to realize the NOC performance gains.

As shown in the Hadamard gate discussion, this is possible using an AWG with at

81



Table 3.6: Sensitivity of TrP to a small variation of λ away from its optimum value

for the one-qubit NOT gate. For all λ values, η4 is maintained at its optimum value

η4 = 2.189× 10−4. Column 2 (3) shows the variation of Tr P when the control field

includes (omits) the NOC modification ∆F(τ). Recall that Tr P upper bounds the

gate error probability Pe ≤ Tr P .

λ TrP (with NOC) TrP (without NOC)

6.964 8.75× 10−4 2.12× 10−3

6.965 8.58× 10−9 6.27× 10−5

6.966 3.99× 10−4 3.82× 10−4

Table 3.7: Sensitivity of TrP to a small variation of η4 away from its optimum

value for the one-qubit NOT gate. For all η4 values, λ is maintained at its optimum

value λ = 6.965. Column 2 (3) shows the variation of Tr P when the control field

includes (omits) the NOC modification ∆F(τ). Recall that Tr P upper bounds the

gate error probability Pe ≤ Tr P .

η4 TrP (with NOC) TrP (without NOC)

2.188× 10−4 6.50× 10−3 1.55× 10−2

2.189× 10−4 8.58× 10−9 6.27× 10−5

2.190× 10−4 9.80× 10−3 3.28× 10−2
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Figure 3.11: The Fourier transform module |∆Fx(ω)| of the x-component dimen-

sionless control field modification for the modified controlled-phase gate versus the

dimensionless frequency ω .

least 14-bit vertical resolution. Using less precision will give rise to uncertainty in

the fourth significant digit, and to a washing out of the NOC performance gains.

Modified π/8 gate: For the modified π/8 gate, NOC delivered a gate with

Pe ≤ 1.06 × 10−8. In Tables 3.8 and 3.9 I show how the Tr P upper bound on the

gate error probability (Pe ≤ Tr P ) changes due to a small shift in λ and η4 away

from its optimum value, respectively. I show the variation in Tr P when the NOC

modification is both included and omitted. As with the Hadamard gate, both λ

and η4 must be controlled to better than one part in 10, 000 to realize the NOC

performance gains. This is possible using an AWG with at least 14-bit vertical
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Table 3.8: Sensitivity of TrP to a small variation of λ4 away from its optimum

value for the one-qubit modified π/8 gate. For all λ values, η4 is maintained at its

optimum value η4 = 1.675× 10−4. Column 2 (3) shows the variation of Tr P when

the control field includes (omits) the NOC modification ∆F(τ). Recall that Tr P

upper bounds the gate error probability Pe ≤ Tr P .

λ TrP (with NOC) TrP (without NOC)

8.464 6.77× 10−4 2.12× 10−3

8.465 1.06× 10−8 2.13× 10−4

8.466 7.32× 10−4 4.58× 10−4

Table 3.9: Sensitivity of TrP to a small variation of η4 away from its optimum

value for the one-qubit modified π/8 gate. For all η4 values, λ is maintained at

its optimum value λ = 8.465. Column 2 (3) shows the variation of Tr P when the

control field includes (omits) the NOC modification ∆F(τ). Recall that Tr P upper

bounds the gate error probability Pe ≤ Tr P .

η4 TrP (with NOC) TrP (without NOC)

1.674× 10−4 7.10× 10−3 4.99× 10−2

1.675× 10−4 1.06× 10−8 2.13× 10−4

1.676× 10−4 7.30× 10−3 3.90× 10−2
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Table 3.10: Sensitivity of TrP to a small variation of λ away from its optimum

value for the one-qubit modified phase gate. For all λ values, η4 is maintained at its

optimum value η4 = 1.666× 10−4. Column 2 (3) shows the variation of Tr P when

the control field includes (omits) the NOC modification ∆F(τ). Recall that Tr P

upper bounds the gate error probability Pe ≤ Tr P .

λ TrP (with NOC) TrP (without NOC)

8.072 1.97× 10−4 1.17× 10−3

8.073 1.08× 10−8 4.62× 10−4

8.074 5.82× 10−4 3.20× 10−3

Table 3.11: Sensitivity of TrP to a small variation of η4 away from its optimum

value for the one-qubit modified phase gate. For all η4 values, λ is maintained at

its optimum value λ = 8.073. Column 2 (3) shows the variation of Tr P when the

control field includes (omits) the NOC modification ∆F(τ). Recall that Tr P upper

bounds the gate error probability Pe ≤ Tr P .

η4 TrP (with NOC) TrP (without NOC)

1.665× 10−4 1.20× 10−3 4.42× 10−2

1.666× 10−4 1.08× 10−8 4.62× 10−4

1.667× 10−4 6.10× 10−3 5.74× 10−2

resolution. Using less precision will give rise to uncertainty in the fourth significant

digit, and to a washing out of the NOC performance gains.

Modified phase gate: For the modified phase gate, NOC delivered a gate

with Pe ≤ 1.08× 10−8. In Tables 3.10 and 3.11 I show how the Tr P upper bound
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on the gate error probability (Pe ≤ Tr P ) changes due to a small shift in λ and

η4 away from its optimum value, respectively. I show the variation in Tr P when

the NOC modification is both included and omitted. As with the Hadamard gate,

both λ and η4 must be controlled to better than one part in 10, 000 to realize the

NOC performance gains. This is possible using an AWG with at least 14-bit vertical

resolution. Using less precision will give rise to uncertainty in the fourth significant

digit, and to a washing out of the NOC performance gains.

Two-qubit modified controlled-phase gate: For the two-qubit modified

controlled-phase gate, the nominal Hamiltonian H2
0 (τ) is fixed by the dimension-

less parameters listed in Table 3.1. For these control parameters, NOC delivered a

gate with the gate error probability satisfying Pe ≤ 5.21 × 10−5. To examine the

robustness of this performance improvement to small variations in the control pa-

rameters and thereby determining the minimum control parameter precision needed

to realize this performance improvement, I change each parameter away from its op-

timum value by 1 in its last significant digit, while keeping the others at optimum.

Such shift causes H2
0 (τ) → H2

0
′
(τ). I then numerically simulate the Schrodinger

dynamics driven by the Hamiltonian H2(τ) = H2
0
′
(τ) + G · ∆F(τ), where ∆F(τ)

is the NOC modification that corresponds to the nominal Hamiltonian H2
0 (τ), and

G = (G1,G2,G3) with Gj given by Eq. (3.13). It was found (and also confirmed by

Ref. [42]) that the performance was most sensitive to small changes in d1, d4 and

c4. Tables 3.12, 3.12 and 3.14 show how the TrP upper bound on the gate error

probability (Pe ≤ TrP ) changes due to a small shift in the last significant digit of
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Table 3.12: Sensitivity of TrP to a small variation of d1 away from its optimum value

for the two-qubit modified controlled-phase gate. For all d1 values, the remaining

control parameters appearing in Table 3.1 are maintained at the optimum values

given there. Column 2 (3) shows the variation of Tr P when the control field includes

(omits) the NOC modification ∆F(τ). Recall that Tr P upper bounds the gate error

probability Pe ≤ Tr P .

d1 TrP (with NOC) TrP (without NOC)

11.701 1.16× 10−3 3.36× 10−3

11.702 5.21× 10−5 1.27× 10−3

11.703 1.16× 10−3 1.43× 10−3

Table 3.13: Sensitivity of TrP to a small variation of d4 away from its optimum value

for the two-qubit modified controlled-phase gate. For all d4 values, the remaining

control parameters appearing in Table 3.1 are maintained at the optimum values

given there. Column 2 (3) shows the variation of Tr P when the control field includes

(omits) the NOC modification ∆F(τ). Recall that Tr P upper bounds the gate error

probability Pe ≤ Tr P .

d4 TrP (with NOC) TrP (without NOC)

6.6649 1.25× 10−3 3.36× 10−3

6.6650 5.21× 10−5 1.27× 10−3

6.6651 1.69× 10−3 2.97× 10−3

d1, d4 and c4 away from their optimum value, respectively. I show the variation in

TrP when the NOC modification is both included and omitted.

I note here that all d1, d4 and c4 must be controlled to better than one part
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Table 3.14: Sensitivity of TrP to a small variation of c4 away from its optimum value

for the two-qubit modified controlled-phase gate. For all d1 values, the remaining

control parameters appearing in Table 3.1 are maintained at the optimum values

given there. Column 2 (3) shows the variation of Tr P when the control field includes

(omits) the NOC modification ∆F(τ). Recall that Tr P upper bounds the gate error

probability Pe ≤ Tr P .

c4 TrP (with NOC) TrP (without NOC)

5.0002 1.40× 10−4 1.36× 10−3

5.0003 5.21× 10−5 1.27× 10−3

5.0004 1.30× 10−4 1.38× 10−3

in 100, 000 to realize the NOC performance gains. Such control parameter preci-

sion is attainable using an AWG with 17-bit vertical resolution (viz. one part in

217 = 131, 072). I am not aware of such AWGs being commercially available. Thus

further study of the possibility of constructing suitable custom electronics is needed

to realize the NOC performance gains for this two-qubit gate. Note that 16-bit preci-

sion corresponds to a precision of one part in 216 = 65, 536, and so to an uncertainty

in the fifth significant digit. Thus with less than 17-bits of precision, Table 3.12

indicates that the NOC performance gains will be washed out by the uncertainty in

the least significant digit of d1. Similar for d4 and c4.

3.4.2 Phase/Timing Jitter

Phase jitter arises from timing errors in the clock used by an AWG to produce a

desired control signal. Ideally, the clock outputs a sequence of “ticks” with constant
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time separation Tclock, derived from an oscillation with phase ϕ(t) = 2πfclockt and

frequency fclock = 1/Tclock. A real clock only approximates this ideal behavior. In

actuality, the time T between ticks is a stochastic process T = Tclock + δt, where

the stochastic timing error δt has: (i) vanishing time-average δt = 0; and (ii) a

standard deviation σt =
√
δt2 which quantifies the spread of the tick intervals

about Tclock. The spread σt is known as timing jitter. The timing error δt gives

rise to a phase error δϕ = (2πfclock)δt which has: (i) zero time-average δϕ = 0; and

(ii) standard deviation σϕ =

√
δϕ2 which characterizes the spread about 2π of the

phase accumulated between ticks: ϕ = 2πfclockT . The spread σϕ is known as phase

jitter. As σϕ and σt are two ways of characterizing the clock timing errors, the ratio

of spread to period for the phase (σϕ/2π) and the time (σt/Tclock) are the same.

Equating them, and solving for σt gives

σt =
σϕ

2πfclock
. (3.16)

This expression can be thought of as a change in units from jitter in radians (viz. σϕ)

to jitter in seconds (viz. σt).

Phase jitter is anticipated to affect the performance of the TRP gates that

I used to illustrate the NOC formalism. As I discussed in Section 3.1.1 that the

performance of these gates relies on quantum interference effects during a TRP

sweep. In the presence of phase jitter, the TRP twist profile ϕ4(τ) = (η4/2λ)τ
4

has phase noise δϕ(τ) due to the timing error δτ in τ . For sufficiently strong phase

jitter, this phase noise will wash out the interference effects that underlie the good

performance of the TRP gates. Specifically, since this noise adds to the TRP twist
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phase ϕ4(τ) → ϕ′
4(τ) = ϕ4(τ) + δϕ(τ), it causes the (dimensionless) TRP control

field F′
0(τ) = (1/λ) [cosϕ′

4(τ)x̂+ sinϕ′
4(τ)ŷ + τ ẑ] to twist incorrectly. The control

field with the NOC modification is now F′(τ) = F′
0(τ) + ∆F(τ), where ∆F(τ) is

the neighboring optimal control modification determined for the TRP control F0(τ)

with jitter-free twist phase ϕ4(τ). Since the phase noise δϕ(τ) is unpredictable, the

control modification ∆F(τ) cannot be recalculated so that it is optimal for F′
0(τ).

Thus, for a given target gate, one can only calculate the control modification ∆F(τ)

which is optimal for the jitter-free TRP control F0(τ), and add it to the noisy

TRP control F′
0(τ). Since ∆F(τ) is not optimal for F′(τ), the NOC performance

improvements are expected to be reduced by phase jitter.

To quantitatively study the effects of phase/timing jitter on the NOC perfor-

mance gains, I modelled the phase noise δϕ(τ) as shot noise and used the model

to generate numerical realizations of the phase noise δϕ(τ). The details of the

noise model and the protocol used to generate noise realizations is described in

Appendix B. For each noise realization, I determined the state trajectory U(τ) by

numerically simulating the Schrodinger dynamics generated by the noisy control

field F′(τ), and used it to determine the Tr P upper bound for the gate error prob-

ability Pe. For each target gate Utgt and given value of phase jitter σϕ (equivalently,

mean phase noise power P , see below), I generated ten realizations of phase noise

δϕ(τ), and determined the ten corresponding values of Tr P . The average ⟨Tr P ⟩

and standard deviation σ(Tr P ) for these values was calculated and used to approx-

imate the noise-averaged NOC gate performance: Pe ≤ ⟨Tr P ⟩± σ(Tr P ). I carried

out simulations for various values of σϕ, and present the results for the Hadamard
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Figure 3.12: The noise-averaged value of TrP with NOC versus timing jitter σt =

σϕ/(2πfclock) for the Hadamard gate. For each σt, ten realizations of phase noise were

generated, and for each realization, gate performance was determined by numerical

simulation of the Schrodinger dynamics generated by the control field F′(τ) that

includes the noisy TRP nominal control F′
0(τ) and the NOC modification ∆F(τ)

(see text). The average and standard deviation were determined for the resulting

ten Tr P values. For each value of σt, the average of Tr P is plotted, and the

standard deviation is used to specify the error bar. To obtain σt, I have assumed

that fclock = 1GHz (see text).

gate in Figure 3.12.

To put Figure 3.12 into context, I note that AWGs with timing jitter σt = 5ps

and clock frequency fclock = 1GHz are commercially available [53]. In Appendix B

I show that the phase noise variance δϕ2 is equal to the mean phase noise power

P . Since σϕ =

√
δϕ2, it turns out that σϕ =

√
P , and so phase jitter is simply an

alternative way to represent phase noise power. Eq. (3.16) is then used to convert
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phase jitter σϕ into timing jitter σt. The horizontal axis in Figure 3.12 is thus simply

an encoding of phase noise power. The largest phase noise power value used in the

simulations was P = 0.008, which gives

σt =

√
0.008

2π(109 s−1)
= 14.2ps. (3.17)

This corresponds to the right-most data-point in Figure 3.12. A similar conver-

sion of phase noise power was done for the other simulation data-points. At σt =

5.03ps, appropriate for commercially available AWGs, Figure 3.12 indicates that

Pe ≤ (2.04 ± 1.80) × 10−5. It is shown in Table 3.2 that, for ideal control, NOC

produced a Hadamard gate with Pe ≤ 1.04×10−8. As anticipated, the NOC perfor-

mance gains are impacted by phase jitter. Figure 3.12 also shows that if an AWG

was available with σt = 1.26ps, then Pe ≤ (9.59 ± 6.94) × 10−7, which is: (i) an

order of magnitude reduction in the impact of phase jitter compared to σt = 5.03ps;

and (ii) two orders-of-magnitude less than the target accuracy threshold of 10−4,

underscoring the importance of reducing timing jitter in the control electronics. I

discuss this further below.

In Table 3.15 I display the impact of phase/timing jitter on the NOC per-

formance gains of all gates in GU for timing jitter σt = 5.03ps. It is shown that,

even with timing jitter at the level found in commercially available AWGs, all gates

in GU have gate error probabilities that are an order of magnitude smaller than

the target accuracy threshold value of 10−4. Notice also the insensitivity of the

two-qubit TRP gate to 5.03ps timing jitter. The standard deviation for this gate,

σ(TrP ) = 5.26 × 10−11, is displayed as zero to three significant figures in Table
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Table 3.15: Sensitivity of TrP to timing jitter σt =
√
P/(2πfclock) for all target gates

in the universal set GU . For all gates, the numerical simulations used mean noise

power P̄ = 0.001, which corresponds to timing jitter σt = 5.03ps for fclock = 1GHz.

For each gate, ten phase noise realizations were generated (see Appendix B), leading

to ten values of the Tr P upper bound on the gate error probability Pe ≤ Tr P . The

third column lists, for each gate, the corresponding average < TrP >, and uses the

standard deviation σ(TrP ) to indicate the spread of Tr P about the average.

Gate Timing-jitter σt Pe ≤ < TrP > ±σ(TrP) with NOC

Hadamard 5.03ps (2.04± 1.80)× 10−5

NOT 5.03ps (2.11± 1.64)× 10−5

Modified π/8 5.03ps (2.92± 1.96)× 10−5

Modified phase 5.03ps (3.04± 2.16)× 10−5

Modified controlled phase 5.03ps (5.21± 0.00)× 10−5

3.15. This weak sensitivity to timing jitter is not completely surprising given the

weak sensitivity of this gate to imprecision in λ and η4 that was found in Ref. [42],

and thus to imprecision in the twisting of the control field. The critical parameters

for this gate are d1, d4, and c4 (see Section 3.4.1).

In Table 3.16 I display the impact of phase/timing jitter on the NOC perfor-

mance gains of all gates in GU for timing jitter σt = 1.26ps. It is shown that the

gate error probability for the one-qubit gates is reduced by an order-of-magnitude

(Pe ∼ 10−5 → 10−6) compared to the error probability at σt = 5.03ps. The two-

qubit gate error probability is unchanged at Pe = 5.21×10−5, although its standard

deviation is now σ(TrP ) = 4.24×10−14. Thus reducing timing jitter by a factor of 5
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Table 3.16: Sensitivity of TrP to timing jitter σt =
√
P/(2πfclock) for all target

gates in the universal set GU . For all gates, the numerical simulations used mean

noise power P̄ = 6.25 × 10−5, which corresponds to timing jitter σt = 1.26ps for

fclock = 1GHz. For each gate, ten phase noise realizations were generated (see

Appendix B), leading to ten values of the Tr P upper bound on the gate error

probability Pe ≤ Tr P . The third column lists, for each gate, the corresponding

average < TrP >, and uses the standard deviation σ(TrP ) to indicate the spread

of Tr P about the average.

Gate Timing-jitter σt Pe ≤ < TrP > ±σ(TrP) with NOC

Hadamard 1.26ps (9.59± 6.94)× 10−7

Modified π/8 1.26ps (1.24± 1.04)× 10−6

NOT 1.26ps (1.82± 1.14)× 10−6

Modified phase 1.26ps (1.92± 1.57)× 10−6

Modified controlled phase 1.26ps (5.21± 0.00)× 10−5

produces one-qubit gates whose error probability is two orders-of-magnitude smaller

than the target accuracy threshold of 10−4. For a threshold Pa ∼ 10−3 appropriate

for surface and color quantum error correcting codes, all gates in GU operate 2–3

orders-of-magnitude below threshold at σt = 1.26ps. Thus, for AWGs operating at

this reduced level of timing jitter, the impact of phase/timing jitter on the NOC

performance gains is greatly mitigated.

In Table 3.17 I present further noisy simulation results for all gates in GU at

noise power P = 0.005 (0.008) for the two-qubit (one-qubit) gate(s). This corre-

sponds, respectively, to: (i) timing jitter σt = 11.3 (14.2)ps; (ii) n = 2.50 (1.33); and
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Table 3.17: Sensitivity of TrP to timing jitter σt =
√
P/(2πfclock) for all target

gates in the universal set GU . For all one-qubit (two-qubit) gates, the numerical

simulations used mean noise power P̄ = 0.008 (0.005), which corresponds to timing

jitter σt = 14.2 (11.3)ps for fclock = 1GHz. For each gate, ten phase noise realizations

were generated (see Appendix B), leading to ten values of the Tr P upper bound

on the gate error probability Pe ≤ Tr P . The third column lists, for each gate,

the corresponding average < TrP >, and uses the standard deviation σ(TrP ) to

indicate the spread of Tr P about the average.

Gate Timing-jitter σt Pe ≤ < TrP > ±σ(TrP) with NOC

Hadamard 14.2ps (5.58± 2.55)× 10−5

NOT 14.2ps (5.71± 2.67)× 10−5

Modified phase 14.2ps (7.09± 3.23)× 10−5

Modified π/8 14.2ps (8.04± 2.43)× 10−5

Modified controlled phase 11.3ps (6.74± 1.09)× 10−5

(iii) phase noise realizations with, on average, Nf = 300 (213) noise fluctuations.

It is shown that the increased noise power P = 0.001 → 0.005, 0.008 only degraded

the NOC performance gains slightly more than was seen in Table 3.15. Notice that,

even with phase jitter that is worse than occurs in commercially available AWGs, all

gates in GU still have error probabilities that fall below the target accuracy threshold

of 10−4.

Lastly, note that for starting gates whose good performance is not due to

quantum interference, phase jitter may have less impact on the NOC performance

gains than for the TRP gates examined here.
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Chapter 4: Application of NOC to Quantum State Preparation: Two-

qubit Logical Bell State

Having introduced the general theory of neighboring optimal control in Chap-

ter 2, and illustrated its use by applying the general method to improve the perfor-

mance of all gates in a universal set of quantum gates GU produced using twisted-

rapid passage in Chapter 3, in this Chapter I adapt the general NOC method to

fault-tolerant logical quantum state preparation.

A fundamental task which a quantum computer must execute with success

probability close to 1 is the fault-tolerant preparation of a known logical quantum

state. Such states are required throughout a quantum computation includes, for

example, in Steane error correction [54], syndrome extraction requires ancilla qubits

prepared in the
∣∣0⟩ and |+⟩ eigenstates of the logical Pauli Z and X operators,

respectively. In quantum teleportation (QT) [15] based schemes of fault-tolerant

quantum computing (FTQC) [55–58], fault-tolerant preparation of logical Bell states

are an important prerequisite.

This Chapter presents a two-step procedure for fault-tolerant preparation of

a logical qubit state
∣∣ψtgt⟩. Step 1 begins with a single-shot preparation for a high-

fidelity approximation |ψa⟩ to a target state |ψtgt⟩ by adapting the general NOC
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method presented in Chapter 2, with preparation error probability ϵ; the high-

fidelity approximate state |ψa⟩ then goes through a projection circuit, leaving it in

|ψ′
a⟩ state which has preparation error probability O(ϵ2). Step 2 then takes a block

of p pairs of physical qubits, each prepared in |ψ′
a⟩ using Step 1, and runs the block

through a simple fault-tolerant circuit which leaves it in the logical state
∣∣ψtgt⟩. I

illustrate this procedure by preparing the following two-qubit logical Bell state

∣∣β01⟩ = 1√
2

[∣∣01⟩+ ∣∣10⟩] . (4.1)

This Chapter is structured as follows. Section 4.1 briefly reviews some back-

ground knowledge about Bell state and quantum teleportation. Sections 2 and 3

describe Steps 1 and 2 of the logical state preparation procedure, respectively. Sec-

tion 2 describes a single-shot NOC approach to prepare a high-fidelity approximation

to the physical two-qubit Bell state |β01⟩. Both ideal control and non-ideal control

are examined. It is shown that the single-shot NOC approach is able to achieve

a preparation error probability of ϵ ∼ 10−6 for ideal control, and that a prepara-

tion error probability of ϵ ∼ 10−5 should be possible with commercially available

arbitrary waveform generators (AWG). Passing the NOC produced state through

a projection circuit yields an approximate Bell state with error probability O(ϵ2).

Section 3 introduces a simple fault-tolerant circuit which produces the logical Bell

state
∣∣β01⟩, and I illustrate its use for the [4, 2, 2] quantum error detecting code C4.
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4.1 Bell State, Quantum Teleportation and Fault-tolerant Quantum

Computation

The Bell states |βxy⟩, x, y = 0, 1 are four maximally entangled two-qubit states

[59], which form an orthonormal basis for the two-qubit Hilbert space, known as the

Bell basis:

|β00⟩ =
|00⟩+ |11⟩√

2
; |β10⟩ =

|00⟩ − |11⟩√
2

|β01⟩ =
|01⟩+ |10⟩√

2
; |β11⟩ =

|01⟩ − |10⟩√
2

.

(4.2)

where the state |ij⟩, i, j = 0, 1 are the computational basis states of the two-qubit

Hilbert space, which are usually chosen to be the eigenstates of the two-qubit Pauli

operators Z1 = σz ⊗ I and Z2 = I ⊗ σz, where I is the 2× 2 identity operator.

Here “maximally entangled” [60] means that tracing over the second qubit to

find the density operator ρ1 for the first qubit results in a multiple of the identity

operator I

ρ1 = tr2 (|βxy⟩ ⟨βxy|) =
1

2
I. (4.3)

Similarly, ρ2 =
1
2
I. This indicates that if a two-qubit system is in a Bell state |βxy⟩,

the von Neumann entropy [61] for the whole system is apparently zero; however,

for the two single-qubit subsystems, their von Neumann entropies take the maximal

value of 1

S(ρ1) = S(ρ2) = −tr
(
I

2
log2

I

2

)
= 1. (4.4)

In other words, even though the whole system is in a pure state, the two single-

qubit subsystems are in completely mixed state. One can use a two-qubit system
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in a Bell state to encode two bits of information, say, the parity of the state, and

the relative phase between the two computational basis states. This information

cannot be acquired by a local measurement on a single-qubit subsystem, which

would merely generate a random bit of 0 or 1. On the other hand, a local operation

on any single-qubit subsystem does manipulate the state of the whole system, even

if the two qubits are spatially separated.

Take the Bell state |β01⟩ as an example: upon measuring the first qubit in the

computational basis, one ends up with two possible outcomes, each with probability

1/2: (i) obtaining measuring result 0 and leaving the post-measurement state in |01⟩,

and (2) obtaining measuring result 1 and leaving the post-measuring state in |10⟩. A

subsequent measuring on the second qubit would always give the opposite measuring

result as the measurement of the first qubit. Similar measurement correlation exists

for all other Bell states. It is this entanglement property that makes the Bell states

the essential resource in quantum teleportation (QT) [15], by which quantum state

can be transmitted between two parties, Alice and Bob, even in the absence of a

quantum communications channel linking the two.

Here I present the protocol for Alice to deliver a qubit in the state |ψ⟩ =

α |0⟩+β |1⟩ to Bob, where α and β are unknown amplitudes, given they each possess

one qubit of the Bell state |β01⟩. The quantum circuit for teleporting |ψ⟩ is shown

in Figure 4.1.
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Figure 4.1: Quantum circuit for teleporting a qubit state |ψ⟩ using the Bell state

|β01⟩. The meter represents measurement in the computational basis.

The input state to the circuit in Figure 4.1 is

|ψ0⟩ = |ψ⟩ ⊗ |β01⟩

=
1√
2
[α |0⟩ ⊗ (|01⟩+ |10⟩) + β |1⟩ ⊗ (|01⟩+ |10⟩)] .

(4.5)

Alices then applies a CNOT gate to her qubits, obtaining

|ψ1⟩ =
1√
2
[α |0⟩ ⊗ (|01⟩+ |10⟩) + β |1⟩ ⊗ (|11⟩+ |00⟩)] . (4.6)

Next Alices applies a Hadamard gate to the first qubit, obtaining

|ψ2⟩ =
1

2
[α(|0⟩+ |1⟩)⊗ (|01⟩+ |10⟩) +β(|0⟩ − |1⟩)⊗ (|11⟩+ |00⟩)]

=
1

2
[|00⟩ ⊗ (α |1⟩+ β |0⟩) + |01⟩ ⊗ (α |0⟩+ β |1⟩)

+ |10⟩ ⊗ (α |1⟩ − β |0⟩) + |11⟩ ⊗ (α |0⟩ − β |1⟩)] .

(4.7)

Alice then performs a Z− measurement on her qubits and sends Bob her results

through a classical channel. Depending on Alice’s measurement outcome M1 and

M2, Bob then applies the corresponding operation X1−M2ZM1 to his postmeasure-

ment qubit and recovers |ψ⟩.

Quantum teleportation has been used as a key ingredient for some schemes

of fault-tolerant quantum computation (FTQC) [55–58]. By utilizing quantum er-

ror detection codes, post-selected quantum computation [58] achieves an accuracy
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threshold γ ∼ 10−3 [62,63]. Fault-tolerant preparation of a logical Bell state is thus

an important prerequisite for QT based schemes for FTQC. In the following sec-

tions, I present a two-step procedure for fault-tolerant preparation of a two logical

qubit state
∣∣ψtgt⟩, and use this procedure to prepare the logical Bell state

∣∣β01⟩.
4.2 Step 1: High-fidelity physical Bell state |β01⟩ preparation

In this section I introduce the first step of our two-step procedure for logical

quantum state preparation, which combines single-shot NOC state preparation with

a projection circuit, to prepare a high-fidelity approximation to the Bell state |β01⟩.

In Section 4.2.1 I re-state the control problem to produce a high-fidelity approxi-

mation to a target physical quantum state as to find a control field which enacts a

high-fidelity approximated target gate, thus making the NOC approach introduced

in Chapter 2 adaptable. In Section 4.2.2 I present the input to the NOC approach:

a good approximation to the Bell state |β01⟩ produced using twisted-rapid passage.

In Section 4.2.3 I use the NOC approach to determine a control modification which

yields a better approximated Bell state |β01⟩. Numerical results are presented in

Section 4.2.4 for ideal control and in Section 4.2.5 for non-ideal control. And finally,

in Section 4.2.6 I use a projection circuit which takes as input the state prepared by

NOC with error probability O(ϵ), and returns an approximate Bell state |β01′⟩ with

error probability O(ϵ2).
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4.2.1 Reformulating the Control Problem

The first task of the two-step logical quantum state preparation is to find a

control field F(t) which produces a state |ψa⟩ which is a high-fidelity approximation

to a target state |ψtgt⟩. These states can be multi-(physical) qubit states, though for

purposes of this Chapter I focus on preparation of two-qubit states. As indicated

above, these high-fidelity states are then used to prepare the logical target state∣∣ψtgt⟩. In this Section, I re-state this control problem to a familiar form, such that

the NOC approach introduced in Chapter 2 to improve quantum gate performance

becomes applicable.

Consider a two-qubit system in the state |ψ(t)⟩. The qubits are coupled to a

control field F(t) with Hamiltonian

H2(t) = H2 [F(t)] , (4.8)

which is a functional of F(t) which acts for a time −T/2 ≤ t ≤ T/2. Throughout

this thesis I assume the control duration time T is much shorter than the qubit

longitudinal (T1) and transverse (T2) relaxation times so that the qubit is weakly

decohering and a state vector description is appropriate.

At t = −T/2 the two-qubit state is initialized such that |ψ(−T/2)⟩ = |00⟩.

The control field F(t) then drives a unitary transformation U(t) on the state, taking

it to the final state |ψa⟩:

|ψa⟩ = Uf |00⟩ , (4.9)

102



where Uf ≡ U(T/2).

Let
∣∣ψ⊥

tgt,2

⟩
,
∣∣ψ⊥

tgt,3

⟩
,
∣∣ψ⊥

tgt,4

⟩
be three mutually orthogonal states that are or-

thogonal to |ψtgt⟩, and Utgt be a 4 × 4 unitary matrix, whose columns are |ψtgt⟩,∣∣ψ⊥
tgt,2

⟩
,
∣∣ψ⊥

tgt,3

⟩
and

∣∣ψ⊥
tgt,4

⟩
, respectively:

Utgt =

 |ψtgt⟩
∣∣ψ⊥

tgt,2

⟩ ∣∣ψ⊥
tgt,3

⟩ ∣∣ψ⊥
tgt,4

⟩
 .

By construction, Utgt maps |00⟩ to |ψtgt⟩ exactly, i.e.

|ψtgt⟩ ≡ Utgt |00⟩ .

I now re-state the control problem to produce a high-fidelity approximation

to a target quantum state: find a control field F(t) which enacts a unitary transfor-

mation Uf that is a high-fidelity approximation to the target unitary 4 × 4 matrix

Utgt, which can be seen as a two-qubit gate. Once such an F(t) is determined, the

state |ψa⟩ produced by F(t) would naturally be a high-fidelity approximation to the

target state |ψtgt⟩, as the fidelity of |ψa⟩

Fa ≡ |⟨ψa| ψtgt⟩|

=
∣∣∣⟨00|U †

fUtgt |00⟩
∣∣∣→ 1.

(4.10)

A solution to this control problem has been presented in Chapter 2 using NOC.

Specifically, the Strategy 2 introduced in Section 2.5.2 is particularly suitable for

solving this control problem. In the following sections I will apply this approach to

determine a control field that produces a high-fidelity approximated physical Bell

state |β01a⟩.
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4.2.2 Input: Good State Prepared via TRP

After re-stating the control problem in Section 4.2.1 I now apply the general

NOC method introduced in Chapter 2 to determine a control field that produces

a high-fidelity approximation to the target, the Bell state |β01⟩. The general NOC

method did not assume a specific form of the control Hamiltonian. For the following

derivation and simulation, I assume that the Hamiltonian H2 contains a Zeeman

interaction term that couples each qubit to the control field F(t), and an anisotropic

Heisenberg interaction coupling the two qubits. Note that alternative two-qubit

interactions can easily be considered by straightforward modification of the following

arguments.

With these assumptions, the Hamiltonian in the lab frame can be written as

H2[F(t)]

~
= −

2∑
i=1

γi
2
σi · F(t)− π

2

(
Jzσ

1
zσ

2
z + Jxy(σ

1
xσ

2
x + σ1

yσ
2
y)
)

=
H2

0(t)

~
+

3∑
j=1

Gj(t)∆Fj(t),
(4.11)

where

H2
0(t)

~
= −

2∑
i=1

γi
2
σi · F0(t)−

π

2

(
Jzσ

1
zσ

2
z + Jxy(σ

1
xσ

2
x + σ1

yσ
2
y)
)

(4.12)

is the nominal Hamiltonian which excludes the contribution from the control modifi-

cation ∆F(t), in which γi, i = 1, 2 is the gyromagnetic ratio of the Zeeman coupling

for qubit i, and Jz,xy are the Heisenberg interaction coupling constant; and

Gj(t) = −1

2

2∑
i=1

γiσ
i
j. (4.13)
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The input for the NOC procedure is a known control F0(t) which enacts a

unitary transformation U0(t), which maps the initial state |ψ0(−T/2)⟩ = |00⟩ to∣∣β010⟩
|00⟩ →

∣∣β010⟩ ≡ |ψ0(T/2)⟩ = U0,f |00⟩ . (4.14)

Here U0,f = U0(T/2), and
∣∣β010⟩ is a good approximation to the target state |β01⟩.

I use a form of non-adiabatic rapid passage known as twisted rapid passage (TRP)

[38, 39] as the nominal control F0(t) to produce the good state
∣∣β010⟩. In the lab

frame, F0(t) has a static component B0 along the z-axis with a simultaneous twisting

in the x− y plane. I can write

F0(t) = B0ẑ+Brf cosϕrf (t)x̂−Brf sinϕrf (t)ŷ. (4.15)

Introducing ωi = γiB0 and ωrfi = γiBrf , i = 1, 2, and inserting Eq. (4.15) into

Eq. (4.12) yields

H2
0(t)

~
=− ω1

2
σ1
z −

ωrf1
2

[
cosϕrfσ

1
x − sinϕrfσ

1
y

]
− ω2

2
σ2
z −

ωrf2
2

[
cosϕrfσ

2
x − sinϕrfσ

2
y

]
− π

2

(
Jzσ

1
zσ

2
z + Jxy(σ

1
xσ

2
x + σ1

yσ
2
y)
)
.

(4.16)

I next introduce a unitary transformation that puts the system in the detector

frame [39],

Uld(t) = exp

[
i

2
ϕdet(t)(σ

1
z + σ2

z)

]
. (4.17)
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The Hamiltonian in the detector frame is then

H2,d
0(t)

~
= U †

ld

H2
0(t)

~
Uld − iU †

ld

dUld
dt

=

(
−ω1 + ϕ̇det

2

)
σ1
z +

(
−ω2 + ϕ̇det

2

)
σ2
z

− ωrf1
2

[
cos (ϕdet − ϕrf ) σ

1
x + sin (ϕdet − ϕrf ) σ

1
y

]
− ωrf2

2

[
cos (ϕdet − ϕrf ) σ

2
x + sin (ϕdet − ϕrf ) σ

2
y

]
− π

2
Jzσ

1
zσ

2
z −

π

2
Jxy
[
σ1
xσ

2
x + σ1

yσ
2
y

]
.

(4.18)

To produce a TRP sweep in the detector frame it is necessary to sweep ϕ̇det and

ϕ̇rf through a Larmor resonance frequency. I chose to sweep through the Larmor

frequency ω2 and put the 1st qubit out of resonance by introducing the detuning ∆:

ϕ̇det = ω2 +
2at

~
+∆

ϕrf = ϕdet − ϕtrp.

(4.19)

Here a is the TRP inversion rate, and ϕtrp(t) = (1/2)Bt4 is the TRP quartic twist.

Introducing δω = ω1 − ω2 yields

H2,d
0(t)

~
=

(
−δω +∆

2
+
at

~

)
σ1
z +

(
−∆

2
+
at

~

)
σ2
z

− ωrf1
2

[
cosϕtrpσ

1
x + sinϕtrpσ

1
y

]
− ωrf2

2

[
cosϕtrpσ

2
x + sinϕtrpσ

2
y

]
− πJz

2
σ1
zσ

2
z −

πJxy
2

[
σ1
xσ

2
x + σ1

yσ
2
y

]
.

(4.20)

It proves useful for the numerical simulations to recast the Schrodinger equa-

tion into dimensionless form. Let b1,2 = ~ωrf1,2/2 and λ = ~a/b22. Introduce the

dimensionless time τ = (a/b2)t. The TRP quartic twist expressed in dimensionless

time is then ϕ4(τ) = (η4/2λ)τ
4, where η4 = ~Bb22/a3. Multiplying both sides of
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Eq. (4.20) by (b2/a) finally yields the Hamiltonian in dimensionless form, which

reads

H0

2,d(τ) =

(
−d1 + d2

2
+
τ

λ

)
σ1
z +

(
−d2

2
+
τ

λ

)
σ2
z

− d3
λ

[
cosϕtrpσ

1
x + sinϕtrpσ

1
y

]
− 1

λ

[
cosϕtrpσ

2
x + sinϕtrpσ

2
y

]
− π

2

[
dzσ

1
zσ

2
z + dxy(σ

1
xσ

2
x + σ1

yσ
2
y)
]
,

(4.21)

where d1 = (b2/a)δω, d2 = (b2/a)∆, d3 = b1/b2 and dz,xy = (b2/a)Jz,xy. The

Hamiltonian H0

2,d(τ) depends on the TRP sweep parameters (λ, η4) as well as the

dimensionless coupling parameters (d1, d2, d3) and dz,xy. Here (d1, d2, d3, dz,xy) are

the dimensionless versions of, respectively, the Larmor frequency difference δω =

ω1 − ω2, the detuning parameter ∆, the Zeeman coupling ratio b1/b2 = γ1/γ2, and

the Heisenberg coupling strength Jz,xy.

Equation (4.21) presents the dimensionless nominal HamiltonianH0

2,d(τ), which

can be then integrated via the Schrodinger Equation to obtain U0,f = U0(τ0/2) which

maps the initial state |00⟩ to the state
∣∣β010⟩. Note that H0

2,d(τ) and U0(τ) are func-

tions of the dimensionless control parameters p = (η4, λ, d1, d2, d3, dz, dxy), and hence∣∣β010⟩ is a function of the control parameters p, as well as the dimensionless inver-

sion time τ0 = (a/b2)T . To produce a good approximate state
∣∣β010⟩ requires finding

suitable values for these parameters. As with the two-qubit simulation in Chapter 3

I set τ0 = 120 in all the numerical simulations presented below, and use simulat-

ed annealing [64] to find a parameter assignment p =
(
η4, λ, d1, d2, d3, dz, dxy

)
that
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minimizes the state error probability [65]

ϵ0(p) = 1−
∣∣⟨β010∣∣ β01⟩∣∣2 . (4.22)

which is equivalent to maximizing the state fidelity as

F0(p) =
∣∣⟨β010∣∣ β01⟩∣∣ =√1− ϵ0(p). (4.23)

I list the control parameter values I found in Table. 4.1. Numerical integration

of the two-qubit Schrodinger equation using the TRP control Hamiltonian H0

2,d(τ)

with these parameter values produces the state

∣∣β010⟩ =



−0.0070− 0.0066 i

−0.2053− 0.6870 i

−0.2006− 0.6672 i

0.0080 + 0.0164 i


. (4.24)

The error probability for the state
∣∣β010⟩ is

ϵ0(p) = 1−
∣∣⟨β010∣∣ β01⟩∣∣2 = 6.68× 10−4, (4.25)

and its fidelity

F0(p) =
√
1− ϵ0(p) = 0.9997. (4.26)

The state
∣∣β010⟩ produced by the TRP control carries two components: a

leading component along the target Bell state |β01⟩, and a small error component of

order O(
√
ϵ0(p)) along the other Bell states. Therefore, the state

∣∣β010⟩ is a good
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Table 4.1: The target state studied in this paper is the Bell state |β01⟩. The

TRP control parameter values listed for p =
(
η4, λ, d1, d2, d3, dz, dxy

)
were found

using simulated annealing, with the dimensionless control operation time τ0 = 120.

The state error probability was found by numerically integrating the two-qubit

Schrodinger equation and using Eq. (4.22).

η4 λ d1 d2 d3 dz dxy

4.526× 10−4 9.579 1.386 9.622 8.905 0.918 4.331

starting point for the NOC formalism. Hence I write

∣∣β010⟩ = U0,f |00⟩

= −e1.28i
√

1− ϵ0(p) |β01⟩+O(
√
ϵ0(p)),

(4.27)

where the phase factor −e1.28i is calculated by taking the inner product ⟨β01| β0
01⟩.

Note that the TRP control Hamiltonian with parameter values p also produces

the following states starting from the other three two-qubit computational basis

states. As with
∣∣β010⟩, these states each carry a leading component along one of the

other three Bell states |β00⟩, |β10⟩ and |β11⟩, and a small error component of order
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O(
√
ϵ000 ), O(

√
ϵ100 ), and O(

√
ϵ110 ), respectively:

U0,f |01⟩ =



−0.7054− 0.1678 i

0.0036 + 0.0139 i

−0.0130− 0.0143 i

−0.6694− 0.1595 i


=− e0.24i

√
1− ϵ000 |β00⟩+O(

√
ϵ000 )

U0,f |10⟩ =



−0.6686− 0.1591 i

0.0188 + 0.0311 i

0.0051− 0.0182 i

0.7053 + 0.1683 i


=− e0.24i

√
1− ϵ100 |β10⟩+O(

√
ϵ100 )

U0,f |11⟩ =



0.0374 + 0.0172 i

0.1214 + 0.6853 i

−0.1267− 0.7055 i

−0.0115 + 0.0006 i


=e1.39i

√
1− ϵ110 |β11⟩+O(

√
ϵ110 ).

(4.28)

4.2.3 NOC Strategy: Simulation Procedure

The goal is to apply the NOC strategy introduced in the previous section to

reduce the error components in each of these states. I now define the following

110



unitary matrix to be the target gate used in the NOC formalism:

Utgt =

 −e1.28i |β01⟩ −e0.24i |β00⟩ −e0.24i |β10⟩ e1.39i |β11⟩

 . (4.29)

As indicated in Section 4.2.2, the nominal Hamiltonian H0

2,d(τ) given in E-

q. (4.21) fixed by the parameter values in Table 4.1 gives rise to a unitary U0(τ),

such that U0,f = U0(τ0/2) is a good approximation to the target gate Utgt given by

Eq. (4.29). Taking this as input, I then apply the NOC strategy to determine a

control modification ∆F(τ), such that the new Hamiltonian

H2,d(τ) = H0

2,d(τ) +
3∑
j=1

Gj(τ)∆Fj(τ) (4.30)

gives rise to a new unitary U(τ) that U(τ0/2) is a better approximation to the target

gate Utgt. By construction, U(τ0/2) will map the initial state |ψ(−τ0/2)⟩ = |00⟩ to

|ψ(τ0/2)⟩ = |β01′⟩, which is a better approximated physical Bell state.

I apply Strategy 2 presented in Chapter 2.5.2 to solve for the control modifica-

tion ∆F(τ). As noted earlier, ∆F(τ) is determined by solving the Ricatti equation

Eq. (2.55) and the Schrodinger equation Eq. (2.57), and applying the feedback con-

trol law Eq. (2.53), with t = b2τ/a:

dS

dτ
= −Q+ SGR−1G†S, S(τ0/2) = I16×16, (4.31)

d

dτ
∆y = −GC∆y, y(−τ0/2) = ∆β, (4.32)

∆F(τ) = −C(τ)∆y(τ). (4.33)
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Here the matrixG(τ) is obtained by concatenating the columns ofGj = U †
0(τ)GjU0(τ),

with Gj given by Eq. (4.13) and U0(τ) determined by numerical integration of

the Schrodinger equation with the nominal Hamiltonian H0

2,d(τ). The initial val-

ue of ∆β for Eq. (4.32) is also found by concatenating the columns of the ma-

trix δβ = i[U †
0,fUtgt − I], with U0,f = U0(τ0/2) and Utgt given by Eq. (4.29).

C(τ) = R−1(τ)G†(τ)S(τ) is the control gain matrix.

The choice of the matrices R(τ) and Q(τ) are at our disposal. In the following

simulation I chose R(τ) = rG†(τ)G(τ) and S(τ) ≡ I16×16, and I chose r = 70. Sat-

isfying the Ricatti equation Eq. (4.31) then requires that Q(τ) ≡ G(G†G)−1G†/r.

Combining all these ingredients I get the solution to the Ricatti equation Eq. (4.31).

With the Ricatti matrix S(τ) known, the control gain matrix C(τ) is known, and

Eq. (4.32) can then be integrated for ∆y(τ). With ∆y(τ) in hand, Eq. (4.33) de-

termines the control modification ∆F(τ), which, added to the TRP control profile

F0(τ), gives rise to the improved new control F(τ) = F0(τ) + ∆F(τ). The im-

proved new control F(τ) finally determines U(τ) and Uf = U(τ0/2) via numerical

integration of the Schrodinger equation:

i
d

dτ
U(τ) = H2[F(τ)]U(τ). (4.34)

The state prepared by F(τ) is then

|β01a⟩ = Uf |00⟩ , (4.35)

whose fidelity is

Fa = |⟨β01a| β01⟩| , (4.36)
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and the error probability is

ϵa = 1−F2
a . (4.37)

In the following sections I present the numerical simulation results for the

NOC-prepared approximated Bell state |β01a⟩, for both ideal control and non-ideal

control.

4.2.4 Physical Bell state |β01⟩ prepared via NOC: ideal control

With the control modification ∆F(τ) determined via the NOC numerical pro-

cedure presented in Section 4.2.3, numerically integrating the Schrodinger equation

using the improved control F(τ) = F0(τ) + ∆F(τ) in the Zeeman coupling term

then drives the initial state |00⟩ to the following improved state

|β01a⟩ =



−0.0043− 0.0043i

−0.2044− 0.6849i

−0.2006− 0.6701i

0.0059 + 0.0118i


(4.38)

which has error probability

ϵa = 1− |⟨β01a| β01⟩|2 = 2.58× 10−6 (4.39)

and fidelity Fa = 0.999999. Therefore, NOC produces an extremely high-fidelity

approximation to the Bell state |β01⟩ in a single shot.

I estimate the bandwidth needed for the NOC control modification ∆F(t) from

Figure 4.2 which shows the Fourier transform module |∆Fx(ω)| of the x-component
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dimensionless control field modification ∆Fx(τ); the y-and z-components behave

similarly. It is shown that |∆Fx(ω)| is reduced to 1-2% of its peak value for |ω| & 60,

giving a dimensionless bandwidth ∆ω ∼ 60. Choosing a control operation time

T = 5µs, which then corresponds to the dimensionless time τ0 = 120, gives a

physical bandwidth ∆ω ∼ (120/5µs)∆ω = 1.44GHz, which is within the range of

some commercially available arbitrary waveform generators (AWG). From the known

values of control operation time T , and the dimensionless control parameters p and

τ0, it is straightforward to determine the values of the dimensionful parameters, i.e.

the coupling constants γi and Jz,xy and the TRP control parameters B, B0 and

Brf . With these values, the improved (dimensionful) control F(t) is fully specified.

Experimental application of F(t) to a pair of qubits in the state |00⟩ leaves them in

an extremely high-fidelity approximation to the Bell state |β01⟩.

4.2.5 Physical Bell state |β01⟩ prepared via NOC: non-ideal control

In this section I examine the robustness of performance of NOC to two impor-

tant control imperfections: the impact of control parameters with finite precision,

and phase noise in the nominal control field.

(i) Finite-precision control parameters. As seen in Section 4.2.2, the NOC for-

malism requires the nominal Hamiltonian H2
0(τ) to produce a good approximation∣∣β010⟩ to the target state |β01⟩. The NOC control modification ∆F(τ) is optimal

for H2
0(τ). If I shift the parameter values in H2

0(τ), causing it to be altered

H2
0(τ) → H2

0′(τ), then ∆F(τ) may no longer be optimal for the altered Hamil-
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Figure 4.2: The Fourier transform module |∆Fx(ω)| of the x-component dimension-

less control modification ∆Fx(τ) used to prepare a NOC improved approximation

to the state |β01⟩. Here ω is dimensionless frequency.

tonian. Because the experimental hardware used to implement H2
0(τ) has limited

precision, it becomes important to determine how much precision is required of the

control parameters p if the high-fidelity state |β01a⟩ found under ideal control is to

be produced.

I showed that for the control parameters with values p in Table 4.1, F(τ)

produces the state |β01a⟩, whose error probability is ϵa = 2.58 × 10−6. To examine

the robustness of this result, I shift one control parameter away from its optimum

value in its the fourth significant digit, while keeping the rest at optimum. This

causes H2
0(τ) → H2

0′(τ). I then numerically integrated the Schrodinger equation
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with the sub-optimal Hamiltonian H′(τ) = H2
0′(τ) +

3∑
j=1

Gj(t)∆Fj(τ). The results

are summarized in Tables 4.2-4.8. I found for example that for λ = (9.579+/−0.001),

the error probability changes to ϵ′a = 3.35/0.789 × 10−5, while for η4 = (4.526 +/−

0.001)× 10−4, the error probability shifts to ϵ′a = (1.35/1.90)× 10−5. This indicates

that all control parameters must be controlled to better than one part in 10,000 if the

high-fidelity NOC performance is to be realized. This degree of control parameter

precision is attainable with an AWG with 14-bit vertical resolution (viz. one part in

214 = 16,384). Such AWGs are commercially available. Note that 13-bit precision

corresponds to a precision of one part in 213 = 8192, and so leads to uncertainty

in the fourth significant digit. Thus, with less than 14 bits of precision, the NOC

performance will be diminished by the uncertainty in the least significant digit of

the control parameter values.

(ii) Phase/timing jitter Ideally, the clock in an AWG outputs a sequence of

ticks with constant time separation Tclock, derived from an oscillatory process with

phase ϕ(t) = (2πfclock)t and frequency fclock = 1/Tclock. In reality, the time between

ticks is a stochastic process T = Tclock+δt, where the timing error δt has a vanishing

mean δt = 0, and a standard deviation σt =
√
δt2. The timing error δt causes

a phase error δϕ = (2πfclock)δt which also has vanishing mean, δϕ = 0, and its

standard deviation σϕ =

√
δϕ2 is known as phase jitter. It is straightforward to

show [66] (and in Appendix B) that σt = σϕ/(2πfclock).

The timing errors introduce phase noise into the TRP control F0(t). Specif-

ically, the TRP twist angle ϕ4(τ) = (η4/2λ)τ
4 picks up a phase noise δϕ(τ) due
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Table 4.2: Sensitivity of error probability ϵa to a small variation of η4 away from

its optimum value. For all η4 values, the other control parameters are maintained at

the optimum values (the optimum value for η4 is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

η4 ϵa (with NOC)

4.524× 10−4 5.12× 10−5

4.525× 10−4 1.90× 10−5

4.526× 10−4∗ 2.58× 10−6

4.527× 10−4 1.35× 10−5

4.528× 10−4 1.35× 10−5

Table 4.3: Sensitivity of error probability ϵa to a small variation of λ away from

its optimum value. For all λ values, the other control parameters are maintained at

the optimum values (the optimum value for λ is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

λ ϵa (with NOC)

9.577 1.75× 10−5

9.578 7.89× 10−6

9.579∗ 2.58× 10−6

9.580 3.35× 10−5

9.581 1.00× 10−4
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Table 4.4: Sensitivity of error probability ϵa to a small variation of d1 away from

its optimum value. For all d1 values, the other control parameters are maintained at

the optimum values (the optimum value for d1 is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

d1 ϵa (with NOC)

1.384 5.90× 10−5

1.385 2.37× 10−5

1.386∗ 2.58× 10−6

1.387 1.99× 10−5

1.388 2.82× 10−5

Table 4.5: Sensitivity of error probability ϵa to a small variation of d2 away from

its optimum value. For all d2 values, the other control parameters are maintained at

the optimum values (the optimum value for d2 is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

d2 ϵa (with NOC)

9.620 1.40× 10−4

9.621 5.31× 10−5

9.622∗ 2.58× 10−6

9.623 2.70× 10−5

9.624 2.02× 10−5
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Table 4.6: Sensitivity of error probability ϵa to a small variation of d3 away from

its optimum value. For all d3 values, the other control parameters are maintained at

the optimum values (the optimum value for d3 is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

d3 ϵa (with NOC)

8.903 1.37× 10−5

8.904 4.68× 10−6

8.905∗ 2.58× 10−6

8.906 8.05× 10−6

8.907 1.18× 10−5

Table 4.7: Sensitivity of error probability ϵa to a small variation of dz away from

its optimum value. For all dz values, the other control parameters are maintained at

the optimum values (the optimum value for dz is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

dz ϵa (with NOC)

0.916 4.18× 10−4

0.917 1.67× 10−4

0.918∗ 2.58× 10−6

0.919 8.70× 10−5

0.920 8.15× 10−5
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Table 4.8: Sensitivity of error probability ϵa to a small variation of dxy away from its

optimum value. For all dxy values, the other control parameters are maintained at

the optimum values (the optimum value for dxy is denoted by superscript ∗). Column

2 shows the variation of ϵa when the control field includes the NOC modification

∆F(τ).

dxy ϵa (with NOC)

4.329 1.38× 10−3

4.330 5.59× 10−4

4.331∗ 2.58× 10−6

4.332 1.33× 10−4

4.333 2.33× 10−4

to the timing error δτ in τ (I have switched over to dimensionless time): ϕ4(τ) →

ϕ′
4(τ) = ϕ4(τ) + δϕ(τ). This causes the TRP control to twist incorrectly and yields

a noisy profile: F0(τ) → F′
0(τ). Because the phase noise cannot be known in ad-

vance, it is not possible to determine the control modification that is optimal for

the noisy control F′
0(τ). All one can do is calculate the NOC modification ∆F(τ)

that is optimal for the jitter-free TRP control F0(τ) and add it to F′
0(τ) to form the

new (noisy) control F′(τ) = F′
0(τ) + ∆F(τ). Since ∆F(τ) is not optimal for F′

0(τ),

the new control F′(τ) is sub-optimal, and it can be expected that the fidelity of the

NOC prepared state is reduced.

To quantitatively study the impact of phase jitter on NOC state preparation, I

modelled the phase noise δϕ(τ) as shot noise and used the model to generate numer-
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ical realizations of δϕ(τ). The details of the model and the protocol used to generate

noise realizations are described in Ref. [66] (see also Ref. [67] and Appendix B)).

Ref. [66] also showed that the average phase noise power P and the phase noise

variance σ2
ϕ are equal. Using this result, and the formula above relating σt and σϕ,

gives P = (2πfclock)
2σ2

t , which relates the timing error variance to the average phase

noise power introduced into the control. For each phase noise realization I deter-

mined the state |ψ(τ)⟩ by numerically integrating the Schrodinger equation driven

by the noisy control F′(τ) and used it to determine the error probability ϵ of the

state produced. I generated 10 realizations of phase noise δϕ(τ) and determined 10

corresponding error probabilities. From these values, the average error probability ϵ

and standard deviation σϵ were calculated and used to estimate the noise-averaged

performance of NOC preparation of the state |β01⟩.

For timing jitter σt = 5.03 ps and clock frequency fclock = 1GHz, typical of

commercially available AWGs, the simulations found ϵ± σϵ = (1.64± 0.16)× 10−5.

It is shown that, although timing errors do impact NOC performance, the resulting

error probabilities remain extremely small: ϵ . 2× 10−5 for commercially available

AWGs.

4.2.6 Improving the approximate Bell state

The high-fidelity approximate Bell state |β01a⟩ prepared via the single-shot

NOC approach in Section 4.2.4, which has an error probability ϵa ∼ 10−6 with ideal
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control, can be written in the Bell basis as

|β01a⟩ = a |β01⟩+ b |β10⟩+ c |β00⟩+ d |β11⟩ (4.40)

where

|a2| ∼ 1− ϵa

|b|2 + |c|2 + |d|2 ∼ ϵa

(4.41)

Other than the desired component along the |β01⟩ direction with amplitude ∼
√
1− ϵa, the |β01a⟩ state has components along the other Bell states, with amplitude

∼ √
ϵa. In this subsection I implement a projection circuit, which takes as input the

approximate Bell state |β01a⟩ whose error probability is O(ϵ), and returns a better

approximate Bell state |β01′⟩ with error probability O(ϵ2).

Note that
(I +X1X2)

2
|β01⟩ = |β01⟩

(I +X1X2)

2
|β10⟩ = 0

(I +X1X2)

2
|β00⟩ = |β00⟩

(I +X1X2)

2
|β11⟩ = 0,

(4.42)

and
(I − Z1Z2)

2
|β01⟩ = |β01⟩

(I − Z1Z2)

2
|β10⟩ = 0

(I − Z1Z2)

2
|β00⟩ = 0

(I − Z1Z2)

2
|β11⟩ = |β11⟩ .

(4.43)

Hence |β01⟩ is stabilized by the product of the two projection operators [ (I−Z1Z2)
2

][ (I+X1X2)
2

],

while the other Bell states are annihilated by this product. Therefore, ideal imple-

122



..
|β01a⟩

.
|β01′⟩

.

|+⟩ = |0⟩+|1⟩√
2

.

|+⟩

.

x(1)

.

x(2)

.

Z

.Z

Figure 4.3: The quantum projection circuit for high-fidelity Bell state |β01′⟩ prepa-
ration. The output is accepted only if the first measurement result x(1) has even

parity and the second measurement result x(2) has odd parity. By applying the

circuit twice and accepting the final state only if both sets of parity measurements

agree, the final state will have error probability O(ϵ2).

mentation of the circuit in Figure 4.3 on |β01a⟩ projects out the component along

|β01⟩ and annihilates components along the other Bell states.

Because real-world implementation of the projection circuit will utilize fault-

y gates and measurements, it is necessary to verify the measurement results. By

repeating the circuit in Figure 4.3 twice and only accepting the final state if the mea-

surement parities satisfy x
(1)
1 = x

(1)
2 = even and x

(2)
1 = x

(2)
2 = odd, the error probabil-

ity of the output state will be O(ϵ2), where ϵ = max (ϵa, ϵCNOT , ϵCZ , ϵ+, ϵmeasurement).

This is the level of accuracy required for the logical Bell state preparation in Sec-

tion 4.3. Note that using a single ancilla for each x-parity measurement does not

damage the fault-tolerance of the circuit in Figure 4.3. Examination of the conse-

quence of a fault at any single location in the circuit shows that to O(ϵ) the circuit

operates correctly. Circuit failure requires at least two errors, yielding a failure

probability of O(ϵ2).
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4.3 Step 2: Fault-tolerant preparation of logical
∣∣β01⟩

In this Section I describe a fault-tolerant procedure for preparing the logical

Bell state
∣∣β01⟩ which takes as input the high-fidelity Bell state prepared in Sec-

tion 4.2. I give two illustrations of the procedure (Sections 4.3.1 and 4.3.2) for the

[4, 2, 2] quantum error detecting code C4.

4.3.1 C4 logical Bell state preparation with two codeblocks

In this subsection I show how to fault-tolerantly prepare the logical Bell state∣∣β01⟩ for the [4, 2, 2] error detection code C4 [58]. The generators for this code

are [56,57]:

g1 = X1X2X3X4; (4.44a)

g2 = Z1Z2Z3Z4; (4.44b)

and the logical Pauli operators for the logical (L) and spectator (S) qubits are:

XL = X1X2I3I4; ZL = Z1I2Z3I4 (4.1a)

XS = I1X2I3X4; ZS = I1I2Z3Z4. (4.1b)
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The logical computational basis states are

∣∣00⟩ = N [I + g1 + g2 + g1g2] |0000⟩

=
1√
2
[|0000⟩+ |1111⟩] (4.1a)∣∣01⟩ = XS

∣∣00⟩ = 1√
2
[|0101⟩+ |1010⟩] (4.1b)∣∣10⟩ = XL

∣∣00⟩ = 1√
2
[|1100⟩+ |0011⟩] (4.1c)∣∣11⟩ = XLXS

∣∣00⟩ = 1√
2
[|1001⟩+ |0110⟩], (4.1d)

and the logical Bell state
∣∣β01⟩ is

∣∣β01⟩ = ∣∣01⟩+ ∣∣10⟩
√
2

=
1

2
[|0101⟩+ |1010⟩+ |1100⟩+ |0011⟩] .

(4.1)

Consider the tensor product of two Bell states |β01⟩⊗2 = |β01⟩ ⊗ |β01⟩. If one

labels the qubits in the first (second) pair as 1 and 2 (3 and 4), then

|β01⟩⊗2
12;34 =

1

2
[|0101⟩+ |0110⟩+ |1001⟩+ |1010⟩] . (4.2)

A simple calculation shows that the state |β01⟩⊗2
12;34 is stabilized by the C4 generators

(gi |β01⟩⊗2
12;34 = |β01⟩⊗2

12;34, i = 1, 2) and so belongs to the C4 codespace. It is straight-

forward to check that this state is also a simultaneous eigenvector of XL and ZS

with respective eigenvalues 1 and −1:

|β01⟩⊗2
12;34 = |+⟩L

∣∣1⟩
S
. (4.3)

If one instead labels the qubits in the first (second) pair as 1 and 3 (2 and 4), then

|β01⟩⊗2
13;24 =

1

2
[|0011⟩+ |0110⟩+ |1001⟩+ |1100⟩] , (4.4)
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which is found by swapping qubits 2 and 3 in Eq. (4.2). Simple calculation again

shows that |β01⟩⊗2
13;24 lies in the C4 codespace and is a simultaneous eigenvector of

ZL and XS:

|β01⟩⊗2
13;24 =

∣∣1⟩
L
|+⟩S . (4.5)

Suppose one prepares two C4 codeblocks in the state

|β01⟩⊗2
12;34 ⊗ |β01⟩⊗2

57;68 = |+⟩L
∣∣1⟩

S
⊗
∣∣1⟩

L′ |+⟩S′ . (4.6)

Since C4 is a CSS code [68], applying CNOT gates transversally using the LS block

as the control simultaneously applies logical CNOT gates between the L − L′ and

S − S ′ qubits. This leads to the action

|+⟩L
∣∣1⟩

S
⊗
∣∣1⟩

L′ |+⟩S′ →
∣∣β01⟩LL′

∣∣1⟩
S
|+⟩S′ . (4.7)

The result is that logical qubits L and L′ are in the logical Bell state
∣∣β01⟩LL′ and

the spectator qubits are in the unentangled state
∣∣1⟩

S
|+⟩S′ .

Similarly, if one prepares the C4 codeblocks in the state

|β01⟩⊗2
13;24 ⊗ |β01⟩⊗2

56;78 =
∣∣1⟩

L
|+⟩S ⊗ |+⟩L′

∣∣1⟩
S′ , (4.8)

and apply transversal CNOT gates using the L′S ′ codeblock as the control, this

produces the action

∣∣1⟩
L
|+⟩S ⊗ |+⟩L′

∣∣1⟩
S′ →

∣∣β01⟩LL′ |+⟩S
∣∣1⟩

S′ . (4.9)

The 1-Preparation gadgets (1-Prep) for applying the actions in Eqs. (4.7) and

(4.9) appear in Figs. 4.4a and 4.4b, respectively. Applying the logical operator

XS (XS′) to the LS (L′S ′) codeblock gives the final state
∣∣β01⟩LL′ ⊗

∣∣0⟩
S
|+⟩S′
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(
∣∣β01⟩LL′⊗|+⟩S

∣∣0⟩
S′) which is used at even (odd) time steps in Knill’s post–selected

quantum computation [57,62].

By applying the preparation procedure in Section 4.2.3 twice one obtains two

pairs of qubits in the state |β′
01⟩

⊗2. By appropriate labelling of the qubits this gives

a high-fidelity (O(ϵ2)) approximation to the state |+⟩L
∣∣1⟩

S
or
∣∣1⟩

L
|+⟩S. By using

these states as input to the circuits in Figure 4.4 a high-fidelity approximation to

the logical Bell state
∣∣β01⟩ in the [4, 2, 2] codespace is obtained.

A 1-Preparation exRec (1-Prep exRec) is formed by applying an error detection

gadget (1-ED) to each codeblock exiting the 1-Prep gadget. The output state of

the 1-exRec is accepted only if no error is detected by the 1-ED gadgets. Fault-

tolerance requires that a single fault in the 1-Prep exRec causes no more than

one error in each of the output codeblocks. From Section 4.2.6, the input state

|β′
01⟩

⊗2 = |β01⟩⊗2 + O(ϵ2). Thus, to O(ϵ), no error is present in the input state.

To this same orderO(ϵ), at most one fault occurs in the remainder of the 1-Prep

exRec. If a single 0-gate in the 1-Prep gadget is faulty, it causes at most one error in

each codeblock. Such errors will be detected by the faultless trailing 1-ED gadgets,

causing the state to be rejected. If instead, the fault occurs in one of the trailing

1-ED gadgets, no more than one error will appear in the output state of the 1-exRec.

Thus, in all cases, a single fault does not lead to more than one error in the output

state and so the 1-Prep exRec operates fault-tolerantly.
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|+⟩L

.

|1⟩S
.

|+⟩S′

.

|1⟩L′

. |β01⟩LL′ ⊗ |1⟩S |+⟩S′

.

(a)

..

|1⟩L

.

|+⟩S
.

|1⟩S′

.

|+⟩L′

. |β01⟩LL′ ⊗ |+⟩S |1⟩S′

.

(b)

Figure 4.4: The 1-Preparation gadgets for the logical Bell state
∣∣β01⟩. (a) This

gadget leaves the logical qubits L and L′ in the state
∣∣β01⟩LL′ and the spectator

qubits S and S ′ in the state
∣∣1⟩

S
|+⟩S′ . Applying XS to the circuit output gives the

final state
∣∣β01⟩LL′ ⊗

∣∣0⟩
S
|+⟩S′ which can be used for even time step teleportation

in Knill’s post-selected quantum computation. (b) Here the spectator qubits are

output in the state |+⟩S
∣∣1⟩

S′ . Applying XS′ to the lower codeblock gives the final

state
∣∣β01⟩LL′ ⊗ |+⟩S

∣∣0⟩
S′ which can be used for odd time step teleportation.

4.3.2 C4 logical Bell state preparation with single codeblock

Here I show how to prepare a C4 codeblock in the logical Bell state
∣∣β01⟩,

leveraging our NOC preparation procedure for the physical Bell state |β01⟩.

To begin, note that
∣∣β01⟩ is a common eigenvector of XLXS and −ZLZS,

both with eigenvalue 1. I showed in Section 4.3.1 that the state |β01⟩⊗2
12;34 is in the

C4 codespace. Consequently, the logical projection operators

∏
(−ZLZS) =

1

2
(I − ZLZS);∏

(XLXS) =
1

2
(I +XLXS)

can be used to prepare the logical Bell state
∣∣β01⟩:

∣∣β01⟩ = N
∏

(−ZLZS)
∏

(XLXS) |β01⟩⊗2
12;34 , (4.10)

where N is a normalization constant. In the following I suppress the 12; 34 subscript.
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..

|β01⟩⊗2

.

|β01⟩
.

|cat4⟩ = |0000⟩+|1111⟩√
2

.

|cat4⟩

.

x

.

x

.

Zwt(x)

.

Zwt(x)

.

Z

.Z.

X1−wt(x)

.

X1−wt(x)

Figure 4.5: The ideal 1-Prep gadget for the logical Bell state
∣∣β01⟩. The first (sec-

ond) classically controlled gate applies ZL = Z1I2Z3I4 (XL = X1X2I3I4) when the

measurement result gives wt(x) = 1 (wt(x) = 0).

The circuit in Figure 4.5 implements the action in Eq. (4.10) and serves as the

ideal 1-Prep gadget for
∣∣β01⟩. The initial state is |ψ0⟩ = |β01⟩⊗2⊗|cat4⟩, where |cat4⟩

is the 4-physical qubit cat state (see Figure 4.5). Noting that XLXS = X1I2I3X4,

the CNOT gates apply a controlled-XLXS gate to the codeblock. The qubit state

after these gates is

|ψ1⟩ =
1√
2

(
|β01⟩⊗2 ⊗ |0000⟩+XLXS |β01⟩⊗2 ⊗ |1111⟩

)
=
1

2

∏(XLXS) |β01⟩⊗2 ⊗
∑

wt(x)=0

|x1 · · · x4⟩

+
∏

(−XLXS) |β01⟩⊗2 ⊗
∑

wt(x)=1

|x1 · · · x4⟩

 .
(4.11)

Here xi = 0, 1 labels the eigenvalues/eigenvectors of the X-Pauli operator: X |xi⟩ =

(−1)xi |xi⟩; x = (x1, · · · , x4) and wt(x) = x1 ⊕ · · · ⊕ x4 with ⊕ representing the

modulo 2 addition. The circuit then measures each ancilla qubit in the X-basis,
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which (discarding the ancilla qubits) leaves the codeblock in the state

|ψ2⟩ =


N
∏

(XLXS) |β01⟩⊗2 (wt(x) = 0)

N
∏

(−XLXS) |β01⟩⊗2 (wt(x) = 1),

(4.12)

where N is a normalization constant.

The first half of the ideal 1-Prep gadget correctly applies
∏
(XLXS) to

∣∣β01⟩⊗2

when wt(x) = 0, and incorrectly applies
∏
(−XLXS) otherwise. If ZL is applied to

the codeblock when wt(x) = 1, the projection is corrected to
∏
(XLXS). Thus the

codeblock state after the classically controlled-ZL gate is

|ψ3⟩ = N
∏

(XLXS) |β01⟩⊗2 =
1√
2

[∣∣β01⟩+ ∣∣β00⟩] (4.13)

A similar analysis shows that the remainder of the circuit applies
∏
(−ZLZS)

so that the ideal 1-Prep gadget leaves the codeblock in the state

|ψfinal⟩ = N
∏

(−ZLZS) |ψ3⟩ =
∣∣β01⟩ (4.14)

as desired. As in Section 4.3.1, the NOC state preparation protocol can be used to

produce the state |β′
01⟩

⊗2 which is a high-fidelity approximation to |β01⟩⊗2. Inputting

|β′
01⟩

⊗2 into the ideal 1-Prep gadget, a high-fidelity (O(ϵ2)) approximation to the

logical Bell state
∣∣β01⟩ is obtained.

In reality, the circuit elements appearing in Figure 4.5 will be faulty and in-

troduce errors into the circuit’s operation. It is thus necessary to follow a non-ideal

1-Prep gadget for
∣∣β01⟩ with a 1-ED gadget. The output of the 1-ED gadget is

accepted only if no error is detected. Errors can appear through the input states,

as well as through the 0-gates and 0-measurements. As the 0-gates are applied
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transversally, these gates are fault-tolerant. It is showed in Section 4.3.1 that the

input state |β′
01⟩

⊗2 = |β01⟩⊗2 + O(ϵ2) and so, to O(ϵ), is exactly |β01⟩⊗2. The cat

state must be verified so that to O(ϵ) it is free of bit-flip errors which would spread

to the codeblock through the CNOT and controlled-Z gates. A procedure for doing

this is well-known [11].

A 0-measurement error can occur either because of a faulty 0-measurement or

due to a phase error in the cat state. Fault-tolerance requires that the measurement

be repeated twice and the result accepted only if the two measurement results agree.

Requiring wt(x1) = wt(x2) ≡ wt(x) insures that either both measurements are in-

correct (with probability O(ϵ2)), or both are correct (with probability 1−O(ϵ2)). To

O(ϵ) then, both measurements are correct and the result for wt(x) can be accepted.

In light of these remarks, the 1-Prep exRec for
∣∣β01⟩ implements the following pro-

tocol based on Figure 4.5: (1) Apply the CNOT gates; measure x; and apply a 1-ED

gadget to the codeblock. (2) Repeat Step (1) and accept the codeblock if the two

measurement results agree and neither 1-ED gadget detects an error. Apply Z
wt(x)

L

to the codeblock if it is accepted. (3) If the codeblock in Step (2) was accepted,

apply the controlled-Z gates; measure x; and apply a 1-ED gadget to the codeblock.

(4) Repeat Step (3) and accept the codeblock if the two measurement results agree

and neither 1-ED gadget detected an error. Apply X
(1−wt(x))
L to the codeblock if it

is accepted. To O(ϵ), the protocol insures that an accepted codeblock contains at

most one error and is thus fault-tolerant.

131



Chapter 5: Conclusion

In this thesis I described the application of the neighboring optimal control

theory to quantum computation. I first applied the general theory of neighbor-

ing optimal control to improve the quantum gate performance, and illustrated the

theory by applying it to improve all gates in a universal set GU produced using a

form of non-adiabatic rapid passage known as TRP. Here I stress that the NOC

approach introduced here is not limited to this family of starting gates—any other

good quantum gate, or set of gates, could serve as input for the method.

I also presented results from numerical simulations of applying the control

modification determined by the NOC strategy to improve the gate performance, both

for ideal and non-ideal control. For ideal control, I showed that the improvements

are substantial : (i) for all one-qubit gates in the universal set, the gate error

probabilities were reduced by four orders-of-magnitude (10−4 → 10−8); and (ii) for

the two-qubit gate in the set, by two orders-of-magnitude (10−3 → 10−5).

I examined the bandwidth required to implement the ideal controls and showed

that for gate times 1µs ≤ T ≤ 5µs, the bandwidth ∆f for all gates was in the range

130MHz ≤ ∆f ≤ 820MHz, which is within the capabilities of commercially avail-

able arbitrary waveform generators. I examined the robustness of these performance
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improvements to two important sources of non-ideal control: (i) control parameter-

s with finite precision; and (ii) timing/phase jitter resulting from clock errors in

the control electronics. I found that the NOC performance gains require arbitrary

waveform generators with 14-bit (17-bit) vertical resolution for the one-qubit (two-

qubit) gates. I also showed that timing/phase jitter can significantly impact the

NOC performance gains. It can be seen that for 5ps timing jitter (comparable to

that in commercially available AWGs), the gate error probability satisfies Pe ∼ 10−5

for all the gates in the universal set, an order-of-magnitude lower than the accuracy

threshold target value of 10−4.

For convenience, I summarized the results for ideal control and for imperfect

control with a timing jitter of 5.03ps in Table 5.1. For comparison I include the

TrP upper bound on the gate error probability Pe for all gates with and without

the neighboring optimal control improvements.

Finally, I showed that if timing jitter can be reduced to σt = 1.26ps, the error

probability for all one-qubit gates in GU drops to Pe ∼ 10−6, while the two-qubit

gate error probability remains unchanged at 5.21×10−5. All gates thus operate with

an error probability 1–2 orders-of-magnitude below the target threshold of 10−4.

Although I focused on a target accuracy threshold Pa = 10−4 in this thesis, I note

that for surface and color quantum error correcting codes, the accuracy threshold

satisfies Pa ∼ 10−3 [69–73]. For these codes, the NOC improved gates all operate

2–3 orders-of-magnitude below threshold, even for non-ideal control.

The availability of a universal set of quantum gates operating so far below

threshold would have a significant impact on efforts to realize fault-tolerant quan-
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Table 5.1: Simulation results for all target gates in the universal set GU for ideal

control and for imperfect control with a timing jitter of 5.03ps. The first column

lists the target quantum gates. The second/third columns list the Tr P upper bound

for the gate error probability Pe for gates under ideal control, whose performance

has/has not been improved using neighboring optimal control (NOC). The fourth

columns lists the Tr P upper bound for gates under the timing jitter with NOC

applied.

Target Gate

Pe ≤ TrP
ideal

with NOC

Pe ≤ TrP
ideal

without NOC

Pe ≤ TrP
with timing jitter

with NOC

NOT ≤ 8.58× 10−9 ≤ 6.27× 10−5 (2.04± 1.80)× 10−5

Hadamard ≤ 1.04× 10−8 ≤ 1.12× 10−4 (2.11± 1.64)× 10−5

Modified π/8 ≤ 1.06× 10−8 ≤ 2.13× 10−4 (2.92± 1.96)× 10−5

Modified phase ≤ 1.08× 10−8 ≤ 4.62× 10−4 (3.04± 2.16)× 10−5

Modified controlled-phase ≤ 5.21× 10−5 ≤ 1.27× 10−3 (5.21± 0.00)× 10−5

tum computing as it would greatly reduce the resources needed to implement such

a computation. It is hoped that the NOC gate performance improvements found in

this paper might encourage an attempt to produce these high-fidelity gates experi-

mentally.

In Chapter4 I adapted the NOC theory to create a two-step procedure for

logical state preparation, and I illustrated this procedure by using it to prepare a

logical Bell state
∣∣β01⟩. The NOC theory was applied in Step 1 of the procedure

to prepare a high-fidelity approximate physical Bell state |β01a⟩ in a single shot.

Numerical simulation results were presented for both ideal and non-ideal control. I
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showed that this single-shot NOC approach is able to achieve a preparation error

probability of ϵ ∼ 10−6 for ideal control. This required a bandwidth of 1.44GHz

given a control operation time of 5µs, and a vertical resolution of 14-bit for control

parameters, all within the range of commercially available arbitrary waveform gen-

erators (AWG) [51, 52]. In Section4.2.5 I showed that when the control is subject

to timing jitter error, the NOC performance would be impacted, while the resulting

error probabilities remain extremely small: ϵ . 2×10−5 for the level of timing jitter

noise that is typical for commercially available AWGs. In Step 2, I took copies of the

high-fidelity physical Bell states |β01⟩ prepared via Step 1, and sent them through

a simple quantum circuit which fault-tolerantly prepares the logical Bell state
∣∣β01⟩

using the C4 quantum error detection code.

Throughout this thesis, I assumed that the qubit longitudinal (T1) and trans-

verse (T2) relaxation times are long compared to the gate operation time Tgate for

achieving the gate performance improvement, and the control operation time Tcontrol

for preparing the approximate physical Bell state |β01a⟩. This assumption is essen-

tial for any discussion of fault-tolerant quantum computing and error correction as it

insures that the qubit state does not decohere before the error-syndrome extraction

circuit can be applied, and errors identified. When T1, T2 ≫ Tgate, Tcontrol, control

imperfections are expected to be the primary source of errors during the control

operation, and the qubit environment a secondary source. On the other hand, when

T1, T2 . Tgate, Tcontrol, the qubits are of sufficiently poor quality that errors from the

qubit environment can be expected to be (at least) as bad as the types of errors I

have examined in this thesis. The NOC strategy presented in this thesis for improv-
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ing quantum gate performance and for high-fidelity physical state preparation does

not remove the need for high-quality qubits as the object of the control operations.
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Appendix A: Twisted Rapid Passage: A Few Results

I illustrated the general theory developed in Chapter 2 by using it in Chapter 3

to improve the performance of a universal set of quantum gates. The gates are

using a form of non-adiabatic rapid passage known as twisted rapid passage (TRP)

[38]- [44]. In Section 3.1 I provided a brief introduction to TRP. Here I review

TRP. Appendix A.1 presents a derivation of the dimensionless one- and two-qubit

Hamiltonians used to drive the quantum gates produced using TRP. Appendix A.2

derives an expression for the gate error probability, as well as a convenient upper

bound for it. I stress that the NOC approach to improving a good quantum gate

(or set of gates) is not limited to this TRP-generated family of gates. Any good

gate could provide the starting point for the method.

A.1 One- and two-qubit Hamiltonians

(a) For the one-qubit gates studied in this paper, the qubit is assumed to

couple to an external control field F(t) through the Zeeman-interaction,

H1
0 (t) = −σ · F(t), (A.1)
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where F(t) has the TRP profile,

F(t) = atẑ+ b cosϕ4(t)x̂+ b sinϕ4(t)ŷ. (A.2)

For a quartic twist, ϕ4(t) = (1/2)Bt4 for −T/2 ≤ t ≤ T/2. The Schrodinger

equation for the propagator U(t,−T/2) is

i~
dU(t)

dt
= [−atσz − b cosϕ4(t)σx − b sinϕ4(t)σy]U(t), (A.3)

where I have suppressed the −T/2 dependence in U(t,−T/2). It is useful to express

Eq. (A.3) in dimensionless form. To that end I define: (i) the dimensionless time τ =

(a/b)t; (ii) the dimensionless inversion rate λ = ~a/b2; and (iii) the dimensionless

twist strength η4 = ~Bb2/a3. In terms of these parameters, Eq. (A.3) becomes

i
dU(τ)

dτ
= H1

0 (τ)U(τ), (A.4)

where the dimensionless one-qubit Hamiltonian is

H1
0 (τ) =

1

λ
[−τσz − cosϕ4(τ)σx − sinϕ4(τ)σy] , (A.5)

and ϕ4(τ) = (η4/2λ)τ
4. This is the nominal one-qubit Hamiltonian discussed in

Section 3.2 that drives the numerical simulation of all one-qubit gates considered in

this paper.

(b) I next derive the dimensionless nominal two-qubit Hamiltonian H2
0 (τ) dis-

cussed in Section 3.2 and which drives the numerical simulations of the two-qubit

modified controlled phase gate. Although a more general discussion is possible, it

proves convenient to adopt the language of NMR which was the original experimen-

tal setting for TRP [39,74].
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The two-qubit Hamiltonian contains terms that Zeeman-couple each qubit to

an external control field F(t), and an Ising interaction term that couples the two

qubits. Note that alternative two-qubit interactions can easily be considered by

straightforward modification of the following arguments. Our starting point is thus

the Hamiltonian

H
2

0(t)

~
= −1

2

2∑
i=1

γi σ
i · F(t)− π

2
J σ1

zσ
2
z , (A.6)

where γi is the gyromagnetic ratio for qubit i, and J is the Ising interaction coupling

constant. In the lab frame, F(t) has a static component B0 ẑ and a time-varying

component 2Brf cosϕrf (t) x̂. In the rotating wave approximation F(t) reduces to

F(t) = B0 ẑ+Brf cosϕrf (t) x̂−Brf sinϕrf (t) ŷ. (A.7)

Introducing ωi = γiB0 and ωrfi = γiBrf (i = 1, 2), and inserting Eq. (A.7) into

Eq. (A.6) gives

H
2

0(t)

~
=

2∑
i=1

[
−ωi

2
σiz −

ωrfi
2

{
cosϕrfσ

i
x − sinϕrfσ

i
y

}]
−π
2
J σ1

zσ
2
z . (A.8)

Transformation to the detector frame is done via the unitary operator

Udet(t) = exp
[
(iϕdet(t)/2)

(
σ1
z + σ2

z

) ]
.
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The Hamiltonian in the detector frame is then [45]

H̃
2

0(t)

~
= U †

det

(
H

2

0(t)

~

)
Udet − iU †

det

dUdet
dt

=
2∑
i=1

[(
−ωi

2
+ ϕ̇det

)
σiz

−ω
rf
i

2

{
cos (ϕdet − ϕrf )σ

i
x

+sin (ϕdet − ϕrf ) σ
i
y

}]
−π
2
J σ1

zσ
2
z . (A.9)

To produce a TRP sweep in the detector frame it is necessary to sweep ϕ̇det and ϕ̇rf

through a Larmor resonance frequency [39, 74]. I choose (somewhat arbitrarily) to

sweep through the Larmor frequency ω2:

ϕ̇det = ω2 +
2at

~
+∆

ϕ̇rf = ϕ̇det − ϕ̇4. (A.10)

Here ϕ4(t) = (1/2)Bt4 is the twist profile for quartic TRP, and I have introduced

a frequency shift parameter ∆ whose value is determined by the sweep parameter

optimization procedure described in Ref. [42]. Inserting Eqs. (A.10) into Eq. (A.9),

and introducing δω = ω1 − ω2 and bi = ~ωrfi /2 (i = 1, 2) yield

H̃
2

0(t)

~
=

[
−(δω +∆)

2
+
at

~

]
σ1
z +

[
−∆

2
+
at

~

]
σ2
z

−b1
~
[
cosϕ4 σ

1
x + sinϕ4 σ

1
y

]
−b2

~
[
cosϕ4 σ

2
x sinϕ4 σ

2
y

]
−π
2
J σ1

zσ
2
z . (A.11)

Here both qubits are acted on by a quartic TRP sweep in the detector frame.
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In keeping with my earlier choice of sweeping through the Larmor resonance

of the second qubit, I use b2 in the definitions of the dimensionless time τ , inversion

rate λ, and twist strength η4:

τ =

(
a

b2

)
t (A.12)

λ =
~a
(b2)

2 (A.13)

η4 =

(
~B
a3

)
(b2)

2 . (A.14)

Since H̃
2

0(t)/~ has units of inverse-time, and b2/a has units of time (Eq. (A.12)),

multiplying Eq. (A.11) by b2/a and using Eqs. (A.12)–(A.14) gives the dimensionless

two-qubit Hamiltonian H̃
2

0(τ):

H̃2(τ) =

[
−(d1 + d2)

2
+
τ

λ

]
σ1
z +

[
−d2

2
+
τ

λ

]
σ2
z

−d3
λ

[
cosϕ4 σ

1
x + sinϕ4 σ

1
y

]
−1

λ

[
cosϕ4 σ

2
x + sinϕ4 σ

2
y

]
−π
2
d4 σ

1
zσ

2
z , (A.15)

where

d1 =

(
δω

a

)
b2

d2 =

(
∆

a

)
b2

d3 =
b1
b2

d4 =

(
J

a

)
b2. (A.16)

As noted in Section 3.2, H̃2(τ) has a degeneracy in the resonance frequency of

the energy level pairs (E1 ↔ E2) and (E3 ↔ E4). To break this degeneracy I add
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the term

∆H = c4 |E4(τ)⟩⟨E4(τ)| (A.17)

to H̃
2

0(τ), where |E4(τ)⟩ is the instantaneous energy eigenstate of H̃
2

0(τ) with eigen-

value E4(τ). Thus

H2
0 (τ) = H̃

2

0(τ) + ∆H (A.18)

which is the Hamiltonian given in Eq. (3.10). The Hamiltonian H2
0 (τ) depends

on the TRP sweep parameters (λ, η4), as well as on the parameters (d1, . . . , d4)

and c4. Eq. (A.16) shows that d1, d2, d3, and d4 are the dimensionless versions

of, respectively, the Larmor frequency difference δω = ω1 − ω2, the frequency shift

parameter ∆, the ratio b1/b2 = γ1/γ2, and the Ising coupling constant J .

For a derivation of the one-qubit TRP Hamiltonian (Eq. (A.1)) based on an

NMR experimental implementation, see the Appendix of Ref. [38].

A.2 Gate error probability

The following argument is for an N -dimensional Hilbert space. As in Sec-

tion 3.2, let Ua denote the actual unitary operation produced by a given set of

TRP sweep parameters, and Utgt a target unitary operation we would like TRP to

approximate as closely as possible. Introducing the operators D = Ua − Utgt and

P = D†D, and the normalized state |ψ⟩, I define |ψa⟩ = Ua|ψ⟩ and |ψtgt⟩ = Utgt|ψ⟩.

Now choose an orthonormal basis |i⟩ (i = 1, . . . , N) such that |1⟩ ≡ |ψtgt⟩ and define
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the state |ξψ⟩ via

|ψa⟩ = |ψtgt⟩+ |ξψ⟩ (A.19)

= |1⟩+ |ξψ⟩ . (A.20)

Inserting |ξψ⟩ =
∑N

i=1 ei|i⟩ into eq. (A.20) gives

|ψa⟩ = (1 + e1) |1⟩+
∑
i̸=1

ei|i⟩ . (A.21)

Since |ψtgt⟩ = |1⟩ is the target state, it is clear from Eq. (A.21) that the error

probability Pe(ψ) for Ua (i. e. TRP) is

Pe(ψ) =
∑
i ̸=1

|ei|2 . (A.22)

I now define the error probability Pe for the TRP gate to be

Pe ≡ max
|ψ⟩

Pe(ψ) . (A.23)

From Eq. (A.19),

|ξψ⟩ = D|ψ⟩

and

⟨ξψ|ξψ⟩ = ⟨ψ|D†D|ψ⟩

= TrρψP , (A.24)

where ρψ = |ψ⟩⟨ψ|. On the other hand,

⟨ξψ|ξψ⟩ =
N∑
i=1

|ei|2

= |e1|2 + Pe(ψ) . (A.25)
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Combining Eqs. (A.24) and (A.25) gives

Pe(ψ) = ⟨ξψ|ξψ⟩ − |e1|2 (A.26)

≤ ⟨ξψ|ξψ⟩ = TrρψP . (A.27)

Since P = D†D is Hermitian it can be diagonalized: P = O†dO and d =

diag(d1, . . . , dN). Thus

Pe(ψ) ≤ Tr ρψd , (A.28)

where ρψ = OρψO
†. Let d∗ = max(d1, . . . , dN), then direct evaluation of the trace

gives

Tr ρψd =
N∑
i=1

di
(
ρψ
)
ii

(A.29)

≤
N∑
i=1

d∗
(
ρψ
)
ii
= d∗ Tr ρψ = d∗ , (A.30)

where I have used that Tr ρψ = 1. Thus Pe(ψ) ≤ d∗ for all states |ψ⟩. From

Eq. (A.23), it follows that

Pe ≤ d∗ , (A.31)

so that the largest eigenvalue d∗ of P is an upper bound for the gate error probability

Pe. Finally, notice that P = D†D is a positive operator so that di ≥ 0 for i =

1, . . . , N . Thus d∗ ≤ Tr P and so

Pe ≤ d∗ ≤ Tr P . (A.32)

Although Tr P need not be as tight an upper bound on Pe as d∗, it is much easier

to calculate and so is more convenient than d∗ for use in my numerical simulations.
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Appendix B: Modeling phase noise effects

In this Appendix I present the noise model that I used to study the impact

of phase noise on the NOC improved TRP gates presented in Section 3.3 and the

NOC prepared physical Bell state presented in Section 4.2.5. Appendix B.1 intro-

duces the noise model and establishes key relations between the noise parameters;

while Appendix B.2 describes how a realization of phase noise with arbitrary power

is generated, as well as the protocol used to simulate the noisy Schrodinger gate

dynamics.

B.1 Noise model

I start with a few basic facts about stationary random processes. The rate at

which a noise field N(t) can do work (i.e. noise power) is [75],

P = N2(t),

and the energy that can be delivered in a time interval dt is,

dE = N2(t) dt.

Consider power-type noise for which the time-averaged noise power

P = lim
T→∞

1

T

∫ T/2

−T/2
N2(t) dt (B.1)
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is finite. The total noise energy

E =

∫ ∞

−∞
dtN2(t) (B.2)

diverges for this class of noise. The divergence is due to the occurrence of an infinite

number of noise fluctuations in the time interval −∞ < t < ∞. The energy of an

individual fluctuation is, however, finite.

The time-averaged noise power P can be related to the noise correlation func-

tion,

N(t)N(t− s) ≡ lim
T→∞

1

T

∫ T/2

−T/2
dy N(y)N(y − s). (B.3)

Comparing Eqs. (B.1) and (B.3) yields,

P = N2(t). (B.4)

The Weiner-Khintchine theorem [76] shows that the noise correlation function and

the power spectral density SN(f) form a Fourier transform pair:

N(t)N(t− s) =

∫ ∞

−∞
df SN(f) e

−2πifs. (B.5)

Thus, it follows from Eqs. (B.4) and (B.5) that

P =

∫ ∞

−∞
df SN(f), (B.6)

which identifies SN(f) as the mean noise power available in the frequency interval

(f , f + df).

In the remainder of this Appendix I focus on phase noise δϕ(τ), where τ is

the dimensionless time introduced in Appendix A. I model this noise as shot noise

which is a common type of electronic noise. The presentation extends earlier work
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in Ref. [67]. It is straight-forward to adapt the following development to treat other

forms of noise.

As shot noise, the phase noise δϕ(τ) is produced by a sequence of randomly

occurring noise fluctuations F (t). The fluctuations: (1) occur independently of each

other at average rate n per unit time; (2) are uniformly distributed over the time

interval [−τ0/2, τ0/2] of the TRP inversion; and (3) have a peak value x which is

Gaussian distributed with mean x = 0, variance x2 = σ2, and temporal width 2τf

which is the fluctuation lifetime. I assume that 2τf is much shorter than the TRP

inversion time τ0. The bandwidth of F (τ) is thus ∆ω ∼ 1/2τf . Thus a realization

of the phase noise has the form

δϕ(τ) =

Nf∑
i=1

F (τ − τi), (B.7)

where Nf denotes the number of noise fluctuations present (a stochastic variable),

i labels the noise fluctuations, and τi specifies the center of the ith fluctuation.

The mean number of fluctuationsNf occurring in the time interval [−τ0/2, τ0/2]

is Nf = n τ0. It is well-known that for noise with these properties, the actual number

of fluctuations n that occur in a time τ0 is governed by the Poisson distribution [77]:

p(n) =
(Nf )

n

n!
e−Nf .

The energy present in a single fluctuation is:

ε =

∫ ∞

−∞
F 2(τ) dτ. (B.8)

Let F (τ) = xh(τ), where h(τ) is any convenient function of finite support with
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normalization ∫ ∞

−∞
dτ h2(τ) = 2τf . (B.9)

As mentioned above, x is Gaussian distributed with mean x = 0 and variance

x2 = σ2. From Eq. (B.8), ε = 2x2 τf , and the mean energy per fluctuation ε is,

ε = 2 x2 τ = 2σ2 τ. (B.10)

For shot noise, the power spectral density for δϕ(τ) is [78]

Sϕ(f) = n |g(f)|2, (B.11)

where g(f) is the Fourier transform of the fluctuation profile F (t). Thus, using

Eqs. (B.6), (B.11), and Paresval’s theorem gives,

P = n

∫ ∞

−∞
dτ F 2(τ). (B.12)

Finally, using Eqs. (B.8) and (B.10) gives,

P = 2nσ2 τf . (B.13)

Thus the noise model I used is characterized by any three of the parameters P , n,

σ2, and τf .

I close this section by deriving an important connection between the mean

noise power P and the phase jitter σϕ introduced in Section 3.4.2. From Eq. (B.7),

we have

δϕ2(τ) =

Nf∑
i,j=1

F (τ − τi)F (τ − τj). (B.14)

Averaging over the noise gives

δϕ2(τ) = Nf F 2(τ), (B.15)
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where I have used the statistical independence of distinct noise fluctuations, and

that 2τf ≪ τ0. As in the proof of Campbell’s theorem [79], it is possible to show

that

F 2(τ) =

∫ ∞

−∞

dτ

τ0
σ2 h2(τ), (B.16)

where, recall F (τ) = xh(τ), and x2 = σ2. Inserting Eq. (B.16) and σϕ =

√
δϕ2(τ)

into Eq. (B.15) gives

σ2
ϕ =

Nf

τ0
σ2

∫ ∞

−∞
dτ h2(τ). (B.17)

Finally, inserting Eqs. (B.9) and (B.13), and Nf = nτ0 into Eq. (B.17) gives

σϕ =
√
P . (B.18)

Thus the phase jitter σϕ is simply another way to represent the phase noise power

P . Using Eq. (3.16), I can also express the timing jitter σt in terms of P :

σt =

√
P

(2πfclock)
. (B.19)

B.2 Noisy simulation protocol

The numerical simulations that I used to study the impact of phase jitter on

the NOC improved TRP gates constructs a realization of phase noise as follows. I

first sample a positive integer Nf according to the Poisson distribution with mean

Nf = n τ0, where τ0 is the (dimensionless) TRP inversion time. Nf corresponds to

the number of fluctuations present in the noise realization. The noise model assume

these fluctuations occur independently with probability dpf = (1/τ0)dτ . I sampleNf

numbers τi (i = 1, · · · ,Nf ) from the interval (−τ0/2, τ0/2). The τi give the temporal
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centers of the Nf fluctuations. For simplicity, I assume that the fluctuation profile

h(τ) is a square pulse of duration 2τf . I next carry outNf samples xi (i = 1, · · · ,Nf )

of a Gaussian distribution with mean xi = 0 and variance x2i = σ2. Here xi is the

peak value of the ith fluctuation. These sample results produce the noise realization

δΦ(τ):

δΦ(τ) =

Nf∑
i=1

xi

[
sgn(τ − τil)− sgn(τ − τir)

2

]
, (B.20)

where τil = τi − τf , and τir = τi + τf . To produce noise realizations with arbitrary

mean noise power P is needed. I do this by the following normalization procedure.

First I calculate the mean noise power P of the noise realization δΦ(τ) just produced:

P =
1

τ0

∫ τ0/2

−τ0/2
dτ δΦ2(τ). (B.21)

Then, if the desired value for the noise power is P , I rescale δΦ(τ) in Eq. (B.20) so

that δΦ(τ) → δϕ(τ) ≡
√
P/P δΦ(τ). The result is a noise realization δϕ(τ) with

mean noise power P .

The simulation takes as inputs the mean noise power P , the standard deviation√
x2i = σ, and τf which is half the fluctuation lifetime. The fluctuation rate n then

follows from Eq. (B.13): n = P/(2σ2τf ). In all the one (two) qubit gate simulations,

I used σ = 0.1 (0.1) and τf = 0.3 (0.1). All one-qubit gates were run at mean

noise power P = 0.001, 0.008 corresponding to timing jitter σt = 5.03ps, 14.2ps,

respectively. The Hadamard gate was run at seven other values of P to produce

the data displayed in Figure 3.12. The two-qubit gate was run at P = 0.001, 0.005

corresponding to timing jitter σt = 5.03ps, 11.3ps.
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For a given target gate, and given values of (P, σ, τf ), ten phase noise real-

izations δϕ(τ) were generated. For each realization, the phase noise was added to

the TRP twist phase ϕ4(τ), and the resulting noisy twist phase ϕ′
4(τ) caused the

noisy TRP control field F′
0(τ) to twist incorrectly, as described in Section 3.4.2.

For each noise realization: (i) the state trajectory U(τ) was determined by nu-

merically simulating the Schrodinger dynamics generated by the noisy control field

F′(τ) = F′
0(τ) +∆F(τ) (see Section 3.4.2); and (ii) used to determine the Tr P up-

per bound for the gate error probability Pe. Using the ten values of Tr P obtained

from the simulations, the average ⟨Tr P ⟩ and standard deviation σ(TrP ) were then

calculated and the noise-averaged NOC gate performance was then approximated

by Pe ≤ ⟨Tr P ⟩ ± σ(TrP ). The results of these simulations appear in Section 3.4.2.

In the following I present a sample Matlab code that I used to generate the

noisy phase ϕ(τ) = ϕ0,TRP (τ)+δϕ(τ), where ϕ0,TRP (τ) is the jitter-free TRP quartic

phase, and δϕ(τ) is the random phase noise. It follows from Eqs. (B.19) that a phase

noise power P = 0.001 corresponds a timing jitter of 5.03 ps, for a clock frequency

fclock = 1GHz. As discussed in Section 3.4.2 and 4.2.5, I then used the noisy phase

ϕ(τ) in place of the noiseless phase ϕ0,TRP (τ) to give rise to the noisy TRP control

field F′
0(τ), which, together with the NOC modification obtained from the noiseless

TRP trajectory U0(τ), determines the noisy state trajectory U ′(τ).
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pbar = 0.001; % time-averaged phase noise power, corresponding a

timing jitter of 5.03 ps
sigma = 0.1; % standard deviation of the phase noise strength

(phase jitter)

tau = 0.1; % 2*tau is the life time of each noise

nbar = pbar/(2*sigma^2*tau); % number of noise fluctuations per

unit time

Nf = poissrnd(120*nbar); % total number of noise fluctuations; a

Poisson random number with mean 120*nbar

h = normrand(0,sigma,Nf,1); % strength of each fluctuation,

following a normal distribution N(0,sigma)

tf = unifrnd(-60,60,Nf,1); % temporal center of each fluctuation,

distributing uniformly on [-60,60]

tl = tf - tau; % start time of each fluctuation

tr = tf + tau; % end time of each fluctuation

dphi = 0;

for i = 1:Nf

dphi = dphi +h(i)*(sign(t-tl(i)) - sign(t-tr(i)))/2;

% the phase noise

end

phi = phi0 + dphi; % the noisy phase
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