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Background - Special-K

• Special perturbations catalog system used by Naval Space Command.

• Uses a Gauss-Jackson numerical integrator.

• Used to maintain approximately 1300 satellites.

• Will be used to maintain 50,000 - 100,000 objects within 10 years.

• Computation time is a critical factor.
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Generalized Sundman Transformation

• Sundman (1912) developed a time transformation to attempt to solve the

three body problem,

dt = crds,

where c is a 2 body constant.

• This regularizes and linearizes the equations of motions.

• Generalized form:

dt = crnds.

• n = 1, c =
√

a/µ, s is the eccentric anomaly.

• n = 2, c = 1/
√

µa(1− e2), s is the true anomaly.
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Intermediate Anomaly, n = 3/2

• Merson (1975)

– concludes that n = 3/2 equally distributes the integration error around an

orbit.

– provides speed and accuracy results for n = 3/2 compared to other

integrators, for 2 body force only.

• Nacozy (1977)

– Expresses s in terms of the true anomaly for n = 3/2, and c = 1/
√

µ.

– Calls the angle the intermediate anomaly, though it is not an orbit angle -

one orbit is not 0 to 2π in s.
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Integration Steps

(a) Equal mean anomaly (n=0) with 58

steps.

(b) Equal intermediate anomaly (n=3/2)

with 10 steps.

e = 0.75
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Implementation

• Generalized Sundman Transformation with n = 3/2 and c = 1/
√

µ

implemented into Gauss-Jackson integrator.

• Known as s-integration.

• Step size set so step at perigee is same as t-integration.

• Accelerations from force model must be converted into s derivative, r′′,

r′′ =
1
µ

(
3
2
r(r · ṙ)ṙ + r3r̈

)
.

• r′ = dr/ds must be converted to ṙ.

• Time must be found by integrating a seventh differential equation,

t′ =
1
√

µ
r

3
2 .
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Regularization

• Equation of motion contains a singularity at r = 0,

r̈ +
µ

r3
r = P .

• Introducing E and B can remove the singularity,

r′′ =
3
µ
Err′ +

1
2
r − 3

2µ
rB +

1
µ

r3P .

• Regularization may improve accuracy of s-integration.

• Implemented in SpecialK to test the benefit.
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Test Cases

• Consider 6 orbits:

– Eccentricities of 0.0, 0.25, and 0.75.

– Perigee heights of 300 km and 1000 km.

– All orbits have a 40◦ inclination, and a 0.01 m2
/kg ballistic coefficient.

• Test integration accuracy over 3 days with and without perturbations.

• Perturbations include 24 × 24 WGS-84 geopotential, Jacchia 70 drag model,

and lunar/solar forces.

• Use a 30 sec time step in t-integration.

• s-integration time step is 30 sec at perigee.
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Determining Integration Error

• Use analytic solution as the reference 2 body comparisons.

• For testing with perturbations, integrate forward, and use final value to

integrate backwards.

• Define an error ratio:

ρr =
1

rANorbits

√√√√ 1
N

N∑
i=1

(∆ri)2,

where ∆r = |rcomputed − rref|.
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Accuracy Comparison - 2 Body Only

Test Case Error Ratio

e hp (km) t s s-reg

0 300 8.40×10−17 8.94×10−12 8.94×10−12

0.25 300 8.05×10−16 1.47×10−13 1.40×10−13

0.75 300 6.76×10−15 1.55×10−14 1.95×10−14

0 1000 7.36×10−17 4.33×10−11 4.33×10−11

0.25 1000 8.25×10−17 1.43×10−13 1.45×10−13

0.75 1000 1.04×10−15 1.14×10−13 1.07×10−13
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Accuracy Comparison - With Perturbations

Test Case Error Ratio

e hp (km) t s s-reg

0 300 4.93×10−9 1.69×10−8 1.69×10−8

0.25 300 4.17×10−10 9.38×10−9 9.31×10−9

0.75 300 5.78×10−9 1.61×10−8 1.56×10−8

0 1000 3.38×10−12 1.18×10−9 1.18×10−9

0.25 1000 2.17×10−13 2.72×10−10 2.80×10−10

0.75 1000 3.61×10−12 1.92×10−10 1.18×10−10
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Speed Comparison

Test Case Time for 30 Day Run (sec)

e hp (km) t s s-reg

0 300 21 21 22

0.25 300 29 20 21

0.75 300 28 4.7 4.8

0 1000 31 31 32

0.25 1000 29 20 20

0.75 1000 28 4.6 4.7
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Preliminary Conclusions

• With step sizes equal at perigee:

– t-integration is more accurate.

– s-integration is faster.

• Question: When is s-integration faster than t-integration if they have the

same accuracy?

• Perform a new test:

– Find the step size that gives an error ratio of 1× 10−9.

– Perform 30 day speed test with this step.
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Equal Error Speed Comparison - 1000 km

Step Size (sec) Time for 30 Day Run (sec)

e t s t s Speed Ratio

0 50 30 18.3 31.0 0.59

0.05 55 54 16.7 16.4 1.0

0.10 64 58 14.2 14.0 1.0

0.15 73 72 12.2 10.3 1.2

0.20 70 74 12.6 9.17 1.4

0.25 68 80 12.8 7.80 1.6

0.50 61 61 14.0 5.80 2.4

0.75 65 51 13.1 2.94 4.5
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Equal Error Speed Comparison - 300 km

Step Size (sec) Time for 30 Day Run (sec)

e t s t s Speed Ratio

0 6 4 99.6 153 0.65

0.15 50 26 18.1 27.9 0.65

0.25 32 15 27.0 38.9 0.69

0.30 17 16 50.0 33.0 1.5

0.35 32 30 26.7 16.2 1.6

0.40 50 36 17.2 12.2 1.4

0.50 50 36 17.1 9.55 1.8

0.75 29 10 28.8 13.0 2.2
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Conclusions

• Use s-integration for e > 0.15, outside drag regime.

• Use s-integration for e > 0.30, inside drag regime.

• Round-off error is a concern for s-integration.

• Regularization does not significantly improve the s-integration results.
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