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Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm) are able to 

persist inside host cell macrophages by modulating the phagosome environment.  

ESX-1 is a specialized secretion system that is required for virulence.  Two of the 

proteins secreted by ESX-1 are ESAT-6 and EspB.  They are codependent for 

secretion and are important virulence effectors, though their specific functions are not 

known.  Mm is able to escape from the phagosome into the host cell cytosol where it 

can initiate actin-based motility. Mm escape is dependent on a functional ESX-1 

system.  I show that the ESAT-6 protein is able to form pores in host cell membranes 

which may play a role in Mm escape from the phagosome.  I also dissect the Mm 

EspB protein and show that cleavage of EspB is required for growth inside RAW 

cells, virulence in zebrafish, and for modulating ESAT-6 secretion.  The resulting C-

terminal 11 kDa fragment is sufficient for the codependent secretion of ESAT-6; 

while the 50 kDa N-terminal fragment seems to be somewhat dispensable for ESAT-6 



  

secretion but is definitely required for virulence.  When EspB is expressed as a full-

length protein, the highly conserved WXG motif in the N-terminal fragment is 

involved in the codependent secretion of the two proteins since secretion is reduced 

when this motif is mutated. Interestingly, when the N-terminal fragment is expressed 

without the C-terminal fragment it can secrete independent of the ESX-1 system, 

indicating that the C-terminus confers specificity for EspB secretion through ESX-1.  

I show that the virulence function of the EspB N-terminal fragment is dependent on 

the secretion of ESAT-6, and EspB must be expressed in its full-length form in order 

to be fully functional.  These results indicate that EspB function is dependent on a 

close association with ESAT-6. It is possible that the N-terminus is translocated into 

the host cell cytosol through the ESAT-6 formed pore. 
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Chapter 1: Introduction 
 

Mycobacterium tuberculosis (Mtb) is the causative agent of the devastating disease, 

tuberculosis (TB), which infects one third of the world’s population and is 

responsible for killing two million people each year (World Health, 2009). The only 

available vaccine, Bacillus Calmette-Guérin (BCG) is an attenuated strain isolated 

through passage of Mycobacterium bovis.  Unfortunately, this vaccine is ineffective at 

preventing disease in the majority of cases.  Alternatively, there are several drug 

therapies available to treat TB disease, but treatment is intensive and requires taking 

several different antibiotics over the course of many months.  Incomplete treatment 

has caused an increase of multi-drug and extensively drug resistant strains of Mtb.  

This further intensifies the need for new drugs.  Because active TB disease is more 

prevalent in immune-compromised patients, there has been a huge surge of TB-

induced death in persons co-infected with HIV.  It is clear that newer and better TB 

drugs and a more effective vaccine would be an enormous benefit to the health of the 

global population.  However, there is still a lot to learn about the pathogenesis of Mtb 

in order to design effective drugs and vaccines. 

1.1 The history of Mycobacterium tuberculosis 

 

TB has been plaguing humans since ancient times.  It has co-evolved with humans, 

making it an extremely well adapted pathogen.  Skeletal remains dating back to 

~9000 BC revealed that even prehistoric humans were infected with TB (Hershkovitz 

et al., 2008).  Around 460 BC, Hippocrates, a physician from ancient Greece, clearly 

recognized the clinical presentation in young adults of “phthisis”, as TB disease was 
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called there.  He described it as the most prevalent disease of the time.  Another 

Greek physician, Clarissimus Galen wrote about TB disease in 174 AD and 

recommended that treatment include “fresh air, milk, and sea voyages” (Daniel, 

2006).  The symptoms of TB have prompted several names that describe the disease.  

The paleness and long periods of relentless wasting associated with the active form of 

TB makes it seem as though patients are being consumed from within.  For this 

reason the disease has been called “consumption”, “wasting disease”, and “white 

plague”.   TB is also sometimes referred to as “Koch’s disease” because Dr. Robert 

Koch was the first to identify the Mycobacterium tuberculosis bacillus that causes TB 

disease.  He won the Nobel Prize for his discovery in 1905 (Daniel, 2006).  Dr. Koch 

also developed a glycerin extract of the tubercle bacilli that he called “tuberculin”. He 

proposed that it be used as a TB vaccine but it was ineffective.  However, tuberculin 

is useful as a diagnostic for determining if a person is infected with Mtb.  

1.2 Mycobacterium tuberculosis and its transmission  

 

Mtb is a small, bacillus-shaped member of the Actinomycetes family of bacteria that 

have a high G+C ratio in their genome (Embley and Stackebrandt, 1994).  They are 

technically Gram-positive because they do not have an outer membrane.  However, 

they do have a thick cell wall that is composed of dual layers of peptidoglycan and 

arabinogalactan.  The cell wall is covalently linked to a layer of branched-chain fatty 

acids called mycolic acids.  This provides the bacteria with a protective hydrophobic, 

waxy coat, called a mycomembrane that is much less penetrable than most Gram-

positive cell walls (Brennan and Nickaido, 1995; Abdallah et al., 2007).  Beyond the 

mycomembrane they have a capsule that is composed primarily of polysaccharides, 
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mainly glucan and arabinomannan, but also contains proteins and a small amount of 

lipid, namely lipoarabinomannan (LAM) (Daffe and Etienne, 1999) [Fig. 1].  Because 

of this complex cell wall, mycobacteria are difficult to Gram-stain, and are 

characterized as acid-fast because they resist the dilute acid de-colorization stain used 

in typical staining procedures.  To identify them, the Ziehl-Neelson staining 

procedure is readily used instead (Glickman and Jacobs, 2001).  To date there have 

been 85 different species of Mycobacterium identified.  Mtb is among the slow 

growing of the genus, dividing every 15-20 hours.  Unlike most Mycobacterium 

species, Mtb has never been found outside of its host. Mtb requires high levels of 

oxygen which is why they thrive so well in the lung alveoli of humans.  However, 

exposure to Mtb does not always result in disease even though the infectious dose is 

relatively low, usually only about 10 bacteria. This is because co-evolution of Mtb 

with humans has allowed for the latent survival of the bacteria without causing duress 

in the host.   

Typically, an uninfected person becomes infected with Mtb when a person suffering 

from active TB disease coughs or sneezes.  They expel tiny aerosol droplets that 

contain the bacteria.  When the uninfected person inhales these droplets they too 

become infected and then there are three possible outcomes; 1) the host immune 

system will clear the bacteria, 2) the person develops active TB disease, or 3) the 

person develops latent TB disease which may or may not reactivate at a later time.  

Latent TB disease is by far the most common response to infection.  The bacteria  
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Figure 1. The mycobacterial cell envelope.  Beyond the mycobacterial inner 

membrane is the cell wall which is composed of peptidoglycan, arabinogalactan, and 

covalently linked mycolic acids.  The mycolic acid layer with intercalated lipids, 

creates a hydrophobic barrier sometimes called a mycomembrane.  The 

mycomembrane is much less penetrable than the typical Gram-positive cell wall, and 

the lipids are generally mycobacteria specific. Beyond the mycomembrane, 

mycobacteria have what is often referred to as a capsule that is composed mainly of 

polysaccharides. 

 

Abdallah et al., 2007. Nature Reviews. 



 

 5 

 

enter the lungs and are taken up by alveolar macrophages and dendritic cells.  Mtb is 

able to live inside macrophages and reside in a dormant sort of state for many, many 

years.  In fact, a person with latent Mtb infection has only a 10% lifetime risk of 

progressing to active TB disease.  Compare this with persons co-infected with HIV, 

who have an 8-10% annual risk of developing active disease (Selwyn et al., 1989).  

When a person’s immune system is compromised, as is the case with HIV infection, 

people taking immunosuppressive drugs, or the elderly, it causes a break in the 

infection-protection balance and the bacteria progresses to active disease (Wells et al., 

2007).  The symptoms of active disease include the incessant, often bloody cough that 

is typically thought of when there is mention of tuberculosis disease.  Also, it can 

cause a loss of appetite leading to weight loss, fever and night sweats, and chest pain.  

If left untreated, pulmonary TB kills about 50% of patients.  Mtb can also disseminate 

in the blood stream throughout the body.  This more severe form of disease most 

often occurs in children, and is called miliary tuberculosis.  If left untreated, miliary 

TB kills nearly 100% of patients (Sharma et al., 2005).    

1.3 Modulation of immune defenses by Mycobacterium tuberculosis 

 

Upon infection with Mtb, the host innate immune response is the first defense.  The 

bacteria are taken up by the phagocytic cells that reside in the lungs.  The primary 

host cell for Mtb is the macrophage, though Mtb can also live inside dendritic cells 

(Giacomini et al., 2001).  Because Mtb is phagocytosed by cells rather than invading 

the cell cytoplasm, it is considered an extracellular pathogen.  Typically, extracellular 

pathogens induce the macrophage or dendritic cell to produce pro-inflammatory 

cytokines, such as Interleukin-12 (IL-12) and Tumor Necrosis Factor-α (TNF-α).  
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These cytokines are sensed by surrounding T-cells, which secrete more TNF-α and 

Interferon-γ (IFN-γ) to activate the macrophage and make it a more efficient killer.  

The pathogen-containing phagosome then matures along the endocytic pathway 

where it fuses with various endosomes.  Lysosomes fuse, forming a phagolysosome 

and release degradative enzymes that destroy the invading pathogen and cause a 

decrease in the relative pH to around 4.5.  The pathogen is processed into its specific 

antigens which bind Major Histocompatibility Complex Class-II (MHC-II) molecules 

and are brought to the cell surface for presentation to CD4
+
 T-cells that recognize 

MHC-II molecules.  Antigens of intracellular pathogens, such as viruses that invade 

the host cell cytoplasm, are presented via another pathway.  They are processed in the 

proteosome and transported to the endoplasmic reticulum where they bind MHC-I.  

Then they are transported to the cell surface for presentation to CD8
+
 T-cells which 

recognize MHC-I molecules.  Sometimes, antigens from extracellular bacteria can be 

presented to CD8
+
 T-cells via cross-presentation. 

Once activated, macrophages employ another defense against extracellular bacteria 

by upregulating production of two enzymes, Nitric Oxide Synthase (iNOS) which 

generates Nitric Oxide (NO) and other Reactive Nitrogen Intermediates (RNI) and a 

subunit of the NADPH oxidase, NOX2 which generates Hydrogen Peroxide (H2O2) 

and other Reactive Oxygen Intermediates (ROI) (Ehrt and Schnappinger, 2009).  ROI 

and RNI are toxic to bacteria.     

Though CD8
+
 T-cells can be activated by extracellular pathogens, the primary 

response is that of CD4
+
 T-cells.  CD4

+
 T-cells are helper T-cells that secrete 

cytokines to activate phagocytic cells to kill the invading pathogen.  This cell 
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mediated immunity is required for controlling the infection (Flynn and Chan, 2001).  

CD8
+
 T-cells are cytotoxic T-cells.  They can also activate macrophages, but their 

primary role is to induce cell death, or apoptosis, in cells that are infected with 

intracellular pathogens.  Interestingly, CD8+ T-cells are also required for controlling 

Mtb infection; however it is not entirely known how they gain access to Mtb antigens. 

CD4
+
 and CD8

+ 
T-cells, as well as natural killer (NK) T-cells and B-cells, migrate to 

the site of Mtb infection, driven by the cytokines and chemokines that are released 

from the infected macrophages.  The infected cells are thus “walled-off”, surrounded 

by foamy macrophages rich in lipid droplets, giant macrophages that are 

multinucleated, and lymphocytes (Russell, 2007). These granulomas are 

advantageous for the host because the infection is contained pretty much indefinitely 

unless the immune system becomes compromised; at which point the granuloma 

caseates and the bacteria are released and free to invade other cells, progressing to 

active TB disease [Fig. 2].  Granulomas are also advantageous to the bacteria.  They 

allow the bacteria to persist and eventually transmit to other cells.  In fact, Mtb has 

been shown to actually induce granuloma formation via secreted proteins and cell 

wall lipids (Russel, 2007).   

1.3.1 Mycobacterium tuberculosis can resist phagolysosome fusion 

 

Typically when a macrophage engulfs a pathogen the infected phagosome will fuse 

with lysosomes and the hydrolytic enzymes within the lysosomes will kill the 

pathogen.  Lysosomes are the most acidic organelle in a cell, with a pH of 4.5-5.0 and 

this pH is transferred to the phagosome.  The fusion of phagosome with lysosomes is
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Figure 2.  Mtb transmission and persistence.  Mtb is transmitted to non-infected 

persons through aerosol droplets.  The Mtb are taken up by alveolar macrophages in 

the lungs, which release cytokines that signal the recruitment of neighboring 

lymphocytes.  During the persistence stage, these lymphocytes effectively “wall off” 

the infected cells in a caseous granuloma that prevents Mtb growth and dissemination.  

This containment of Mtb bacilli is the hallmark of latent infection, however viable 

Mtb have been found in granuloma-free regions of the lung and lymph nodes in 

asymptomatic patients.  If an infected person becomes immune-compromised the 

granuloma may no longer hold its integrity.  In which case it cavitates and infection 

progresses to an active disease stage where the bacteria are released and are free to 

infect surrounding tissues.   

.   

Stewart et al., 2003. Nature Reviews. 
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a dynamic process that can be tracked by the markers present on the membrane over 

time.  During the early stages of phagocytosis the membranes contain markers that 

are present on the plasma membrane of the macrophage.  The small GTPase, rab5 is 

present from the earliest time point, as well as mannose, Fc, and transferrin receptors.  

However, the mannose, Fc, and transferrin receptors disappear relatively quickly and 

get recycled back to the plasma membrane.  The rab5 marker remains associated and 

plays an important role in the biogenesis of phagolysosomes (Dejardines, 1994).   At 

later time points, the late endosome marker, rab7 is present and plays a role in 

regulating the timing and specificity of fusion events along the phagocytic pathway.  

Eventually the phagosome fuses with terminal lysosomes which are enriched in 

Lysosome Associated Membrane Proteins (LAMP).  The various endocytic vesicles 

that fuse with the phagosome move along microtubules, where rab and Soluble NSF 

Attachment Receptor (SNARE) proteins are required to bring the phagosome in 

contact with the various endocytic vesicles along the pathway.   Protein 

phosphorylation and G-protein signaling are also important for phagolysosome fusion 

(Dejardines, 1995).  

Mtb are able to resist phagolysosome fusion and grow inside modified vesicles that 

represent earlier time point endosomes (Raja et al., 2004).  It’s not known how the 

bacteria are able to inhibit phagosome maturation, but they do play an active role.  

When infected with dead bacteria, it only takes an hour for the vacuole to mature to a 

late phagolysosome (MacGurn and Cox, 2007).  Vacuoles containing live Mtb 

however, are transferrin-accessible and only mildly acidic (pH 6.3), even at very late 

time points (MacGurn and Cox, 2007).  The phagosome retains rab5, which plays a 
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role in early endocytic interaction, but does not have rab7, which is a later endosomal 

membrane marker. Therefore, mycobacterial inhibition of phagolysosome fusion 

occurs sometime before the events that lead to the retention of rab7.  Interestingly, 

lysosome-associated membrane protein-1 (LAMP-1) and cathepsin D are also present 

on the Mtb-containing phagosome.  Cathepsin D, however is in an immature form 

which indicates that it is not acquired through fusion with lysosomes.  Somehow it is 

delivered directly from the trans-Golgi network (Russel, 2001) [Fig. 3].     

In addition to inhibiting phagolysosome fusion, Mtb is able to exclude Vacuolar 

Proton-ATPases (V-ATPase) (Sturgill-Koszycki et al., 1994), which are released 

from endosomes and pump protons across phagosomal membranes to acidify and kill 

the enclosed bacteria.  The mycobacterial cell wall lipid, lipoarabinomannan (LAM) 

and the secreted enzyme, SapM have been implicated in the inhibition of phagosome 

maturation by acting on phosphatidylinositol-3-phosphate (PI3P).  PI3P is a cell 

membrane associated, phospholipid that plays an essential role in membrane 

trafficking (Deretic et al., 2006).  A specialized secretion system, called ESX-1 has 

also been shown to be required for inhibition of phagolysosome fusion and this will 

be discussed further in section 1.5 (MacGurn and Cox, 2007).  

One interesting study by Ferrari et al., 1999, found that the Tryptophan-Aspartate 

Containing Coat (TACO) protein is retained on phagosomes infected with live 

Mycobacteria.  TACO is homologous to coronin, an actin-binding protein involved in 

cytoskeletal rearrangements.  TACO is relocalized to the phagosome membrane 

during the early stages of phagocytosis.  However, if the phagosome contains dead  
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Figure 3. The mycobacteria-containing vacuole. When Mtb is taken up by a 

macrophage they are able to survive for long periods of time inside an immature 

phagosome.  The mycobacteria-containing vacuole (MCV) acquires transferrin at the 

cell surface and remains transferrin accessible.  The vacuole also acquires the small 

GTPase, rab5 and is able to maintain a comfortable pH by inhibiting fusion with 

lysosomes and excluding vacuolar ATPases.  Interestingly, the MCV does have some 

lysosome-associated markers such as LAMP1 and cathepsin D.  Cathepsin D is in an 

immature form that suggests it is delivered directly from the Golgi rather than 

through fusion with lysosomes.  Another interesting feature of the MCV is that it 

retains TACO, or coronin.  TACO is an actin-binding protein that is actively retained 

by Mtb and may play a role in inhibiting phagosome maturation.    

 

Russell, 2001. Nature Reviews. 
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 bacteria, the association usually only lasts a couple of hours; whereas TACO remains 

associated on the surface of phagosomes containing live mycobacteria, suggesting 

that the bacteria is actively able to retain the TACO protein. Inhibition of 

phagolysosome fusion only occurs with phagosomes containing live mycobacteria.  

Dead bacteria-containing phagosomes go to lysosomes.  Perhaps retaining TACO is 

how mycobacteria are able to inhibit phagolysosome fusion.  It is interesting that 

TACO is not present in Kupffer cells, which are macrophages that reside in the liver.  

This is perhaps a reason why the liver is one organ that remains relatively resistant to 

Mtb infection (Flynn et al., 2001). 

Not only does Mtb inhibit phagosomal maturation, it has also evolved ways to avoid 

the harmful effects of ROI and RNI.   The catalase-peroxidase (KatG) enzyme is 

released from Mtb to break down H2O2 into water and oxygen.  Mtb lacking KatG are 

much more susceptible to the harmful effects of H2O2 (Ng et al., 2004).  Mtb also 

releases Superoxide Dismutase enzymes, SodA and SodC which break down 

superoxide anions into H2O2.  SodA and KatG are SecA2 dependent for secretion and 

SecA2 mutants have been shown to have growth defects in both macrophages and 

mice (Kurtz et al., 2006).  Mtb also expresses an NADH-dependent peroxidase and 

peroxynitrite reductase that can detoxify RNI and ROI.   

1.3.2 Mycobacterium tuberculosis alters macrophage signaling. 

 

Mtb can manipulate the macrophage signaling required for the production of 

immunostimulatory cytokines and effectors (Beltan et al., 2000; Falcone et al., 1994).  

It actively suppresses the transcriptional induction of the p40 subunit of IL-12, which 
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is a cytokine that is critical for control of mycobacterial infection (Giacomini et al., 

2001; Nau et al., 2002).  Macrophages also produce the pro-inflammatory cytokine, 

TNF-α and the antimicrobial effector, NO to control Mtb infection.  Non-virulent 

mycobacteria induce an increase of TNF-α and NO, suggesting that virulent 

mycobacteria are able to suppress these responses (Beltan et al., 2000). 

1.3.3 Mycobacterium tuberculosis can inhibit TLR-2 signaling. 

 

Toll-Like Receptors (TLR) on the surface of host cells are one way that extracellular 

pathogens can be recognized.  These receptors recognize pathogen associated 

molecular patterns (PAMPs).  For instance, TLR-4 can recognize LPS from Gram-

negative bacteria, and TLR-2 can recognize the mycobacterial cell wall extract, 

lipomannan.  Once a molecular pattern is recognized a signaling cascade ensues, 

activating an immune response.  TLRs have an extracellular domain, a 

transmembrane domain, and an intracellular domain.  Intracellularly, the TLR has a 

TIR domain that changes conformation once the extracellular domain comes in 

contact with its ligand.  This new conformation allows for the recruitment of adaptor 

molecules which begins a whole signaling cascade.  MyD88 is one such adaptor 

molecule.  Once it is bound to the TIR domain it recruits IRAK4, IRAK1, and 

TRAF6 to form a complex.  Further signaling events lead to the activation of the 

transcription factor, NF-κB and its recruitment to the nucleus.  In the nucleus, NF-κB 

binds to DNA and activates the genes necessary to illicit an immune response.  This 

includes the release of cytokines and the activation of T-cells.   
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In 2007, Patnak et al. discovered that the C-terminus of the secreted mycobacterial 

protein, ESAT-6 binds directly to the extracellular domain of TLR-2 and inhibits 

TLR-2 signaling.  This interaction interferes with the recruitment of IRAK4 to the 

MyD88 complex, thus inhibiting the recruitment of NF-κB to the nucleus.  This leads 

to a reduction in cytokine expression, including IL-6, TNF-α, and IL-12 (Patnak et 

al., 2007).    

1.3.4 Mycobacterium tuberculosis can inhibit apoptosis. 

 

Apoptosis, or programmed cell death, can be used by host cells as a defense 

mechanism against invading intracellular pathogens.  Apoptosis is a highly-controlled 

form of cell suicide in which the cell compacts, its chromatin is degraded, then the 

cell breaks apart into contained blebs that are phagocytosed by other cells and 

destroyed.  This process is anti-inflammatory which is counter to another form of cell 

death that is highly inflammatory, called necrosis.  Necrosis is caused by damage of 

the host cell membrane and the contents of the cell spill out uncontained.   Apoptosis 

can be induced via two separate pathways.  The extrinsic pathway is induced when 

there is an extracellular signal, such as cytokines released from T-cells in response to 

cellular infection.  Receptors on the surface of the apoptotic cell bind with their 

ligand (i.e. the Fas receptor binds the Fas ligand, or the TNF receptor binds TNF).  

This leads to conformational changes in the intracellular death domains of these 

receptors and signals the activation of the cysteine protease, caspase 8.  The intrinsic 

pathway is induced when there is an intracellular stress on the cell such as a high 

concentration of cytosolic Ca
2+

 or DNA damage.  In response to these stresses, 

members of the Bcl-2 family of pro-apoptotic proteins, such as bak and bax, bind to 
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the mitochondrial membrane leading to the release of cytochrome-c and the activation 

of caspase 9.  From there the two pathways, extrinsic and intrinsic, converge and 

activate caspase 3, 6, and 7 which leads to apoptosis of the cell.   

There is an obvious benefit to a phagocytosed pathogen if they are able to inhibit 

apoptosis; namely survival.  If an infected macrophage undergoes apoptosis, the blebs 

taken up by other professional phagocytes process those antigens and present them to 

MHC-I molecules, which go on to prime CD8
+
 T-cells.  Virulent mycobacteria have 

demonstrated the ability to inhibit apoptosis by both the intrinsic and extrinsic 

pathway (Briken, 2008).  Several proteins have been identified that play a role in Mtb 

inhibition of apoptosis, though the mechanism of inhibition is not yet known.  These 

include NuoG, a subunit of the NADH dehydrogenase, NDH-1 (Velmurugan et al., 

2007); SodA, which, as discussed in section 1.3.1, is secreted in response to ROIs 

released by the macrophage (Hinchey et al., 2007); and PknE, a member of the 

serine-threonine protein kinase family which is expressed in response to RNIs 

released by the macrophage (Jayakurmar et al., 2007).   

1.4 Treatment and prevention of tuberculosis 

 

The first and only widely-used vaccine against Mtb was developed by the French 

bacteriologist, Albert Calmette and veterinarian, Camille Guérin in 1906 through 

several years of passaging a virulent culture of Mycobacterium bovis, a close relative 

of Mtb that infects cows.  Eventually they isolated an attenuated strain that did not 

cause disease in the animal model.  They called it the Bacillus of Calmette and Guérin 

(BCG) and it was first used as a human vaccine in France in 1921.  Since then, and to 
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this day it has been used routinely in nearly all countries of the world.  Unfortunately 

BCG has variable efficacy in humans.  Its usefulness depends on age as well as 

geography. In children, BCG can be very effective at protecting against miliary TB, 

but it is not so effective at protecting against pulmonary TB in adults.  Unfortunately, 

it is pulmonary TB that is by far the most prevalent form of TB infection.  BCG’s 

effectiveness against pulmonary TB depends greatly on geographical region.  The 

reasons for this variability are poorly understood.  In the United Kingdom, clinical 

trials have shown efficacy in up to 80% of cases, whereas in India the efficacy is 

negligible.  This could be due to differences in the environmental mycobacteria 

species that might mask the effect of BCG, or it could be due to variations in the BCG 

strains being used or even the genetic pool of the population living in these different 

regions (Andersen and Doherty, 2005).   

Drug therapy against TB disease started with the discovery of Streptomycin in 1946.  

Because Mtb is covered in a waxy coat and thrives inside immune cells, drug 

penetration is difficult and effective drug therapy has to proceed for 6-9 months; 

sometimes up to two years.  Current treatment of active TB disease requires 

administration of four first-line drugs for at least two months; Isoniazid, Rifampin, 

Pyrazinamide, and Ethambutol, followed by at least another four months of just 

Isoniazid and Rifampin.  When the drugs are not taken as prescribed, the chance of 

recovery is reduced and there is a higher risk that the bacteria will become resistant.  

Multi-drug resistant tuberculosis (MDR-TB), when the bacteria is resistant to 

Isoniazid and Rifampin, and extensively drug resistant tuberculosis (XDR-TB), when 

the bacteria is also resistant to three second-line drugs, is becoming an increasingly 
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alarming problem in the world today.  Also, there has been a reemergence of active 

TB disease around the world because of the high incidence of HIV co-infection, 

which has not only increased mortality of Mtb infected patients, but has also led to 

more MDR and XDR-TB strains (Wells et al., 2007).  This emphasizes the dire need 

for new drugs and a better vaccine against Mtb (MacKenzie, 2007).  

1.5 A specialized secretion system in mycobacteria 

 

Because of the nature of their unique cell wall, it is more challenging for 

mycobacteria to export their bacterial products than it is for typical classes of Gram-

positive bacteria.  Like all other bacteria, mycobacteria have a Sec secretion system 

for general secretion of unfolded proteins across the cytoplasmic membrane.  These 

proteins are transported by chaperones right off the ribosome to the membrane 

channel.  They have conserved N-terminal signal sequences that are recognized by 

the SecA channel ATPase, which drives secretion (DiGiuseppe Champion and Cox, 

2007).  Mycobacteria also have a twin-arginine transporter (Tat) system for 

transporting folded proteins across the cytoplasmic membrane.  These proteins also 

have a signal sequence that is conserved and predictable (DiGiuseppe Champion and 

Cox, 2007).  In most Gram-positive bacteria the secretion of proteins across the 

cytoplasmic membrane is a one step process because the proteins are able to traverse 

the cell wall without having to pass through an outer membrane.  In Gram-negative 

bacteria, these proteins need another way out of the cell because they cannot cross the 

outer membrane on their own.  In addition to Sec and Tat, they have evolved several, 

more specialized systems that function to transport their bacterial products out of the 

cell, and in some cases directly into the cytoplasm of their host.  These specialized 
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secretion systems are classed as Type I-VI [Fig. 4].  Type II and Type V Secretion 

Systems transport Sec and Tat proteins across the outer membrane. Type I Secretion 

Systems form a continuous channel and transport proteins across both membranes. 

Type III, Type IV, and Type VI Secretion Systems form a continuous channel across 

both membranes and form a pore in the host cell to effectively translocate their 

effector proteins (Saier, 2006).   

Because mycobacteria have a thick and less penetrable cell wall it seems likely that 

they too would need a second step process to transport proteins out of the cell, though 

no system has yet been found.  For the majority of time that BCG has been used as a 

vaccine it was not known what caused its attenuation.  In 1996, Mahairas et al. used 

subtractive hybridization to compare the BCG genome with that of wild type 

Mycobacterium bovis.  They found three regions of difference; of these, the Region of 

Difference 1 (RD1) is the only region that is conserved in all virulent strains of M. 

bovis and Mtb, and is absent from all BCG substrains, dating back to the original 

BCG isolation (Mahairas et al., 1996).  Other groups compared the BCG genome with 

Mtb and found 16 large deletions (Behr et al., 1999; Gordon et al., 2001).  Of these, 

only five were unique to BCG and only RD1 was absent from all BCG vaccine strains 

being used in the present day.  Complementation of RD1 back to BCG partially 

restored its virulence (Gordon et al., 2001). In 2003, Hsu et al. deleted RD1 from 

several Mtb strains and found them all to be attenuated.  They also found that 

virulence was restored upon complementation.  What’s more, the Mtb RD1 mutant 

offers similar protection as BCG in Mtb challenged mice (Hsu et al., 2003).   
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Figure 4.  Type I-VI bacteria secretion systems. Gram-negative bacteria have 

evolved several types of secretion systems to transport proteins across both their inner 

(IM) and outer membranes (OM).  Type I secretion is a one-step process in which 

proteins with C-terminal signal sequences are transported across both membranes.  It 

is a simple channel made up of an ATPase-binding cassette protein in the IM, a 

membrane fusion protein in the periplasmic space, and an outer membrane channel in 

the OM.  Type II secreted proteins contain an N-terminal signal sequence to cross the 

IM via the Sec or Tat system (shown as a grey IM channel in the figure).  In the 

periplasmic space, the proteins fold and then cross the OM through a complex known 

as the secreton which has an OM pore and a pilus-like structure in the IM.  Type III 

secreted proteins are translocated through one continuous channel across both the IM 

and OM, and then they are “injected” directly into the host cell.  The Type III 

injectisome is homologous to the basal body of bacterial flagella.  The Type IV 

secretion system also spans both the IM and OM, and translocates substrates into the 

host cell. Type IV systems are homologous to the bacterial conjugation machinery 

and the process of translocation requires a pilus rather than an injectisome.  The Type 

V system is a two-step process in which Sec proteins that cross the IM (shown as a 

grey IM channel in the figure) have an autotransporter β-barrel domain that inserts in 

the OM and secretes the rest of the protein across.  Type VI secretion systems are not 

as well studied.  The substrates do not have Sec or Tat secretion signals and so it is 

believed that the Type VI channel crosses both the IM and the OM.   

Abdallah et al., 2007. Nature Reviews. 
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 It is now known that RD1 encodes the majority of genes that make up a novel 

secretion system.  The first indication that Mtb has a specialized secretion system was 

the discovery of secreted proteins that lack a Sec secretion signal (Sørensen et al., 

1995).  Namely, the Early Secreted Antigenic Target – 6 kDa protein (ESAT-6, 

sometimes called EsxA) and the Culture Filtrate Protein – 10 kDa (CFP-10, 

sometimes called EsxB).  Both are encoded within the RD1 region and both are 

known to be major antigenic targets of the host immune system.  Many of the other 

genes within and surrounding the extended RD1 region (extRD1) are required for 

ESAT-6 and CFP-10 secretion (Tekaia et al., 1999; Gey Van Pittius, 2001; Pallen et 

al., 2002), and so this novel secretion system is called ESAT-6 Secretion System – 1 

(ESX-1).   

There are actually five ESX systems in Mtb, which likely evolved by gene 

duplication.   It is believed that ESX-4 is the original system and it contains the least 

number of genes.  From ESX-4, duplication events likely lead to the addition of ESX-

1, then ESX-3, then ESX-2, and finally ESX-5 (Abdallah et al., 2007).  ESX-5 is only 

present in the slow-growing species of mycobacteria, so its presence divides the 

genus between fast-growers (colonies form within 7 days) and slow-growers, of 

which Mtb and most other pathogenic species are a member (Abdallah et al., 2006; 

Gey van Pittius et al., 2006).  The expansion of a family of proteins, which are unique 

to mycobacteria and make up 10% of the coding capacity in Mtb (Cole et al., 1998), 

have been linked to the expansion of ESX clusters (Gey van Pittius et al., 2006).  

These proteins are characterized by a conserved proline-glutamic acid (PE) or 

proline-proline-glutamic acid (PPE) motif within their N-terminus (Cole et al., 1998).  
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In the model species, Mycobacterium marinum (Mm), ESX-5 has been shown to be 

important for secreting several PE and PPE proteins (Abdallah et al., 2009), one of 

which is the PPE41 protein (Rv2430c) (Abdallah et al., 2006), which is able to induce 

a strong B-cell response (Choudhary et al., 2003).  ESX-5 has been shown to play a 

role in the modulation of macrophage secretion of proinflammatory cytokines, and it 

seems likely that members of the PE/PPE family of proteins are involved (Abdallah et 

al., 2008). 

The ESX-3 secretion system is conserved in all known mycobacterial genomes and is 

essential for optimal Mtb growth (Serafini et al., 2009; Siegrist et al., 2009).  It has 

been demonstrated that mycobacteria require this specialized secretion system for the 

optimal uptake of iron and zinc (Serafini et al., 2009; Siegrist et al., 2009).   

ESX-4 and ESX-2 have ESAT-6 family members in their gene clusters, though no 

secretion of these proteins has been detected.  It is possible that they are not 

functional secretion systems (Abdallah et al., 2007).  Interestingly, ESX systems have 

even been identified in low G+C Gram-positive bacteria, including the yukA-yukE 

gene cluster in Bacillus subtilis (Pallen, 2002).  Since both pathogenic and non-

pathogenic bacteria have these ESX systems, they cannot be solely attributed to a 

virulence adaptation.   

ESX-1 is clearly required for virulence in vivo and for growth in macrophages 

(Stanley et al., 2003; Guinn et al., 2004).  Without a functional ESX-1, Mtb infected 

phagosomes are unable to inhibit fusion with lysosomes (MacGurn et al., 1996; 2007; 

Tan et al., 2006).  It is also likely that ESX-1 is a key reason why the attenuated BCG 
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vaccine does not offer better protection against Mtb, since an intact ESX-1 secretion 

system is able to secrete more potent T-cell antigens.  ESX-1 is required for 

activation of the NALP3 inflammasome and release of the IL-1β and IL-18 pro-

inflammatory cytokines that are involved in granuloma formation and dissemination 

of infection (Koo et al., 2008; Volkman et al; 2004).  ESX-1 has also been shown to 

inhibit macrophage expression of IL-12 and TNF-α, and is required for cytotoxicity 

of host cells (Stanley et al., 2003; Gao et al., 2004).   

The ESX-1 system has many important similarities to Type IV secretion systems 

(T4SS) in Gram-negative bacteria; the secreted proteins lack a Sec-secretion signal, 

and instead have a signal at the C-terminus which is recognized by coupling proteins 

(Abdallah et al., 2007).  The secretion signal of CFP-10 has been identified as the last 

seven amino acids of its C-terminus and has been shown to be sufficient to direct the 

secretion of the non-related, cytoplasmic yeast ubiquitin protein (DiGiuseppe 

Champion et al., 2006).  It has also been shown that the C-terminus of ESAT-6 and 

another ESX-1 secreted substrate, EspB are required for secretion (Xu et al., 2007).  

Similar to T4SS, ESX-1 utilizes coupling proteins in the SpoIIIE/FtsK family of 

ATPases to drive secretion through the secretion channel.  Also, many of the ESX-1 

substrates are targeted for secretion as a substrate pair.  In T4SS, substrates have 

chaperones that are often small proteins with an acidic pI, are encoded by a gene 

adjacent to the gene that encodes the secreted substrate, and binds its substrate with 

high affinity; which are all characteristics of ESAT-6 and CFP-10.  What’s more, 

T4SS are homologous to the conjugation pilus. Interestingly, the ESX-1 system in the 

non-pathogenic species, Mycobacterium smegmatis, has been shown to be involved in 
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the conjugation of DNA transfer rather than virulence as it is in pathogenic species 

(Coros et al., 2008).   

In T4SS, proteins are translocated directly into the host cell cytosol.  Translocation of 

ESX-1 secreted proteins has not yet been demonstrated; however there is evidence to 

suggest that this is a very real possibility.  Since mycobacteria reside within a 

membrane-bound vacuole, MHC Class I molecules can gain access to antigens one of 

two ways; either the antigens are generated in a vesicular compartment and loaded 

onto recycled MHC, or the antigens enter the cytosol and undergo proteasome 

processing.  It does appear that Mtb antigens are able to enter the cytosol 

(Mazzaccaro et al., 1996; Lewinsohn et al., 2006). Translocation of proteins via ESX-

1 would explain how CD8
+
 T-cells gain access to these cytosolic Mtb antigens.  One 

report showed that secretion of CFP-10 is absolutely required to prime CD8
+  

T-cells 

(Woodsworth et al., 2008), which suggests that CFP-10 may be translocated into the 

cytosol.  Another report used fractionation and immunogold labeling to detect the 

Protein Kinase G (PknG) protein in the host cytosol (Walburger et al., 2004), and our 

lab has preliminary data to show that PknG is ESX-1 dependent for secretion 

(unpublished results).   

The clear correlations between ESX-1 and T4SS in Gram-negative bacteria, lends 

support to the hypothesis that mycobacteria require a specialized secretion system to 

secrete proteins across the mycomembrane.  Therefore, it has been proposed that ESX 

systems be designated as Type VII secretion systems, in line with Gram-negative 

nomenclature (Abdallah et al., 2007). 
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1.6 Molecular components of the ESX-1 secretion system 

1.6.1 Machinery 

 

There is still much to learn about the ESX-1 machinery.  Many who study ESX-1 

believe that the system forms a channel through both the cytosolic membrane and 

also the cell wall, though the cell wall channel protein(s) has not yet been discovered.  

It is also not yet known if the channel through the cytosolic membrane and cell wall is 

continuous or a separate two-step process.  It is thought that ESX-1 may form a 

continuous channel through the mycomembrane (Abdallah et al., 2007; DiGiuseppe 

Champion and Cox, 2007), similar to T4SS.  It’s even tempting to think that ESX-1 

could possibly form a pore in the host cell membrane in order to translocate virulence 

effectors.  All of these assumptions are speculative based on some phenotypic 

evidence, however the involved proteins have not yet been identified, there are no 

proteins within the extRD1 region that have predictable domains involved in such 

functions, and the ESX-1 secretion system has not yet been visualized.   

The proteins known to be involved in ESX-1 secretion are summarized in Table 1.  

There are three proteins that are well accepted as being part of the ESX-1 machinery. 

Using Mtb H37Rv nomenclature, these three proteins are Rv3870 (also sometimes 

called Snm1), Rv3871 (Snm2), and Rv3877 (Snm4).  Mutating any of these three 

proteins completely abolishes secretion of all of the known ESX-1 substrates, and 

these mutants show the same growth defect and altered immune response as a 

complete RD1 deletion (Stanley et al., 2003; Guinn et al., 2004).  All five of the Mtb 

ESX systems have homologs to these three proteins, though the homolog of Rv3871 
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and Rv3870 is sometimes encoded as one gene (Abdallah et al., 2007).  In addition, 

all five systems have a homolog to the serine protease, Rv3883c protein (called 

Mycosin-1 (MycP1)), and to Rv3869, which is not well studied.  There are also 

ESAT-6 family member proteins present in all five systems.  ESAT-6 and CFP-10, 

mentioned above, are secreted proteins but it is possible that they also contribute to 

the secretion machinery.  Because these six proteins are conserved and present in all 

five ESX systems, it is likely that they are the core components that make up the 

secretion machinery (Abdallah et al., 2007). 

Rv3877 has a 12-transmembrane-domain, it is not secreted, and because it is essential 

for a functional ESX-1 secretion system, it likely forms the cytosolic membrane 

channel.  Rv3870 and Rv3871 form an FtsK/SpoIIIE-like ATPase which likely act as 

coupling proteins to drive secretion through the Rv3877 channel.  Protein interaction 

studies have shown that these two proteins interact with each other (Stanley et al., 

2003).  What’s more, Rv3871 interacts with the C-terminal secretion signal of the 

secreted substrate, CFP-10.  It has also been shown to interact with Rv3879c which 

binds to another ESX-1 secreted substrate, EspB, though it itself is not secreted.  In 

the current model it is believed that Rv3879c and CFP-10 act as chaperones that 

deliver their cognate substrates to the secretion channel.   This is a common feature of 

secretion systems, as the T4SS in Gram-negative bacteria also utilize FtsK/SpoIIIE 

coupling proteins to drive secretion.   

Rv3883c (MycP1), is another protein believed to associate with the ESX-1 

machinery.  This protein is likely a member of the subtilase class of serine proteases, 

because it has a propeptide and a catalytic triad of aspartic acid, histidine, and serine 
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residues.  It has a transmembrane domain which anchors to the cytoplasmic 

membrane while the protease domain is believed to be present in the periplasmic 

space between the cytoplasmic membrane and the cell wall (Brown et al., 2000).   

Mutating MycP1 results in ESX-1 defects that are similar to those seen in Rv3877 

mutants where no known substrates are secreted.  Recently, in 2010, Ohol et al. 

reported that the ESX-1 secreted substrate, EspB is cleaved by MycP1 near its C-

terminus.  They created a protease defective mutant that allows for a functional ESX-

1 system but can no longer cleave EspB.  Interestingly, this mutant showed a 

substantial increase in the secretion of other ESX-1 substrates like ESAT-6 and CFP-

10.  The fact that the MycP1 mutant completely abolishes ESX-1 secretion, which is 

not due to a defect in protease activity, points toward a hypothesis that MycP1 

interacts with the ESX-1 machinery and is important for complex formation (Ohol et 

al., 2010).  Because the protease deficient mutant showed an increase in secretion of 

ESX-1 substrates, Ohol et al. hypothesized that MycP1 also plays a role in regulation.  

This will be discussed further in section 1.6.3. 

1.6.2 Substrates 

 

ESAT-6 and CFP-10: 

By far, the two most studied proteins known to be secreted by the ESX-1 system are 

Rv3875, commonly known as ESAT-6 (or sometimes EsxA), and Rv3874, commonly 

known as CFP-10 (or sometimes EsxB).  Both are members of the WXG100 

superfamily, characterized by their small size of around 100 amino acids, the 

presence of a conserved tryptophan-variable-glycine (WXG) motif, and also their 

tendency to be near other WXG100 proteins in the genome (Pallen, 2002).  A 
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sensitive search for ESAT-6-like proteins was done in an attempt to gather some idea 

as to function of these very important Mtb virulence proteins.  It was found that 

WXG100 proteins are present in a wide range of Gram-positive bacteria including 

Bacillus subtilis and Staphylococcus aureus, though sequence similarity is very low, 

save the three features described previously.  Most also possess coiled-coil domains 

and none of them were found to have a predictable secretion signal (Pallen, 2002).  

Not all WXG100 proteins are involved in virulence since they are present in both 

pathogenic and non-pathogenic species; however, the ESAT-6 and CFP-10 proteins, 

secreted by the ESX-1 system in Mtb, are very clearly involved in virulence.  In fact, 

the search for a specialized secretion system in mycobacteria began with the 

identification of these potent immunodominant antigens that lack a Sec secretion 

signal (Sørensen et al., 2005).  Mtb virulence in vivo and growth in macrophages is 

dependent on the secretion of ESAT-6 and CFP-10.  These proteins play a role in the 

inhibition of phagosome maturation and modulation of cytokine signaling (Stanley et 

al., 2003; Hsu et al., 2003; Pathak et al., 2007).   As discussed in section1.3.3, the C-

terminus of ESAT-6 was shown to directly bind TLR-2.  This interaction interferes 

with the recruitment of IRAK4 to the Myd88 complex and leads to a reduction in pro-

inflammatory cytokine expression (Patnak et al, 2007). 

ESAT-6 and CFP-10 are codependent for secretion; that is, ESAT-6 mutants do not 

secrete CFP-10 and CFP-10 mutants do not secrete ESAT-6.  In 2002, Renshaw et al. 

discovered that ESAT-6 and CFP-10 form a tight 1:1 heterodimer.  The structure of 

both proteins is that of a helix-turn-helix, and they associate via hydrophobic 

interactions to form an antiparallel four-helix bundle [Fig. 5].  The WXG motif of 
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Figure 5.  Ribbon structure of the ESAT-6/CFP-10 heterodimer. ESAT-6 (light 

blue) and CFP-10 (dark blue) form a helix-turn-helix structure that associates with 

high affinity through hydrophobic interactions to form a 1:1 heterodimer.  Their 

association is antiparallel across their helices, leaving the hairpins, which contain the 

highly conserved WXG motif (red), free to associate with other proteins.  The 

unstructured C-terminus of CFP-10 (purple) contains a seven amino acid signal 

sequence that is sufficient to secrete the cytosolic yeast protein, ubiquitin.   

Abdallah et al., 2007. Nature Reviews. 
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both proteins is present in the hairpin turn and is not involved in this interaction.  

CFP-10 has an unstructured C-terminus that was shown to interact with the channel 

ATPase, Rv3871 and the last seven amino acids are required for secretion and are 

sufficient to secrete the cytosolic yeast protein, ubiquitin (DiGiuseppe Champion et 

al., 2006).  The association of ESAT-6 and CFP-10 in vitro has high affinity both in 

the cell lysate and the culture filtrate; however, they have been shown to dissociate at 

low pH, such as that typically encountered in the phagosome (de Jonge et al., 2007).  

de Jonge et al., also found that ESAT-6 is able to associate with liposome 

membranes, but only when it is not in complex with CFP-10.  Their hypothesis is that 

CFP-10 acts as a chaperone for ESAT-6 until environmental factors cause the 

complex to dissociate, which allows ESAT-6 to carry out its virulence function. In 

addition to ESAT-6 and CFP-10, four other Mtb proteins have been identified that are 

ESX-1 dependent for secretion; Rv3614c (EspA) (Fortune et al., 2005; MacGurn et 

al., 2005), Rv3881c (EspB) (Xu et al., 2007; McLaughlin et al., 2007), Rv3615c 

(EspC) (DiGiuseppe Champion et al., 2009), and Rv3849 (EspR) (Raghavan et al., 

2008).  In addition, Carlsson et al., 2009 identified another ESX-1 secreted protein 

using the Mycobacterium marinum (Mm) model (discussed below in section 1.7); 

Mh3864 (for marinum homolog of Rv3864).  Another protein, Mh3865 (EspF) was 

shown to be ESX-1 dependent for secretion in Mm, however its expression in Mtb is 

much reduced (DiGiuseppe Champion et al., 2009).  The function of these secreted 

proteins and their role in Mtb pathogenesis remains to be elucidated, but several have 

been shown to be involved in virulence, and all display some form of codependence 

in their requirement for  secretion.  
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EspA: 

In 2005, Fortune et al. compared culture filtrates from H37Rv and an H37Rv RD1 

mutant strain to find proteins besides ESAT-6 and CFP-10 that might be secreted by 

ESX-1.  They identified Rv3614c (EspA) which is encoded outside the ESX-1 region 

in a three gene operon with Rv3615c and Rv3616c.  EspA is a 40 kDa protein with no 

predicted signal sequence or transmembrane domain.  It is 31% identical to Rv3864 

which lies within the ESX-1 region.  EspA is codependent for secretion with ESAT-6 

and CFP-10.   

At the same time, MacGurn et al., 2005 also discovered that the EspA protein is 

required for ESX-1 secretion.  They showed that EspA interacts directly with 

Rv3882c.  They also showed that this operon is important for combating the host 

response during early infection.  The operon is upregulated in low iron (Rodriguez et 

al., 2002) and low pH (Fisher et al, 2002), which are features of a macrophage 

phagosome.   

EspB: 

Two groups simultaneously discovered that Mh3881c (Marinum homolog of 

Rv3881c), or EspB is secreted by ESX-1 (Xu et al., 2007; McLaughlin et al., 2007).  

This 61 kDa protein is encoded within the ESX-1 region in a 2-gene operon with 

Mh3880c.  It shows 68% identity and 80% similarity with Rv3881c and Rv3881c is 

able to complement the secretion phenotype when expressed in the Mm espB::tn 

mutant (Xu et al., 2007). This indicates that the protein is functionally conserved in 

Mtb.  EspB is codependent for secretion with ESAT-6 and CFP-10 (Xu et al., 2007) 
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and it is cleaved upon secretion (Xu et al., 2007; McLaughlin et al., 2007).  Inside the 

cytosol, EspB is expressed in its full-length form, however in the culture filtrate two 

fragments are detected; an N-terminal 50 kDa fragment and a C-terminal 11 kDa 

fragment.  When only the N-terminal 50 kDa protein is expressed it is secreted 

normally; however ESAT-6 and CFP-10 are not secreted (Xu et al., 2007).  

Therefore, the C-terminus is required for codependent secretion.  In fact, the cellular 

stability of ESAT-6 is diminished in the C-terminal mutant due to the fact that the C-

terminus of EspB was shown to interact directly with ESAT-6 in the cytosol (Xu et 

al., 2007).  The N-terminus of EspB was shown to interact directly with Mh3879c, 

and Mh3879c interacts with the channel ATPase, Mh3871 (McLaughlin et al., 2007).  

Perhaps Mh3879c acts as a chaperone to bring EspB to the channel for secretion.  The 

two groups showed that secretion of EspB is required for cytotoxicity and 

intracellular growth inside macrophages (Xu et al., 2007; McLaughlin et al., 2007), 

virulence in zebrafish (McLaughlin et al., 2007), and the inhibition of phagolysosome 

fusion (Xu et al., 2007).   

EspC: 

Another protein, Rv3615c (EspC) was found to be codependent for secretion with 

ESAT-6 and CFP-10 and also requires Rv3870, Rv3871, and Rv3877 (MacGurn et 

al., 2005).  The C-terminus of EspC has a signal sequence that is similar to the C-

terminal signal sequence of CFP-10 (DiGiuseppe Campion et al., 2006); however, 

these two signal sequences are not interchangeable.  CFP-10 expressing the C-

terminal 7 amino acids of EspC is not secreted; demonstrating that this secretion 

signal is required for EspC secretion but is not sufficient (DiGiuseppe Champion et 
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al., 2009). This is likely because the C-terminus of EspC was found to interact with a 

different ATPase than CFP-10.  While CFP-10 interacts with Rv3871, EspC interacts 

with Rv3868, a cytosolic AAA ATPase that is also required for ESX-1 secretion, 

though its role in secretion is unknown (Gao et al., 2004; Brodin et al., 2006).  When 

EspC expresses the C-terminal 14 amino acids of CFP-10 this hybrid protein does 

interact with Rv3871, demonstrating the targeting specificity of the C-terminal signal 

sequence of CFP-10 to the Rv3871 ATPase (DiGiuseppe Champion et al., 2009).  

However EspC expressing the C-terminus of CFP-10 is not secreted, so other protein 

interactions must be required for secretion.  The targeting of CFP-10 and EspB to 

Rv3871 is independent of the targeting of EspC to Rv3868, however secretion of 

EspA requires EspC targeting to Rv3868.   

EspF: 

Further protein interaction studies revealed that ESAT-6 interacts with another 

protein, Rv3865 (EspF).  EspF was shown to be an Mtb secreted protein (Bahk et al., 

2004) and is paralogous to EspC.  It is therefore likely that EspF is also an ESX-1 

secreted substrate, and this was shown to be true in Mm (DiGiuseppe Champion et al., 

2009).  However, EspF is expressed much more abundantly in Mm than Mtb and so it 

was not possible for DiGiuseppe Champion et al., to conclusively show that EspF is 

an ESX-1 secreted substrate in Mtb.  Yeast two-hybrid analysis of Mtb proteins did 

show that EspF interacts directly with EspC and Rv3868, however.  In a previous 

study, it was shown that the Mh3864 protein specifically interacts with EspC 

(Carlsson et al., 2009), but was not shown to directly interact with other known ESX-

1 components and substrates.   
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EspR: 

In 2008, Raghavan et al. identified Rv3849 (EspR) as another protein secreted by the 

ESX-1 system.  In this mutant, ESAT-6 secretion levels are reduced and a growth 

defect is observed in mice.  The authors found that EspR is able to bind DNA and 

activate transcription of the EspA operon.  They conclude that this protein is an ESX-

1 regulator and thus will be discussed further in the next section.  It appears that 

secretion of EspR negatively regulates the ESX-1 system, potentially to benefit the 

bacteria by allowing it to hide from the host immune system during later stages of 

infection (Raghavan et al., 2008).   

Mh3864: 

Using the Mm model Carlsson et al., 2009 found that Mh3864 is secreted by ESX-1 

and is cell wall associated.  They also found that the ESX-1 secretion apparatus 

localizes primarily to the bacterial poles.  Mm is able to polymerize actin and spread 

from cell to cell (Gao et al., 2004), which is further discussed in section 1.7.  This 

study found that ESX-1 is preferentially localized to the poles that polymerize actin.  

Mh3864 is not required for actin tail formation but it is possible that other substrates 

of the ESX-1 system are required.  Actin polymerization has not yet been 

demonstrated in Mtb. 

Because of the codependent nature of the ESX-1 secreted substrates and the data 

showing multiple interactions in the cytosol, a model is emerging of a large complex 

that forms in the cytosol to transport substrates to their cognate ATPases, either 

Rv3871 or Rv3868 (DiGiuseppe Champion et al., 2009).  This model supports the 
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hypothesis that ESX-1 secretion has to be coordinated.  All of the substrates must be 

present in the cytosol for secretion to occur.  Then, regulation of a few substrates can 

determine secretion of the entire complex [Fig. 6].  

1.6.3 Regulation 

 

EspR: 

In 2008, Raghavan et al. identified Rv3849 (EspR) as a novel secreted substrate of 

ESX-1.  Their EspR transposon mutant induces high levels of IL-12 which is 

common of ESX-1 secretion mutants.  Without EspR, ESAT-6 secretion is ablated.  

Likewise, in the ESAT-6 mutant, EspR secretion is ablated, indicating a codependent 

relationship for secretion.  

EspR has similar structure as the Bacillus subtilis transcription factor SinR which is a 

helix-turn-helix DNA-binding protein.  As it turns out, the EspR mutant 

downregulates transcription of the Rv3616c-Rv3614c operon which includes the 

secreted substrate, EspA that is required for ESX-1 secretion (Raghavan et al., 2008).  

EspR is induced early during infection upon phagocytosis by macrophages and 

Raghavan et al. found that the N-terminus of EspR binds directly to the Rv3616c 

promoter to activate transcription. The C-terminus is also important for ESX-1 

function, perhaps as a secretion signal.   

Raghavan et al., also found that when the Rv3616c-Rv3614c operon is constitutively 

expressed in the EspR mutant, ESX-1 secretion is restored to WT levels.  Therefore, 

the function of EspR appears to be the transcriptional activation of this operon and it 

is not required for subsequent secretion.  This distinguishes it from other co-
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Figure 6.  The ESX-1 secretion system.  A current model of ESX-1 secretion 

predicts that a complex of secreted substrates form in the cytosol.  This is based on 

extensive protein-protein interaction studies.  In the figure the CFP-10/ESAT-

6/EspF/EspC complex is shown, however EspB, which has been shown to interact 

with ESAT-6, and Mh3864, which has been shown to interact with EspC, may also 

make up a part of the complex.  EspB has also been shown to interact with Rv3879c.  

Rv3879c is not itself secreted, but interacts with the channel ATPase, Rv3871 and 

may target EspB to the secretion channel.  EspA is another ESX-1 secreted protein 

that is encoded outside the extended RD1 genomic region.  It too is codependent for 

secretion with several other ESX-1 substrates; therefore it is possible that EspA 

interacts with the cytosolic substrate complex through protein interactions with 

unidentified ESX-1 proteins. The complex is targeted to ATPase proteins at the 

membrane channel (i.e. Rv3871 or Rv3868).  Rv3871 and Rv3870 are coupling 

ATPases that associate and likely provide the energy to drive secretion across the 

membrane.  It is thought that Rv3877, a 12-transmembrane protein, forms the inner 

membrane channel.  The MycP1 protein is thought to be present in the periplasmic 

space, anchored to the inner membrane.  MycP1 is required for a functional ESX-1 

system and also cleaves the EspB protein upon secretion.  This cleavage is thought to 

inhibit secretion of the other substrates in order to downregulate ESX-1 when it is 

beneficial for the bacteria to do so.  It is not yet known how substrates are able to 

cross the mycomembrane channel.  

Adapted from Ohol et al., 2010. Cell Host Microbe. 
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dependent ESX-1 substrates; the codependence observed for secretion of EspR with 

ESAT-6 is likely because the normal function of EspR is required for EspA secretion, 

which in turn is required for ESAT-6 secretion.  In an EspR mutant that is defective at 

secretion but still binds DNA, the intracellular protein levels increased and there was 

a corresponding increase in Rv3615c expression; therefore, secretion of EspR likely 

functions to limit its intracellular activity.   

PhoP: 

Frigui et al., 2008 compared the single nucleotide polymorphisms (SNPs) between 

H37Rv and its avirulent counterpart strain, H37Ra.  They found 13 non-synonymous 

SNPs, one of which is at position S219L in the two-component regulator PhoP which 

is involved in Mtb virulence (Pérez et al., 2001).  This S219L mutation was 

simultaneously discovered by Lee et al., 2008.  Complementation of H37Ra with wild 

type phoP partially restores virulence, so the S219L mutation in the phoP gene is one 

factor contributing to the attenuation of the H37Ra strain.  They found that a fully 

functional PhoP is important for generating T-cell responses against ESAT-6 and 

CFP-10, and also for the expression and secretion of EspA.  Possibly, a fully 

functional PhoP is required to regulate the secretion of EspA and thus affects the 

secretion of ESAT-6 and subsequent T-cell responses against that antigenic target.  

Expression of the Rv3614c-Rv3616c operon does show differences when cultured in 

roller bottles compared to shake flasks, so PhoP/PhoR may regulate these proteins 

dependent on environmental conditions (Gao Q et al., 2004).  Both BCG and H37Ra 

are attenuated for reasons linked to loss of ESAT-6 function which emphasizes the 

importance of the ESX-1 system.   
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MycP1: 

Rv3883c (MycP1) likely interacts with the secretion machinery as discussed in 

section 1.6.1.  In the same 2010 study by Ohol et al., MycP1 was also shown to be a 

regulator of ESX-1 secretion.  It is the serine protease responsible for cleavage of the 

secreted protein, EspB.  In the MycP1 mutant, no secretion of ESX-1 substrates is 

observed, however Ohol et al. created a protease deficient mutant of MycP1 that can 

still be secreted but is no longer able to cleave EspB.  Interestingly, this mutant 

actually showed an increase in secretion of ESX-1 substrates. Therefore, cleavage of 

EspB somehow limits the secretion of other ESX-1 substrates. Ohol et al. also 

showed that the protease activity of MycP1 is important for virulence during the 

chronic stage of infection.  The periplasmic location of MycP1 (Ohol et al., 2010; 

Dave et al., 2002), anchored to the cytosolic membrane, gives it a prime location for 

sampling the extracellular environment.  Therefore, MycP1 regulation of EspB 

cleavage may allow the bacteria to downregulate secretion of immune stimulating 

proteins later during infection to avoid detection by the immune system.  This 

supports the idea that ESX-1 secretion must form a delicate balance between 

initiation of virulence and avoiding host defense mechanisms (Ohol et al., 2010).  

1.7 The Mycobacterium marinum model 

 

Mycobacterium marinum (Mm) has become an important model system for studying 

mycobacterial pathogenesis.  Mm is genetically closely related to Mtb and causes 

chronic, systemic TB-like disease in its natural host, fish and frogs.  The optimal 

growth of Mm is between 25-35°C.  It grows poorly at 37°C, and therefore is only an 

opportunistic human pathogen.  Human infection with Mm is localized to the cooler 
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extremities and forms what is often referred to as “fish tank granulomas” since fish 

handlers are the humans most likely to become infected with Mm.  Because it is not a 

natural human pathogen, work with Mm can be done under Biosafety Level-2 (BSL-

2) conditions, whereas Mtb work must be done under BSL-3 conditions.  What’s 

more, the generation time of Mm is only four hours, compared to the 16-20 hour 

generation time that is typical of Mtb strains.  Mm colonies form on agar plates within 

seven days, whereas Mtb colonies don’t form for several weeks.  These are all reasons 

why Mm has become a useful model for which to study TB disease (Stamm and 

Brown, 2004).   

In addition to being a useful model, Mm is proving to be a very reliable model from 

which to understand the pathogenesis of mycobacterial infection (Swaim et al., 2006; 

Davis et al., 2002; Gao et al., 2004).  Mm and Mtb share many important features.  

The Mm genome is larger than Mtb, but this difference is likely a product of the 

diverse environments and hosts that Mm can inhabit compared to Mtb, which is 

restricted to growth inside its human host.  The orthologous regions however, show 

85% identity between the two species (Stinear et al., 2008).  What’s more, the 

virulence proteins discovered in Mm can generally be complemented by their Mtb 

orthologs, indicating a conservation of function (Tobin and Ramakrishnan, 2008).   

Pathogenic mycobacteria exhibit a cording phenotype where the bacilli aggregate 

end-to-end, giving them a cord-like appearance.  Cording is observed in both Mtb and 

Mm.  It has even been shown that Mm cording is correlated with virulence as 

demonstrated in kasB and iipA mutants that exhibit altered cell wall structure (Gao et 

al., 2003b; 2006).   
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The model organism most widely used to study Mm is the zebrafish (Danio rerio).  

Even though the immune system of zebrafish is not as well understood as it is in 

mammals, several important components appear to be conserved; including 

phagocytes, TLRs, and some cytokines (Stamm and Brown, 2004).  Fish do not have 

lungs, but even so, the caseating granulomas formed by Mm in the fish spleen and 

liver are morphologically very similar to those formed by Mtb in the human lung 

(Tobin and Ramakrishnan, 2008) [Fig. 7].  Conversely, the mouse is the most widely 

used model organism for studying Mtb infection.  Unlike the Mtb-induced 

granulomas in human lungs, lung granulomas in mice are aggregates of disorganized 

macrophages and lymphocytes that display non-caseous centers (Flynn et al., 2006).  

Mm-induced granulomas have been shown not to recruit as many lymphocytes as 

Mtb-induced granulomas; however fish lacking B- and T-cells are much more 

sensitive to Mm infection.  This indicates that lymphocytes are also important for 

control of Mm infection (Swaim et al., 2006).   

Like Mtb, Mm resides inside host macrophages in non-acidified phagosomes that 

inhibit phagolysosome fusion and do not acquire vacuolar proton ATPases (Barker et 

al., 1997).  Importantly, Mm has a functional ESX-1 system that exhibits the same 

mutant phenotype as in Mtb; that is, an altered modulation of cytokine secretion by 

macrophages and the inability to inhibit phagolysosome fusion (Stanley et al., 2003; 

2007; Gao et al., 2004; Guinn et al., 2004; Tan et al., 2006). 

One significant difference between Mm and Mtb is the ability of Mm to escape the 

phagosome.  Mtb is generally thought not to escape the phagosome (Clemens et al., 

2002; Russell, 2001), though there is some controversy to that claim.  In 2007, van 
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Figure 7.  The Mycobacterium marinum-induced granuloma.  Haematoxylin and 

eosin stain of two Mm-induced granulomas in zebrafish, 6-weeks post infection. 

Arrows point to outermost edge of granuloma.  The non-caseating granuloma on the 

left has nucleated cells at its core, while the granuloma on the right is caseating, 

similar to what is seen in Mtb-induced granulomas of the human lung.  

Tobin and Ramakrishnan, 2008. Cell Microbiol. 
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der Wel et al., showed via electron microscopy of infected dendritic cells that Mtb is 

able to escape to the cytosol.  Mm is also able to polymerize actin and spread from 

cell-to-cell once it gains access to the host cytosol (Stamm et al., 2003).  Actin-based 

motility has never been demonstrated in Mtb.  One hypothesis is that Mm uses actin 

based motility and escape from the phagosome as a feature of its transmission in 

ectotherms (Stamm and Brown, 2004).  Since Mtb transmits differently than Mm, 

these abilities may not be a useful mechanism for Mtb. However, the similarities 

during the persistence stage involving granuloma formation and the inhibition of 

phagolysosome fusion are clear between these two species. 

The research presented in this dissertation is carried out using the Mm model.  What 

has been learned may one day be studied in Mtb for the benefit of better drug targets 

or a more protective vaccine. 
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Chapter 2: ESAT-6 is a pore-forming toxin and may play a role 

in Mycobacterium marinum escape from the vacuole. 

This chapter is adapted from a manuscript previously published in the December, 

2008 issue of Infection and Immunity entitled, “Evidence for pore formation in host 

cell membranes by ESX-1 secreted ESAT-6 and its role in Mycobacterium marinum 

escape from the vacuole” (Smith et al, 2008).  I was a first author on this manuscript 

though some figures were contributed by other members of Dr. Gao’s lab and those 

figures have been cited.  Permission to reuse this manuscript was given by the 

American Society for Microbiology on October 22, 2010 (License Number: 

253421007792).   

 

2.1 Introduction  

 

As discussed in Chapter 1, ESX-1 plays a critical role in the virulence of Mtb and Mm 

in vitro and in vivo (Fortune et al., 2005; Gao et al., 2004; Guinn et al., 2004; Hsu et 

al., 2003, Stanley et al., 2003; Swaim et al., 2006), but the precise molecular and 

cellular mechanisms are not clearly defined.  Our lab previously reported that Mm is 

able to escape from the Mycobacterium-containing vacuole (MCV) into the host cell 

cytosol, where it is able to polymerize host cell actin and spread from cell to cell 

(Stamm et al., 2003). However, the Mm genes involved in mycobacterial escape from 

the MCV and actin polymerization have not been characterized. Because mutations in 

various ESX-1 genes abolish Mm cell-to-cell spreading (Gao et al., 2004), we 

hypothesized that the ESX-1 secretion system could secrete a pore-forming protein 

into the MCV to compromise the integrity of the vacuole membrane and facilitate the 

escape of Mm into the host cell cytosol. In this study, we show that ESX-1 plays an 

essential role in the escape of Mm from the MCV. We provide evidence that ESX-1 

secretion and secreted ESAT-6 play a critical role in causing pore formation in host 

cell membranes. These results suggest that ESAT-6 secretion by ESX-1 may cause 
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membrane pore formation in the MCV, facilitating Mm escape from the vacuole and 

spreading. 

2.2 Results 

 

2.2.1 ESX-1 is essential for M. marinum to escape from the vacuole.  

 

Mm is able to escape from the MCV into the host cell cytosol, polymerize actin, and 

spread from cell to cell (Gao et al, 2004; Stamm et al, 2003; Stamm et al, 2005). 

Because mutations in various ESX-1 genes abolish Mm spreading (Gao et al, 2004), 

we hypothesized that the ESX-1 secretion system may play a role in either the escape 

of Mm from the MCV or initiation of actin polymerization. We first determined if 

ESX-1 is involved in Mm escape from the vacuole. We examined the association of 

WT or ESX-1 mutant bacteria with the vacuole membranes in live macrophages by 

using a fluorescent membrane dye, DiI. DiI is frequently used to label the live cell 

membranes and has worked well in previous studies labeling MCV membranes 

(Stamm et al., 2003). As shown in Fig. 8A to C and Table 2, at 72 h postinfection 

only a small fraction (18%) of the WT bacteria colocalized with DiI, suggesting that 

the majority of the bacteria entered the cytosol. In sharp contrast, for all of the nine 

ESX-1 mutants examined, the majority of the bacteria (≥80%) colocalized with DiI 

[Fig. 8D to F and Table 2], indicating that they reside predominantly within MCV 

membranes. To confirm the above observations, we used transmission electron 

microscopy to examine in greater detail the association of Mm with vacuole 

membranes. This study shows that a fraction of the WT bacteria are bound with MCV 

membranes (36%) while most are free of the membrane (64%) [Fig. 9A and Table 2].  
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Figure 8. ESX-1 secretion plays an essential role in the escape of Mm from the 

vacuole. BMDMs were infected with WT Mm or the ESX-1 mutants at an MOI of 2. 

At 72 h postinfection, the cells were stained with DiI. For the ESX-1 mutants, only 

the results for mh3868::tn are shown; the results for the rest of the mutants are shown 

in Table 1. The top panels show the phase (A), DiI fluorescence (B), and merge (C) 

images from a representative macrophage infected by WT Mm. The bottom panels 

show the phase (D), DiI fluorescence (E), and merge (F) images from a representative 

macrophage infected by mh3868::tn. The insert in the lower right corner is an 

enlarged section of the indicated area in each panel. Arrowheads indicate Mm bacteria 

on the tips of actin stalks, which show no colocalization with DiI, suggesting their 

cytosolic localization. Information on duplication of experiments, the number of cells 

examined, and statistical analyses is shown in Table 2.  

 

Figure contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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On the other hand, for the four ESX-1 mutants examined, more than 98% of the 

bacteria are surrounded by MCV membranes [Fig. 9B and Table 2]. The mutants used 

in the above assays contain mutations in either the ESX-1 secretion apparatus (such 

as mh3877::tn and mh3871::tn) or the secreted substrates (such as Δesat-6, Δcfp-

10+esat-6, and espB::tn). Because the two groups of mutants showed similar 

phenotypes [Table 2], these results indicate that the ESX-1 secretion system plays a 

critical role in the escape of Mm from the MCV. 

2.2.2 M. marinum escape from the vacuole is required for the 

polymerization of actin.  

 

Next, we determined if ESX-1 is required for Mm to initiate actin polymerization. At 

72 h postinfection, 34% of the WT bacteria showed actin polymerization at one pole 

of the bacterium, forming the “actin comet tail” [Fig. 10A to C and Table 2], similar 

to previous observations (Stamm et al, 2003; Stamm et al, 2005). In contrast, none of 

the nine ESX-1 mutants was able to polymerize actin [Fig. 10D to F and Table 2]. 

One possible explanation for the above results is that an ESX-1-secreted protein is 

directly involved in the recruitment and polymerization of actin. Alternatively, an 

ESX-1-secreted protein could be involved in compromising the integrity of MCV 

membranes to facilitate Mm escape into the host cell cytosol. To distinguish between 

these two possibilities, we treated the infected macrophages with a hypotonic solution 

to artificially deliver the ESX-1 mutant bacteria into the cytosol and then reexamined 

actin polymerization. In 1982, Okada and Rechsteiner showed elegantly that 

hypotonic shock treatment causes lysis of pinocytic/endocytic vesicle membranes 

without disrupting the plasma membrane. This finding supports that the hypotonic  
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Figure 9.  Transmission electron microscopy confirming the role of ESX-1 in 

Mm escape from the vacuole. BMDMs were infected with WT Mm or the ESX-1 

mutants at an MOI of 2. At 72 h postinfection, the cells were processed for electron 

microscopy. For the ESX-1 mutants, only the results for mh3868::tn are shown; the 

results for the rest of the mutants are shown in Table 1. Panel A shows a section of a 

representative macrophage infected by WT Mm. The upper left insert shows an 

enlarged area of the cell. No host cell membranes are visible surrounding the bacteria. 

Note that a bacterium on the right shows an actin tail (indicated by arrows). Panel B 

shows a section of a representative macrophage infected by mh3868::tn. Almost all of 

the mutant bacteria are surrounded by vacuole membranes (indicated by arrowheads). 

The insert on the mid-left shows an enlarged area of the cell. Information on 

duplication of experiments, the number of cells examined, and statistical analyses is 

shown in Table 2.  

 

Figure contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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Figure 10. ESX-1 secretion plays an essential role in polymerization of actin by 

Mm in macrophages. BMDMs were infected with WT M. marinum or the ESX-1 

mutants at an MOI of 2. At 72 h postinfection, the cells were stained with Alexa Fluor 

phalloidin to detect F-actin. For the ESX-1 mutants, only the results for mh3868::tn 

are shown; the results for the rest of the mutants are shown in Table 1. The top panels 

show the images of phase (A), F-actin (B), and merge (C) from a representative 

macrophage infected by WT Mm. The bottom panels show the images of phase (D), 

F-actin (E), and merge (F) from a representative macrophage infected by mh3868::tn. 

The insert in the lower left corner is an enlarged section of the area indicated in each 

panel. Arrowheads indicate actin tails. Information on duplication of experiments, the 

number of cells examined, and statistical analyses is shown in Table 2.  

 

Figure contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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shock treatment could facilitate entry of the ESX-1 mutant bacteria into the host cell 

cytosol. Indeed, as shown in Fig. 11, after the treatment, mh3868::tn gained the ability 

to polymerize actin. Similar results were observed with espB::tn (data not shown). 

These results indicate that the defect in the ability of the ESX-1 mutants to 

polymerize actin is due to their inability to escape from the vacuole rather than a 

deficiency in initiation of actin polymerization. They also provide direct evidence that 

Mm initiates actin polymerization only after it enters the host cell cytosol. Moreover, 

they suggest that ESX-1 is involved in secreting a pore-forming protein that may 

compromise the integrity of the MCV membranes to facilitate the escape of Mm. 

2.2.3 Evidence for membrane pore formation by M. marinum ESX-1.  

 

Listeria monocytogenes represents a group of bacteria that are able to disrupt the 

vacuole membranes to enter the host cell cytosol by the secretion of pore-forming 

proteins (Schnupf and Portnoy, 2007). We hypothesized that the ESX-1 secretion 

system may play a similar role to facilitate Mm escape into the host cell cytosol. A 

direct test of this hypothesis would require the analysis of pore formation in the MCV 

membranes of infected cells, which is technically challenging. In an attempt to 

address this hypothesis, we took an alternative approach. We incubated Mm with host 

cells at a relatively high MOI and examined pore formation in the cell plasma 

membranes. Membrane pore formation was determined by an osmoprotection assay 

(Scherrer and Gerhardt, 1971) which has been used in a number of studies to 

demonstrate membrane pore formation and estimate pore size. This assay has been 

used to detect membrane pores and estimate the size of pores induced by pathogens 

such as Gardnerella vaginalis (Moran et al., 1992), Legionella pneumophila (Kirby et  
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Figure 11. ESX-1 mutants acquire the ability to polymerize actin after being 

delivered into the macrophage cytosol by hypotonic shock treatment. BMDMs 

were infected by mh3868::tn at an MOI of 2. At 48 h postinfection, the cells were 

treated with a hypotonic solution (see Materials and Methods) to lyse the vacuole 

membranes without disrupting the plasma membranes (Okada and Rechsteiner, 

1982). This treatment is expected to facilitate the escape of Mm into the macrophage 

cytosol. At 24 h after hypotonic shock treatment, the cells were processed for F-actin 

staining with Alexa Fluor phalloidin. Panel A shows F-actin staining, and panel B 

shows a merged phase and F-actin staining image. Actin tails are indicated by 

arrowheads. With one hypotonic shock treatment, more than 10% of the infected 

macrophages show actin polymerization by the mutant bacteria. Within these 

macrophages, an average of 46% of the bacteria show actin polymerization. Duplicate 

experiments were performed in which a total of 100 cells were observed.  

 

Figure contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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al., 1998), Shigella flexneri (Blocker et al., 1999), and Pseudomonas aeruginosa 

(Dacheux et al., 2001). We first determined if the hemolysis of red blood cells 

induced by Mm could be blocked by polyethylene glycol (PEG) of various molecular 

weights. The lysis of red blood cells (hemolysis) by pore-forming proteins occurs 

through osmotic shock, which can be prevented by osmoprotectants that have larger 

sizes than the membrane pores (Blocker et al., 1999; Dacheux et al., 2001; Kirby et 

al., 1998; Menestrina et al., 1994). As shown in Fig. 12A, WT Mm caused contact-

dependent hemolysis of red blood cells, which was blocked completely by PEG8000 

(6.4 nm in diameter) and 60% by PEG6000 (5.0 nm) but not blocked by PEG3350 

(3.8 nm). Importantly, the blocking effect of PEG8000 is reversible, as indicated by 

the recovery of hemolysis after the removal of PEG8000 [Fig. 12A]. We then 

examined pore formation in macrophage cell membranes with a similar assay in 

which different-size PEGs were used to block the release of lactate dehydrogenase 

(LDH) from infected macrophages. We found that WT Mm caused the release of 

LDH from macrophages, which was blocked completely by PEG8000 but not by 

PEG3350. Together, the results of both assays suggest that Mm causes contact-

dependent pore formation in host cell membranes. 

To estimate the size of the membrane pores produced by Mm, PEG of different sizes 

were used at various concentrations to determine the osmolarity required for each 

PEG to provide 50% protection from hemolysis (Kirby et al., 1998; Scherrer and 

Gerhardt, 1971). Fig. 12B shows the osmolarity of each PEG that provides 50% 

protection as a function of its Einstein-Stokes molecular diffusion radium, RES 

(Scherrer and Gerhardt, 1971). The response curve is hyperbolic and approaches a  
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Figure 12.  Mm induces pore formation in red blood cell membranes. (A) Pore 

formation in red blood cell membranes as determined by an osmoprotection assay 

with different-sized PEGs to prevent hemolysis. PEG8000-R indicates recovery of 

hemolysis after the removal of PEG8000. The bacterium-to-red blood cell ratio is 

25:1. Mm indicates M. marinum. (B) Estimation of the size of the pores induced by 

Mm. The osmolarity of each of the PEGs (PEG1000, PEG3350, PEG6000, and 

PEG8000) required to provide 50% protection from hemolysis is plotted as a function 

of its Einstein-Stokes molecular diffusion radium, RES  (Scherrer and Gerhardt, 1971). 

The RES value for each PEG is as follows: PEG1000, 1.0 nM; PEG3350, 1.9 nM; 

PEG6000, 2.5 nM; PEG8000, 3.2 nM. The graphs are the summation of two 

independent experiments, each performed in duplicate, and error bars indicate 

standard deviations.  

 

Figure contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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membrane stabilization limit asymptotically. By using a similar method developed by 

Scherrer and Gerhardt, we estimated pore size by extrapolating to the zero abscissa 

the linear regression between PEG1000 and PEG3350, and the intercept at RES of 

2.25 is believed to represent the radius of the membrane pore. 

We then determined if ESX-1 plays a role in membrane pore formation. As shown in 

Fig. 13A and B, mutations in either the ESX-1 secretion apparatus (mh3877::tn and 

mh3871::tn) or the secreted substrate (Δesat-6) completely abolished the ability of 

Mm to induce membrane pore formation, demonstrating that ESX-1 secretion plays 

an essential role in this process. To determine if continuous ESX-1 secretion or 

predeposition of ESX-1-secreted proteins on the bacterial surface is necessary to 

cause pore formation, we treated WT Mm with carbonyl cyanide 3-

chlorophenylhydrazone (CCCP), a membrane deenergizer that blocks energy-

dependent pathways including ESX-1. Fig. 13C shows that the CCCP treatment 

abolished hemolysis completely and in a reversible manner, indicating that 

continuous energy-dependent ESX-1 secretion is required for Mm to induce 

membrane pore formation. 

2.2.4 Evidence for membrane pore formation by ESX-1-secreted ESAT-6. 

 

Three known ESX-1-secreted proteins, ESAT-6, CFP-10, and EspB, are codependent 

for secretion (Xu et al, 2007). To determine the relative role of each individual 

protein in pore formation, we compared the hemolysis levels induced by different Mm 

strains producing various amounts of these proteins. We have shown previously that 

EspB is cleaved during secretion to produce an N-terminal 50-kDa and a C-terminal  
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Figure 13. ESX-1 secretion plays an essential role in the induction of pore 

formation in host cell membranes by Mm. (A) ESX-1-dependent induction of pore 

formation in red blood cell membranes. WT Mm or the ESX-1 mutants were mixed 

with red blood cells at a ratio of 25:1, centrifuged to allow close bacterium-cell 

contact, and incubated for 2 h before measurement of hemolysis. (B) ESX-1-

dependent induction of pore formation in macrophage cell membranes. WT M. 

marinum or the ESX-1 mutants were incubated with Raw264 murine macrophages at 

a ratio of 50:1. Pore formation in macrophage cell membranes was detected by 

release of LDH and its blockage by different-sized PEGs. LDH release (percent) is 

the percentage of LDH released by the infected macrophages with respect to the total 

amount of LDH produced by lysis of the macrophages with H2O. (C) Induction of 

membrane pore formation by M. marinum requires continuous energy-dependent 

secretion. WT Mm was left untreated or treated with CCCP prior to incubation with 

red blood cells. CCCP-R indicates recovery of pore formation after removal of 

CCCP. The values are means of two independent experiments, each performed in 

duplicate, and error bars indicate standard deviations.  

Figure contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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11-kDa fragment (apparent molecular masses) [Fig. 14, lane 1] (Xu et al., 2007). The 

50-kDa fragment is relatively stable and present at abundant levels in the culture 

supernatant, while the majority of the 11-kDa fragment is degraded proteolytically 

(Xu et al, 2007; data not shown). As shown in Fig. 14, espB::tn fails to secrete these 

three proteins and is defective in pore formation [lane 2]. Both the secretion and pore 

formation defects of this mutant are almost fully restored by expression of the WT 

espB gene [lane 3]. On the other hand, when only the N-terminal 50-kDa fragment of 

EspB was expressed in this mutant, it was secreted by the mutant at levels 

comparable to those produced by WT bacteria, but ESAT-6 secretion was not 

detected and CFP-10 secretion was minimal [lane 4]. Because this strain shows a 

complete defect in pore formation, the data suggest that EspB, or at least the 50-kDa 

fragment, does not contribute directly to pore formation. To determine if the secretion 

of ESAT-6 or CFP-10 plays a role, we examined pore formation by Δesat-6 and the 

complementation strain. Δesat-6 fails to secrete these three proteins and is defective 

in pore formation (lane 5). Expressing esat-6-His(6) in Δesat-6 substantially restored 

the secretion of ESAT-6 and EspB, although CFP-10 secretion was only recovered by 

a marginal level [lane 6]. The reason that we used esat-6-His(6) instead of esat-6 was 

to express this protein in a form that is exactly the same as the recombinant protein 

used in other assays (see below). Because this strain shows a substantial increase in 

hemolysis, which correlates with the much increased ESAT-6 secretion, the results 

suggest that ESAT-6 secretion plays an important role in pore formation. 
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Figure 14.  Membrane pore formation induced by Mm correlates with ESAT-6 

secretion. (A) The steady-state cellular levels of EspB, CFP-10, and ESAT-6 in the 

WT, espB::tn, Δesat-6, and complemented strains. espB::tn plus espB indicates the 

espB::tn mutant complemented with the WT espB gene. espB::tn plus espB-N 

indicates the espB::tn mutant complemented with only the N-terminal 50-kDa 

fragment of EspB. Δesat-6 plus esat-6-His indicates the Δesat-6 mutant 

complemented with esat-6-His(6). CL, cell lysate. (B) Secretion of EspB, CFP-10, and 

ESAT-6 by the WT, espB::tn, resat-6, and complemented strains. The lane order is 

the same as in panel A. The single asterisk indicates full-length EspB with an 

apparent molecular mass of 61 kDa; the double asterisks indicate the N-terminal 

fragment of EspB with an apparent molecular mass of 50 kDa. CF, culture filtrate. 

(C) Membrane pore formation (measured by hemolysis) induced by the WT, espB::tn, 

Δesat-6, and complemented strains. The hemolysis level obtained with the WT 

bacteria is normalized to 100%. The bar order is the same as the lane order in panel 

A. 

Panels A and B contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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To determine if ESAT-6 has a direct role in membrane pore formation, we examined 

the pore-forming activity of recombinant ESAT-6 [rESAT-6-His(6)] purified from 

Escherichia coli and compared it to that of rCFP-10-His(6) or rEspB-His(6). These 

recombinant proteins were affinity purified and free of detergents and had endotoxins 

removed (see Materials and Methods for details). As shown in Fig. 15A, rESAT-6-

His(6) from Mtb produced dose-dependent hemolysis after a 2-h incubation, i.e., 

partial hemolysis at 15 μg/ml and complete hemolysis at 30 μg/ml, almost equivalent 

to lysis with H2O. In contrast, neither rCFP-10-His(6) from Mtb nor rEspB-His(6) from 

Mm caused hemolysis, even at a higher concentration of 60 μg/ml [Fig. 15B] or 120 

μg/ml (data not shown). The combination of rESAT-6-His(6) with rCFP-10-His(6) or 

with rEspB-His(6) produced hemolysis at levels similar to those produced by rESAT-

6-His(6) alone (data not shown). Hemolysis induced by rESAT-6-His(6) was not due to 

the residual endotoxins present in the recombinant protein preparations (≤0.24 ng/mg 

protein), since lipopolysaccharide at a concentration of 0.007 ng/ml [equivalent to the 

level of endotoxins present in rESAT-6-His(6) at a concentration of 30 μg/ml] failed to 

induce a detectable level of hemolysis (data not shown). Consistent with the 

hemolysis results, rESAT-6-His(6) at 60 μg/ml, but not rCFP-10-His(6) or rEspB-His(6) 

(even at 120 μg/ml), caused release of LDH from macrophages [Fig. 15C]. 

Permeation of macrophage cell membranes was similarly observed by microscopic 

detection of penetration of ethidium homodimer-1 across the plasma membrane into 

the cytosol to stain the nuclei red [Fig. 15D]. These results together suggest that 

ESAT-6 may play a direct role in membrane pore formation. To provide a more direct 

demonstration that ESAT-6 by itself can induce pore formation in cell membranes,  
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Figure 15. Purified ESAT-6, but not CFP-10 or EspB, plays a direct role in 

causing pore formation in host cell membranes. (A) rESAT-6-His(6) induces dose-

dependent pore formation in red blood cell membranes. The protein was incubated 

with red blood cells for 2 h before measurement of hemolysis. (B) rESAT-6-His(6), 

but not rCFP-10-His(6) or rEspB-His(6), induces pore formation in red blood cell 

membranes. The proteins were incubated with red blood cells for 2 h before 

measurement of hemolysis. (C) rESAT-6-His(6), but not rCFP-10-His(6) or rEspB-

His(6), induces pore formation in macrophage cell membranes. J774 macrophages 

were incubated with the proteins in cell culture medium for 2 h before measurement 

of LDH release. H2O was used to obtain complete lysis of the macrophages. (D) 

Detection of ESAT-6-induced membrane pore formation by fluorescence microscopy. 

J774 macrophages were incubated with rESAT-6-His(6), rCFP-10-His(6), or rEspB-

His(6) for 2 h before detection of penetration of ethidium homodimer-1 across the 

macrophage cell membranes to stain the nuclei red. The bar graph shows the 

quantification of the representative images. Error bars indicate standard deviations of 

data from two experiments, with each performed in duplicate.  

 

Panel D contributed by members of the Gao lab. Smith et al., 2008. Infect Immun. 
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we performed an osmoprotection assay similar to that described above. As shown in 

Fig. 16A, the hemolysis induced by rESAT-6-His(6) was blocked completely by 30 

mM PEG8000 and PEG6000, ∼40% by PEG3350, and to a small extent by PEG1000. 

The fact that hemolysis is induced by rESAT-6-His(6) and that it can be blocked by 

PEG of increasing sizes indicate that ESAT-6 indeed plays a direct role in membrane 

pore formation. It was noticed that the membrane pores induced by rESAT-6-His(6) 

are somewhat smaller than those produced by the bacteria (see discussion). We 

further characterized the ESAT-6-induced membrane pores by determining the 

kinetics of hemolysis produced by rESAT-6-His(6). Figure 16B shows that rESAT-6-

His(6) at 30 μg/ml caused 75% hemolysis after a 5-min incubation, which increased to 

93% after 10 min. This is almost equivalent to the hemolysis produced by H2O, which 

caused 95% and complete hemolysis after 5 and 20 min of incubation, respectively. 

2.2.5 Hemolysis can be used as a technique to study ESAT-6 secretion. 

 

As shown in Figure 14, hemolysis of RBCs correlates with ESAT-6 secretion.  WT, 

espB+Complement, and ∆esat-6+Complement all secrete a normal amount of ESAT-

6 and show the highest levels of hemolysis.  Alternatively, espB::tn and ∆esat-6 do 

not secrete any ESAT-6 and show very little hemolysis. I perfomed this hemolysis 

assay on several truncation mutants of EspB and found that it was a good technique to 

determine quickly if the mutation affects ESAT-6 secretion. Truncating full-length 

EspB at either the N- or C-terminus leads to a reduction in hemolysis and presumably 

ESAT-6 secretion [Fig 17]; therefore, it looks like both fragments are important for 

the codependent secretion of these two proteins.  In subsequent Western blot analysis, 

I found that the correlation isn’t completely linear; that is, a reduction in hemolysis
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Figure 16. Purified ESAT-6 induces pore formation in red blood cell 

membranes. (A) Membrane pores induced by rESAT-6-His(6) were blocked by PEGs 

of appropriate sizes in an osmoprotection assay. Hemolysis was also completely 

blocked by 30 mM PEG6000 (data not shown). (B) The kinetics of membrane pore 

formation induced by ESAT-6. The concentration of rESAT-6-His(6) was 30 μg/ml 

for both panels. Error bars indicate standard deviations of data from two or three 

independent experiments, with each performed in duplicate.  

 

Smith et al., 2008. Infect Immun. 
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Figure 17. Red blood cell hemolysis induced by EspB truncation mutants. Mm 

WT, espB::tn, and several espB mutants episomally expressed in espB::tn were mixed 

with red blood cells at a ratio of 25:1, centrifuged to allow close bacterium-cell 

contact, and incubated for 2 hours.  Hemolysis was measured by taking the OD of the 

red blood cell supernatant which contains lysed cell hemoglobin. OD is represented 

as a percentage of WT.  Mutants include full-length EspB with truncations at the C-

terminus (1
st
 set), or N-terminus (2

nd
 set), expression of just the N-terminal 1-346 

amino acids fragment with truncations at the N-terminus (3
rd

 set), or expression of 

just the C-terminal 347-454 amino acids fragment (4
th

 set).  NI is a negative control 

of red blood cells without bacteria added. 
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does not necessarily indicate the same reduction in ESAT-6 secretion.  Really, any 

mutation that even just reduces the amount of ESAT-6 that is secreted shows a 

relatively severe drop in hemolysis; indicating that the hemolysis assay is not as 

sensitive at determining ESAT-6 secretion.  It is, however a quick assay for gathering 

information that will help to design further experiments.   

2.3 Materials and Methods 

 

2.3.1 Bacteria and media.  

 

Mm strain M was cultured and maintained as described previously (Gao et al, 2003b). 

The Mm ESX-1 mutants were produced as described previously (Gao et al, 2004). 

The espB::tn mutant was recently isolated from an Mm transposon mutant library 

(Gao et al, 2003a). The espB::tn mutant and its complementation were described 

previously (Xu et al, 2007). 

2.3.2 Generation of M. marinum Δesat-6 mutant.  

 

Δesat-6 mutant Mm was generated by allelic exchange. The left flanking fragment 

was amplified by PCR with primers DelESAT-F1 

(5′CCGCTCTAGACCTGGTTGCAGACCGCCTCGAC3′) and DelESAT-R1 

(5′GCCCGAATTCAGAAGCCCATTTGCGAGGACAGCGC3′). The right flanking 

fragment was amplified by PCR with primers DelESAT-F2 

(5′CGGGAATTCGCGTAGAATACCGAAGCACGAGATCGGG3′) and DelESAT-

R2 (5′CCGCAAGCTTCTAGATTCATGCCGGTTTGGCGTGGC3′). The left 

flanking fragment was digested with XbaI and EcoRI, and the right flanking fragment 

was digested with EcoRI and HindIII. The left and right flanking fragments and a 



 

 64 

 

kanamycin resistance cassette (kan
r
) (cut with EcoRI from pUC4K) were ligated into 

pBluescript. The entire sequence containing the flanking sequences and kan
r
 was cut 

from the pBluescript clone and ligated into pLYG304.zeo (Gao et al, 2006) to 

generate the esat-6 knockout plasmid. The plasmid was electroporated into wild-type 

(WT) Mm, and homologous recombinants were selected as described previously (Gao 

et al, 2006). Confirmation of the Δesat-6 mutation was carried out by PCR with two 

primer pairs. One pair confirms recombination within the left flanking sequence, in 

which a primer that anneals to a sequence upstream from the flanking sequence 

(5′CGTGGACCGGAGGCGGCAGCGAGAAAG3′) and another that anneals to a 

sequence in kan
r
 (5′CACCTTCTTCACGAGGCAGACCTCAGCGCC3′) were used. 

The other pair confirms recombination within the right flanking sequence, in which a 

primer that anneals to a sequence downstream from the flanking sequence 

(5′GGATTCAGCCTCCGGTGGCCCTGGAG3′) and another that anneals to a 

sequence in kan
r
 

(5′GGCAATGTAACATCAGAGATTTTGAGACACAACGTGGC3′) were used. 

2.3.3 Complementation of M. marinum Δesat-6 mutant.  

 

To complement the Δesat-6 mutant with both the esat-6 and cfp-10 genes together, a 

fragment containing both genes was amplified by PCR from the Mm genome with 

primers 5′CAGAGATGAAGACCGATGCCGCTACCCTCG3′ and 

5′GGCCGGATCCTTAGTGATGGTGATGGTGATGAGCAAACATCCCCGTGAC

GTTGCC C3′. The reverse primer contains a six-His tag fused to the C terminus of 

ESAT-6. The PCR product was cloned into pLYG206.Zeo (Gao et al., 2003b) to 
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generate the complementation plasmid. This plasmid was electroporated into Δesat-6 

to obtain the complementation strain. 

2.3.4 Macrophages.  

 

J774.A1 (ATCC TIB67) or Raw264.7 (ATCC TIB-71) murine macrophage-like cells 

were cultured and maintained as described previously (Gao et al., 2003b). Bone 

marrow-derived macrophages (BMDMs) were obtained from C57BL/6 mice as 

previously described (Roach et al., 1998). Cells were harvested 8 to 10 days after 

plating and allowed to adhere to fibronectin-coated coverslips (Becton Dickinson) for 

infection with Mm the next day. 

2.3.5 DiI labeling of MCV membranes.  

 

BMDMs on glass coverslips were infected with Mm at a multiplicity of infection 

(MOI) of 2 for 2 h, followed by three washes with phosphate-buffered saline (PBS) 

and 1 h of incubation with 200 μg/ml amikacin to kill the extracellular bacteria. At 

the end of the antibiotic incubation, the cells were washed two times with PBS and 

incubated at 32°C in 5% CO2 for 48 to 72 h. CM-DiI (Molecular Probes) was added 

to the cells at a 2 μM final concentration and incubated for 1 h. The cells were then 

washed two times with PBS to remove excess DiI, incubated for 1 h in the cell culture 

medium, and fixed with 4% paraformaldehyde. The fixed cells were washed three 

times with PBS, mounted on a glass slide with Prolong Antifade (Molecular Probes), 

and imaged. 
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2.3.6 Fluorescent labeling of F-actin.  

 

BMDMs on glass coverslips were infected at an MOI of 2 as described above. At 48 

to 72 h postinfection, the cells were fixed with 4% paraformaldehyde, permeabilized 

with 0.1% Triton X-100, stained with Alexa Fluor phalloidin (Molecular Probes), and 

imaged. To artificially deliver the ESX-1 mutant bacteria into macrophage cytosol, 

the cells at 48 h postinfection were treated for 5 min with a hypotonic solution (4 

parts phenol red-free Dulbecco modified Eagle medium [DMEM] to 1 part H2O), 

incubated in cell culture medium at 32°C in 5% CO2 for an additional 24 h, and then 

processed for actin staining. The procedures for the hypotonic shock treatment were 

similar to those described by Okada and Rechsteiner, 1982. 

2.3.7 Electron microscopy.  

 

BMDMs were infected at an MOI of 2 as described above. At 72 h after infection, the 

cells were processed for electron microscopic analysis as described previously 

(Taunton et al, 2000). 

2.3.8 Detection of pore formation in red blood cell membranes.  

 

Induction of pore formation in red blood cell membranes by Mm was detected by 

hemolysis assay as previously described (Gao and Kwaik, 1999;  Gao et al, 2004). 

Briefly, Mm grown in 7H9 medium to mid-log phase was washed twice with PBS. A 

volume of 1.3 ml of Mm suspension (containing 2.5 × 10
9
 bacteria) was mixed with 

400 μl of sheep red blood cells (sRBC; Quad Five) (containing 1 × 10
8
 cells) in a 

microcentrifuge tube and centrifuged at 8,000 × g for 2 min. The tubes were 
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incubated at 32°C for designated periods of time. The pellets were then resuspended 

and centrifuged, and the A405 of the supernatants was measured. To examine the role 

of energy-dependent secretion in membrane pore formation, Mm WT bacteria were 

pretreated for 15 min with 20 μM carbonyl cyanide m-chlorophenylhydrazone 

(CCCP) to uncouple the proton motive force and then incubated with sRBC in the 

presence of CCCP for 2 h. To observe the reversibility of CCCP in hemolysis, the 

pellet containing M. marinum and red blood cells was resuspended in PBS and then 

repelleted and further incubated for 2 h before measurement of hemolysis. 

In the polyethylene glycol (PEG) osmoprotection experiment, PEG1000, PEG3350, 

PEG6000, and PEG8000 were resuspended in PBS and added to red blood cells with 

or without Mm to a final concentration of 30 mM. Hemolysis was measured after 2 h 

of incubation at 32°C. To determine if protection from hemolysis by PEG8000 is 

reversible, the pellet containing Mm and red blood cells was resuspended in PBS and 

then repelleted and further incubated for 2 h before measurement of hemolysis. To 

estimate membrane pore size, the various PEGs were resuspended in PBS at the 

following ranges of osmolarities: PEG1000, 1.0, 2.0, 3.0, and 4.0 M; PEG3350, 0.2, 

0.4, 0.6, 0.8, and 1.0 M; PEG6000, 0.2, 0.3, 0.4, and 0.5 M; PEG8000, 0.1, 0.2, and 

0.3 M. The osmolarity required for each PEG to provide 50% protection from 

hemolysis was determined and plotted against the Einstein-Stokes molecular 

diffusion radium, RES (Scherrer and Gerhardt, 1971). 
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2.3.9 Expression and purification of recombinant ESX-1 proteins.  

 

The rESAT-6-His(6), rCFP-10-His(6), and rEspB-His(6) proteins were affinity purified 

and had endotoxins removed. The rESAT-6-His(6) and rCFP-10-His(6) proteins were 

obtained from Colorado State University under the NIH TB Research Materials 

Contract. The inclusion bodies containing rESAT-6-His(6) were solubilized with 6 M 

urea, and the protein was purified with the His-Bind resin (Novagen). Endotoxins 

were removed by washing the column with 10 mM Tris-HCl, followed by 0.5% ASB-

14. The protein was eluted with 10 mM Tris-HCl containing 1 M imidazole. The 

eluted protein was dialyzed against 10 mM ammonium bicarbonate. The residual 

concentration of endotoxins was ≤0.24 ng/mg protein. Two lots were obtained, one 

produced in 2001 and the other in 2007. Both lots were used for the analysis of 

membrane pore formation, and similar results were observed. We expressed and 

purified the rEspB-His(6) protein by using procedures similar to those described 

above. 

2.3.10 Detection of pore formation by purified ESX-1 proteins.  

 

To determine the ability of ESX-1-secreted proteins to induce membrane pore 

formation, the above-described purified rESAT-6-His(6), rCFP-10-His(6), or rEspB-

His(6) in a 50-μl volume was mixed with 100 μl of sRBC (containing 1 × 10
9
 cells) in 

a microcentrifuge tube. The tubes were incubated at 32°C for designated periods of 

time. The cells were then resuspended and centrifuged at 4,000 rpm for 7 min. The 

supernatants were transferred to corresponding wells in a 96-well plate, and the A405 
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was measured. In the PEG osmoprotection experiment, PEG1000, PEG3350, 

PEG6000, and PEG8000 were resuspended in PBS and added to the red blood cell-

protein mixture at a final concentration of 30 mM. Hemolysis was measured after 2 h 

of incubation at 32°C. 

2.3.11 Detection of pore formation in macrophage cell membranes.  

 

Mm strains grown to mid-log phase were washed twice with DMEM, added to 

macrophage monolayers at an MOI of 50, centrifuged for 10 min at 1,500 × g to 

allow immediate bacterium-cell contacts, and incubated at 32°C in 5% CO2 for 

designated periods of time. The release of lactate dehydrogenase (LDH) by the 

infected and noninfected cells was measured with a CytoTox-One Homogeneous 

Membrane Integrity Assay kit (Promega) at an excitation wavelength of 560 nm and 

an emission wavelength of 590 nm. Pore formation in macrophage cell membranes 

was determined by an osmoprotection assay with various PEGs at a final 

concentration of 30 mM. To examine the induction of pore formation in macrophage 

cell membranes by rESAT-6-His(6), rCFP-10-His(6), or rEspB-His(6), the proteins were 

dissolved in DMEM and added individually to Raw264 cells in a 96-well plate at 

designated concentrations. After 2 h of incubation at 32°C in 5% CO2, the release of 

LDH was determined. 

To detect membrane pore formation by a microscopy method, infected or noninfected 

macrophages were incubated with ethidium homodimer-1 (Molecular Probes) and 

penetration of the cell by ethidium homodimer-1 across the membranes was detected 

by fluorescence microscopy. In brief, macrophages were incubated for 40 min in 
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phenol red-free culture medium containing ethidium homodimer-1 (4 μM) and 

calcein AM (2 μM), followed by imaging. Ethidium homodimer-1 only penetrates 

permeabilized cell membranes and stains the nuclei red. Calcein AM permeates every 

cell membrane and is only metabolized by live cells to produce green fluorescence. 

2.3.12 Preparation of M. marinum short-term culture filtrate and cell 

lysate.  

 

Preparation of Mm short-term culture filtrate and cell lysate was carried out as 

previously described (Xu et al, 2007). In brief, WT and mutant Mm cells were first 

grown in 7H9 medium to mid-log phase. The bacteria were then washed and diluted 

10 times in Sauton's medium and cultured for 2 days to reach mid-log phase. The 

bacteria were washed again and diluted 10 times in Sauton medium and cultured for 

another 2 days. The culture supernatant was collected, filtered through a 0.2-μm filter, 

and concentrated 100 times with a Centricon centrifugal filter with a molecular 

weight cutoff of 3,000. The cell lysate was obtained by bead beating the bacterial 

pellet. 

2.3.13 Western blotting.  

 

Proteins were separated by 4 to 20% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and transferred to a polyvinylidene difluoride membrane. After 

blocking with 2% bovine serum albumin, the membrane was incubated with a 

primary antibody diluted in 2% bovine serum albumin overnight, followed by 

incubation for 1 h with a horseradish peroxidase-conjugated secondary antibody (Bio-

Rad). The membrane was developed by enhanced chemiluminescence (Pierce) and 

exposed to films. The following primary antibodies were used at the dilutions 
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indicated: anti-ESAT-6 (monoclonal antibody HYB 76-8; Abcam), 1:3,000; anti-

CFP-10 (Colorado State University, NIH contract NO1-AI-75320), 1:2,000; anti-

EspB (Michael Lodes, Corixa Corporation, Seattle, WA), 1:5,000. 

2.4 Discussion 

 

The ESX-1 (type VII) secretion system plays an important role in the virulence of 

Mtb and Mm, but the precise molecular and cellular mechanisms by which it enhances 

virulence are not clearly defined. This chapter describes a comprehensive study of 

these mechanisms which has led to several important observations. Firstly, by 

examining nine Mm ESX-1 mutants and the WT by fluorescence and electron 

microscopy detecting MCV membranes, this study demonstrates conclusively that 

ESX-1 plays an essential role in the escape of Mm from the MCV. The role of 

vacuole escape in mycobacterial pathogenesis is not clearly understood. The 

observations that Mm can polymerize actin inside the host cell cytosol and spread 

from cell to cell (Gao et al., 2004; Stamm et al., 2003; 2005) suggest that vacuole 

escape may play a role in mycobacterial spreading. 

Secondly, we show that the ESX-1 mutant bacteria are able to polymerize actin after 

being delivered into the host cell cytosol by hypotonic shock treatment. This result 

suggests that the defect in the ability of the ESX-1 mutants to polymerize actin during 

normal cell infection is due to their inability to escape from the MCV rather than a 

deficiency in initiation of actin polymerization. This conclusion helps to redirect 

future research efforts aimed at identifying the mycobacterial molecules directly 

responsible for initiating actin polymerization. In addition, since this assay clearly 
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shows that Mm induces actin polymerization only after it enters the cytosol, it 

suggests that actin tails can be used as a readout of cytosolic localization for Mm. 

Thirdly, this study demonstrates for the first time that Mm utilizes ESX-1 to produce 

membrane pores ∼4.5 nm in diameter in red blood cells and macrophages. 

Importantly, purified ESAT-6 by itself at a concentration of 30 μg/ml is sufficient to 

cause pore formation in cell membranes. These observations are a significant 

advancement of the previously published works. For example, Mtb (Hsu et al., 2003) 

and Mm (Gao et al., 2004) have been shown to induce the permeation of cell 

membranes, and here we demonstrate that the cause of this permeation is pore 

formation. In addition, earlier studies show that purified ESAT-6 can cause 

permeation of liposome membranes (de Jonge et al., 2007; Hsu et al., 2003), and here 

we show that it causes pore formation in cell membranes. Our study suggests that 

ESAT-6 secreted by Mm ESX-1 could play a direct role in causing pore formation in 

MCV membranes to facilitate mycobacterial escape from the vacuoles. 

We have noticed that purified ESAT-6 induces membrane pores that are somewhat 

smaller than those produced by bacteria. We hypothesize that the membrane pores 

could be formed by the insertion of multimers of ESAT-6, exposing their 

hydrophobic surface to the lipid bilayer and their hydrophilic surface to the center of 

the pore. This model suggests that the number of ESAT-6 molecules inserted to form 

a pore could determine the size of the pore. It is possible that ESAT-6 secreted by 

Mm ESX-1 at the bacterium-cell contact site could have optimal insertion and/or 

multimerization to produce pores larger than those produced by the protein alone. 

Alternatively, it is possible that certain bacterial surface structures or molecules or 
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some other secreted molecules could enhance membrane pore formation. For 

example, the secretion of phospholipases C by Listeria plays a role in enhancing 

membrane pore formation by the pore-forming toxin listeriolysin O (Goldfine et al., 

1995). Mm and Mtb contain multiple copies of phospholipase C (Cole et al., 1998; 

Stinear et al., 2008), and Mtb has been shown to secrete phospholipase C (Raynaud et 

al., 2002). The involvement of phospholipase C in membrane pore formation is 

worthy of further investigation. 

A topic related to the above is whether ESAT-6 alone or ESAT-6 in complex with 

CFP-10 or the other ESX-1-secreted proteins forms the membrane pores during 

mycobacterial infection. Thus far, the published studies have assigned the membrane 

destabilization activity to ESAT-6 alone (de Jonge et al., 2007; Hsu et al., 2003). Our 

results are consistent with these studies in that ESAT-6 alone causes pore formation. 

Then, the question comes if the pore-forming activity of ESAT-6 is biologically 

plausible, considering that some studies show that ESAT-6 and CFP-10 can interact 

with each other and can form a tight 1:1 complex (Renshaw et al., 2005; 2002). 

However, our studies suggest that not all of the ESAT-6 and CFP-10 molecules have 

to be held in an exact 1:1 complex, and this does not contradict the published results. 

We have shown that EspB forms a complex with ESAT-6 (Xu et al., 2007). When 

EspB is pulled down from M. marinum cell lysate, ESAT-6 coprecipitates with EspB; 

however, no CFP-10 is detected in the precipitate (Xu et al., 2007). In addition, as 

shown in Figure 14, the Δesat-6 complementation strain produces a much more 

abundant level of ESAT-6 than CFP-10 in the culture supernatant. Both of our studies 

suggest that during Mm infection at least some of the ESAT-6 molecules could be 
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targeted to the host cell membranes not in a complex with CFP-10. It remains a 

possibility that EspB facilitates the pore-forming activity of ESAT-6, which warrants 

future investigation. 

A recent study showed that ESAT-6 in a concentration range of 2 to 5 μg/ml can 

induce apoptosis of macrophages after overnight incubation (Derrick and Morris, 

2007). This result does not conflict with our observation in the present study. By 

using this concentration range of ESAT-6, we were not able to detect apparent 

membrane pore formation in red blood cells and macrophages [Fig. 15]. It is possible 

that the insertion and multimerization of ESAT-6 in cell membranes also depend on 

the concentration of ESAT-6 (indeed, we have observed a dose-dependent induction 

of membrane pore formation by ESAT-6 [Fig. 15A]), and 2 to 5 μg/ml might be 

below a critical concentration of ESAT-6 required to induce pore formation. On the 

other hand, since this sub-pore-forming concentration of ESAT-6 was shown to 

induce cell apoptosis (Derrick and Morris, 2007), it suggests that ESAT-6 might use 

one domain to induce pore formation and another to induce apoptosis. In this regard, 

it has recently been shown that the C-terminal six amino acids of ESAT-6 can bind to 

macrophage surface Toll-like receptor 2 to modulate host cell signaling (Pathak et al., 

2007). Whether this interaction plays a role in the induction of apoptosis remains 

elusive and deserves further investigation. It should also be noted that the time course 

in the induction of apoptosis is very different from that in pore formation. While 

apoptosis is observed after an overnight incubation (Derrick and Morris, 2007), pore 

formation is detected in minutes (this study). This analysis suggests that ESAT-6 may 

change its mode of action quite dramatically when present at different concentrations: 
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either apoptotic or pore forming. Further studies on the structure and function of 

ESAT-6 will not only provide insight into the virulence mechanisms of mycobacterial 

infection but also promote the development of important tools based on ESAT-6 for 

research in broad areas of cell biology and immunobiology studies. 

Finally, several studies have observed that Mtb can also escape from vacuoles into the 

host cell cytosol (McDonough et al., 1993; van der Wel et al., 2007) and that ESX-1 

plays a role in this process (van der Wel et al., 2007), although this has not been 

consistently observed by some other researchers (Clemens et al., 2000; Deretic et al., 

2006; Russell, 2007). In these studies that have observed Mtb escape from the 

vacuole, most of the observations were made by detailed electron microscopic 

examinations. One argument in the field is that during sample processing for electron 

microscopy, some of the cell membranes may not be preserved well, causing false-

positive results. Therefore, using alternative methods for detection of MCV 

membranes is crucial and should provide additional confirmation of the electron 

microscopic observations. In this regard, in this study we have used three additional 

methods besides electron microscopy to confirm the association of Mm with MCV 

membranes. One method detects fluorescent labeling of MCV membranes by using 

the DiI stain in live cells, which avoids the perturbation of membranes that could be 

generated by the other detection methods. The second method detects polymerization 

of actin by Mm by fluorescence microscopy. Since WT Mm, but not the ESX-1 

mutants, is able to polymerize actin, the data indicate that WT bacteria, but not the 

ESX-1 mutants, is able to escape from the vacuole. The third method uses hypotonic 

shock treatment to artificially deliver the ESX-1 mutant bacteria into the host cell 
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cytosol, and then actin polymerization by the mutant bacteria is determined. We show 

that the ESX-1 mutants acquire the ability to polymerize actin after hypotonic shock 

treatment, confirming that the mutant bacteria reside within MCV membranes before 

the treatment but enter the cytosol after. However, actin polymerization has not been 

observed for Mtb in host cells (van der Wel et al., 2007), which makes this method 

unavailable for the detection of escape of Mtb from the vacuole. Nonetheless, as 

several recent studies show that Mtb can cause lysis of host cell plasma membranes in 

vitro and in vivo (Dobos et al., 2000; Hsu et al., 2003; Junqueira-Kipnis et al., 2006), 

these results suggest that Mtb could compromise vacuole membranes at a certain step 

of infection. This analysis suggests that escaping into the host cell cytosol could be a 

common strategy of pathogenic mycobacteria, while it occurs frequently and 

evidently in Mm infection. The reproducibility of observations and ease of 

manipulation make Mm an ideal system for studying these cellular processes 

important for the pathogenesis of mycobacteria. 
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Chapter 3:  The molecular properties and virulence role of EspB 

3.1 Introduction 

 

As discussed in Chapter 1, there have been several substrates identified that are ESX-

1 dependent for secretion.  The best studied is ESAT-6, a strong antigenic target of 

the host immune system and absolutely required for virulence (Sørensen et al., 2005; 

Stanley et al., 2003; Hsu et al., 2003; Pathak et al., 2007).  In Chapter 2, I 

demonstrated that the ability of Mm to lyse host cells is dependent on ESAT-6 and I 

also showed that the purified ESAT-6 protein is sufficient for inducing pores in 

macrophage membranes.  It is not known how the pore-forming ability of ESAT-6 is 

used by the bacteria, though one possibility is that the pores allow for the bacteria to 

escape the phagosome (Smith et al., 2008).  Phagosome escape has only been widely 

accepted as a function in Mm (Stamm et al., 2003; Gao et al., 2004), and still remains 

a controversial issue in Mtb (Clemens et al., 2002; Russel et al., 2001; van der Wel et 

al., 2007).  Yet, the Mtb ESAT-6 protein has been shown able to complement the 

∆esat-6 mutant in Mm, indicating a conservation of function (Gao et al., 2004).  

Another possibility is that the pores formed by ESAT-6, at least during the 

persistence stage of both Mm and Mtb, allow for the translocation of other ESX-1 

substrates into the host cell in order to mediate bacterial survival inside the 

phagosome.   

EspB is another protein that is ESX-1 dependent for secretion (Xu et al., 2007; 

McLaughlin et al., 2007).  The function of this protein is unknown and it is hard to 

determine function based on the phenotype of the mutant because the EspB, ESAT-6, 
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and CFP-10 proteins are codependent for secretion (Xu et al., 2007).  The EspA 

protein is also codependent for secretion of ESAT-6 (MacGurn et al., 2005), so 

without EspB the secretion of several substrates is disrupted and the phenotype 

observed cannot be attributed solely to the function of the EspB protein.   

The EspB mutant is attenuated and EspB is required for normal functioning of the 

ESX-1 system.  Whether its role is strictly to aid the secretion of other substrates that 

go on to have a virulence function, or whether EspB itself plays a direct role in 

virulence is unknown and the question is a difficult one to differentiate given the 

secretion codependence issues.  However, there are studies that indicate that EspB has 

an additional function required for virulence besides helping aid ESAT-6 and CFP-10 

secretion.  In Mm, the espB::tn mutant is defective at intracellular growth and shows a 

more profound defect in preventing phagosome maturation than the ∆CFP-10/ESAT-

6 mutant (Xu et al., 2007).  Also, the espB::tn mutant is more severely attenuated in 

zebrafish than the ∆CFP-10/ESAT-6 mutant, and shows significantly lower CFU in 

zebrafish livers (Gao et al., 2004).  Therefore, EspB is particularly important for 

growth in vivo.  EspB is also required for cell-to-cell spread during Mm infection of 

macrophage (Gao et al., 2004).   

There are no structural motifs in the predicted EspB protein that would indicate its 

role in virulence. The EspB protein has been shown to be cleaved upon secretion by 

the serine protease, MycP1, and this cleavage is important for modulating the 

secretion of other ESX-1 substrates (Ohol et al., 2010).  The result is a 50 kDa N-

terminal fragment and an 11 kDa C-terminal fragment secreted into the culture filtrate 

(Xu et al., 2007; McLaughlin et al., 2007).  ESAT-6 secretion is dependent on the C-
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terminus of EspB since a C-terminally truncated protein is unable to secrete ESAT-6 

(Xu et al., 2007).  The EspB N-terminus binds to the Mh3879c protein, and Mh3879c 

was shown to interact with the Mh3871 ATPase at the membrane channel 

(McLaughlin et al., 2007).  Presumably, Mh3879c acts as a chaperone to target the 

EspB/ESAT-6 complex to the ESX-1 channel for secretion. When the EspB N-

terminus is expressed without the C-terminal fragment, it is still secreted, though 

ESAT-6 and CFP-10 are not (Xu et al., 2007; McLaughlin et al., 2007).  What then is 

the function of the N-terminus?  If this fragment can secrete independent of other 

ESX-1 substrates, does it go on to carry out a virulence function, or is EspB only 

functional in its full-length form to regulate ESX-1 secretion?   

In this chapter I dissect the Mm EspB protein to see if mutations can lend insight into 

the important role that it plays in secretion and virulence.  I show that the C-terminal 

fragment is all that is needed to secrete ESAT-6, whereas the N-terminal fragment 

can secrete independent of ESX-1 altogether.  Neither the C- nor N-terminal fragment 

is able to complement the intracellular growth defect of espB::tn, indicating that the 

full-length protein is required for virulence.  I also show that mutating an EspB 

cleavage site leads to an increase in ESAT-6 secretion, supporting what Ohol et al., 

2010 hypothesized; that MycP1 cleavage of EspB acts to regulate ESX-1 secretion.  I 

also show that the EspB cleavage mutant is defective at intracellular growth in 

macrophages and is attenuated in zebrafish, indicating that cleavage of EspB is 

required for virulence function.  Finally, I mutated a conserved WXG motif in the N-

terminus of EspB and show that this motif plays a role in the codependent secretion 

of EspB and ESAT-6.  These data support the hypothesis that full length EspB is 
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important for secretion and virulence.  The N-terminus may play a more direct role in 

virulence but it cannot carry out this function without the tightly controlled secretion 

of other ESX-1 substrates.   

3.2 Results 

 

3.2.1 The role of EspB N- and C-terminal sequences in secretion and 

virulence 

 

As already discussed, EspB is cleaved upon secretion near the C-terminus, resulting 

in a 50 kDa N-terminal fragment and an 11 kDa C-terminal fragment [Fig. 18].  The 

C-terminus of the full length protein binds to ESAT-6 and is required for ESAT-6 

secretion (Xu et al., 2007; McLaughlin et al., 2007).  What then, is the purpose of the 

N-terminal fragment?  It is known that cleavage of EspB occurs at multiple sites 

(Ohol et al., 2010; our lab, unpublished).  Using mass spectroscopy of the secreted N-

terminal fragment, our lab discovered that one of the cleavage sites is between 

Leu346 and S347, resulting in a 50 kDa N-terminal fragment and an 11 kDa C-

terminal fragment.  Mass spectroscopy results of the C-terminal fragment indicate 

that this fragment is not stable; it undergoes degradation at multiple sites, eventually 

leading to a stable 5.5 kDa C-terminal fragment (data not shown).  Ohol et al., 2010 

discovered that the serine protease, MycP1 is responsible for EspB cleavage in at 

least two locations.   

Because EspB is cleaved upon secretion and the C-terminus is required for the 

codependent secretion of ESX-1 substrates, my hypothesis is that the N-terminus 

plays a more direct role in virulence.  This is a difficult hypothesis to support because 
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Figure 18. Diagram of the EspB protein.  The Mm EspB protein in its full-length 

form is 454 amino acids long, but is cleaved upon secretion between leucine 346 and 

serine 347.  The result is a 50 kDa N-terminal fragment and an 11 kDa C-terminal 

fragment.  The C-terminal fragment plays a role in the codependent secretion of the 

ESAT-6 protein, whereas the N-terminus appears to have a virulence function that is 

dependent on expression of the full-length protein and close association with ESAT-

6. Cleavage at L346 is important for the modulation of substrates secreted from the 

ESX-1 system.  At position tryptophan 176 through glycine 178, EspB also has a 

highly conserved WXG motif that appears to play a role in secretion.   
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of the codependency issues already discussed. Determining EspB function 

independent of ESAT-6 cannot be examined in espB::tn because both EspB and 

ESAT-6 secretion is abolished in this mutant (Xu et al., 2007).  When the N-terminus 

is expressed without the C-terminus in espB::tn, it is detected in the culture filtrate, 

even though there is no secretion of ESAT-6 or CFP-10 (Xu et al., 2007; McLaughlin 

et al., 2007).  I expressed the N-terminal fragment in the mh3877::tn channel mutant 

and found that it is secreted independent of ESX-1 altogether [Fig. 19, lane 11]. It has 

already been demonstrated that the full length protein requires a functional ESX-1 

channel for secretion (McLaughlin et al., 2007).  This N-terminal fragment however, 

is also able to secrete through some other unknown channel, indicating that the C-

terminus confers specificity of EspB secretion through ESX-1.  I decided to take 

advantage of the unique nature of the EspB N-terminus to look at the role that it plays 

in virulence. 

I expressed the first 346 amino acids of the EspB N-terminus in espB::tn (espB::tn 

+pEspB:N1-346) and confirmed that it is abundantly secreted, though ESAT-6 

secretion is ablated [Fig 19, lane 8].  I also expressed the last 106 amino acids of the 

EspB C-terminus in the espB::tn mutant (espB::tn+pEspB:C347-454) to see if ESAT-

6 is secreted.  Our EspB polyclonal antibody recognizes a 100 amino acid sequence in 

the N-terminal fragment (amino acids 234-333); therefore I cannot detect the C-

terminal fragment of the EspB protein.  I was able to detect ESAT-6 secretion, albeit 

less than WT [Fig. 19, lane 9], indicating that the C-terminus is indeed present and 

that the N-terminus is somewhat dispensable for the secretion of ESAT-6.   



 

 83 

 

 

Figure 19. Western blots of EspB mutants. Culture filtrate (CF) and cell lysate 

(CL) proteins of Mm WT (lane 1), espB::tn (lane 2), espB::tn+Complement (lane 3), 

espB::tn+pEspB:∆L346-S347 (lane 4), espB::tn+pEspB:∆L346 (lane 5), 

espB::tn+pEspB:∆S347 (lane 6), espB::tn+pEspB:W176A (lane 7), 

espB::tn+pEspB:N1-346 (lane 8), espB::tn +pEspB:C347-454 (lane 9), 

espB::tn+pEspB:N1-346/C347-454 (lane 10), mh3877::tn+pEspB:N1-346 (lane 11). 

Loading adjusted according to the expression and secretion of the Sec-secreted Fap 

protein.  The cytosolic GroEL protein is used to show that CF profiles are not due to 

lysis. For EspB, 61 kDa is the molecular weight of the full-length protein and 50 kDa 

is the molecular weight of the N-terminal cleaved fragment.  
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Interestingly, ESAT-6 expression was not detected in the cell lysate, but this could be 

due to reduced stability of the complex; since there is a reduced amount of ESAT-6, 

nearly all of it is secreted and there is no accumulation in the cell.   

Since the N-terminus is able to secrete independent of ESX-1, and doesn’t appear to 

play a major role in secretion of ESAT-6, I wanted to see if this fragment alone could 

complement the defective virulence phenotype of espB::tn. This would indicate that 

the EspB N-terminal fragment does have a direct role in virulence that is not 

dependent on the secretion of other ESX-1 substrates.  Alternatively, I wanted to see 

if expressing the C-terminus alone, which allows for ESAT-6 secretion, could 

complement espB::tn (espB::tn+pEspB:C347-454).  This would indicate that the N-

terminus does not play a direct role in virulence; rather, its only function is to regulate 

ESX-1 secretion.  I infected RAW cells, a murine macrophage cell line, with the 

individual mutants and found that they were both defective at intracellular growth 

compared to the mutant expressing the full length protein (espB::tn+Comp) [Fig. 

20A], though growth was slightly better than the espB::tn mutant.   

The N-terminal fragment also was not able to fully complement espB::tn for virulence 

in zebrafish [Fig. 21], indicating that the full length protein is required for virulence 

function; though this experiment also showed a slight increase in virulence over 

espB::tn.  In the zebrafish study, fish infected intraperitoneally with the 

espB::tn+EspB complement strain began to die after only a couple of weeks.  The N-

terminal mutant however, persisted much longer.  These fish did eventually succumb 

to infection, as did the fish infected with espB::tn.  This may be due to too high of a  
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Figure 20. Mm EspB 

mutants and their 

affect on 

intracellular growth 

inside RAW cells. 
RAW cells infected at 

an MOI of 2. The 

CFUs were evaluated 

at 0, 24, 48, 72, and 

96 hours post 

infection.  Error bars 

indicate standard 

deviation of data 

collected in triplicate.  

WT is wild type. The 

mutants are 

episomally expressed 

in espB::tn. Panel A) 

N1-346 is the EspB 

N-terminal fragment, 

C347-454 is the EspB 

C-terminal fragment, 

N1-346/C347-454 is 

the EspB N- and C-

terminus expressed as 

separate fragments. 

Panel B) ΔL346-S347 

is EspB with a 

deletion of the 

cleavage site, L346-

S347. Panel C) 

W176A is EspB with 

a mutation of the 

WXG motif.  
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Figure 21. Mm EspB mutants and their affect on virulence in zebrafish.  Survival 

of 8 zebrafish following intraperitoneal infection of 5 μl of PBS containing 2x10
4
 Mm 

bacteria per strain over the course of 10-weeks. NI, non-infected, is injection of 5 μl 

PBS used as a negative control. The mutants are episomally expressed in espB::tn; 

Comp is full lenghth EspB, W176A is EspB with a mutation of the WXG motif, ΔLS 

is EspB with a deletion of the L346-S347 cleavage site, N is the EspB N-terminal 1-

346 amino acids fragment.   
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bacterial burden in the fish; however, it is clear that the mutant is less virulent than 

the complement strain and the fish survive longer. These results indicate that the full-

length protein is required for full virulence; however the individual N- and C-terminal 

fragments may each play a partial role.   

In order to confirm that the bacterial intracellular growth differences observed in 

RAW cells were not due to differences in growth rates among the various strains, I 

also determined CFUs of bacteria growing in culture.  All of the cultures were started 

at the same concentration of bacteria that was used to infect RAW cells and I took the 

culture and infection CFUs at the same time points.  I found that all of the strains used 

in this study grew at similar growth rates [Fig. 22].  The growth rate for the 

espB::tn+pEspB:C347-454 mutant was a little slower in the beginning, but by 48 and 

96 hours it was growing at the same CFU/ml as all the others.  Therefore, intracellular 

growth defects can be attributed to the various mutations. 

I then created a mutant that expresses both the N- and C-terminal fragments 

separately on different regions of the same plasmid.  This plasmid was episomally 

expressed in the espB::tn mutant (espB::tn+pEspB:N1-346/C347-454).  In this 

mutant, both fragments are present in the cell, but they are not one single protein. The 

C-terminus is available for interaction with ESAT-6 and the N-terminus is free to 

secrete independent of ESX-1.  I could detect expression and secretion of the N-

terminal fragment via Western blot, and also secretion of ESAT-6, indicating that the 

C-terminus is expressed [Fig. 19, lane 10].  This mutant could result in one of two 

phenotypes: 1) expressing both fragments separately could fully or partially 

complement virulence, indicating that the N-terminus does have a direct role in  
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Figure 22. In vitro growth rates of EspB mutants. Bacterial cultures growing in 

DMEM RAW cell infection medium for 0, 24, 48, 72, and 96 hours.  At each time 

point the cultures were serially diluted and plated onto 7H10 plates for the 

enumeration of CFU.  Cultures are Mm WT, espB::tn, and EspB mutants episomally 

expressed in espB::tn. Comp is full length EspB; ΔL346, ΔS347, and ΔL346-S347 

are EspB cleavage site mutants; N1-346 is expression of the EspB N-terminal 

fragment, C347-454 is expression of the EspB C-terminal fragment, N1-346/C347-

454 is expression of the EspB N- and C-terminus as separate fragments; W176A is 

EspB with a mutation of the WXG motif. Error bars indicate the standard deviation of 

cultures plated in triplicate. 
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virulence that is independent of its secretion through the ESX-1 system; however C-

terminal association of ESAT-6 is necessary for it to accomplish this function; or 2) 

the full-length protein is required for virulence and expressing both separately inside 

Mm would not complement virulence.  In the second scenario, no conclusions could 

be made as to a direct role of the N-terminus in virulence.  Its role could be direct or it 

could just be in regulating ESX-1 secretion. 

My results showed that expressing the N- and C-terminus together but separate does 

not fully complement the espB::tn mutant in intracellular growth in macrophages 

[Fig. 20A].  This result indicates that the full length protein in its native form is 

required for the full spectrum of virulence.  The mutant did grow slightly better than 

when the N- or C-terminus is expressed singularly, however this difference is not 

very significant. The N-terminus does appear to play a direct role in virulence, but 

full virulence requires expression of the full length protein and secretion of ESAT-6.  

It is possible that EspB translocates through the ESAT-6 formed pore and a tight 

association is required for targeting. 

3.2.2 The role of the EspB cleavage site in secretion and virulence 

 

Because the full length protein is required for virulence complementation of espB::tn, 

I wanted to see if cleavage of EspB is required for virulence.  Our lab discovered that 

cleavage of EspB occurs between Leu346 and Ser347 [Fig. 18].  Three mutants of 

EspB at the cleavage site were created and expressed in espB::tn; in the first mutant 

both the L346 and S347 amino acids (espB::tn+pEspB:∆L346-S347) were removed, 

for the second only L346 (espB::tn+pEspB:∆L346) was removed, and for the third 
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only S347 (espB::tn+pEspB:∆S347) was removed.  I found that EspB is expressed 

and secreted in all three mutants [Fig. 19, lanes 4-6].  Both the full length protein and 

the N-terminal fragment are detected in the culture filtrate, which would indicate 

incomplete cleavage.  The ratio of cleaved to uncleaved, however is the same as in 

the espB::tn+EspB complement strain [Fig. 19, lane 3]; therefore, this incomplete 

cleavage is more likely a result of protein overexpression.  Ohol et al, 2010 ran EspB 

culture filtrate on a high resolution gel and detected three separate N-terminal 

fragments; two of which are a result of cleavage by MycP1, the ESX-1 serine 

protease that is required for complex assembly. They used mass spectroscopy and 

identified one of the cleavage sites at position Ala392, while our result identified a 

cleavage site at position L346.  That leaves still another site for cleavage by some 

other, unknown protease; possibly one of the MycP1 homologs from another ESX 

system.  Also, we have not yet confirmed that our mutants are defective for cleavage 

at the L346-S347 site; therefore it is possible that cleavage is still occurring there. 

The level of ESAT-6 in the culture filtrate is increased in all three of these cleavage 

mutants compared to WT and the complement strain; which is what Ohol et al., 2010 

found in Mtb when they created a protease defective MycP1 mutant that is no longer 

able to cleave EspB at two of its cleavage sites.  They detected an increase in the 

culture filtrate levels of several ESX-1 substrates, and suggest that MycP1 cleavage 

of EspB might be important for moderating the degree of ESX-1 secretion.  It is also 

possible that the inhibition of EspB cleavage prevents the dissociation of ESAT-6 

with EspB and consequently increases stability of ESAT-6 in the culture supernatant.  

Our lab has previously demonstrated that several ESX-1 secreted proteins, including 
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ESAT-6 are not stable in the culture filtrate (data not shown).  Nonetheless, my 

results show that the residues of the L346 cleavage site alone are important for the 

modulation of ESAT-6 protein secretion in the culture filtrate.   

The ∆L346-S347 mutant shows a defect in intracellular growth that is the same as 

espB::tn [Fig. 20B].  This mutant is also defective at virulence in zebrafish [Fig. 21].  

Therefore, the L346-S347 residues are absolutely required for the virulence function 

of EspB, presumably due to their role in the cleavage of EspB by MycP1.  This result 

is not surprising because the cleaved N-terminal fragment could be important for 

virulence and the prevention of cleavage may block its virulence function.  It is also 

possible that cleavage releases ESAT-6 to exert its virulence function and preventing 

cleavage results in reduced virulence.  My data are consistent with the finding by 

Ohol et al., 2010 that cleavage of EspB increases the level of ESX-1 substrates in the 

secretion milieu.  Therefore, it is also possible that an excess amount of ESAT-6 

secretion increases the antigenic targets that are sensed by the host immune system 

and the bacteria are unable to remain safely undetected.   

3.2.3 The role of the EspB WXG motif in secretion and virulence 

 

ESAT-6 and CFP-10 are founding members of a superfamily of proteins 

characterized by their small size of ~100 amino acids and the presence of a highly 

conserved three residue, tryptophan-variable-glycine (WXG), motif.  The Mtb 

genome alone has 22 of these WXG100 proteins, many of which are associated with 

the five duplicated ESX secretion systems.  In an attempt to determine the function of 

ESAT-6, Palen in 2002 searched for homologes in other bacterial species, using very 
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senisitive parameters.  He found several dozen homologues within the Actinobacteria, 

but also related proteins in low G+C Gram-positive species.  Though the homology 

was deemed significant, the actual sequence similarity was relatively low, save the 

conservation of a WXG motif and a small size of around 100 amino acids.  These 

proteins also showed a tendency to cluster with other ESAT-6-like proteins in the 

genome, have extensive coiled-coil domains, and none had a signal peptide.  Pallen 

noticed that some, such as the Bacillus subtilis YukE protein, were located near 

FtsK/SpoIIIE ATPases in the genome.  Another group discovered that WXG100 

proteins were secreted in Staphylococcus aureus (Burts, et al., 2005).   

The ESX-1 WXG100 proteins, ESAT-6 and CFP-10, have a WXG motif in the 

hairpin of their helix-turn-helix. The indole functional group of the tryptophan residue 

is free to associate with other proteins, since it is not involved in the tight 1:1 

association of these two proteins [Fig. 5; section 1.6.2].  The purpose of this motif 

being so highly conserved is unknown; it could be structural, or important for 

secretion, or it could play a role in virulence.  Since this superfamily of proteins is 

present in both pathogenic and non-pathogenic species, the WXG motif cannot be 

solely attributed to playing a role in virulence; though one group did show that 

mutating the tryptophan in the WXG motif of ESAT-6 did not disrupt secretion, but 

did cause attenuation (Brodin et al., 2005). 

Our lab noticed that the WXG motif is present in other, larger ESX-1 secreted 

substrates besides ESAT-6 and CFP-10.  They cannot be included in the WXG100 

superfamily because they are well over 100 amino acids in length.  In larger proteins 

the presence of a three residue motif may not seem quite as significant, but the fact 
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that it is so highly conserved increases the significance.  The ESX-1 secreted protein, 

Mh3864 has a WXG motif at position W56-G58, EspA has a WXG motif at position 

W55-G57, and EspB has a WXG motif at position W176-G178 [Fig. 18].  The WXG 

motif is highly conserved across mycobacterial species for all three of these proteins. 

As shown in Figure 23, there are several mycobacterial genomes that have an EspB 

homolog and even the most distantly related of them have a highly conserved WXG 

motif.  The motif is present in the middle of the N-terminus at relatively the same 

position. What’s more, Mtb and Mm both have several EspB paralogs in their 

genome, presumably associated with the five different ESX secretion systems.  Mm 

has six EspB paralogs and all show conservation of the WXG motif at relatively the 

same position.  Because this motif is so highly conserved in EspB it seems likely that 

it is involved in secretion or protein function.  I wondered if mutating the WXG motif 

in EspB would result in an attenuation phenotype similar to what was observed with 

ESAT-6.   

I created a W176A mutant and expressed it episomally in espB::tn 

(espB::tn+EspB:W176A).  The secretion of EspB and ESAT-6 is much reduced in 

this mutant [Fig. 19, lane 7], indicating that the EspB WXG motif does play a role in 

ESX-1 secretion.  The intracellular stability of ESAT-6 is similar to the complement 

strain, so it seems likely that the mutation affects secretion specifically, possibly by 

associating with other proteins that are important for targeting EspB to the secretion 

channel.  This mutant, however is not defective at growth inside RAW cells [Fig. 20], 

nor is it attenuated in zebrafish [Fig. 21].  Therefore, it appears that the EspB WXG 

motif does not contribute to virulence, presumably because there is still some 
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secretion of ESAT-6 and EspB.  This reduced secretion may be sufficient for full 

virulence function.  It appears that moderate secretion of ESX-1 substrates may be 

sufficient for maintaining the pathogen-protection balance inside host cells.  Some 

substrate secretion is required, but too much can be harmful. 

3.2.4 EspB translocation tags 

 

As discussed in section 1.5, it seems likely that mycobacterial proteins are 

translocated from the phagosome into the host cell in order to modulate their 

environment and ensure survival.  Previous studies have indicated that ESX-1 

proteins are translocated; for instance, priming of CD8
+
 T-cells requires CFP-10 

secretion (Woodsworth et al., 2008), and fractionation studies detected PknG in the 

host cell cytosolic fraction (Walburger et al., 2004).  No study however, has yet to 

show direct translocation of any ESX-1 substrates. 

It is my hypothesis that EspB is translocated into the host cell cytosol.  This is based 

on the fact that EspB is absolutely required for virulence, it plays a role in the 

inhibition of phagolysosome fusion, and the C-terminal fragment is required for 

secretion of ESAT-6, while the N-terminal fragment must be present for full 

virulence.  Translocation of secreted virulence factors has been well established in 

Gram-negative, type III and type IV secretion systems.  Typically, a tag is used that is 

distinguishable once it has entered the host cell cytoplasm.  In most cases, the bacteria 

secreting these proteins are attached to the surface of the cell, rather than inhabiting 

an intracellular phagosome like mycobacteria.  Therefore, the design of a useful 

translocation tag in mycobacteria offers some unique challenges.  Typical assays 
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require lysis of the host cell in order to analyze the tag.  In the case of extracellular 

bacteria, all non-translocated proteins can be washed away before lysis, ensuring that 

tags are not activated during lysis to give a false positive result.  Proteins secreted by 

mycobacteria into the phagosome cannot be washed away before lysis, so unless the 

reaction is enzymatic and can be stopped by putting the cells on ice, it may be 

difficult to distinguish translocated from phagosomal proteins. 

Another challenge using EspB is finding the best place to insert a tag since it is 

cleaved upon secretion.  If it is placed at the C-terminus then it will be cleaved from 

the N-terminus and N-terminal translocation cannot be detected.  Likewise, the tag 

may interfere with secretion since the C-terminus is absolutely required for EspB full 

length protein secretion as well as secretion of ESAT-6.  If the tag is placed at the N-

terminus then it may also interfere with secretion since the N-terminus is known to 

bind to the Rv3879c protein, presumably as a chaperone to bring it to the ESX-1 

channel (McLaughlin et al., 2007).  Alternatively, the tag can be inserted in the 

middle of the protein at some position upstream of the cleavage site.  The risk is that 

this could change important conformations that aid in secretion or translocation.   

A third challenge is finding a tag that can be secreted through the ESX-1 channel.  It 

is not yet fully known how proteins are targeted for secretion.  C-terminal sequences 

play a role in secretion; however there is no predictable sequence that is required.  It 

was shown that the last seven amino acids of CFP-10 can secrete the yeast ubiquitin 

protein (DiGiuseppe Champion et al., 2006); therefore it does appear that a secretion 

signal is sufficient for secretion of even unrelated proteins.  That result indicates a 
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high likelihood that a translocation tag could be secreted; however it’s not known 

what size of tag can be tolerated.  If it is too big it may not fit through the channel.   

The EspB N-terminal fragment can be secreted even without expression of the C-

terminus.  The full length protein is cleaved by MycP1 in the periplasmic space, so 

getting through the cytosolic membrane does not necessarily require the cleavage site.  

Taking advantage of this seemingly plausible position in which to tag the protein, I 

added three different tags to the C-terminal end of the N-terminal 1-346 amino acid 

fragment of EspB.  These three tags have been used in both type III and type IV 

secretion systems for identification of translocated proteins and my initial goal was to 

see if they could be secreted in the ESX-1 system.   

The first tag I tried was the adenylate cyclase (Cya) tag. It has been a very successful 

reporter system for detecting the translocation of many type III and type IV secreted 

proteins (Sory and Cornelis, 1994; Nagai et al., 2005).  Adenylate cyclase is activated 

by calmodulin, which is only produced in eukaryotic cells.  Once activated, adenylate 

cyclase converts ATP to cAMP and this increase in cAMP can be measured.  An 

increase in cAMP levels would indicate that the tagged-protein has entered the 

cytosol.  This assay requires lysis of infected macrophages in order to extract cAMP.  

Because it is an enzymatic reaction, it may be possible to limit further activity from 

proteins secreted into the phagosome by putting the cells on ice.  

One potential problem with using this tag is that it is big; 398 residues.  It is possible 

that the tag may interfere with secretion.  I tagged the C-terminal end of the EspB N-

terminal fragment with Cya (EspB-N1-346-Cya), expressed it in the espB::tn mutant, 
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and checked to see if it was secreted.  Unfortunately, it was not [Fig. 24A].  This 

could be due to the size of the tag or perhaps its location on the protein.   

The second tag I used was the glycogen synthase kinase (GSK) tag.  Previously, GSK 

was used to detect the translocation of both type III and type IV secreted proteins 

(Garcia et al., 2006).  GSK has a serine residue that can only be phosphorylated by 

protein kinases in the eukaryotic cell cytosol.  There are commercial antibodies 

available that can detect GSK and phosphospecific GSK, so infected cells are lysed 

and then analyzed by SDS-PAGE.  This allows for the quantitative comparison 

between the detection of total tagged-protein versus translocated tagged-protein that 

has been phosphorylated in the host cytosol.  This tag has the benefit of being very 

small, only 12-residues; so the likelihood of the tag interfering in the secretion 

process is greatly reduced.   

I tagged the C-terminal end of the EspB N-terminal fragment with GSK (EspB-N1-

346-GSK), expressed it in the espB::tn mutant, and checked to see if it could be 

secreted.  I found that it was abundantly secreted [Fig. 24A], however when I probed 

the cell lysate and culture filtrate of this strain with the phosphospecific-anti-GSK 

antibody, it was detected in both fractions [Fig. 24B, lanes 1-2].  I also tagged the 

Antigen 85b protein which is secreted via the Sec system and it too showed 

phosphorylated GSK in the bacterial cell [Fig. 24B, lane 3].  This indicates that Mm 

has a protein kinase that can phosphorylate GSK.  This is actually quite interesting 

since phosphorylation of eukaryotic GSK by AKT is involved in the inhibition of 

apoptosis.  Perhaps Mm has a serine protease that can target host GSK in order to 

promote its survival inside the phagosome?  This is an interesting question;   



 

 99 

 

 

Figure 24. The potential of using various tags to determine EspB translocation. 

Panel A) Western blot detecting tagged-EspB expression and secretion in Mm cell 

lysate (CL) and culture filtrate (CF) grown in 7H9 broth.  The EspB N-terminal 1-346 

fragment was tagged with GSK, Bla, or Cya at the C-terminal end and expressed 

episomally in espB::tn. Panel B) Western blot detecting phosphorylated GSK (p-

GSK) in Mm  CL and CF grown in 7H9 broth; espB::tn with episomal expression of 

the EspB N-terminal 1-346 fragment with a C-terminal GSK tag, or WT Mm 

episomally expressing Ag85b tagged at the C-terminus with GSK. 
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unfortunately though, it means that GSK cannot be used to detect protein 

translocation in Mm.   

Thirdly, I used the β-lactamase (Bla) tag.  This tag has also been used to successfully 

detect type III and type IV translocated proteins in Gram-negative bacteria 

(Charpentier and Oswald, 2004; de Jong et al., 2008).  With this tag, cells are viewed 

directly under fluorescence microscopy, which means they do not have to be lysed 

and so the intracellular location of Mm is not such an issue. Non-fluorescent 

CCF2/AM, when introduced to eukaryotic cells will diffuse passively across the 

plasma membrane.  Once inside, the cellular esterases quickly convert it to the β-

lactamase substrate, CCF2.  This form is charged, so it is trapped inside the cell and 

emits green fluorescence.  When Bla-tagged proteins enter the cytoplasm, the β-

lactam ring of CCF2 is cleaved, resulting in a shift to the blue fluorescence spectrum.  

Using fluorescence microscopy, translocated proteins can be visualized directly and 

in living cells.  They should be the only ones fluorescing blue.  This assay is very 

sensitive; fewer than 100 Bla molecules can be detected within a cell, and 

fluorescence can be quantified from cells infected in a 96-well plate, using a 

microplate reader.   

This tag is also big, though smaller than Cya.  It is 263 residues.  It is possible that the 

tag may interfere with secretion.  It is, however in an unfolded state in the cytosol, so 

more likely to go through the channel than a globular protein tag like GFP.  I fused 

the C-terminal end of the EspB N-terminal 1-346 amino acids fragment with Bla 

(EspB-N1-346-Bla), expressed it in the espB::tn mutant, and checked to see if it can 

be secreted.  Fortunately, I was able to detect the fused protein in the culture filtrate 
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[Fig. 24], indicating that this tag does not block secretion.  The next step would be to 

fuse this tag to the full length protein, though the challenge there is finding a location 

that won’t interfere with secretion.   

Another potential problem of using this tag is that mycobacteria have an endogenous 

β-lactamase protein that makes them resistant to β-lactam antibiotics.  This protein is 

cell wall associated so it likely never enters the cytosol; however, if it did contribute 

to background fluorescence then an Mm β-lactamase knock out strain would have to 

be made first. 

Future work to determine EspB translocation could potentially prove to be very useful 

for vaccine development.  If EspB is translocated and can transport a tag to the 

cytosol, it could also perhaps transport antigens that may boost protection. 

3.2.5 Chemical inhibition of ESX-1 activity 

 

EspB is an important virulence protein secreted by ESX-1, and cleavage of EspB is 

required for virulence and for the negative regulation of ESX-1 secretion (Ohol et al., 

2010).  It is now known that the protease responsible for cleaving EspB is MycP1.  

This protein is anchored to the cytosolic membrane and its protease domain is thought 

to be present in the periplasmic space between the membrane and the cell wall.  This 

location may be accessible to drugs that can permeate the cell wall.  Inhibition of 

MycP1 secretion would likely cause attenuation since it is required for assembly of 

the ESX-1 machinery.  Inhibition of MycP1 protease activitiy would also likely cause 

attenuation due to the effects already observed with non-cleaved EspB (Ohol et al., 

2010).   
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In our lab, we regularly use a cocktail of protease inhibitors supplied by Sigma-

Aldrich®, in order to limit protein degradation of Mm short-term cell lysate and 

culture filtrate samples.  When I added this cocktail to growing WT Mm in 7H9 liquid 

broth culture, I noticed that secretion of EspB, ESAT-6, and CFP-10 is ablated [Fig 

25A, lane 2].  My hypothesis is that 4-(2-Aminoethyl)-benzenesulfonyl-fluoride-

hydrochloride (AEBSF), the serine protease inhibitor present in the cocktail, is either 

inhibiting the secretion of MycP1 or the acitivity of other serine proteases that are 

important for the secretion of ESX-1 substrates.  I tested various concentrations of 

AEBSF on liquid broth cultures of WT Mm and found that it does limit EspB, ESAT-

6, and CFP-10 secretion in a dose dependent manner.  At 0.9 mM, no EspB or ESAT-

6 is detected, and CFP-10 secretion is much reduced [Fig. 25A, lane 5].   

I then wanted to see if AEBSF could limit intracellular growth of Mm in RAW cell 

macrophages, which would indicate that this inhibitor might be useful as a drug 

against mycobacterial infection.  I first tested to make sure that adding AEBSF to 

uninfected RAW cells would not harm the cells.  According to Sigma Aldrich ®, the 

maximum AEBSF concentration that can be tolerated by RAW cells is 0.25 mM; so I 

incubated the cells with 0.25 mM AEBSF for 6 and 24 hours, then used a resazurin 

cell viability assay to check for differences in growth between treated and untreated 

cells.  After 6 hours, the cell viability was reduced by about 25%, however, by 24 

hours, the cells recovered to non-treated levels [Fig. 25B].  

I then pretreated Mm with AEBSF before adding it to RAW cells to see if 

intracellular growth is reduced.  Cells were washed and processed in PBS to remove  
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Figure 25.  AEBSF can inhibit ESX-1 secretion and growth inside RAW cells. 

Panel A) Mm WT Sautons broth cultures were spun down, the pellets were washed, 

then resuspended in new broth to remove any previously secreted proteins.  The 

cultures were then treated with nothing (NI), 1x concentration of the Sigma Aldrich ® 

protease inhibitor cocktail, 0.1 mM AEBSF, 0.3 mM AEBSF, or 0.9 mM AEBSF for 

two hours. The culture filtrates were then collected and analyzed via Western blot for 

the secretion of EspB, ESAT-6, and CFP-10. Panel B) Untreated RAW cells and cells 

treated with 0.25 mM AEBSF for 6 and 24 hours were analyzed for cell viability by 

adding alamar blue, which is an indicator dye of metabolic activity.  Error bars 

represent the standard deviation of six wells per sample and time point.  Panel C) 

RAW cells were left untreated (NT) or treated with 0.25 mM AEBSF and then 

incubated for 0, 6, 24, or 48 hours with WT Mm that was either untreated (NT) or 

pretreated for one hour with 1.8 mM AEBSF, or with untreated Δmh3883 at an MOI 

of 2.  Infections were serially diluted and plated for enumeration of CFUs.  Error bars 

represent the standard deviation of each infection in triplicate. 
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all of the culture filtrate and yield a single cell suspension.  I then incubated the 

bacteria with 1.8 mM AEBSF for one hour so that subsequent secretion would be 

exposed to AEBSF inhibition.  Then I infected RAW cell monolayers, with pretreated 

bacteria both with and without 0.25 mM AEBSF added to the media.  For each 

timepoint I lysed the cells and assayed for bacterial CFU [Fig. 25C].  I found that at 

48 hours post-infection, pretreating the bacteria with AEBSF reduced the intracellular 

growth of Mm by about 50%.  Adding 0.25 mM AEBSF to the infection media 

reduced it even further; however the difference is not very significant.  The ∆mh3883 

(mycP1) mutant showed an even more significant reduction of intracellular growth, 

which is expected because this mutant was previously shown to be completely 

defective in ESX-1 secretion (Ohol et al., 2010).   

This very preliminary data is interesting; however I was not able to get consistent 

results in subsequent repeat attempts.  Also, pretreating the bacteria with AEBSF may 

reduce intracellular growth, however adding AEBSF to the host cells themselves 

doesn’t offer too much more protection, at least at the 0.25 mM concentration. When 

I added only 0.25 mM AEBSF to the cells without pretreating the bacteria there was 

no change in intracellular growth (data not shown).  Unfortunately, higher 

concentrations are likely to be toxic to the RAW cells.  What this very preliminary 

data does show however, is that the general targeting of serine proteases can affect 

ESX-1 secretion; therefore a drug that specifically targets MycP1 secretion may 

prove to be useful at treating mycobacterial infection.  
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3.3 Materials and Methods 

 

3.3.1 Generation of EspB mutants 

 

The transposon mutant, espB::tn was previously complemented using the PLYG206-

zeo episomal plasmid (Xu et al., 2007).  To make the domain mutants, inverse PCR 

was done on the complemented gene.  The following primer pairs were used: ∆L346-

S347: 5’ – GTTGGACGCCGCCTCGCGACCC – 3’ and 5’ – 

AAGGGCCTCGGCGTCAAACCGATGTC – 3’; ∆L346: 5’ – 

GTTGGACGCCGCCTCGCGACCC – 3’ and 5’ – 

TCCAAGGGCCTCGGCGTCAAACCGATGTC – 3’; ∆S347: 5’ – 

CAGGTTGGACGCCGCCTCGCGACCC – 3’ and 5’ – 

AAGGGCCTCGGCGTCAAACCGATGTC – 3’; W176A: 5’ – 

CGCGTTCTCGAAGATCCGGAACCGCTTGATG – 3’ and 5’ – 

GAGGGTGACGCCGCTACCGCCTG  – 3’; N1-346: 5’ – 

CAGGTTGGACGCCGCCTCGCG – 3’ and 5’ – 

TAGTCCGTCAGGACAGTCGTCAGGACAGTAAGG – 3’: C347-454: 5’ – 

CATGTCGGATCGTCCTCCTTAGTGCTCCATG – 3’ and 5’ – 

TCCAAGGGCCTCGGCGTCAAACCG – 3’.  PCR products were ligated, 

transformed into competent E. coli DH5α cells, and plated onto LB plates with 

Zeocin selection.  Plasmids were purified from positive clones and confirmed by 

sequencing.  Correct plasmids were transformed into the M. marinum espB::tn mutant 

by electroporation.  Mutants were chosen from 7H10 plates with Zeocin selection.  

For expression of N1-346 and C347-454 separately on the same plasmid, the N1-346 
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plasmid was cut at the multiple cloning site with EcoRI and BamHI.  The primer pairs 

(5’ – GAATTCCTACTTGTTGTCCTGACGGCGGCGG – 3’ and 5’ – 

GGATCCCTCCAAGGGCCTCGGCGTCAAACCG – 3’) were used to amplify 

C347-454 and add the restriction sites.  The cut plasmid and insert were ligated and 

then transformed into competent E. coli DH5α cells as with the initial mutants.   

3.3.2 Preparation of short term culture filtrate and cell lysate. 

Mycobacterium marinum M strain WT and mutants were cultured as previously 

described (Gao et al., 2003b; 2006).  Short term culture filtrate and cell lysate were 

prepared as previously described (Xu et al., 2007).   

3.3.3 Western blotting. 

 

Proteins were separated on a 4%-20% gradient SDS-PAGE gel, and then transferred 

to a 0.45µm PVDF membrane. Membrane was blocked with 1% Bovine Serum 

Albumin (BSA) for one hour, then primary antibody was added either at room 

temperature for two hours or overnight at 4°C.   Subsequently, the membrane was 

washed and then incubated with HRP-conjugated secondary antibody (BioRad) for 

one hour.  SuperSignal® West Pico Chemiluminescent substrate (Thermo Scientific) 

was added to detect HRP and then developed onto X-Ray film (Thermo Scientific).  

Primary antibodies were used at the following dilutions: anti-ESAT-6 (Mab HYB 

076-08 – Santa Cruz Biotechnology) at 1:300; anti-CFP-10 (Colorado State 

University) at 1:5000; anti-Rv3881c (Michael Lodes, Corixa Corporation, Seattle) at 

1: 6000; anti-Fap (Eric Brown, University of California, San Francisco) at 1: 2500; 



 

 107 

 

anti-GroEL (Colorado State University) at  1:100; anti-p-GSK3β (Cell Signaling) at 

1:1000. 

3.3.4 RAW cell maintenance and infection 

 

RAW cells were cultured as previously described (Gao et al., 2003b). Infection of 

RAW cells and enumeration of intracellular CFU were as previously described (Gao 

et al., 2003b).  Briefly, Mycobacterium marinum strains were added as a single cell 

suspension to RAW cells at a multiplicity of infection of 2 and incubated at 32°C 

with 5% CO2 for two hours. To ensure the removal of extracellular bacteria, cells 

were washed three times with PBS then media was added for one hour containing 100 

µg/ml of streptomycin.  Cells were washed again and then incubation continued for 

each time point in DMEM growth media containing 4 µg/ml of streptomycin.  At 0, 

24, 48, 72, and 96 hours post infection, the cells were lysed using a 0.1% Triton X-

100 solution in sterile water.  Cell lysates were diluted and spotted onto 7H10 plates 

for enumeration of bacterial CFU.   

3.3.5 Zebrafish infection 

Zebrafish were obtained from Dr. Shaojun Du’s lab at the University of Maryland, 

Biotechnology Institute in Baltimore, MD.  They were maintained as previously 

described (Lee et al., 2003).  Fish were anesthetized in 0.04% tricaine (ethyl 3-

aminobenzoate methanesulphonate) (Sigma Aldrich) for 3-5 minutes then injected 

into the peritoneum with 5 µl of PBS containing 2x10
4
 bacteria.  Eight fish were 

infected per strain and the experiment was maintained for 10 weeks.  The same 

volume of PBS without bacteria was injected into control fish. 
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3.3.6 In vitro growth rates of EspB mutants. 

Mm WT, espB::tn, and EspB mutants were diluted in DMEM growth medium to an 

initial concentration of 1x10
6
 cells/ml and allowed to grow at 32°C with 5% CO2. For 

each time point, the cultures were serially diluted in 1X PBS in triplicate and plated 

onto 7H10 agar plates for enumeration of CFU.   

3.3.7 Generation of translocation tagged EspB proteins. 

To create the EspB-N1-346-Cya tagged construct, amino acids 2-399 of the B. 

pertussis, cya gene was amplified from a plasmid containing the gene. The SpeI 

restriction site was added to the reverse primer, R-Cya: 5’-

ACACCCGACGTCAACCAGCAATCGCATCAGGCTGGTTACGC-3’ and F-Cya: 

5’-CAGCACTAGTCTAGCGTTCCACTGCGCCCAGCGACG-3’.  The plasmid 

containing the N-terminal 1-346 amino acid fragment of EspB was also amplified 

with a complementary Cya sequence added to the primer: F-EspB-N: 5’-

CATGACTAGTCTGGAGGAAACCCCCAAGGTGGCG-3’ and R-EspB-N: 5’-

GCCTGATGCGATTGCTGGTTGACGTCGGGTGTGCCGCCCG-3’.  PCR 

products were run on an agarose gel and gel purified using the Wizard SV Gel and 

PCR Clean-UP system from Promega.  Then the two fragments were fused together 

via PCR using the reverse Cya primer and the forward EspB-N primer.  Fusion 

products were run on an agarose gel and gel purified.  The product and the plasmid 

were cut with the NotI and SpeI restriction enzymes and then the vector and insert 

were purified from agarose gel and ligated together.   
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To create the EspB-N1-346-GSK tagged construct, the GSK sequence  and an SpeI 

restriction site was added to the forward primer and then the EspB-N1-346 fragment 

was amplified from the plasmid: EspBNGSK-F: 5’-

GCTGACTAGTCTAACTTTCAGCGAAACTAGTAGTGCGAGGGCGACCACTC

ATGTTGACGTCGGGTGTGCCGCCCG-5’.  R-EspB-N was used again as the 

reverse primer. The product was purified from an agarose gel and then the vector and 

insert were digested with SpeI and NotI.  The pieces were gel purified and ligated 

together.  

To create the EspB-N1-346-Bla tagged construct the bla gene, minus the SecA 

secretion signal, was amplified from the pUC19-bla plasmid. The SpeI restriction site 

was added to the reverse primer, EspBNbla-R: 5’-

ACACCCGACGTCAACCACCCAGAAACGCTGGTGAAAGTAAAAGATGC-3’ 

and EspBNbla-F: 5’-

CAGCACTAGTCTACCAATGCTTAATCAGTGAGGCACCTATCTCAGC-3’.  

The plasmid containing the N-terminal 1-346 amino acid fragment of EspB was also 

amplified with a complementary Bla sequence added to the forward primer: 

EspBNBla-F: 5’-CAGCGTTTCTGGGTGGTTGACGTCGGGTGTGCCGCCCG-3’ 

and R-EspB-N was used again as the reverse primer.  PCR products were run on an 

agarose gel and gel purified using the Wizard SV Gel and PCR Clean-UP system 

from Promega.  Then the two fragments were fused together via PCR using the 

reverse Bla primer and the forward EspB-N primer.  Fusion products were run on an 

agarose gel and gel purified.  The product and the plasmid was cut with the NotI and 
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SpeI restriction enzymes and then the vector and insert were purified from agarose 

gel and ligated together.   

Ligation products were transformed into competent E. coli DH5α cells as with the 

EspB mutants described in section 3.3.1 

3.3.8 AEBSF inhibition of Mm WT ESX-1 secretion.   

Mm WT was grown in 30 ml Sautons liquid broth culture until confluent. The 

cultures were spun down at 3800 rpm for 10 minutes, and the pellets were washed 

and then resuspended in fresh Sautons broth to remove any previously secreted 

proteins.  The cultures were then treated with 1x concentration of the Sigma Aldrich 

® protease inhibitor cocktail, 0.1 mM AEBSF, 0.3 mM AEBSF, 0.9 mM AEBSF or 

left untreated for two hours.  The cultures were spun again and the culture filtrate was 

prepared as previously described (Xu et al., 2007). 

3.3.9 AEBSF affect on RAW cell viability. 

A monolayer of RAW cells were seeded in a 96-well plate and incubated with 0.25 

mM AEBSF or without for six or 24 hours at 37°C with 5% CO2.  Then 10% alamar 

blue (Serotec) was added to each well and incubated for an additional four hours.  

Fluorescence was read at an excitation of 560 nm and emission of 590 nm to 

determine metabolic activity.   

3.3.10 Affect of AEBSF on Mm intracellular growth in RAW cells. 

RAW cells were seeded into 96 well plates at a concentration of 2.5x10
5
 cells/ml and 

incubated at 37°C with 5% CO2 for two days.  Bacterial cultures were processed in 1x 
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PBS to get a single cell suspension then either treated with 1.8 mM AEBSF for one 

hour at 32°C, or left untreated.  RAW cells were either treated with 0.25 mM AEBSF 

for 30 minutes or left untreated.  Bacteria were added to RAW cells at an MOI of 2 

and incubated at 32°C with 5% CO2 for two hours.  Cells were washed twice with 1x 

PBS to remove extracellular bacteria and then fresh infection media was added with 

100 μg/ml streptomycin to kill remaining extracellular bacteria.  Cells were incubated 

for 1 hour and then washed again.  Fresh media with 4 μg/ml streptomycin was added 

and then the cells were incubated for the various time points.  At each time point the 

cells were lysed with 0.1% Triton X-100, then serially diluted and plated onto 7H10 

plates for enumeration of CFU.  

3.4 Discussion 

 

In this study, I showed that the EspB full-length protein is required for virulence.  

Since expression of the C-terminal fragment is sufficient to secrete some ESAT-6, the 

N-terminal fragment is somewhat dispensable for the codependent secretion.  The C-

terminal fragment alone however, is not able to complement the intracellular growth 

defect or attenuation in zebrafish of the espB::tn mutant.  Therefore, the N-terminus is 

required for virulence, independent of its role in aiding ESAT-6 secretion.  I showed 

that the N-terminal fragment is able to secrete independent of ESX-1.  How it gets out 

is not known.  It has been demonstrated that the full length EspB protein absolutely 

requires a functional ESX-1 system for secretion (McLaughlin et al., 2007); therefore, 

it seems likely that the C-terminus confers specificity for EspB to secrete only via 

ESX-1.  This may be an important part of the N-terminal virulence function since I 

showed that the N-terminal fragment alone is not able to complement intracellular 
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growth defects or attenuation in zebrafish of the espB::tn mutant.  The N-terminal 

fragment requires codependent secretion of ESX-1 substrates in order to carry out its 

virulence function.  In fact, when I expressed the N- and C-terminus separately on the 

same plasmid, there was not a significant increase in intracellular growth inside 

macrophages.  Therefore, expression of the full length protein is required for 

virulence.  Because espB::tn was previously shown to play a more profound role in 

the inhibition of phagolysosome fusion than the ∆CFP-10/ESAT-6 mutant (Xu et al., 

2007), it is my hypothesis that the N-terminal fragment of EspB is translocated 

through the ESAT-6 formed pore in order to directly modulate vesicle trafficking.  It 

is possible that the tight association of ESAT-6 and the full-length EspB protein is 

required for this targeting.  I created several EspB N-terminal fragment fusions with 

potential translocation tags that have previously been used to identify translocated 

type III and type IV secreted proteins in Gram-negative bacteria.  Two of the tags, 

Cya and GSK, cannot be used in the ESX-1 system; Cya is too large, and GSK can be 

phosphorylated by a mycobacterial kinase.  The Bla tag has some potential for future 

studies, since I was able to show that it can be secreted.   

This study also shows that the potential cleavage site of EspB at L346 is important for 

intracellular growth in macrophages and virulence in zebrafish.  It supports the 

conclusion made by Ohol et al., 2010 that cleavage of EspB is required for regulating 

ESX-1 secretion. In my cleavage mutants I detected a significant increase in ESAT-6 

secretion.  ESAT-6 is an important virulence protein that is required for survival of 

mycobacteria inside the host phagosome, however too much secretion of ESAT-6 

leads to attenuation.  I agree with the hypothesis of Ohol et al., 2010 that 



 

 113 

 

mycobacterial survival inside the phagosome is dependent on the ability of the 

bacteria to create a delicate balance between the secretion of virulence factors that 

modulate the phagosome environment, and being able to evade detection from the 

host immune system. The modulation of the phagosome environment is dependent on 

the secretion of ESX-1 substrates, however if too many of these strong antigenic 

proteins are secreted, then the host is able to activate their defenses to a level 

sufficient for clearing the infection.  This idea is supported by the secretion profile I 

observed from the EspB WXG mutant.  In this mutant, ESAT-6 and EspB secretion is 

greatly reduced, yet there is no defect in intracellular growth inside macrophages or 

virulence in zebrafish.  Therefore, the virulence function of ESAT-6 and EspB can be 

accomplished without having an excess of secreted protein.  Some is required, but it 

must be regulated.   

The WXG motif is one of the factors that define the WXG100 superfamily of ESAT-

6-like proteins. It is highly conserved among species, though no function has been 

attributed to it.  Even though EspB has a WXG motif, it is not a member of the 

WXG100 superfamily because of its large size.  Still, the motif is highly conserved in 

EspB homologs across mycobacterial species, indicating that it may be important for 

secretion or virulence. One study by Brodin et al., 2005 showed that mutating the 

ESAT-6 WXG motif does not lead to a secretion defect, but does cause attenuation.  I 

found that the EspB WXG motif is involved in the codependent secretion of EspB 

and ESAT-6.  In this mutant, secretion is much reduced for both proteins, yet the 

mutant is as virulent as the espB::tn+EspB complement strain.  Non-pathogenic 

species of Gram-positive bacteria have WXG100 proteins in their genome, so the 



 

 114 

 

WXG motif cannot be strictly attributed to virulence. Being so highly conserved 

indicates that the role of WXG is structural.  Perhaps for some proteins, like EspB the 

structural role aids in secretion, while in others, like ESAT-6, it enables the protein to 

carry out its virulence function. It is also possible that the ESAT-6 WXG mutation 

affects the secretion of other important ESX-1 substrates, and the attenuation 

observed by Brodin et al., 2005 is due to this secretion codependence.   

Because the ESX-1 secretion system is so important for mycobacterial virulence, its 

constituents could prove to be excellent drug targets; either the components that make 

up the secretion machinery, or the virulence effectors that are secreted from it.  I was 

able to demonstrate the potential of using the inhibitor, AEBSF to target serine 

proteases that are important for ESX-1 secretion.  Adding AEBSF to wild type Mm 

liquid culture leads to a reduction in ESX-1 secretion and pretreatment of WT Mm 

with AEBSF leads to a reduction in intracellular growth inside RAW cells.  It is 

possible that this drug is able to target the secretion of MycP1 which is a serine 

protease known to be involved in the secretion of EspB.  I got inconsistent results 

when I tried to replicate this experiment, but future work may prove very promising.   
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Chapter 4:  Significance of this work 
 

This dissertation focuses on the importance of ESX-1 as a specialized secretion 

system and its mechanism of virulence inside host cells.  In Mtb ESX-1 has been 

shown to be required for virulence in mice and growth in macrophages.  It is also 

required for the inhibition of phagolysosome fusion, as well as the modulation of host 

immune responses which result in reduced expression of IL-12 and TNF-α (Stanley et 

al., 2003; Hsu et al., 2003; Guinn et al., 2004; MacGurn and Cox, 2007).  In Mm 

ESX-1 has been shown to be required for virulence in zebrafish, cytolysis, escape 

from the phagosome, and granuloma formation (Gao et al., 2004; Tan et al., 2006; 

Volkman et al., 2004).  Several of the individual substrates secreted via ESX-1 are 

also required for virulence and survival inside host cells.  The functional mechanism 

of these substrates however, is difficult to discern given the codependent nature of 

their secretion.  ESAT-6, CFP-10, and EspB for instance are all codependent for 

secretion.  Therefore, the mutant phenotype observed by one could be due to reduced 

secretion of another. 

In Chapter 2, I demonstrated using purified ESAT-6 protein that it could form pores 

in red blood cells and murine macrophage membranes.  Identifying ESAT-6 as a pore 

forming toxin is a big step toward understanding the function of this protein.  

However, several questions still remain.  ESAT-6 is involved in several important 

ESX-1 survival strategies; such as inhibition of phagolysosome fusion, macrophage 

cytokine signaling, and inhibition of TLR-2 signaling (Stanley et al., 2003; Hsu et al., 
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2003; Pathak et al., 2007).  Are these all direct effects of the ESAT-6 protein or are 

they indirectly attributed due to its pore forming function?   

ESAT-6 has been shown to directly associate with both CFP-10 and EspB.  The 

association it has with CFP-10 exhibits high affinity both inside the cytosol and also 

in the culture filtrate after secretion (Renshaw et al., 2002; de Jonge et al., 2007); 

however, the pore forming ability of ESAT-6 is not dependent on CFP-10 (Smith et 

al., 2008) and it has been shown that ESAT-6 and CFP-10 dissociate under acidic 

conditions (de Jonge et al., 2007).  It seems likely that the association of ESAT-6 and 

CFP-10 is dependent on environmental factors that are sensed by the complex upon 

secretion.  The acidic nature of the phagosome may cause the dissociation of ESAT-6 

and CFP-10 so that ESAT-6 can insert into the host membrane. 

Eventually, ESAT-6 pore formation may allow Mm to escape the phagosome and 

spread from cell-to-cell (Smith et al., 2008).  This may be a feature that is Mm 

specific since the predominant thought is that Mtb does not escape (Clemens et al., 

2002; Russel et al., 2001).  Escape may be an adaptation that evolved in Mm given 

the diverse natural hosts and environments that it resides in.  Even if Mtb doesn’t 

escape the phagosome, it has been shown to have cytolytic properties, and the Mtb 

ESAT-6 protein can complement the Mm ∆ESAT-6 mutant, indicating a conservation 

of function (Gao et al., 2004).  It has also been clearly demonstrated that Mm is able 

to inhibit phagolysosome fusion and induce granuloma formation, similar to Mtb.  

Given that these two mycobacterial species have very similar persistence 

mechanisms, it seems likely that the pore forming function of ESAT-6 would 

somehow function for the benefit of Mtb as well.   
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ESX-1 secretion has been shown to be regulated at several levels.  EspR as discussed 

in section 1.6.3, has been shown to bind the promoter of the Rv3614c-Rv3616c 

operon and activate transcription (Raghavan et al., 2008).  This operon encodes the 

EspA protein that is secreted via ESX-1 and is required for virulence (MacGurn et al., 

2005).  EspA is codependent with ESAT-6 for secretion, which is codependent with 

CFP-10 and EspB; therefore, EspR secretion negatively regulates the whole ESX-1 

system by reducing the transcription of espA.     

Cleavage of the EspB protein by MycP1 is also involved in the negative regulation of 

ESX-1 secretion.  Recently, Ohol et al., 2010 showed that a protease deficient MycP1 

protein is unable to cleave EspB, resulting in an increase in ESX-1 substrate 

secretion.  My data in Chapter 3 supports their results; I showed that mutating the 

cleavage site of EspB so that it cannot be cleaved by MycP1, leads to an increase in 

ESAT-6 secretion.  This increase in ESAT-6 secretion results in a defect of growth 

inside macrophages and attenuation in zebrafish.  I also showed that the highly 

conserved WXG motif present in the N-terminal fragment of EspB is involved in the 

secretion of ESX-1 substrates.  This mutant showed reduced secretion of both ESAT-

6 and EspB.  Interestingly, this reduced secretion does not cause a defect in 

intracellular growth inside macrophages and does not affect virulence in zebrafish.  

Together this data indicates that cleavage of EspB is required for regulating the 

amount of ESX-1 substrates that are secreted.   

The regulatory controls observed thus far in the ESX-1 system seem to be important 

for making sure that the right amount of virulence effectors are secreted.   Secretion 

of ESX-1 substrates is required in order for mycobacteria to create an amenable 



 

 118 

 

environment inside the phagosome and survive host defense mechanisms. However, 

if there is too much secretion of ESX-1 substrates, it’s likely that the potent antigens 

activate too many host defenses and the bacteria are no longer able to persist.  Like 

the story of “The Three Bears”, mycobacteria must secrete their effectors to create an 

infection-protection balance that is “just right”.   

It is possible that Mm is regulated differently than Mtb, and when environmentally 

triggered, it upregulates ESAT-6 secretion in order to disturb phagosome membrane 

integrity, allowing the bacteria to escape to the cytosol. It has been shown that Mm 

and Mtb do not have the exact same ESX-1 secretion profile.  The EspF protein, for 

example is expressed much more abundantly in Mm than it is in Mtb (DiGiuseppe 

Champion et al., 2009).  During the persistence stage of both Mm and Mtb, it is my 

hypothesis that ESX-1 is able to translocate the tightly regulated virulence effectors 

through the ESAT-6 formed-pore and modulate the host environment. This would 

explain how ESAT-6 is able to aid Mm escape, but also explains how the pore 

forming ability of ESAT-6 contributes to the other phenotypes observed in both Mm 

and Mtb that allow for intracellular survival.  If pores induced by ESAT-6 allow for 

the translocation of other ESX-1 virulence effectors, then the question arises, which 

ones? 

EspB seems like a likely candidate since it associates with ESAT-6, and is required 

for virulence and the inhibition of phagolysosome fusion (Xu et al., 2007; 

McLaughlin et al., 2007).  It has been shown that the C-terminus is important for the 

secretion of ESAT-6 however, no function has yet been attributed to the N-terminus.  

Cleavage of EspB into a 50 kDa N-terminal fragment and an 11 kDa C-terminal 
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fragment are important to negatively regulate ESX-1 secretion.  Interestingly, I 

showed that when the N terminus is expressed without the C-terminus it is still 

secreted independent of ESX-1, though ESAT-6 is not secreted.  Apparently, the full-

length protein is necessary for targeting of the EspB protein to the ESX-1 channel.  

Since the C-terminus is involved in secretion, then what is the purpose of the N-

terminus?  Is its purpose solely to aid secretion of other substrates, or does it play a 

more direct role in virulence?   

I showed that the C-terminal fragment is sufficient to secrete ESAT-6 however, this 

did not restore virulence.  Likewise, the N-terminus is able to secrete independent of 

ESX-1, yet expressing only this fragment does not restore virulence either.  This 

indicates that the N-terminus does play a role in virulence beyond secretion, yet the 

secretion of ESAT-6 and possibly other ESX-1 substrates is required in order for 

EspB to carry out this function.  Determining the intracellular localization of the 

EspB protein would be a great breakthrough in understanding its contribution to 

virulence.  My preliminary work in this effort demonstrated that the Bla tag could 

potentially be used in future studies to determine if EspB is translocated into the host 

cell cytosol.  This tag has been used previously to identify translocated proteins of 

type III and type IV secretion systems, and I showed that it can be secreted in Mm 

when fused to the N-terminal fragment of EspB.    

My research has contributed to a new model of ESX-1 secretion [Fig. 26].  In this 

model, ESAT-6 associates with the other secreted substrates in the cytosol, including 

EspB.  Upon secretion across the cytosolic membrane, EspB is cleaved by MycP1 at 

the L346 cleavage site; this cleavage modulates subsequent secretion through the  
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Figure 26. A new model of EspB secretion. (1) EspB is known to associate with 

Mh3879c and ESAT-6 in the cytosol.  ESAT-6 in turn associates with other proteins 

that may all be targeted to the ESX-1 channel as a complex. The EspB C-terminus is 

required for the codependent secretion of ESAT-6, and the WXG motif in the N-

terminus also seems to play a role, perhaps by interacting with other proteins in the 

secretion complex or the ESX-1 machinery.  The EspB N-terminal fragment seems to 

play a direct role in virulence, though expression of the full length protein is required 

for full function.  This is perhaps because a close association with ESAT-6 is 

necessary for this function.  Mh3879c associates with the Mh3871 channel ATPase 

and may act as a chaperone to target EspB and associated proteins to be secreted. (2) 

Once EspB is secreted across the inner membrane channel it is cleaved by MycP1.  

Cleavage of EspB at the L346-S347 cleavage site is required for virulence and may 

act to negatively regulate secretion of other ESX-1 substrates. (3) I demonstrated that 

ESAT-6 is able to form pores in macrophage membranes.  The purpose of this pore 

forming ability is not known.  Because of the tight association of full-length EspB 

and ESAT-6 that is required for virulence, it seems plausible that ESAT-6 forms 

pores in the phagosome membrane and the EspB N-terminal fragment is translocated 

into the host cell in order to carry out its virulence function. 
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channel.  The N-terminus then goes on to carry out its virulence function with the 

help of ESAT-6.  It is my hypothesis that EspB translocates through the ESAT-6 

formed pore into the host cell cytoplasm and its targeting enables the bacteria to 

persist inside a more amenable phagosome environment.    

Understanding the function of ESX-1 secreted substrates has great future 

implications. Because the substrates are codependent for secretion, drugs that target 

individual substrates can lead to major disruptions in ESX-1 secretion which is 

required for mycobacterial virulence.  Since I’ve shown that ESAT-6 is a pore 

forming toxin, it may be possible to identify drugs that interfere with its ability to 

insert into the membrane.  It is my hypothesis that EspB is translocated through the 

ESAT-6 formed pore where it likely tarets a host protein(s).  If future experiments 

confirm this hypothesis, then EspB could potentially be a very promising drug target.  

Its location in the cytosol would make it more accessible to drugs than proteins inside 

the phagosome.  Future efforts to identify the host protein(s) that EspB associates 

with may present an assay to screen for drugs that are able to interfere with EspB 

function.  Drugs targeting the secretion of EspB could also be used as targets for drug 

therapy.  MycP1 could prove extremely promising given its location in the cell wall.  

A drug that interferes with the ability of MycP1 to associate with the secretion 

machinery could lead to an attenuation phenotype similar to what is observed in the 

mycP1 mutant.  My preliminary data using the general serine protease inhibitor, 

AEBSF showed that this kind of targeting could interfere with ESX-1 secretion.  Our 

lab has been working to develop a new vaccine against Mtb using Mm.  Mm is an 

opportunistic human pathogen but we’ve discovered that mutation of the iipA gene 
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that is involved in cell wall assembly causes further attenuation (Gao et al., 2006).  

Since, Mm has a functional ESX-1 secretion system it secretes potent T-cell antigens, 

including ESAT-6 and EspB that may illicit a stronger immune response than BCG, 

offering better protection against Mtb infection.  If EspB is found to be translocated 

into the host cell cytosol it would be able to prime CD8
+
 T-cells. This could 

potentially be useful as a means to boost vaccine protection if the protein were tagged 

with other strong antigenic peptides.   

One-third of the world’s population is infected with Mtb and 2-3 million people die 

from the disease each year (World Health, 2009).  This staggering statistic really 

underlines the importance of finding better ways to prevent and treat this devastating 

disease.  
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