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0. Introduction. s

We shall prove a deterministic and constructive maximum
entropy theorem for the real line. The exact statement is given
in Theorem 2.6. The essential feature of the theorem is an ine-

guality of the form,

X

s
(0.1) J dog G(7) 4, . l log S(z) g,

. n(1+72) n(1l+y ")
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—x
where S 1is a computable non-negative integrable function on the
real line which extends given continuous data on an interval and
where G 1is any one of a large class of functions extending the
same data.

The classical maximum entropy fheorem for discrete data is
due to Burg, and Theorem 2.1 is the deterministic version of his
result. In our view, and from a mathematical perspective, Theorem
2.6 is the continuous analogue of this deterministic theorem.
There are also continuous analogues of Burg's theorem due to Dym
and Gohberg [5] and Chover [2]. The former differs from Theorem

2.6 in using different logarithmic integrals than (0.1), thereby
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necessitating another presentation including both hypotheses and
proof. The latter states a logarithmic inequality similar to
(0.1), but is non-constructive and probabilistic, and has a dif-
ferent interpretation than Theorem 2.6.

Our notation is given‘in Section 1. Section 2 contains
necessary aefinitions and discussion as well as statements of
Burg's theorem (Theorem 2.1) and our result (Theorem 2.6).
Theorem 2.6 is proved in several steps in Section 5; and we
collect the little Fourier analysis required for the proof in
Section 4. In Section 3 we focus on our chief hypothesis in
Theorem 2.6 and pose a natural extension problem associated with a

classical theorem due to Krein.

1. Notation.

¥ 1is the real line thought of as the time axis, and F Iis
the real line, the dual group of [k, thought of as the freguency
axis. Z designates the Iintegers and FQ = é/ZQZ is the compact
group identified with the interval ([-Q,Q) for Q > 0 fixed; we

write T instead of F”. Ll(E) is the space of complex
(¢ )-valued Lebesgue integrable functions G on ¥, normed by
G 1 - = j]G(})Id}, where "J" denotes integration over k.
L7 (%)
Ll(TQ) is the space of (-valued 20-periodic locally Lebesgue
integrable functions F on &, normed by IFI 1 =
L (TQ)
1 0
s IF) 1.
2Q ~0
The Fourier transform of G € Ll(E) is




r
| -2nity

é(t) = JG(r)e dy, te®,

The Fourier series of F € L1(¥Q) is :E:ﬁ(j)e"ijr/Q. summed over

-

Z, wWith Fourier coefficients,

0
( F(r)e 1737/,
-0

F(3) = 35

"F" is not the cusfomary notation for Fourier coefficients, but
here we wish to distinguish it from "F". A(TQ) is the space of
absolutely convergent Fourier series. For series of scalars we
write Zak instead of Z a -
k=Z\ {0}

If X< F we write PD(X) to denote the set of continuous

functions R : X-X—C for which
. z ctcuR(t-u) > 0+
t,usF

for all finite sets F <« X where X-X = {(t-u : t,u <€ X}. PD(¥)
is the usual space of continuous positive definite functions on

¥, Our setting in the sequel will be to take data D ¢

PD([-T/2,T/2]) for a fixed time T > O.

An (N+1)x(N+1) matrix R(N) = ¢ and j,k =

(rjk)l rjk €
Q,...,N, is hermitian if rjk = rkj;

R(N) is positive definite if

(1.1) chckrjk 2 O

for all (N+1)-tuples of complex numbers c_. and if equality in

and an hermitian matrix

(1.1) implies each cj = 0, An (N+1)x(N+1l) matrix R(N) is

Toeplitz if it is constant on all diagonals of negative slope.



2. Maximum entropy theorems.

The following is Burg's theorem, which we use in Section 5.

We refer to [4:;9] for recent conceptually interesting proofs.

cr, = .
j i- T3

> 0} € €. Assume the (N+1)x(N+1)

Theorem 2.1 (Burg, 1967). Given N,Q > 0 and ({r

where |[jl.< N and ry

hermitian Toeplitz matrix,

R(N) = (rj_k)l Jlk = OI"'INI
is positive definite. There is a unique positive element SQ €
A(TQ) with Fourier coefficients {sj : j € £} such that
vV |jl « N, s, = r.
I3l j j
and such that for every positive element F = A(TQ) satisfying
the condition, F(j) = rj for |jl < N, the inequality,
* 20 20
1 .1 NV ds
(2.1) 20 ] log F(;)d) = 0 ] log S{(,)ds,
0 0
is obtained.
Definition 2.2. Given N,Q, and {rj : ;j =T where |j] = N
and ro > 0) ¢ ¢, The Fourier series SQ of Theorem 2.1 is the
Burg maximizer for the cbrrelation data {rj}.
Remark 2.3. SQ has the explicit form
iy /Q, _ wiy /@, 2
ole ) = p,/IPyle D
where
N
wip /Q, _ z mijy /Q
PN(e ) - pje
J=0

is the Szegé polynomial of degree N and Py is a normalizing



constant. The gquadratic

duct of polynomials with
ijpkrj—k is the norm
(especially the property
..

not identically Zzero,

a|

ensures that

orthogonality

IPNI on which, in

YQ,

lPNI > 0, is

orthogonality

[9].

In order to formulate the

of the real line,

L(F

we have

we introduce

N -
form zl,ajbkrj—k defines an inner pro-

coefficients {aj} and {bj). As such,
HPNH of Pyi . @nd the fact (rj_k) >> 0

:E:ajakrj—k = 0 implies each ay = 0),

is a genuine norm. Therefore, since PN is

HPNu > 0. This positivity and the

of Sze96 polynomials characterizes the positivity of

turn, allows us to define SQ. The fact,

due to Szegé; but the characterization in terms of

has been most simply and elegantly established in

analogue of Theorem 2.1 for the case

the following class of functions.

Definition 2.4. Let ) be the set of continuous, positive
elements G € Ll(P) for which
(2.2) JM d; > —«x
w(1+; ")

and

PR
(2.3) sup == :E: 1G6(2-)| < «.

031 20 L 1 2Q
J=—%
For positive G = Ll(é) (or, more generally, for positive G
satisfying J—Eillé— dy < ®), condition (2.2) is eqgquivalent to
w{1l+y°)
the fact that G is in the Cartwright class, i.e.,
. 2 1.2

(log G(r))/(n(1+y ) € L (X).
Example 2.5. Let G(;) = 1/(ﬂ(1+72)). Then G(t) = exp(-2n]|t])

so that



1 -5 1 1
50 :E:|G(§6)| 55t

by the integral test. Therefore, since

[ngg—giLll dy < C + K [ lgg—i d; < o,
(14 7) 7210 72

we have G € L(R).

We are now in a position to state our main result.

Theorem 2.6. Given T > 0 and D € PD[-T/2,T/2]. For each ¢ >

0, let s, e A(~ be the Burg maximizer for the data rj =

Q)

D(%ﬁ)' IjI < 2TQ. If G e L(F) has the property that G = D on

[-T,T] then

1
, logl55S, (#)1
(2.4) J log G{(#) 4 < lim { 2Q7Q

5 dy < o,

n (145 °) Qe w (147 2)

As menticned in the Introduction, the proof will be given in

Section 5.

Remark 2.7. a. Theorem 2.6 can be extended tc a larger class

than L(*), e.g., [1, pp. 158-161] treats such an extension for
T Of course, it may happen that there are no elements of L(F)
whose transforms extend the given data; this issue is discussed in

Section 3.

b. If property (2.2) of Definition 2.4 fails then Theorem

2.6 is immediate.

3. Extension and transition results.

The material in this section is not needed in the proof of

Theorem 2.6; however, it illustrates the role of the PD[-T/2,T/2]



hypothesis and indicates some of the subtlety involved in choosing
G > 0 for which é =D on [-T,T].

We begin by stating Krein's theorem [8] on positive definite
extensions, and then show that the transition from positive defi-
nite data on ® to positive definite matrices can be effected for

specific extensions by means of a Fourier unigueness argument.

Theorem 3.1 (Krein, 1940). Let X = [-T/2,T/2) for a fixed T >
0. For each D € PD(X) there is P € PD(F) for which P =D on
X-X.

Krein's theorem has had several significant lines of develop-
ment, e.g., [3,10] give the flavor, plus further references, of

two such developments. Besides providing a new proof of Theorem
3.1, Rudin [10) also demonstrates its failure in ?n, n > 1.

Problem 3.2.  In light of Theorem 2.6, where we suppose G € L(P)

has the property, G =D on [-T,T], it is natural to ask for

the following refinement of Krein's theorem: find further condi-
tions on D (in Theorem 3.1) to ensure that the resulting P = é
has the property that G ¢ Ll(é) and G 1is positive a.e. Of
course, from Bochner's theorem we know that P (in Theorem 3.1)

-

is G for some positive bounded measure G. In this regard, and
in light of our assumption (and goal of weakening it) in Proposi-
tion 3.3, we point out that, because of the existence of totally

disconnected sets having positive measure, there are non-negative
functions G € Ll(é) for which supp G = é but for which the

argument in Proposition 3.3 fails.

Proposition 3.3. @Given T > 0 and D < PD[-T/2,T/2]. Assume




there is a positive element G € Ll(?) for which G = D on

[-T,T]. PFor a fixed N > 0, define

J
and the (N+1)x(N+1l) Toeplitz matrix R(N) = (rj-k)’ j.k =
0,...,N. R(N) is hermitian and positive definite.

Proof. Since D € PD[-T/2,T/2] it is sufficient to prove that

cO = ,.. = CN =0 if :E:Cjckrj—k = 0.
By our assumption, rj—k = G({{j-k)T/N); and, so, if
chckrj—k = 0 we have
_ - . (j-k)T, _ }Z -2nikTy /N, 2 Al
(3.1) o = chckG(——-N———) =11 cpe 12607 )d ,

where the fact that tj—tk = tj—k’ for tj = jT/N, 1is essential

to the calculation. Since G > 0 a.e., {3.1) allows us to con-

-2nikTy /N _ - ,

is identically zero. Consequently, by Fourier unigqueness or prop-

clude that

erties of polynomials, each cj = 0, g.e.d.
4. A lemma from Fourier analysis.
Given G < Ll(?). We set

4 9]
G, (7) = 20 Z G(y+2kQ), » € R.

k=-w
. q . . 1,. . .
GQ is 2Q-periodic on ¥ and, in fact, GQ € L (LO) since it is
obvious that IIG, | < Gl . . We also define the Egiér
" Q " 1 ~ " 1 " Rt
L (;Q) L (%)



kernel {wa :a > 0},

2n| Ay
2
. ) - _ _1rd
recalling that wa(t) = Aa/(2n)(t)' where Ab(t) = max (1 5 ,0).
The following is well known, e.g., [6;7].
Lemma 4.1. Given F € Ll(YQ), let Fe be the canonical exten-
sion of F as a 20-periodic function on F. Then, for each a >

0, we have

IF w_|l - < 20 sup w_(x) | IIFH
ealz) [2; ye2k0,2(k+1)0] 2 ] !

Remark 4.2. The proof of Lemma 4.1 is clear since

® 2(k+1)Q

lFe(f)wa(r)Idr.

F_w_Il -~ %
e a Ll(?) Q

“ ’ k=-w 2k0

Also, wa(O) = a/{(27r) and 0O =z w_{(7) = a/(2w3k2) for ; =

[2nk/a,2n(k+1)/a]; k 2 1. Consequently, we have the bound,

Q@
> sup (7) < 21+ 2 Zl>
/ ~ -y - .
— ;= [2k0, 2(k+1)Q] "/ af n? =i
Remark 4.3. Given G € Ll(?), we easily compute
(4.1) v je z, GQ(j) = G(%ﬁ).

In particular, if :E:'G(%ﬁ)’ < ® then GQ = A(?Q), cf., Defini-

tion 2.4 and Remark 5.3.



5. Proof of the maximum entropy theorem for *.

The following fact is intuitively clear but requires some
verification. 1In particular, the dominated convergence theorem

can not be directly applied.

Proposition 5.1. We have

(5.1) lim dy = 0.

Q@

J 109[2wa/0(7)]
7 (147 %)

In particular,

log(w (7)]
(5.2) Vo :1, —®< J "/92 d& < 0.
n(1+y7)
Proof. (i) Formally, we compute
log[ 20 o
ogl2tw, , (z)1 log |(sin 1)/1]
(5.3) dy = = air .
n(1+y?) ¢ (Z)2a?
0 2Q
(ii) Let b = bQ = nw/(2Q). Then
88} X
(5.4) ré I L&%E_%L ar| s g J 102 Ao,
b +A A
Q i
Also, we compute
o w kn+%
2 loglsin 1| 4 | loglsin A ||
= 22d = r tlang s« = da
Q b2+)2 Q b2+12
Q k=1 kn Q
® kn+%
4 |]loglsin (A-kn)||
= = da
Q b2+X2
k=1 “kw Q
® /2 sin y
. /% 109 221
(5.5) <5 E: 5 5 dy +
bQ+(’/‘+k7t)

10



®
+ 4 |log 7] )
k=1 0
x
B ?_ZJ &
@ 2 - b2+(}+kn)2
k= )
[e 9}
4 flog 7| .
k=1 bQ+(7+kn)

where the first inequality is a consequence of integrating
(computing Riemann sums) on [ka, (k+1)n) T"symmetrically about
the point kn + n/2".

The two terms on the right hand side of (5.5) are estimated

as follows:

) n/2 ® Ly
c 2 J & ] z J da _ nc
Q Q . 2 120
k=1 0 b +(}+kn) k=1 /n (kin)
and
X X
4 ZE: llog 71 o, . 2 |10g A| g4, |
@ b2+(7+kn)2 3 Xz
k=1 ° Q 2/u

Combining these estimates with (5.5), and incorporating this

information with (5.4), we have proveqd

©
(5.86) 1im 2 logi{sin V)/A 4 = o,
Qa0 © (2 )22
1] 20
cf., (5.3).

(1ii) For each < € (0,7], the definition of the logarithm
yields the estimate,

a a

(5.7) 0< 2| log(r/(sin A)) 4 . 2| A-sind
bl ? Q
0 Q

11



Each of the above integrands is non-negative. For convenience,
fix a € [n/2,u). Using L'Hopital's rule for the 0 endpoint,

it is easy to see that there is K £ > 0 such that

a
Ve (0,a], iéfiﬂ_l— < K.
A7 sin 2
Substituting this bound in (5.7) we compute
a

(5.8) , lim 2 logl(sin MJ/A1 4, = o,

Q- @ (z—)2+l2

, 0 2Q

{iv) Because of (5.3), (5.6), and (5.8) we shall have obtained

(56.1) once we verify

n
2 log(X/{(sin 1))

(5.9) lim < RN dar = 0,
Q- b+
a Q
where o < [n/2,n) 1is fixed. Since
n
lim 2 log A gy = o
- Q 2
Q-
a
and
114 4 w
| log(lé(s;n A)) ar| < ’J lgg 2 av| + 'I 1092812 A arl,
g bQ+X bQ+l a bQ+l
it is sufficient to prove
R
. i A
(5.10) lim |§ J 192521%__ ax| = o.
Q- bT+A
Q
To this end we make the following estimate:
r?z m
2 | log sin A 2 { lloglsin(r-n) !l
) } 7 Pl j 2. 2 dA
a bQ+l a bQ+A
(5.11) 0 llongin N 0
< é J - A s di + g ~L%EQL£LL§ d; .
-1 bQ+(}+n) a—n bQ+(/+n)

12



Since 1 2z (sin »)/¥» 2 2/ on [-7/2,0] and since 0 > @ - 7 2
-n/2, the first term on the right hand side of (5.11) is bounded

by
0 14
2 log(n/2) J das . 2 log(m/2) [ ar

@ b§+(7+n)2 Q

a-n
which tendé to O as Q tends to infinity.
" Consequently, (5.10) is obtained once we contro; the second
term on the right hand side of (5.11), viz., to show

0
(5.12) 1im 2 J lloglrll 4, = o,

2 2
Q- G bQ+(7+n)

To this end we make the following estimate:

0 4
2 lloglz il 4 . 2 | llogir-mll 4
Q b2+('+w)2 Q 12
a-n QY a
Also, we note that (logl|i-n|} = log m + llog(l—%)l on [a,m).
Since
n
1im g J 102 T a =o,
Q- A
a

we shall have verified (5.12) when we prove

] A
o [ 1log(1-2)]
(5.13) lim 5 —_— dr = 0.
Q-2® x
a
[s 9}
For A < [¢,7) we obtain !log(l—%)! = j{:(l/ﬁ)n(l/n). Substi-
1

tuting this into the left hand side of (5.13) yields the estimate,

w A
| log(1-3) |
o 2 n 2 1
[ —7—‘—‘3“7,5“9‘5’*;62 A{n=17 '

a n=2

Do

13



and the right hand side clearly tends to 0 as Q tends to
infinity. Thus, (5.13) is valid, which, by our chain of implica-
tions, gives (5.10); and, as we pointed out earlier in this exer-

cise, (5.10) is sufficient to complete the result. g.e.d.

Proposition 5.2. Given T > 0 and D € PD[-T/2,T/2]. There is a

constant C > 0 such that for all @ > 0 and for all G € L{(F)

for which G =D on [-T,T}, we have

log[G, (7 }w (7)1 log[S, (¥ )w (7)1
(5.14) J @ g/Q d < J @ Z/Q a < ¢,
(147 7) w1+ 7)
where GQ(y) = 2Q:E:G(7+2ko) is 2Q-periodic on ¥, SQ is the
Burg maximizer for the data rj = D(%ﬁ)’ il < 2TQ, and SQ is

considered as a 2Q-periodic function on .

Proof. (i) Because of Lemma 4.1 we have
(5.15) IS, W ol < Ip(o)
QO n/Q Ll(?) 3

Then we invoke Jensen's inequality to obtain

log(sS, (r)w_ . (7)}]
0 n/Q 4 ¢ log 7Dég)

m (14 %)

from (5.15). This is the second inequality of (5.14).

(ii) For each @ > 0 <choose k., = 1 such that k.S, ,k G, =

Q Q Q'O 0
1 on *. This can be done since SQ and GQ are 2Q0-periodic
on ¥ and positive on UQ.
We'll prove
log G, (7) log S, (7)
(5.16) J —a & < |5 ar,
w(1+y ) nw(l+} )

14



assuming, without loss of generality, that the left-hand side is

not -®,

Note that 1+(2k0)2 < 1472 < 14(2(k+1)0)% for all k = O
and 7 € [2kQ, 2(k+1)Q]. Using the hypothesis, kQSQ 2 1, we

make the estimate,

204102 10g(k,S, (7))
:E: J 5 dy 2
Kk 2kQ LARRCA
© 2(k+1)Q
z log(k,S.{7))dr
2 [ QO Q
k=0 1+(2(k+1) ) ) okQ
-1 2(k+1)Q
+ :E: 1 - J log(k,S,(#))d7,
o M 2Ry o

which by periodicity equals

©® 2Q

AN

log(k,S, (7))dr

1+(2kQ)2 J

k=1 0

By Burg's theorem (Theorem 2.1), this term dominates

20

[« Y]
2 1 )
{6.17) = E —_— log(k,.G, (»))dr
"L 1+(2k0)? Jo @0

since :E:(log kQ)/(1+(2kQ)2) converges. Writing (5.17) as

® f2(k+1)0
j;ﬂ 1 ! log(k. G (7))dyr +
Z 5 0%
o omie(2k) )

(0] 2(k+1)Q

1 ,
E; n(1+((2k+1)0)2) rogliyo 7))y
k=—x 2kQ

15



we see that, because kQGQ > 1, this term dominates

2|

We obtain (5.16) by combining these inequalities and using the

2UHD2 0g (k6. (7)) & PR og k6, (7))
dy + }E J ds .

w(1472) n(1472)

(
2kQ k=0 ~2kQ

convergence of
2(k+1)Q

Zlog k . log k..
Q 71(14_}12) Q
2kQ

(iii) From Proposition 5.1 we know

log w (7)
(5.18) IJ "/2 ar| < .
n(1+y ")
(56.14) is a consequence of (5.16) and (5.18). g.e.d.
Remark 5.3. The hypothesis, G € L(X), can be weakened consider-

ably in Proposition 5.2. However, because of the (lack of) gener-
ality we have chosen for the statement of Burg's theorem and
because we have used Burg's theorem in Proposition 5.2, it is

required that G, € A(7 This is a particular consequence of

Q Q)'

(2.3) in our definition of L(F).

Lemma 5.4. Given G € L(F).

Q
a. lim J I}; G(y+2kQ)ldy = 0.
Q- -0
b. For all Q =2 1,
v = ~J \ migr/Q -
G, (r) = :E:G(zQ)e e A(T,).
c. For each ¢ > O, there is I > 0 such that

16



i Y y
vVQ =21, | J log ), G(2+2k9) d! < ¢.
17]>T m(1+y )
Proof. a. We compute
Q
[ IZG(7'+2kQ|d7 < [ [G(r)ida
-0 [A]2Q

and the right hand side tends to 0 as Q@ tends to infinity

since L(®) < LY(R).

b. Since §&,(j) = G(%a) for Ge LY(R), e.g., (4.1), we

see that GQ € A(?Q) by property (2.3) of Definition 2.4.

c. Using part (b) as well as the positivity of G and prop-

erty (2.3) from Definition 2.4, we have

(5.19) 0 < G(y) = :E:G(7+2k0) < C,
k
where C 1s %independent of ; € F and Q =z 1. Consequently, we
obtain the inegqualities
[ log Géy) & < [ log ) G(2+2kQ) ar
17| >T {1+ 7) |7]5T n{1l+;")
{5.20)
< J R < 2
FAE AR
for all I' = 0 and all 0 = 1.
For ¢ > 0 we choose FF such that
{ , f
(5.21) !j 129_5%11 ar! < & and gj —599—%— arl < £
, 7

that this can be done is immediate for the "log C" term and fol-

lows from property (2.2) of Definition 2.4 for the '"log G(y)"

17



term. @ is not involved in (5.21) and so part (c) follows from

(5.20) and (5.21). g.e.d.

Proposition 5.5. Given G € L(R). Then

loglG, (/)W ()] ,
(5.22) lim J Q n/Q dy = J dog G(7) 4,

Q- n(1+72) n(1+}2)

Proof. The right hand side of (5.22) exists by property (2.2)

from Definition 2.4. Also, because of Proposition 5.1, it is suf-

ficient to prove

log ), G(r+2kQ) 7
(5.23) lim [ a = J log G{(z)

1{(1+72) "(1+7’2)

dy .

Q@

Using (5.19), (5.20), and property (2.2) of Definition 2.4,
we see that each integral on the left hand side of (5.23)

converges and that

s

o . lJ log ¥ G(;+2kQ)-log G(7)

ds |
7r(1+}'2)
(5.24)
_ J log ) G(7+2kQ) a - ( log G(7) 4, .
n(1+}2) 7f(l*l"/z)
Fix & > 0. Choose T = Ff so large that
(5.25) |J 109 S7) 4, <& ang IJ log 2L SLAZKO) g, <&
(147 °) . w147 )
fr1>T L7 1>T
and
(5.26) J —~—E—E— dr =1, m« (1,nr]
n(1+y
jper "OH
hold (noting that r——21—5~ = 1), where by Lemma 5.4c the second
w(l+y ")

estimate of (5.25) is true independent of Q0 = 1.

18



Thus (5.24) leads to

-
0 < log ¥ G(r+2kQ) a - f log G(7) dy

J w(1+72) n(1+72)

_ log ¥ Gz +2k0) o _ J log G(7)

ar
m (147 %) 7w (147 2)

Tlrisr f#i>T

(5.27) + 1 J m[log Y G(r+2kQ)-log G(7)] a
n(1+72)

i
O
+
o
+
gir

J m log(1+(1/G(y))3 ' G(r+2kQ)) &
ﬂ(1+72)

l¥1<T

m 2 !

< o+ X log I m (1+(1/G(7)))'G(r+2kQ)) ar
m (147 )

|7 1<l

for all @ =z 1, where, using (5.26), we have invoked Jensen's

inequality and where Iagl, lbgl < &/2. By definition of m, the

integral on the right hand side of (5.27) is

1 +nm J ElG(rEZKQ) dy <
[7]<T n(1+y")G(})

, 1 ' N
PR J IZG(}+2kQ)Id/.
R ES

G(7,.) > 0 being the maximum of G on [-I',I']. Substituting this

information into the right hand side of (5.27) and taking "Iim"

Q-»®
we obtain
Q- m(1l+p7) {1+ 7)
—= 1 1 ' .
< £ + lim = log(l+zr—r | G(;+2kQ)td)) = ¢,
Ose M G(r_)
FEEL)
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where the equality is a consequence of Lemma 5.4a since Q is
eventually bigger than I = F&. (6.23) follows since this last
estimate is true for all ¢ > 0. g.e.d.

Theorem 2.6 is now proved by combining Propositions 5.1, 5.2,

and 5.5.
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