

ABSTRACT

Title of Document: SOLVING CONTINUOUS

REPLENISHMENT INVENTORY ROUTING
PROBLEMS

 Samuel Fomunyam Fomundam,

Master of Science, 2008

Directed By: Dr. Jeffrey Herrmann,

Department of Mechanical Engineering and
Institute of Systems Research

This research investigates the problem of resupplying points of dispensing (PODs), which

will dispense medications to millions of people in case of a bioterrorist attack such as

anthrax. After receiving an initial but limited supply of medication, the PODs will

operate continuously. Vehicles will resupply the PODs continuously from a central depot

that has a stockpile of medication. Each vehicle will repeatedly follow the same route

and will deliver at each POD enough medication to replace what was consumed since the

last visit. Because the number of drivers and trucks may be limited during an emergency,

we wish to minimize the number of vehicles used to resupply the PODs. This thesis

presents heuristics and a branch-and-bound approach for solving this NP-hard problem

and evaluates their performance. We also analyze a special case in which all of the PODs

have the same demand.

SOLVING CONTINUOUS REPLENISHMENT INVENTORY ROUTING
PROBLEMS

By

Samuel Fomunyam Fomundam

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2008

Advisory Committee:
Associate Professor Jeffrey Herrmann, Chair
Professor Shapour Azarm
Associate Professor Linda Schmidt

© Copyright by
Samuel Fomunyam Fomundam

2008

 ii

Acknowledgements

My deep appreciation goes to Dr. Jeffrey Herrmann for his guidance, patience and the

meticulous nature with which he aided me throughout this research. He went beyond the

call of duty as my advisor to help make this work successful.

I also deeply appreciate my wife and daughter who have been very supportive and patient

with me during the long hours I spent on this work.

 iii

Table of Contents

Acknowledgements .. ii
Table of Contents .. iii
List of Tables...v
List of Figures ... vi
Chapter 1: INTRODUCTION ..1

1.1 Parameters ...3
1.2 Variables ..4
1.3 Constraints ...4
1.4 Objective Function ...5
1.5 Problem Scope ...5

Chapter 2: LITERATURE SURVEY ...6
2.1 Travelling Salesman Problem ...6
2.2 Capacitated Vehicle Routing Problem ..7
2.3 Period Vehicle Routing Problem ..8
2.4 Inventory Routing Problem ..9
2.5 Strategic Inventory Routing Problem .. 10
2.6 Bin Packing Problem .. 11
2.7 Minimum Spanning Tree .. 12
2.8 Branch and Bound .. 12
2.9 Summary .. 13

Chapter 3: PROBLEM FORMULATION .. 14
3.1 Unique Characteristics of the CRIRP.. 16
3.2 Example ... 17
3.3 The Special Case of Identical Demand ... 19
3.4 Combining Subroutes with Unequal Demand ... 21
3.5 Summary .. 22

Chapter 4: HEURISTICS ... 24
4.1 H1 Heuristic: Subroute Demand Packing.. 24

4.1.1 Rationale for the Heuristic .. 24
4.1.2 Algorithm and Implementation ... 26
4.1.3 Heuristic Improvements.. 29

4.2 H2 Heuristic: Random POD Sequences .. 30
4.2.1 Algorithm and Implementation ... 31
4.2.2 Determining whether to add a POD to a Route.. 33
4.2.3 Improvements ... 33

4.3 H3 Heuristic: Utilizing the Special Case ... 33
4.3.1 Rationale for the Heuristic .. 34
4.3.2 Converting Demand Rates to Absolute Quantities 34
4.3.3 Feasibility of the Adapted CVRP Solution .. 35
4.3.4 Selecting PODs for a Route .. 36
4.3.5 Algorithm and Implementation ... 37

4.4 Testing the Heuristics ... 41

 iv

4.4.1 CRIRP Test Problems ... 41
4.4.2 CRIRP Heuristic Solutions ... 44
4.4.3 Application to the State of Maryland .. 51

4.5 Summary .. 54
Chapter 5: EXACT APPROACHES ... 56

5.1 An Exact Approach for the CRIRP ... 56
5.2 Assigning PODs to Vehicles .. 57

5.2.1 Size Sequence Branching.. 57
5.2.2 Method of Combinations .. 59
5.2.3 Analyzing the Nodes Generated by the Method of Combinations 61

5.3 Routing a vehicle to a set of PODs ... 63
5.3.1 Assigning PODs to Subroutes ... 63
5.3.2 Obtaining the Subroute Path ... 66

5.4 Bounding and Pruning .. 66
5.4.1 Lower Bound for the Number of Routes ... 66
5.4.2 Pruning Routes ... 67
5.4.3 Capacity Lower Bound ... 68
5.4.4 Subroute Demand and Duration Lower Bound .. 69
5.4.5 Pruning Subroutes .. 70

5.5 Other Computation Saving Techniques .. 70
5.5.1 Storing Partial Solutions ... 70
5.5.2 Storing Failed Attempts .. 70
5.5.3 Multilevel Search ... 71

5.6 Algorithms and Implementation ... 72
5.7 Testing the Exact Method ... 84

5.7.1 Evaluating Computation Saving Techniques ... 84
5.7.2 Application to the State of Maryland .. 88

5.8 Summary .. 89
Chapter 6: SUMMARY .. 91

6.1 Insights .. 91
6.2 Contributions ... 92
6.3 Future work .. 93

APPENDIX A: PROBLEM DATA FOR SAMPLE PROBLEM INSTANCES 95
APPENDIX B: HEURISTIC SOLUTIONS FOR SAMPLE PROBLEM INSTANCES . 97

B.1. Smallest Capacity ... 97
B.2. Medium Capacity ... 99
B.3. Large Capacity ... 101

BIBLIOGRAPHY ... 102

 v

List of Tables

Table 1: Heuristic performance measures by category ... 48
Table 2: Heuristic relative performance by category .. 50
Table 3: State of Maryland scenario: timeline .. 52
Table 4: State of Maryland Scenario: Regimen requirements per POD 53
Table 5: State of Maryland scenario: solution summary ... 54
Table 6: Evaluating computation saving techniques on one problem instance 85
Table 7: Evaluating computation saving techniques on several instances 88
Table 8: State of Maryland scenario: exact solution ... 89
Table 9: Travel Times .. 96
Table 10: Demands with medium standard deviation ... 96
Table 11: H1 heuristic (4 routes) .. 97
Table 12: H2 heuristic (6 routes) .. 98
Table 13: H3 heuristic (4 routes) .. 99
Table 14: H1 heuristic (2 routes) .. 99
Table 15: H2 heuristic (4 routes) .. 100
Table 16: H3 heuristic (2 routes) .. 100
Table 17: H1 heuristic (2 routes) .. 101
Table 18: H2 heuristic (3 routes) .. 101
Table 19: H3 heuristic (2 routes) .. 101

 vi

List of Figures

Figure 1: Meeting a route’s demand rate ..3
Figure 2: Subroutes belonging to a route .. 15
Figure 3: Feasible solution to a CRIRP instance... 18
Figure 4: The H1 heuristic ... 27
Figure 5: Processing long subroutes for the H1 heuristic .. 28
Figure 6: The first fit decreasing algorithm applied to site demands 29
Figure 7: The H2 heuristic ... 32
Figure 8: Bounds routine for the H3 heuristic .. 38
Figure 9: H3 heuristic .. 40
Figure 10: Sample view of heuristic test results ... 46
Figure 11: Size sequence branching ... 59
Figure 12: Analysis of the nodes generated by the method of combinations results is
island nodes ... 62
Figure 13: The solution space tree ... 64
Figure 14: Top level branch and bound Algorithm ... 74
Figure 15: Algorithm that given a sequence of vehicle route sizes (size sequence)
generates a feasible solution .. 75
Figure 16: Algorithm that uses a set of PODs and a given number of vehicles generates
routes having an equal number of PODs. ... 77
Figure 17: Algorithm that given a set of PODs generates one route 79
Figure 18: Algorithm that given a sequence of subroute sizes, completes a partially
constituted route with a given set of PODs ... 80
Figure 19: Given a set of PODs that constitute a subroute group, this algorithm finds a
combination of subroutes of the group that can feasibly be added to an existing route. ... 83

 1

Chapter 1: INTRODUCTION

This research is motivated by work with public health officials who must plan the

logistics for resupplying points of dispensing (PODs), which will dispense medications to

the public in case of a health crisis or emergency that requires immediately deploying

medication or other medical supplies to the population. An example of such an incident

is a bioterrorist anthrax attack or a dangerous strain of the flu which requires that the

entire populations of cities travel to and receive emergency vaccination at certain

predetermined points.

Once the decision has been made to supply various PODs from the depot, the first

problem is getting an initial quantity of medical supplies to the PODs. After this happens

and the PODs are up and running, public health officials must determine the best way to

continuously resupply these PODs so that their supplies do not run out. This thesis

addresses the second part of this problem: the PODs are operating and require a steady

stream of supplies. Suppose that during this second phase, supplies run out at PODs.

This would result in POD staff and their supporting equipment being idle and thus the

POD would be operating below its capacity. In an emergency, this would be an unwise

use of scarce resources. Also, because queues would continue to build up while people

are not served, this could also result in anxiety in the population and a lack of confidence

in the competence and preparedness of the public health system in handling emergencies.

 2

Vehicles will resupply the PODs continuously from a central depot that has a stockpile of

medication. This is in contrast with existing applications which typically supply

customers once a day and return to resupply the next day or after a few days. Given the

vast quantities of medical supplies needed by an entire population in the case of an

emergency, one truck load per day may just not be sufficient. Instead, each vehicle

repeatedly follows the same route, starting out as soon as it can after returning to the

depot. The capacity of the vehicles is given. At each site, the vehicle delivers enough

medication to replace what was consumed since the last visit and which must last until

the next visit. Figure 1 shows an example of the quantities that a vehicle must deliver at

each POD on its route. The inventory capacity at each POD is not constrained. The

amount that is delivered to any site is thus limited only by the capacity of the vehicle,

which must supply other PODs as well. The inventory capacity needed by each POD

may thus be obtained after solving the problem.

 3

Figure 1: Meeting a route’s demand rate

2 min2 min
10 kg/min

10 min

22 min

20 min

20 min

2 min
20 kg/min

2 min
20 kg/min

Demand per POD= 10, 20 & 20 kg/min
Route duration = 80 min
Required delivery quantities: 80 x [10,20,20]

=800, 1600 & 1600 kg
Required truck capacity

=sum of delivery quantities
or route demand(50) x duration(80)
=4000 kg

Depot

POD

1.1 Parameters

We assume that the following information is given:

 Truck capacity

 Travel times: time it takes to travel between each pair of PODs or any POD and

the depot. This would depend on the vehicle speed and the length of routes

between PODs and/or the depot.

 4

 Demand rates: the rate at which supplies are consumed at each POD. This is

subject to the nature of the medical emergency and the capacity of dispensing

operations (for example, available staffing for dispensing operations). It is

prescribed by health planners.

 Load times: the time required to load the truck at the depot and unload it at each

POD.

 Maximum route duration: the maximum allowed duration for a vehicle to

complete its route.

1.2 Variables

These variables represent problem parameters which we are free to manipulate to obtain

solutions to the problem:

 Assignment of PODs to vehicles: determination of which PODs each vehicle

would supply.

 Routing: determination of the path the vehicle would take to load at the depot and

unload at the PODs.

1.3 Constraints

These are the problem constraints:

 Each POD is supplied by only one vehicle.

 The route duration must not exceed the prescribed maximum.

 Vehicle supply rate at PODs (quantity to route duration ratio) may not be less than

the prescribed POD demand rates.

 5

 The quantity loaded onto the vehicle at the depot may not exceed the vehicle

capacity.

1.4 Objective Function

The number of vehicles: Because the number of drivers and trucks may be limited during

an emergency, the principal objective in this study is to minimize the number of vehicles.

The cost of supplying the PODs also depends on the number of vehicles and drivers.

1.5 Problem Scope

This thesis investigates a single-depot, single-product, deterministic, symmetric, steady-

state problem. The quantity of medical supplies is treated as a continuous variable.

Symmetry means that the time required to travel between a pair of PODs or a POD and

depot is independent of which of the pair is the start point.

This problem, which we call the continuous-replenishment inventory routing problem

(CRIRP), is a new type of inventory routing problem, which is known to be NP hard.

This study develops and investigates the CRIRP problem and presents the results of

heuristic solutions and exact solutions that use branch and bound and pruning techniques.

 6

Chapter 2: LITERATURE SURVEY

Previous research has added a great deal to our knowledge about vehicle routing

problems in general and inventory routing problems in particular. A complete review of

this literature is beyond the scope of this thesis. However, there are several problems that

have been studied which may be comparable to or useful in solving the CRIRP.

2.1 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) seeks to minimize the total distance of the route

that is followed by a salesman who must visit a number of cities exactly once, before

returning home (Lenstra, 1977). The intercity distances, cij between each pair of cities,

from city i to city j are given. If cij = cji, it is a symmetric TSP; otherwise, it is

asymmetric. Because the total distance depends on the order in which the cities are

visited, the number of possible routes amongst which to choose the shortest is n!, where n

is the number of cities.

Because the TSP is NP-hard, various heuristic approaches have been developed. Golden

et al. (1980) present the nearest neighbor algorithm of the TSP, which can have any node

as its start point. The closest node to the last one previously added to the route is

appended. This procedure continues until all nodes are in the route at which time the last

and first nodes are connected to complete the route.

 7

2.2 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is a specific instance of the Vehicle

Routing Problem (VRP). The VRP seeks the optimal routing for a fleet of vehicles

(which may be homogenous or heterogeneous) to supply a set of customers from one or

more depots (Toth and Vigo, 1998). A wide array of constraints (for example, vehicle

capacity limits, route length limit, supplying customers within certain time windows, and

customer supply precedence relationships) may limit route construction.

In the CVRP, a fleet of identical vehicles supplies customers from a central depot, each

customer having a given quantity requirement. Vehicles leave the depot, supply a certain

number of customers and return to the depot. The quantity delivered by each vehicle on a

route is limited by the vehicle’s capacity. The objective of the CVRP is to minimize

costs, which could be based on route length or travel times between customers or

customers and the depot. These costs could be symmetric or asymmetric. In the

asymmetric case, the cost would depend on the direction taken between a pair of points

while in the symmetric case, cost is independent of direction. The largest arbitrary CVRP

problem instances that can be solved to obtain exact solutions have about 50 sites. Larger

problems can be solved practically only with heuristics (Toth and Vigo, 1998).

One of the heuristics for obtaining near-optimal solutions to the CVRP is the Clarke-

Wright savings algorithm. Clarke and Wright (1962) assume a fleet of trucks with

different capacities that need to supply a large number of customers (each having a

quantity requirement) from a central depot. The goal is to minimize the total distance

 8

covered by all the trucks. The number of trucks available is not predetermined, but as

many trucks as needed are assumed available.

The algorithm starts with an initial solution in which every customer is assigned a truck.

Then the distance savings of including a pair of customers on the same route is computed

for all possible pairs of customers. Now, these pairs are ordered in decreasing amount of

savings which are taken advantage of one at a time using the following procedure as

applicable:

 If both customers have not been included in a multi-customer route, include them

in a new route.

 If one customer has not been included in a multi-customer route and the other is a

non-interior node in a multi-customer route, add the former to the latter’s route,

between the latter and the depot. An interior customer is one that is both preceded

and followed by other customer nodes (as opposed to the depot).

 If both customers are in separate multi-customer routes and are both non-interior

nodes, join the two routes by breaking the link between each of these customers

and the depot and linking the said customers.

Adding customers to multi-customer routes as described is subject to the capacities of the

trucks left.

2.3 Period Vehicle Routing Problem

In the Period Vehicle Routing Problem, there is a planning horizon of p days and i

customers, each of which must be serviced during k of the p days (Christofides and

Beasley, 1984). There are only a certain number of k-day allowable combinations. For

 9

example, for a problem with a planning horizon of Monday through Friday, a customer

that requires servicing twice a week could have {Monday and Thursday} or {Tuesday

and Friday} as the only options available. The goal is to assign a set of ki days to each

customer in a manner that minimizes total costs over the planning horizon. To solve this

problem, one must first decide which set of days to assign to each customer. Then, on

each particular day of the planning horizon, one must determine how to route a fleet of

vehicles to service the customers assigned to that day (this is a vehicle routing problem).

2.4 Inventory Routing Problem

The classic Inventory Routing Problem (IRP) combines routing and inventory as follows

(Golden et al., 1984; Bard et al., 1998; Jaillet et al., 2002): based on their expected daily

demand, customers must be assigned to one or more days, and then a vehicle routing

problem (VRP) must be solved for each day to assign vehicles to customers and

determine routes for the vehicles, with a goal of minimizing the total delivery cost.

In the IRP, there is a single product, which each customer consumes at a certain rate

(Campbell et al. 1998). Each customer also has a predetermined inventory capacity. A

customer’s existing inventory must not run out before a vehicle resupply. Typically the

IRP is solved over a planning horizon (for example one week). There is a fleet of

homogenous vehicles of a given capacity and the objective is minimizing the cost of

supplying the customers.

 10

Here are the questions to answer in solving the IRP:

 Based on inventory capacity and demand rate, how many and what days of the

week should each customer be supplied?

 Based on inventory level, what quantity should be supplied to each customer?

 How does one best route the fleet of vehicles to supply the determined

quantities to the customers assigned to a particular day?

In more recent work Campbell and Savelberg (2004a) take a two-phase approach to

solving the IRP. The first phase uses integer programming to determine what customers

to serve over the next several days and the quantities to be delivered. The results of the

first phase are used as inputs for the second phase. This phase uses the VRP and

scheduling techniques to plan delivery routes and schedules. Constraints encountered in

the second phase may lead to a modification of the results obtained in the first phase. In

another recent work, Campbell and Savelsbergh (2004b), present Vendor Managed

Inventory Replenishment. In this version of the IRP, a vendor monitors customers’

inventories and conducts replenishment of their inventories by coordinating inventory

levels and vehicle deliveries to minimize long term costs.

2.5 Strategic Inventory Routing Problem

While the fleet size is given in the classic IRP, the Strategic Inventory Routing Problem

(SIRP) seeks to minimize the fleet size needed over an extended period of time. Webb

and Larson (1995) point out the importance of anticipating the needed vehicle resources

over a period of years needed to then solve classic IRP problems over a short period of

 11

say one week. It may be required to purchase or lease such vehicles months before the

first anticipated use. The probability distribution of the demand rate and the minimum

acceptable probability of stock-out for each customer are known. The SIRP seeks the

fleet size that minimizes costs while meeting the needs of the problem subject to

constraints. While the SIRP seeks to minimize vehicle fleet size, the underlying problem

that the SIRP fleet solves in the short term is still a classic IRP as discussed above.

2.6 Bin Packing Problem

The bin packing problem (BPP) is a classic NP-hard combinatorial optimization problem.

Given a finite set U of n items, { u1, u2,…, un}, each of maximum size 1, the Bin Packing

Problem (BPP) seeks a partition of U into disjoint subsets (bins): U1, U2,…, Uk such that

the sum of the sizes of each subset (bin) is at most 1 and for which the number of

partitions k (the bins) is minimized (Garey and Johnson, 1979).

Garey and Johnson (1979) also present the First Fit Decreasing algorithm for the BPP

problem. First sort the n items of the set U in decreasing order of size. An infinite

number of bins, U1, U2,… are then made available. The n items are added from the

largest-sized to the smallest-sized, one at a time into the first bin into which they can fit

without exceeding the capacity of the bins (the bin capacity equals 1). When all of the

items have been placed in bins, the number of bins that contain items of the set U is the

minimum number of bins obtained by this heuristic algorithm.

 12

2.7 Minimum Spanning Tree

The Minimum Spanning Tree (MST) problem is important in network design problems.

A spanning tree is a subgraph of a graph that connects all its vertices but has no circuits.

There is thus exactly one path for each pair of vertices. The minimum spanning tree

problem seeks the spanning tree that has the minimum sum of paths between vertices.

Kruskal (1956) shows that the minimum spanning tree of a graph is unique and provides

a procedure for obtaining the unique solution. This procedure repeatedly performs the

following step until a spanning tree results: amongst the edges of the graph not yet

chosen, choose the shortest edge that does not form a circuit with those previously

chosen.

2.8 Branch and Bound

The problems considered in this thesis usually have a large number of possible solutions.

Because they are NP-hard, there are no algorithms that allow the determination of an

optimal solution in polynomial time. Lawler and Wood (1966) describe the branch and

bound technique as an intelligent, systematic way to search a solution space of feasible

solutions for the optimum. The solution space is repeatedly partitioned (via branching) to

obtain smaller spaces. For each subspace, this technique computes a lower bound

(assuming that minimization of some cost function is the objective). If the subspace’s

lower bound is greater than the smallest known cost, the subspace is discarded.

Partitioning of the remaining sub-spaces continues until a solution is found whose cost is

not greater than the smallest known bound.

 13

2.9 Summary

The CRIRP is a distinct problem that is closely related to classical vehicle routing and

inventory routing problems. This chapter has reviewed some of the most relevant work

and heuristics that may be useful for solving the CRIRP. After presenting the

formulation of the CRIRP, Chapter 3 will describe the differences between the CRIRP

and other problems previously studied.

 14

Chapter 3: PROBLEM FORMULATION

In the general CRIRP, there are n sites (customers). Each site (i = 1, …, n) has a demand

rate of iL items per time unit. This is the rate at which the site consumes material. There

is a depot (i = 0) that has an unlimited amount of material. The time spent at site i (to

refill a vehicle or deliver material) is ip for i = 0, …, n. The time to go from site i to site

j is ijc . The vehicles are identical, each with capacity of C items of material.

The problem is to find a feasible solution with the smallest number of vehicles. A

feasible solution specifies a route for each vehicle, and each site is assigned to one route.

The delivery amount at a site is the route duration multiplied by the site’s demand rate.

A vehicle may visit the depot multiple times during a route to refill. A partial route that

starts at the depot and ends at the depot is a “subroute.” A vehicle may have multiple

subroutes but visits each site just once on its route. Figure 2 modifies the example in

Figure 1 to illustrate the concept of subroutes. The depot and PODs are the same but this

time, the vehicle visits the PODs one at a time, refilling at depot after each POD is

supplied. Each POD constitutes a subroute and the vehicle capacity only needs to

accommodate the subroute with the maximum demand rate.

 15

Figure 2: Subroutes belonging to a route

2 min2 min
10 kg/min

10 min

22 min

22 min

2 min
20 kg/min

2 min
20 kg/min

Demand per POD= 10, 20 & 20 kg/min
Route duration = 2+10+2+10+

2+22+2+22+
2+22+2+22=120

Required delivery quantities: 120 x [10,20,20]
= 1200, 2400 & 2400 kg

Required truck capacity = 2400 kg

Depot

POD

Given a solution, we evaluate its feasibility as follows. Let vehicle v have vr subroutes.

Let the sequence  10, ,...,vj ks i i be subroute j for vehicle v, where k is the number of

sites on the subroute. The total demand for the subroute is  
1 kvj i iD s L L   . The

total time to complete the subroute is  
1 1 1 20 0 0k kvj i i i i i iT s p c p c p c       . The

total time for vehicle v to complete all of its subroutes is    1 vv v vrT T s T s   .

 16

When the vehicle visits site i, it will need to deliver i vLT units of material in order to keep

the site supplied until the vehicle’s next visit. When vehicle v starts subroute vjs , it

should take  vj vD s T items in order to satisfy the demand of all the sites on that subroute;

this quantity is the load of that subroute. Let     *
1max , ,

vv v vrD D s D s  . The

maximum load for vehicle v is *
v v vM D T . The solution is feasible if each site is

assigned to exactly one vehicle and each vehicle’s maximum load is not greater than the

vehicle capacity. That is, vM C for all vehicles 1, ,v K  .

In order to demonstrate the existence of feasible solutions, consider the trivial subroutes

 0,iz i , for 1, ,i n  . Then,   0 0 0i i i iT z p c p c    and  i iD z L . It is easy to

see that there are feasible solutions to CRIRP if and only if    i iD z T z C for all

1, ,i n  .

The objective is to find a feasible solution with the minimal number of vehicles. CRIRP,

like virtually all vehicle routing problems, is NP-hard (Lenstra and Rinnooy Kan, 1981).

3.1 Unique Characteristics of the CRIRP

Although similar in some ways to other routing problems, the CRIRP is unique in certain

respects. In the PVRP, IRP and SIRP, customer demand is expressed as a rate (quantity

per unit time) as opposed to just a quantity. Based on the customer demand rates, vehicle

routing decisions are made periodically (e.g. daily). The routes start and end in the same

day; they don’t go into the next day. All of the vehicles are available at the beginning of

 17

the next day. There is a “jump” from one day to the next where no vehicles are

operating. In the CRIRP, the customer demand is also a rate, but customers are supplied

continuously, around the clock. Instead of waiting for the next day to determine routing,

when vehicles return to the depot, they immediately reload and resupply their customers.

In IRP problems, the inventory capacity at customer locations is predetermined. In the

CRIRP, the customers are also expected to have inventory, but their required inventory

capacity is determined only after the CRIRP has been solved.

Among the problems previously studied, the SIRP best resembles the CRIRP. Both

express customer needs as demand rates and minimize the required vehicle fleet size.

However, the classic IRP is the problem that underlies the SIRP which means that

ultimately the SIRP anticipates supplying customers in a non-continuous manner.

3.2 Example

Consider a six-site problem instance. The depot and site locations are shown in Figure 3.

The travel time between sites is proportional to the distance. In this instance, the travel

time equals one time unit between the depot and sites 1, 2, 4, and 6 as well as between

sites 2 and 3, between sites 3 and 4, between sites 5 and 6. The travel time between the

depot and site 5 equals 1.4 time units. The demand rate iL at each site is shown in

parentheses. The service time 1ip  time unit at the depot and all sites.

 18

Figure 3: Feasible solution to a CRIRP instance

Depot
#4 (0.2)

#3 (0.3)#2 (0.7)

#1 (5)

#5 (0.5)#6 (0.6)

If the vehicle capacity 20C  units, then the solution in Figure 1 is feasible with two

vehicles as follows. The first vehicle follows only one subroute 11 {0,1}s  . The demand

 *
1 11 5D D s  items per time unit, and the route duration  1 11 4T T s  time units, so

the load 1 20M  items. The second vehicle has two subroutes: 21 {0, 2,3, 4}s  and

22 {0,5,6}s  . The first subroute demand  21 1.2D s  items per time unit, and the

subroute duration  21 8T s  time units. The second subroute demand  22 1.1D s 

items per time unit, and the subroute duration  22 6.4T s  time units. Therefore, the

total route duration    2 21 22 14.4T T s T s   .     *
2 21 21max , 1.2D D s D s  items,

so *
2 2 2 17.28M D T  items. The load for the first subroute equals 17.28 items, and the

load for the second subroute equals 15.84 items.

 19

3.3 The Special Case of Identical Demand

Consider the special case in which all iL L . (This special case is a useful model for the

POD resupply problem if the jurisdiction’s mass dispensing plans call for a set of

identical PODs.) In this case, as we show below, the non-trivial subroutes of a feasible

solution can be split into the trivial subroutes without increasing the maximum load of

any vehicle. Thus, there is an optimal solution in which every vehicle’s route is the

concatenation of trivial subroutes.

Consider a feasible solution in which a vehicle v visits n sites using r subroutes. Suppose

r n , so at least one subroute has more than one site. Let 0 0m  . Renumber the sites

and define km (1, ,k r ) so that the first subroute visits sites 11, , m , the second

subroute visits sites 1 21, ,m m  , and so forth, with rm n .

Let  11
max k kk r

h m m  
  . Note that 2h  and hr n . Let kTT be the travel time of

subroute k. Note that 02k iTT c for any  1 1, ,k ki m m   .

Now consider the duration of each subroute k, and let 0T be the duration of the current

route:

 

 

1

0
1

0
1

0
1 1

k

k

m

vk i k
i m

r

vk
k

n r

i k
i k

T s p p TT

T T s

rp p TT

 



 

  



  





 

 20

On subroute k the demand    1vk k kD s m m L  . The maximum subroute demand is

therefore hL, and the maximum load is 0hLT . Because the solution is feasible, 0hLT C .

Now, modify this solution to construct a new solution in which this vehicle visits all of

the same sites using trivial subroutes. Let 0 02i i it p c p   for all 1, ,i n  . Let 1T be

the duration of the new route:

 1 0 0 0

1 1

0 0
1 1

2

n n

i i i i
i i

n n

i i
i i

T t p c p c

np p c

 

 

    

  

 

 

In this solution, the maximum subroute demand is L, and the maximum load is 1LT .

Now, we will show that 1 0LT hLT by proving that 0 1hT T is positive.

    0 1 0 0
1 1 1

1 2
n r n

i k i
i k i

hT T p hr n h p hTT c
  

 
       

 
  

Because hr n , the first term is non-negative. Because 2h  , the second term is

positive. To analyze the third term, we regroup the terms in the last summation by the

subroutes to get the following:

 

1

1

0 0
1 1 1 1

0
1 1

2 2

2

k

k

k

k

mr n r

k i k i
k i k i m

mr

k i
k i m

hTT c hTT c

TT c





    

  

 
   

 

 

   

 

Each term of this double summation is non-negative. Therefore, 0 1hT T is positive, and

1 0LT hLT C  . This shows that using the trivial subroutes is also feasible because they

 21

reduce the load of the vehicle. Therefore, there is an optimal solution with all trivial

subroutes.

Which vehicle should do which subroutes? Let 0 02i i it p c p   for all 1, ,i n  .

Suppose vehicle k completes a set kS of trivial subroutes. The route is feasible if and

only if
k

k i
i S

M L t C


  , which is equivalent to /
k

i
i S

t C L


 . Thus, the problem

becomes a bin packing problem in which the item size is it and the bin size is C/L. The

packing of items into bins corresponds to the assignment of sites to vehicles.

Interestingly, the routing is trivial, because the load does not depend upon the sequence,

so any sequence for a vehicle’s route is sufficient.

3.4 Combining Subroutes with Unequal Demand

The result above reflects the fact that it is desirable to create subroutes that have equal

demand. In the special case, this means using only trivial subroutes. In the general case,

we can see that combining subroutes with low demand is desirable.

Consider a feasible solution in which a vehicle visits n sites using r subroutes. Renumber

the sites as done in Section 3.3.

For each subroute k, let kTT be the travel time of subroute k, let  kD s be the subroute

demand, and let  kT s be the duration of the subroute:

 22

 

 

1

1

1

0
1

k

k

k

k

m

k i
i m

m

k i k
i m

D s L

T s p p TT





 

 



  





Let  *

1
maxv kk r

D D s
 

 be the largest subroute demand. Let  
1

r

v k
k

T T s


 be the total

route duration. Then the maximum load *
v v vM T D .

Consider two subroutes p and q such that     *
p q vD s D s D  . Combining these two

subroutes into one subroute eliminates one stop at the depot, which decreases the total

route duration vT (by 0p and any distance savings). Because the total demand on the

new subroute is not greater than *
vD , the maximum load vM also decreases. Thus, this

new route is also feasible. This implies that low-demand subroutes should be combined

when possible.

3.5 Summary

In this chapter we have developed the equations that govern the feasibility of a potential

solution to a CRIRP problem – that is the relationship among the required vehicle

capacity, route duration and subroute demands. We also determined the conditions

required for a CRIRP to have a solution. For a special case of the CRIRP in which all

PODs have an identical demand rate, we showed that there is an optimal solution which

reduces to a bin packing problem. This finding then led us to the conclusion that

combining relatively low-demand subroutes is beneficial. In the next chapter, we

 23

develop heuristics for solving the CRIRP. Some of these heuristics are based on insight

obtained from this chapter.

 24

Chapter 4: HEURISTICS

Because the general CRIRP problem is NP-hard, we will consider the use of heuristics to

find good solutions in a reasonable amount of time. In this chapter three heuristics are

presented along with the results they produce.

4.1 H1 Heuristic: Subroute Demand Packing

The first heuristic (H1) is a three-stage bin-packing approach that has a parameter W,

representing subroute demand. W is varied in the range

 max ,i i
i

W L L 
   

 (4.1)

that is, from the maximum POD demand to the sum of all POD demands.

4.1.1 Rationale for the Heuristic

Before presenting the heuristic, we will describe the idea behind it. Each subroute is

visited once during a vehicle route. For two subroutes on the same vehicle’s route, a

lower demand subroute requires a smaller delivery quantity than a higher demand

subroute. While the higher capacity subroute may fully utilize vehicle capacity, the

lower demand subroute would be wasting the same. It is thus desirable that all the

subroutes of a route have about equal demand. The parameter, W in this heuristic

represents subroute demand. Site demands are packed into subroutes of demand

capacity, W. On the one hand, to accommodate the largest demand POD, W must be at

 25

least as large as max()iL . On the other hand the largest possible subroute would contain

all sites and have a demand of i
i

L .

Consider the vehicle capacity constraint for each route:

*
v vD T C

Since W is now the maximum subroute demand,

vWT C or /vT C W (4.2)

From (4.2) subroute durations can be packed into routes of duration /C W .

It is possible that a subroute’s duration may be greater than /C W , in which case the

heuristic can’t pack it into a route. Moreover, any solution with that subroute may be

infeasible unless the subroute demand is much less than W. That would mean this

heuristic would not be able to return a solution. If  vjT s , the duration of subroute j, is

greater than /C W , but    /vj vjT s C D s , then the subroute by itself can constitute a

route even though it cannot be packed into the specified route duration.

To illustrate this point, suppose that W = 400 lbs/hr and C = 1000 lbs. We require the

total route length /vT C W = 2.5 hrs. Now, suppose that, after packing the site

demands, subroute j has demand  vjD s = 250 lbs/hr and a subroute duration  vjT s =3

hrs. Subroute j cannot be packed into a route, but the subroute by itself is feasible

 26

because 3 hrs =    /vj vjT s C D s = 4 hrs. Equivalently,    vj vjD s T s C as 250(3) <

1000 lbs.

4.1.2 Algorithm and Implementation

The H1 or subroute demand packing heuristic is depicted in Figure 4. In the first step,

the heuristic uses the first fit decreasing algorithm to find a solution to the bin-packing

problem in which each site i is an item, the item size is the demand rate iL , and the bin

capacity is W. This assigns sites to subroutes. The order in which sites in a subroute are

visited is determined by applying the nearest neighbor algorithm starting at the depot.

 27

Figure 4: The H1 heuristic

Generate
several W

values

W values
avaible?

Pack site
demands into
subroutes of
capacities, W

W1,W2,...Wn

Process long
duration subroutes
(duration>C/W)

long duration
subroutes
feasible

Yes

Pack short
duration

subroutes
into route
lengths

Best
solution

Better than
best solution

Replace
Best

solution

Yes

Yes

No

Return best
solutionNo

Apply TSP nearest
neighbor algorithm to
obtain subroute with
minimum duration

No

Start End

Remove current
W value from list

The next step packs subroutes into routes. First, if there are any subroutes whose

duration does not permit them being packed in the prescribed route duration, such

subroutes require separate processing (Figure 5). For the subroutes whose durations can

be packed into route durations, the first fit decreasing algorithm is once again applied.

The routes formed from the long subroutes and the packed routes constitute the total

number of routes. If this is thus far the best solution, it replaces the previous best

 28

solution (if one existed). This process continues for each value of W, and the solution

with the lowest number of vehicles is returned. Our implementation of this heuristic used

6 equally spaced values of W, with the lowest and highest values obtained from the

bounds in Equation 4.1.

Figure 5: Processing long subroutes for the H1 heuristic

Long subroutes:
Subroute1,Subroute2,

…,Subroutek

Subroutes
available

   /vj vjT s C D s

yesConstitute
route

feasible
Set Infeasible to

true
Return

ReturnNo

Start End

Infeasible Subroute
Found. Initially set

to false

Remove current
subroute from

list

Figure 5 depicts how the above-mentioned long subroutes are processed. If any of the

long subroutes cannot by itself constitute a route (because    vj vjD s T s C), the value

of W during which the failure occurs is abandoned. If, for all the values of W, no feasible

solution is found, then this heuristic fails to return a feasible solution.

 29

Figure 6 depicts the first fit decreasing algorithm applied when packing site demands into

W, the subroute demand capacity.

Figure 6: The first fit decreasing algorithm applied to site demands

2 5 8741 63

The widths of these boxes represent the
demands of sites

Sort the sites by decreasing demand
order

The red boxes represent subroutes and
the height of the box represents the
parameter, W. The sites are packed

according to first fit.

4.1.3 Heuristic Improvements

Some work could be done to improve the solutions computed by this algorithm. If the

long duration subroutes fail to be packed into routes and fail to constitute routes by

 30

themselves for all values of W tested, this heuristic will fail to return a solution. A simple

way to attempt to counter this situation is to break up long subroutes into individual sites

and try to reconstitute them to obtain feasible routes. The most trivial attempt could

simply make each of the individual sites into a route.

This implementation uses six evenly spaced values of W. There are an infinite number of

W’s and intuitively, the more values that are processed, the better the chance of getting

close to the optimum. However, processing more values of W is time intensive and

provides no guarantee of obtaining a better solution. It would be interesting to

investigate if there is a more systematic way to select values from the range of possible W

values so as to obtain better solutions.

4.2 H2 Heuristic: Random POD Sequences

This heuristic generates several random sequences of PODs. For each such sequence, a

new route is initially created and PODs are added one at a time to the current route up to

the point where adding a POD makes a route infeasible. At this point, the heuristic starts

a new route and adds the POD to it. This procedure continues until all PODs are in

routes. We compare the number of routes generated by each of the POD sequences and

select the minimum. The routes generated by this heuristic consist of one subroute only.

This is a very simple heuristic based on random POD sequences. Its main purpose is to

serve as a benchmark for all heuristics. Any heuristic that does not significantly out-

perform this one, is probably not a good heuristic.

 31

4.2.1 Algorithm and Implementation

The H2 heuristic is depicted in Figure 7. Our implementation generates 10 random

sequences of the PODs. To determine route feasibility, the heuristic needs the route

duration vT and the route demand (in this case the route demand is the same as the

maximum subroute demand *
vD). Before adding the first POD to the route, the load time

at the depot is added to the route duration. When adding subsequent PODs to a route, the

current route duration is augmented by the travel time to the POD and the POD unload

time; meanwhile the route demand is augmented by the POD demand.

 32

Figure 7: The H2 heuristic

Sequence 1,
Sequence 2, …,

Sequence n

Generate
random

sequences

Unprocessed
Sequences?

PODs in
current

Sequence

yes

Are there
PODs in
current

Sequence?

Select next
sequence for
processing

Is tentative
route feasible?

Select next
POD

Compute tentative
route duration and

demand

Best
Solution

Remove POD
from current

sequence; Add to
current route

Is current
route empty?

Yes

No

Return best
solution

No

No Yes

No Feasible
Solution.
Return.

Yes

Create a new
Route and make it

current route

Does current
Solution have
fewer routes

than best
solution?

Current
solution

replaces best
solution Yes

No
Start

End

 33

4.2.2 Determining whether to add a POD to a Route

When adding a POD to a route, it is unknown if this would be the last POD added. The

heuristic should therefore not add the travel time back to the depot to the route duration.

However, to determine whether the route would be feasible with the addition of this

POD, the travel time from the POD back to the depot is tentatively added to the route

duration in order to determine feasibility.

If this new POD cannot feasibly be added to the route, the current POD is removed and

used to start a new route: the current route is now complete. Because the feasibility of a

route is determined before a POD is added to it, we simply permanently augment the

route duration with the travel time back to the depot.

4.2.3 Improvements

This heuristic is straightforward and easy to implement, but one envisions possible

improvements. Before rejecting a new POD and closing a route, a TSP heuristic could be

applied to the route to reduce the duration and thus increase the demand that the route can

handle. Also, when a POD fails to be added to a route, the heuristic could look further

down into the sequence of remaining PODs to determine if there are any that could be

feasibly added to this route. We leave these improvements for future study.

4.3 H3 Heuristic: Utilizing the Special Case

The H3 heuristic attempts to group PODs having similar demand on the same route. The

CVRP is then applied to each of these sets of PODs. The vehicle capacity is the CVRP

constraint. For a set of PODs, the CVRP would return routes. These CVRP routes are

 34

used as subroutes of a CRIRP route. The resulting route duration and the aggregate

maximum subroute demand are used to determine the feasibility of the CVRP solution.

To create a CRIRP route, this heuristic progressively adds PODs to the CVRP problem

until the feasibility constraints are violated.

4.3.1 Rationale for the Heuristic

This heuristic is inspired by two observations made in Chapter 3. First, in the special

case, all PODs have the same demand, and there is an optimal solution for which routes

are constituted from trivial subroutes. Secondly, in the general CRIRP problem, it was

shown in Chapter 3 that, if the sum of the demand of two subroutes of a route is smaller

than the demand of any single subroute, the solution cannot be worse and indeed should

be better if those subroutes are combined into one subroute. Thus, if PODs have about

the same demand, we want them to each constitute a trivial subroute. We would combine

subroutes only if some PODs on the route have a much smaller demand than others.

Solving the CVRP provides a mechanism for implementing these ideas. To apply CVRP

techniques to solve the CRIRP, we convert POD demands to POD delivery quantities that

are proportional the demand rates. By varying the ratio of delivery quantity to demand,

we permit the vehicle capacity constraint of the CVRP to control the number of PODs per

subroute while ensuring that low demand PODs are combined on the same subroute. In

the next sections we discuss in more detail how this heuristic achieves these aims.

4.3.2 Converting Demand Rates to Absolute Quantities

In order to use solution techniques for the CVRP, the demand at each site must be a

quantity, not a rate. The solution of the CVRP is then executed periodically for each

 35

route to get the effect of a rate. The absolute quantities assigned to PODs must thus be

proportional to the POD demands. Consider a set of PODs that we wish to constitute into

a route. At one extreme the quantities assigned to the PODs could be such that the

vehicle can barely deliver medical supplies to the maximum demand POD. At the other

extreme, the quantities could be such that the vehicle could deliver to all the PODs with

one vehicle load. For example, suppose we want to constitute a route with four PODs

that have the following demands: 75, 100, 125, and 200 kg/hr. Let the truck capacity be

1000 kg. In converting demand rates into quantities, at one extreme, we would multiply

the demands by a ratio of 1000/200 = 5 (using the maximum demand rate) to obtain

delivery quantities of 375, 500, 625, and 1000 kg. If these were an instance of the CVRP,

the POD with 1000 kg would become one subroute, and the other three PODs would be

combined in a manner that seeks to minimize the route duration. At the other extreme, if

we multiply the demands by 1000/500 = 2 (using the sum of the demands), solving the

CVRP would yield one giant subroute of our route. Of course, we could use ratios

anywhere between these extremes. Whatever ratio we use, the advantage of using CVRP

is that it lumps POD demands together to vehicle capacity while also attempting to

minimize route duration (which is the goal of CVRP).

4.3.3 Feasibility of the Adapted CVRP Solution

CVRP requires that the quantities delivered to each POD on a route do not exceed vehicle

capacity. CVRP feasibility is a prerequisite to applying the CVRP solution to the H3

heuristic. To apply this solution, the heuristic first converts the routes of the CVRP

solution to subroutes of a single route in CRIRP. We still need to ensure that the PODs’

demand rates are not outstripping supply rates. Consider POD j with demand Dj on the

 36

CRIRP route just obtained from CVRP. Let r be the quantity - demand ratio applied to

convert the demand rates to quantities for the CVRP. Then the quantity delivered to the

POD during the route is jrD . If the demand rate should not outstrip supply, then

_
_

1

j
j

quantity delivered demand
route duration

rD
D

routeDuration
r

routeDuration
r routeDuration









The sum of the CVRP route durations obtained must be less than or equal to the quantity-

demand ratio by which the demand rates were multiplied.

4.3.4 Selecting PODs for a Route

Since this heuristic seeks to operate as close to the special case as possible, first, all PODs

are sorted in order of increasing demand. This is the order in which PODs must be added

to routes. Whenever PODs are successfully added to a route, they are removed from the

list of sorted PODs. We seek lower and upper bounds to the number of low demand

PODs that will fit in the next route. The initial upper bound is the number of PODs left.

To obtain a lower bound, the heuristic adds PODs to the route as trivial subroutes up to

the point where the problem constraints are violated. The use of trivial subroutes (as in

the CRIRP special case) as opposed to one all-inclusive subroute, is justified by the

proximity of the sorted POD demands. When applying CVRP to the PODs, the heuristic

then selects a certain number of the next available PODs, where the number selected is

greater than the lower limit and less than or equal to the upper limit. The CVRP solution

technique is then applied to these selected PODs. Depending on the feasibility of results

 37

of the CVRP solution technique, the heuristic revises the lower and upper bounds on the

number of PODs in the route. This revision continuously reduces the difference between

the lower and upper bounds until they converge on the same number. When this

happens, the indicated PODs are the best that this heuristic can put in a route.

4.3.5 Algorithm and Implementation

Figure 8 depicts the “bounds routine”: the process that this heuristic uses to select lower

and upper bounds. When this routine is first called for a new route, the lower bound is

set to zero PODs. The number of PODs in the last CVRP attempt, the route length and

maximum subroute duration are also all set to zero. For subsequent calls of the routine,

the heuristic must have tried to run a CVRP solution technique on a certain number (non-

zero) of PODs. Since the lower bound is the least number of the next available PODs

that is guaranteed to fit in a route, the CVRP solution technique that is called should try

to fit more than the lower bound. The bounds routine then receives the feasibility of the

CVRP-attempted route. If feasible, the routine also needs the route duration and

maximum subroute demand. It is this information that the bounds routine uses to

determine new lower and upper bounds for the number of PODs that can fit in a route.

The routine either reduces the upper bound or increases the lower bound.

 38

Figure 8: Bounds routine for the H3 heuristic

Sorted
PODs

remaining

Current
Route

Duration;
Max subroute

load

Current
lower

&
upper

bounds

Obtain new Max
subroute demand and

route duration as if next
POD was added to

route

Previous
CVRP attempt

feasible? Upper bound
number of PODs

attempted-1

of PODs <
upper bound?

NoYes

* *v vD T C

Increment
lower bound

Lower bound
 # of PODs
attempted

of PODs
in last

attempt;
feasibility of
last attempt

End

Start

No

Yes

No

Figure 9 depicts the H3 heuristic. The heuristic starts with all the PODs sorted in

increasing order of demand and creates a new empty route. The bounds routine (Figure

 39

8) is called to obtain bounds on the number of PODs that can fit in the route. When a

new route is created, the upper bound is the total number of PODs left. If the lower

bound is less than the upper bound, in this implementation, the heuristic tries to solve the

CVRP with one POD more than the lower bound. Otherwise we simply use the lower

bound as the number of PODs.

To convert the POD demands to quantities, our implementation multiplies the POD

demand rates by six equally spaced quantity – demand rate ratios to obtain six route

quantity sets. The smallest and largest ratios are obtained from the extremes described in

Section 4.3.2 (Converting Demand Rates to Absolute Quantities). The Clarke-Wright CVRP

algorithm is then applied to each quantity set. We are interested only in finding one

feasible route, so our implementation stops cycling through the quantity sets as soon as a

set is found that results in a feasible route. Feasibility is determined as described in

Section 4.3.3 (Feasibility of the Adapted CVRP Solution). If a feasible route is found with

this number of PODs, the lower bound is updated to indicate the number of PODs in our

best proven solution. The current route is also updated.

 40

Figure 9: H3 heuristic
Sorted
PODs

left

Create an
empty route

Call bounds
routine on

route

of PODs for
CVRP =

lowerbound+1

Lower bound <
upper bound

Select ratios for
converting POD

demands to
quantities

Apply CVRP for
the sets of

quantities. Stop if
feasible route

found.

Yes

No

Feasible
route found?

Lower bound <
of PODs

Lower bound
 # of
PODs

of PODs
== 1

No feasible
solution

Yes

No

Yes

Yes

Update route
with CVRP

results

No

Lower bound
== upper bound

Did CVRP find
solution?

Add the required # of
PODs as trivial

subroutes to the route

Remove Route
PODs from “Sorted

PODs left”

No

Yes No

Yes

Are there any
PODs leftYes Return routes

Start

end

No

No

 41

If the CVRP solution technique fails to find a feasible route and it was considering only

one POD, the heuristic exits: there is no solution because it is impossible to fit one POD

in a route. If it fails with multiple PODs, processing continues.

On the one hand, if the lower bound is equal to the upper bound, this heuristic knows the

number of PODs in the best makeup of the a route. It is possible however that CVRP

solution technique failed to find a feasible route (which in fact happened while running

this heuristic) despite having a lower bound and an upper bound that are equal. If this

happens, the method that this heuristic uses to put all the desired PODs in the route is the

same method that was used to obtain the lower bound: starting with the current route, the

heuristic simply adds PODs to the route as trivial subroutes until the number of PODs in

the route is the lower limit. This is guaranteed to work because that is how the heuristic

obtained the lower bound in the first place. Otherwise the route found by a feasible

CVRP solution is sufficient. This route is now complete: the heuristic removes the PODs

in this route from the sorted PODs left and proceeds to create a new empty route. On the

other hand, if the lower bound is less than the upper bound, the heuristic proceeds to call

the bounds routine in order to improve the current route or confirm that a better route is

not possible. The heuristic continues with this procedure until there are no sorted PODs

left.

4.4 Testing the Heuristics

4.4.1 CRIRP Test Problems

To test the heuristics developed, we use four sets of location data obtained from the

TSPLIB (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html July 08, 2008).

 42

TSPLIB is a library of sample instances that provide either location data or the costs

associated with the paths of a graph. They serve as test data for TSP solvers. We

selected the following 4 sets of data:

 berlin52 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/berlin52.tsp): 52

locations in Berlin, Germany.

 bier127 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/bier127.tsp): 127 beer

gardens in Augsburg Germany

 burma14 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/burma14.tsp): 14 cities

in Burma

 ulyssess22 (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/ulysses22.tsp): 22

locations from the Odyssey of Ulysses

For each of these problems, the locations are sequentially indexed using positive integers.

Each location also has Cartesian coordinates. While these are sufficient for testing the

intended TSP method, more data is needed for the CRIRP.

We made the first location the depot. The other locations are then designated as PODs

and numbered from 1. The Euclidean distance between each pair of points was computed

to obtain a complete graph whose path weights are the travel times. For each problem we

generated 4 sets of load times. For each set, the load times at all PODs and the depot are

equal. First, we calculated the average travel time A of a problem’s graph. Then the

following sets of load times were generated , , ,3
50 5
A A A A 

 
 

. We then arbitrarily chose

 43

an average demand rate of 200 per POD. The depot demand was set to zero. We

assigned the POD demand rates using a random number generator generating values

about a mean of 200 and each of the following standard deviations:

_ _ _, ,
3 6 9

average demand average demand average demand 
 
 

To designate the problem instances’ vehicle capacities, we had to avoid a situation

wherein the vehicle capacities are so low that the problems have no solution. Prior to

determining an acceptable range for vehicle capacity, we supposed that each POD would

be served exclusively by one vehicle and obtained the required vehicle capacities for each

of the PODs. We used the set of demand rates that have standard deviation

_
3

average demand and the set of load times that equal the average travel time A to

determine these vehicle capacities. We set the highest of the required vehicle capacities

as our “low” capacity, and the sum of the required vehicle capacities as our “high”

capacity. To further ensure that the “low” capacity is reasonable, we ran the H1 heuristic

with using this low capacity. If this failed to give a solution, we gently crept up the

“low” capacity until this set of data gave us a feasible solution. We then selected three

possible capacities: the “low” capacity, the “high” capacity and the average of the two as

variations of the problem data. This is done for each of the 4 original TSP instances.

For a problem instance, it may be required to place a limit on the route duration. For

each problem we assigned the following route duration limits: 100, 1000, 10000, 100000

and one case with no limits.

 44

We thus ended up with 4 sets of load/unload times, 3 sets of POD demand rates, 3

possible vehicle capacities and 5 sets of duration limits (that is, 4 duration limits and one

case with no limit) for a single TSP problem. By taking all possible combinations of

unload times, POD demand rates, vehicle capacities and route durations, from one TSP

instance we have 4 x 3 x 3 x 5= 180 CRIRP problems. The 4 TSP problems generated

720 CRIRP problem instances. These problem instances are contained in a MATLAB

code file posted (with the rest of the implementation software) at the project website:

http://www.isr.umd.edu/Labs/CIM/projects/clinic/.

4.4.2 CRIRP Heuristic Solutions

We implemented all three heuristic algorithms in the MATLAB programming language.

We applied each of the three heuristics to all 720 CRIRP problem instances. Figure 10 is

an image of the beginning of the file that holds the test results. The instance node

represents one of the original 4 TSP problem instances. Under the instance node, there

are the following nodes:

 The “name” node which holds the name of the TSP instance (52 berlin);

 The “comment” node (under instance) with a description of the origin of the

problem;

 The “type” node holds the problem for which the TSPLIB intended for the data;

 45

 The “subInstanceSolutions” node made up of “subInstanceSolution” nodes each

of which holds one of the 180 CRIRP combinations of data we generated for each

TSP problem instance.

 The “comment” node (under “subInstance”) which informs us of what

combination of generated data this sub-instance holds

 The capacity input

 A theoretical lower bound to the number of vehicles needed

 “heuristic” nodes that hold the detailed solution generated by each heuristic

The full results for all problem instances and heuristics are posted at the project website.

 46

Figure 10: Sample view of heuristic test results

 47

In addition to holding a solution, a heuristic node is annotated with other information

such as the name of the heuristic used (H1, H2 or H3), “runtime” which represents the

amount of time in seconds, it took for the heuristic to generate the solution. If the

heuristic failed to generate a solution, the heuristic is annotated with ‘feasible=“false”’ as

can be observed in the first sub-instance in the figure. When a heuristic finds a solution,

it would have a routes node which contains vehicle routes. Under the routes node one

can find the subroutes that make up a route as well as the following subroute information:

subroute sites (ordered by precedence), required vehicle load and subroute duration.

The “XML” format in which this data is stored is a hierarchical format for storing text

data. This allows the data to be retrieved and manipulated from any computer platform.

One could easily transform such data into tables of vehicle routes. Such tables would list

the subroutes for each vehicle and could be printed and handed to drivers.

Table 1 is a summary of the results, aggregated over different problem parameters. The

categories in the table analyze how changes in the category value affect the solution. The

numbers in parentheses associated with the categories represent the number of problem

instances in the sub-category that have feasible solutions for all three heuristics. For

example, the numbers “158/240” associated with small vehicle capacities signify that of

240 problem instances with small vehicle capacities, all three heuristics provide solutions

in only 158 of them. The H3 heuristic gives the best heuristic solutions for most of the

problem instances. The H2 heuristic performs worst, as it finds the best heuristic solution

for only a few of the problem instances.

 48

Table 1: Heuristic performance measures by category

 Category
Average Number of

Vehicles
Number of Best

Solutions Time

H1 H2 H3 H1 H2 H3 H1 H2 H3

Vehicle
capacity

small (158/240) 12.55 18.45 10.56 60 5 151 0.32 0.03 0.30
medium (177/240) 5.13 7.06 3.98 103 9 173 0.32 0.03 1.36
high (177/240) 3.94 5.58 3.04 132 7 175 0.32 0.03 1.21

Standard
deviation

small (177/240) 7.46 10.85 6.19 110 10 170 0.34 0.03 0.91
medium (172/240) 7.66 10.67 6.19 103 6 168 0.32 0.03 1.00
high (163/240) 5.83 8.56 4.60 82 5 161 0.30 0.03 0.96

Load time

very small
(135/180) 3.30 6.60 2.72 86 0 135 0.32 0.03 1.47

small (135/180) 3.96 7.40 3.33 98 0 133 0.32 0.03 1.06
medium (135/180) 7.42 10.57 5.99 78 5 129 0.32 0.03 0.81
high (107/180) 15.00 17.15 12.02 33 16 102 0.32 0.03 0.48

Problem

14 burma
(170/180) 3.53 5.09 3.31 133 5 165 0.02 0.01 0.10

22 ulysses
(167/180) 4.23 6.37 3.59 102 5 164 0.04 0.02 0.23

52 berlin (105/180) 9.98 13.72 7.90 40 5 102 0.19 0.04 0.85
127 bier (70/180) 17.63 25.46 13.11 20 6 68 1.03 0.06 2.63

Maximum
route
duration

10000000
(139/144) 6.69 12.17 5.63 89 1 138 0.33 0.05 1.63

100000 (139/144) 10.04 13.17 7.77 69 7 136 0.33 0.05 2.28
10000 (104/144) 7.22 8.72 5.68 49 6 100 0.32 0.02 0.65
1000 (69/144) 3.84 5.87 3.41 49 1 68 0.31 0.01 0.07
100 (61/144) 4.03 5.20 3.66 39 6 57 0.32 0.01 0.14

Table 2 evaluates the relative performance of the heuristics by computing the difference

between the number of vehicles in the solutions of each possible pair of heuristics. For

example, a column with “H2-H1” signifies the difference between the number of vehicles

 49

needed by the solutions of the H2 and H1 heuristics. We compute the median, average

and relative standard deviation of these paired differences aggregated over different

values of the problem parameters. These results confirm the results of Table 1. The H3

and H1 heuristics consistently result in fewer vehicles than the H2 heuristic. H3 also

results in fewer vehicles than H1 and does this with a low relative standard deviation.

 50

Table 2: Heuristic relative performance by category

 Category
Median Average σ/Average

H2-
H1

H2-
H3

H1-
H3

H2-
H1

H2-
H3

H1-
H3

H2-
H1

H2-
H3

H1-
H3

Vehicle
capacity

small (158/240) 3 4 1 5.90 7.89 1.99 0.92 4.40 0.06
medium
(177/240) 2 2 0 1.93 3.08 1.15 1.27 2.27 0.17

high (177/240) 2 2 0 1.64 2.54 .90 1.37 1.98 0.21

Standard
deviation

small (177/240) 2 3 0 3.40 4.66 1.27 1.38 4.92 0.07
medium
(172/240) 2 2 0 3.01 4.48 1.47 1.16 4.04 0.12

high (163/240) 2 2 0 2.74 3.96 1.23 1.07 3.88 0.11

Load time

very small
(135/180) 2 2 0 3.30 3.88 .59 1.05 7.60 0.06

small (135/180) 2 2 0 3.44 4.07 .64 1.09 7.60 0.07
medium
(135/180) 2 2 0 3.15 4.58 1.43 1.10 3.95 0.10

high (107/180) 2 3 1 2.15 5.13 2.98 1.52 2.59 0.08

Problem

14 burma
(170/180) 2 2 0 1.56 1.78 .22 0.49 3.25 0.72

22 ulysses
(167/180) 2 3 0 2.14 2.77 .63 0.42 1.95 0.92

52 berlin
(105/180) 4 5 1 3.74 5.82 2.08 0.75 1.69 0.14

127 bier (70/180) 7.5 7.5 3 7.83 12.34 4.51 0.99 2.49 0.03

Maximum
route
duration

10000000
(139/144) 3 4 0 5.48 6.55 1.06 0.88 6.90 0.08

100000 (139/144) 2 3 1 3.13 5.40 2.27 1.37 3.05 0.07
10000 (104/144) 2 2 1 1.50 3.04 1.54 1.11 1.78 0.21
1000 (69/144) 2 2 0 2.03 2.46 .43 0.35 2.49 1.37
100 (61/144) 1 1 0 1.16 1.54 .38 0.87 2.41 0.41

 51

We also see the following trends:

 Not surprisingly, as vehicle capacity increases, the number of vehicles needed

reduces.

 The performance of the H1 heuristic approaches that of H3 as vehicle capacity

increases or as problem size decreases.

 The number of vehicles required for the solution increases with both the load

times and the problem size (number of PODs).

Appendices A and B respectively show the detailed problem data and heuristic solutions

for three problem instances. These are 3 instances of the Burma 14 problem having all

parameters the same except for the vehicle capacity. Appendix B shows the results of the

three instances by each of the three heuristics. The solutions generated by the H2

heuristic have routes consisting of one subroute each. For these instances, the H1 and H3

perform equivalently to each other and better than H2. Both the H1 and H3 are

constituting routes with trivial subroutes. PODs are combined into non-trivial subroutes

only if their demands are smaller than that of the trivial subroutes.

4.4.3 Application to the State of Maryland

To provide a more realistic test of the heuristics, this section presents a solution for an

instance of CRIRP generated using data obtained from the state of Maryland about the

dispensing plans of 3 counties with a total of 189 PODs in the Washington, D.C.,

suburban area. The data gave the travel times between POD locations, the anticipated

demand at each POD, and other information about the trucks available to deliver

medication. For convenience, some of this data is shown in this section.

 52

Table 3 shows the planning timeline; from it, we discern that the actual delivery of

supplies to the PODs should last 24 hours.

Table 3: State of Maryland scenario: timeline

Scenario Timeline

Hour Event
Regimens
Delivered to Depot

-4 Attack detected
0 Federal and state decision to dispense

12 Push pack trucks arrive 324,000
14 Managed inventory--first shipments arrive 324,800
16 next shipment 313,600
18 next shipment 313,600
20 next shipment 313,600
22 next shipment 324,800
24 Managed inventory--last shipments arrive 313,600
24 PODs begin dispensing operations
48 PODs scheduled to complete dispensing operations

Table 4 shows how PODs are distributed in through the counties and the number of

regimens required per POD. By dividing the required number of regimens by the time

allotted for distribution (24 hours) we obtain demand rates of 4.65, 5.56 and 29.44

regimens per minute for the PODs in counties A, B and C respectively.

 53

Table 4: State of Maryland Scenario: Regimen requirements per POD

County Population PODs Regimens per POD
A 248,000 37 6,700
B 1,040,000 130 8,000
C 932,800 22 42,400
Total 2,220,800 189

We had to modify the data to create CRIRP instances. Since our implementation of the

CRIRP assumes symmetric travel times, we adjusted the asymmetric travel times

provided by using the higher travel time in both directions. Although the state has a

heterogeneous fleet of trucks, our model assumes a homogenous fleet. Furthermore, in

the given scenario, county B has a local depot. In conformity with the CRIRP model

developed in this thesis, we ignore the local depot and supply all PODs from the central

depot. We solved two instances of the problem using each of the vehicle sizes in the

state’s fleet (53 and 20 foot trucks).

Table 5 presents a summary of the results obtained for all the heuristics. The H3

heuristic gives the best results for both the 53-foot trucks and 20-foot trucks. Note that a

53-foot truck can hold 268,800 regimens, and a 20-foot truck can hold 112,000 regimens.

By applying the CRIRP to the state’s scenario, we thus generate routes and the associated

number of vehicles which are within the limits of the state of Maryland’s fleet of forty-

nine 53-foot trucks and twenty-two 20 foot trucks (subject to choosing the appropriate

maximum route duration). It is clear from the results that by allowing a longer route

 54

duration, we can reduce the number of vehicles required. At low route durations, the 53

foot truck has excess capacity.

Table 5: State of Maryland scenario: solution summary

Max Route Duration (hours)
Number of Vehicles

20 foot truck 53 foot truck
H1 H2 H3 H1 H2 H3

4 - - - - - -
6 - 48 32 - 48 32
8 41 29 18 41 29 18

12 23 16 11 23 16 10
24 11 13 9 11 8 6

4.5 Summary

In this chapter we developed three heuristics for solving the CRIRP and tested them on a

variety of test problems. The results of our tests were generally as expected. The H3

heuristic which takes advantage of the CRIRP special case and utilizes CVRP techniques

performed best, while the H2 heuristic (using random sequences of PODs) performed

worst. Runtime data showed us that the H3 heuristic takes longer to run with the time

increasing rapidly with problem size. While more runtime studies may be needed for

much larger problems, for the application at hand, heuristic runtimes of a few seconds are

not an issue.

Finally, we applied the heuristics to a scenario from the State of Maryland and found

feasible solutions that can supply the designated counties with the available fleet. The

results also serve as a tool to help health planners decide how to balance between short

 55

route durations and the number of required vehicles. Our results also demonstrate that in

some cases, low-capacity vehicles are sufficient and high capacity vehicles do not need to

be committed.

 56

Chapter 5: EXACT APPROACHES

In Chapter 4 several heuristics were developed and applied to solve the CRIRP. These

heuristics use our understanding of the problem and its properties to obtain solutions that

we hope are close to the optimum. Each vehicle must be assigned one set of PODs

among all the possible sets that may be assigned. Given a vehicle and a set of PODs, a

solution chooses one of several possible routes. Even for small problems, there are many

ways to assign PODs to vehicles and sequence the PODs assigned to a vehicle to form a

route. The CRIRP is a combinatorial problem. In this chapter, we develop an exact

approach for determining the optimal solution by applying branch and bound techniques

as we span the entire potential solution space for all possible solution combinations and

find an optimum.

5.1 An Exact Approach for the CRIRP

The goal of the CRIRP is to minimize the number of vehicles. Since the CRIRP does not

allow a POD to be supplied by more than one vehicle, clearly, the maximum number of

vehicles is equal to the number of PODs. Suppose that we have a problem with n PODs.

Our initial solution would have n vehicles. By progressively decreasing the size of the

vehicle fleet and trying to supply the PODs with the currently reduced fleet of vehicles,

eventually we reach a point at which it is impossible to supply the PODs with the current

fleet size, say k (n). If the PODs cannot be supplied by k vehicles, it is also infeasible

to use less than k vehicles. Therefore k + 1 is the minimum number of vehicles. Instead

of using n vehicles as the starting point of this procedure, we can quickly get a head-start

 57

by using some of the heuristic approaches discussed in Chapter 4 to start with a smaller

fleet.

To show that a certain number of vehicles r, is sufficient to supply the PODs it is

sufficient to find one feasible solution that uses r vehicles. However, to show that r

vehicles are insufficient to supply the PODs it is necessary to explore and rule out all

possible assignments of PODs to vehicles. To rule out the feasibility of a set of PODs

being associated with one vehicle, it is necessary to explore all routing possibilities

amongst the depot and the PODs and show that they are all infeasible. For each fleet size

under consideration a branching mechanism is needed to explore all of the possible

assignments of PODs to vehicles.

5.2 Assigning PODs to Vehicles

In this section we develop a method for generating all the possible ways of assigning

PODs to vehicles.

5.2.1 Size Sequence Branching

We know that vehicles are indistinguishable and vehicle routes are independent. In

particular, there are no ordering or precedence relationships among routes. However, for

the purposes of this method, let the vehicles be listed in decreasing order of the route size

(number of PODs they supply). Because every vehicle is assigned at least one POD, the

first vehicle can be assigned a maximum of (1)n r  PODs where n is the number of

PODs and r is the number of vehicles. (The case in which a vehicle is assigned zero

PODs is same as having one less vehicle, which is the direction this method would take if

 58

we succeed to find a feasible solution with the current number of vehicles. We therefore

need not be concerned about vehicles with zero PODs.) Due to the ordering we impose,

the first vehicle is always assigned the greatest number of PODs and each vehicle has at

least the same number of PODs as the subsequent PODs. This implies that the first

vehicle has the minimum possible number of PODs when all routes have the same

number of PODs, which is n
r . Because the number of PODs assigned to a vehicle is an

integer and no vehicle can have more PODs than the first, if n
r is not an integer, it is

rounded up to the next higher integer. Therefore the possible number of PODs in the first

vehicle of a solution must be an element of the set:

    , 1, , , 1n nceiling ceiling n r n rr r     . Having assigned the number of PODs

to the first vehicle, we turn to subsequent PODs. Suppose that the vehicle that precedes

that under consideration has been assigned m PODs and that there are 'n PODs left to be

assigned to 'r vehicles. The maximum number of PODs that can be assigned to the next

vehicle is the smaller of m and ' (' 1)n r  . Similar to the first vehicle, the minimum

number of PODs that can be assigned to the next POD is  '/ 'ceiling n r .

As an example, consider a CRIRP with 7 PODs that we want to fit in 3 routes. The

possible number of PODs per vehicle is shown in Figure 11. The first nodes from the

root in the figure represent the possible number of PODs for the first vehicle. The

number of leaf nodes represent the total number of possible route size sequences which

are {3,2,2}, {3,3,1}, {4,2,1} and {5,1,1}.

 59

Figure 11: Size sequence branching

5.2.2 Method of Combinations

The method described in Section 5.2.1 generates all the possible route sizes for a given

vehicle fleet size. For each of these size sequences, there are several ways to assign

PODs to vehicles. Each of the paths in Figure 11 is thus a root for the assignment of

PODs to vehicles. We assign PODs to vehicles, one vehicle at a time.

 Suppose we have n PODs to assign to r vehicles according to the size sequence

1 2{ , ,..., }rs s s
1

r

i
i

s n


 
 

 
 . If i js s for every i, j, i j , that is, the sizes in the sequence

are distinct, then there are
1

n
sC distinct ways of assigning PODs to the first vehicle.

1

n
sC ,

which is associated with the first vehicle, is also the number of nodes that descend from

the leaf node of the size sequence tree. For each of these nodes, there are 1

2

n s
sC  ways of

 60

assigning PODs to the second vehicle. Similarly, 1

2

n s
sC  represents the number of nodes

that descend from each of the nodes associated with the first vehicle. Proceeding with

this train of thought, there are

1

1

k

i
i

k

n s

sC






 ways of selecting vehicles for the kth vehicle. We

call this scheme for generating nodes of a vehicle as children nodes of the preceding

vehicle the “method of combinations”.

Let us consider the case where the sizes are not distinct. For example, let us attempt to fit

seven PODs in three vehicle routes with size sequence {3, 3, 1}. Using the method of

combinations just described we would obtain the following POD allocations

{[1,2,3],[4,5,6],[7]}, {[4,5,6],[1,2,3],[7]} among several others. In the first allocation,

PODs 1, 2, and 3 are assigned to vehicle 1 and PODs 4, 5 and 6 are assigned to vehicle 2.

In the second allocation, PODs 4, 5 and 6 are assigned to vehicle 1 and PODs 1, 2 and 3

are assigned to vehicle 2. Because all of the vehicles are identical, these two allocations

are identical and would lead to extra, unnecessary branches in a tree containing identical

solutions. To prevent this from happening, we combine sizes in the size sequence that

have the same value and form a size-group. Size sequences are thus transformed to size-

group sequences. As an example, the {3, 3, 1} size sequence becomes a {6, 1} size-

group sequence. We can now use the method of combinations to generate nodes from

PODs. However, when using size-group sequences, a node represents one or more

vehicle routes of the same size.

 61

5.2.3 Analyzing the Nodes Generated by the Method of Combinations

Each of the nodes added to the solution tree by the method of combinations represents

one or more vehicle routes (having the same size) and the PODs to be assigned to the

vehicles. If there are several vehicles in the node, we still need to explore all the possible

allocations of PODs to vehicles. To assign PODs to vehicles, we follow a procedure

similar to the method of combinations. The difference here is that the vehicle routes have

the same size. Consider fitting ps PODs in p routes each of size s. For the first route,

because the sites are similar, we can arbitrarily select any POD as the first POD in the

route. There are thus 1
1

ps
sC 
 ways of selecting PODs for the first vehicle route. For each

of these selections, there are 1
1

ps s
sC  
 ways of assigning PODs to the second vehicle.

Similarly, there are (1) 1
1

ps k s
sC   
 ways of selecting vehicles for the kth vehicle. We call this

the “modified method of combinations”. This results in a tree structure that resides in the

nodes generated by the method of combinations. Take note that these trees are not

branches in the overall solution tree but are island trees that reside within its nodes. The

nodes of these island trees each represent a single vehicle route and the PODs that would

be supplied on that route. This level of branching of the solution tree structure (which we

call the route tree) ends at POD assignments to individual routes and is shown in Figure

12.

 62

Figure 12: Analysis of the nodes generated by the method of combinations results is
island nodes

 63

5.3 Routing a vehicle to a set of PODs

From the method described in Section 5.2, we have all of the possible route-PODs

combinations i.e. all the possible ways that PODs can be assigned to routes. These are

represented by the nodes of the island trees shown in Figure 12. The PODs on a vehicle

route can belong to one more subroutes. This section addresses methods for determining

all the possible ways of assigning PODs on a route to subroutes.

5.3.1 Assigning PODs to Subroutes

Essentially, we will follow the same procedure we did in assigning vehicles to routes.

The number of subroutes on a route ranges from a minimum of one to a maximum equal

to the number of PODs intended for the route. The minimum corresponds to having all

PODs on one subroute, while at the maximum each subroute would only supply one

POD. Like the routes, the order in which the subroutes are supplied is irrelevant.

However, for the purposes of this method we order the subroutes in decreasing order of

the number of PODs supplied. Just like we did for routes, for each of the possible

number of subroutes, we generate all the size sequences. We convert size sequences into

size-group sequences and apply the method of combinations. We apply the modified

method of combinations to the nodes that result from the method of combinations. This

results in a structure exactly the same as that depicted in Figure 12. The difference here

is that the nodes of the island trees represent subroutes and these are the inner-most nodes

in our solution tree. Also, the entire tree structure we have generated in this section

(which we call the subroute tree) resides inside the each of the nodes of the island trees of

the previous section. The resulting tree is shown in Figure 13.

 64

Figure 13: The solution space tree

Route Size
sequence

Route Group: One or
more equally sized

routes and the PODs
assigned to them

One route and the
PODs assigned to it

Subroute size
sequence

Subroute group: one or
more equally sized

subroutes and the PODs
assigned to them

One subroute
and the PODs
assigned to it

There is another major difference between the route tree and the subroute tree. Within

the route group nodes of the route tree, each path of the enclosed island trees represents a

possible assignment of PODs to a number of equally-sized vehicle routes. If we find one

 65

such feasible path, the enclosing route group node is feasible independent of parent and

children route group nodes. We have no need to explore more island tree paths within

the route group node. The converse is true in the case of the subroute tree. A subroute is

feasible only in the context of the route to which it belongs. We cannot therefore say that

a subroute group node by itself is feasible. We must compare all the combinations of the

paths of the enclosed island tree of one subroute group to the paths of the island trees of

other associated subroute group nodes.

To illustrate this point, suppose we want to fit PODs 1 to 6 in two routes each of size 3

(the first route group) and PODs 7 to 10 in two routes each of size 2 (the second route

group). Furthermore, suppose that in the first route group the PODs are feasibly assigned

to routes as follows: {1, 2, 3} and {4, 5, 6}. Independent of the second route group, we

do not need to explore other ways of assigning the PODs to the routes in the first.

Consider a similar scenario for the subroute tree. We want to constitute a route by

assigning PODs 1 to 6 to two subroutes each of size 3 (the first subroute group) and

PODs 7 to 10 to two subroutes each of size 2. Recall that the feasibility of a route

depends on the maximum subroute demand and the total route length (that is, the sum of

all the subroute lengths). We can therefore make no conclusions about one subroute

group without taking associated subroute groups into consideration. In fact, to conclude

that this route of 10 PODs is infeasible, we must consider and rule out all the possible

combinations of subroute assignments in the first subroute group with those in the

second.

 66

5.3.2 Obtaining the Subroute Path

From Section 5.3.1, all possible PODs assignments to subroutes are known. We must

now determine the best path that a vehicle should take as it leaves the depot, visits each

of the PODs on the subroute before returning to the depot. The best subroute path is that

which is shortest. Choosing the best subroute path thus reduces to solving the well-

known TSP.

5.4 Bounding and Pruning

Thus far in this chapter we have used branching to subdivide the solution space down to

the lowest level. This allows us to explore all the possible ways of assigning PODs to

subroutes (in the subroute tree) and subroutes to routes (in the route tree) for any solution

size (number of vehicle routes). In an effort to reduce the computational burden, this

section seeks methods for eliminating tree branches from the solution space.

5.4.1 Lower Bound for the Number of Routes

By applying heuristics, an upper bound of the optimal fleet size (which can be improved

during branching) is obtained. When we apply the method of combinations or the

modified method of combinations, we attempt to fit a given set of PODs into routes for a

given number of vehicles (based on the fleet size upper bound). For a particular branch

in the tree, if we can show that the given set of PODs cannot fit in the given number of

vehicle routes, we can abandon that branch because it does not have a solution. In this

section we determine a lower bound for the number of vehicles required to supply a given

set of PODs.

 67

Suppose that a vehicle has the ability to supply a set of PODs with known demand rates.

If we reduce the demand rates of some PODs, the vehicle should still be able to feasibly

supply those PODs. To obtain a lower bound for the number of vehicles required, we set

all the POD demand rates to the minimum demand rate in the set. This reduces to an

instance of the special case (Section 3.3) and is a BPP problem. To further simplify the

BPP, we fill the bins as if quantities are continuous. For example, let the minimum POD

demand for a set of PODs be 200 kg/min; let the trivial subroute durations be 20, 35, 35

and 45 minutes and the vehicle capacity be 10000 kg. Then the maximum allowable

route length that allows a truck to meet demand is 10000 50
200

 min. The minimum

number of vehicles is the number of bins of capacity 50 min in which we can pack the

subroute durations. To find the lower bound we simply take 20 35 35 45 2.7
50

  
 ,

which is rounded up to yield a lower bound of 3 vehicles. If this lower bound is more

than the number of vehicles for which the set of PODs is destined, this branch is

infeasible.

5.4.2 Pruning Routes

During bounding, we eliminate branches that cannot yield a solution with less than

optimal fleet size upper bound. Sometimes, it is also possible to show that there is

another solution combination that is always better that the current branch. If A always

performs worse than B, why waste time on A when either B had failed to do the job or we

are destined to encounter B? In the case of fitting PODs in routes, consider two possible

solutions. The first k routes of both are identically filled. The k+1th route of solution A

 68

has PODs 1, 2 and 3 with 10 PODs left to fit in 3 routes. The k+1th route of solution B has

PODs 1, 2, 3 and 4 with 9 PODs left to fit in 3 routes. Solution B in all cases would do

better than solution A. If we encountered solution A, we may therefore abandon it

because when we get solution B, we are guaranteed better results.

To determine if a better solution exists, for each route that we have filled with a set of

PODs, we look at the PODs left (destined for subsequent routes) and determine if any of

them can be feasibly added to this route. If so, we abandon this branch. To reduce the

computational expense of determining the addition of a POD, heuristics could be used.

5.4.3 Capacity Lower Bound

In the subroute tree, we attempt to fit a given set of PODs in one vehicle route. In this

section we determine a lower bound to the capacity required by a set of PODs on a route.

If we can show that this lower bound exceeds the vehicle capacity, then the route is

infeasible. Recall the vehicle capacity constraint *
v vD T C from Chapter 3. *

vD is the

maximum subroute demand of vehicle v, vT is the route duration and C is the vehicle

capacity. *
v vD T represents the required route capacity which must not exceed C. To

determine a lower bound for the required vehicle capacity, we use the multiple of the

lower bounds of *
vD and vT .

The maximum single POD demand in the set is a lower bound for *
vD . Since a vehicle

must visit all the PODs on its route, we can utilize the cost of the minimum spanning tree

 69

of all the PODs and the depot as a lower bound. The travel times are used as the path

costs in the spanning tree. In a spanning tree, each vertex is connected by only one path.

In our scenario, a vehicle route must include both a departure from and a return to the

depot. Therefore the depot has at least two paths. To obtain a better lower bound, we

add the cost of the lowest cost depot path to the cost of the minimum spanning tree.

5.4.4 Subroute Demand and Duration Lower Bound

Consider a CRIRP problem in which the vehicle capacity, C = 1000 kg. The route

assigned to vehicle v has duration vT = 30 minutes and maximum subroute demand *
vD =

20 kg/minute. The route is feasible because *
v vD T C . Now suppose we want to add a

subroute group of 2 subroutes, each of size 2 constituted of PODs 1, 2, 3 and 4. Let the

possibilities for the subroute group be as follows:

 {1,2},{3,4} with total duration = 30 minutes and the greater subroute demand =

35 kg/minute

 {1,3},{2,4} with total duration = 35 minutes and the greater subroute demand =

32 kg/minute

 {1,4},{2,3} with total duration = 33 minutes and the greater subroute demand =

25 kg/minute

To obtain a lower bound for this subroute group, simply select the smallest duration and

the smallest maximum subroute demand, that is 30 minutes and 25 kg/minute

respectively. Before checking each of the listed possibilities for addition to the route, we

use the lower bound. To constitute the augmented route with the lower bound values, the

new value for vT =30+25=55 minutes and for *
vD =max (25, 20) =25 kg/minute.

 70

* (25)(55) 1375v vD T C   . Since the lower bound is not feasible, we need not test each

of the listed possibilities.

5.4.5 Pruning Subroutes

In the subroute tree, we can also prune branches if it can be shown that a better solution

exists. From Section 3.4 (Combining Subroutes with Unequal Demand), if there are two

subroutes whose combined demand is less than the maximum subroute demand, we

obtain a better solution by combining them into one subroute. When this situation is

encountered in the subroute tree, the applicable branch may be abandoned.

5.5 Other Computation Saving Techniques

5.5.1 Storing Partial Solutions

Consider the two CRIRP solutions that follow: {[1,2,3,4], [5,6],[7,8]} and {[1,2,3,4],

[5,7],[6,8]} where the contents of the square brackets are the PODs in a route. Both

solutions assign the same set of PODs to the first route. In general several solutions

could have a lot of common routes and subroutes, which once computed are stored and

available for retrieval.

5.5.2 Storing Failed Attempts

At a branch in the solution tree, suppose we want to fill 3 vehicle routes with PODs 1 –

10 according to the size sequence {5, 3, 2}. That is, 5 PODs in the first route, 3 second

and 2 in the third. There are 10
5C ways (which represent children nodes at the branch) of

selecting PODs for the first route. On the one hand, all of these trials could fail and the

 71

following information stored: “It is impossible to constitute a route of 5 PODs using

PODs 1 – 10.” On the other hand we may successfully create several possible routes of 5

PODs. Each of these would have 5
3C children nodes, which represents the number of

ways of constituting the second route given a feasible first route. If all of the nodes that

successfully created the first route of 5 PODs failed to create a second route of 3 PODs,

the following information is stored: “It is impossible to constitute 2 routes of sizes 5 and

3 using PODs 1 – 10.”

The results of such failed attempts are useful in eliminating other branches. Let us revisit

the last example: it is impossible to constitute from PODs 1 – 10, routes of sizes 5 and 3.

PODs 1 – 10 would equally fail to constitute routes of the following sizes: {5,4,1},

{6,3,1}, {5,3,1,1}. In general, suppose it is impossible to fill routes of sizes

 1 2, ,..., ma a a from a set of PODs. For the same set of PODs, we may rule out routes of

sizes  1 2, ,..., nb b b if the following conditions are met:

 n m

 i ib a for all i m

5.5.3 Multilevel Search

To show that a certain number of vehicles r is sufficient to supply the PODs it is

sufficient to find one feasible solution that uses r vehicles. A lot of computational

resources may be expended on one branch of the solution tree while a computationally

inexpensive solution exists on the next branch. The premise of this section is that

applying heuristic methods on tree branches would result in locating the solutions that are

 72

easy to find more quickly. The multilevel search has three levels of increasing

complexity with the full solution tree of Figure 13 being the most complex (level 3). At

level 1, when we get to the point at which we need to assign a set of PODs to one vehicle

(island nodes of the route tree), we use heuristics instead of using a subroute tree. At

level 2, we use the subroute tree. However, when we get to its island nodes (how to

connect PODs into a subroute) we use a TSP heuristic instead of solving the TSP

optimally. In order to show that r vehicles are insufficient to supply the PODs, it is not

sufficient for the solution tree to fail at levels 1 or 2. It must fail at level 3.

5.6 Algorithms and Implementation

Like the heuristics, our implementation of the exact approach was coded mainly in

MATLAB programming language. MATLAB’s built-in java interface was also used to

create and utilize custom java objects for storing computed routes, subroutes and

infeasible size sequences for sets of PODs.

For its first step, the branch and bound algorithm (Figure 14) calls a heuristic to find an

upper bound to the optimal number of vehicles. The heuristic called must not return an

infeasible solution if a feasible solution exists. The H2 and H3 heuristics are guaranteed

to return a feasible solution if one exists. These algorithms can do this because

ultimately, they only fail if one POD cannot be fitted into a route. The H1 heuristic does

not meet this criterion because it first packs PODs into subroutes and when one such

subroute fails to be packed into a route, the heuristic fails. It may however be possible to

break up such a subroute to constitute several routes. This implementation of the branch

 73

and bound uses the H3 heuristic to obtain an initial upper bound for the optimum number

of vehicles.

The initial heuristic solution is stored and the number of vehicles is set to one less than

the heuristic solution. Using the new solution size, vehicle size sequences are then

generated as described in Section 5.2.1. For each size sequence, the algorithm in Figure

15 is called to generate a solution. If any such call returns a feasible solution, the

solution is stored and the solution size is again reduced to seek a better solution. If all the

sequences fail, the last feasible solution found is an optimal solution and is returned.

 74

Figure 14: Top level branch and bound Algorithm

Generate a
solution using a

heuristic

Feasible? No Feasible
Solution

Store
Solution

Vehicles
Solution size

- 1

Generate
Size

sequences

Size Sequences
Available?

Return last
succesful
Solution

Find solution
for next Size

Sequence

Solution
found

Remove Size
Sequence
from list

Store
Solution

Start

End

Solution List of Size
Sequences

No

Yes

No

Yes

No

Yes

 75

Figure 15: Algorithm that given a sequence of vehicle route sizes (size sequence)
generates a feasible solution

Size group
Sequence

Partial
Solution

PODs
Left

List of POD
combination

s

Start

Generate POD
combinations
for next Route

Group
POD

Combinations
available?

Vehicles
lower bound

OK?
Remove this

POD
combination

from list

No Feasible
Solution

EndNo

Yes

No

Find Solution
for Route

Group

Yes

Last Route
Group?

Route group
Solution Found?

Complete
partial

solution
No feasible
Solution for
size group
sequence

Route group
Solution
Found?

Add Route
Group to

partial
solution;

remove from
PODs left

Solution
Found?

Remove this
POD

combination
from list

Call
Self

Yes

No

Yes

No

Yes

No

No

Yes

Figure 15 shows the algorithm for constituting routes using a given size sequence. The

size sequence is first converted to a size-group sequence as described in Section 5.2.2. In

 76

general, this algorithm works by filling the first route group, reducing the number of

route groups left to be filled and recursively calling itself. Recursion ends when there is

one route group left. The method of combinations is used to assign PODs to a size group.

Our implementation uses a combination generator that loops from one possible

combination to the next until all combinations have been exhausted. If the number of

vehicles lower bound (Section 5.4.1) for this combination exceeds the size of the first

route group, the algorithm proceeds to the next combination. Otherwise, the algorithm in

Figure 16 is called to generate routes for the first route-group.

If the first route group is also the last, the algorithm returns with the solution found and

recursion ends. Otherwise, if there is a failure to fill either the first route group or the

subsequent ones through recursion, the algorithm proceeds to the next combination of

PODs for the first route group. If at any combination, the algorithm finds a solution the

algorithm returns the solution and exits. Otherwise, it runs through all combinations and

returns the size sequence as having no feasible solution.

 77

Figure 16: Algorithm that uses a set of PODs and a given number of vehicles
generates routes having an equal number of PODs.

Route Size Partial
Solution

PODs
Left

List of POD
combination

s

Start

Generate
POD

combinations
for next Route

POD
Combinations

available?

Capacity lower
bound OK?

Remove this POD
combination from

list

No Feasible
Solution

End
No

Yes

No

Find Solution
for Route

Yes

Last Route in
Group?

Route Solution
Found?

Complete
partial

solution

No feasible
Solution for

this route
group

Route Solution
Found?

Add Route to
partial

solution;
remove from

PODs left

Solution
Found?

Remove this
POD

combination
from list

Call
Self

Yes

No

Yes

No

Yes

No
No

Yes

 78

The algorithm in Figure 16 assigns a set of PODs to the routes in a route group. It is

recursive and works similarly to the algorithm in Figure 15. However, this algorithm has

routes instead of route groups; it uses the modified method of combinations for reasons

explained in Section 5.2.2; it applies the capacity lower bound to PODs intended for the

first route; and recursion works by the algorithm constituting one route and calling itself

to constitute the subsequent routes. If the set of PODs intended for the first route passes

the lower bound test, the algorithm in Figure 17 is called to constitute the route.

In order to constitute a route from a given set of PODs, the algorithm in Figure 17 starts

with an initial number of subroutes equal to the number of PODs. For this initial case,

constituting the route is trivial. In general however, subroute size sequences are

generated for a given number of subroutes and the algorithm in Figure 18 is called to

constitute a route according to the size sequence. If a size sequence generates a feasible

route, the algorithm returns the result. Otherwise, after looping through all size

sequences, it reduces the number of subroutes and tries again. Notice that if the number

of subroutes is 1, no further reduction is possible and the algorithm returns no feasible

route for the set of PODs.

 79

Figure 17: Algorithm that given a set of PODs generates one route

Subroutes #
PODs

Subroutes
Subroutes - 1

Generate
Size

sequences
Size Sequences

Available?

No Feasible
Route

Find solution
for next Size

Sequence

Solution
found

Remove Size
Sequence
from list

Return route

Start

End

List of Size
Sequences

No

Yes

No

Yes

PODs # of
Subroutes

Subroutes=1

No
Yes

 80

Figure 18: Algorithm that given a sequence of subroute sizes, completes a partially
constituted route with a given set of PODs

Partial
route

List of POD
combinations

Subroute
size group
sequence

PODs
Left

Start

Generate POD
combinations
for subroute

group

POD
combinations

available?

Subroute group
lower bound

feasibleRemove POD
combination

from list

Find next
feasible
Subroute

group
constitutionFound?

No Solution

Last
subroute

group

Return
solution

Add to partial
route and

remove from
PODs left

Call self

Feasible
solution

returned?
Undo

modification
of partial
route and
PODs left

End

No

Yes

Unknown

No
No

Yes

Yes

No

Yes

No

 81

The algorithm in Figure 18 fills a route with a set of PODs according to a given subroute

size sequence and is similar to Figure 15 which fills a route size sequence. As described

in section 5.3.1 (Assigning PODs to Subroutes), the main difference is that unlike route

groups, this algorithm cannot simply constitute a subroute group and conclude on its

feasibility. Here, even after the first subroute group is constituted and feasibly added to a

route, if there is a failure to successfully add the other subroute groups (recursive call),

the algorithm finds the next feasible configuration of the first subroute group and tries

again. It is only when all possible configurations of the first subroute group fail to be

combined with the recursive call is failure final. The algorithm that finds the next

feasible configuration of a subroute group is in Figure 19.

To find the next feasible configuration of a subroute group, the algorithm uses recursion

and progresses from the current configuration. The configuration of a subroute is the

current combination of each of its subroutes. To illustrate this point first consider how

the combination generator we implemented works. Suppose we want combinations for

three of nine PODs numbered 1 to 9. The combination generator would generate the

following: {1,2,3}, {1,2,4}, …, {1,2,9}, {1,3,4}, {1,3,5}, …, {1,3,9}, {1,4,5}, …,

{7,8,9}. Now suppose that the 9 PODs make up 3 subroutes of size 3 in a subroute

group. An example of a subroute configuration is {[1,5,6], [1,3,5], [1,2,3]} where the

first pair of square brackets represent the combination for 3 of 9 PODs for the first

subroute and the second pair of square brackets represent the combination for 3 of

remaining 6 PODs for the second subroute. Notice that the third angular bracket must be

 82

[1, 2, 3] because there would be only three PODs left. For this example, the next

subroute group configuration is {[1,5,6], [1,3,6], [1,2,3]}.

Returning to the algorithm, if the current subroute is the last in the subroute group that

needs to be filled, then there is no “next” configuration and there is an attempt to simply

add the subroute to the route. Otherwise, an attempt is made to add the first available

subroute. If this fails, the algorithm goes to the next combination of this subroute for

another trial. If the first subroute is successfully added, the algorithm recursively calls

itself to find the next feasible combination of the subsequent subroutes. If the last

combination is reached and is not feasible, then no configuration of the subroute group

can feasibly be added to the route. Notice that for a given subroute group configuration,

the algorithm calls a TSP routine to determine the best order in which to connect the

PODs into a subroute.

 83

Figure 19: Given a set of PODs that constitute a subroute group, this algorithm
finds a combination of subroutes of the group that can feasibly be added to an

existing route.

 84

5.7 Testing the Exact Method

After developing and implementing the branch and bound method earlier in this chapter,

in this section we test the implementation and interpret the results. A major concern for

exact solutions of NP hard problems is the time required to obtain a solution. In Sections

5.4 (Bounding and Pruning) and 5.5 (Other Computation Saving Techniques) we

discussed techniques for reducing the time required to obtain an exact solution to the

CRIRP. In this section, we first identify the techniques that work best for our problem.

We then solve modified versions of the CRIRP based on the dispensing plans of the State

of Maryland (Section 4.4.3), using different problem sizes to study the effects of problem

size on time required to obtain a solution.

5.7.1 Evaluating Computation Saving Techniques

We used one of the variants of the Burma 14 problem adapted from TSPLIB as described

in Section 4.4.1. This variant has a low capacity, demand rates with a standard deviation

of about one-sixth of the average and a load time of one-fiftieth of the average travel

time. There is no limit on the maximum subroute duration. We seek the effects of the

computation saving techniques on computer runtimes. We look particularly at the effects

of turning on or off the following:

 Pruning of routes

 Pruning of subroutes

 Storing feasible routes

 Multilevel search

 85

For the default test, routes and subroutes are pruned, feasible routes computed are stored

to memory and retrieved when needed and the multi-level search is not applied. Data is

collected on the number of nodes in the route and subroute trees of the solution tree, the

memory used and the program runtime. The computation-saving techniques listed above

are each varied with respect to the default and the results in Table 6 are obtained. All

tests are conducted on a Microsoft Windows XP Professional (version 2002, service pack

3) platform running on a DELL OPTIPLEX GX620 system having a 3.20 GHz Pentium

processor and 2 gigabytes (GB) of random access memory (RAM). MATLAB version

7.5.0.342 of August 15, 2007 is used.

Table 6: Evaluating computation saving techniques on one problem instance

Comment

Number of Nodes

Memory
(bytes)

Runtime
(minutes) Route size

sequences

Route
combinations
for route
sequences

Subroute
size
sequences

Subroute
combinations
for subroute
sequences

Default 8 3032 118625 3033 52525 36.04

Route
pruning
OFF 8 3032 118828 3033 53006 34.15

Subroute
pruning
OFF 8 3032 118625 3033 52524 36.14

Feasible
Route
storage
OFF 8 3032 118625 3033 26110 227.83

Multilevel
search ON 24 9096 236392 9097 53180 70.67

 86

As expected, these results confirm that when computed routes are not stored in memory,

it requires much more time to obtain the solution and much less memory. With the

multilevel search, the process also runs slower than the default case. The intent of the

multilevel search is to improve existing solutions as quickly as possible by quickly

finding solutions through a combination of exhaustive search and heuristics. However,

the exact method only stops when it fails to fit the PODs into a certain number of

vehicles. For this to happen the solution search goes through all three levels. This is

what most likely accounts for the multilevel search having a high runtime. However, the

multilevel search may still be useful in finding a solution more quickly if the goal is to

improve the heuristic solution as opposed to finding the optimal solution.

The results show that pruning routes and subroutes have little effect on the runtime.

Normally, one would expect that the pruning of branches in the route and subroute trees,

would lead a solution in a shorter amount of time. A possible explanation is that pruning

is also a computationally expensive operation. When the implementation is in route-

pruning mode, for each route that is computed, heuristics are called several times for

various combinations of PODs. The effects of pruning on runtime seem inconclusive. In

order to further investigate the effects of pruning, we ran some more tests.

Table 7 shows the results of testing various variants of the Burma 14 problem. The first 3

columns specify the variant, the fifth column informs us if the exact approach was able to

find a solution better than that obtained by the H3 heuristic and the last 4 columns show

 87

the effect of pruning routes and subroutes on the runtime. In most cases pruning has little

effect; however, in the last two cases, not pruning routes results in much shorter runtimes.

There is a possible reason for this significant difference. Consider fitting 10 PODs into a

route using the size sequence {4, 3, 2, 1}. Furthermore, suppose that there is no

combination of 4 and 3 PODs that can constitute the first two routes. Then the branches

with the following size sequences would be eliminated: {5,3,2}, {4,3,3}, {6,3,1} among

others. Now, suppose that route-pruning is in effect and we prune a branch because of a

particular combination of the first route of 4 PODs. Because we did not go far enough to

discover that there is no possible combination of the second route of 3 PODs, the

branches mentioned above would not be eliminated. Therefore when using pruning, we

may save computation time on one little branch within a size sequence node, but end up

not eliminating several other size sequences that would otherwise have been eliminated.

Even though all the problem instances in Table 7 are of the same size, the time required

to obtain solutions vary widely. This leads us to conclude that the runtime of a problem

strongly depends on the particular problem and not just the size of the problem. In the

first three cases, the runtime is zero because the heuristic solution size is 1 and no

improvement is possible. For the rest where improvement is possible, the exact approach

found a better solution in 2 out of 9 cases.

 88

Table 7: Evaluating computation saving techniques on several instances

Vehicle
Capacity

Demand
Rate

Standard
Deviation

Load /
unload
Time

Size of
Solution

Branch
and

Bound
Improves
Heuristic
Solution

Time (Minutes)

Prune
Neither

Prune
Subroutes

Only

Prune
Routes
Only

Prune
Both

high small
very
small 1 FALSE 0 0 0 0

high medium
very
small 1 FALSE 0 0 0 0

high high
very
small 1 FALSE 0 0 0 0

high small medium 2 FALSE 37.78 37.84 37.76 37.88
high medium medium 2 FALSE 40.32 42.93 40.29 43.02

medium high
very
small 2 FALSE 571.64 569.73 566.93 564.6

small high
very
small 3 FALSE 55.76 60.61 59.05 60.04

small small
very
small 3 FALSE 13.97 13.95 14.92 15.88

medium medium medium 3 FALSE 50.74 51.62 54.26 53.63
small high medium 6 FALSE 5.36 5.36 74.16 74.8
small medium medium 6 TRUE 1.24 1.34 14.11 14.78
small small medium 6 TRUE 0.51 0.53 10.32 9.99

5.7.2 Application to the State of Maryland

In this section, we solve modified versions of State of Maryland scenario. We start by

electing to use only PODs in county C, which has a total of 22 PODs, using 12 foot

trucks and setting the maximum route duration to 8 hours. From the observations made

in the previous section, we used neither route nor subroute pruning while solving for this

scenario. To prevent the problem from reducing to the CRIRP special case, the PODs are

assigned 3 different demand rates: ten are assigned a demand of 37.42, five are assigned a

demand of 29.44 and seven a demand of 21.91 all in regimens per minute. The problem

 89

sizes considered are 7, 12, 17 and 22. For the first three sizes, we randomly selected the

PODs from the 22 PODs in county C. The results are shown in Table 8.

Table 8: State of Maryland scenario: exact solution

Problem size Runtime (min.) Heuristic solution Exact solution
7 0.23 2 2

12 69.83 3 2

17 6540.81 4 3

22 2400.00
 (still running)

5 4
(tentative)

The exact solution consistently improves on the heuristic solution but as the problem size

increases, we pay a high computation price for these improvements. It is clear from these

results that the runtime increases much faster than the problem size.

5.8 Summary

In this chapter, we have developed a branch and bound technique for finding an optimal

solution to the CRIRP. This involves a branching method that allows us to explore all

possible solutions and a bounding method using various lower bounds to systematically

eliminate branches from the solution tree. We also used additional computation-saving

techniques such as storing intermediate results in memory, pruning and multilevel search.

We found that the pruning methods used failed to reduce computation time, but tended to

increase them instead. The multilevel search also performed poorly, but it might have the

potential to quickly find solutions. Storing computed routes proved quite successful in

 90

reducing runtime. The best combination of techniques includes using storage of

computed routes and excluding the use of the multilevel search and pruning.

Finally, the solution runtime clearly increases much faster than the problem size.

 91

Chapter 6: SUMMARY

In this thesis, we have studied the Continuous Replenishment Inventory Routing

Problem, in which a homogenous fleet of vehicles continuously delivers a single product

to a set of sites that consume the material at a constant rate. The sites do not have

predetermined inventory limits, and it is required that sites do not run out of material

before the next visit by a vehicle. The number of vehicles available is limited, so we seek

a solution that minimizes the number required.

6.1 Insights

Significant observations made during this research on the CRIRP include:

 Both the H1 and H3 heuristics perform significantly better than the benchmark H2

heuristic suggesting that they may be good heuristics. The H3 heuristic which

exploits problem properties and uses CVRP techniques almost always performs

better than the other heuristics.

 The performance of the H1 heuristic approaches that of H3 as the vehicle capacity

increases or as the problem size decreases.

 For the exact approach, the computation resources required increase very rapidly

with the problem size. A problem instance with 17 PODs required 4 days of

computation time on a 3.20 GHz Pentium processor with 2 gigabytes of random

access memory (RAM). However, size is only one of the factors that determine

computation time. For problems of the same size, the computation resources

required may vary by a couple of orders of magnitude. The required resources

thus also depend on the particular problem.

 92

 The exact method is practical only in problems with few PODs.

 The enormous amount of computational resources required for the exact approach

make it challenging to extensively test the exact approach. Such tests are

important for providing insight into the factors that make the method successful

(by reducing computation time) in solving CRIRP problems.

6.2 Contributions

These are the major contributions of this work:

 The development of a new type of Inventory Routing Problem to address the need

for continuous delivery of medical supplies which is motivated by emergency

preparedness planning.

 The identification of a special case of the CRIRP that is equivalent to the bin-

packing problem.

 The development of heuristics that provide near-optimal solutions (at least for the

problem sizes for which we were able to obtain optimal solutions). These

heuristics use only a tiny fraction of the computational resources required by the

exact solution.

 The development and implementation of tests that demonstrate the relative

strengths of these solution approaches.

 The development of an exact solution approach for the CRIRP. Various bounding

and pruning techniques were tested on small problems to determine their

effectiveness is speeding up the exact approach.

 93

6.3 Future work

Future work should focus on the following:

 Improving the solution lower bounds and pruning techniques used in the exact

solution approach. The use of better lower bounds would eliminate more solution

branches from consideration, thus speeding up the arrival at an optimum solution.

 Using high performance computer systems to test more features of the exact

approach. This would also permit us to compare how close to the optimum our

heuristic solutions are in the case of problems of large size.

 A comparison of the time it takes to arrive at the optimal solution as opposed to

the time required for eliminating the first infeasible solution. To rule out an

infeasible number of vehicles, all possible route combinations must be ruled out.

Therefore, it is quite possible that after arriving at the optimum, a considerable

fraction of computational resources is used in eliminating the first infeasible

number of vehicles.

 Developing approaches for problems with a heterogeneous fleet of vehicles (that

is, the vehicles come in different sizes), which will require modifications to the

current heuristics.

 Developing approaches that account for variability in the travel times and demand

at each site. Adding slack to the solutions will be necessary. The maximum load

of a subroute must be kept less than the vehicle capacity. The difficult problem is

to determine the minimal amount of slack that still provides a high service level.

 Developing approaches for multi-depot problems.

 94

 An attempt to use a modified CRIRP to solve the classic IRP is also worth some

investigation. The classic IRP plans for one route per day for each vehicle.

While customers may have delivery time windows, there is no reason for which

supplying customers in the IRP must be done discretely. Applying the CRIRP to

the IRP, once a vehicle returns to the depot, subject to customers’ delivery time

windows, it immediately reloads and returns to its route. . In order to be adapted

to the IRP, the CRIRP would need some modification to take time windows and

customer inventory into account.

 95

APPENDIX A: PROBLEM DATA FOR SAMPLE PROBLEM
INSTANCES

Smallest capacity= 8822.3971

Medium capacity= 22980.7794

Large capacity= 37139.1618

Load time= 0.8816

Maximum route duration= 100

 96

Table 9: Travel Times

 Depot POD
#1

POD
#2

POD
#3

POD
#4

POD
#5

POD
#6

POD
#7

POD
#8

POD
#9

POD
#10

POD
#11

POD
#12

POD
#13

Depot 0 1.66 5.08 6.52 8.83 5.53 4.1 0.75 1.29 3.15 1.28 5.08 3.12 3.94
POD
1 1.66 0 4.09 6.02 9.2 5.76 4.76 1.99 2.94 4.4 2.94 5.18 3.98 3.62

POD
2 5.08 4.09 0 2.45 6.96 4 4.5 4.73 6.15 8.22 6.01 3.37 4.64 2.01

POD
3 6.52 6.02 2.45 0 4.8 2.71 4.12 5.96 7.29 9.6 7.1 2.38 4.8 2.58

POD
4 8.83 9.2 6.96 4.8 0 3.44 4.77 8.09 8.93 11.21 8.7 4.06 5.82 5.8

POD
5 5.53 5.76 4 2.71 3.44 0 1.81 4.81 5.85 8.22 5.63 0.66 2.81 2.43

POD
6 4.1 4.76 4.5 4.12 4.77 1.81 0 3.35 4.19 6.51 3.96 1.77 1.07 2.5

POD
7 0.75 1.99 4.73 5.96 8.09 4.81 3.35 0 1.41 3.64 1.28 4.38 2.36 3.37

POD
8 1.29 2.94 6.15 7.29 8.93 5.85 4.19 1.41 0 2.37 0.23 5.52 3.12 4.73

POD
9 3.15 4.4 8.22 9.6 11.21 8.22 6.51 3.64 2.37 0 2.59 7.89 5.45 7.02

POD
10 1.28 2.94 6.01 7.1 8.7 5.63 3.96 1.28 0.23 2.59 0 5.3 2.89 4.55

POD
11 5.08 5.18 3.37 2.38 4.06 0.66 1.77 4.38 5.52 7.89 5.3 0 2.61 1.77

POD
12 3.12 3.98 4.64 4.8 5.82 2.81 1.07 2.36 3.12 5.45 2.89 2.61 0 2.67

POD
13 3.94 3.62 2.01 2.58 5.8 2.43 2.5 3.37 4.73 7.02 4.55 1.77 2.67 0

Table 10: Demands with medium standard deviation

POD # Depot 1 2 3 4 5 6

Demand 0 162.73 260.44 205.03 190.57 255 222.21

POD # 7 8 9 10 11 12 13

Demand 188.45 191.2 178.52 169.82 223.89 199.76 106.17

 97

APPENDIX B: HEURISTIC SOLUTIONS FOR SAMPLE
PROBLEM INSTANCES

B.1. Smallest Capacity

Table 11: H1 heuristic (4 routes)

Route Duration

Subroutes 4 5
Subroute Durations 19.43 12.82
Subroute Load 6147 8226

32.25

Subroutes 3 2 1
Subroute Durations 14.8 11.92 5.08
Subroute Load 6521 8283 5176

31.8

Subroutes 11 6 13
Subroute Durations 11.91 9.97 9.64
Subroute Load 7059 7006 3348

31.53

Subroutes 9 12 8 10 7
Subroute Durations 8.07 7.99 4.35 4.33 3.27
Subroute Load 5000 5595 5355 4756 5278

28

 98

Table 12: H2 heuristic (6 routes)

Route Duration

Subroutes [2 9]
Subroute Durations 19.1
Subroute Load 8384

19.1

Subroutes [10 6]
Subroute Durations 11.99
Subroute Load 4700

11.99

Subroutes [4 8]
Subroute Durations 21.7
Subroute Load 8285

21.7

Subroutes [11 12]
Subroute Durations 13.45
Subroute Load 5698

13.45

Subroutes [13 7 1]
Subroute Durations 14.49
Subroute Load 6626

14.49

Subroutes [5 3]
Subroute Durations 17.4
Subroute Load 8006

17.4

 99

Table 13: H3 heuristic (4 routes)

Route Duration

Subroutes 13 1 10 9 7
Subroute Durations 9.64 5.08 4.33 8.07 3.27
Subroute Load 3227 4946 5161 5425 5727

30.39

Subroutes 4 8 12
Subroute Durations 19.43 4.35 7.99
Subroute Load 6055 6075 6347

31.77

Subroutes 3 6 11
Subroute Durations 14.8 9.97 11.91
Subroute Load 7522 8153 8215

36.69

Subroutes 5 2
Subroute Durations 12.82 11.92
Subroute Load 6310 6444

24.74

B.2. Medium Capacity

Table 14: H1 heuristic (2 routes)

Route Duration

Subroutes 4 3 5 2 11 6 1
Subroute Durations 19.43 14.8 12.82 11.92 11.91 9.97 5.08
Subroute Load 16378 17621 21916 22384 19242 19098 13986

85.94

Subroutes 13 9 12 8 10 7
Subroute Durations 9.64 8.07 7.99 4.35 4.33 3.27
Subroute Load 3997 6721 7520 7198 6393 7095

37.64

 100

Table 15: H2 heuristic (4 routes)

Route Duration

Subroutes [11 10 3]
Subroute Durations 27.52
Subroute Load 16479

27.52

Subroutes [12 4 5]
Subroute Durations 21.44
Subroute Load 13833

21.44

Subroutes [9 1 13 2]
Subroute Durations 22.67
Subroute Load 16051

22.67

Subroutes [6 8 7]
Subroute Durations 13.98
Subroute Load 8417

13.98

Table 16: H3 heuristic (2 routes)

Route Dura
tion

Subrtes 13 1 10 9 7 4 8 12 3 6 11
Subrte
Dura
tions

9.64 5.08 4.33 8.07 3.27 19.43 4.35 7.99 14.8 9.97 11.91

Subrte
Load 10495 16086 16786 17647 18628 18837 18900 19746 20266 21965 22131

98.85

Subroutes 5 2
Subroute Durations 12.82 11.92
Subroute Load 6310 6444

24.74

 101

B.3. Large Capacity

Table 17: H1 heuristic (2 routes)

Route Duration

Subroutes [7 13 4 8] [2 5 12]
Subroute Durations 24.56 18.52
Subroute Load 29140 30812

43.08

Subroutes [6 11 3] [10 9 1]
Subroute Durations 18.31 13.46
Subroute Load 20686 16237

31.77

Table 18: H2 heuristic (3 routes)

Route Duration

Subroutes [4 3 13 12 1]
Subroute Durations 29.82
Subroute Load 25774

29.82

Subroutes [11 10 8 7 6]
Subroute Durations 24.76
Subroute Load 24656

24.76

Subroutes [2 5 9]
Subroute Durations 23.97
Subroute Load 16633

23.97

Table 19: H3 heuristic (2 routes)

Route Duration

Subroutes [4 3] [13 11] [10 8] [7 12] [1 6] 9 5
Subroute Durations 22.8 13.43 5.45 8.88 13.17 8.07 12.82
Subroute Load 33472 27928 30546 32847 32571 15105 21577

84.61

Subroutes 2
Subroute Durations 11.92
Subroute Load 3104

11.92

 102

BIBLIOGRAPHY

Bard, Jonathan F., Liu Huang, Patrick Jaillet, and Moshe Dror, “A decomposition

approach to the inventory routing problem with satellite facilities,”

Transportation Science, Volume 32, Number 2, pages 189 – 203, 1998.

Campbell, A., Clarke, L., Kleywegt, A., and Savelsbergh, M., “The Inventory Routing

Problem,” Fleet Management and Logistics (eds. Crainic, G. L. and Laporte, G.),

Kluwer Academic Publishers, Norwell, Massachusetts, pages 95-113, 1998.

Campbell, Ann Melissa, and Martin W. P. Savelsbergh, “A Decomposition Approach for

the Inventory-Routing Problem,” Transportation Science, Volume 38, Number 4,

pages 488–502, November 2004a.

Campbell, Ann Melissa, and Martin W. P. Savelsbergh, “Delivery Volume

Optimization,” Transportation Science, Volume 38, Number 2, pages 210-223,

May 2004b.

Christofides, N., and Beasley, J.E., “The Period Routing Problem,” Networks, Volume

14, pages 237-256, 1984.

Clarke, G., and Wright, J.W. “Scheduling of vehicles from a central depot to a number of

delivery points,” Operations Research, Volume 12, Number 4, pages 568-581,

1964.

Garey, M.R. and Johnson, D.S., “Coping with NP-Complete Problems”, Computers and

Intractability: A Guide to the Theory of NP-Completeness, Bell Telephone

Laboratories, pages 121-151, 1979.

 103

Golden, B., Bodin, L., Doyle, T., and Stewart Jr., W., “Approximate Traveling Salesman

Algorithms,” Operations Research, Volume 28, Number 3, Part 2, pages 694-711,

May-Jun 1980.

Golden, Bruce, Arjang Assad, and Roy Dahl, “Analysis of a large scale vehicle routing

problem with an inventory component,” Large Scale Systems, Volume 7,

pages 181-190, 1984.

Jaillet, Patrick, Jonathan F. Bard, Liu Huang, and Moshe Dror, “Delivery cost

approximations for inventory routing problems in a rolling horizon framework,”

Transportation Science, Volume 36, Number 3, pages 292-300, 2002.

Kruskal, Jr., J.B., “On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem”, Proceedings of the American Mathematical Society, Volume

7, Number 1, pages 48-50, Feb 1956.

Lawler, E.L., and Wood, D.E., “Branch-And-Bound Methods: A Survey,” Operations

Research, Volume 14, Number 4, pages 669-719, Jul – August 1966.

Lenstra, J.K., “Quadratic Assignment Problems,” Sequencing By Enumerative Methods,

Mathematical Centre Tracts, Amsterdam, pages 12-17, 1977.

Lenstra, J.K., and A. Rinnooy Kan, “Complexity of vehicle routing and scheduling

problems,” Networks, Volume 11, pages 221-227, 1981.

Toth, P. and Vigo, D. (1998), “Exact Solution of the Vehicle Routing Problem,” Fleet

Management and Logistics (eds. Crainic, G. L. and Laporte, G.), Kluwer

Academic Publishers, Norwell, Massachusetts, 1-31.

TSPLIB (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html July 08, 2008).

 104

TSPLIB: 52 locations in Berlin, Germany (http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsp/berlin52.tsp, July 08, 2008)

TSPLIB: 127 beer gardens in Augsburg Germany (http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsp/bier127.tsp, July 08, 2008):

TSPLIB: 14 cities in Burma (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/burma14.tsp,

July 08, 2008):

TSPLIB: 22 locations from the Odyssey of Ulysses (http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsp/ulysses22.tsp, July 08, 2008):

Webb, Ian R., and Richard C. Larson, “Period and phase of customer replenishment: a

new approach to the strategic inventory/routing problem,” European Journal of

Operational Research, Volume 85, pages 132-148, 1995.

