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Abstract

The Dataflow Interchange Format (DIF) is a standard language to specify mixed-grain dataflow
models for digital signal, image, and video processing (DSP) systems and other streaming-related
application domains. Major objectives of the DIF project are to design this standard language; to
provide an extensible repository for representing, experimenting, and developing dataflow models
and techniques; and to facilitate technology transfer of applications across DSP design tools. The
first version of DIF [9, 13] has demonstrated significant progress towards these goals. The subse-
quent phase of the DIF project, which we discuss in this report, is focusing on improving the DIF
language and the DIF package to represent more sophisticated dataflow semantics and exploring
the capability of DIF in transferring DSP applications and technology. This exploration has
resulted so far in an approach to automate exporting and importing processes and a novel solution
to porting DSP applications through DIF. This report introduces the DIF language version 0.2
along with the DIF package, the supported dataflow models, the approach to exporting and
importing, and the newly proposed porting mechanism.

1   Introduction

Modeling DSP applications through coarse-grain dataflow graphs is widespread in the DSP
design community, and a variety of dataflow models [1, 4, 6, 7, 14] have been developed for data-
flow-based design. Nowadays, a growing set of DSP design tools support such dataflow seman-
tics [3]. A critical issue arises in transferring technology across these design tools due to the lack
of a standard and vendor-independent language and an associated package with intermediate rep-
resentations and efficient implementations of dataflow analysis and optimization algorithms. DIF
is designed for this purpose and is proposed to be a standard language for specifying and working
with dataflow-based DSP applications across all relevant dataflow modeling approaches that are
related to DSP system design.

The first version of DIF demonstrated partial success in achieving such goals. However, its
language syntax and accompanying intermediate representations are insufficient to handle more
complicated dataflow models as well as to transfer DSP applications through significant levels of
automation. Therefore, in the subsequent phase of our work on DIF, version 0.2 of the DIF lan-
guage was developed and the associated DIF package was also extended to address these chal-
lenges. With the enhanced DIF language and DIF package, advanced dataflow modeling
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techniques such as parameterized synchronous dataflow [1] and boolean-controlled dataflow [7]
can be fully supported.

In order to provide the DSP design industry with a convenient front-end to use DIF and the
DIF package, automating the exporting and importing processes between DIF and design tools is
an essential feature. Although the problems in exporting and importing are design-tool-specific,
practical implementation issues are quite common among different design tools. These issues
have been carefully studied and we describe our approaches to addressing them in this report.

The problem of transferring DSP applications across design tools with a high degree of auto-
mation has also been investigated. Such porting typically requires tedious effort, is highly error-
prone, and is very fragile with respect to changes in the application model being ported (changes
to the model require further manual effort to propagate to the ported version). This motivates a
new approach to porting DSP applications across dataflow-based design tools through the inter-
change information captured by the DIF language, and through additional infrastructure and utili-
ties to aid in conversion of complete dataflow-based application models (including all dataflow-
and actor-specific details) to and from DIF. 

Portability of DSP applications across design tools is equivalent to portability across all
underlying embedded processing platforms and DSP code libraries supported by those tools. Such
portability would clearly be a powerful capability if it can be attained through a high degree of
automation, and a correspondingly low level of manual or otherwise ad-hoc fine-tuning. The key
advantage of using a DIF specification as an intermediate state in achieving such efficient porting
of DSP applications is the comprehensive representation in the DIF language of functional
semantics and component/subsystem properties that are relevant to design and implementation of
DSP applications using dataflow graphs.

The organization of this report is as follows. In Section 2, we review the basic concepts of
dataflow graphs and introduce the hierarchy structure in DIF. Then we describe the DIF language
version 0.2 in Section 3. Next, we illustrate dataflow models in DIF through examples of DIF
specifications in Section 4. In Section 5, we introduce the DIF package and discuss the overall
methodology of design using DIF. In Section 6, we discuss critical problems in exporting and
importing DIF specifications from DSP design tools and describe our approaches to these prob-
lems. In Section 7, we develop the porting mechanism of DIF and discuss associated actor map-
ping issues. In Section 8, we show the feasibility of the DIF porting capabilities by demonstrating
the porting of a Synthetic Aperture Radar application from the MCCI Autocoding Toolset [16, 17]
to Ptolemy II [10, 11, 12]. In the final section, we list some major directions for future work.

2   Dataflow Graphs and Hierarchical Dataflow Representation

2.1   Dataflow Graph

In the dataflow modeling paradigm, computational behavior is depicted as a dataflow graph
(DFG). A dataflow graph  is an ordered pair , where V is a set of vertices, and E is a set of
directed edges. A directed edge  is an ordered pair of a source vertex  and
a sink vertex , where , , and e can be denoted as . Given a
directed graph  and a vertex , the set of incoming edges of v is denoted as

, and similarly the set of outgoing edges of v is denoted as
.

In dataflow graphs, a vertex v (also called a node) represents a computation and is often asso-
ciated with a node weight. The weight of an object in DIF terminology refers to arbitrary informa-

G V E( , )
e v1 v2( , ) E∈= src e( )

snk e( ) src e( ) V∈ snk e( ) V∈ v1 v2→
G V E,( )= v V∈

in v( ) e E∈ snk e( ) v={ }=
out v( ) e E∈ src e( ) v={ }=
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tion that a user wishes to associate with the object (e.g., the execution time of a node or the type of
data transferred along an edge). An edge e in dataflow graphs is a logical data path from its source
node to its sink node. It represents a FIFO (first-in-first-out) queue that buffers data values
(tokens) for its sink node. An edge has a non-negative integer delay  associated with it
and each delay unit is functionally equivalent to a  operator.

Dataflow graphs naturally capture the data-driven property in DSP computations. An actor
(node) can fire (execute) at any time when it is enabled (the actor has sufficient tokens on all its
incoming edges to perform a meaningful computation). When firing, it consumes certain numbers
of tokens from its incoming edges , executes the computation, and produces certain num-
bers of tokens on its outgoing edges . This combination of consumption, execution, and
production may or may not be carried out in an interleaved manner. Given an edge ,
in a dataflow graph, if the the number of tokens produced on e by an invocation of  is constant
throughout execution of the graph, then this constant number of tokens produced is called the pro-
duction rate of  and is denoted by . The consumption rate of  is defined in an analo-
gous fashion, and this rate, when it exists, is denoted by .

2.2   Hierarchical Structure

In dataflow-based DSP systems, the granularity of actors can range from elementary operations
such as addition, multiplication, or logic operations to DSP subsystems such as filters or FFT
algorithm. If an actor represents an indivisible operation, it is called atomic. An actor that repre-
sents a hierarchically-nested subgraph is called a supernode; an actor that does not is called a
primitive node. The granularity of a dataflow actor describes its functional complexity. Simple
primitive actors such as actors for addition or for elementary logic operations are called fine-
grained actors. If the actor complexity is at the level of signal processing sub-tasks, the actor is
called coarse-grained. Practical dataflow models of applications typically contain both fine- and
coarse-grained actors; dataflow graphs underlying such models are called mixed-grain graphs.

In many sophisticated DSP applications, the mixed-grain dataflow graph of an overall system
consists of several supernodes, and each top-level supernode can be further refined into another
mixed-grain dataflow graph, possibly with additional (nested) supernodes.

One way to describe such complicated systems is to flatten the associated hierarchies into a
single non-hierarchical graph that contains no supernodes. However, such an approach may not
always be useful for the following reasons. First, analyzing a dataflow graph with the original
hierarchical information intact may be more efficient than trying to analyze an equivalent flat-
tened graph that is possibly much larger. Second, the top-down design methodology is highly
applicable to DSP system design, so the overall application is usually most naturally represented
as a hierarchical structure. Thus, incorporating hierarchy information into the DIF language and
graph representations is an essential consideration in the DIF project.

Definitions related to hierarchies are introduced as follows. A supernode s in a graph
 represents a dataflow subgraph , and this association is denoted as . The

collection of all supernodes in G forms a subset S in V such that  and , v
is a primitive node. If a supernode s in G represents the nested graph , then  is a subgraph of
G and G is the supergraph of .

A hierarchy  contains a graph G with an interface I, and a mapping M. Given
another hierarchy , if  is a subgraph of G, we said that  is a sub-hierarchy
of H and H is a super-hierarchy of .

delay e( )
z-1

in v( )
out v( )

e v1 v2( , )=
v1

e prd e( ) e
cns e( )

G V E,( )= G′ s G ′≅
s S∈ V⊂ v∀ V - S{ }∈

G′ G′
G′

H G I M, ,( )=
H ′ G ′ I ′ M ′, ,( )= G′ H′

H′
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A mapping from a supernode s representing subgraph  to a sub-hierarchy  containing
 is denoted as , where  and . The mapping M in a hierarchy

 is a set containing all mappings (to subhierarchies) of supernodes s in
; that is, , .

The interface I in hierarchy H is a set consisting of all interface ports in H. An interface port
(or simply called port) p is a dataflow gateway through which data values (tokens) flow into a
graph or flow out of a graph. From the interior point of view, a port p can associate with one and
only one node v in graph G, and this association is denoted as p:v, where , ,

 and . From the exterior point of view, a port p can either connect to
one and only one edge  in graph  or connect to one and only one port  in hierarchy ,
where  is the supergraph of G and  is a super-hierarchy of H. These connections are
denoted as  and  respectively, where , , , ,

, and .
An interface port is directional; it can either be an input port or an output port. An input port is

an entry point for tokens flowing from outside the hierarchy to an inside node, and conversely, an
output port is an exit point for tokens moving from an inside node to somewhere outside the hier-
archy. Given ,  denotes the set of input ports of H and  denotes the set
of output ports of H, where , and . Then given a port

, p:v, and , v consumes tokens from  when firing. Similarly, given ,
p:v, and , v produces tokens to  when firing.

The association of an interface port with an inside node and the connection of an outer edge to
an interface port can facilitate the clustering and flattening processes. For example, given p:v,

, , , , and , a new edge e can be con-
nected from  to v directly after flattening the hierarchy H.

With the formal dataflow graph definition reviewed in Section 2.1 and the hierarchical struc-
tures defined in this section, we are able to precisely specify hierarchical dataflow graphs in the
DIF language, which is introduced in the following section.

3   The DIF Language

The Dataflow Interchange Format (DIF) is proposed to be a standard language for specifying
dataflow semantics in dataflow-based application models for DSP system design. This language
is suitable as an interchange format for different dataflow-based DSP design tools because it pro-
vides an integrated set of syntactic and semantic features that can fully capture essential modeling
information of DSP applications without over-specification.

From the dataflow point of view, DIF is designed to describe mixed-grain graph topologies
and hierarchies as well as to specify dataflow-related and actor-specific information. The data-
flow semantic specification is based on dataflow modeling theory and independent of any design
tool. Therefore, the dataflow semantics of a DSP application is unique in DIF regardless of any
design tool used to originally enter the application specification. Moreover, DIF also provides
syntax to specify design-tool-specific information, and such tool-specific information is captured
within the data structures associated with the DIF intermediate representations. Although this
information may be irrelevant to many dataflow-based analyses, it is essential in exporting,
importing, and transferring across tools, as well as in code generation.

DIF is not aimed to directly describe detailed executable code. Such code should be placed in
actual implementations, or in libraries that can optionally be associated with DIF specifications.

G′ H′
G′ s H ′⇒ s G ′≅ H ′ G ′ I ′ M ′, ,( )=
H G I M, ,( )=
G V E,( )= s∀ S∈ V⊂ s H ′⇒{ } M∈

p I∈ v V∈
G V E,( )= H G I M, ,( )=

e″ G″ p″ H″
G″ H″

p e″∼ p p″∼ p I∈ e″ E″∈ p″ I″∈ H G I M, ,( )=
G″ V″ E″,( )= H ″ G″ I″ M″, ,( )=

H G I M, ,( )= in I( ) out I( )
in I( ) out I( )∩ ∅= in I( ) out I( )∪ I=

p in I( )∈ p e″∼ e″ p out I( )∈
p e″∼ e″

p e″∼ src e″( ) v″= snk e″( ) s= s H⇒ G I M, ,( )= p I∈
v″
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Unlike other description languages or interchange formats, the DIF language is also designed to
be read and written by designers who wish to specify DSP applications in dataflow graphs or
understand applications based on dataflow models of computations. As a result, the language is
clear, intuitive, and easy to learn and use for those who have familiarity with dataflow semantics.

DSP applications specified by the DIF language are referred to as DIF specifications. The DIF
package includes a frond-end tool, the DIF language parser, which converts a DIF specification
into a corresponding graph-theoretic intermediate representation. This parser is implemented
using a Java-based compiler-compiler called SableCC [8]. The complete SableCC grammar of the
Dataflow Interchange Format is presented in Appendix A.

3.1   Dataflow Interchange Format Language Version 0.2

The first version of the DIF language [9], version 0.1, was the first attempt to approach aforemen-
tioned goals. In DIF version 0.1, we demonstrated the capability of conveniently specifying and
manipulating fundamental dataflow models such as SDF and CSDF. Nonetheless, its semantics is
insufficient to describe in detail more advanced dataflow semantics and to specify actor-specific
information. As a result, the DIF language has been further developed to the second version, ver-
sion 0.2, for supporting an additional set of important dataflow models of computation and facili-
tating design-tool-dependent transferring processes.

Note that any dataflow semantics can be specified using the “DIF” model of dataflow sup-
ported by DIF and the corresponding DIFGraph intermediate representation. However, for per-
forming sophisticated analyses and optimizations for a particular dataflow model of computation,
it is usually useful to have more detailed and customized features in DIF that support the model.
This is why the exploration of different dataflow models for incorporation into DIF is an ongoing
area for further development of the language and software infrastructure.

From version 0.1 to version 0.2, the syntax consistency and code reusability support of DIF
have been improved significantly. DIF language version 0.2 also supports more flexible parameter
assignment and provide more flexible treatment of graph attributes. Moreover, it supports most
commonly used value types in DSP applications and provides arbitrary naming spaces. Also, per-
haps most significantly, the actor block is newly created in DIF version 0.2 for specifying design-
tool-dependent actor information.

DIF version 0.2 consists of eight blocks: basedon, topology, interface, parameter, refinement,
built-in attribute, user-defined attribute, and actor. Those blocks specify different aspects of data-
flow semantics and modeling information. The following subsections introduce the syntax of the
DIF language. Items in boldface are keywords. Non-bold words should be specified by users.

3.2   The Main Block

A dataflow graph is specified in the main block consisting of two arguments, dataflowModel and
graphID, followed by the main braces. The dataflowModel keyword specifies the dataflow model
of the graph. The graphID specifies the name (identifier) of the graph. The following is the over-
all of the main block:
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The eight blocks are defined in the main braces. Each block starts with a block keyword and
the content is enclosed by braces. Statements inside block braces end with semicolons. Conven-
tionally, identifiers in DIF only consist of alphabetic, underscore, and digit characters. However,
DIF also supports arbitrarily-composed identifiers by enclosing them between two dollar-sign
characters. The basedon, topology, interface, parameter and refinement blocks should be defined
in this particular order. Except the topology block, however, all other blocks are optional. A top-
level graph specification does not have to define the interface block.

3.3   The Basedon Block

The basedon block provides a convenient way to refer to a pre-defined graph, which is speci-
fied by graphID. As long as the referenced graph has compatible topology, interface, and refine-
ment blocks, designers can simply refer to it and override the name, parameters and attributes to
instantiate a new graph. In many DSP applications, duplicated subgraphs usually have the same
topologies but different parameters or attributes. The basedon block is designed to support this
characteristic and promote conciseness and code reuse.

3.4   The Topology Block

The topology block specifies the topology of a dataflow graph . It consists of a
node definition statement defining every node  and an edge definition statement defining
every edge .

The keyword nodes is the keyword for a node definition statement and node identifiers,
nodeIDs, are listed following the keyword and equal sign. Similarly, edges is the keyword for an
edge definition statement and edge definitions are listed in a similar fashion. An edge definition,
edgeID (sourceNodeID, sinkNodeID), consists of three arguments in order to specify a directed

dataflowModel graphID {
basedon { ... }
topology { ... }
interface { ... }
parameter { ... }
refinement { ... }
builtInAttr { ... }
attribute usrDefAttrID { ... }
actor nodeID { ... }

}

basedon { graphID; }

topology {
nodes = nodeID, ..., nodeID;
edges = edgeID (sourceNodeID, sinkNodeID),

...,
edgeID (sourceNodeID, sinkNodeID);

}

G V E,( )=
v V∈

e vi vj,( ) E∈=
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edge: the edge identifier edgeID, the source node identifier sourceNodeID, and the sink node
identifier sinkNodeID.

3.5   The Interface Block

The interface block defines the interface I of a hierarchy . An input definition
statement defines every input port  and the corresponding inside association pi : vi.
Similarly, an output definition statement defines every output port  and the corre-
sponding inside association po : vo , where  and .

The keywords inputs and outputs are the keywords for input and output definition statements.
Following the inputs or outputs keyword, port definitions are listed. A port definition, portID :
assocNodeID, consists of two arguments, a port identifier and its associated node identifier. DIF
permits defining an interface port without an associated node, so assocNodeID is optional.

3.6   The Parameter Block

In many DSP applications, designers often parameterize important attributes such as the fre-
quency of a sine wave generator and the order of a FFT actor. In interval-rate, locally-static data-
flow [18], unknown production and consumption rates are specified by their minimum and
maximum values. In parameterized dataflow [1], production and consumption rates are even
allowed to be unspecified and dynamically parameterized. The parameter block is designed to
support parameterizing values in ways like these, and to support value ranges, and value-unspeci-
fied attributes.

In a parameter definition statement, a parameter identifier paramID is defined and its value is
optionally specified. DIF supports various value types and those types are introduced in Section
3.11.

DIF also supports specifying the range of possible values for a parameter. The range is speci-
fied as an interval such as (1, 2), (3.4, 5.6], [7, 8.9), [-3.1E+3, +0.2e-2], or a set of discrete num-
bers such as {-2, 0.1, +3.6E-9, -6.9e+3}, or a combination of intervals and discrete sets such as (1,
2) + (3.4, 5.6] + [7, 8.9) + {-2, 0.1, +3.6E-9, -6.9e+3}.

interface {
inputs = portID : assocNodeID, ..., portID : assocNodeID;
outputs = portID : assocNodeID, ..., portID : assocNodeID;

}

H G I M, ,( )=
pi in I( )∈

po out I( )∈
vi vo, V∈ G V E,( )=

parameter {
paramID = value;
paramID : range;
paramID;
...,

}
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3.7   The refinement block

The refinement block is used to represent hierarchical graph structures. For each supernode
 in a graph , there should be a corresponding refinement block in the DIF

specification to specify the supernode-subgraph association, . In addition, for every port
 in sub-hierarchy , the connection , or  is also specified in

this refinement block, where , , , and H is the super-hierarchy of .
Moreover, the unspecified parameters (parameters whose values are unspecified, e.g., because
they may be unknown in advance or computed at runtime) in subgraph  can also be specified
by parameters in G.

Each refinement block consists of three types of definitions. First, a subgraph-supernode
refinement definition, subgraphID = supernodeID, defines . Second, subgraph interface
connection definitions, subportID : edgeID or subportID : portID, describe  or .
Third, a subgraph parameter specification, subParamID = paramID, specifies blank parameters
in the subgraph by using parameters defined in the current graph.

Figure 1 illustrates how to use DIF to specify hierarchical dataflow graphs. In Figure 1, there
are two dataflow graphs, G1 and G2, and supernode n6 in graph G2 represents the subgraph G1.
The corresponding DIF specification is also presented in Figure 1.

3.8   The Built-in Attribute Block

The keyword builtInAttrID points out which built-in attribute is specified. The element identi-
fier, elementID, can be a node identifier, an edge identifier, or a port identifier to which the built-
in attribute belongs. It can also be left blank; in this case, the built-in attribute belongs to the graph
itself. DIF supports assigning attributes by a variety of value types, an identifier, or a list of iden-
tifiers. The supported value types are introduced in Section 3.11.

Usually, the built-in attribute block is used to specify dataflow modeling information. Every
dataflow model in DIF can define its own built-in attributes and its own method to process those
built-in attributes. The DIF language parser treats built-in attributes in a special way such that the
method defined in the corresponding parser is invoked to handle them. Some dataflow models
require model-specific attributes and value types, and DIF specifications for those dataflow mod-
els will be discussed in Section 4.

In general, production, consumption, and delay are commonly-used built-in attributes of edges
in many dataflow models. For example, if delay(e1) = 1D and delay(e2) = 2D, where D is a delay

refinement {
subgraphID = supernodeID;
subportID : edgeID;
subportID : portID;
subParamID = paramID;
...;

}

s S V⊂∈ G V E,( )=
s H′⇒

p′ I ′∈ H ′ G ′ I ′ M ′, ,( )= p′ e∼ p′ p∼
e E∈ p I∈ H G I M, ,( )= H′

G′

s G ′≅
p′ e∼ p′ p∼

builtInAttrID { 
elementID = value;
elementID = ID;
elementID = ID1, ID2, ..., IDn;

}
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unit, the delay attribute block is specified as: delay { e1 1; e2 2; }. Note that the built-in
attributes production and consumption are not exclusive to edges. In hierarchical dataflow mod-
els, the interface-associated node has no edge on the corresponding direction. In such cases, spec-
ifying production rates or consumption rates as port attributes is permitted in DIF.

3.9   The User-Defined Attributes Block

The user-defined attributes block allows designers to define and specify their own attributes.
The syntax is the same as the built-in attributes block. The only difference is that this block starts
with the keyword attribute followed by the user-defined attribute identifier, usrDefAttrID.

dif graph G1 {
topology {
nodes = n1, n2, n3;
edges = e1 (n1, n3), e2 (n2, n3);

}
interface {
inputs = p1 : n1, p2 : n2;
outputs = p3 : n3;

}
}

dif graph G2 {
topology {
nodes = n4, n5, n6, n7;
edges = e3 (n4, n6),

e4 (n5, n6), e5 (n6, n7);
}
refinement {

G1 = n6;
p1 : e3; p2 : e4; p3 : e5;

}
}

G1

n1 n2

n3

p1 p2

p3

e1 e2

e3 e4

e5

G2
n4 n5

n6

n7

Figure 1. Hierarchical graphs and the corresponding DIF specifications.

attribute usrDefAttrID {
elementID = value;
elementID = ID;
elementID = ID1, ID2, ..., IDn;

}
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3.10   The Actor Block

The topology, interface, parameter, refinement and built-in attribute blocks are used to
describe graph topology, hierarchical structure, and dataflow semantics. They are sufficient for
applying dataflow-based analysis and optimization techniques. However, in order to preserve the
functionality of DSP applications in design tools, the information supported in DIF language ver-
sion 0.1 is not enough. As a result, the actor block has been created in DIF language version 0.2 to
specify tool-specific actor information.

The keyword actor is used for the actor block. The associated computation is a built-in actor
attribute for specifying in some way the actor’s computation (what the actor does). Other actor
information is specified as attributes. Explicitly, the identifiers of actor’s components such as
ports, arguments, or parameters are used as attributeID in the DIF actor block. Moreover, the type
of the component can be optionally specified as attributeType. DIF supports three built-in actor
attribute types: INPUT, OUTPUT, and PARAMETER to indicate the interface connections and
parameters of an actor. Attributes can be assigned a value, or an identifier for specifying its asso-
ciated element (edge, port, or parameter), or a list of identifiers for indicating multiple associated
elements of the attribute.

The actor block is primarily used in exporting and importing DIF as well as porting DSP
applications. Section 6 and Section 7 contain more explanations and examples of how to use the
DIF actor block.

3.11   The Value Types

DIF version 0.2 supports most commonly used value types in DSP operations: integer, double,
complex, integer matrix, double matrix, complex matrix, string, boolean, and array. Scientific
notation is supported in DIF in the double format. For example, a double value can have the fol-
lowing formats: 123.456, +0.1, -3.6, +1.2E-3, -4.56e+7. A complex value is enclosed by paren-
theses as (real part, imaginary part), and the real and imaginary parts are double values. For
example, a complex value 1.2E-3 - 4.56E+7 i is represented as (+1.2E-3, -4.56E+7) in DIF. Matri-
ces are enclosed by brackets, “,” is used to separate elements in a row, and “;” is used to separate
rows. For example, integer matrices, double matrices, and complex matrices are expressed as [1,
2; 3, 4], [+1.2, -3.4; -0.56e+7, 7.8E-3], and [(1.0, 2.0), (3.0, 4.0); (+1.2, -3.4), (-0.56e+7, 7.8E-3)].
A string value should be double quoted as “string“. A boolean value is either True or False.
Finally, an array of the aforementioned value types is expressed inside braces, and all elements
should be of the same type. For example, we can have an integer array as {1,2,3,4} or double
array as {+0.1, -3.6, +1.2E-3, -4.56e+7}. These value types in DIF should be sufficient in most
DSP applications. If a certain value type is not supported, it can be handled to some extent by rep-
resentation through the string type.

actor nodeID {
computation = “stringDescription“;
attributeID : attributeType = value;
attributeID : attributeType = ID;
attributeID : attributeType = ID1, ID2, ..., IDn;

}
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4   Dataflow Models

The DIF language is designed to specify all dataflow models for DSP and streaming related appli-
cations. In other words, its syntax and other features should be capable of describing dataflow
semantics in all dataflow models of computation relevant to this class of embedded applications.
DIF version 0.1 [9] has demonstrated its capability of describing CSDF, SDF, single-rate data-
flow, and HSDF. DIF version 0.2 improves the feature set to support more complicated dataflow
semantics, for example, Turing-complete dataflow such as BDF [7] and meta-modeling tech-
niques such as parameterized dataflow [1]. This section reviews those dataflow models and pro-
vides examples to illustrate how to specify them in DIF.

4.1   Synchronous Dataflow

Synchronous dataflow (SDF) [4, 14] is the most popular form of dataflow modeling for DSP
design. SDF permits the number of tokens produced and consumed by an actor to be a non-nega-
tive integer, which makes it very suitable for modeling multi-rate DSP systems. However, SDF
also imposes a restriction that production and consumption rates must be fixed and known at com-
pile-time. Therefore, an edge e in an SDF graph has three non-negative constant-valued attributes,
prd(e), cns(e), and delay(e). The constant restriction on production and consumption rates benefits
SDF with the capability of static scheduling, optimization, and predictability [5] but at the cost of
limited expressive power, in particular due to lack of support for data-dependent actor interface
behavior.

The dataflowModel keyword for SDF is sdf. The three edge attributes, prd(e), cns(e), and
delay(e), are specified in SDF built-in attribute blocks as production, consumption, and delay.
Figure 2 illustrates a simple SDF example in DIF.

4.2   Single-rate Dataflow and Homogeneous Synchronous Dataflow

In single-rate DSP systems, all actors execute at the same average rate. As a result, the number of
tokens produced on an edge when the source node fires is equal to the number of tokens con-

sdf sdfDemo1 {
topology {
nodes = A,B,C,D,E;
edges = e1(A,D), e2(D,E), e3(E,B),

e4(B,A), e5(B,C), e6(C,D);
}
production {
e1=1; e2=2; e3=1; e4=5; e5=1;e6=1;

}
consumption {
e1=10; e2=1; e3=1; e4=1; e5=2;e6=1;

}
delay {
e2 = 2;

}
}

1 D

10

2

1 D

10

2

E 11 E 11

A 11 A 11

1B

1

5
1B

1

5
C 12 C 12

e1e1

e3e3

e4e4

e5e5 e6e6

e2
2D

e2
2D

Figure 2. An SDF example and the corresponding DIF specification.
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sumed on the same edge when the sink node fires. The dataflowModel keyword for single-rate
dataflow is SingleRate. The single-rate dataflow model is a special case of SDF, where the pro-
duction rate and consumption rate of each edge are identical. Because all nodes fire at the same
average rate, DIF uses the built-in attribute transfer to specify token transfer rates instead of pro-
duction and consumption attributes.

In homogeneous synchronous dataflow (HSDF), the production rate and consumption rate are
restricted to be unity on all edges. HSDF is the simplest widely-used form of dataflow and can be
viewed as a restricted case of single-rate dataflow and SDF. The dataflowModel keyword for
HSDF is hsdf. Because of the homogeneous unit transfer rate, specifying production and con-
sumption attributes is not necessary in HSDF.

Single-rate and HSDF graphs are useful models in scenarios such as uniform execution rate
processing, precedence expansion for multi-rate SDF graphs, and multiprocessor scheduling.
Algorithms for converting between SDF, single-rate, and HSDF graphs are provided in DIF. Such
conversion is illustrated in Figure 3.

4.3   Cyclo-static Dataflow

In cyclo-static dataflow (CSDF) [6], the production rate and consumption rate are allowed to vary
as long as the variation forms a fixed and periodic pattern. Explicitly, each actor A in a CSDF
graph is associated with a fundamental period , which specifies the number of phases
in one minimal period of the cyclic production / consumption pattern of A. Each time an actor is
fired in a period, a different phase is executed. For each incoming edge e of A, cns(e) is specified
as a -tuple ( , , ..., ), where each  is a non-negative integer that gives
the number of tokens consumed from e by A in the i-th phase of each period of A. Similarly, for
each outgoing edge e of A, prd(e) is specified as a -tuple ( , , ..., ), where
each  is a non-negative integer that gives the number of tokens produced to e by A in the i-th
phase. CSDF offers more flexibility in representing interactions between actors and scheduling,
but its expressive power at the level of overall individual actor functionality is the same as SDF.

The dataflowModel keyword for CSDF is csdf. Built-in attributes production and consump-
tion are specified as 1-by-  integer matrices representing the -tuple patterns in one
period. Specifically, the DIF specification for a -tuple consumption period is specified as:
consumption{ edgeID = [ , , ..., ]; }. Figure 4 illustrates an up-sampling and
down-sampling example in CSDF.

Figure 3. SDF, single-rate, and HSDF conversion.
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4.4   Boolean-controlled dataflow

Boolean-controlled dataflow (BDF) [7] is a form of dynamic dataflow for supporting data-depen-
dent DSP computations while still permitting quasi-static scheduling to a certain degree. BDF is
Turing-complete [7]. Quasi-static scheduling refers to a form of scheduling in which a significant
proportion of scheduling decisions is made at compile-time through analysis of static properties in
the application model. By including BDF, DIF improves its ability to explore Turing-complete
semantics and incorporates detailed support for an important, fully expressive model.

In dynamic dataflow modeling, a dynamic actor produces or consumes certain numbers of
tokens depending on the incoming data values during each firing. In BDF, the number of tokens
produced or consumed by a dynamic actor is restricted to be a two-valued function of the value of
certain “control tokens.” In other words, the number of tokens that a boolean-controlled actor A
produces to an edge  or consumes from an edge  during each firing is determined by TRUE
or FALSE values of the control token consumed by A at that iteration, where  or

. BDF also imposes a restriction that a boolean controlled actor can only consume one
control token during each firing. The following two equations describe the boolean-controlled
production and consumption rates in BDF.

In addition to boolean-controlled dynamic actors, other actors are required to be regular. A
regular actor produces and consumes fixed and known numbers of tokens at compile-time; it is
equivalent to an SDF actor.

The dataflowModel keyword for BDF is bdf. Built-in attributes production and consumption
can be used to specify both fixed and boolean-controlled production and consumption rates. For a
fixed rate, the syntax is the same as SDF; for a boolean-controlled rate, a 1-by-2 integer matrix is

3(1,0,0) (1,1,1)33(1,0,0) (1,1,1) 2(1,1) (1,0)22(1,1) (1,0)IN 1IN 1 OUT1 OUT1FIR 11 FIR 11
e1e1 e2e2 e3e3 e4e4

csdf csdfDemo1 {
topology {
nodes = IN, UP3, FIR, DOWN2, OUT;
edges = e1(IN,UP3), e2(UP3,FIR), e3(FIR,DOWN2), e4(DOWN2,OUT);

}
production {
e1=1; e2=[1,1,1]; e3=1; e4=[1,0];

}
consumption {
e1=[1,0,0]; e2=1; e3=[1,1]; e4=1;

}
}

Figure 4. A CSDF example and the corresponding DIF specification.

eo ei
eo out A( )∈

ei in A( )∈

prd eo( ) at i-th iteration = 
prod rate1, if control token consumed by A at i-th iteration is TRUE
prod rate2, if control token consumed by A at i-th iteration is FALSE⎩

⎨
⎧

cns ei( ) at i-th iteration = 
cons rate1, if control token consumed by A at i-th iteration is TRUE
cons rate2, if control token consumed by A at i-th iteration is FALSE⎩

⎨
⎧
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utilized to specify two boolean-controlled values. The first element is the rate when the control
token is TRUE, and the second element is the rate when the control token is FALSE. Specifically,
the following syntax shows the DIF specification for a boolean-controlled production rate.
production { edgeID = [trueValue, falseValue]; }

SRC
ACTOR 1

ACTOR 2
SINK

CONTROL

1 1
[1,0]

[0,1]

1

1

[1,0]1

[0,1]1
1 1

1

1

1 BROADCAST

SELECT
TRUE

FALSE
CONTROL

SELECT
TRUE

FALSE
CONTROL

SWITCH 
TRUE

FALSE
CONTROL

SWITCH 
TRUE

FALSE
CONTROL

1
1
1

1

1

e1e1

e2e2

e3e3

e4

e5e5

e6e6

e7e7

e8e8

e9e9
e10e10

bdf bdfDemo1 {
topology {
nodes = SRC, SWITCH, SELECT, SINK, CONTROL, BROADCAST, ACTOR1, ACTOR2;
edges = e1(SRC,SWITCH), e2(SRC,CONTROL), e3(CONTROL,BROADCAST),

e4(BROADCAST,SWITCH), e5(BROADCAST,SELECT), e6(SWITCH,ACTOR1),
e7(SWITCH,ACTOR2), e8(ACTOR1,SELECT), e9(ACTOR2,SELECT),
e10(SELECT,SINK);

 }
production {
e1=1; e2=1; e3=1; e4=1; e5=1; e6=[1,0]; e7=[0,1]; e8=1; e9=1; e10=1;

}
consumption {
e1=1; e2=1; e3=1; e4=1; e5=1; e6=1; e7=1; e8=[1,0]; e9=[0,1]; e10=1;

}
actor SWITCH {
computation; = “dif.bdf.SWITCH“;
control : CONTROL = e4;
input : INPUT = e1;
true : TRUEOUTPUT = e6;
false : FALSEOUTPUT = e7;

}
actor SELECT {
computation; = “dif.bdf.SELECT“;
control : CONTROL = e5;
output : OUTPUT = e10;
true : TRUEINPUT = e8;
false : FALSEINPUT = e9;

}

if CONTROL outputs TRUE token
fire ACTOR1;

else
fire ACTOR2;

end

Figure 5. A BDF example, the corresponding pseudocode, and the DIF specification.
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BDF introduces two boolean-controlled actors, SWITCH and SELECT. The SWITCH actor
consumes one token from its incoming edge and copies that token to either a “true” outgoing edge
or a “false” outgoing edge according to the value of a control token. The SELECT actor consumes
one token from either a “true” incoming edge or a “false” incoming edge according to the value of
a control token and copies that token to the outgoing edge. Figure 5 illustrates a BDF example
implementing an if-else statement.

4.5   Parameterized Synchronous Dataflow

Parameterized dataflow modeling differs from other fundamental dataflow modeling techniques
such as SDF, CSDF, in that it is a meta-modeling technique. Parameterized dataflow can be
applied to any underlying “base” dataflow model that has a well-defined notion of a graph itera-
tion. Applying parameterized dataflow in this way augments the base model with powerful capa-
bilities for dynamic reconfiguration and quasi-static scheduling through parameterized looped
schedules [1]. Combining parameterized dataflow with synchronous dataflow forms parameter-
ized synchronous dataflow (PSDF), a dynamic dataflow model that has been investigated in depth
and shown to have useful properties [1].

A PSDF actor A is characterized by a set of parameters, params(A), that can control the actor’s
functionality as well as the actor’s dataflow behavior such as production rates and consumption
rates. A configuration of a PSDF actor, configA, is determined by assigning values to the parame-
ters of A. Each parameter of an actor is either assigned a value or left unspecified. These statically
unspecified parameters are assigned values at run time, thus dynamically modifying the actor’s
functionality.

A PSDF graph G is an ordered pair (V, E) and all statically unspecified actor parameters in G
propagate “upwards” as parameters of the PSDF graph G, which are denoted as params(G). A
DSP application is usually modeled in PSDF through a PSDF specification, which is also called a
PSDF subsystem. A PSDF subsystem  consists of three PSDF graphs, the init graph , the
subinit graph , and the body graph . The body graph models the main functional behavior
of the subsystem, whereas the init and subinit graphs control the behavior of the body graph by
appropriately configuring parameters of the body graph. Moreover, PSDF employs a hierarchical
modeling structure by allowing a PSDF subsystem  to be embedded in a “parent” PSDF graph
G and abstracted as a hierarchical PSDF actor H, where .

The init graph  does not take part in the dataflow and all the parameters of  are left
unspecified. The subinit graph  may only accept dataflow inputs at its interface input ports and
each parameter of  is configured either by an interface output port of , is set by an interface
input port of , or is left unspecified. The interface output ports of  and  are reserved exclu-
sively for configuring parameter values. The body graph  usually takes on the major role in
dataflow processing and all of its dynamic parameters are configured by the interface output ports
of  and . All unspecified parameters of  and  propagate “upwards” as the subsystem
parameters of , which are denoted as params( ) and are configured by the init and subinit
graphs of hierarchically higher level subsystems. This mechanism of parameter configuration is
referred as initflow.

In order to maintain a valuable level of predictability and efficient quasi-static scheduling,
PSDF requires that the interface dataflow of a subsystem must remain unchanged throughout any
given iteration of its hierarchical parent subsystem. Therefore, parameters that determine the
interface dataflow can only be configured by output ports of the init graph , and  is only
invoked once at the beginning of each invocation of the supergraph. As a result, the parent has a

Φ Φ i
Φ s Φb

Φ
Φ subsystem H( )=

Φ i Φ i
Φ s

Φ s Φ i
Φ Φ i Φ s

Φb

Φ i Φ s Φ i Φ s
Φ Φ

Φ i Φ i
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psdf decimateSubinit {
topology { nodes = Propagate; }
interface {
inputs = a:Propagate;
outputs = d:Propagate;

}
consumption { a = 1; }
production { d = 1; }

}

psdf decimateInit {
topology { nodes = rndInt2; }
interface { outputs = e:rndInt2; }
production { e = 1; }

}

psdf decimateBody {
topology { nodes = dnSmpl; }
interface {
inputs = b:dnSmpl;
outputs = c:dnSmpl;

}
parameter {
factor;
phase;

}
consumption { b = factor; }
production { c = 1; }

}

psdfSubsystem decimate {
interface {
inputs = A:subinit, B:body;
outputs = C:body;

}
refinement { decimateInit = init; }
refinement {
decimateSubinit = subinit;
a : A;

}
refinement {
decimateBody = body;
b : B;
c : C;

}
paramConfig {
decimateBody.factor =

decimateInit.e;
decimateBody.phase = 

decimateSubinit.d;
}

}

psdf exampleBody {
topology {
nodes = rndInt5, rndInt1, 

decimate, print;
edges = e1(rndInt5, decimate),

e2(rndInt1, decimate),
e3(decimate, print);

}
refinement {
decimate = decimate;
A : e1; B : e2; C : e3;

}
production {
e1 = 5; e2 = 1;

}
consumption { e3 = 1; }

}

psdfSubsystem example {
refinement { decimate = body; }

}

Figure 6. A PSDF example and the corresponding DIF specification.
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consistent view of module interfaces throughout any iteration. On the other hand, parameter
reconfiguration that does not change interface behavior of subsystem is permitted to occur across
iterations of the subsystem rather than the parent subsystem. The subinit graph  performs this
reconfiguration activity and is invoked each time before an invocation of the body graph . This
gives a subsystem a consistent view of its components’ configurations throughout any given iter-
ation and provides configurability across iterations.

Specifying such complicated meta-modeling techniques in a fully general way (so that they
can operate with other models a maximally flexible way) in DIF is a challenging task. DIF sepa-
rates PSDF graphs and PSDF subsystems into two modeling blocks, and the corresponding data-
flowModel keywords for them are psdf and psdfSubsystem, respectively. Parameterization is a
main feature of DIF with the parameter block and this feature is very suitable in specifying PSDF.
Configurable actor attributes and non-static dataflow modeling attributes such as production rates
and consumption rates are parameterized by pre-defined parameters. Unspecified parameters are
defined without providing their values in the parameter block. Upward parameters of a PSDF
subsystem can be specified in the refinement block of its supergraph. For hierarchical modeling
structures in PSDF, e.g., , the DIF hierarchy concepts described in Section
2.2 can fully represent the associated functionality and the DIF refinement block is used to specify
them.

DIF interprets a PSDF subsystem as a special intermediate graph that consists of three sub-
graphs, , , and . In DIF specification, a PSDF subsystem cannot have the topology block
because the three subgraphs, init, subinit, and body ( , , and ) are built-in and there is no
edge connection in any PSDF subsystem. The parameter reconfigurations across init, subinit, and
body graphs are specified in the built-in attribute block called paramConfig with the following
syntax.

Figure 6 illustrates a PSDF example in [1] and the corresponding DIF specification.

4.6   Binary Cyclo-static Dataflow

Binary CSDF (BCSDF) is a restricted form of CSDF such that the production and consumption
rates are constrained to be binary vectors. In other words, elements of the BCSDF production and
consumption vectors are either 0 or 1. BCSDF graphs arise naturally, for example, when convert-
ing certain process networks to dataflow and when modeling many dataflow-based hardware
implementations.

The DIF specification format for BCSDF is as the same as CSDF. In some BCSDF representa-
tions, the numbers of phases can be very large. Therefore, the BCSDF intermediate representation
utilizes an efficient data structure to store the production and consumption rates as bit vectors.

4.7   Interval-Rate Locally-static Dataflow

Interval-Rate Locally-static Dataflow (ILDF) [18] is proposed to analyze dataflow graphs whose
component data rates are not known precisely at compile time. In ILDF graphs, the production
and consumption rates remain constant throughout execution (locally-static), but only the mini-

Φ s
Φb

Φ subsystem H( )=

Φ i Φ s Φb
Φ i Φ s Φb

paramConfig {
subinitGraphID.paramID = initGraphID.outputPortID;
bodyGraphID.paramID = initGraphID.outputPortID;
bodyGraphID.paramID = subinitGraphID.outputPortID;

}
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mum and maximum values (interval-rate) of these constants are given. DIF is capable of repre-
senting ILDF graphs by parameterizing the ILDF production and consumption rates and
specifying the intervals of those parameters, which is described in Section 3.6. Figure 7 illustrates
an ILDF example and the corresponding DIF specification.

5   The DIF Package

The DIF package is a Java software package developed along with the DIF language. In general,
it consists of three major parts: the DIF front-end, the DIF representation, and the implementa-
tions of dataflow-based analysis, scheduling, and optimization algorithms. This section introduces
the major parts of the DIF package and describes the relationship of the DIF package to theoreti-
cal dataflow models, dataflow-based DSP design tools, and underlying embedded processing
platforms.

5.1   The DIF Representation

For each supported dataflow model, the DIF package provides an extensible set of data structures
(object-oriented Java classes) for representing and manipulating dataflow graphs in the model.
This graph-theoretic intermediate representation for the dataflow model is usually referred to as
the DIF representation.

The DIFGraph is the most general graph class in the DIF package. It represents the basic data-
flow graph structure among all dataflow models and provides methods that are common to all
models for manipulating graphs. For a more specialized dataflow model, development can pro-

A B C D E
7 11 8c1 c2p1 p2

e1 e2 e3 e4
A B C D E

7 11 8c1 c2p1 p2

e1 e2 e3 e4

ildf ildfDemo1 {
topology {
nodes = A, B, C, D, E;
edges = e1(A,B), e2(B,C), e3(C,D), e4(D,E);

}
parameter { 
c1 : [3,7];
c2 : [3,7];
p1 : [2,10];
p2 : [2,10];

}
production {
e1 = 1; e2 = p1; e3 = 8; e4 = p2;

}
consumption {
e1 = c1; e2 = 7; e3 = c2; e4 = 1;

}
}

Figure 7. An ILDF example and the corresponding DIF specification.
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ceed naturally by extending the general DIFGraph class (or some suitable subclass) and overrid-
ing and adding new methods to perform more specialized functions.

Figure 8 presents the class hierarchy of graph classes in the DIF package. The DIFGraph is
extended from the DirectedGraph class, and in turn, from the Graph class. The DirectedGraph and
Graph classes are used from the Ptolemy II [11] ptolemy.graph package, which is developed in
collaboration between members of the DIF and Ptolemy projects, and provides data structures and
methods for manipulating generic graphs. The dataflow models CSDF, SDF, single-rate dataflow,
and HSDF are related in such a way such that each succeeding model among these four is a spe-
cial case of the preceding model. Accordingly, CSDFGraph, SDFGraph, SingleRateGraph, and
HSDFGraph form a class hierarchy in the DIF package such that each succeeding graph class
inherits from the more general one that precedes it (see Figure 8).

In addition to the aforementioned fundamental dataflow graph classes, the DIF package also
provides the Turing-complete BDFGraph, the PSDFGraph for modeling of dataflow graph recon-
figuration, and BCSDFGraph for the newly introduced BCSDF model. Furthermore, a variety of
other dataflow models are being explored for inclusion in DIF.

5.2   The DIF Front-end

Although the DIF language is able to specify all dataflow models, in reality, the DIF representa-
tion is the actual format for realizing dataflow graphs and for performing analysis, scheduling,
and optimization. Thus, automatic conversion between DIF specifications (.dif files) and DIF rep-
resentations (graph instances) is the most fundamental feature of the DIF package. The DIF front-
end tool automates this conversion and provides users an integrated set of programming interfaces
to construct DIF representations from specifications and to generate DIF specifications from
intermediate representations.

The DIF front-end consists of a Reader class, a set of language parsers (LanguageAnalysis
classes), a Writer class, and a set of graph writer classes. The language parsers are implemented
using a Java-based compiler compiler called SableCC [8]. The flexible structure and Java integra-

Figure 8. The class hierarchy of graphs in the DIF package.
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tion of the SableCC compiler enables easy extensibility for parsing different dataflow graph
types.

Figure 9 illustrates how the DIF front-end constructs the corresponding DIF representation
(graph class) according to the given DIF specification. The Reader class invokes the correspond-
ing language analysis class (DIF language parser) based on the model keyword specified in the
DIF specification. Then, the language analysis class constructs a graph instance according to the
dataflow semantics specified in the DIF specification.

On the other hand, Figure 10 illustrates how the DIF front-end generates a DIF specification
according to a DIF representation. The Writer class invokes the corresponding graph writer class
based on the type of the given graph instance. After that, the graph writer class generates the DIF
specification by tracing elements and attributes of the graph instance.

In the DIF package, the language analysis classes (language parsers) are used for parsing the
DIF language. The only differences between them are in processing the built-in attributes and in
initiating the corresponding graph class. Similarly, the graph writer classes are used for writing
out the dataflow semantics and they are different in handling built-in attributes. Therefore, all spe-
cialized dataflow language analysis classes are extended from the LanguageAnalysis class that
constructs the most general DIFGraph. Likewise, all specialized graph writer classes are extended
from the DIFWriter class, which writes out the dataflow semantics of DIFGraph instances. The
extended classes are required to override only a small set of model-specific methods.

5.3   Dataflow-based Analysis, Scheduling, and Optimization Algorithms

For supported dataflow models, the DIF package provides not only graph-theoretic intermediate
representations but also efficient implementations of various useful analysis, scheduling, and opti-
mization algorithms that operate on the representations. Algorithms currently available in the DIF
package are based primarily on well-developed algorithms such as iteration period computation,
consistency validation, buffer minimization, and loop scheduling. By building on the DIF repre-
sentations and existing algorithm implementations, and invoking the built-in algorithms as

DIF Specification (dif file) Reader LanguageAnalysis

CSDFLanguageAnalysis

SDFLanguageAnalysis

HSDFLanguageAnalysis

SingleRateLanguageAnalysis

DIFGraph

CSDFGraph

SDFGraph

HSDFGraph

SingleRateGraph

analysers.txt

……

DIF Intermediate
Representations

Language Analysis Classes

……

Figure 9. The DIF Front-end: from DIF specification to DIF representation.
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needed, emerging techniques and other new algorithm implementations can conveniently be
developed and implemented in the DIF package.

The dataflow-based algorithms in the DIF package provide designers an efficient interface to
analyze and optimize DSP applications. It is also worthwhile to integrate DSP design tools with
the DIF package and then utilize the powerful scheduling and optimization features of the DIF
package.

5.4   Methodology of using DIF

Figure 11 illustrates the conceptual architecture of DIF and the relationships among abstract data-
flow models, dataflow-based DSP design tools, DIF specifications, and the DIF package. First of
all, the dataflow model block in this diagram presents the dataflow models currently supported in
DIF. Based on the DIF language introduced in Section 3, application models using these dataflow
models can be specified as DIF specifications, which are described in Section 4.

The block for dataflow-based design tools represents currently available and other previously
developed DSP design tools. These tools usually provide a block-diagram-based graphical design
environment, a set of libraries consisting of useful modules, and a programming interface for
designing modules. As long as the DSP system modeling capability in a design tool is based on
dataflow principles, the DIF language is able to capture the associated dataflow semantics and
related modeling information of DSP applications in the tool and represent them in the form of
DIF specifications.

The DIF package realizes the abstract dataflow structure of DSP application models through
the DIF representation. With the DIF front-end tool, the DIF representation can be constructed
automatically based on the given DIF specification. After that, dataflow-based analysis, schedul-
ing, and optimization techniques can be applied on the DIF representation.

Figure 12 illustrates the implementation and end-user viewpoints of the DIF architecture. DIF
supports as the core a layered design methodology covering dataflow models, the DIF language
and DIF specifications, the DIF package, dataflow-based DSP design tools, and the underlying
hardware and software platforms targeted by these tools.

DIFGraph

CSDFGraph

SDFGraph

HSDFGraph

SingleRateGraph

……

DIF Intermediate
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CSDFToDIFWriter

SDFToDIFWriter
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Graph Writer Classes
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Writer Writer DIF Specification

writers.txt

Figure 10. The DIF front-end: from DIF representation to DIF specification.
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The dataflow models layer represents the dataflow models currently integrated in the DIF
package. These models can be further categorized into static dataflow models such as SDF and
CSDF; dynamic dataflow models such as the Turing-complete BDF model; and meta-modeling
techniques such as parameterized dataflow, which provides the dynamic reconfiguration capabil-
ity of PSDF. Using the DIF language, application behaviors compatible with these dataflow mod-
eling techniques can be specified in a streamlined manner as specialized DIF specifications.

The primary dataflow-based DSP design tools that we have been experimenting with in our
development of DIF so far are the SDF domain of Ptolemy II, developed at UC Berkeley, and the
Autocoding Toolset developed by MCCI. However, DIF is in no way designed to be specific to
these tools; they are used only as a starting point for experimenting with DIF in conjunction with
sophisticated academic and industrial DSP design tools, respectively. Tools such as these form a
layer in our proposed DIF-based design methodology. Ptolemy II is a Java-based design environ-
ment and utilizes the Modeling Markup Language (MoML) as its textual format for specification
and interchange. Ptolemy II provides multiple models of computation and a large set of libraries
consisting of actors for various application domains. On the other hand, the MCCI Autocoding
Toolset is based on the Processing Graph Method (PGM) semantics and uses Signal Processing
Graph Notation (SPGN) as its specification format. It also provides an efficient library consisting
of domain primitives for DSP computations and is able to synthesize software implementations
for certain high-performance platforms.

Figure 11. The relationships among dataflow models, design tools, the DIF language, DIF spec-
ifications, and the DIF package.
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The hardware / software embedded systems layer gives examples of current embedded pro-
cessing platforms supported by Ptolemy II and the Autocoding Toolset, and this layer generally
represents all embedded platforms that are supported by dataflow-based DSP design tools.
Ptolemy II can generate executable Java code running on the Java VM. On the other hand, the
Autocoding toolset is able to generate executable C code for Mercury DSPs and Ada for the Vir-
tual Design Machine (VDM) [17]. In addition, we are examining the requirements and implica-
tions of DIF-based support for other tools that have the ability to map dataflow models to efficient
hardware / software implementations.

The DIF package acts as an intermediate layer between abstract dataflow models and different
practical implementations. It takes the responsibility of realizing dataflow graphs and performing
dataflow-based algorithms. DIF exporting and importing tools automate the process of exporting
DSP applications from design tools to DIF specifications and importing them back to design
tools. Automating the exporting and importing processes between DIF and design tools provides
the DSP design industry a useful front-end to use DIF and the DIF package. In the next section,
we will describe issues involved in such automation, and our approaches to addressing these
issues.

Figure 12. The role of DIF in DSP system design.
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6   Exporting and Importing DIF

The DIF language is capable of specifying dataflow semantics of DSP applications in any data-
flow-based design tool. When integrating features of DIF with a DSP design tool, incorporating
capabilities to translate between the design tool’s specification format and DIF specifications or
DIF representations is usually an essential first step. In DIF terminology, exporting means trans-
lating a DSP application from a design tool’s specification format to DIF (either to the DIF lan-
guage or directly to the appropriate form of DIF representation). On the other hand, importing
means translating a DIF specification to a design tool’s specification format or converting a DIF
representation a to design tool’s internal representation format. Figure 13 illustrates the exporting
and importing mechanisms between DIF and design tools.

When exporting, parsing design tools’ specification formats and then directly formulating the
corresponding DIF specifications is usually not an efficient way. In contrast, DIF provides a com-
plete set of classes for representing dataflow graphs in a well-designed, object-oriented realiza-
tion. Hence, instead of parsing and directly formulating equivalent DIF language code, mapping
design tools’ graphical representations to DIF representations and then converting to DIF specifi-
cations using representation-to-specification translation capabilities already built in to DIF is typ-
ically much easier and more efficient.

However, depending on the particular design tool involved, it still may be a somewhat
involved task to automate the exporting and importing processes. First of all, graph topologies
and hierarchical structures of DSP applications must be captured in order to completely represent
their dataflow semantics. Furthermore, actors’ computations, parameters, and connections must
also be specified for preserving application functionality completely. In the following subsections,
we explain more about these issues and describe our approaches to addressing them. For illustra-
tion, we also demonstrate DIF-Ptolemy exporting and importing capabilities that we have devel-
oped.

Figure 13. Exporting and Importing Mechanism.
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6.1   Mapping Dataflow Graphs

Dataflow-based DSP design tools usually have their own representations for nodes, edges, hierar-
chies, etc. Moreover, they often use more specific components instead of just the abstract compo-
nents found in formal dataflow representations. Implementation issues involved in converting the
graphical representations of design tools to the formal dataflow representations used in DIF are
categorized as dataflow graph mapping issues.

Let’s take exporting Ptolemy II to DIF as an example to explain problems in dataflow graph
mapping. Ptolemy II has the AtomicActor class for representing DSP computations (associated
with primitive dataflow nodes) and the CompositeActor class for representing subgraphs. It uses
the Relation class instead of edges to connect actors. Each actor has multiple IOPorts and those
IOPorts are connection points for Relations. A Relation can have a single source but fork to mul-
tiple destinations. Regular IOPorts can accept only one Relation but Ptolemy II also allows multi-
port IOPorts that can accept multiple Relations. Clearly, problems arise when mapping Ptolemy
II graphical representations to DIF representations. First, based on the formal definition of nodes
in dataflow models, they do not have ports to distinguish interfaces. Second, edges in formal data-
flow graphs cannot support multiple destinations in contrast to Ptolemy II Relations. Third, the
multiport property in Ptolemy II does not match with formal dataflow semantics, and even an
interface port of a hierarchy defined in Section 2.2 can only connect to one outer edge or port.

Although implementation problems in dataflow graph mapping are tool-specific, exporting
without losing any essential modeling information is still feasible due to the broad range of mod-
eling capabilities offered through the features in DIF. First, the DIF language is capable of
describing dataflow semantics regardless of the particular design tool used to enter an application
model as long as the tool is dataflow-based. Second, DIF representations can fully realize the
dataflow graphs specified by the DIF language. Based on these two properties, our general
approach comprehensively traverse graphical representations in a design tool and then map the
modeling components encountered to equivalent components or groups of components available
for DIF representations. After that, our DIF front-end tool can write the DIF representations into
textual DIF specifications.

A brief description follows of the algorithm developed for mapping Ptolemy’s graphical rep-
resentations to DIF representations. First, AtomicActors are represented by nodes and Composite-
Actors are represented by hierarchies. Single-source-single-destination Relations are represented
by edges. For a multiple-destination Relation, a fork actor (which is described in Section 6.3) and
several edges are used to represent it without losing any dataflow properties. A Ptolemy II actor’s
IOPorts and the corresponding connections are specified as actor attributes. Even for a multiport
IOPort, multiple connections can still be listed as an actor attribute.

6.2   Specifying Actors

In dataflow analysis [15], a node may be viewed as a functional unit associated with a weight that
consumes/produces certain numbers of tokens when executing. Usually, dataflow-based analysis
and scheduling techniques are based on production rates, consumption rates, edge delays, and var-
ious node weight information and other edge weight information (e.g., node execution times or
execution time distributions, and the inter-processor communication cost associated with an edge
if its source and sink are mapped to different processors in a multiprocessor target). Thus, the
detailed computation performed by a node is irrelevant to many dataflow-based analyses. How-
ever, the computation (such as an FFT operation) and attributes (such as the order of the FFT)
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associated with a node is essential during implementation. To avoid confusion between the view-
points of nodes in dataflow analyses versus in hardware/software implementations, we henceforth
use the term node for the former context, and we use the term actor to refer to a node with speci-
fied computation and other implementation-related attributes (for the latter context).

Specifying an actor’s computation as well as all necessary operational information is referred
to as actor specification. It is an important issue in exporting and importing between DIF and
design tools as well as in porting DSP applications across tools because every actor’s functional-
ity must be preserved. The actor block is newly added to DIF language version 0.2 for actor spec-
ification. The DIF language syntax for the actor block is described in Section 3.10. Note that for
most dataflow-based analysis and scheduling techniques, the DIF language syntax without the
actor block is sufficient.

To illustrate actor specification, we take the FFT operations in Ptolemy II and in the Autocod-
ing Toolset as examples. In Ptolemy II, actors are implemented in Java and invoked through their
classpath. The FFT actor in Ptolemy II is thus referred to as ptolemy.domains.sdf.lib.FFT. In the
Autocoding Toolset, actors are called domain primitives, and each domain primitive is referred to
by its library identifier. The FFT domain primitive in the Autocoding Toolset is referred to as
D_FFT.

In exporting Ptolemy II to DIF, an actor’s parameters and IOPort-Relation connections are
specified as actor attributes. The built-in attributes PARAMETER, INPUT, and OUTPUT in DIF
indicate the parameters and interface connections of an actor. A full DIF actor block for the
Ptolemy FFT actor is presented in Figure 14. The Ptolemy FFT actor has a parameter order and
two IOPorts, input and output. Therefore, in the corresponding DIF actor specification, attribute
order (with attribute type PARAMETER) specifies the FFT order. In addition, attributes input
(with attribute type INPUT) and output (with attribute type OUTPUT) specify the
incomingEdgeID and outgoingEdgeID connecting to the corresponding IOPorts.

In the Autocoding Toolset, input/output connections and function configuration parameters of
a domain primitive are all viewed as parameters. In the D_FFT domain primitive, parameter X
specifies its input, parameter Y specifies its output, and parameter N specifies its length. In this

actor nodeID {
computation = “ptolemy.domains.sdf.lib.FFT;
order : PARAMETER = integerValue or integerParameterID;
input : INPUT = incomingEdgeID;
output : OUTPUT = outgoingEdgeID;

}

Figure 14. The DIF actor specification for the Ptolemy FFT actor.

actor nodeID {
computation = “D_FFT”;
N = integerValue or integerParameterID;
X = incomingEdgeID;
Y = outgoingEdgeID;

}

Figure 15. The DIF actor specification for the D_FFT domain primitive.
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case, the components of actor-specific information are all of the same tool-specific class (parame-
ter), so the attributeType field in the DIF specification can simply be ignored. There is no loss of
of information in leaving them out. The corresponding DIF specification for the D_FFT domain
primitive is presented in Figure 15.

6.3   The Fork Actor

The fork actor is introduced in DIF as a special built-in actor. It can have one and only one incom-
ing edge and multiple outgoing edges. Conceptually, when firing, the fork actor consumes a token
from its incoming edge and duplicates the same token on each of its outgoing edges. We say “con-
ceptually” here because in an actual implementation of the fork actor, it may be desirable to
achieve the same effect through careful arrangement and manipulation of the relevant buffers. The
fork actor is widely used in dataflow. For example, if a stream of data tokens is required to be
“broadcast” to multiple destinations, the fork actor can be used for this purpose. The built-in DIF
computation associated with the fork actor is called dif.fork.

dif graph1 {
topology {
nodes = source, fork, actor1, actor2, add, sink;
edges = e1 (source, fork), e2 (fork, actor1), e3 (fork, actor2),

e4 (actor1, add), e5 (actor2, add), e6 (add, sink);
}
actor fork {computation = "dif.fork";}
actor add {
computation = "dif.actor.lib.AddSubtract";
plus : INPUT = e4, e5;
output : OUTPUT = e6;

}
}

Figure 16. Mapping the Ptolemy II graphical representation to a DIF representation and the
corresponding DIF specification.
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In dataflow theory, an edge is a data path from a source node to a sink node. It cannot be asso-
ciated with multiple sink nodes. But the Relation in Ptolemy II can have multiple destinations. In
order to export Ptolemy’s graphical representations to DIF representations, the graph mapping
algorithm must be able to take care of this structural difference. By using a fork actor, an edge
connecting to the input of the fork actor, and multiple edges connecting from the fork actor to all
sink nodes, we can represent the Ptolemy Relation and preserve the same dataflow semantics
while using the formal dataflow representations in DIF.

Figure 16 illustrates how the fork actor and actor specification solve the Ptolemy Relation and
Ptolemy multiport problems.

6.4   Exporting and Importing Tools

In order to provide a front-end for a dataflow-based design tool to cooperate with DIF and to
use the DIF package, automating the exporting and importing processes for the design tool is the
most important feature. Figure 13 illustrates our proposed exporting and importing mechanism.
First, a dataflow graph mapping algorithm must be properly designed for the specific design tool
that is being used. Then a DIF exporter is implemented for that design tool based on the graph
mapping algorithm. It must be able to convert the graphical representation format in that tool to a
corresponding DIF representation. Actor specification is also required to preserve the full func-
tionality of actors. By applying the DIF front-end, the DIF exporter can translate the DIF repre-
sentation to a corresponding DIF specification and complete the exporting process.

Similarly, by using the DIF front-end, the DIF importer can read the DIF specification and
generate the DIF representation. Then, based on a “reverse graph mapping algorithm” and actor
specification, the DIF importer is able to construct the graphical representation in the design tool
while preserving the same functionality of the original DSP application.

The DIF exporter and DIF importer for Ptolemy II are implemented according to the export-
ing and importing mechanism described above. With these software components, a DSP applica-
tion in Ptolemy II can be exported to a DIF specification and then be imported back to a Ptolemy
MoML specification with all functionality preserved. Such an equivalent result from round-trip
translation validates the correctness of the implemented strategies and general methods in DIF for
dataflow graph mapping and actor specification.

7   Porting DSP Applications

DIF is proposed to be a standard language for specifying dataflow graphs in all well-defined data-
flow models. One of the original goals was to transfer information associated with DSP applica-
tions across different dataflow-based design tools. This goal was demonstrated in the first version
of DIF [9, 13].

In the development of DIF version 0.2, we have further explored this direction and developed
a new and significantly improved approach for porting dataflow-based DSP applications across
design tools. The objective of this porting mechanism is to provide, with a high degree of automa-
tion, a solution such that an application constructed in one design tool can be ported to another
design tool with enough details preserved throughout the translation to ensure executability on the
associated set of target embedded processing platforms. Because different design tools support
different sets of underlying embedded processing platforms, porting DSP applications across
design tools is effectively equivalent to porting them across those underlying platforms. Thus, the
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proposed DIF porting mechanism not only facilitates technology transfer at the level of applica-
tion models, but also provides portability across target platforms.

In this section, we introduce the porting mechanism in detail. In the next section, we demon-
strate that this mechanism is a feasible solution through an example of a synthetic aperture radar
(SAR) benchmark application that is transferred between the MCCI Autocoding Toolset and
Ptolemy II. These tools are significantly different in nature and the ability to automatically port an
important application like SAR across them is a useful demonstration of the DIF porting mecha-
nism.

7.1   The DIF Porting Mechanism

Figure 17 illustrates our proposed porting mechanism. It consists of three major steps: exporting,
actor mapping, and importing. Let us take porting from the Autocoding Toolset to Ptolemy II as
an example and introduce the porting mechanism in detail.

The first step is to export a DSP application developed in the Autocoding Toolset to the corre-
sponding DIF specification. In this stage, the actor information (actor specifications in the DIF
actor block) is specified for the Autocoding Toolset. With the DIF-Autocoding Toolset exporter/
importer, this exporting process can be done automatically. The second step invokes the actor
mapping mechanism to map DSP computational modules from Autocoding Toolset domain prim-
itives to Ptolemy II actors. In other words, the actor mapping mechanism interchanges the tool-
dependent actor information in the DIF specification. The final step is to import the DIF specifica-
tion with actor information specified for Ptolemy II to the corresponding Ptolemy II graphical

Figure 17. The DIF Porting Mechanism.
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representation and then from the graphical representation to an equivalent Ptolemy II MoML
specification. This importing process is handled by DIF-Ptolemy exporter/importer automatically.

The key advantage of using a DIF specification as an intermediate state in achieving such effi-
cient porting of DSP applications is the comprehensive representation in the DIF language of
functional semantics and component/subsystem properties that are relevant to design and imple-
mentation of DSP applications using dataflow graphs. Except for the actor block, a DIF specifica-
tion for a DSP application represents the same semantic information regardless of which design
tool is importing it. Such unique semantic information is an important basis for our porting mech-
anism, and porting DSP applications can be achieved by properly mapping the tool-dependent
actor information while transferring the dataflow semantics unaltered. Actor mapping thus plays a
critical role in the porting process, and the following sub-sections describe the actor mapping pro-
cess in more detail.

7.2   Actor Mapping

The objective of actor mapping is to map an actor in a design tool to an actor or to a set of actors
in another design tool while preserving the same functionality. Because different design tools usu-
ally provide different sets of actor libraries, problems may arise due to actor absence, actor mis-
match, and actor attribute mismatch.

If a design tool does not provide the corresponding actor in its library, we encounter the actor
absence problem. For example, Ptolemy does not provide a matrix transpose computation but the
Autocoding Toolset does. If corresponding actors exist in both libraries but functionalities of
those actors do not completely match, we have an instance of the actor mismatch problem. For
example, the FFT domain primitive in the Autocoding Toolset allows designers to select the range
of the output sequence, but the FFT actor in Ptolemy does not provide this function. Actor
attribute mismatch arises when attributes are mapped between actors but the values of corre-
sponding attributes cannot be directly interchanged. For example, the parameter order of the
Ptolemy FFT actor specifies the FFT order, but the corresponding parameter N of the Autocoding
Toolset FFT domain primitive specifies the length of FFT. As a result, in order to correctly map
between order and N, the equation N = 2^order must be satisfied.

The actor interchange format can significantly ease the burden of actor mismatch problems by
allowing a designer a convenient means for making a one-time specification of how multiple
modeling components in the target design tool can construct a subgraph such that the subgraph
functionality is compatible with the source actor. In addition to providing automation in the port-
ing process, such conversions reduce the need for users to introduce new actor definitions in the
target model, thereby reducing user effort and code bloat. Similarly, actor interchange methods
can solve attribute mismatch problems by evaluating a target attribute in a consistent, centrally-
specified manner, based on any subset of source attribute values. For absent actors, most design
tools provide ways to create actors through some sort of actor definition language. Once users
determine equivalent counterparts for absent and mismatched actors, our actor mapping mecha-
nism can take over the job cleanly and efficiently.

Figure 17 illustrates our actor mapping approach to the porting mechanism.

7.3   The Actor Interchange Format

Actor information associated with a DSP application is described in the DIF actor block by speci-
fying a built-in computation attribute and other actor attributes associated with the built-in
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attribute types PARAMETER, INPUT, and OUTPUT. Specifying actor information in the DIF
actor block is referred to as actor specification. In order to map actor information from a source
design tool to a target design tool, the actor mapping mechanism must be able to modify actor
attributes and their values in DIF specifications. How to carry out this mapping process is gener-
ally based on the provided (input) actor interchange information.

The Actor Interchange Format (AIF) is a specification format dedicated to specifying actor
interchange information. The AIF syntax consists of the actor-to-actor mapping block and the
actor-to-subgraph mapping block. The actor-to-actor mapping block specifies the mapping infor-
mation of computations and actor attributes from a source actor (an actor in the source design
tool) to a target actor (an actor in the target design tool). On the other hand, the actor-to-subgraph
mapping block specifies the mapping from a source actor to a subgraph consisting of a set of
actors in the target design tool and depicts the topology and interface of this subgraph. The actor-
to-subgraph mapping block is designed for use when a matching standalone actor in the target tool
is unavailable, inefficient or otherwise undesirable to use in the context at hand. The following
subsections 7.3.1 and 7.3.2 introduce the AIF syntax and the SableCC grammar for the Actor
Interchange Format is presented in Appendix B.

7.3.1   The Actor-to-Actor Mapping Block

In the first line, the keyword actor indicates the actor-to-actor mapping. The srcActor and
trgActor specifiers designate the computations (built-in computation attribute) of the source actor
and target actor, respectively. A method methodID is given optionally to specify a prior condition
for this mapping (i.e., a condition that must be satisfied in order to trigger the mapping). Argu-
ments arg1 through argN can be assigned values or expressions of source actor attributes. At runt-
ime, this method can determine whether or not the mapping should be performed based on the
values of source attributes.

The AIF provides four ways to specify or map to the target attribute values, each of which cor-
responds to a statement in the above syntax. First, it allows users to directly assign a value value
for a target attribute trgAtID. The supported value types are introduced in section 3.11. Second, a
target attribute trgAtID can be mapped from the corresponding source attribute srcAtID. If meth-
odID is not given in this statement, the value of trgAtID is directly assigned by the value of
srcAtID. On the other hand, a method methodID can optionally be given to evaluate or condition-
ally assign the value of trgAtID based on the runtime values of source actor attributes. Finally, the
AIF also provides syntax for one-to-multiple attribute mapping and multiple-to-one attribute
mapping. For such purposes, a list of identifiers can be used as an attribute value. Note that every
actor attribute can have an optionally specified type associated with it. For related details, see the
DIF attribute blocks and DIF actor block in Section 3.8 and Section 3.10.

actor trgActor <- srcActor | methodID(arg1, ..., argN) {
trgAtID : type = value;
trgAtID : type <- srcAtID : type | methodID(arg1, ..., argN);
trgAtID1 : type, ..., trgAtIDn : type <- srcAtID : type;
trgAtID : type <- srcAtID1 : type, ..., srcAtIDn : type;

}
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7.3.2   Actor to Subgraph Mapping Block

The keyword graph in this context indicates the actor-to-subgraph mapping. The trgGraph
term specifies the identifier or computation in order to invoke a component representing a sub-
graph in the target design tool and srcActor specifies the computation of the source actor. As with
the actor-to-actor mapping block, a method methodID and its arguments can be optionally given
to determine whether a triggering condition is satisfied.

The topology block is used to portray the topology of trgGraph and the interface block defines
the interface ports of trgGraph. The AIF syntax for the topology and interface blocks is the same
as that for the corresponding blocks in the DIF language. Moreover, the AIF allows users to spec-
ify mappings from the interface attributes, srcAtID with built-in type INPUT or OUTPUT, of the
source actor to the interface ports of the trgGraph.

The actor information of every node in trgGraph is specified in each actor block. The syntax
of the AIF actor block is almost the same as the DIF actor block. In addition, the AIF provides
syntax to map the source actor attribute srcAtID to the target attribute trgAtID while optionally
taking a method for evaluating or conditionally assigning the attribute value. Moreover, multiple-
to-one attribute mapping is also supported.

7.4   Actor Interchange Methods

The methods optionally specified in the actor-to-actor mapping block and actor-to-subgraph map-
ping block are used to perform conditional checks or to evaluate attribute values. They are
referred to as actor interchange methods. A set of commonly-used actor interchange methods are
defined in a built-in Java class in the DIF package. Users can extend this class and design more

graph trgGraph <- srcActor | methodID(arg1, ..., argN) {
topology {

nodes = nodeID, ..., nodeID;
edges = edgeID (sourceNodeID, sinkNodeID),

...,
edgeID (sourceNodeID, sinkNodeID);

}
interface { 

inputs = portID : nodeID <- srcAtID : INPUT,
...,
portID : nodeID <- srcAtID : INPUT;

outputs = portID : nodeID <- srcAtID : OUTPUT,
...,
portID : nodeID <- srcAtID : OUTPUT;

}
actor nodeID {

computation = “stringDescription“;
trgAtID : type = value;
trgAtID : type = ID;
trgAtID : type = ID1, …, IDn;
trgAtID : type <- srcAtID : type | methodID(arg1, ..., argN) ];
trgAtID : type <- srcAtID1 : type, ..., srcAtIDn : type;

}
}

32



specific interchange methods for more complicated or specialized actor mapping scenarios. Every
method used in an AIF specification must be defined in this built-in class or in one of the classes
derived from it. Based on the explicit classpath and the method’s signature, the correct method is
invoked through the Java reflection package.

There are three built-in actor interchange methods in the DIF package: 1. ifExpres-
sion(“expression”): this method evaluates the boolean expression and returns true or false; 2.
assign(“expression”): this method evaluates the input expression and returns the evaluated value;
3. conditionalAssign(“valueExpression”, “conditionalExpression”): this method returns the
value of valueExpression if the conditionalExpression is true, and throws an exception otherwise.
Note that the attributes of the source actor can be used as variables in expressions and their values
are used at runtime during evaluation. How to evaluate expressions is also an important issue in
actor mapping. Ptolemy II provides an efficient Java package, ptolemy.data.expr, for representing
variables as well as parsing and evaluating expressions; we have employed this package in the
implementation of AIF.

7.5   An Actor Interchange Specification Example: FFT

Although the Autocoding Toolset and Ptolemy II both provide FFT operations, actor mismatch
and attribute mismatch problems still exist between the two versions. The Autocoding Toolset
FFT domain primitive has parameter X for data input, parameter Y for data output, parameter N
for FFT length, and parameter FI for indicating an FFT or IFFT operation. On the other hand, the
Ptolemy FFT actor has parameter order, input IOPort input, and output IOPort output. Clearly, an
actor mismatch problem arises because the FFT domain primitive provides both FFT and IFFT
operations but the Ptolemy FFT actor does not. In this case, the Autocoding Toolset FFT domain
primitive can be mapped to the Ptolemy FFT actor only when its parameter FI is not set to indi-
cate IFFT. Moreover, an attribute mismatch problem arises because the FFT domain primitive
uses the FFT length but the Ptolemy FFT actor uses the FFT order. Therefore, parameter the N can
be mapped to the parameter order only when N = 2^order is satisfied, where N and order are inte-
gers. The actor interchange specification for mapping the FFT operation from the Autocoding
Toolset to Ptolemy II is presented in Figure 18.

The library identifier of the Autocoding Toolset FFT domain primitive is D_FFT. The class-
path of the Ptolemy FFT actor is ptolemy.domains.sdf.lib.FFT. D_FFT can be mapped to
ptolemy.domains.sdf.lib.FFT if the actor interchange method ifExpression evaluates FI == 0 and
returns true. The parameter order of the Ptolemy FFT actor is assigned to log(N) / log(2) if log(N)
/ log(2) is an integer. Therefore, the actor interchange method conditionalAssign evaluates and
returns log(N) / log(2) if (log(N)/log(2)) - rint(log(n)/log(2)) == 0 is true, where rint() is a round
to nearest integer function. Note that if (log(N)/log(2)) - rint(log(n)/log(2)) == 0 is false, condi-
tionalAssign will throw an exception indicating that the attribute mapping fails. Next, the value of

actor ptolemy.domains.sdf.lib.FFT <- D_FFT | ifExpression("FI == 0") {
order : PARAMETER <- N | conditionalAssign(

"log(N)/log(2)","(log(N)/log(2)) - rint(log(N)/log(2)) == 0");
input : INPUT <- X;
output : OUTPUT <- Y;

}

Figure 18. The actor interchange specification of mapping the FFT operation.
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parameter X is directly assigned to IOPort input for specifying the incoming edge. Similarly, the
value of parameter Y is directly assigned to IOPort output.

graph ptolemy.actor.TypedCompositeActor <- D_FFT 
| ifExpression("FI == 1 && M != N") {

topology {
nodes = IFFT, Scale, SequenceToArray, ArrayExtract, ArrayToSequence;
edges = e1 (IFFT, Scale), e2 (Scale, SequenceToArray),

e3 (SequenceToArray, ArrayExtract),
e4 (ArrayExtract, ArrayToSequence);

}
interface {
inputs = in : IFFT <- X;
outputs = out : ArrayToSequence <- Y;

}
actor IFFT {
computation = "ptolemy.domains.sdf.lib.IFFT";
order : PARAMETER <- N | conditionalAssign(

"log(N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");
input : INPUT = in;
output : OUTPUT = e1;

}
actor Scale {
computation = "ptolemy.actor.lib.Scale";
input : INPUT = e1;
output : OUTPUT = e2;
factor : PARAMETER <- N;

}
actor SequenceToArray {
computation = "ptolemy.domains.sdf.lib.SequenceToArray";
input : INPUT = e2;
output : OUTPUT = e3;
arrayLength : PARAMETER <- N;
}
actor ArrayExtract {
computation = "ptolemy.actor.lib.ArrayExtract";
input : INPUT = e3;
output : OUTPUT = e4;
sourcePosition : PARAMETER <- B | assign("B-1");
extractLength : PARAMETER <- M;
destinationPosition : PARAMETER = 0;
outputArrayLength : PARAMETER <- M;

}
actor ArrayToSequence {
computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
input : INPUT = e4;
output : OUTPUT = out;
arrayLength : PARAMETER <- M;

}
}

Figure 19. The actor interchange specification of actor-to-subgraph mapping of IFFT operation.
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The Autocoding Toolset FFT domain primitive also has a parameter B, which specifies the
first point of its output sequence and a parameter M, which specifies the number of output points.
The ability to select the range of the output sequence causes another actor mismatch problem
because the Ptolemy FFT actor does not support this function. Furthermore, there is a factor of N
difference between the Autocoding Toolset FFT domain primitive performing the IFFT operation
and the Ptolemy IFFT actor. One way to solve this problem is to create a new FFT actor in
Ptolemy, but it is rather time-consuming. The AIF actor-to-subgraph mapping block can be used
instead to solve such actor mismatch problems by combining multiple actors in the target design
tool in strategic ways to construct a subgraph such that the functionality of the subgraph is com-
patible to the source actor.

The actor interchange specification in Figure 19 illustrates how to map a D_FFT domain
primitive with the IFFT operation and selective output length to a Ptolemy subgraph. If a D_FFT
domain primitive outputs only part of its sequence, i.e., parameter N is not equal to parameter M,
other Ptolemy actors are involved to extract part of the output sequence of the FFT or IFFT actors.
As a result, when FI == 1 && M != N is true, a D_FFT domain primitive should be mapped to a
Ptolemy subgraph capable of performing an IFFT operation and post-processing the output
sequence. A subgraph in Ptolemy is represented by a supernode and is instantiated through the
class ptolemy.actor.TypedCompositeActor. 

The mapped subgraph consists of an IFFT actor, a Scale actor, a SequenceToArray actor, an
ArrayExtract actor, and an ArrayToSequence actor connected in this order. The IFFT actor per-
forms an IFFT operation, the Scale actor adjusts each sample by a factor of N, and the other three
actors are used to extract a certain part of the output sequence. The subgraph has an input port in
mapped from parameter X of D_FFT and an output port out mapped from parameter Y of D_FFT.

The classpaths of IFFT, SequenceToArray, ArrayExtract, and ArrayToSequence are specified
in the computation attributes. Moreover, the parameter order of IFFT is mapped from D_FFT
parameter N and its value is assigned log(N) / log(2), if log(N) / log(2) is an integer. The parame-
ter factor of Scale is mapped from N. Then, SequenceToArray converts arrayLength samples to
an array and its parameter arrayLength is mapped from N. Next, ArrayExtract extracts
extractLength elements starting from sourcePosition in the input array and puts them into an out-
put array with length outputArrayLength starting from destinationPosition. Its parameter sour-
cePosition is mapped from D_FFT parameter B. Another attribute mismatch problem arises
because the array starting index in Ptolemy II is 0 but it is 1 in the Autocoding Toolset. The actor
interchange method assign solves the problem by returning . Finally, ArrayToSequence
converts an array to arrayLength samples and arrayLength is mapped from D_FFT parameter M.

7.6   Conclusion

By supporting automatic exporting and importing for source and target design tools, the first
and third porting steps are achieved. With the Actor Interchange Format and actor interchange
methods for actor mapping, the entire three-step DIF porting mechanism is demonstrated, as illus-
trated in Figure 17.

The actor interchange methods and the corresponding AIF syntax are able to solve most
attribute mismatch problems because the target attribute value can be expressed conditionally
based on all source attribute values and users can design actor interchange methods for different
scenarios. In addition, actor-to-subgraph mapping can solve certain actor mismatch problems
because users can collect several target actors to construct a subgraph such that the functionality
of the subgraph is compatible with that of the source actor. If an actor is absent, manually creating

B - 1( )
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the corresponding actor is the last resort; the features in AIF greatly help to minimize the need for
doing this. Once users make suitable provisions for all of the absent actors, the actor mapping
mechanism associated with AIF can take over the job in an efficient, systematic fashion.

DIF is capable of porting DSP applications across dataflow-based design tools without any
standard library. In this case, the Actor Interchange Format acts as a standard specification format
to specify the interchange information between tools. However, cooperating with an industrial
standard library for providing an actor functional interface can further facilitate the porting pro-
cess. Even with a standard library, the Actor Interchange Format is still essential in mapping
actors between tools and the standard library. This is a useful direction for further study in the DIF
project.

8   SAR Example

In this section, we demonstrate porting a synthetic aperture radar (SAR) benchmark application
from the Autocoding Toolset to Ptolemy II. This demonstration shows the effectiveness the port-
ing mechanisms developed through DIF and AIF. The synthetic aperture radar system examined
in this section was used as a benchmark in the Rapid Prototyping of Application Specific Signal
Processors (RASSP) program sponsored by DARPA [17]. It represents one type of application
where the processing is rather simple but the data rate is extremely high.

8.1   The SAR Application in the MCCI Autocoding Toolset

Figure 20 shows the SAR Functional Requirement developed in the MCCI Autocoding Toolset.
Figure 20.(a) illustrates the top-level coarse-grain dataflow graph, SAR_FR. The SAR system
consists of two major building blocks: range processing and azimuth processing. Passed in
through the SAR_IN input queue, data samples are processed by node RANGE and node AZI-
MUTH, then they are sent to the SAR_OUT output queue. Node RANGE and node AZIMUTH in
the SAR_FR graph represent the RNG_FR subgraph in Figure 20.(b) and the AZI_FR subgraph in
Figure 20.(c), respectively.

Figure 20.(b) illustrates range processing in the RNG_FR subgraph. It consists of four nodes.
Node PAD pads 16 zero-valued samples to the end of each 2032-sample row. Node WEIGHT mul-
tiplies each padded range row by a TAYLOR_WTS weighting sequence containing 2048 weighting
values. Node COMPRESS performs a 2048 point Fast Fourier Transform on each range row.
Node COMPENSATE multiplies the transformed data by the radar cross-section compensation
RCS_WTS sequence containing 2048 compensating values.

Figure 20.(c) illustrates the azimuth processing in the AZI_FR subgraph. It consists of four
nodes as follows. Node CORNERTURN corner-turns a 1024-by-2048 matrix by using matrix
transpose. Node FFT performs a 1024-point Fast Fourier Transform on each row of the trans-
posed matrix. Node CONVL multiplies each transformed row by a convolution kernel AZ_KERN
sequence containing 1024 data values. Node IFFT performs an Inverse Fast Fourier Transform on
the convolution result and outputs only the last 512 samples.

8.2   Porting the SAR Application to Ptolemy II

Appendix C presents the DIF specification of the Autocoding Toolset SAR application showed in
Figure 20. With the actor interchange specification presented in Appendix D and the actor inter-
change methods developed in the DIF package, our actor mapping mechanism can translate the
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DIF specification in Appendix C to the DIF specification for Ptolemy actors, which is presented
in Appendix E. Finally, the DIF-Ptolemy exporter/importer imports the DIF specification in
Appendix E to Ptolemy II. The ported graphical representation in Ptolemy II is showed in Figure
21.

Figure 21.(a) represents the top-level coarse grain graph of the SAR application in Ptolemy II.
The supernodes (blocks with red borders) RNG_FR and AZI_FR represent the range processing
subgraph and the azimuth processing subgraph, respectively. Figure 21.(b) is the range processing
RNG_FR graph and Figure 21.(c) is the azimuth processing graph. Node IFFT in Figure 20.(c)
outputs only half of the IFFT sequence and there is a factor of N difference; actor-to-subgraph
mapping is used to solve these actor mismatch problems. The node IFFT in Figure 20.(c) is
mapped to the IFFT_SUBGRAPH in Figure 21.(d).

The MCCI Autocoding Toolset has I/O procedures specified outside of its graph specifica-
tions. As a result, we manually added I/O actors to feed data samples as well as coefficients into
the SAR graph, and to write and display the results. Figure 22 shows the SAR application in
Ptolemy II after adding I/O actors. The supernode SAR_FR in Figure 22 represents the top-level
SAR in Figure 21.(a). Other actors in Figure 22 are used to read input samples, read coefficients,
write to a file, and display the absolute value of the output waveform.

The ported SAR benchmark application in Ptolemy II works correctly. Figure 23 shows the
output waveform in Ptolemy II. Figure 24 compares the output samples generated by Ptolemy II
with those generated by the Autocoding Toolset, and reveals that the simulation results are the
same except for tolerable precision errors.

9   Conclusions and Future Work

In this report, we have introduced the DIF language version 0.2, the DIF package, and the sup-
ported dataflow models. We described our approach to automate the exporting and importing pro-
cesses. Finally, we developed the DIF porting mechanism and demonstrated it through a detailed
example of porting the SAR benchmark application between the MCCI Autocoding Toolset and
Ptolemy II.

In ongoing and future work on the DIF project, we are extending the DIF language and the
DIF package to accommodate advanced dataflow semantics such as various additional forms of
dynamic graph elements and multi-mode graphs. Another useful direction for further work is inte-
gration with industrial dataflow-based design tools by combining algorithms in the DIF package
with their software synthesis and code generation techniques.
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Figure 20. The SAR benchmark application in the MCCI Autocoding Toolset.
(a) SAR_FR graph. (b) RNG_FR graph. (c) AZI_FR graph.

(a) (b) (C)
38



(a)

(b)

(c)

Figure 21. The SAR benchmark application in Ptolemy II.
(a) SAR_FR graph. (b) RNG_FR graph. (c) AZI_FR graph. (d) IFFT_SUBGRAPH graph

(d)

Figure 22. The SAR benchmark application in Ptolemy II after adding I/O actors
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Figure 23. Simulation result of the SAR benchmark application in Ptolemy II.

Ptolemy( PGM Export)

MCCI( DIF Import)
 1.11334E+09, -5.67194E+08
 1.68657E+09, -1.13206E+09
 2.28101E+09, -1.83712E+09
 2.78720E+09, -2.56485E+09
 3.12169E+09, -3.12429E+09
 3.23570E+09, -3.33972E+09
 3.12633E+09, -3.13268E+09
 2.79604E+09, -2.57867E+09
 2.29266E+09, -1.85242E+09
 1.69888E+09, -1.14531E+09

1.113328370318E9, -5.672582199684E8
1.686243152456E9, -1.132239286739E9
2.280892492213E9, -1.837179778052E9
2.787030647091E9, -2.565079199379E9
3.121469726315E9, -3.124321013999E9
3.235633491442E9, -3.339997173742E9
3.126105298721E9, -3.132702116709E9
2.795907223687E9, -2.578937710771E9
2.292518065694E9, -1.852489499236E9
1.698661416987E9, -1.145532955647E9

Figure 24. Simulation results of the SAR benchmark application in Ptolemy II and the MCCI
Autocoding Toolset.
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Appendix A

The SableCC (version 2.16.2) grammar of the Dataflow Interchange Format.

Package mapss.dif.language.sablecc;

Helpers
  all = [0 .. 127];
  digit = ['0' .. '9'];
  non_digit = [[['a' .. 'z'] + ['A' .. 'Z']] + '_'];
  double = ( '+' | '-' )? (digit*) '.' (digit+) 
           ( ('e' | 'E') ( '+' | '-' )? digit+ )?;
  integer = ( '-' )? digit+;

  tab = 9;
  cr = 13;
  lf = 10;
  eol = cr lf | cr | lf; // This takes care of different platforms

  not_cr_lf = [all -[cr + lf]];
  not_star = [all -'*'];
  not_star_slash = [not_star -'/'];

  short_comment = '//' not_cr_lf* eol;
  long_comment = '/*' not_star* '*'+ (not_star_slash not_star* '*'+)* '/';
  comment = long_comment | short_comment;

  simple_escape_sequence = '\' ''' | '\"' | '\\' |
    '\b' | '\f' | '\n' | '\r' | '\t';
  octal_digit = ['0' .. '7'];
  octal_escape_sequence = '\' octal_digit octal_digit? octal_digit?;
  hexadecimal_digit = [digit + [['a' .. 'f'] + ['A' .. 'F']]];
  hexadecimal_escape_sequence = '\x' hexadecimal_digit+;
  escape_sequence = simple_escape_sequence | octal_escape_sequence |
  hexadecimal_escape_sequence;
  s_char = [all -['"' + ['$' + ['\' + [10 + 13]]]]] | escape_sequence;
  s_char_sequence = s_char*;
  string = '"' s_char_sequence '"';
  string_identifier = '$' s_char_sequence '$';

Tokens

  blank = (' ' | tab | eol);
  comment = comment;

  l_bkt = '{';
  r_bkt = '}';
  l_par = '(';
  r_par = ')';
  l_sqr = '[';
  r_sqr = ']';
  semicolon = ';';
  colon = ':';
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  comma = ',';
  s_qte = ''';
  plus = '+';
  equal = '=';
  dot = '.';

  graph = 'graph';
  attribute = 'attribute';
  basedon = 'basedon';
  interface = 'interface';
  parameter = 'parameter';
  refinement = 'refinement';
  topology = 'topology';
  actor = 'actor';
  inputs = 'inputs';
  outputs = 'outputs';
  nodes = 'nodes';
  edges = 'edges';

  integer = integer;
  double = double;
  true = 'true';
  false = 'false';
  string = string;
  string_tail = '+' (' ' | eol | tab)* string;

  identifier = non_digit (digit | non_digit)*;
  dot_identifier = non_digit (digit | non_digit)* ('.' non_digit (digit |
non_digit)* )+;
  string_identifier = string_identifier;

Ignored Tokens

  blank,
  comment;

Productions

  graph_list = graph_block*;
  graph_block = identifier name l_bkt block* r_bkt;
  block =
    {basedon}                   basedon basedon_body |
    {topology}                  topology topology_body |
    {interface}                 interface interface_body |
    {parameter}                 parameter parameter_body |
    {refinement}                refinement refinement_body |
    {builtin_attribute}         identifier attribute_body |
    {user_defined_attribute}    attribute name attribute_body |
    {actor}                     actor name actor_body;

  name = {identifier} identifier | {string_identifier} string_identifier;

  /*************************************
   * Definitions for basedon block:
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   */

  basedon_body = l_bkt basedon_expression r_bkt;
  basedon_expression = name semicolon;

  /*************************************
   * Definitions for topology block:
   */

  topology_body = l_bkt topology_list* r_bkt;
  topology_list =
    {nodes}  nodes equal name node_identifier_tail* semicolon |
    {edges}  edges equal edge_definition edge_definition_tail* semicolon ;

  node_identifier_tail = comma name;
  edge_definition = [edge]:name l_par
                    [source]:name comma
                    [sink]:name r_par;
  edge_definition_tail = comma edge_definition;

  /*************************************
   * Definitions for interface block:
   */

  interface_body = l_bkt interface_expression* r_bkt;
  interface_expression =
    {input}   inputs equal port_definition port_definition_tail* semicolon |
    {output}  outputs equal port_definition port_definition_tail* semicolon;

  port_definition = {plain} name |
                    {node}  [port]:name colon [node]:name;
  port_definition_tail = comma port_definition;

  /*************************************
   * Definitions for parameter block:
   */

  parameter_body = l_bkt parameter_expression* r_bkt;
  parameter_expression =
    {value}     name equal value semicolon |
    {range}     name colon range_block semicolon |
    {blank}     name semicolon;

  range_block = range range_tail*;
  range =
    {closed_closed}     l_sqr [left]:number comma [right]:number r_sqr |
    {open_closed}       l_par [left]:number comma [right]:number r_sqr |
    {closed_open}       l_sqr [left]:number comma [right]:number r_par |
    {open_open}         l_par [left]:number comma [right]:number r_par |
    {discrete}          l_bkt number discrete_range_number_tail* r_bkt;
  discrete_range_number_tail = comma number;
  range_tail = plus range;
  number = {double} double | {integer} integer;
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  /*************************************
   * Definitions for refinement block:
   */

  refinement_body = l_bkt refinement_definition refinement_expression* r_bkt;
  refinement_definition = [graph]:name equal [node]:name semicolon;
  refinement_expression = 
    {ports}     [port]:name colon [element]:name semicolon |
    {params}    [subparam]:name equal [param]:name semicolon;

  /*************************************
   * Definitions for attribute block:
   */

  attribute_body = l_bkt attribute_expression* r_bkt;
  attribute_expression =
    {value} name? equal value semicolon |    
    {reference} [element]:name? equal [reference]:name semicolon |
    {subelement_assign} [trggraph]:name [fst]:dot [trgele]:name equal 
                        [srcgraph]:name [snd]:dot [srcele]:name semicolon |
    {idlist} name? equal id_list semicolon;

  id_list = name ref_id_tail+;
  ref_id_tail = comma name;
    
  /*************************************
   * Definitions for actor block:
   */

  actor_body = l_bkt actor_expression* r_bkt;
  actor_expression = 
    {value} name type? equal value semicolon |
    {reference} [argument]:name type? equal [reference]:name semicolon |
    {reflist} name type? equal id_list semicolon;

  type = 
    {identifier} colon identifier | 
    {dot_identifier} colon dot_identifier;

  /*************************************
   * Definitions for value:
   */

  value =
    {integer} integer |
    {double} double |
    {complex} l_par [real]:double comma [imag]:double r_par |
    {int_matrix} l_sqr int_row int_row_tail* r_sqr |
    {double_matrix} l_sqr double_row double_row_tail* r_sqr |
    {complex_matrix} l_sqr complex_row complex_row_tail* r_sqr |
    {string} concatenated_string_value |
    {boolean} boolean_value |
    {array} l_bkt value value_tail* r_bkt;
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  int_row = integer integer_tail*;
  integer_tail = comma integer;
  int_row_tail = semicolon int_row;

  double_row = double double_tail*;
  double_tail = comma double;
  double_row_tail = semicolon double_row;

  complex = l_par [real]:double comma [imag]:double r_par;
  complex_row = complex complex_tail*;
  complex_tail = comma complex;
  complex_row_tail = semicolon complex_row;

  concatenated_string_value = string string_tail*;

  boolean_value =
    {true} true |
    {false} false;

  value_tail = comma value;
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Appendix B

The SableCC (version 2.16.2) grammar of the Actor Interchange Format.

Package mapss.dif.aif.sablecc;

Helpers
  all = [0 .. 127];
  digit = ['0' .. '9'];
  non_digit = [[['a' .. 'z'] + ['A' .. 'Z']] + '_'];
  double = ( '+' | '-' )? (digit*) '.' (digit+) 
           ( ('e' | 'E') ( '+' | '-' )? digit+ )?;
  integer = ( '-' )? digit+;

  tab = 9;
  cr = 13;
  lf = 10;
  eol = cr lf | cr | lf; // This takes care of different platforms

  not_cr_lf = [all -[cr + lf]];
  not_star = [all -'*'];
  not_star_slash = [not_star -'/'];

  short_comment = '//' not_cr_lf* eol;
  long_comment = '/*' not_star* '*'+ (not_star_slash not_star* '*'+)* '/';
  comment = long_comment | short_comment;

  simple_escape_sequence = '\' ''' | '\"' | '\\' |
    '\b' | '\f' | '\n' | '\r' | '\t';
  octal_digit = ['0' .. '7'];
  octal_escape_sequence = '\' octal_digit octal_digit? octal_digit?;
  hexadecimal_digit = [digit + [['a' .. 'f'] + ['A' .. 'F']]];
  hexadecimal_escape_sequence = '\x' hexadecimal_digit+;
  escape_sequence = simple_escape_sequence | octal_escape_sequence |
  hexadecimal_escape_sequence;
  s_char = [all -['"' + ['$' + ['\' + [10 + 13]]]]] | escape_sequence;
  s_char_sequence = s_char*;
  string = '"' s_char_sequence '"';
  string_identifier = '$' s_char_sequence '$';

Tokens

  blank = (' ' | tab | eol);
  comment = comment;

  l_bkt = '{';
  r_bkt = '}';
  l_par = '(';
  r_par = ')';
  l_sqr = '[';
  r_sqr = ']';
  semicolon = ';';
  colon = ':';
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  comma = ',';
  s_qte = ''';
  plus = '+';
  equal = '=';
  dot = '.';
  map_to = '->';
  map_from = '<-';
  given_that = '|';

  graph = 'graph';
  interface = 'interface';
  topology = 'topology';
  actor = 'actor';
  inputs = 'inputs';
  outputs = 'outputs';
  nodes = 'nodes';
  edges = 'edges';

  integer = integer;
  double = double;
  true = 'true';
  false = 'false';
  string = string;
  string_tail = '+' (' ' | eol | tab)* string;

  identifier = non_digit (digit | non_digit)*;
  dot_identifier = non_digit (digit | non_digit)* 
                   ('.' non_digit (digit | non_digit)* )+;
  string_identifier = string_identifier;

Ignored Tokens

  blank,
  comment;

Productions

  aif_list = aif_block*;
  aif_block = {actor} actor [trg]:type map_from [src]:type 
                      method_expression? l_bkt attribute_body* r_bkt |
              {graph} graph [trg]:type map_from [src]:type 
                      method_expression? l_bkt block* r_bkt;

  type = {identifier} identifier | 
         {dot_identifier} dot_identifier;
  method_expression = given_that identifier 
                      l_par argument argument_tail* r_par;
  argument = {id} identifier |
             {value} value;
  argument_tail = comma argument;

  /*************************************
   * Definitions for attribute body:
   */
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  attribute_body = {mapping} attribute_mapping |
                   {assign} attribute_assign;
  attribute_assign = attribute equal value semicolon;
  attribute_mapping = {single} [trg]:attribute map_from [src]:attribute 
                               method_expression? semicolon |
                      {multi_to_one} attribute map_from attributes semicolon |
                      {one_to_multi} attributes map_from attribute semicolon;

  attributes = attribute attribute_tail+;
  type_expression = colon type;
  attributes = attribute attribute_tail+;
  attribute_tail = comma attribute;

  /*************************************
   * Definitions for block:
   */
  
  block = {topology} topology topology_body |
          {interface} interface interface_body |
          {actor} actor name actor_body;

  name = {identifier} identifier |
         {string_identifier} string_identifier;

  /*************************************
   * Definitions for topology block:
   */

  topology_body = l_bkt topology_list* r_bkt;
  topology_list =
    {nodes}  nodes equal name node_identifier_tail* semicolon |
    {edges}  edges equal edge_definition edge_definition_tail* semicolon ;

  node_identifier_tail = comma name;
  edge_definition = [edge]:name l_par
                    [source]:name comma
                    [sink]:name r_par;
  edge_definition_tail = comma edge_definition;

  /*************************************
   * Definitions for interface block:
   */

  interface_body = l_bkt interface_expression* r_bkt;
  interface_expression =
    {input}   inputs equal port_definition port_definition_tail* semicolon |
    {output}  outputs equal port_definition port_definition_tail* semicolon;

  port_definition = {plain} name port_mapping? |
                    {node}  [port]:name colon [node]:name port_mapping?;
  port_definition_tail = comma port_definition;
  port_mapping = map_from attribute;
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  /*************************************
   * Definitions for actor block:
   */

  actor_body = l_bkt actor_expression* r_bkt;
  actor_expression = 
    {value} name type_expression? equal value semicolon |
    {reference} [argument]:name type_expression? equal 
                [reference]:name semicolon |
    {map} name type_expression? map_from attribute 
          method_expression? semicolon |
    {multi_map} name type_expression? map_from attributes semicolon |
    {reflist} name type_expression? equal id_list semicolon;

  id_list = name ref_id_tail+;
  ref_id_tail = comma name;

/*************************************
   * Definitions for value:
   */

  value =
    {integer} integer |
    {double} double |
    {complex} l_par [real]:double comma [imag]:double r_par |
    {int_matrix} l_sqr int_row int_row_tail* r_sqr |
    {double_matrix} l_sqr double_row double_row_tail* r_sqr |
    {complex_matrix} l_sqr complex_row complex_row_tail* r_sqr |
    {string} concatenated_string_value |
    {boolean} boolean_value |
    {array} l_bkt value value_tail* r_bkt;

  int_row = integer integer_tail*;
  integer_tail = comma integer;
  int_row_tail = semicolon int_row;

  double_row = double double_tail*;
  double_tail = comma double;
  double_row_tail = semicolon double_row;

  complex = l_par [real]:double comma [imag]:double r_par;
  complex_row = complex complex_tail*;
  complex_tail = comma complex;
  complex_row_tail = semicolon complex_row;

  concatenated_string_value = string string_tail*;

  boolean_value =
    {true} true |
    {false} false;

  value_tail = comma value;
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Appendix C

The DIF specification of the MCCI SAR benchmark application.

dif RNG_FR {
  topology {
    nodes = PAD, WEIGHT, COMPRESS, COMPENSATE;
    edges = PADDED (PAD, WEIGHT),
            WEIGHTED (WEIGHT, COMPRESS),
            COMPRESSED (COMPRESS, COMPENSATE);
  }
  interface {
    inputs = RANGE_IN : PAD, TAYLOR_WTS : WEIGHT, RCS_WTS : COMPENSATE;
    outputs = RANGE_OUT : COMPENSATE;
  }
  parameter {
    NFFT;
    NR;
    NPAD;
    PAD_VAL = (0.0, 0.0);
  }
  actor PAD {
    computation = "D_VFILL" ;
    N = NR;
    P = NPAD;
    V = PAD_VAL;
    X = RANGE_IN;
    Y = PADDED;
  }
  actor WEIGHT {
    computation = "D_VMUL";
    N = NFFT;
    X = PADDED;
    Y = TAYLOR_WTS;
    Z = WEIGHTED;
  }
  actor COMPRESS {
    computation = "D_FFT";
    N = NFFT;
    FI = 0;
    X = WEIGHTED;
    Y = COMPRESSED;
  }
  actor COMPENSATE {
    computation = "D_VMUL";
    N = NFFT;
    X = COMPRESSED;
    Y = RCS_WTS;
    Z = RANGE_OUT;
  }
}

dif AZI_FR {
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  topology {
    nodes = CORNERTURN, FFT, CONVL, IFFT;
    edges = YFCO (CORNERTURN, FFT),
            Y_AZ (FFT, CONVL),
            VMAUL (CONVL, IFFT);
  }
  interface {
    inputs = AZI_N : CORNERTURN, AZ_KERN : CONVL;
    outputs = AZI_OUT : IFFT;
  }
  parameter {
    NFFT;
    RNG_FFT;
  }
  actor CORNERTURN {
    computation = "D_MTRAN";
    M = NFFT;
    N = RNG_FFT;
    X = AZI_N;
    Y = YFCO;
  }
  actor FFT {
    computation = "D_FFT";
    N = NFFT;
    FI = 0;
    X = YFCO;
    Y = Y_AZ;
  }
  actor CONVL {
    computation = "D_VMUL";
    N = NFFT;
    X = Y_AZ;
    Y = AZ_KERN;
    Z = VMAUL;
  }
  actor IFFT {
    computation = "D_FFT";
    N = NFFT;
    FI = 1;
    X = VMAUL;
    Y = AZI_OUT;
    M = "NFFT/2";
    B = "(NFFT/2)+1";
  }
}

dif FR_SAR {
  topology {
    nodes = RANGE, AZIMUTH;
    edges = RNG_OUT (RANGE, AZIMUTH);
  }
  interface {
    inputs = SAR_IN : RANGE, TAYLOR : RANGE, RCS : RANGE, AZ_KERN : AZIMUTH;
    outputs = SAR_OUT : AZIMUTH;
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  }
  parameter {
    NFFT_RNG = 256;
    NFFT_AZI = 128;
    N_R = 235;
    NFILL = "NFFT_RNG-N_R";
  }
  refinement {
    RNG_FR = RANGE;
    RANGE_IN : SAR_IN;
    RANGE_OUT : RNG_OUT;
    TAYLOR_WTS : TAYLOR;
    RCS_WTS : RCS;
    NFFT = NFFT_RNG;
    NR = N_R;
    NPAD = NFILL;
  }
  refinement {
    AZI_FR = AZIMUTH;
    AZI_N : RNG_OUT;
    AZI_OUT : SAR_OUT;
    AZ_KERN : AZ_KERN;
    NFFT = NFFT_AZI;
    RNG_FFT = NFFT_RNG;
  }
  actor RANGE {
    computation = "SUBGRAPH";
  }
  actor AZIMUTH {
    computation = "SUBGRAPH";
  }
}
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Appendix D

The actor interchange specification for Autocoding Toolset to Ptolemy II actor mapping.

graph ptolemy.actor.TypedCompositeActor <- D_FFT 
        | ifExpression("FI == 1 && M != N") {
    topology {
        nodes = IFFT, Scale, SequenceToArray, ArrayExtract, ArrayToSequence;
        edges = e1 (IFFT, Scale),
                e2 (Scale, SequenceToArray),
                e3 (SequenceToArray, ArrayExtract),
                e4 (ArrayExtract, ArrayToSequence);
    }
    interface {
        inputs = in : IFFT <- X;
        outputs = out : ArrayToSequence <- Y;
    }
    actor IFFT {
        computation = "ptolemy.domains.sdf.lib.IFFT";
        order : PARAMETER <- N | conditionalAssign(
            "log(N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");
        input : INPUT = in;
        output : OUTPUT = e1;
    }
    actor Scale {
        computation = "ptolemy.actor.lib.Scale";
        input : INPUT = e1;
        output : OUTPUT = e2;
        factor : PARAMETER <- N;
    }
    actor SequenceToArray {
        computation = "ptolemy.domains.sdf.lib.SequenceToArray";
        input : INPUT = e2;
        output : OUTPUT = e3;
        arrayLength : PARAMETER <- N;
    }
    actor ArrayExtract {
        computation = "ptolemy.actor.lib.ArrayExtract";
        input : INPUT = e3;
        output : OUTPUT = e4;
        sourcePosition : PARAMETER <- B | assign("B-1");
        extractLength : PARAMETER <- M;
        destinationPosition : PARAMETER = 0;
        outputArrayLength : PARAMETER <- M;
    }
    actor ArrayToSequence {
        computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
        input : INPUT = e4;
        output : OUTPUT = out;
        arrayLength : PARAMETER <- M;
    }
}
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actor ptolemy.domains.sdf.lib.FFT <- D_FFT | ifExpression("FI == 0") {
    order : PARAMETER <- N | conditionalAssign(
        "log(N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");
    input : INPUT <- X;
    output : OUTPUT <- Y;
}

actor ptolemy.domains.sdf.lib.IFFT <- D_FFT | ifExpression("FI == 1") {
    order : PARAMETER <- N | conditionalAssign(
        "log(N)/log(2)", "(log(N)/log(2))-rint(log(N)/log(2)) == 0");
    input : INPUT <- X;
    output : OUTPUT <- Y;
}

actor mapss.applications.sar.MatrixTranspose <- D_MTRAN {
    rowN : PARAMETER <- M;
    colN : PARAMETER <- N;
    input : INPUT <- X;
    output : OUTPUT <- Y;
}

actor ptolemy.actor.lib.MultiplyDivide <- D_VMUL {
    multiply : INPUT <- X, Y;
    output : OUTPUT <- Z;
}

actor mapss.applications.sar.SequencePad <- D_VFILL {
    inputLength : PARAMETER <- N;
    outputLength : PARAMETER <- P | assign("P+N");
    padValue : PARAMETER <- V;
    input : INPUT <- X;
    output : OUTPUT <- Y;
}

actor ptolemy.actor.TypedCompositeActor <- SUBGRAPH {}
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Appendix E

The DIF specification of the ported SAR benchmark application in Ptolemy II.

dif IFFT_SUBGRAPH {
    topology {
        nodes = IFFT,
                Scale,
                SequenceToArray,
                ArrayExtract,
                ArrayToSequence;
        edges = e1 (IFFT, Scale),
                e2 (Scale, SequenceToArray),
                e3 (SequenceToArray, ArrayExtract),
                e4 (ArrayExtract, ArrayToSequence);
    }
    interface {
        inputs = in:IFFT;
        outputs = out:ArrayToSequence;
    }
    actor IFFT {
        computation = "ptolemy.domains.sdf.lib.IFFT";
        order : PARAMETER = 7.0;
        input : INPUT = in;
        output : OUTPUT = e1;
    }
    actor Scale {
        computation = "ptolemy.actor.lib.Scale";
        input : INPUT = e1;
        output : OUTPUT = e2;
        factor : PARAMETER = 128;
    }
    actor SequenceToArray {
        computation = "ptolemy.domains.sdf.lib.SequenceToArray";
        input : INPUT = e2;
        output : OUTPUT = e3;
        arrayLength : PARAMETER = 128;
    }
    actor ArrayExtract {
        computation = "ptolemy.actor.lib.ArrayExtract";
        input : INPUT = e3;
        output : OUTPUT = e4;
        sourcePosition : PARAMETER = 64;
        extractLength : PARAMETER = 64;
        destinationPosition : PARAMETER = 0;
        outputArrayLength : PARAMETER = 64;
    }
    actor ArrayToSequence {
        computation = "ptolemy.domains.sdf.lib.ArrayToSequence";
        input : INPUT = e4;
        output : OUTPUT = out;
        arrayLength : PARAMETER = 64;
    }
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}

dif RNG_FR {
    topology {
        nodes = PAD,
                WEIGHT,
                COMPRESS,
                COMPENSATE;
        edges = PADDED (PAD, WEIGHT),
                WEIGHTED (WEIGHT, COMPRESS),
                COMPRESSED (COMPRESS, COMPENSATE);
    }
    interface {
        inputs = RANGE_IN:PAD,
                 TAYLOR_WTS:WEIGHT,
                 RCS_WTS:COMPENSATE;
        outputs = RANGE_OUT:COMPENSATE;
    }
    parameter {
        NFFT;
        NR;
        NPAD;
        PAD_VAL = (0.0,0.0);
    }
    actor PAD {
        computation = "mapss.applications.sar.SequencePad";
        inputLength : PARAMETER = NR;
        outputLength : PARAMETER = 256;
        padValue : PARAMETER = PAD_VAL;
        input : INPUT = RANGE_IN;
        output : OUTPUT = PADDED;
    }
    actor WEIGHT {
        computation = "ptolemy.actor.lib.MultiplyDivide";
        multiply : INPUT = PADDED, TAYLOR_WTS;
        output : OUTPUT = WEIGHTED;
    }
    actor COMPRESS {
        computation = "ptolemy.domains.sdf.lib.FFT";
        order : PARAMETER = 8.0;
        input : INPUT = WEIGHTED;
        output : OUTPUT = COMPRESSED;
    }
    actor COMPENSATE {
        computation = "ptolemy.actor.lib.MultiplyDivide";
        multiply : INPUT = COMPRESSED, RCS_WTS;
        output : OUTPUT = RANGE_OUT;
    }
}

dif AZI_FR {
    topology {
        nodes = CORNERTURN,
                FFT,
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                CONVL,
                IFFT;
        edges = YFCO (CORNERTURN, FFT),
                Y_AZ (FFT, CONVL),
                VMAUL (CONVL, IFFT);
    }
    interface {
        inputs = AZI_N:CORNERTURN,
                 AZ_KERN:CONVL;
        outputs = AZI_OUT:IFFT;
    }
    parameter {
        NFFT;
        RNG_FFT;
    }
    refinement {
        IFFT_SUBGRAPH = IFFT;
        in : VMAUL;
        out : AZI_OUT;
    }
    actor CORNERTURN {
        computation = "mapss.applications.sar.MatrixTranspose";
        rowN : PARAMETER = NFFT;
        colN : PARAMETER = RNG_FFT;
        input : INPUT = AZI_N;
        output : OUTPUT = YFCO;
    }
    actor FFT {
        computation = "ptolemy.domains.sdf.lib.FFT";
        order : PARAMETER = 7.0;
        input : INPUT = YFCO;
        output : OUTPUT = Y_AZ;
    }
    actor CONVL {
        computation = "ptolemy.actor.lib.MultiplyDivide";
        multiply : INPUT = Y_AZ, AZ_KERN;
        output : OUTPUT = VMAUL;
    }
    actor IFFT {
        computation = "ptolemy.actor.TypedCompositeActor";
    }
}

dif FR_SAR {
    topology {
        nodes = RANGE,
                AZIMUTH;
        edges = RNG_OUT (RANGE, AZIMUTH);
    }
    interface {
        inputs = SAR_IN:RANGE,
                 TAYLOR:RANGE,
                 RCS:RANGE,
                 AZ_KERN:AZIMUTH;
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        outputs = SAR_OUT:AZIMUTH;
    }
    parameter {
        NFFT_RNG = 256;
        NFFT_AZI = 128;
        N_R = 235;
        NFILL = "NFFT_RNG-N_R";
    }
    refinement {
        RNG_FR = RANGE;
        RANGE_IN : SAR_IN;
        TAYLOR_WTS : TAYLOR;
        RCS_WTS : RCS;
        RANGE_OUT : RNG_OUT;
        NFFT = NFFT_RNG;
        NR = N_R;
        NPAD = NFILL;
    }
    refinement {
        AZI_FR = AZIMUTH;
        AZI_N : RNG_OUT;
        AZ_KERN : AZ_KERN;
        AZI_OUT : SAR_OUT;
        NFFT = NFFT_AZI;
        RNG_FFT = NFFT_RNG;
    }
    actor RANGE {
        computation = "ptolemy.actor.TypedCompositeActor";
    }
    actor AZIMUTH {
        computation = "ptolemy.actor.TypedCompositeActor";
    }
}
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