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This research investigates the problem of resupplying points of dispensing (PODs), which 

will dispense medications to millions of people in case of a bioterrorist attack such as 

anthrax.  After receiving an initial but limited supply of medication, the PODs will 

operate continuously.  Vehicles will resupply the PODs continuously from a central depot 

that has a stockpile of medication.  Each vehicle will repeatedly follow the same route 

and will deliver at each POD enough medication to replace what was consumed since the 

last visit.  Because the number of drivers and trucks may be limited during an emergency, 

we wish to minimize the number of vehicles used to resupply the PODs.  This thesis 

presents heuristics and a branch-and-bound approach for solving this NP-hard problem 

and evaluates their performance.  We also analyze a special case in which all of the PODs 

have the same demand.   
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Chapter 1: INTRODUCTION 

 

This research is motivated by work with public health officials who must plan the 

logistics for resupplying points of dispensing (PODs), which will dispense medications to 

the public in case of a health crisis or emergency that requires immediately deploying 

medication or other medical supplies to the population.  An example of such an incident 

is a bioterrorist anthrax attack or a dangerous strain of the flu which requires that the 

entire populations of cities travel to and receive emergency vaccination at certain 

predetermined points. 

 

Once the decision has been made to supply various PODs from the depot, the first 

problem is getting an initial quantity of medical supplies to the PODs.  After this happens 

and the PODs are up and running, public health officials must determine the best way to 

continuously resupply these PODs so that their supplies do not run out.  This thesis 

addresses the second part of this problem:  the PODs are operating and require a steady 

stream of supplies.  Suppose that during this second phase, supplies run out at PODs.  

This would result in POD staff and their supporting equipment being idle and thus the 

POD would be operating below its capacity.  In an emergency, this would be an unwise 

use of scarce resources.  Also, because queues would continue to build up while people 

are not served, this could also result in anxiety in the population and a lack of confidence 

in the competence and preparedness of the public health system in handling emergencies. 
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Vehicles will resupply the PODs continuously from a central depot that has a stockpile of 

medication.  This is in contrast with existing applications which typically supply 

customers once a day and return to resupply the next day or after a few days.  Given the 

vast quantities of medical supplies needed by an entire population in the case of an 

emergency, one truck load per day may just not be sufficient.  Instead, each vehicle 

repeatedly follows the same route, starting out as soon as it can after returning to the 

depot.  The capacity of the vehicles is given.  At each site, the vehicle delivers enough 

medication to replace what was consumed since the last visit and which must last until 

the next visit.  Figure 1 shows an example of the quantities that a vehicle must deliver at 

each POD on its route.  The inventory capacity at each POD is not constrained.  The 

amount that is delivered to any site is thus limited only by the capacity of the vehicle, 

which must supply other PODs as well.  The inventory capacity needed by each POD 

may thus be obtained after solving the problem. 
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Figure 1: Meeting a route’s demand rate 
 

2 min2 min
10 kg/min

10 min

22 min

20 min

20 min

2 min
20 kg/min

2 min
20 kg/min

Demand per POD= 10, 20 & 20 kg/min
Route duration = 80 min
Required delivery quantities: 80 x [10,20,20]

=800, 1600 & 1600 kg
Required truck capacity

=sum of delivery quantities
or route demand(50) x duration(80)
=4000 kg

Depot

POD

 

 

1.1 Parameters 

We assume that the following information is given: 

 Truck capacity  

 Travel times: time it takes to travel between each pair of PODs or any POD and 

the depot.  This would depend on the vehicle speed and the length of routes 

between PODs and/or the depot. 



 

 4 
 

 Demand rates: the rate at which supplies are consumed at each POD.  This is 

subject to the nature of the medical emergency and the capacity of dispensing 

operations (for example, available staffing for dispensing operations).  It is 

prescribed by health planners. 

 Load times: the time required to load the truck at the depot and unload it at each 

POD. 

 Maximum route duration: the maximum allowed duration for a vehicle to 

complete its route. 

1.2 Variables 

These variables represent problem parameters which we are free to manipulate to obtain 

solutions to the problem: 

 Assignment of PODs to vehicles: determination of which PODs each vehicle 

would supply. 

 Routing: determination of the path the vehicle would take to load at the depot and 

unload at the PODs. 

1.3 Constraints 

These are the problem constraints: 

 Each POD is supplied by only one vehicle. 

 The route duration must not exceed the prescribed maximum. 

 Vehicle supply rate at PODs (quantity to route duration ratio) may not be less than 

the prescribed POD demand rates. 
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 The quantity loaded onto the vehicle at the depot may not exceed the vehicle 

capacity. 

1.4 Objective Function 

The number of vehicles: Because the number of drivers and trucks may be limited during 

an emergency, the principal objective in this study is to minimize the number of vehicles.  

The cost of supplying the PODs also depends on the number of vehicles and drivers. 

1.5 Problem Scope 

This thesis investigates a single-depot, single-product, deterministic, symmetric, steady-

state problem.  The quantity of medical supplies is treated as a continuous variable.  

Symmetry means that the time required to travel between a pair of PODs or a POD and 

depot is independent of which of the pair is the start point. 

 

This problem, which we call the continuous-replenishment inventory routing problem 

(CRIRP), is a new type of inventory routing problem, which is known to be NP hard.   

This study develops and  investigates the CRIRP problem and presents the results of 

heuristic solutions and exact solutions that use branch and bound and pruning techniques. 
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Chapter 2: LITERATURE SURVEY 

Previous research has added a great deal to our knowledge about vehicle routing 

problems in general and inventory routing problems in particular.  A complete review of 

this literature is beyond the scope of this thesis.  However, there are several problems that 

have been studied which may be comparable to or useful in solving the CRIRP. 

 

2.1 Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) seeks to minimize the total distance of the route 

that is followed by a salesman who must visit a number of cities exactly once, before 

returning home (Lenstra, 1977).  The intercity distances, cij between each pair of cities, 

from city i to city j are given.  If cij = cji, it is a symmetric TSP; otherwise, it is 

asymmetric.  Because the total distance depends on the order in which the cities are 

visited, the number of possible routes amongst which to choose the shortest is n!, where n 

is the number of cities. 

 

Because the TSP is NP-hard, various heuristic approaches have been developed.  Golden 

et al. (1980) present the nearest neighbor algorithm of the TSP, which can have any node 

as its start point.  The closest node to the last one previously added to the route is 

appended.  This procedure continues until all nodes are in the route at which time the last 

and first nodes are connected to complete the route. 



 

 7 
 

2.2 Capacitated Vehicle Routing Problem 

The Capacitated Vehicle Routing Problem (CVRP) is a specific instance of the Vehicle 

Routing Problem (VRP).  The VRP seeks the optimal routing for a fleet of vehicles 

(which may be homogenous or heterogeneous) to supply a set of customers from one or 

more depots (Toth and Vigo, 1998).  A wide array of constraints (for example, vehicle 

capacity limits, route length limit, supplying customers within certain time windows, and 

customer supply precedence relationships) may limit route construction. 

 

In the CVRP, a fleet of identical vehicles supplies customers from a central depot, each 

customer having a given quantity requirement. Vehicles leave the depot, supply a certain 

number of customers and return to the depot.  The quantity delivered by each vehicle on a 

route is limited by the vehicle’s capacity.  The objective of the CVRP is to minimize 

costs, which could be based on route length or travel times between customers or 

customers and the depot.  These costs could be symmetric or asymmetric.  In the 

asymmetric case, the cost would depend on the direction taken between a pair of points 

while in the symmetric case, cost is independent of direction.  The largest arbitrary CVRP 

problem instances that can be solved to obtain exact solutions have about 50 sites.  Larger 

problems can be solved practically only with heuristics (Toth and Vigo, 1998). 

 

One of the heuristics for obtaining near-optimal solutions to the CVRP is the Clarke-

Wright savings algorithm.  Clarke and Wright (1962) assume a fleet of trucks with 

different capacities that need to supply a large number of customers (each having a 

quantity requirement) from a central depot.  The goal is to minimize the total distance 
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covered by all the trucks.  The number of trucks available is not predetermined, but as 

many trucks as needed are assumed available. 

 

The algorithm starts with an initial solution in which every customer is assigned a truck.  

Then the distance savings of including a pair of customers on the same route is computed 

for all possible pairs of customers.  Now, these pairs are ordered in decreasing amount of 

savings which are taken advantage of one at a time using the following procedure as 

applicable: 

 If both customers have not been included in a multi-customer route, include them 

in a new route. 

 If one customer has not been included in a multi-customer route and the other is a 

non-interior node in a multi-customer route, add the former to the latter’s route, 

between the latter and the depot.  An interior customer is one that is both preceded 

and followed by other customer nodes (as opposed to the depot). 

 If both customers are in separate multi-customer routes and are both non-interior 

nodes, join the two routes by breaking the link between each of these customers 

and the depot and linking the said customers. 

Adding customers to multi-customer routes as described is subject to the capacities of the 

trucks left. 

2.3 Period Vehicle Routing Problem 

In the Period Vehicle Routing Problem, there is a planning horizon of p days and i 

customers, each of which must be serviced during k of the p days (Christofides and 

Beasley, 1984).  There are only a certain number of k-day allowable combinations.  For 
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example, for a problem with a planning horizon of Monday through Friday, a customer 

that requires servicing twice a week could have {Monday and Thursday} or {Tuesday 

and Friday} as the only options available.  The goal is to assign a set of ki days to each 

customer in a manner that minimizes total costs over the planning horizon.  To solve this 

problem, one must first decide which set of days to assign to each customer.  Then, on 

each particular day of the planning horizon, one must determine how to route a fleet of 

vehicles to service the customers assigned to that day (this is a vehicle routing problem). 

2.4 Inventory Routing Problem 

The classic Inventory Routing Problem (IRP) combines routing and inventory as follows 

(Golden et al., 1984; Bard et al., 1998; Jaillet et al., 2002): based on their expected daily 

demand, customers must be assigned to one or more days, and then a vehicle routing 

problem (VRP) must be solved for each day to assign vehicles to customers and 

determine routes for the vehicles, with a goal of minimizing the total delivery cost. 

 

In the IRP, there is a single product, which each customer consumes at a certain rate 

(Campbell et al. 1998).  Each customer also has a predetermined inventory capacity.  A 

customer’s existing inventory must not run out before a vehicle resupply.  Typically the 

IRP is solved over a planning horizon (for example one week).  There is a fleet of 

homogenous vehicles of a given capacity and the objective is minimizing the cost of 

supplying the customers. 
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Here are the questions to answer in solving the IRP: 

 Based on inventory capacity and demand rate, how many and what days of the 

week should each customer be supplied? 

 Based on inventory level, what quantity should be supplied to each customer? 

 How does one best route the fleet of vehicles to supply the determined 

quantities to the customers assigned to a particular day? 

 

In more recent work Campbell and Savelberg (2004a) take a two-phase approach to 

solving the IRP.  The first phase uses integer programming to determine what customers 

to serve over the next several days and the quantities to be delivered.  The results of the 

first phase are used as inputs for the second phase.  This phase uses the VRP and 

scheduling techniques to plan delivery routes and schedules.  Constraints encountered in 

the second phase may lead to a modification of the results obtained in the first phase.  In 

another recent work, Campbell and Savelsbergh (2004b), present Vendor Managed 

Inventory Replenishment.  In this version of the IRP, a vendor monitors customers’ 

inventories and conducts replenishment of their inventories by coordinating inventory 

levels and vehicle deliveries to minimize long term costs. 

 

2.5 Strategic Inventory Routing Problem 

While the fleet size is given in the classic IRP, the Strategic Inventory Routing Problem 

(SIRP) seeks to minimize the fleet size needed over an extended period of time.  Webb 

and Larson (1995) point out the importance of anticipating the needed vehicle resources 

over a period of years needed to then solve classic IRP problems over a short period of 
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say one week.  It may be required to purchase or lease such vehicles months before the 

first anticipated use.  The probability distribution of the demand rate and the minimum 

acceptable probability of stock-out for each customer are known.  The SIRP seeks the 

fleet size that minimizes costs while meeting the needs of the problem subject to 

constraints.  While the SIRP seeks to minimize vehicle fleet size, the underlying problem 

that the SIRP fleet solves in the short term is still a classic IRP as discussed above.  

 

2.6 Bin Packing Problem 

The bin packing problem (BPP) is a classic NP-hard combinatorial optimization problem.  

Given a finite set U of n items, { u1, u2,…, un}, each of maximum size 1, the Bin Packing 

Problem (BPP) seeks a partition of U into disjoint subsets (bins): U1, U2,…, Uk such that 

the sum of the sizes of each subset (bin) is at most 1 and for which the number of 

partitions k (the bins) is minimized (Garey and Johnson, 1979). 

 

Garey and Johnson (1979) also present the First Fit Decreasing algorithm for the BPP 

problem.  First sort the n items of the set U in decreasing order of size.  An infinite 

number of bins, U1, U2,… are then made available.  The n items are added from the 

largest-sized to the smallest-sized, one at a time into the first bin into which they can fit 

without exceeding the capacity of the bins (the bin capacity equals 1).  When all of the 

items have been placed in bins, the number of bins that contain items of the set U is the 

minimum number of bins obtained by this heuristic algorithm. 
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2.7 Minimum Spanning Tree 

The Minimum Spanning Tree (MST) problem is important in network design problems.  

A spanning tree is a subgraph of a graph that connects all its vertices but has no circuits.  

There is thus exactly one path for each pair of vertices.  The minimum spanning tree 

problem seeks the spanning tree that has the minimum sum of paths between vertices.   

 

Kruskal (1956) shows that the minimum spanning tree of a graph is unique and provides 

a procedure for obtaining the unique solution.  This procedure repeatedly performs the 

following step until a spanning tree results: amongst the edges of the graph not yet 

chosen, choose the shortest edge that does not form a circuit with those previously 

chosen. 

 

2.8 Branch and Bound 

The problems considered in this thesis usually have a large number of possible solutions.  

Because they are NP-hard, there are no algorithms that allow the determination of an 

optimal solution in polynomial time.  Lawler and Wood (1966) describe the branch and 

bound technique as an intelligent, systematic way to search a solution space of feasible 

solutions for the optimum.  The solution space is repeatedly partitioned (via branching) to 

obtain smaller spaces.  For each subspace, this technique computes a lower bound 

(assuming that minimization of some cost function is the objective).  If the subspace’s 

lower bound is greater than the smallest known cost, the subspace is discarded.  

Partitioning of the remaining sub-spaces continues until a solution is found whose cost is 

not greater than the smallest known bound. 
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2.9 Summary 

The CRIRP is a distinct problem that is closely related to classical vehicle routing and 

inventory routing problems.  This chapter has reviewed some of the most relevant work 

and heuristics that may be useful for solving the CRIRP.  After presenting the 

formulation of the CRIRP, Chapter 3 will describe the differences between the CRIRP 

and other problems previously studied. 
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Chapter 3: PROBLEM FORMULATION 

 
In the general CRIRP, there are n sites (customers).  Each site (i = 1, …, n) has a demand 

rate of iL  items per time unit.  This is the rate at which the site consumes material.  There 

is a depot (i = 0) that has an unlimited amount of material.  The time spent at site i (to 

refill a vehicle or deliver material) is ip  for i = 0, …, n.  The time to go from site i to site 

j is ijc .  The vehicles are identical, each with capacity of C items of material. 

 

The problem is to find a feasible solution with the smallest number of vehicles.  A 

feasible solution specifies a route for each vehicle, and each site is assigned to one route.  

The delivery amount at a site is the route duration multiplied by the site’s demand rate. 

 

A vehicle may visit the depot multiple times during a route to refill.  A partial route that 

starts at the depot and ends at the depot is a “subroute.”  A vehicle may have multiple 

subroutes but visits each site just once on its route.  Figure 2 modifies the example in 

Figure 1 to illustrate the concept of subroutes.  The depot and PODs are the same but this 

time, the vehicle visits the PODs one at a time, refilling at depot after each POD is 

supplied.  Each POD constitutes a subroute and the vehicle capacity only needs to 

accommodate the subroute with the maximum demand rate. 
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Figure 2: Subroutes belonging to a route 
 

2 min2 min
10 kg/min

10 min

22 min

22 min

2 min
20 kg/min

2 min
20 kg/min

Demand per POD= 10, 20 & 20 kg/min
Route duration = 2+10+2+10+

2+22+2+22+
2+22+2+22=120

Required delivery quantities: 120 x [10,20,20]
= 1200, 2400 & 2400 kg

Required truck capacity = 2400 kg

Depot

POD

 

 

Given a solution, we evaluate its feasibility as follows.  Let vehicle v have vr  subroutes.  

Let the sequence  10, ,...,vj ks i i  be subroute j for vehicle v, where k is the number of 

sites on the subroute.  The total demand for the subroute is  
1 kvj i iD s L L   .  The 

total time to complete the subroute is  
1 1 1 20 0 0k kvj i i i i i iT s p c p c p c       .  The 

total time for vehicle v to complete all of its subroutes is    1 vv v vrT T s T s   . 
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When the vehicle visits site i, it will need to deliver i vLT  units of material in order to keep 

the site supplied until the vehicle’s next visit.  When vehicle v starts subroute vjs , it 

should take  vj vD s T  items in order to satisfy the demand of all the sites on that subroute; 

this quantity is the load of that subroute.  Let     *
1max , ,

vv v vrD D s D s  .  The 

maximum load for vehicle v is *
v v vM D T .  The solution is feasible if each site is 

assigned to exactly one vehicle and each vehicle’s maximum load is not greater than the 

vehicle capacity.  That is, vM C  for all vehicles 1, ,v K  . 

 

In order to demonstrate the existence of feasible solutions, consider the trivial subroutes 

 0,iz i , for 1, ,i n  .  Then,   0 0 0i i i iT z p c p c     and  i iD z L .  It is easy to 

see that there are feasible solutions to CRIRP if and only if    i iD z T z C  for all 

1, ,i n  .  

 
The objective is to find a feasible solution with the minimal number of vehicles.  CRIRP, 

like virtually all vehicle routing problems, is NP-hard (Lenstra and Rinnooy Kan, 1981). 

3.1 Unique Characteristics of the CRIRP 

Although similar in some ways to other routing problems, the CRIRP is unique in certain 

respects.  In the PVRP, IRP and SIRP, customer demand is expressed as a rate (quantity 

per unit time) as opposed to just a quantity.  Based on the customer demand rates, vehicle 

routing decisions are made periodically (e.g. daily).  The routes start and end in the same 

day; they don’t go into the next day.  All of the vehicles are available at the beginning of 
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the next day.  There is a “jump” from one day to the next where no vehicles are 

operating.  In the CRIRP, the customer demand is also a rate, but customers are supplied 

continuously, around the clock.  Instead of waiting for the next day to determine routing, 

when vehicles return to the depot, they immediately reload and resupply their customers. 

 

In IRP problems, the inventory capacity at customer locations is predetermined.  In the 

CRIRP, the customers are also expected to have inventory, but their required inventory 

capacity is determined only after the CRIRP has been solved.  

 

Among the problems previously studied, the SIRP best resembles the CRIRP.  Both 

express customer needs as demand rates and minimize the required vehicle fleet size.  

However, the classic IRP is the problem that underlies the SIRP which means that 

ultimately the SIRP anticipates supplying customers in a non-continuous manner. 

 
 

3.2 Example 

Consider a six-site problem instance.  The depot and site locations are shown in Figure 3.  

The travel time between sites is proportional to the distance.  In this instance, the travel 

time equals one time unit between the depot and sites 1, 2, 4, and 6 as well as between 

sites 2 and 3, between sites 3 and 4, between sites 5 and 6.  The travel time between the 

depot and site 5 equals 1.4 time units.  The demand rate iL  at each site is shown in 

parentheses.  The service time 1ip   time unit at the depot and all sites.  
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Figure 3: Feasible solution to a CRIRP instance 
 

Depot
#4 (0.2)

#3 (0.3)#2 (0.7)

#1 (5)

#5 (0.5)#6 (0.6)
 

 

If the vehicle capacity 20C   units, then the solution in Figure 1 is feasible with two 

vehicles as follows.  The first vehicle follows only one subroute 11 {0,1}s  .  The demand 

 *
1 11 5D D s   items per time unit, and the route duration  1 11 4T T s   time units, so 

the load 1 20M   items.  The second vehicle has two subroutes: 21 {0, 2,3, 4}s   and 

22 {0,5,6}s  .  The first subroute demand  21 1.2D s   items per time unit, and the 

subroute duration  21 8T s   time units.  The second subroute demand  22 1.1D s   

items per time unit, and the subroute duration  22 6.4T s   time units.  Therefore, the 

total route duration    2 21 22 14.4T T s T s   .      *
2 21 21max , 1.2D D s D s   items, 

so *
2 2 2 17.28M D T   items.  The load for the first subroute equals 17.28 items, and the 

load for the second subroute equals 15.84 items.   
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3.3 The Special Case of Identical Demand 

Consider the special case in which all iL L .  (This special case is a useful model for the 

POD resupply problem if the jurisdiction’s mass dispensing plans call for a set of 

identical PODs.)  In this case, as we show below, the non-trivial subroutes of a feasible 

solution can be split into the trivial subroutes without increasing the maximum load of 

any vehicle.  Thus, there is an optimal solution in which every vehicle’s route is the 

concatenation of trivial subroutes.   

 

Consider a feasible solution in which a vehicle v visits n sites using r subroutes.  Suppose 

r n , so at least one subroute has more than one site.  Let 0 0m  .  Renumber the sites 

and define km  ( 1, ,k r  ) so that the first subroute visits sites 11, , m , the second 

subroute visits sites 1 21, ,m m  , and so forth, with rm n . 

 

Let  11
max k kk r

h m m  
  .  Note that 2h   and hr n .  Let kTT  be the travel time of 

subroute k.  Note that 02k iTT c  for any  1 1, ,k ki m m   . 

 

Now consider the duration of each subroute k, and let 0T  be the duration of the current  

route: 

 

 

 

1

0
1

0
1

0
1 1

k

k

m

vk i k
i m

r

vk
k

n r

i k
i k

T s p p TT

T T s

rp p TT

 



 

  



  





 

 



 

 20 
 

On subroute k the demand    1vk k kD s m m L  .  The maximum subroute demand is 

therefore hL, and the maximum load is 0hLT .  Because the solution is feasible, 0hLT C . 

 

Now, modify this solution to construct a new solution in which this vehicle visits all of 

the same sites using trivial subroutes.  Let 0 02i i it p c p    for all 1, ,i n  .  Let 1T  be 

the duration of the new route: 

 
 1 0 0 0

1 1

0 0
1 1

2

n n

i i i i
i i

n n

i i
i i

T t p c p c

np p c

 

 

    

  

 

 
 

In this solution, the maximum subroute demand is L, and the maximum load is 1LT .  

Now, we will show that 1 0LT hLT  by proving that  0 1hT T  is positive. 

    0 1 0 0
1 1 1

1 2
n r n

i k i
i k i

hT T p hr n h p hTT c
  

 
       

 
    

Because hr n , the first term is non-negative.  Because 2h  , the second term is 

positive.  To analyze the third term, we regroup the terms in the last summation by the 

subroutes to get the following: 

 

 

1

1

0 0
1 1 1 1

0
1 1

2 2

2

k

k

k

k

mr n r

k i k i
k i k i m

mr

k i
k i m

hTT c hTT c

TT c





    

  

 
   

 

 

   

 
 

Each term of this double summation is non-negative.  Therefore, 0 1hT T  is positive, and 

1 0LT hLT C  .  This shows that using the trivial subroutes is also feasible because they 
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reduce the load of the vehicle.  Therefore, there is an optimal solution with all trivial 

subroutes. 

 

Which vehicle should do which subroutes?  Let 0 02i i it p c p    for all 1, ,i n  .  

Suppose vehicle k completes a set kS  of trivial subroutes.  The route is feasible if and 

only if 
k

k i
i S

M L t C


  , which is equivalent to /
k

i
i S

t C L


 .  Thus, the problem 

becomes a bin packing problem in which the item size is it  and the bin size is C/L.  The 

packing of items into bins corresponds to the assignment of sites to vehicles.  

Interestingly, the routing is trivial, because the load does not depend upon the sequence, 

so any sequence for a vehicle’s route is sufficient. 

 
 

3.4 Combining Subroutes with Unequal Demand 

The result above reflects the fact that it is desirable to create subroutes that have equal 

demand.  In the special case, this means using only trivial subroutes.  In the general case, 

we can see that combining subroutes with low demand is desirable. 

 

Consider a feasible solution in which a vehicle visits n sites using r subroutes.  Renumber 

the sites as done in Section 3.3.   

 

For each subroute k, let kTT  be the travel time of subroute k, let  kD s  be the subroute 

demand, and let  kT s  be the duration of the subroute: 
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 

 

1

1

1

0
1

k

k

k

k

m

k i
i m

m

k i k
i m

D s L

T s p p TT





 

 



  




 

Let  *

1
maxv kk r

D D s
 

  be the largest subroute demand.  Let  
1

r

v k
k

T T s


  be the total 

route duration.  Then the maximum load *
v v vM T D . 

 

Consider two subroutes p and q such that     *
p q vD s D s D  .  Combining these two 

subroutes into one subroute eliminates one stop at the depot, which decreases the total 

route duration vT  (by 0p  and any distance savings).  Because the total demand on the 

new subroute is not greater than *
vD , the maximum load vM  also decreases.  Thus, this 

new route is also feasible.  This implies that low-demand subroutes should be combined 

when possible. 

3.5 Summary 

In this chapter we have developed the equations that govern the feasibility of a potential 

solution to a CRIRP problem – that is the relationship among the required vehicle 

capacity, route duration and subroute demands.  We also determined the conditions 

required for a CRIRP to have a solution.  For a special case of the CRIRP in which all 

PODs have an identical demand rate, we showed that there is an optimal solution which 

reduces to a bin packing problem.  This finding then led us to the conclusion that 

combining relatively low-demand subroutes is beneficial.  In the next chapter, we 
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develop heuristics for solving the CRIRP.  Some of these heuristics are based on insight 

obtained from this chapter. 
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Chapter 4: HEURISTICS 

Because the general CRIRP problem is NP-hard, we will consider the use of heuristics to 

find good solutions in a reasonable amount of time.  In this chapter three heuristics are 

presented along with the results they produce. 

4.1 H1 Heuristic: Subroute Demand Packing 

 

The first heuristic (H1) is a three-stage bin-packing approach that has a parameter W, 

representing subroute demand.  W is varied in the range  

 max ,i i
i

W L L 
   

    (4.1) 

that is, from the maximum POD demand to the sum of all POD demands. 

4.1.1 Rationale for the Heuristic 

Before presenting the heuristic, we will describe the idea behind it.  Each subroute is 

visited once during a vehicle route.  For two subroutes on the same vehicle’s route, a 

lower demand subroute requires a smaller delivery quantity than a higher demand 

subroute.  While the higher capacity subroute may fully utilize vehicle capacity, the 

lower demand subroute would be wasting the same.  It is thus desirable that all the 

subroutes of a route have about equal demand.  The parameter, W in this heuristic 

represents subroute demand.  Site demands are packed into subroutes of demand 

capacity, W.  On the one hand, to accommodate the largest demand POD, W must be at 
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least as large as max( )iL .  On the other hand the largest possible subroute would contain 

all sites and have a demand of i
i

L .  

 

Consider the vehicle capacity constraint for each route: 

*
v vD T C  

Since W is now the maximum subroute demand,   

vWT C   or /vT C W    (4.2) 

From (4.2) subroute durations can be packed into routes of duration /C W . 

 

It is possible that a subroute’s duration may be greater than /C W , in which case the 

heuristic can’t pack it into a route.  Moreover, any solution with that subroute may be 

infeasible unless the subroute demand is much less than W.  That would mean this 

heuristic would not be able to return a solution.  If  vjT s , the duration of subroute j, is 

greater than /C W , but    /vj vjT s C D s , then the subroute by itself can constitute a 

route even though it cannot be packed into the specified route duration.   

 

To illustrate this point, suppose that W = 400 lbs/hr and C = 1000 lbs.  We require the 

total route length /vT C W  = 2.5 hrs.  Now, suppose that, after packing the site 

demands, subroute j has demand  vjD s  = 250 lbs/hr and a subroute duration  vjT s =3 

hrs.  Subroute j cannot be packed into a route, but the subroute by itself is feasible 
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because 3 hrs =    /vj vjT s C D s  = 4 hrs.  Equivalently,    vj vjD s T s C  as 250(3) < 

1000 lbs. 

 

4.1.2 Algorithm and Implementation 

The H1 or subroute demand packing heuristic is depicted in Figure 4.  In the first step, 

the heuristic uses the first fit decreasing algorithm to find a solution to the bin-packing 

problem in which each site i is an item, the item size is the demand rate iL , and the bin 

capacity is W.  This assigns sites to subroutes.  The order in which sites in a subroute are 

visited is determined by applying the nearest neighbor algorithm starting at the depot. 
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Figure 4: The H1 heuristic 
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The next step packs subroutes into routes.  First, if there are any subroutes whose 

duration does not permit them being packed in the prescribed route duration, such 

subroutes require separate processing (Figure 5).  For the subroutes whose durations can 

be packed into route durations, the first fit decreasing algorithm is once again applied.  

The routes formed from the long subroutes and the packed routes constitute the total 

number of routes.  If this is thus far the best solution, it replaces the previous best 
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solution (if one existed).  This process continues for each value of W, and the solution 

with the lowest number of vehicles is returned.  Our implementation of this heuristic used 

6 equally spaced values of W, with the lowest and highest values obtained from the 

bounds in Equation 4.1. 

 

Figure 5: Processing long subroutes for the H1 heuristic 
 

Long subroutes: 
Subroute1,Subroute2,

…,Subroutek

Subroutes 
available

   /vj vjT s C D s

yesConstitute 
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feasible
Set Infeasible to 

true
Return

ReturnNo

Start End

Infeasible Subroute 
Found.  Initially set 

to false

Remove current 
subroute from 

list

 

 

Figure 5 depicts how the above-mentioned long subroutes are processed.  If any of the 

long subroutes cannot by itself constitute a route (because    vj vjD s T s C ), the value 

of W during which the failure occurs is abandoned.  If, for all the values of W, no feasible 

solution is found, then this heuristic fails to return a feasible solution. 
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Figure 6 depicts the first fit decreasing algorithm applied when packing site demands into 

W, the subroute demand capacity.  

Figure 6: The first fit decreasing algorithm applied to site demands 
 

2 5 8741 63

The widths of these boxes represent the 
demands of sites

Sort the sites by decreasing demand 
order

The red boxes represent subroutes and 
the height of the box represents the 
parameter, W.  The sites are packed 

according to first fit.

 

4.1.3 Heuristic Improvements 

Some work could be done to improve the solutions computed by this algorithm.  If the 

long duration subroutes fail to be packed into routes and fail to constitute routes by 
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themselves for all values of W tested, this heuristic will fail to return a solution.  A simple 

way to attempt to counter this situation is to break up long subroutes into individual sites 

and try to reconstitute them to obtain feasible routes.  The most trivial attempt could 

simply make each of the individual sites into a route. 

 

This implementation uses six evenly spaced values of W.  There are an infinite number of 

W’s and intuitively, the more values that are processed, the better the chance of getting 

close to the optimum.  However, processing more values of W is time intensive and 

provides no guarantee of obtaining a better solution.  It would be interesting to 

investigate if there is a more systematic way to select values from the range of possible W 

values so as to obtain better solutions.   

 

4.2 H2 Heuristic: Random POD Sequences 

This heuristic generates several random sequences of PODs.  For each such sequence, a 

new route is initially created and PODs are added one at a time to the current route up to 

the point where adding a POD makes a route infeasible.  At this point, the heuristic starts 

a new route and adds the POD to it.  This procedure continues until all PODs are in 

routes.  We compare the number of routes generated by each of the POD sequences and 

select the minimum.  The routes generated by this heuristic consist of one subroute only.  

This is a very simple heuristic based on random POD sequences.  Its main purpose is to 

serve as a benchmark for all heuristics.  Any heuristic that does not significantly out-

perform this one, is probably not a good heuristic.  
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4.2.1 Algorithm and Implementation 

The H2 heuristic is depicted in Figure 7.  Our implementation generates 10 random 

sequences of the PODs.  To determine route feasibility, the heuristic needs the route 

duration vT  and the route demand (in this case the route demand is the same as the 

maximum subroute demand *
vD ).  Before adding the first POD to the route, the load time 

at the depot is added to the route duration.  When adding subsequent PODs to a route, the 

current route duration is augmented by the travel time to the POD and the POD unload 

time; meanwhile the route demand is augmented by the POD demand. 
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Figure 7: The H2 heuristic 
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4.2.2 Determining whether to add a POD to a Route 

When adding a POD to a route, it is unknown if this would be the last POD added.  The 

heuristic should therefore not add the travel time back to the depot to the route duration.  

However, to determine whether the route would be feasible with the addition of this 

POD, the travel time from the POD back to the depot is tentatively added to the route 

duration in order to determine feasibility.  

 

If this new POD cannot feasibly be added to the route, the current POD is removed and 

used to start a new route: the current route is now complete.  Because the feasibility of a 

route is determined before a POD is added to it, we simply permanently augment the 

route duration with the travel time back to the depot.   

4.2.3 Improvements 

This heuristic is straightforward and easy to implement, but one envisions possible 

improvements.  Before rejecting a new POD and closing a route, a TSP heuristic could be 

applied to the route to reduce the duration and thus increase the demand that the route can 

handle.  Also, when a POD fails to be added to a route, the heuristic could look further 

down into the sequence of remaining PODs to determine if there are any that could be 

feasibly added to this route.  We leave these improvements for future study. 

 

4.3 H3 Heuristic: Utilizing the Special Case 

The H3 heuristic attempts to group PODs having similar demand on the same route.  The 

CVRP is then applied to each of these sets of PODs.  The vehicle capacity is the CVRP 

constraint.  For a set of PODs, the CVRP would return routes.  These CVRP routes are 
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used as subroutes of a CRIRP route.  The resulting route duration and the aggregate 

maximum subroute demand are used to determine the feasibility of the CVRP solution.  

To create a CRIRP route, this heuristic progressively adds PODs to the CVRP problem 

until the feasibility constraints are violated.  

4.3.1 Rationale for the Heuristic 

This heuristic is inspired by two observations made in Chapter 3.  First, in the special 

case, all PODs have the same demand, and there is an optimal solution for which routes 

are constituted from trivial subroutes.  Secondly, in the general CRIRP problem, it was 

shown in Chapter 3 that, if the sum of the demand of two subroutes of a route is smaller 

than the demand of any single subroute, the solution cannot be worse and indeed should 

be better if those subroutes are combined into one subroute.  Thus, if PODs have about 

the same demand, we want them to each constitute a trivial subroute.  We would combine 

subroutes only if some PODs on the route have a much smaller demand than others.  

Solving the CVRP provides a mechanism for implementing these ideas.  To apply CVRP 

techniques to solve the CRIRP, we convert POD demands to POD delivery quantities that 

are proportional the demand rates.  By varying the ratio of delivery quantity to demand, 

we permit the vehicle capacity constraint of the CVRP to control the number of PODs per 

subroute while ensuring that low demand PODs are combined on the same subroute.  In 

the next sections we discuss in more detail how this heuristic achieves these aims.   

4.3.2 Converting Demand Rates to Absolute Quantities 

In order to use solution techniques for the CVRP, the demand at each site must be a 

quantity, not a rate.  The solution of the CVRP is then executed periodically for each 
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route to get the effect of a rate.  The absolute quantities assigned to PODs must thus be 

proportional to the POD demands.  Consider a set of PODs that we wish to constitute into 

a route.  At one extreme the quantities assigned to the PODs could be such that the 

vehicle can barely deliver medical supplies to the maximum demand POD.  At the other 

extreme, the quantities could be such that the vehicle could deliver to all the PODs with 

one vehicle load.  For example, suppose we want to constitute a route with four PODs 

that have the following demands: 75, 100, 125, and 200 kg/hr.   Let the truck capacity be 

1000 kg.  In converting demand rates into quantities, at one extreme, we would multiply 

the demands by a ratio of 1000/200 = 5 (using the maximum demand rate) to obtain 

delivery quantities of 375, 500, 625, and 1000 kg.  If these were an instance of the CVRP, 

the POD with 1000 kg would become one subroute, and the other three PODs would be 

combined in a manner that seeks to minimize the route duration.  At the other extreme, if 

we multiply the demands by 1000/500 = 2 (using the sum of the demands), solving the 

CVRP would yield one giant subroute of our route.  Of course, we could use ratios 

anywhere between these extremes.  Whatever ratio we use, the advantage of using CVRP 

is that it lumps POD demands together to vehicle capacity while also attempting to 

minimize route duration (which is the goal of CVRP).  

4.3.3 Feasibility of the Adapted CVRP Solution 

CVRP requires that the quantities delivered to each POD on a route do not exceed vehicle 

capacity.  CVRP feasibility is a prerequisite to applying the CVRP solution to the H3 

heuristic.  To apply this solution, the heuristic first converts the routes of the CVRP 

solution to subroutes of a single route in CRIRP.  We still need to ensure that the PODs’ 

demand rates are not outstripping supply rates.  Consider POD j with demand Dj on the 
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CRIRP route just obtained from CVRP.  Let r be the quantity - demand ratio applied to 

convert the demand rates to quantities for the CVRP.  Then the quantity delivered to the 

POD during the route is jrD .  If the demand rate should not outstrip supply, then 

_
_

1

j
j

quantity delivered demand
route duration

rD
D

routeDuration
r

routeDuration
r routeDuration









 

The sum of the CVRP route durations obtained must be less than or equal to the quantity-

demand ratio by which the demand rates were multiplied. 

4.3.4 Selecting PODs for a Route 

Since this heuristic seeks to operate as close to the special case as possible, first, all PODs 

are sorted in order of increasing demand.  This is the order in which PODs must be added 

to routes.  Whenever PODs are successfully added to a route, they are removed from the 

list of sorted PODs.  We seek lower and upper bounds to the number of low demand 

PODs that will fit in the next route.  The initial upper bound is the number of PODs left.  

To obtain a lower bound, the heuristic adds PODs to the route as trivial subroutes up to 

the point where the problem constraints are violated.  The use of trivial subroutes (as in 

the CRIRP special case) as opposed to one all-inclusive subroute, is justified by the 

proximity of the sorted POD demands.  When applying CVRP to the PODs, the heuristic 

then selects a certain number of the next available PODs, where the number selected is 

greater than the lower limit and less than or equal to the upper limit.  The CVRP solution 

technique is then applied to these selected PODs.  Depending on the feasibility of results 
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of the CVRP solution technique, the heuristic revises the lower and upper bounds on the 

number of PODs in the route.  This revision continuously reduces the difference between 

the lower and upper bounds until they converge on the same number.  When this 

happens, the indicated PODs are the best that this heuristic can put in a route. 

 

4.3.5 Algorithm and Implementation 

Figure 8 depicts the “bounds routine”: the process that this heuristic uses to select lower 

and upper bounds.  When this routine is first called for a new route, the lower bound is 

set to zero PODs.  The number of PODs in the last CVRP attempt, the route length and 

maximum subroute duration are also all set to zero.  For subsequent calls of the routine, 

the heuristic must have tried to run a CVRP solution technique on a certain number (non-

zero) of PODs.  Since the lower bound is the least number of the next available PODs 

that is guaranteed to fit in a route, the CVRP solution technique that is called should try 

to fit more than the lower bound.  The bounds routine then receives the feasibility of the 

CVRP-attempted route.  If feasible, the routine also needs the route duration and 

maximum subroute demand.  It is this information that the bounds routine uses to 

determine new lower and upper bounds for the number of PODs that can fit in a route.  

The routine either reduces the upper bound or increases the lower bound. 
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Figure 8: Bounds routine for the H3 heuristic 
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Figure 9 depicts the H3 heuristic.  The heuristic starts with all the PODs sorted in 

increasing order of demand and creates a new empty route.  The bounds routine (Figure 
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8) is called to obtain bounds on the number of PODs that can fit in the route.  When a 

new route is created, the upper bound is the total number of PODs left.  If the lower 

bound is less than the upper bound, in this implementation, the heuristic tries to solve the 

CVRP with one POD more than the lower bound.  Otherwise we simply use the lower 

bound as the number of PODs. 

 

To convert the POD demands to quantities, our implementation multiplies the POD 

demand rates by six equally spaced quantity – demand rate ratios to obtain six route 

quantity sets. The smallest and largest ratios are obtained from the extremes described in 

Section 4.3.2 (Converting Demand Rates to Absolute Quantities).  The Clarke-Wright CVRP 

algorithm is then applied to each quantity set.  We are interested only in finding one 

feasible route, so our implementation stops cycling through the quantity sets as soon as a 

set is found that results in a feasible route.   Feasibility is determined as described in 

Section 4.3.3 (Feasibility of the Adapted CVRP Solution).  If a feasible route is found with 

this number of PODs, the lower bound is updated to indicate the number of PODs in our 

best proven solution. The current route is also updated.  
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Figure 9: H3 heuristic 
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If the CVRP solution technique fails to find a feasible route and it was considering only 

one POD, the heuristic exits: there is no solution because it is impossible to fit one POD 

in a route.  If it fails with multiple PODs, processing continues. 

 

On the one hand, if the lower bound is equal to the upper bound, this heuristic knows the 

number of  PODs in the best makeup of the a route.  It is possible however that CVRP 

solution technique failed to find a feasible route (which in fact happened while running 

this heuristic) despite having a lower bound and an upper bound that are equal. If this 

happens, the method that this heuristic uses to put all the desired PODs in the route is the 

same method that was used to obtain the lower bound: starting with the current route, the 

heuristic simply adds PODs to the route as trivial subroutes until the number of PODs in 

the route is the lower limit.  This is guaranteed to work because that is how the heuristic 

obtained the lower bound in the first place.  Otherwise the route found by a feasible 

CVRP solution is sufficient.  This route is now complete: the heuristic removes the PODs 

in this route from the sorted PODs left and proceeds to create a new empty route.  On the 

other hand, if the lower bound is less than the upper bound, the heuristic proceeds to call 

the bounds routine in order to improve the current route or confirm that a better route is 

not possible.  The heuristic continues with this procedure until there are no sorted PODs 

left. 

4.4 Testing the Heuristics 

4.4.1 CRIRP Test Problems 

To test the heuristics developed, we use four sets of location data obtained from the 

TSPLIB (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html  July 08, 2008).  
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TSPLIB is a library of sample instances that provide either location data or the costs 

associated with the paths of a graph.  They serve as test data for TSP solvers.  We 

selected the following 4 sets of data:  

 

 berlin52 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/berlin52.tsp): 52 

locations in Berlin, Germany. 

 bier127 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/bier127.tsp): 127 beer 

gardens in Augsburg Germany 

 burma14 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/burma14.tsp): 14 cities 

in Burma 

 ulyssess22 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/ulysses22.tsp): 22 

locations from the Odyssey of Ulysses 

 

For each of these problems, the locations are sequentially indexed using positive integers.  

Each location also has Cartesian coordinates.  While these are sufficient for testing the 

intended TSP method, more data is needed for the CRIRP. 

 

We made the first location the depot.  The other locations are then designated as PODs 

and numbered from 1.  The Euclidean distance between each pair of points was computed 

to obtain a complete graph whose path weights are the travel times.  For each problem we 

generated 4 sets of load times.  For each set, the load times at all PODs and the depot are 

equal.  First, we calculated the average travel time A of a problem’s graph.  Then the 

following sets of load times were generated , , ,3
50 5
A A A A 

 
 

.  We then arbitrarily chose 
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an average demand rate of 200 per POD.  The depot demand was set to zero.  We 

assigned the POD demand rates using a random number generator generating values 

about a mean of 200 and each of the following standard deviations: 

_ _ _, ,
3 6 9

average demand average demand average demand 
 
 

 

 

To designate the problem instances’ vehicle capacities, we had to avoid a situation 

wherein the vehicle capacities are so low that the problems have no solution.  Prior to 

determining an acceptable range for vehicle capacity, we supposed that each POD would 

be served exclusively by one vehicle and obtained the required vehicle capacities for each 

of the PODs.  We used the set of demand rates that have standard deviation 

_
3

average demand  and the set of load times that equal the average travel time A to 

determine these vehicle capacities.  We set the highest of the required vehicle capacities 

as our “low” capacity, and the sum of the required vehicle capacities as our “high” 

capacity.  To further ensure that the “low” capacity is reasonable, we ran the H1 heuristic 

with using this low capacity.  If this failed to give a solution, we gently crept up the 

“low” capacity until this set of data gave us a feasible solution.  We then selected three 

possible capacities: the “low” capacity, the “high” capacity and the average of the two as 

variations of the problem data.  This is done for each of the 4 original TSP instances. 

 

For a problem instance, it may be required to place a limit on the route duration.  For 

each problem we assigned the following route duration limits: 100, 1000, 10000, 100000 

and one case with no limits. 
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We thus ended up with 4 sets of load/unload times, 3 sets of POD demand rates, 3 

possible vehicle capacities and 5 sets of duration limits (that is, 4 duration limits and one 

case with no limit) for a single TSP problem.  By taking all possible combinations of 

unload times, POD demand rates, vehicle capacities and route durations, from one TSP 

instance we have 4 x 3 x 3 x 5= 180 CRIRP problems.  The 4 TSP problems generated 

720 CRIRP problem instances.  These problem instances are contained in a MATLAB 

code file posted (with the rest of the implementation software) at the project website: 

http://www.isr.umd.edu/Labs/CIM/projects/clinic/. 

4.4.2 CRIRP Heuristic Solutions 

We implemented all three heuristic algorithms in the MATLAB programming language. 

 

We applied each of the three heuristics to all 720 CRIRP problem instances.  Figure 10 is 

an image of the beginning of the file that holds the test results.  The instance node 

represents one of the original 4 TSP problem instances.  Under the instance node, there 

are the following nodes: 

 The “name” node which holds the name of the TSP instance (52 berlin); 

 The “comment” node (under instance) with a description of the origin of the 

problem; 

 The “type” node holds the problem for which the TSPLIB intended for the data; 
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 The “subInstanceSolutions” node made up of “subInstanceSolution” nodes each 

of which holds one of the 180 CRIRP combinations of data we generated for each 

TSP problem instance. 

 The “comment” node (under “subInstance”) which informs us of what 

combination of generated data this sub-instance holds 

 The capacity input 

 A theoretical lower bound to the number of vehicles needed 

 “heuristic” nodes that hold the detailed solution generated by each heuristic 

The full results for all problem instances and heuristics are posted at the project website. 
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Figure 10: Sample view of heuristic test results 
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In addition to holding a solution, a heuristic node is annotated with other information 

such as the name of the heuristic used (H1, H2 or H3), “runtime” which represents the 

amount of time in seconds, it took for the heuristic to generate the solution.  If the 

heuristic failed to generate a solution, the heuristic is annotated with ‘feasible=“false”’ as 

can be observed in the first sub-instance in the figure.  When a heuristic finds a solution, 

it would have a routes node which contains vehicle routes.  Under the routes node one 

can find the subroutes that make up a route as well as the following subroute information: 

subroute sites (ordered by precedence), required vehicle load and subroute duration. 

 

The “XML” format in which this data is stored is a hierarchical format for storing text 

data.  This allows the data to be retrieved and manipulated from any computer platform.  

One could easily transform such data into tables of vehicle routes.  Such tables would list 

the subroutes for each vehicle and could be printed and handed to drivers. 

 

Table 1 is a summary of the results, aggregated over different problem parameters.  The 

categories in the table analyze how changes in the category value affect the solution.  The 

numbers in parentheses associated with the categories represent the number of problem 

instances in the sub-category that have feasible solutions for all three heuristics.  For 

example, the numbers “158/240” associated with small vehicle capacities signify that of 

240 problem instances with small vehicle capacities, all three heuristics provide solutions 

in only 158 of them.  The H3 heuristic gives the best heuristic solutions for most of the 

problem instances.  The H2 heuristic performs worst, as it finds the best heuristic solution 

for only a few of the problem instances. 
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Table 1: Heuristic performance measures by category 

 

 Category 
Average Number of 

Vehicles 
Number of Best 

Solutions Time 

H1 H2 H3 H1 H2 H3 H1 H2 H3 

Vehicle 
capacity 

small (158/240)  12.55 18.45 10.56 60 5 151 0.32 0.03 0.30 
medium (177/240)  5.13 7.06 3.98 103 9 173 0.32 0.03 1.36 
high (177/240)  3.94 5.58 3.04 132 7 175 0.32 0.03 1.21 

Standard 
deviation 

small (177/240)  7.46 10.85 6.19 110 10 170 0.34 0.03 0.91 
medium (172/240)  7.66 10.67 6.19 103 6 168 0.32 0.03 1.00 
high (163/240)  5.83 8.56 4.60 82 5 161 0.30 0.03 0.96 

Load time 

very small 
(135/180)  3.30 6.60 2.72 86 0 135 0.32 0.03 1.47 

small (135/180)  3.96 7.40 3.33 98 0 133 0.32 0.03 1.06 
medium (135/180)  7.42 10.57 5.99 78 5 129 0.32 0.03 0.81 
high (107/180)  15.00 17.15 12.02 33 16 102 0.32 0.03 0.48 

Problem 

14 burma 
(170/180)  3.53 5.09 3.31 133 5 165 0.02 0.01 0.10 

22 ulysses 
(167/180)  4.23 6.37 3.59 102 5 164 0.04 0.02 0.23 

52 berlin (105/180) 9.98 13.72 7.90 40 5 102 0.19 0.04 0.85 
127 bier (70/180)  17.63 25.46 13.11 20 6 68 1.03 0.06 2.63 

Maximum 
route 
duration 

10000000 
(139/144)  6.69 12.17 5.63 89 1 138 0.33 0.05 1.63 

100000 (139/144)  10.04 13.17 7.77 69 7 136 0.33 0.05 2.28 
10000 (104/144)  7.22 8.72 5.68 49 6 100 0.32 0.02 0.65 
1000 (69/144)  3.84 5.87 3.41 49 1 68 0.31 0.01 0.07 
100 (61/144)  4.03 5.20 3.66 39 6 57 0.32 0.01 0.14 

 

Table 2 evaluates the relative performance of the heuristics by computing the difference 

between the number of vehicles in the solutions of each possible pair of heuristics.  For 

example, a column with “H2-H1” signifies the difference between the number of vehicles 
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needed by the solutions of the H2 and H1 heuristics.  We compute the median, average 

and relative standard deviation of these paired differences aggregated over different 

values of the problem parameters.  These results confirm the results of Table 1.  The H3 

and H1 heuristics consistently result in fewer vehicles than the H2 heuristic.  H3 also 

results in fewer vehicles than H1 and does this with a low relative standard deviation. 
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Table 2: Heuristic relative performance by category 
 

 Category 
Median Average σ/Average 

H2-
H1 

H2-
H3 

H1-
H3 

H2-
H1 

H2-
H3 

H1-
H3 

H2-
H1 

H2-
H3 

H1-
H3 

Vehicle 
capacity 

small (158/240)  3 4 1 5.90 7.89 1.99 0.92 4.40 0.06 
medium 
(177/240)  2 2 0 1.93 3.08 1.15 1.27 2.27 0.17 

high (177/240)  2 2 0 1.64 2.54 .90 1.37 1.98 0.21 

Standard 
deviation 

small (177/240)  2 3 0 3.40 4.66 1.27 1.38 4.92 0.07 
medium 
(172/240)  2 2 0 3.01 4.48 1.47 1.16 4.04 0.12 

high (163/240)  2 2 0 2.74 3.96 1.23 1.07 3.88 0.11 

Load time 

very small 
(135/180)  2 2 0 3.30 3.88 .59 1.05 7.60 0.06 

small (135/180)  2 2 0 3.44 4.07 .64 1.09 7.60 0.07 
medium 
(135/180)  2 2 0 3.15 4.58 1.43 1.10 3.95 0.10 

high (107/180)  2 3 1 2.15 5.13 2.98 1.52 2.59 0.08 

Problem 

14 burma 
(170/180)  2 2 0 1.56 1.78 .22 0.49 3.25 0.72 

22 ulysses 
(167/180)  2 3 0 2.14 2.77 .63 0.42 1.95 0.92 

52 berlin 
(105/180)  4 5 1 3.74 5.82 2.08 0.75 1.69 0.14 

127 bier (70/180)  7.5 7.5 3 7.83 12.34 4.51 0.99 2.49 0.03 

Maximum 
route 
duration 

10000000 
(139/144)  3 4 0 5.48 6.55 1.06 0.88 6.90 0.08 

100000 (139/144) 2 3 1 3.13 5.40 2.27 1.37 3.05 0.07 
10000 (104/144)  2 2 1 1.50 3.04 1.54 1.11 1.78 0.21 
1000 (69/144)  2 2 0 2.03 2.46 .43 0.35 2.49 1.37 
100 (61/144)  1 1 0 1.16 1.54 .38 0.87 2.41 0.41 
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We also see the following trends: 

 Not surprisingly, as vehicle capacity increases, the number of vehicles needed 

reduces. 

 The performance of the H1 heuristic approaches that of H3 as vehicle capacity 

increases or as problem size decreases.   

 The number of vehicles required for the solution increases with both the load 

times and the problem size (number of PODs). 

 

Appendices A and B respectively show the detailed problem data and heuristic solutions 

for three problem instances.  These are 3 instances of the Burma 14 problem having all 

parameters the same except for the vehicle capacity.  Appendix B shows the results of the 

three instances by each of the three heuristics.  The solutions generated by the H2 

heuristic have routes consisting of one subroute each.  For these instances, the H1 and H3 

perform equivalently to each other and better than H2.  Both the H1 and H3 are 

constituting routes with trivial subroutes.  PODs are combined into non-trivial subroutes 

only if their demands are smaller than that of the trivial subroutes. 

4.4.3 Application to the State of Maryland  

To provide a more realistic test of the heuristics, this section presents a solution for an 

instance of CRIRP generated using data obtained from the state of Maryland about the 

dispensing plans of 3 counties with a total of 189 PODs in the Washington, D.C., 

suburban area.  The data gave the travel times between POD locations, the anticipated 

demand at each POD, and other information about the trucks available to deliver 

medication. For convenience, some of this data is shown in this section. 
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Table 3 shows the planning timeline; from it, we discern that the actual delivery of 

supplies to the PODs should last 24 hours. 

 

Table 3: State of Maryland scenario: timeline 
 

Scenario Timeline   

Hour Event 
Regimens 
Delivered to Depot 

-4      Attack detected   
0      Federal and state decision to dispense   

12      Push pack trucks arrive 324,000 
14      Managed inventory--first shipments arrive 324,800 
16      next shipment 313,600 
18      next shipment 313,600 
20      next shipment 313,600 
22      next shipment 324,800 
24      Managed inventory--last shipments arrive 313,600 
24      PODs begin dispensing operations  
48      PODs scheduled to complete dispensing operations  

 

Table 4 shows how PODs are distributed in through the counties and the number of 

regimens required per POD.  By dividing the required number of regimens by the time 

allotted for distribution (24 hours) we obtain demand rates of 4.65, 5.56 and 29.44 

regimens per minute for the PODs in counties A, B and C respectively. 
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Table 4: State of Maryland Scenario: Regimen requirements per POD 
 

County  Population  PODs Regimens per POD 
A        248,000          37                            6,700  
B     1,040,000        130                            8,000  
C        932,800          22                          42,400  
Total    2,220,800        189    

 

 

We had to modify the data to create CRIRP instances.  Since our implementation of the 

CRIRP assumes symmetric travel times, we adjusted the asymmetric travel times 

provided by using the higher travel time in both directions.  Although the state has a 

heterogeneous fleet of trucks, our model assumes a homogenous fleet.  Furthermore, in 

the given scenario, county B has a local depot.  In conformity with the CRIRP model 

developed in this thesis, we ignore the local depot and supply all PODs from the central 

depot.  We solved two instances of the problem using each of the vehicle sizes in the 

state’s fleet (53 and 20 foot trucks). 

 

Table 5 presents a summary of the results obtained for all the heuristics.  The H3 

heuristic gives the best results for both the 53-foot trucks and 20-foot trucks.  Note that a 

53-foot truck can hold 268,800 regimens, and a 20-foot truck can hold 112,000 regimens.  

By applying the CRIRP to the state’s scenario, we thus generate routes and the associated 

number of vehicles which are within the limits of the state of Maryland’s fleet of forty-

nine 53-foot trucks and twenty-two 20 foot trucks (subject to choosing the appropriate 

maximum route duration).  It is clear from the results that by allowing a longer route 
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duration, we can reduce the number of vehicles required.  At low route durations, the 53 

foot truck has excess capacity. 

 

Table 5: State of Maryland scenario: solution summary 
 

Max Route Duration (hours) 
Number of Vehicles 

20 foot truck 53 foot truck 
H1 H2 H3 H1 H2 H3 

4 - - - - - - 
6 - 48 32 - 48 32 
8 41 29 18 41 29 18 

12 23 16 11 23 16 10 
24 11 13 9 11 8 6 

 

4.5 Summary 

In this chapter we developed three heuristics for solving the CRIRP and tested them on a 

variety of test problems.  The results of our tests were generally as expected.  The H3 

heuristic which takes advantage of the CRIRP special case and utilizes CVRP techniques 

performed best, while the H2 heuristic (using random sequences of PODs) performed 

worst.  Runtime data showed us that the H3 heuristic takes longer to run with the time 

increasing rapidly with problem size.  While more runtime studies may be needed for 

much larger problems, for the application at hand, heuristic runtimes of a few seconds are 

not an issue. 

 

Finally, we applied the heuristics to a scenario from the State of Maryland and found 

feasible solutions that can supply the designated counties with the available fleet.  The 

results also serve as a tool to help health planners decide how to balance between short 
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route durations and the number of required vehicles.  Our results also demonstrate that in 

some cases, low-capacity vehicles are sufficient and high capacity vehicles do not need to 

be committed. 
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Chapter 5:  EXACT APPROACHES 
 
In Chapter 4 several heuristics were developed and applied to solve the CRIRP.  These 

heuristics use our understanding of the problem and its properties to obtain solutions that 

we hope are close to the optimum.  Each vehicle must be assigned one set of PODs 

among all the possible sets that may be assigned.  Given a vehicle and a set of PODs, a 

solution chooses one of several possible routes.  Even for small problems, there are many 

ways to assign PODs to vehicles and sequence the PODs assigned to a vehicle to form a 

route.  The CRIRP is a combinatorial problem.  In this chapter, we develop an exact 

approach for determining the optimal solution by applying branch and bound techniques 

as we span the entire potential solution space for all possible solution combinations and 

find an optimum. 

 

5.1 An Exact Approach for the CRIRP 

The goal of the CRIRP is to minimize the number of vehicles.  Since the CRIRP does not 

allow a POD to be supplied by more than one vehicle, clearly, the maximum number of 

vehicles is equal to the number of PODs.   Suppose that we have a problem with n PODs.  

Our initial solution would have n vehicles.  By progressively decreasing the size of the 

vehicle fleet and trying to supply the PODs with the currently reduced fleet of vehicles, 

eventually we reach a point at which it is impossible to supply the PODs with the current 

fleet size, say k ( n ).   If the PODs cannot be supplied by k vehicles, it is also infeasible 

to use less than k vehicles.  Therefore k + 1 is the minimum number of vehicles.  Instead 

of using n vehicles as the starting point of this procedure, we can quickly get a head-start 
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by using some of the heuristic approaches discussed in Chapter 4 to start with a smaller 

fleet. 

 

To show that a certain number of vehicles r, is sufficient to supply the PODs it is 

sufficient to find one feasible solution that uses r vehicles.   However, to show that r 

vehicles are insufficient to supply the PODs it is necessary to explore and rule out all 

possible assignments of PODs to vehicles.  To rule out the feasibility of a set of PODs 

being associated with one vehicle, it is necessary to explore all routing possibilities 

amongst the depot and the PODs and show that they are all infeasible. For each fleet size 

under consideration a branching mechanism is needed to explore all of the possible 

assignments of PODs to vehicles. 

5.2 Assigning PODs to Vehicles 

In this section we develop a method for generating all the possible ways of assigning 

PODs to vehicles.  

5.2.1 Size Sequence Branching 

We know that vehicles are indistinguishable and vehicle routes are independent.  In 

particular, there are no ordering or precedence relationships among routes.  However, for 

the purposes of this method, let the vehicles be listed in decreasing order of the route size 

(number of PODs they supply).  Because every vehicle is assigned at least one POD, the 

first vehicle can be assigned a maximum of ( 1)n r   PODs where n is the number of 

PODs and r is the number of vehicles.  (The case in which a vehicle is assigned zero 

PODs is same as having one less vehicle, which is the direction this method would take if 
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we succeed to find a feasible solution with the current number of vehicles.  We therefore 

need not be concerned about vehicles with zero PODs.)  Due to the ordering we impose, 

the first vehicle is always assigned the greatest number of PODs and each vehicle has at 

least the same number of PODs as the subsequent PODs.  This implies that the first 

vehicle has the minimum possible number of PODs when all routes have the same 

number of PODs, which is n
r .  Because the number of PODs assigned to a vehicle is an 

integer and no vehicle can have more PODs than the first, if n
r  is not an integer, it is 

rounded up to the next higher integer.  Therefore the possible number of PODs in the first 

vehicle of a solution must be an element of the set: 

    , 1, , , 1n nceiling ceiling n r n rr r     .  Having assigned the number of PODs 

to the first vehicle, we turn to subsequent PODs.  Suppose that the vehicle that precedes 

that under consideration has been assigned m PODs and that there are 'n  PODs left to be 

assigned to 'r  vehicles.  The maximum number of PODs that can be assigned to the next 

vehicle is the smaller of m and ' ( ' 1)n r  .  Similar to the first vehicle, the minimum 

number of PODs that can be assigned to the next POD is  '/ 'ceiling n r . 

 

As an example, consider a CRIRP with 7 PODs that we want to fit in 3 routes.  The 

possible number of PODs per vehicle is shown in Figure 11.  The first nodes from the 

root in the figure represent the possible number of PODs for the first vehicle.  The 

number of leaf nodes represent the total number of possible route size sequences which 

are {3,2,2}, {3,3,1}, {4,2,1} and {5,1,1}. 
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Figure 11: Size sequence branching 
 

 

 

5.2.2 Method of Combinations 

The method described in Section 5.2.1 generates all the possible route sizes for a given 

vehicle fleet size.  For each of these size sequences, there are several ways to assign 

PODs to vehicles.  Each of the paths in Figure 11 is thus a root for the assignment of 

PODs to vehicles.  We assign PODs to vehicles, one vehicle at a time. 

 

 Suppose we have n PODs to assign to r vehicles according to the size sequence 

1 2{ , ,..., }rs s s  
1

r

i
i

s n


 
 

 
 .  If i js s  for every i, j, i j , that is, the sizes in the sequence 

are distinct, then there are 
1

n
sC  distinct ways of assigning PODs to the first vehicle.  

1

n
sC , 

which is associated with the first vehicle, is also the number of nodes that descend from 

the leaf node of the size sequence tree.  For each of these nodes, there are 1

2

n s
sC  ways of 
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assigning PODs to the second vehicle.  Similarly, 1

2

n s
sC  represents the number of nodes 

that descend from each of the nodes associated with the first vehicle.  Proceeding with 

this train of thought, there are 

1

1

k

i
i

k

n s

sC






 ways of selecting vehicles for the kth vehicle.  We 

call this scheme for generating nodes of a vehicle as children nodes of the preceding 

vehicle the “method of combinations”. 

 

Let us consider the case where the sizes are not distinct.  For example, let us attempt to fit 

seven PODs in three vehicle routes with size sequence {3, 3, 1}.  Using the method of 

combinations just described we would obtain the following POD allocations 

{[1,2,3],[4,5,6],[7]}, {[4,5,6],[1,2,3],[7]} among several others.  In the first allocation, 

PODs 1, 2, and 3 are assigned to vehicle 1 and PODs 4, 5 and 6 are assigned to vehicle 2.  

In the second allocation, PODs 4, 5 and 6 are assigned to vehicle 1 and PODs 1, 2 and 3 

are assigned to vehicle 2.  Because all of the vehicles are identical, these two allocations 

are identical and would lead to extra, unnecessary branches in a tree containing identical 

solutions.  To prevent this from happening, we combine sizes in the size sequence that 

have the same value and form a size-group.  Size sequences are thus transformed to size-

group sequences.  As an example, the {3, 3, 1} size sequence becomes a {6, 1} size-

group sequence.  We can now use the method of combinations to generate nodes from 

PODs.  However, when using size-group sequences, a node represents one or more 

vehicle routes of the same size. 
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5.2.3 Analyzing the Nodes Generated by the Method of Combinations 

Each of the nodes added to the solution tree by the method of combinations represents 

one or more vehicle routes (having the same size) and the PODs to be assigned to the 

vehicles.  If there are several vehicles in the node, we still need to explore all the possible 

allocations of PODs to vehicles.  To assign PODs to vehicles, we follow a procedure 

similar to the method of combinations.  The difference here is that the vehicle routes have 

the same size.  Consider fitting ps PODs in p routes each of size s.  For the first route, 

because the sites are similar, we can arbitrarily select any POD as the first POD in the 

route.  There are thus 1
1

ps
sC 
  ways of selecting PODs for the first vehicle route.  For each 

of these selections, there are 1
1

ps s
sC  
 ways of assigning PODs to the second vehicle.  

Similarly, there are ( 1) 1
1

ps k s
sC   
  ways of selecting vehicles for the kth vehicle.  We call this 

the “modified method of combinations”.  This results in a tree structure that resides in the 

nodes generated by the method of combinations.  Take note that these trees are not 

branches in the overall solution tree but are island trees that reside within its nodes.  The 

nodes of these island trees each represent a single vehicle route and the PODs that would 

be supplied on that route.  This level of branching of the solution tree structure (which we 

call the route tree) ends at POD assignments to individual routes and is shown in Figure 

12.  

 



 

 62 
 

Figure 12: Analysis of the nodes generated by the method of combinations results is 
island nodes 
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5.3 Routing a vehicle to a set of PODs 

From the method described in Section 5.2, we have all of the possible route-PODs 

combinations i.e. all the possible ways that PODs can be assigned to routes.  These are 

represented by the nodes of the island trees shown in Figure 12.  The PODs on a vehicle 

route can belong to one more subroutes.  This section addresses methods for determining 

all the possible ways of assigning PODs on a route to subroutes. 

 

5.3.1 Assigning PODs to Subroutes 

Essentially, we will follow the same procedure we did in assigning vehicles to routes.  

The number of subroutes on a route ranges from a minimum of one to a maximum equal 

to the number of PODs intended for the route.  The minimum corresponds to having all 

PODs on one subroute, while at the maximum each subroute would only supply one 

POD.  Like the routes, the order in which the subroutes are supplied is irrelevant.  

However, for the purposes of this method we order the subroutes in decreasing order of 

the number of PODs supplied.  Just like we did for routes, for each of the possible 

number of subroutes, we generate all the size sequences.  We convert size sequences into 

size-group sequences and apply the method of combinations.  We apply the modified 

method of combinations to the nodes that result from the method of combinations.  This 

results in a structure exactly the same as that depicted in Figure 12.  The difference here 

is that the nodes of the island trees represent subroutes and these are the inner-most nodes 

in our solution tree.  Also, the entire tree structure we have generated in this section 

(which we call the subroute tree) resides inside the each of the nodes of the island trees of 

the previous section.  The resulting tree is shown in Figure 13. 
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Figure 13: The solution space tree 
 

Route Size 
sequence

Route Group: One or 
more equally sized 

routes and the PODs 
assigned to them

One route and the 
PODs assigned to it

Subroute size 
sequence

Subroute group: one or 
more equally sized 

subroutes and the PODs 
assigned to them

One subroute 
and the PODs 
assigned to it

 

There is another major difference between the route tree and the subroute tree.  Within 

the route group nodes of the route tree, each path of the enclosed island trees represents a 

possible assignment of PODs to a number of equally-sized vehicle routes.  If we find one 
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such feasible path, the enclosing route group node is feasible independent of parent and 

children route group nodes.  We have no need to explore more island tree paths within 

the route group node.  The converse is true in the case of the subroute tree.  A subroute is 

feasible only in the context of the route to which it belongs.  We cannot therefore say that 

a subroute group node by itself is feasible.  We must compare all the combinations of the 

paths of the enclosed island tree of one subroute group to the paths of the island trees of 

other associated subroute group nodes. 

 

To illustrate this point, suppose we want to fit PODs 1 to 6 in two routes each of size 3 

(the first route group) and PODs 7 to 10 in two routes each of size 2 (the second route 

group).  Furthermore, suppose that in the first route group the PODs are feasibly assigned 

to routes as follows: {1, 2, 3} and {4, 5, 6}.  Independent of the second route group, we 

do not need to explore other ways of assigning the PODs to the routes in the first.  

Consider a similar scenario for the subroute tree.  We want to constitute a route by 

assigning PODs 1 to 6 to two subroutes each of size 3 (the first subroute group) and 

PODs 7 to 10 to two subroutes each of size 2.  Recall that the feasibility of a route 

depends on the maximum subroute demand and the total route length (that is, the sum of 

all the subroute lengths).  We can therefore make no conclusions about one subroute 

group without taking associated subroute groups into consideration.  In fact, to conclude 

that this route of 10 PODs is infeasible, we must consider and rule out all the possible 

combinations of subroute assignments in the first subroute group with those in the 

second. 
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5.3.2 Obtaining the Subroute Path 

From Section 5.3.1, all possible PODs assignments to subroutes are known.  We must 

now determine the best path that a vehicle should take as it leaves the depot, visits each 

of the PODs on the subroute before returning to the depot.  The best subroute path is that 

which is shortest.  Choosing the best subroute path thus reduces to solving the well-

known TSP.   

 

5.4 Bounding and Pruning 

Thus far in this chapter we have used branching to subdivide the solution space down to 

the lowest level.  This allows us to explore all the possible ways of assigning PODs to 

subroutes (in the subroute tree) and subroutes to routes (in the route tree) for any solution 

size (number of vehicle routes).  In an effort to reduce the computational burden, this 

section seeks methods for eliminating tree branches from the solution space.   

5.4.1 Lower Bound for the Number of Routes  

By applying heuristics, an upper bound of the optimal fleet size (which can be improved 

during branching) is obtained.  When we apply the method of combinations or the 

modified method of combinations, we attempt to fit a given set of PODs into routes for a 

given number of vehicles (based on the fleet size upper bound).  For a particular branch 

in the tree, if we can show that the given set of PODs cannot fit in the given number of 

vehicle routes, we can abandon that branch because it does not have a solution.  In this 

section we determine a lower bound for the number of vehicles required to supply a given 

set of PODs. 
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Suppose that a vehicle has the ability to supply a set of PODs with known demand rates.  

If we reduce the demand rates of some PODs, the vehicle should still be able to feasibly 

supply those PODs.  To obtain a lower bound for the number of vehicles required, we set 

all the POD demand rates to the minimum demand rate in the set.  This reduces to an 

instance of the special case (Section 3.3) and is a BPP problem.  To further simplify the 

BPP, we fill the bins as if quantities are continuous.  For example, let the minimum POD 

demand for a set of PODs be 200 kg/min; let the trivial subroute durations be 20, 35, 35 

and 45 minutes and the vehicle capacity be 10000 kg.  Then the maximum allowable 

route length that allows a truck to meet demand is 10000 50
200

 min. The minimum 

number of vehicles is the number of bins of capacity 50 min in which we can pack the 

subroute durations.  To find the lower bound we simply take 20 35 35 45 2.7
50

  
 , 

which is rounded up to yield a lower bound of 3 vehicles.  If this lower bound is more 

than the number of vehicles for which the set of PODs is destined, this branch is 

infeasible. 

5.4.2 Pruning Routes 

During bounding, we eliminate branches that cannot yield a solution with less than 

optimal fleet size upper bound.  Sometimes, it is also possible to show that there is 

another solution combination that is always better that the current branch.  If A always 

performs worse than B, why waste time on A when either B had failed to do the job or we 

are destined to encounter B?  In the case of fitting PODs in routes, consider two possible 

solutions.  The first k routes of both are identically filled.  The k+1th route of solution A 
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has PODs 1, 2 and 3 with 10 PODs left to fit in 3 routes. The k+1th route of solution B has 

PODs 1, 2, 3 and 4 with 9 PODs left to fit in 3 routes.  Solution B in all cases would do 

better than solution A.  If we encountered solution A, we may therefore abandon it 

because when we get solution B, we are guaranteed better results. 

 

To determine if a better solution exists, for each route that we have filled with a set of 

PODs, we look at the PODs left (destined for subsequent routes) and determine if any of 

them can be feasibly added to this route.  If so, we abandon this branch.  To reduce the 

computational expense of determining the addition of a POD, heuristics could be used. 

 

5.4.3 Capacity Lower Bound 

In the subroute tree, we attempt to fit a given set of PODs in one vehicle route.  In this 

section we determine a lower bound to the capacity required by a set of PODs on a route.  

If we can show that this lower bound exceeds the vehicle capacity, then the route is 

infeasible.  Recall the vehicle capacity constraint *
v vD T C  from Chapter 3.  *

vD  is the 

maximum subroute demand of vehicle v, vT  is the route duration and C  is the vehicle 

capacity.  *
v vD T  represents the required route capacity which must not exceed C.  To 

determine a lower bound for the required vehicle capacity, we use the multiple of the 

lower bounds of *
vD  and vT . 

 

The maximum single POD demand in the set is a lower bound for *
vD .  Since a vehicle 

must visit all the PODs on its route, we can utilize the cost of the minimum spanning tree 
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of all the PODs and the depot as a lower bound.  The travel times are used as the path 

costs in the spanning tree.  In a spanning tree, each vertex is connected by only one path.  

In our scenario, a vehicle route must include both a departure from and a return to the 

depot.  Therefore the depot has at least two paths.  To obtain a better lower bound, we 

add the cost of the lowest cost depot path to the cost of the minimum spanning tree. 

5.4.4 Subroute Demand and Duration Lower Bound 

Consider a CRIRP problem in which the vehicle capacity, C = 1000 kg.  The route 

assigned to vehicle v has duration vT  = 30 minutes and maximum subroute demand *
vD  = 

20 kg/minute.  The route is feasible because *
v vD T C .  Now suppose we want to add a 

subroute group of 2 subroutes, each of size 2 constituted of PODs 1, 2, 3 and 4.  Let the 

possibilities for the subroute group be as follows: 

 {1,2},{3,4} with total duration = 30 minutes and the greater subroute demand = 

35 kg/minute 

 {1,3},{2,4} with total duration = 35 minutes and the greater subroute demand = 

32 kg/minute 

 {1,4},{2,3} with total duration = 33 minutes and the greater subroute demand = 

25 kg/minute 

To obtain a lower bound for this subroute group, simply select the smallest duration and 

the smallest maximum subroute demand, that is 30 minutes and 25 kg/minute 

respectively.  Before checking each of the listed possibilities for addition to the route, we 

use the lower bound.  To constitute the augmented route with the lower bound values, the 

new value for vT =30+25=55 minutes and for *
vD =max (25, 20) =25 kg/minute.  
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* (25)(55) 1375v vD T C   .  Since the lower bound is not feasible, we need not test each 

of the listed possibilities. 

 

5.4.5 Pruning Subroutes 

In the subroute tree, we can also prune branches if it can be shown that a better solution 

exists.  From Section 3.4 (Combining Subroutes with Unequal Demand), if there are two 

subroutes whose combined demand is less than the maximum subroute demand, we 

obtain a better solution by combining them into one subroute.  When this situation is 

encountered in the subroute tree, the applicable branch may be abandoned. 

5.5 Other Computation Saving Techniques 

5.5.1 Storing Partial Solutions 

Consider the two CRIRP solutions that follow: {[1,2,3,4], [5,6],[7,8]} and {[1,2,3,4], 

[5,7],[6,8]} where the contents of the square brackets are the PODs in a route.  Both 

solutions assign the same set of PODs to the first route.  In general several solutions 

could have a lot of common routes and subroutes, which once computed are stored and 

available for retrieval. 

5.5.2 Storing Failed Attempts 

At a branch in the solution tree, suppose we want to fill 3 vehicle routes with PODs 1 – 

10 according to the size sequence {5, 3, 2}.  That is, 5 PODs in the first route, 3 second 

and 2 in the third.  There are 10
5C  ways (which represent children nodes at the branch) of 

selecting PODs for the first route.  On the one hand, all of these trials could fail and the 
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following information stored: “It is impossible to constitute a route of 5 PODs using 

PODs 1 – 10.”  On the other hand we may successfully create several possible routes of 5 

PODs.  Each of these would have 5
3C  children nodes, which represents the number of 

ways of constituting the second route given a feasible first route.  If all of the nodes that 

successfully created the first route of 5 PODs failed to create a second route of 3 PODs, 

the following information is stored: “It is impossible to constitute 2 routes of sizes 5 and 

3 using PODs 1 – 10.” 

 

The results of such failed attempts are useful in eliminating other branches.  Let us revisit 

the last example: it is impossible to constitute from PODs 1 – 10, routes of sizes 5 and 3.  

PODs 1 – 10 would equally fail to constitute routes of the following sizes: {5,4,1}, 

{6,3,1}, {5,3,1,1}.  In general, suppose it is impossible to fill routes of sizes 

 1 2, ,..., ma a a  from a set of PODs.  For the same set of PODs, we may rule out routes of 

sizes  1 2, ,..., nb b b  if the following conditions are met: 

 n m  

 i ib a  for all i m  

5.5.3 Multilevel Search 

To show that a certain number of vehicles r is sufficient to supply the PODs it is 

sufficient to find one feasible solution that uses r vehicles.   A lot of computational 

resources may be expended on one branch of the solution tree while a computationally 

inexpensive solution exists on the next branch.  The premise of this section is that 

applying heuristic methods on tree branches would result in locating the solutions that are 
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easy to find more quickly.  The multilevel search has three levels of increasing 

complexity with the full solution tree of Figure 13 being the most complex (level 3).  At 

level 1, when we get to the point at which we need to assign a set of PODs to one vehicle 

(island nodes of the route tree), we use heuristics instead of using a subroute tree.  At 

level 2, we use the subroute tree.  However, when we get to its island nodes (how to 

connect PODs into a subroute) we use a TSP heuristic instead of solving the TSP 

optimally.  In order to show that r vehicles are insufficient to supply the PODs, it is not 

sufficient for the solution tree to fail at levels 1 or 2.  It must fail at level 3.  

5.6 Algorithms and Implementation 

Like the heuristics, our implementation of the exact approach was coded mainly in 

MATLAB programming language.  MATLAB’s built-in java interface was also used to 

create and utilize custom java objects for storing computed routes, subroutes and 

infeasible size sequences for sets of PODs. 

 

For its first step, the branch and bound algorithm (Figure 14) calls a heuristic to find an 

upper bound to the optimal number of vehicles.  The heuristic called must not return an 

infeasible solution if a feasible solution exists.  The H2 and H3 heuristics are guaranteed 

to return a feasible solution if one exists.  These algorithms can do this because 

ultimately, they only fail if one POD cannot be fitted into a route.  The H1 heuristic does 

not meet this criterion because it first packs PODs into subroutes and when one such 

subroute fails to be packed into a route, the heuristic fails.  It may however be possible to 

break up such a subroute to constitute several routes.  This implementation of the branch 
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and bound uses the H3 heuristic to obtain an initial upper bound for the optimum number 

of vehicles. 

 

The initial heuristic solution is stored and the number of vehicles is set to one less than 

the heuristic solution.  Using the new solution size, vehicle size sequences are then 

generated as described in Section 5.2.1.  For each size sequence, the algorithm in Figure 

15 is called to generate a solution.  If any such call returns a feasible solution, the 

solution is stored and the solution size is again reduced to seek a better solution.  If all the 

sequences fail, the last feasible solution found is an optimal solution and is returned. 

 



 

 74 
 

Figure 14: Top level branch and bound Algorithm 
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Figure 15: Algorithm that given a sequence of vehicle route sizes (size sequence) 
generates a feasible solution 
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Figure 15 shows the algorithm for constituting routes using a given size sequence.  The 

size sequence is first converted to a size-group sequence as described in Section 5.2.2.  In 
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general, this algorithm works by filling the first route group, reducing the number of 

route groups left to be filled and recursively calling itself.  Recursion ends when there is 

one route group left.  The method of combinations is used to assign PODs to a size group.  

Our implementation uses a combination generator that loops from one possible 

combination to the next until all combinations have been exhausted.  If the number of 

vehicles lower bound (Section 5.4.1) for this combination exceeds the size of the first 

route group, the algorithm proceeds to the next combination.  Otherwise, the algorithm in 

Figure 16 is called to generate routes for the first route-group. 

 

If the first route group is also the last, the algorithm returns with the solution found and 

recursion ends.  Otherwise, if there is a failure to fill either the first route group or the 

subsequent ones through recursion, the algorithm proceeds to the next combination of 

PODs for the first route group.  If at any combination, the algorithm finds a solution the 

algorithm returns the solution and exits.  Otherwise, it runs through all combinations and 

returns the size sequence as having no feasible solution. 
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Figure 16: Algorithm that uses a set of PODs and a given number of vehicles 
generates routes having an equal number of PODs. 
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The algorithm in Figure 16 assigns a set of PODs to the routes in a route group.  It is 

recursive and works similarly to the algorithm in Figure 15.  However, this algorithm has 

routes instead of route groups; it uses the modified method of combinations for reasons 

explained in Section 5.2.2; it applies the capacity lower bound to PODs intended for the 

first route; and recursion works by the algorithm constituting one route and calling itself 

to constitute the subsequent routes.  If the set of PODs intended for the first route passes 

the lower bound test, the algorithm in Figure 17 is called to constitute the route. 

 

In order to constitute a route from a given set of PODs, the algorithm in Figure 17 starts 

with an initial number of subroutes equal to the number of PODs.  For this initial case, 

constituting the route is trivial.  In general however, subroute size sequences are 

generated for a given number of subroutes and the algorithm in Figure 18 is called to 

constitute a route according to the size sequence.  If a size sequence generates a feasible 

route, the algorithm returns the result. Otherwise, after looping through all size 

sequences, it reduces the number of subroutes and tries again.  Notice that if the number 

of subroutes is 1, no further reduction is possible and the algorithm returns no feasible 

route for the set of PODs. 
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Figure 17: Algorithm that given a set of PODs generates one route 
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Figure 18: Algorithm that given a sequence of subroute sizes, completes a partially 
constituted route with a given set of PODs 
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The algorithm in Figure 18 fills a route with a set of PODs according to a given subroute 

size sequence and is similar to Figure 15 which fills a route size sequence.  As described 

in section 5.3.1 (Assigning PODs to Subroutes), the main difference is that unlike route 

groups, this algorithm cannot simply constitute a subroute group and conclude on its 

feasibility.  Here, even after the first subroute group is constituted and feasibly added to a 

route, if there is a failure to successfully add the other subroute groups (recursive call), 

the algorithm finds the next feasible configuration of the first subroute group and tries 

again.  It is only when all possible configurations of the first subroute group fail to be 

combined with the recursive call is failure final.  The algorithm that finds the next 

feasible configuration of a subroute group is in Figure 19. 

 

To find the next feasible configuration of a subroute group, the algorithm uses recursion 

and progresses from the current configuration.  The configuration of a subroute is the 

current combination of each of its subroutes.  To illustrate this point first consider how 

the combination generator we implemented works.  Suppose we want combinations for 

three of nine PODs numbered 1 to 9.  The combination generator would generate the 

following: {1,2,3}, {1,2,4}, …, {1,2,9}, {1,3,4}, {1,3,5}, …, {1,3,9}, {1,4,5}, …, 

{7,8,9}.  Now suppose that the 9 PODs make up 3 subroutes of size 3 in a subroute 

group.  An example of a subroute configuration is {[1,5,6], [1,3,5], [1,2,3]} where the 

first pair of square brackets represent the combination for 3 of 9 PODs for the first 

subroute and the second pair of square brackets represent the combination for 3 of 

remaining 6 PODs for the second subroute.  Notice that the third angular bracket must be 
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[1, 2, 3] because there would be only three PODs left.  For this example, the next 

subroute group configuration is {[1,5,6], [1,3,6], [1,2,3]}. 

 

Returning to the algorithm, if the current subroute is the last in the subroute group that 

needs to be filled, then there is no “next” configuration and there is an attempt to simply 

add the subroute to the route.  Otherwise, an attempt is made to add the first available 

subroute.  If this fails, the algorithm goes to the next combination of this subroute for 

another trial.  If the first subroute is successfully added, the algorithm recursively calls 

itself to find the next feasible combination of the subsequent subroutes.  If the last 

combination is reached and is not feasible, then no configuration of the subroute group 

can feasibly be added to the route.  Notice that for a given subroute group configuration, 

the algorithm calls a TSP routine to determine the best order in which to connect the 

PODs into a subroute. 
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Figure 19: Given a set of PODs that constitute a subroute group, this algorithm 
finds a combination of subroutes of the group that can feasibly be added to an 

existing route. 
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5.7 Testing the Exact Method 

After developing and implementing the branch and bound method earlier in this chapter, 

in this section we test the implementation and interpret the results.  A major concern for 

exact solutions of NP hard problems is the time required to obtain a solution.  In Sections 

5.4 (Bounding and Pruning) and 5.5 (Other Computation Saving Techniques) we 

discussed techniques for reducing the time required to obtain an exact solution to the 

CRIRP.  In this section, we first identify the techniques that work best for our problem.  

We then solve modified versions of the CRIRP based on the dispensing plans of the State 

of Maryland (Section 4.4.3), using different problem sizes to study the effects of problem 

size on time required to obtain a solution. 

 

5.7.1 Evaluating Computation Saving Techniques 

We used one of the variants of the Burma 14 problem adapted from TSPLIB as described 

in Section 4.4.1.  This variant has a low capacity, demand rates with a standard deviation 

of about one-sixth of the average and a load time of one-fiftieth of the average travel 

time.  There is no limit on the maximum subroute duration.  We seek the effects of the 

computation saving techniques on computer runtimes.  We look particularly at the effects 

of turning on or off the following: 

 Pruning of routes 

 Pruning of subroutes 

 Storing feasible routes 

 Multilevel search 
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For the default test, routes and subroutes are pruned, feasible routes computed are stored 

to memory and retrieved when needed and the multi-level search is not applied.  Data is 

collected on the number of nodes in the route and subroute trees of the solution tree, the 

memory used and the program runtime.  The computation-saving techniques listed above 

are each varied with respect to the default and the results in Table 6 are obtained.  All 

tests are conducted on a Microsoft Windows XP Professional (version 2002, service pack 

3) platform running on a DELL OPTIPLEX GX620 system having a 3.20 GHz Pentium 

processor and 2 gigabytes (GB) of random access memory (RAM).  MATLAB version 

7.5.0.342 of August 15, 2007 is used. 

 

Table 6: Evaluating computation saving techniques on one problem instance 
 

Comment 

Number of Nodes 

Memory 
(bytes) 

Runtime 
(minutes) Route size 

sequences 

Route 
combinations 
for route 
sequences 

Subroute 
size 
sequences 

Subroute 
combinations 
for subroute 
sequences 

Default 8 3032 118625 3033 52525 36.04 

Route 
pruning 
OFF 8 3032 118828 3033 53006 34.15 

Subroute 
pruning 
OFF 8 3032 118625 3033 52524 36.14 

Feasible 
Route 
storage 
OFF 8 3032 118625 3033 26110 227.83 

Multilevel 
search ON 24 9096 236392 9097 53180 70.67 



 

 86 
 

 

As expected, these results confirm that when computed routes are not stored in memory, 

it requires much more time to obtain the solution and much less memory.  With the 

multilevel search, the process also runs slower than the default case.  The intent of the 

multilevel search is to improve existing solutions as quickly as possible by quickly 

finding solutions through a combination of exhaustive search and heuristics.  However, 

the exact method only stops when it fails to fit the PODs into a certain number of 

vehicles.  For this to happen the solution search goes through all three levels.  This is 

what most likely accounts for the multilevel search having a high runtime.  However, the 

multilevel search may still be useful in finding a solution more quickly if the goal is to 

improve the heuristic solution as opposed to finding the optimal solution. 

 

The results show that pruning routes and subroutes have little effect on the runtime.  

Normally, one would expect that the pruning of branches in the route and subroute trees, 

would lead a solution in a shorter amount of time.  A possible explanation is that pruning 

is also a computationally expensive operation.  When the implementation is in route-

pruning mode, for each route that is computed, heuristics are called several times for 

various combinations of PODs.  The effects of pruning on runtime seem inconclusive.  In 

order to further investigate the effects of pruning, we ran some more tests. 

 

Table 7 shows the results of testing various variants of the Burma 14 problem.  The first 3 

columns specify the variant, the fifth column informs us if the exact approach was able to 

find a solution better than that obtained by the H3 heuristic and the last 4 columns show 
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the effect of pruning routes and subroutes on the runtime.  In most cases pruning has little 

effect; however, in the last two cases, not pruning routes results in much shorter runtimes.  

There is a possible reason for this significant difference.  Consider fitting 10 PODs into a 

route using the size sequence {4, 3, 2, 1}.  Furthermore, suppose that there is no 

combination of 4 and 3 PODs that can constitute the first two routes.  Then the branches 

with the following size sequences would be eliminated: {5,3,2}, {4,3,3}, {6,3,1} among 

others.  Now, suppose that route-pruning is in effect and we prune a branch because of a 

particular combination of the first route of 4 PODs.  Because we did not go far enough to 

discover that there is no possible combination of the second route of 3 PODs, the 

branches mentioned above would not be eliminated.  Therefore when using pruning, we 

may save computation time on one little branch within a size sequence node, but end up 

not eliminating several other size sequences that would otherwise have been eliminated. 

 

Even though all the problem instances in Table 7 are of the same size, the time required 

to obtain solutions vary widely.  This leads us to conclude that the runtime of a problem 

strongly depends on the particular problem and not just the size of the problem.  In the 

first three cases, the runtime is zero because the heuristic solution size is 1 and no 

improvement is possible.  For the rest where improvement is possible, the exact approach 

found a better solution in 2 out of 9 cases. 
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Table 7: Evaluating computation saving techniques on several instances 
 

Vehicle 
Capacity 

Demand 
Rate 

Standard 
Deviation 

Load / 
unload 
Time 

Size of 
Solution 

Branch 
and 

Bound 
Improves 
Heuristic 
Solution 

Time (Minutes) 

Prune 
Neither 

Prune 
Subroutes 

Only 

Prune 
Routes 
Only 

Prune 
Both 

high small 
very 
small 1 FALSE 0 0 0 0 

high medium 
very 
small 1 FALSE 0 0 0 0 

high high 
very 
small 1 FALSE 0 0 0 0 

high small medium 2 FALSE 37.78 37.84 37.76 37.88 
high medium medium 2 FALSE 40.32 42.93 40.29 43.02 

medium high 
very 
small 2 FALSE 571.64 569.73 566.93 564.6 

small high 
very 
small 3 FALSE 55.76 60.61 59.05 60.04 

small small 
very 
small 3 FALSE 13.97 13.95 14.92 15.88 

medium medium medium 3 FALSE 50.74 51.62 54.26 53.63 
small high medium 6 FALSE 5.36 5.36 74.16 74.8 
small medium medium 6 TRUE 1.24 1.34 14.11 14.78 
small small medium 6 TRUE 0.51 0.53 10.32 9.99 
 

5.7.2 Application to the State of Maryland 

In this section, we solve modified versions of State of Maryland scenario.  We start by 

electing to use only PODs in county C, which has a total of 22 PODs, using 12 foot 

trucks and setting the maximum route duration to 8 hours.  From the observations made 

in the previous section, we used neither route nor subroute pruning while solving for this 

scenario.  To prevent the problem from reducing to the CRIRP special case, the PODs are 

assigned 3 different demand rates: ten are assigned a demand of 37.42, five are assigned a 

demand of 29.44 and seven a demand of 21.91 all in regimens per minute.  The problem 



 

 89 
 

sizes considered are 7, 12, 17 and 22.  For the first three sizes, we randomly selected the 

PODs from the 22 PODs in county C.  The results are shown in Table 8. 

 

Table 8: State of Maryland scenario: exact solution 
 

Problem size Runtime (min.) Heuristic solution Exact solution 
7 0.23 2 2 

12 69.83 3 2 

17 6540.81 4 3 

22 2400.00
 (still running)

5 4 
(tentative) 

 

The exact solution consistently improves on the heuristic solution but as the problem size 

increases, we pay a high computation price for these improvements.  It is clear from these 

results that the runtime increases much faster than the problem size. 

 

5.8 Summary 

In this chapter, we have developed a branch and bound technique for finding an optimal 

solution to the CRIRP.  This involves a branching method that allows us to explore all 

possible solutions and a bounding method using various lower bounds to systematically 

eliminate branches from the solution tree.  We also used additional computation-saving 

techniques such as storing intermediate results in memory, pruning and multilevel search.  

We found that the pruning methods used failed to reduce computation time, but tended to 

increase them instead.  The multilevel search also performed poorly, but it might have the 

potential to quickly find solutions.  Storing computed routes proved quite successful in 
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reducing runtime.  The best combination of techniques includes using storage of 

computed routes and excluding the use of the multilevel search and pruning. 

 

Finally, the solution runtime clearly increases much faster than the problem size. 

 

  



 

 91 
 

Chapter 6:  SUMMARY 
 
In this thesis, we have studied the Continuous Replenishment Inventory Routing 

Problem, in which a homogenous fleet of vehicles continuously delivers a single product 

to a set of sites that consume the material at a constant rate.  The sites do not have 

predetermined inventory limits, and it is required that sites do not run out of material 

before the next visit by a vehicle.  The number of vehicles available is limited, so we seek 

a solution that minimizes the number required. 

6.1 Insights 

Significant observations made during this research on the CRIRP include:  

 Both the H1 and H3 heuristics perform significantly better than the benchmark H2 

heuristic suggesting that they may be good heuristics.  The H3 heuristic which 

exploits problem properties and uses CVRP techniques almost always performs 

better than the other heuristics. 

 The performance of the H1 heuristic approaches that of H3 as the vehicle capacity 

increases or as the problem size decreases. 

 For the exact approach, the computation resources required increase very rapidly 

with the problem size.  A problem instance with 17 PODs required 4 days of 

computation time on a 3.20 GHz Pentium processor with 2 gigabytes of random 

access memory (RAM).  However, size is only one of the factors that determine 

computation time.  For problems of the same size, the computation resources 

required may vary by a couple of orders of magnitude.  The required resources 

thus also depend on the particular problem. 
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 The exact method is practical only in problems with few PODs. 

 The enormous amount of computational resources required for the exact approach 

make it challenging to extensively test the exact approach.  Such tests are 

important for providing insight into the factors that make the method successful 

(by reducing computation time) in solving CRIRP problems. 

6.2 Contributions 

These are the major contributions of this work: 

 The development of a new type of Inventory Routing Problem to address the need 

for continuous delivery of medical supplies which is motivated by emergency 

preparedness planning. 

 The identification of a special case of the CRIRP that is equivalent to the bin-

packing problem. 

  The development of heuristics that provide near-optimal solutions (at least for the 

problem sizes for which we were able to obtain optimal solutions).  These 

heuristics use only a tiny fraction of the computational resources required by the 

exact solution. 

 The development and implementation of tests that demonstrate the relative 

strengths of these solution approaches. 

 The development of an exact solution approach for the CRIRP.  Various bounding 

and pruning techniques were tested on small problems to determine their 

effectiveness is speeding up the exact approach. 



 

 93 
 

6.3 Future work 

Future work should focus on the following:  

 Improving the solution lower bounds and pruning techniques used in the exact 

solution approach.  The use of better lower bounds would eliminate more solution 

branches from consideration, thus speeding up the arrival at an optimum solution. 

 Using high performance computer systems to test more features of the exact 

approach.  This would also permit us to compare how close to the optimum our 

heuristic solutions are in the case of problems of large size. 

 A comparison of the time it takes to arrive at the optimal solution as opposed to 

the time required for eliminating the first infeasible solution.  To rule out an 

infeasible number of vehicles, all possible route combinations must be ruled out.  

Therefore, it is quite possible that after arriving at the optimum, a considerable 

fraction of computational resources is used in eliminating the first infeasible 

number of vehicles. 

 Developing approaches for problems with a heterogeneous fleet of vehicles (that 

is, the vehicles come in different sizes), which will require modifications to the 

current heuristics. 

 Developing approaches that account for variability in the travel times and demand 

at each site.  Adding slack to the solutions will be necessary.  The maximum load 

of a subroute must be kept less than the vehicle capacity.  The difficult problem is 

to determine the minimal amount of slack that still provides a high service level. 

 Developing approaches for multi-depot problems. 
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 An attempt to use a modified CRIRP to solve the classic IRP is also worth some 

investigation.  The classic IRP plans for one route per day for each vehicle.  

While customers may have delivery time windows, there is no reason for which 

supplying customers in the IRP must be done discretely.  Applying the CRIRP to 

the IRP, once a vehicle returns to the depot, subject to customers’ delivery time 

windows, it immediately reloads and returns to its route. .  In order to be adapted 

to the IRP, the CRIRP would need some modification to take time windows and 

customer inventory into account. 
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APPENDIX A: PROBLEM DATA FOR SAMPLE PROBLEM 
INSTANCES 
 
Smallest capacity= 8822.3971 

Medium capacity= 22980.7794 

Large capacity= 37139.1618 

 

Load time= 0.8816 

Maximum route duration= 100 
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Table 9: Travel Times 
 

 Depot POD 
#1 

POD 
#2 

POD 
#3 

POD 
#4 

POD 
#5 

POD 
#6 

POD 
#7 

POD 
#8 

POD 
#9 

POD 
#10 

POD 
#11 

POD 
#12 

POD 
#13 

Depot 0 1.66 5.08 6.52 8.83 5.53 4.1 0.75 1.29 3.15 1.28 5.08 3.12 3.94 
POD 
# 1 1.66 0 4.09 6.02 9.2 5.76 4.76 1.99 2.94 4.4 2.94 5.18 3.98 3.62 

POD 
# 2 5.08 4.09 0 2.45 6.96 4 4.5 4.73 6.15 8.22 6.01 3.37 4.64 2.01 

POD 
# 3 6.52 6.02 2.45 0 4.8 2.71 4.12 5.96 7.29 9.6 7.1 2.38 4.8 2.58 

POD 
# 4 8.83 9.2 6.96 4.8 0 3.44 4.77 8.09 8.93 11.21 8.7 4.06 5.82 5.8 

POD 
# 5 5.53 5.76 4 2.71 3.44 0 1.81 4.81 5.85 8.22 5.63 0.66 2.81 2.43 

POD 
# 6 4.1 4.76 4.5 4.12 4.77 1.81 0 3.35 4.19 6.51 3.96 1.77 1.07 2.5 

POD 
# 7 0.75 1.99 4.73 5.96 8.09 4.81 3.35 0 1.41 3.64 1.28 4.38 2.36 3.37 

POD 
# 8 1.29 2.94 6.15 7.29 8.93 5.85 4.19 1.41 0 2.37 0.23 5.52 3.12 4.73 

POD 
# 9 3.15 4.4 8.22 9.6 11.21 8.22 6.51 3.64 2.37 0 2.59 7.89 5.45 7.02 

POD 
# 10 1.28 2.94 6.01 7.1 8.7 5.63 3.96 1.28 0.23 2.59 0 5.3 2.89 4.55 

POD 
# 11 5.08 5.18 3.37 2.38 4.06 0.66 1.77 4.38 5.52 7.89 5.3 0 2.61 1.77 

POD 
# 12 3.12 3.98 4.64 4.8 5.82 2.81 1.07 2.36 3.12 5.45 2.89 2.61 0 2.67 

POD 
# 13 3.94 3.62 2.01 2.58 5.8 2.43 2.5 3.37 4.73 7.02 4.55 1.77 2.67 0 

 
Table 10: Demands with medium standard deviation 
 
POD # Depot 1 2 3 4 5 6 

Demand 0 162.73 260.44 205.03 190.57 255 222.21 
 
POD # 7 8 9 10 11 12 13 

Demand 188.45 191.2 178.52 169.82 223.89 199.76 106.17 
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APPENDIX B: HEURISTIC SOLUTIONS FOR SAMPLE 
PROBLEM INSTANCES 

B.1. Smallest Capacity 

Table 11: H1 heuristic (4 routes) 
 

Route Duration 

Subroutes 4 5 
Subroute Durations 19.43 12.82 
Subroute Load 6147 8226 

 

32.25 

Subroutes 3 2 1 
Subroute Durations 14.8 11.92 5.08 
Subroute Load 6521 8283 5176 

 

31.8 

Subroutes 11 6 13 
Subroute Durations 11.91 9.97 9.64 
Subroute Load 7059 7006 3348 

 

31.53 

Subroutes 9 12 8 10 7 
Subroute Durations 8.07 7.99 4.35 4.33 3.27 
Subroute Load 5000 5595 5355 4756 5278 

 

28 
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Table 12: H2 heuristic (6 routes) 

 
Route Duration 

Subroutes [2 9] 
Subroute Durations 19.1 
Subroute Load 8384 

 

19.1 

Subroutes [10 6] 
Subroute Durations 11.99 
Subroute Load 4700 

 

11.99 

Subroutes [4 8] 
Subroute Durations 21.7 
Subroute Load 8285 

 

21.7 

Subroutes [11 12] 
Subroute Durations 13.45 
Subroute Load 5698 

 

13.45 

Subroutes [13 7 1] 
Subroute Durations 14.49 
Subroute Load 6626 

 

14.49 

Subroutes [5 3] 
Subroute Durations 17.4 
Subroute Load 8006 

 

17.4 

 
 



 

 99 
 

Table 13: H3 heuristic (4 routes) 
 

Route Duration 

Subroutes 13 1 10 9 7 
Subroute Durations 9.64 5.08 4.33 8.07 3.27 
Subroute Load 3227 4946 5161 5425 5727 

 

30.39 

Subroutes 4 8 12 
Subroute Durations 19.43 4.35 7.99 
Subroute Load 6055 6075 6347 

 

31.77 

Subroutes 3 6 11 
Subroute Durations 14.8 9.97 11.91 
Subroute Load 7522 8153 8215 

 

36.69 

Subroutes 5 2 
Subroute Durations 12.82 11.92 
Subroute Load 6310 6444 

 

24.74 

B.2. Medium Capacity 

Table 14: H1 heuristic (2 routes) 
 

Route Duration 

Subroutes 4 3 5 2 11 6 1 
Subroute Durations 19.43 14.8 12.82 11.92 11.91 9.97 5.08 
Subroute Load 16378 17621 21916 22384 19242 19098 13986 

 

85.94 

Subroutes 13 9 12 8 10 7 
Subroute Durations 9.64 8.07 7.99 4.35 4.33 3.27 
Subroute Load 3997 6721 7520 7198 6393 7095 

 

37.64 
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Table 15: H2 heuristic (4 routes) 

 
Route Duration 

Subroutes [11 10 3] 
Subroute Durations 27.52 
Subroute Load 16479 

 

27.52 

Subroutes [12 4 5] 
Subroute Durations 21.44 
Subroute Load 13833 

 

21.44 

Subroutes [9 1 13 2] 
Subroute Durations 22.67 
Subroute Load 16051 

 

22.67 

Subroutes [6 8 7] 
Subroute Durations 13.98 
Subroute Load 8417 

 

13.98 

 
Table 16: H3 heuristic (2 routes) 

 

Route Dura 
tion 

Subrtes 13 1 10 9 7 4 8 12 3 6 11 
Subrte 
Dura 
tions 

9.64 5.08 4.33 8.07 3.27 19.43 4.35 7.99 14.8 9.97 11.91 

Subrte 
Load 10495 16086 16786 17647 18628 18837 18900 19746 20266 21965 22131 

 

98.85 

Subroutes 5 2 
Subroute Durations 12.82 11.92 
Subroute Load 6310 6444 

 

24.74 



 

 101 
 

B.3. Large Capacity 

Table 17: H1 heuristic (2 routes) 
 

Route Duration 

Subroutes [7 13 4 8] [2 5 12] 
Subroute Durations 24.56 18.52 
Subroute Load 29140 30812 

 

43.08 

Subroutes [6 11 3] [10 9 1] 
Subroute Durations 18.31 13.46 
Subroute Load 20686 16237 

 

31.77 

 
Table 18: H2 heuristic (3 routes) 

 
Route Duration 

Subroutes [4 3 13 12 1] 
Subroute Durations 29.82 
Subroute Load 25774 

 

29.82 

Subroutes [11 10 8 7 6] 
Subroute Durations 24.76 
Subroute Load 24656 

 

24.76 

Subroutes [2 5 9] 
Subroute Durations 23.97 
Subroute Load 16633 

 

23.97 

 
Table 19: H3 heuristic (2 routes) 

 
Route Duration 

Subroutes [4 3] [13 11] [10 8] [7 12] [1 6] 9 5 
Subroute Durations 22.8 13.43 5.45 8.88 13.17 8.07 12.82 
Subroute Load 33472 27928 30546 32847 32571 15105 21577 

 

84.61 

Subroutes 2 
Subroute Durations 11.92 
Subroute Load 3104 

 

11.92 
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