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Chapter 1

Introduction

We use language for a multitude of purposes, and one common use is to exchange informa-

tion. Among the types of information we normally exchange, there are those that concern

what the world is like and the ways things are. In asserting “Alice is at the party,” the

speaker proposes to make it a piece of common ground information that what the sentence

says is true (cf. Stalnaker, 1978). Whereas the focus on truth-conditional information re-

flects historical emphasis on declarative sentences and assertions, linguistic investigation into

questions (Hamblin, 1973; Karttunen, 1977; Groenendijk & Stokhof, 1984) and, in particu-

lar, the recent development of inquisitive semantics (Ciardelli & Roelofsen, 2011; Ciardelli

et al., 2013; 2018) have contributed to expanding the conception of information exchange.

According to inquisitive semantics, in uttering an interrogative sentence, the speaker is taken

not as suggesting that the world is in any particular way but rather as raising an issue by

putting forward alternative ways for it to be resolved, thereby orienting future exchange in

a certain direction. In uttering “Is Alice at the party?” for instance, the speaker proposes

two different ways to update the common ground information: either Alice is at the party,

or she is not. It then invites the interlocutor to resolve this issue by settling on one of the

two alternatives. Information exchange, under inquisitive semantics, can thus be viewed as

a process of raising and resolving issues.

The main aim of this dissertation is to apply and extend inquisitive semantics in various

new ways. On the one hand, I build upon the theoretical insight of inquisitive semantics

and explore the prospect of incorporating other types of content into our conception of
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information exchange. On the other hand, the logical framework underlying inquisitive

semantics is also of great interest in itself as it enjoys certain unique properties and is thus

worth further investigation.

Before describing my work in some more detail, let me provide a brief overview of inquis-

itive semantics. Formally, inquisitive semantics construes the semantic content of a question

as a set of Stalnakerian propositions (i.e., sets of possible worlds) each of which represents

a body of information that is capable of resolving the question under discussion. The idea

that the semantic content of a question is identified as a set of propositions is not unique

to inquisitive semantics. For instance, Hamblin (1973) takes a question to denote a set of

propositions each of which represents a possible answer to the question; similarly for Kart-

tunen (1977), each proposition represents a true answer to the question. While these other

accounts spell out the semantics of a question in terms of its answerhood, inquisitive seman-

tics does so in terms of resolution conditions. A set of worlds can contain enough information

so as to resolve a question even if the corresponding proposition is not normally viewed as

an answer to the question.

To elucidate, consider a universe that contains four worlds: AB,AB̄, ĀB, ĀB̄. In AB,

both Alice and Bob are at the party; in ĀB̄, neither of them is; in AB̄ and ĀB, one but

not the other is. Under the Hamblin-style alternative semantics, the question “Is Alice at

the party?” denotes the set {{AB,AB̄},{ĀB, ĀB̄}}. This set contains two propositions:

the proposition that Alice is at the party (i.e., {AB,AB̄}), and the proposition that she

isn’t (i.e., {ĀB, ĀB̄}). By contrast, under inquisitive semantics, in addition to the two sets

{AB,AB̄} and {ĀB, ĀB̄}, the set of propositions the question denotes also contains all

the subsets of these two sets such as {AB}, {AB̄}, and so on. Given that the set {AB}

embodies the information that Alice and Bob are both at the party, the information contained

is enough to resolve the question “Is Alice at the party?”. Hence, this set is included in the

denotation of the question, even if “Alice and Bob are both at the party” is not normally

conceived of as an answer to “Is Alice at the party?” under alternative semantics. By taking

the resolution condition instead of answerhood as its central notion, inquisitive semantics

places additional constraints on what kind of set-theoretic entities can serve as the proper

denotation of questions: only sets of sets of worlds that are closed under the subset relation
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can serve this purpose.

As a consequence of making the semantic denotation satisfy this closure property, inquis-

itive semantics imparts a well-behaved algebraic structure that facilitates finding a suitable

notion of entailment as well as defining other logical operations. In inquisitive semantics,

semantic entailment can simply be defined via the subset relation: φ ⊧ ψ iff JφK ⊆ JψK, where

JφK and JψK are the denotation of φ and ψ. For example, consider the question “Who (of Alice

and Bob) is at the party?”. With respect to the aforementioned universe consisting of the four

worlds AB,AB̄, ĀB, and ĀB̄, this question denotes the set {{AB},{AB̄},{ĀB},{ĀB̄},∅}.1

Now recall that the question “Is Alice at the party?” denotes the set that contains {AB,AB̄},

{ĀB, ĀB̄}, and all of their subsets. Given this, the denotation of “Who (of Alice and Bob)

is at the party?” is indeed a subset of “Is Alice at the party?”. Thus, under inquisitive

semantics, the former question entails the latter. This is a desirable result since intuitively

what this entailment conveys is that every complete answer to “Who (of Alice and Bob) is

at the party?” also provides an answer to “Is Alice at the party?” (cf. Roberts, 1996).

In a similar vein, inquisitive semantics manages to provide simple set-theoretic definitions

for logical operations on pairs of questions. For instance, conjunction is simply defined as

set-intersection. The denotation of “Who (of Alice and Bob) is at the party?” can be derived

from taking the intersection of the denotation of “Is Alice at the party?” and that of “Is

Bob at the party?”; intuitively, the former wh-question is equivalent to conjoining the two

latter polar questions. Analogously, disjunction is defined as set-union. As such, to resolve a

disjunctive question such as “Where can we rent a car, or who might have one that we could

borrow?” (Ciardelli et al., 2018, p.16.), it is enough to resolve one of the disjoined questions.

This ability to properly define entailment and other logical operations is one main advantage

of inquisitive semantics over other Hamblin-style alternative-based semantics (see Ciardelli

et al. 2017 for further discussion).

What the formal architecture of inquisitive semantics further enables is a unified analysis

of interrogative and declarative sentences. Both interrogative and declarative sentences

now denote a set of sets of worlds. For declarative sentences, this amounts to taking the

1The empty set is included because it is a subset of every set. Conceptually, the empty set represents
a body of information that is inconsistent. Assuming that the principle of explosion holds, an inconsistent
body of information will entail everything and as such will resolve every question.
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Stalnakerian proposition that the sentence standardly denotes and then forming the set

that contains it and all of its subsets. By unifying the semantic denotation of declarative

and interrogative sentences, inquisitive semantics offers a straightforward way to capture

embeddings of interrogatives under propositional attitudes (Ciardelli & Roelofsen, 2015;

Ciardelli et al., 2018), as in (1) and (2):

(1) John knows who is at the party.

(2) John wonders whether Alice is at the party.

Furthermore, a unified account allows inquisitive semantics to supply an enriched notion

of conversational contexts. By construing conversational contexts as a set of sets of worlds

instead of a single set of worlds as under the more traditional analysis (e.g., Stalnaker, 1978;

Veltman, 1996), inquisitive semantics enables contexts to encode not only what facts have

been settled but also what issues have been brought up. As such, inquisitive semantics can

model information exchange that goes beyond the exchange of truth-conditional content.

The current project of exploring new perspectives on inquisitive semantics has yielded

three independent papers. In Weak Persistence, I articulate a notion of live possibilities

with the help of inquisitive semantics. In addition to conveying truth-conditional informa-

tion and raising issues, sentences in natural language can also draw attention to certain

possibilities. As a prominent example, epistemic might-claims, such as “Alice might be at

the party”, can be conceived of as having the discourse function to highlight a possibility

or entertain a new one. Conversational contexts can likewise be enriched to represent what

possibilities have become salient in discourse. While similar ideas have been explored in the

past (e.g., Willer, 2013; see also, Westera, 2017), my current aim is to cash out this dy-

namics of bringing a possibility to salience in an inquisitive framework in the hope of better

integrating this notion of live possibilities with inquisitive content in the future.

In this paper, I present a framework that is capable of modeling the dynamics of bringing

a possibility to salience with the aim of capturing what I call the Extended Sobel Inference

(ESI) as illustrated by (3):

(3) If Alice comes, the party will be fun. But if Alice and Bob both come, the party won’t

be fun. ⇒ Therefore, if Alice but not Bob comes, the party will be fun.
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Despite the intuitiveness of this inference, ESI poses a challenge for two leading accounts

of conditionals: the variably strict analysis (Lewis, 1973; Stalnaker, 1968) and the dynamic

strict analysis (von Fintel, 2001; Gillies, 2007; Willer, 2017). While the latter fails to vin-

dicate ESI, the former licenses the additional inference to “If Alice comes, then Bob won’t

come”, which does not seem to be a natural inference that people will normally draw. By

contrast, my account is able to validate ESI without validating the additional inference. I

adopt an enriched notion of conversational contexts that is capable of distinguishing live

possibilities that have become salient from plain possibilities. I then postulate the following

principle governing the dynamics of raising a possibility to salience:

Weak Persistence: When a plain possibility φ is brought to salience, past information

is preserved either in all the φ-possibilities or in all the ¬φ-possibilities.

In a nutshell, when the possibility of Alice and Bob both coming to the party is brought to

salience by the second conditional in the sequence—i.e., “If Alice and Bob both come, the

party won’t be fun”—the past information embodied by “If Alice comes, the party will be

fun” is preserved in all the possibilities where Alice but not Bob comes. This means that in

all the possibilities where Alice but not Bob comes, the party will still be fun, which thereby

vindicates ESI. Moreover, it does not validate the further inference to “If Alice comes, then

Bob won’t come” and thus avoids the drawback of the variably strict analysis.

The second paper A Question Under Discussion Based Account of Redundancy

is focused on providing an account of informational redundancy that can adequately predict

the infelicity of various Hurford sentences. Hurford (1974) observed that disjunctions where

one disjunct entails the other are generally infelicitous:

(4) #John was born in Paris, or he was born in France.

To explain their infelicity, one common approach is to take Hurford disjunctions as in-

volving a truth-conditionally redundant constituent whose deletion has no effect on the

truth-conditional content of the whole sentence. Such a redundancy account has been of-

fered within an inquisitive framework (Ciardelli & Roelofsen, 2017; Anvari, 2021). To ex-

plain in brief, recall that under inquisitive semantics, declarative and interrogative sentences

uniformly denote sets of Stalnakerian propositions that are closed under the subset rela-

tion. Given that disjunction is viewed as a device to introduce alternatives and defined
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via set-theoretic union, (4) denotes the set that contains the two Stalnakerian propositions

JJohn was born in ParisK and JJohn was born in FranceK as well as all of their subsets. But

give that JJohn was born in ParisK is itself a subset of JJohn was born in FranceK, what (4)

denotes in fact is just the set that contains JJohn was born in FranceK and all of its subsets.

In other words, (4) is equivalent to the simplification “John was born in France”. As a result,

the first disjunct “John was born in Paris” turns out to be redundant.

However, this analysis fails to explain why the disjunction in (5), which is an instance of

what I call conjunctive Hurford disjunctions, is perceived defective:

(5) #John was born in Paris, or he was born in France and Mary was born in London.

Indeed, no theory on the market can adequately capture the infelicity of conjunctive Hurford

disjunctions. To address this challenge, I follow Simons (2001) and propose an analysis that

utilizes the notion of questions under discussion (van Kuppevelt 1995; Roberts, 1996; Büring,

2003). Similar to the inquisitive approach sketched above, I take disjunction as a device to

introduce alternatives in the sense that each disjunct is supposed to provide an answer,

and moreover a distinct answer, to some discourse question. But disjunction also embodies

additional information that is not covered by the standard inquisitive approach, namely that

each disjunct should also answer the discourse question “in the same way”. I will show how

this analysis can capture the infelicity (and felicity) of a wide range of Hurford sentences.

Finally, as previously mentioned, the formal architecture and algebraic structure under-

lying inquisitive semantics is also of great interest in itself. In A Non-Bivalent Approach

to Inquisitive Logic, I aim to extend the study of inquisitiveness in this direction. The

central question here is whether there are other formal frameworks that can cash out the

theoretical intuition behind inquisitive semantics. One essential feature of inquisitive seman-

tics is failure of the Law of Excluded Middle (LEM)—that is, A ∨ ¬A is no longer valid. In

inquisitive semantics, A ∨ ¬A serves as the logical form of a polar question like “Is Alice at

the party?”. In the standard setting, what it means for a sentence to be valid is for it to

be completely informationally trivial: an utterance of it will have no effect on the conver-

sational context. But since A ∨ ¬A raises a question, it is not completely informationally

trivial. Consequently, LEM is not valid in inquisitive semantics.

Standard inquisitive semantics invalidates LEM by employing an intuitionistic negation,
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which as a consequence also invalidates Double Negation Elimination (DNE)—that is, ¬¬A

no longer entails A. By contrast, I show that there is a different route adopters of the

inquisitive approach can take. I develop a new logic for modeling inquisitiveness which

employs a negation that validates DNE but not LEM. The framework is non-bivalent in the

sense that it simultaneously utilizes two non-complementary notions when defining semantic

satisfaction conditions: support and rejection. For instance, given a body of information,

an assertion is supported if it is settled true and rejected if it is settled false; a question

is supported if it is resolved by the body of information and rejected if it is incompatible

with the body of information, and in the latter case, asking the question will be deemed

infelicitous in the first place. For example, if it is already common ground that neither Alice

nor Bob is at the party, then the following alternative question will be rejected and deemed

infelicitous.

(6) Is Alice at the party↑, or is Bob at the party↓?2

The two notions above are non-complementary because there can be sentences that are nei-

ther supported nor rejected by a given body of information. I present an algebraic semantics

for this logic via the so-called twist-structures. As a generalization, I show how this method

of constructing twist-structures can be systematically employed to convert bivalent systems

to many-valued ones. As such, it serves as a valuable tool in a philosopher’s toolbox.

2The upward and downward arrows are used to indicate intonation. An interrogative sentence can receive
different interpretations depending on the intonation pattern (see e.g., Roelofsen, 2015)
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Chapter 2

Weak Persistence

This paper investigates an inference pattern that is intuitively valid in our ordinary reasoning

with conditionals. I call this inference the Extended Sobel Inference (ESI). I show that the

validity of ESI poses a problem for both the standard variably strict analysis of conditionals

(VSA) and the dynamic strict analysis of conditionals (DSA). Whereas DSA fails to vindi-

cate ESI, VSA, albeit validating ESI, validates another inference which does not appear to

hold under all circumstances. In response, I propose a new dynamic analysis of conditionals

by first devising a novel dynamic inquisitive framework that enables the modeling of infor-

mation dynamics associated with entertaining a new possibility. In particular, I formulate a

notion of weak persistence, which captures how past information is preserved in light of new

possibilities. Combined with a notion of postsuppositions, the current framework manages

to vindicate ESI without incurring the drawback of VSA.

Keywords: Conditionals, Sobel sequences, Dynamic strict analysis, Inquisitive semantics,

Update semantics, Postsupposition
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2.1 Introduction

Consider the following inferences:

(1)

(a) If Alice comes, the party will be fun.

(b) But if Alice and Bob both come, the party won’t be fun.

(c) If Alice but not Bob comes, the party will be fun.

(2)

(a) If Alice had come, the party would have been fun.

(b) But if Alice and Bob both had come, the party wouldn’t have been fun.

(c) If Alice but not Bob had come, the party would have been fun.

Intuitively, the first two conditionals in each sequence entail the last one. Moreover, the

naturalness of such inferences appears unaffected by whether the conditionals involved are

indicatives, as in the case of (1), or counterfactuals, as in the case of (2). Let us call this

general form of inferences in our conditional reasoning the Extended Sobel Inference (ESI),

which we can schematically represent as φ > ψ, (φ ∧ χ) > ¬ψ ⊧ (φ ∧ ¬χ) > ψ, where ⌜φ > ψ⌝

abbreviates ⌜if φ, then (would) ψ⌝.

The inference is so called because its two premises constitute a Sobel sequence, that is,

a sequence consisting of, in the following order, two conditionals φ > ψ and (φ ∧ χ) > ¬ψ, as

exemplified by the two premises from (1) and (2). The fact that Sobel sequences are felicitous

suggests that antecedent strengthening—that is, the inference from φ > ψ to (φ∧χ) > ψ—fails

as a natural inference for conditionals (Lewis, 1973; Stalnaker, 1968; Willer, 2017).

The current observation concerning ESI suggests that although, given the failure of an-

tecedent strengthening, φ > ψ alone entails neither (φ∧χ) > ψ nor (φ∧¬χ) > ψ, nonetheless,

by extending the premise into a Sobel sequence, we are warranted to infer either (φ∧χ) > ψ

or (φ ∧ ¬χ) > ψ depending on how φ > ψ is extended. For instance, if we follow up φ > ψ

with (φ ∧ χ) > ¬ψ, as in the case of (1) and (2), we can infer (φ ∧ ¬χ) > ψ. Alternatively, if

we follow up φ > ψ with (φ ∧ ¬χ) > ¬ψ, as in the case of (3) below, we can infer (φ ∧χ) > ψ.

(3) (a) If Alice comes, the party will be fun. (b) If Alice comes but she isn’t in a good

mood, the party won’t be fun. ⇒ (c) If Alice comes and she is in a good mood, the

party will be fun.

As it turns out, vindicating ESI is not an easy task. It causes different problems for two
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leading accounts of conditionals, namely the variably strict analysis (VSA) and the dynamic

strict analysis (DSA). After briefly introducing these two accounts in §2.2, I argue in §2.3

that, on the one hand, DSA fails to validate ESI; on the other hand, although VSA validates

ESI, it further licenses an additional inference—i.e., the inference from φ > ψ and (φ∧χ) > ¬ψ

to φ > ¬χ—which, as (4) demonstrates, does not appear to hold universally:

(4) (a) If Alice comes, the party will be fun. (b) But if Alice and Bob both come, the

party won’t be fun. ⇏ (c) If Alice comes, Bob won’t come.

Drawing inspiration from DSA, inquisitive semantics, and update semantics, I propose a

new dynamic account of conditionals that vindicates ESI without incurring the drawback of

VSA. The details of this framework need to wait for the second half of this paper, but here

is the general idea.

Standardly, the effect of assertions is to remove certain possibilities from a stock of shared

information (Stalnaker, 1978), and whenever a possible world is removed, it can never be

brought back. By contrast, one distinguishing feature of this new framework is that it allows

updates to be genuinely non-eliminative. This is meant in the following sense: when we

entertain a new possibility, worlds that have been previously eliminated can be resurrected.

For instance, in the case of (1), the utterance of the first conditional (1a) A > F eliminates

all worlds where Alice comes to the party and the party is not fun. As we entertain the new

possibility that Alice and Bob both come to the party with (1b), some of those previously

eliminated worlds can be resurrected. As a result, it is no longer the case that in all worlds

wherein Alice comes to the party, the party is fun. This in turn allows us to capture failure

of antecedent strengthening.

At the same time, the revival of worlds needs to be constrained in a way such that ESI

comes out valid. To this end, I postulate a constraint called weak persistence, which, for the

time being, can be characterized rather informally as follows:

Weak Persistence: When a hitherto unentertained possibility φ is introduced, past

information is preserved either in all the φ-worlds or in all the ¬φ-worlds.

Essentially, what weak persistence does is afford two alternative ways for past information

(in particular, the information embodied by the first conditional in a Sobel sequence) to
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be preserved in light of new possibilities. Thus, when the second conditional in a Sobel

sequence subsequently eliminates one of the two alternatives, we are warranted to either

infer (φ ∧ χ) > ψ or infer (φ ∧ ¬χ) > ψ. In the case of (1), since the second conditional

“if Alice and Bob both come, the party won’t be fun” rules out the option of preserving

the information embodied by (1a) (viz., that all worlds where Alice comes are worlds where

the party is fun) in all worlds where Alice and Bob both come, the information must be

preserved in the other alternative, thereby licensing the inference to (1c).

2.2 Preliminaries

2.2.1 Variably Strict Analysis of Conditionals

The observation that Sobel sequences are felicitous causes trouble for any analyses of con-

ditionals that validate antecedent strengthening. One such prominent theory is the strict

material analysis of conditionals, according to which φ > ψ is interpreted as ◻(φ ⊃ ψ) and

is thus evaluated true at a world w iff in all accessible worlds from w where φ is true, ψ is

true. But since all the worlds where φ and χ are both true must be worlds where φ is true,

antecedent strengthening holds. Hence, as the folklore goes, conditionals cannot receive a

strict interpretation.

By contrast, antecedent strengthening fails under the Lewis-Stalnaker style variably strict

analysis (Lewis, 1973; Stalnaker, 1968, 1981). Under VSA, roughly, φ > ψ is true at w iff ψ

is true at all the closest accessible world(s) to w where φ is true. Following Lewis, we use

a system of similarity spheres to model closeness among worlds. A system of spheres is a

collection of nested sets of possible worlds centered on a world w at which the utterance is

evaluated. One world w′ is closer to w than another world w′′ iff w′ is located in a sphere

that is a proper subset of the sphere in which w′′ is located. As Figure 2.1 shows, since it

is possible that the closest worlds where Alice comes to the party (i.e., the A-worlds in S2)

are distinct from the closest worlds where Alice and Bob both come to the party (i.e., the

(A ∧B)-worlds in S3), we do not have the entailment from A > F to (A ∧B) > F . Hence,

antecedent strengthening fails under VSA, as desired.
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Figure 2.1: A system of spheres

2.2.2 Dynamic Strict Analysis of Conditionals

Within the dynamic tradition, conversation is understood as a process of updating com-

mon ground information. The meaning of a sentence is taken to be its update potential

on information states, and hence the name context change potential (CCP). A context or

information state is standardly construed as a set of worlds, and uttering a sentence has the

effect of eliminating from it worlds that are incompatible with the information embodied by

the sentence. For instance, uttering “Alice is at the party” will eliminate every world where

Alice is not at the party from its input information state.

Under DSA, conditionals receive a strict interpretation with respect to a constantly evolv-

ing modal domain (von Fintel, 2001; Gillies, 2007; Willer, 2017, 2018). Gillies represents this

background modal domain via a system of spheres—just like the one depicted in Figure 2.1—

and he calls it a hyper-domain. Spheres in a hyper-domain represent information states, and

the innermost sphere represents the current modal center over which the universal quantifier

of the strict conditional ranges.1

The CCP of a conditional ⌜φ > ψ⌝ comprises two parts: the CCP of its entertainability

presupposition ⌜◇φ⌝, and that of its asserted content ⌜◻(φ ⊃ ψ)⌝. The entertainability

presupposition ◇φ requires that the conditional’s antecedent is possible with respect to the

current modal center, i.e., the innermost sphere of a hyper-domain. As such, updating with

1The types of ordering used to generate systems of spheres depend on the type of conditionals under
evaluation: counterfactuals come with a standard similarity ordering whereas indicatives come with some
kind of relevance ordering (cf. Willer, 2017).
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the entertainability presupposition expands the innermost sphere to one that contains a φ-

world. If the input modal center already contains a φ-world, then the update has no effect,

or as we will say idles. On the other hand, if the whole hyper-domain does not contain any

φ-world, then the update returns the empty set, thereby signaling presupposition failure.

Next, updating on this new hyper-domain with the asserted content of φ > ψ, namely

with the strict conditional ◻(φ ⊃ ψ), boils down to checking whether all the φ-worlds in

the current modal center are ψ-worlds. If so, then the update idles; otherwise, the update

returns the empty set, thereby indicating discourse anomaly.

To illustrate how antecedent strengthening fails under DSA, consider the hyper-domain

depicted in Figure 2.2(a). Suppose the initial modal center is S1. When A > F is produced,

given that S1 does not contain any A-world, the modal center expands to S2 so as to satisfy

the entertainability presupposition ◇A. Since all the A-worlds in S2 are F -worlds, updating

with the asserted content ◻(A ⊃ F ) idles. Since S2 does not contain any (A ∧ B)-world,

the modal center needs to expand further upon the utterance of (A ∧ B) > ¬F , thereby

establishing S3 as the new center as shown in Figure 2.2(b). (The dashed lines represent

spheres that have been eliminated.) Given that all the (A ∧B)-worlds in S3 are ¬F -worlds,

updating with the asserted content ◻((A ∧ B) ⊃ ¬F ) idles. The Sobel sequence is thus

predicted to be consistent, which means antecedent strengthening also fails under DSA.2

S1S2S3 A

B

F

(a)

S1S2S3 A

B

F

(b)

Figure 2.2: Domain expansion under DSA

2Additionally, DSA accounts for the infelicity of the so-called reverse Sobel sequence (von Fintel 2001):

#If Alice and Bob both come, the party won’t be fun. But if Alice comes, the party will be fun.
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2.3 The Extended Sobel Inference

2.3.1 The Problem of Unwanted Worlds

Recall that the extended Sobel inference, as exemplified by (5), is of the form:

φ > ψ, (φ ∧ χ) > ¬ψ ⊧ (φ ∧ ¬χ) > ψ

(5) (a) If Alice comes, the party will be fun. (b) But if Alice and Bob both come, the

party won’t be fun. ⇒ (c) If Alice but not Bob comes, the party will be fun.

The validity of ESI poses a serious challenge to DSA as it fails to vindicate this inference.

Consider the hyper-domain depicted in Figure 2.3 below, which, as we have seen previously,

is the output hyper-domain from the update with the first two conditionals in (5), i.e., A > F

and (A ∧B) > ¬F .

The problem concerns the second update with (5b). When the modal center expands

from S2 to S3 so as to satisfy the entertainability presupposition of (5b), some unwanted

worlds are absorbed into the modal center. In particular, there are worlds in S3, designated

by the shaded area in Figure 2.3, that make A true but both B and F false. Given the

presence of these worlds, updating with the asserted content of (5c), i.e., ◻((A ∧ ¬B) ⊃ F ),

S1S2S3 A

B

F

Figure 2.3: A countermodel to ESI under DSA

When (A∧B) > ¬F becomes the first conditional, we instantly expand to S3 to accommodate the entertain-
ability presupposition ◇(A∧B). But since S3 contains some (A∧¬F )-worlds, A > F can longer be satisfied.
Hence, reverse Sobel sequences are predicted to be inconsistent under DSA. For some other approaches to
reverse Sobel sequences, see, e.g., Moss, 2012; Lewis, 2018; Ippolito, 2020.
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will eliminate S3, thereby yielding the empty set as its output. Given the existence of a

countermodel, ESI is not valid under DSA.3

That being said, one may wonder whether there is an easy fix for the existing dynamic

account. For instance, one could suggest that when the modal center expands to accommo-

date (5b)’s entertainability presupposition ◇(A ∧B), we do not simply expand from S2 to

S3 but rather to S2 ∪ (S3 ∩ JA ∧BK). Perhaps, the thought is that the modal center should

expand in a minimal fashion such that only those worlds that contribute to fulfilling the en-

tertainability presupposition are added to the center. And since no new (A∧¬B)-worlds are

included during expansion, all the (A ∧ ¬B)-worlds in the modal domain are still F -worlds,

thereby vindicating ESI.

This solution, however, immediately encounters another difficulty. If the modal center

expands in the way just described, then we should expect (5a) and (5b) together to entail

the conditional “if Bob comes to the party, then Alice will come” given that all the B-worlds

in S2 ∪ (S3 ∩ JA ∧BK) are A-worlds. But this further inference is hardly intuitive. To avoid

this, perhaps one could further suggest that we should also add some (¬A ∧ B)-worlds in

addition to the (A ∧B)-worlds to the expanded modal center. But now it becomes rather

unclear what the criterion is for deciding which worlds should get added. Why is it the case

that only some (¬A∧B)-worlds but no (A∧¬B)-worlds are added? There does not seem to

be a straightforward answer where one can simply read off the logical form of the conditional

to decide how the modal center expands.

Another rescue strategy is to attempt at capturing the ESI in (5) via some pragmatic

means, for example, as a scalar implicature. Since a conjunction and its conjuncts form

a scale (cf. Sauerland, 2004), the weaker alternative “Alice comes to the party” can be

exhaustified to convey that the stronger alternative “Alice and Bob both come” is false.

In other words, “Alice comes to the party” can be strengthened to mean “Alice but not

Bob comes to the party”. Now, if we postulate that exhaustification can occur locally (e.g.,

3This problem of unwanted worlds is related to the problem of intermediate worlds pointed out by Nichols
(2017). Nichols’s criticism is based on the observation that DSA has difficulty rendering two counterfactuals
of the form (A∧B) > ¬F and (A∧¬B) > F simultaneously true (or assertible) given a particular setup, that
is, when “more departure from actuality is required to make the antecedent of an earlier counterfactual true
than to make a subsequent counterfactual’s antecedent true but its consequent false” (p. 627). By contrast,
my current focus is on DSA’s inability to vindicate a desirable general inference with conditionals.
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Chierchia, 2012)—more specifically, within the antecedent of a conditional—then we can

view the inference to “If Alice but not Bob comes, the party will be fun” as a case scalar

inference.

The problem with this strategy is that it fails to generalize to ESIs that invoke two

alternatives where the weaker one cannot be exhaustified to mean the denial of the stronger

alternative. For example, consider (6):

(6) (a) If Alice is from France, the party will be fun. (b) But if she is from Paris, the party

won’t be fun. ⇒ (c) If Alice is from France but not Paris, the party will be fun.

Although the inference still holds, the weaker alternative “Alice is from France” cannot be

exhaustified to mean “Alice is from France but not Paris”. This is attested by the Hurford

disjunction in (7a):

(7) (a) #Either Alice is from France, or she is from Paris.

(b) Either Alice comes to the party, or Alice and Bob both come to the party.

Compare (7a) to (7b). Disjunctions where one disjunct contextually entails the other are

generally infelicitous (Hurford, 1974). But when the weaker disjunct can be exhaustified so

that it no longer entails the stronger alternative, the disjunction becomes felicity (Chierchia,

2009). This is the case for (7b), but not for (7a). Hence, resorting to scalar implicature

alone cannot explain why ESI holds in full generality.

Here is a brief diagnosis of the problem of unwanted worlds encountered by the existing

dynamic account. DSA models incorporation of new possibilities via expansion of the modal

center. But given a lack of constraint on expansion, when the center expands, it may

absorb unwanted worlds, and as a result, too much old information becomes lost. One

the one hand, allowing for discarding some old necessity enables DSA to capture failure of

antecedent strengthening. As in the case of (5), discarding the old necessity A ⊃ F (viz., the

necessity that all A-worlds are F -worlds) enacted by (5a) leaves room for the subsequent

utterance of (5b) to make (A ∧B) ⊃ ¬F a new necessity. On the other hand, the validity of

ESI shows that when the center expands, it is hardly the case that all past information is

lost. The old necessity A ⊃ F should somewhat persist even in light of the newly entertained

possibility. When the antecedent of (5b) introduces the new possibility A ∧B, although the
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previously established necessity A ⊃ F no longer holds in all the (A ∧B)-worlds, it should

nevertheless still persist in all the ¬(A ∧B)-worlds. And to say that A ⊃ F holds in all the

¬(A ∧B)-worlds, given basic propositional reasoning, is to say that all the (A ∧ ¬B)-worlds

are F -worlds,4 thereby licensing the inference to (5c).

Hence, to vindicate ESI, we need a principle governing information preservation in light

of new possibilities. This principle, as we now recall, is weak persistence:

Weak Persistence: When a hitherto unentertained possibility φ is introduced, past

information is preserved either in all the φ-worlds or in all the ¬φ-worlds.

To illustrate, consider (5) again, repeated below:

(5) (a) If Alice comes to the party, it will be fun. (b) But if Alice and Bob both come, it

will not be fun. ⇒ (c) If Alice but not Bob comes, the party will be fun.

Suppose we are speculating whether this weekend’s party will be fun. We know that whenever

Alice is at the party, the party is almost always fun. Hence, we establish (5a). So far, the

possibility that Alice and Bob both come to the party remains not salient to us, since, say,

Bob travels a lot. But as we remind ourselves that Bob is in town this week and become

aware that he might also come, we no longer have to fully endorse (5a) given that we can

establish (5b) as a new necessity. However, this is not to say that the past information,

namely, the necessity established by (5a), is completely lost. By weak persistence, when the

possibility that Alice and Bob both come becomes salient, our previous conclusion that the

party will be fun if Alice comes should still hold either in all the worlds where Alice and

Bob both come or in all the worlds where that is not the case. But since (5b) eliminates the

first option, it must be that in all the ¬(A∧B)-worlds, the party will be fun if Alice comes.

Hence, we can draw the conclusion that if Alice but not Bob comes, the party will be fun.

2.3.2 The Problem of Unwarranted Inference

The variably strict analysis does not face the problem of unwanted worlds which plagues

DSA, as the former only quantifies over the closest worlds where the antecedent is true.

4To see this, note that ¬(A ∧B) ⊃ (A ⊃ F ) is equivalent to (A ∧ ¬B) ⊃ F .
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Consider Figure 2.3 again. Since the closest (A ∧ ¬B)-worlds are all F -worlds, ESI holds

under VSA. Crucially, what renders ESI valid under VSA is the fact that the truth of the

two conditionals in a Sobel sequence forces a particular ordering: any system of spheres that

makes A > F and (A∧B) > ¬F true must force the closest A-and-B-worlds to be closer than

the closest B-worlds. Consequently, all the closest A-worlds must be ¬B-worlds. And since

all the closest A-worlds are also F -worlds, VSA predicts the entailment to (A ∧ ¬B) > F .

However, the particular ordering invoked by VSA also happens to vindicate the following

additional inference:

φ > ψ, (φ ∧ χ) > ¬ψ ⊧ φ > ¬χ

This additional inference is good for some counterfactuals, though not for all (see Klecha

2015, 2021). Moreover, it is clearly too strong for indicative conditionals. As I have men-

tioned in §2.1, the inference from (4a) and (4b) to (4c) seems quite bad.

(4) (a) If Alice comes, the party will be fun. (b) But if Alice and Bob both come, the

party won’t be fun. ⇏ (c) If Alice comes, Bob won’t come.

It has been suggested by Klecha (2015, 2021) that there are two types of Sobel sequences:

those that do license the inference to φ > ¬χ, which Klecha deems as genuine Sobel sequences,

and those that do not, which he names Lewis sequences. For Klecha, all indicative versions

of Sobel sequences are indeed Lewis sequences as they do not license the further entailment

to φ > ¬χ.5

The current observation is that the validity of ESI does not hinge on whether the Sobel

sequences under discussion are genuine Sobel sequences or are in fact Lewis sequences; ESI

is valid regardless. If so, then a unified explanation of the validity of ESI should not rest

on the particular ordering that is induced by the first two conditionals as in a genuine Sobel

sequence.6 The main aim of this paper is thus to explore such a unified explanation.

5As a side note, Klecha (2015, 2018) views Lewis sequences as instances of a more general phenomenon
of precisification. It remains to be seen whether his account can adequately capture the validity of ESI.

6This is not to say that I wish to completely dispense with any ordering, since as we shall see in §2.5.4,
ordering can help in supplying a reservoir context from which previously eliminated worlds can be selected
to be revived. My contention is that an adequate analysis that captures ESI should not merely appeal to
some particular ordering alone.
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2.3.3 Interim Conclusion

To take stock, the standard dynamic strict account fails to validate ESI because modal

expansion can potentially assimilate unwanted worlds; the variably strict analysis, albeit

validating ESI, also vindicates the additional inference to φ > ¬χ, which intuitively does

not hold under all circumstances. In response, I aim to validate ESI by developing a more

sophisticated update system that can capture bringing a hitherto unentertained possibility

to salience without explicitly relying on any particular ordering. This update framework

enables us to formally cash out weak persistence, which in turn allows us to capture the

validity of ESI.

A brief note on presentation of examples in what follows: since my goal is to validate

ESI in cases where the additional inference to φ > ¬χ cannot be drawn, I will focus my

discussion on the indicative versions of ESI. I leave it open how to extend this analysis

to counterfactuals, which requires a detailed discussion of how similarity ordering can be

incorporated into my update framework.

2.4 Weak Persistence: An Informal Sketch

Before delving into details of my framework, I informally sketch how weak persistence will

be realized. To capture weak persistence, the formal apparatus needs to do two things:

Requirement A: It should afford a principled way to distinguish live possibilities that

have become salient from plain possibilities that have yet to be actively entertained;

Requirement B: It should be able to encode a set of alternatives, each of which provides

a complete description of the space of possibilities at the current stage of discourse. Such

a possibility space contains information about what has been settled, what possibilities

have become live, and how live possibilities are related.

The first requirement is needed for modeling the process of bringing a hitherto unentertained

possibility to salience, while the second is needed for codifying alternative ways to preserve

past information in light of new possibilities.
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A formal framework that fulfills both requirements can then capture weak persistence.

Consider the party example again. Let Figure 2.4(a) represent the total body of informa-

tion after the utterance of the first conditional “if Alice comes to the party, it will be fun”.

The outermost rectangle with rounded corners represents the total logical space. The inner

rectangle, which is partitioned into some A-worlds and some ¬A-worlds, represents the cur-

rent space of possibilities. The dotted region represents the set of A-worlds that are also

F -worlds.7 After the utterance of the first conditional A > F , it becomes common ground

that all worlds where Alice comes are worlds where the party is fun. Hence, all the A-worlds

in 4(a) are in the dotted region.

As the possibility of Alice and Bob both coming to the party has yet to become salient in

4(a), accommodating the entertainability presupposition of the conditional “if Alice and Bob

both come, the party won’t be fun” will resurrect some (A ∧ ¬F )-worlds. This is reflected

in Figure 2.4 by the fact that in both 4(b) and 4(c), the total possibility space is extended

with an additional rectangle which comprises A-worlds but is nonetheless not contained in

the dotted region. Also notice that by making a new partition, both 4(b) and 4(c) are now

A

(a)

A

B

¬B

(b)

or

A

B

¬B

(c)

◇(A ∧B)

Figure 2.4: A sketch of weak persistence

7To clarify, the dotted region does not represent the set of all F -worlds.
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actively distinguishing between B and ¬B. The difference between 4(b) and 4(c) concerns

whether the resurrected worlds are B-worlds or ¬B-worlds. In 4(b), entertaining the new

possibility that Alice and Bob both come brings back some worlds where Alice comes but

the party is not fun, all of which are worlds where Bob also comes. By contrast, in 4(c),

entertaining the same antecedent again brings back some worlds where Alice comes but the

party is not fun, but this time, all of them are worlds where Bob does not come. As such,

we are presented with two alternative ways to preserve the information that all A-worlds are

F -worlds: the information is preserved either in all the B-worlds or in all the ¬B-worlds.

This is how weak persistence can be realized.

Given weak persistence, here is how we can vindicate ESI without also vindicating the

additional inference from VSA. As it turns out, 4(c) is indeed incompatible with the asserted

content of the second conditional “if Alice and Bob both come, the party won’t be fun”

because all the worlds where Alice and Bob both come in 4(c) are in the dotted region and

are thus worlds where the party is fun. Consequently, this alternative is discarded, which

leaves us with 4(b). Given that in 4(b), all the worlds where Alice comes to the party but

Bob does not are worlds where the party is fun, we successfully predict the entailment to

(A∧¬B) > F . On the other hand, since 4(b) still contains some worlds where Alice and Bob

both come to the party, we do not get the additional entailment to A > ¬B.

Now, both Requirement A and Requirement B can be fulfilled in a framework that enables

representation of alternatives. The connection to the second requirement is obvious. As for

the first requirement, we can avail ourselves of alternatives to differentiate between live and

plain possibilities in the following way. We can construe φ as a live possibility with respect to

a given body of information just in case the body of information makes an active distinction

between two alternatives: namely, φ and ¬φ.

One such framework is inquisitive semantics (Ciardelli & Roelofsen, 2011; Ciardelli et al.,

2015, 2018). In inquisitive semantics, disjunction functions to supply a set of alternatives.

While inquisitive semantics was originally designed to provide a uniform analysis for both

declarative and interrogative sentences rather than modeling live and plain possibilities, we

can readapt the framework for our current purposes. More specifically, given that the Law

of Excluded Middle (φ ∨ ¬φ) is not valid under inquisitive semantics, we can exploit this

21



feature to distinguish a body of information where φ has become salient from one where φ

has yet to be entertained.

Be that as it may, we still need to make some significant modifications to the existing

inquisitive framework for present purposes. In particular, since alternatives will be used for

the dual purpose of representing live possibilities and providing alternative ways to preserve

past information, we need to employ alternatives at two different levels without conflating

them. This will then require us to move one level up on the set-theoretic hierarchy.

2.5 Weak Persistence Semantics

Here is a quick breakdown of this section. §2.5.1 introduces some basic notions from standard

inquisitive semantics. Each of the subsequent subsections motivates and introduces one piece

of the machinery, which eventually leads us to a dynamic inquisitive framework capable of

capturing weak persistence. First of all, §2.5.2 introduces dynamic modals alongside a notion

of refinement. Together, they allow us to model the dynamics of bringing a plain possibility

alive. In §2.5.3, I ascend one level up on the set-theoretic hierarchy and introduce hyper-

contexts. Finally, §2.5.4 defines a refinement operation that captures weak persistence at

the level of hyper-contexts. Throughout §2.5, my presentation will be semi-formal and rely

heavily on diagrams. The formal details are left to the appendix. In §2.6, I present a

new dynamic strict analysis of conditionals within this framework and elucidate how ESI is

validated.

2.5.1 Basic Inquisitive Semantics

We begin by introducing some basic notions from inquisitive semantics particularly pertinent

to us. First, we have the familiar notion of information states (e.g., Veltman, 1996). An

information state s is a set of possible worlds compatible with a certain body of information.

In standard possible world semantics, formulas are evaluated at worlds in terms of their

truth and falsity. In inquisitive semantics, formulas are evaluated at information states in

terms of support.

An information state s supports an atomic formula p iff p is settled true in s, that is,
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p is true at every world in s. As an example, suppose our logical space W contains four

worlds: one where A and B are both true, one where A is true but B is false, one where

B is true but A is false, and one where neither is true. Among the four information states

depicted in Figure 2.5, only 5(a) supports A as well as B, since both formulas are true at

every world in the state {AB}; by contrast, 5(b) supports A but does not support B whereas

5(c) and 5(d) support neither A nor B. Additionally, the empty set which represents the

absurd information state is taken to support everything.

A state s supports a negation ¬φ iff no subset of s except for the empty set supports φ.

For example, 5(b) supports ¬A, but it does not supports ¬B since it contains a non-empty

subset that supports B, namely {AB}.

A state supports a conjunction iff it supports both of its conjuncts, and a disjunction

iff it supports either of its disjuncts. For example, 5(b) supports A ∨ ¬A by supporting A,

but it does not support B ∨ ¬B since it supports neither B nor ¬B individually. As for

implication, a state s supports A → B iff every subset of s that supports A also supports

B; hence, only 5(a) and 5(c) support A → B since only for these two states do all of their

subsets that support A also support B.

Next, let us define a technical notion of contexts. Standardly, contexts are often construed

as sets of worlds (Stalnaker, 1978). However, in order to separate a context where A is a

live possibility from one where A is a mere plain possibility, additional structure is needed.

In inquisitive semantics, a context C is defined as a non-empty downward closed set of

information states—that is, for any information state s that belongs to C, any subsets of s

must also belong to C. We call a maximal element in C (i.e., an information state that is not

AB AB̄

ĀB ĀB̄

(a)

AB AB̄

ĀB ĀB̄

(b)

AB AB̄

ĀB ĀB̄

(c)

AB AB̄

ĀB ĀB̄

(d)

Figure 2.5: Some examples of information states
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a proper subset of any other states in C) an alternative in C. We can then use alternatives

to represent salient possibilities in a context.

Consider the four contexts depicted in Figure 2.6. For each context, only its alternatives

are explicitly drawn: for example, given that contexts are downward closed, 6(c) represents

the context {{AB},{AB̄},∅}, and 6(b) represents the context {{AB,AB̄},{AB},{AB̄},∅}.

We say that a context is inquisitive iff it contains more than one alternative; 6(a) and 6(c) are

inquisitive whereas the other two are not. In standard inquisitive semantics, an inquisitive

context raises an issue by putting forth alternative ways for the issue to be resolved. Under

the current setting, an inquisitive context indicates awareness of the distinctions among

different alternative possibilities. Henceforth I will just describe the context itself as being

aware of these possibilities. Compare 6(b) and 6(c): although both contexts are made up of

the same two worlds, 6(c) is actively aware of the distinction between B and ¬B whereas

6(b) is oblivious to this distinction.

We highlight two special contexts: C⊺ and C�. For any given logical space W , the initial

context C⊺ which represents a total lack of information and awareness is given by the power

set ℘(W ). The absurd context C� which serves to signal discourse anomaly is identified with

{∅}.

Contexts are connected via updates. I write C[φ]u to denote the context resulting from

updating C with the formula φ.8 Updating C with φ amounts to collecting only those

information states in C that support φ, or equivalently, eliminating all states in C that do

not support φ. For example, updating the above context 6(b) with [B ∨¬B]u eliminates the

AB AB̄

ĀB ĀB̄

(b)

AB AB̄

ĀB ĀB̄

(a)

AB AB̄

ĀB ĀB̄

(d)

AB AB̄

ĀB ĀB̄

(c)

Figure 2.6: Some examples of contexts

8The subscript u is used to differentiate the present type of proper-updates from the type of refinement-
updates to be introduced in §2.5.2.
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only state in it that does not support B ∨ ¬B, namely {AB,AB̄}, thereby outputting 6(c)

wherein the distinction between B and ¬B now becomes salient.

2.5.2 Introduce Dynamic Modals and Refinement

We introduce dynamic modals and a notion of refinement next. Together, they enable

us to model the dynamics of transforming a plain possibility into a live possibility. In

accordance with the existing dynamic approach to modals (cf. Veltman 1996, 2005), we

construe possibility and necessity modals (i.e., ◇ and ◻) as tests that examine whether

certain global conditions are satisfied by the current body of information. We define the

support condition of a modal formula by an information state s relative to a context to which

s belongs. Given a context C, a state s in it supports ◇φ iff there exists an alternative in

C that supports φ; analogously, s supports ◻φ iff every alternative in C supports φ. Since

alternatives serve to represent live possibilities, what the above definitions amount to is

simply this: s supports ◇φ iff φ is a live possibility in C; s supports ◻φ iff every live

possibility in C is a φ-possibility.

To illustrate, let s be the state {AB}. Consider whether s supports ◇B with re-

spect to the following two contexts from Figure 2.6: 6(b), i.e., {{AB,AB̄}}, and 6(c), i.e.,

{{AB},{AB̄}}.9 Given that there exists an alternative in (6c), namely {AB}, such that it

supports B, s supports ◇B with respect to 6(c); given that the only alternative in 6(b),

namely {AB,AB̄}, does not support B, s does not support ◇B with respect to 6(c). On

the other hand, s supports ◻A with respect to both 6(b) and 6(c) since every alternative in

them supports A.

To elucidate why we need a new type of update operation which I call refinement, let

us first try to define a notion of support at the level of contexts. As our first pass, we say

that a context C supports φ iff C[φ]u = C, or equivalently, iff every state s in C supports φ.

The problem with this definition is that it fails to satisfy the following intuitively desirable

principle governing awareness.

Principle of Uncertainty: For any context C and formula φ, if C supports ◇φ but

9Here and hereafter, I will abbreviate a context using its set of alternatives.
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does not support φ, then it must support ◇¬φ.

To put it in plain language, if we deem φ possible but do not have enough information to

establish φ, then we must also deem ¬φ possible. However, the principle of uncertainty is

violated given the present setup. Let C be the following context: {{AB},{AB̄, ĀB, ĀB̄}}.

It is easy to verify that C supports ◇A but not A, yet it fails to support ◇¬A.

To modify the framework so as to satisfy the principle of uncertainty, I introduce a notion

of general updates [φ] and conceive them as proceeding in two separate steps: C[φ] ∶=

C[φ]r[φ]u. Updating C with [φ] first refines the input context with [φ]r, which boils down

to updating C successively with [p∨¬p]u for every atomic proposition p in φ. In inquisitive

semantics, formulas of the form ⌜p∨¬p⌝, often abbreviated as ⌜?p⌝, are understood as asking

the question about whether or not p. Analogously, under the current setting, refining C with

p amounts to entertaining whether or not p, thereby making a distinction between p and

¬p. Refining C with [φ]r is then tantamount to bringing every atomic proposition in φ to

salience in the post-refinement context.10 This post-refinement context is in turn updated

with [φ]u as usual. As a consequence, we now define context-level support in terms of general

updates: C supports φ iff C[φ] = C.

To illustrate, consider updating the first context in Figure 2.7 with ¬(A ∧ B). The

general update with [¬(A ∧B)] is divided into two steps: first, the refinement on 7(a) with

[¬(A ∧ B)]r, and then the update on the post-refinement context with [¬(A ∧ B)]u. The

refinement with [¬(A ∧B)]r equates to the sequential refinement with [A]r and then [B]r,

each of which is then reduced to updating with a disjunction of the form [p∨¬p]u. Updating

AB AB̄

ĀB ĀB̄

(a)

AB AB̄

ĀB ĀB̄

(b)

AB AB̄

ĀB ĀB̄

(c)

AB AB̄

ĀB ĀB̄

(d)

[A]r

[A ∨ ¬A]u

[B]r

[B ∨ ¬B]u

[¬(A ∧B)]u

Figure 2.7: An example of the general update procedure

10The version of refinement proposed here provides one rather simple way to satisfy the principle of
uncertainty, and as such it may need further fine-tuning. I shall leave exploring a more sophisticated
definition for refinement to another occasion.
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the post-refinement context 7(c) with [¬(A∧B)]u eliminates the world AB and returns 7(d).

As an upshot of this modification, not all non-empty downward closed sets of information

states will be considered as proper contexts. For example, there is no update procedure that

can derive the purported context {{AB},{AB̄, ĀB, ĀB̄}}, which, as we have seen, violates

the principle of uncertainty. To amend this, we revise the definition of contexts as follows:

Contexts: Given a logical space W , a context C is a non-empty downward closed set of

information states that can be derived from performing certain general updates on the

initial context C⊺ = ℘(W ).

At the level of contexts, we can now distinguish live possibilities from plain possibilities: φ

is a live possibility in C if C[◇φ] = C;11 φ is a plain possibility if C[◇φ] ≠ C and C[◇φ] ≠ C�.

Consider once more these two contexts from Figure 2.6: 6(b), i.e., {{AB,AB̄}}, and 6(c),

i.e., {{AB},{AB̄}}. While A is a live possibility (and indeed a necessity) in both of them

given that the update with [◇A] idles for both contexts, B is only a live possibility in 6(c).

Updating 6(c) with [◇B] idles; by contrast, updating 6(b) with [◇B] returns 6(c). Hence,

B is merely a plain possibility in 6(b).

The current framework’s ability to represent live possibilities further addresses a puzzle

typically associated with the traditional dynamic approach to modals. As noted by Yalcin

(2007), if updating with ◇A only returns either the input state or the absurd state, then

an utterance of ◇A can never be truly informative, since either it does not provide any new

information as the update produces no effect, or the information carried by the sentence

cannot be consistently integrated. However, on many occasions, a might-claim is prima

facie non-trivial and appears to communicate new information, as the following examples

demonstrate (Yalcin, 2007, p. 1012):

(6) Cheerios may reduce the risk of heart disease.

(7) Late Antarctic spring might be caused by ozone depletion.

Whereas Yalcin proffers a pragmatic analysis for the seeming informativeness of these sen-

tences, the current framework is able to supply a semantic story (see also Willer, 2013),

11We could further impose the condition that C[◇φ] ≠ C� if we want to avoid considering every sentence
a live possibility in the absurd context.
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that is, sentences with an epistemic possibility modal like (6) and (7) can convey non-trivial

information by raising some hitherto overlooked possibility to salience and thereby refining

the common ground. Before the utterance of (6), the context is oblivious to the possibility

that Cheerios may reduce the risk of heart disease. The possibility is a plain possibility as

the common ground does not contain an alternative that supports “Cheerios reduce the risk

of heart disease”, nor an alternative that supports its negation. After the utterance, the

possibility at issue becomes live as the updated context now contains both alternatives.

The refinement operation considered thus far is strongly persistent in the sense that it can

only raise a possibility to salience but can never bring back any previously eliminated worlds.

To capture failure of antecedent strengthening and weak persistence, our next step is to allow

refinement to revive “dead” worlds. To do so, we will need to move to hyper-contexts.

2.5.3 The Lift to Hyper-Contexts

Recall our preliminary definition of weak persistence, which states that when a hitherto unen-

tertained possibility φ is introduced, past information is preserved either in all φ-possibilities

or in all ¬φ-possibilities. To preserve past information, under the current setting, is for the

refinement operation not to reintroduce worlds that have been previously eliminated. Sup-

pose ψ has already been established; then while entertaining φ can resurrect some ¬ψ-worlds,

either all of them need to be φ-worlds, or they all need to be ¬φ-worlds. Hence, entertaining

a new possibility should create two alternatives, each of which embodies information about

how live possibilities are related—that is, either all φ-possibilities are still ψ-possibilities, or

all ¬φ-possibilities are still ψ-possibilities.

At the level of contexts, however, we cannot adequately model relations between live

possibilities, since alternatives in contexts are already used to encode information about what

possibilities have become live. Say we wish to model a case where either all B-possibilities are

A-possibilities or all ¬B-possibilities are A-possibilities but not both. However, no contexts

can encode such information. For instance, the context {{AB},{AB̄},{ĀB̄}} is such that

all the B-possibilities in it are A-possibilities, and the context {{AB},{AB̄},{ĀB}} is such

that all the ¬B-possibilities in it are A-possibilities; but if we simply take the union of the

two sets, the resulting context, i.e., {{AB},{AB̄},{ĀB},{ĀB̄}}, is such that neither all the
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B-possibilities nor all the ¬B-possibilities are A-possibilities. What we want instead is a set

where {{AB},{AB̄},{ĀB̄}} and {{AB},{AB̄},{ĀB}} are its two alternatives. Therefore,

to enable live possibilities to be related in multiple ways, we need to move one level up on

the set-theoretic hierarchy from contexts to what I call hyper-contexts.

A hyper-context Σ is a non-empty restrictively downward closed set of contexts, that is,

for any context C in Σ, if x is a subset of C and x is itself also a context, then x is also in

Σ. Furthermore, as with (proper) contexts, not all non-empty restrictively downward closed

sets of contexts will be regarded as (proper) hyper-contexts because the update procedure,

to be defined below, will not always produce every such set. Hence, we define hyper-contexts

as follows, analogous to the revised definition of contexts:

Hyper-contexts : A hyper-context Σ is a non-empty restrictively downward closed set

of contexts that can be derived from performing certain updates on the initial hyper-

context Σ⊺.12

We define alternatives in a hyper-context as maximal elements in it. While an alternative in

a context represents a single salient possibility, an alternative in a hyper-context represents

a set of salient possibilities, viz., a possibility space. Hence, a hyper-context that contains

more than one alternative indicates that there is more than one way for live possibilities to

be related.

As with contexts, general updates on hyper contexts proceed in two steps: Σ[φ] =

Σ[φ]r[φ]u. The (strongly persistent) refinement operation is the same as before: refin-

ing with [φ]r amounts to refining with every atomic formula p in φ, which has the effect

of bringing every p to salience. As for proper updates, updating Σ with [φ]u amounts to

updating each individual context C in Σ with [φ]u and then taking the restrictive downward

closure of the resulting set. We say a hyper-context Σ supports φ iff Σ[φ] = Σ.

To adduce two concrete examples, first consider the update with [◇A] on Σ1 as shown

in Figure 2.8.13 This update consists of first refining Σ1 with [◇A]r—which is reduced to

12The initial hyper-context Σ⊺ is defined as the restrictive downward closure of the initial context C⊺ with
respect to a given logical space W (see Appendix, Definition 13).

13The outermost circle in the diagram represents the hyper-context; the middle circles/ellipses represent
alternatives in the hyper-context; and the innermost circles represent alternatives in their respective contexts.
For example, Σ1 contains C1 as its sole alternative, which in turn contains {A} and {Ā} as its two alternatives.
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A Ā

Σ1 ∶ {C1,C2,C3,C�}

A Ā

C1 ∶ {{A},{Ā}}

A

C2 ∶ {{A}}

Ā

C3 ∶ {{Ā}}

C� ∶ {∅}

[◇A]u

[◇A]u

[◇A]u

[◇A]u

A Ā

C1 ∶ {{A},{Ā}}

A

C2 ∶ {{A}}

C� ∶ {∅}

C� ∶ {∅}

A Ā

Σ1 ∶ {C1,C2,C3,C�}

Figure 2.8: Updating Σ1 with [◇A]u

updating it with [?A]u—and then updating the post-refinement hyper-context with [◇A]u.

Since Σ1 already distinguishes between A and ¬A, the refinement idles. Figure 2.8 then

details what the subsequent proper update looks like. Since only C1 and C2 contains A as a

live possibility, the updates on C1 and C2 idle whereas the updates on the other two contexts

return the absurd context. Collective the resulting contexts {C1,C2,C�} and then taking

the restrictive downward closure give back Σ1. Therefore, since Σ1[◇A] = Σ1, Σ1 already

supports ◇A.

Next, consider the update with [◻A] on the same hyper-context Σ1. As before, the

refinement with [◻A]r idles. Figure 2.9 depicts the subsequent update with [◻A]u. Among

the four contexts contained in Σ1, only the update on C2 returns a non-absurd context.

Collecting all the output contexts returns the posterior hyper-context Σ3.14

14Note that we do not output the absurd hyper-context Σ� = {{∅}} in this case. As such, the current
framework manages to address one irregularity commonly associated with the dynamic approach to necessity
modals. Since updating with [◻A] on any contexts wherein some but not all information states support A
always returns the absurd state, it means that, whenever we are uncertain about the truth of some proposition
A, uttering something like “must A” would be regarded as inconsistent. But this can hardly be the case.
Suppose we are uncertain about whether Alice is at the party. In this scenario, we should not expect “Alice
must be at the party” to be inconsistent with the common ground information such that the update winds
up outputting the absurd state. On my account, we can thus accommodate this intuition at the level of
hyper-contexts.
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A Ā

Σ1 ∶ {C1,C2,C3,C�}

A Ā

C1 ∶ {{A},{Ā}}

A

C2 ∶ {{A}}

Ā

C3 ∶ {{Ā}}

C� ∶ {∅}

[◻A]u

[◻A]u

[◻A]u

[◻A]u

C� ∶ {∅}

A

C2 ∶ {{A}}

C� ∶ {∅}

C� ∶ {∅}

A

Σ3 ∶ {C2,C�}

Figure 2.9: Updating Σ1 with [◻A]u

2.5.4 Weakly Persistent Refinement

At the level of hyper-contexts, we can now cash out weak persistence induced by the con-

ditional’s antecedent in terms of weakly persistent refinement. The refinement associated

with the entertainability presupposition of a conditional [◇φ]r becomes weakly persistent

when the input hyper-context Σ does not actively distinguishes φ from ¬φ, that is, when

Σ does not support ?φ. When this happens, certain previously eliminated possibilities can

be reintroduced from a reservoir context CR, which I shall return to shortly; meanwhile, for

any alternative C in Σ—which, as we recall, represents a particular way of how live pos-

sibilities are related in Σ—if C supports ψ, then refining with [◇φ]r will split C into two

separate possibility spaces: one where all the φ-possibilities are still ψ-possibilities, thereby

supporting φ→ ψ, and the other where all the ¬φ-possibilities are still ψ-possibilities, thereby

supporting ¬φ→ ψ (see Appendix, Definition 19 for details).

The reservoir context CR is a contextually supplied set that may contain worlds that

have already been removed from Σ. For the time being, I remain rather agnostic about how

CR is determined. But what CR essentially does is to supply a reservoir of worlds to be

reintroduced upon entertaining a new possibility. The intuitive appeal behind postulating
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such a fallback position is that raising a new possibility should only allow reviving “dead”

worlds that are in some sense relevant to the new possibility being entertained. In the party

example, for instance, while entertaining the possibility of Bob’s coming to the party allows

us to bring back some worlds wherein the party is not fun, it should not bring back worlds

wherein the basic laws of physics are different.15

Now, to illustrate this dynamics of raising a possibility to salience, consider the refinement

depicted in Figure 2.10.16 Suppose our input hyper-context is Σ1 where it is established that

Alice will come to the party but the possibility of Bob’s coming to the party has yet to

be entertained. Since Σ1 does not support ?B, the refinement with [◇B]r will be weakly

persistent. That is, upon accommodating the entertainability presupposition of “if Bob

comes to the party”, the sole alternative in Σ1, namely C1, will split into two contexts C2

and C3, each of which not only becomes aware of B but also brings back a world that

was previously eliminated. Assume that the reservoir context CR in this case is simply

{{AB,AB̄, ĀB, ĀB̄}}; then both C2 and C3 will bring back a ¬A-world. At the same time,

to satisfy weak persistence, the resurrected ¬A-world must be either a B-world as in C2, or

a ¬B-world as in C3. Taking the restrictive downward closure of the set containing C2 and

C3 yields the post-refinement hyper-context Σ2. We thus obtain two ways of preserving past

information as witnessed by the two alternatives of Σ2: either all the ¬B-possibilities are

AB AB̄

Σ1 ∶ {C1}
⇊

AB AB̄

C1 ∶ {{AB,AB̄}}

[◇B]r

AB AB̄ ĀB

C2 ∶ {{AB},{AB̄},{ĀB}}

AB AB̄ ĀB̄

C3 ∶ {{AB},{AB̄},{ĀB̄}}

Σ2 ∶ {C2,C3}
⇊

AB AB̄ ĀB

AB AB̄ ĀB̄

Figure 2.10: An example of weakly persistent refinement.

15While I do not intend to provide a detailed account of how CR is determined in this paper, I believe this
is where invoking some sort of ordering—e.g., relevance ordering as employed by Willer (2017)—can help.

16The symbol ⇊ in the figure represents taking the restrictive downward closure of a set. See Appendix,
Definition 12.
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still A-possibilities as witnessed by C2, or all the B-possibilities are still A-possibilities as

witnessed by C3.

As it turns out, this post-refinement hyper-context Σ2 from the refinement with [◇B]r
is indeed identical to the posterior hyper-context after the general update [◇B]r[◇B]u.

This is so because, similar to what happens with the proper update depicted in Figure 2.8,

the proper update with [◇B]u on each alternative in Σ2 idles, which means applying the

restrictive downward closure at the end will give back the input hyper-context.

Before ending this section, let me mention one more observation we can account for by

appealing to the weakly persistent refinement induced by the antecedent of a conditional.

Consider the following conversation:

(8) John: Alice will come to the party.

Mary: But what if Bob comes?

Mary appears to be neither completely agreeing nor outright disagreeing with what John

just said. Instead, she seems to be asking John to reconsider his assertion in light of a new

possibility without explicitly affirming or denying it. We can account for this intuition as

follows: on the one hand, since entertaining a new possibility allows for revival of “dead”

worlds, it explains why Mary’s utterance is deemed as urging John to evaluate his claim;

on the other hand, since John’s claim should somewhat persist given weak persistence, it

also explains why we tend to see Mary not as straightforwardly voicing a disagreement.

Here, we restrict attention to the weakly persistent refinement induced by the antecedent

of a conditional, but similar discourse effects can be produced by other expressions—e.g.,

by an epistemic might-claim. I shall leave exploring other triggering conditions for weakly

persistent refinement to future work.

2.6 New Dynamic Strict Analysis of Conditionals

2.6.1 Introduce Postsuppositions

With a formal framework which enables us to materialize weak persistence at hand, I present

a new dynamic strict analysis of conditionals in this section. In short, I construe a conditional
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φ > ψ as inducing the following sequential update: [◇φ][◻(φ → ψ)][◇φ].17 The first two

updates resemble components from the existing dynamic strict analysis of conditionals, that

is, updating with φ > ψ amounts to first updating with its entertainability presupposition

[◇φ] and then with its asserted content [◻(φ → ψ)]. The last update with [◇φ] involves

what I call the postsupposition of a conditional. It functions as a delayed test whose purpose

is to ensure that the posterior hyper-context after the update with the asserted content still

satisfies the entertainability presupposition of the very conditional.

This idea that a sentence carries a postsupposition has been invoked in the past for

various reasons to specify conditions that a relevant body of information needs to satisfy

only after it has been updated with the at-issue content of the sentence. (Brasoveanu, 2012;

Brasoveanu and Szabolsci, 2013; Condoravdi, 2015; Constant, 2012; Henderson, 2014). With

respect to the current setting, the idea that the posterior hyper-context should still satisfy

the entertainability presupposition of a conditional resonates with the idea that, in general,

update procedures should be more or less idempotent (Veltman, 1996; Yalcin, 2015). More

specifically, if one can utter a conditional to update a body of information consistently, then

one should also be able to utter the same conditional again immediately afterwards, and

the update should idle since the conditional should have already been supported. Hence,

if updating a hyper-context first with the conditional’s presupposition [◇φ] and then with

its asserted content [◻(φ → ψ)] makes the entertainability presupposition ◇φ no longer

satisfiable, this suggests that the conditional cannot be felicitously uttered in the first place.

To guarantee that this does not happen, we attach a postsupposition [◇φ] to the first two

updates.18

We can marshal some support for the idempotence of conditionals from the observation

that conditionals of the form A > ¬A (as well as ¬A > A) sound contradictory (cf. Wansing,

2014). This anomaly can be captured in the current framework with the aid of postsup-

position. The conditional A > ¬A sounds contradictory because for any hyper-context Σ,

17Although strictly speaking, the implication → employed in the current framework is not the material
implication ⊃, I still views this analysis as a form of dynamic strict analysis since we are still quantifying
over all information states that are subsets of s when evaluating φ→ ψ at s.

18Additionally, it is worth mentioning that construing update idempotence as a postsupposition rather
than some precondition for successful update can address the overgeneration problem pointed out by Man-
delkern (2019). I leave a detailed discussion of this problem to another occasion.
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Σ[◇A][◻(A → ¬A)][◇A] = Σ�, where Σ� represents the absurd hyper-context {{∅}}. This

is so because for any Σ, the update with [◻(A→ ¬A)] necessarily eliminates every A-world

from it, thereby making the subsequent update with the postsupposition [◇A] output the

absurd hyper-context.

2.6.2 Vindicate ESI

We can finally put different pieces of the formal machinery together to show how ESI is

vindicated. First, we define semantic consequence “⊧” as follows:

Semantic Consequence: φ1, . . . , φn ⊧ ψ iff for any hyper-context Σ, the sequential

update with [φ1], . . . , [φn] yields a hyper-context that supports ψ.19

To elucidate how ESI—viz., φ > ψ, (φ ∧ χ) > ¬ψ ⊧ (φ ∧ ¬χ) > ψ—is validated, a simple

example should suffice for present purposes. Consider the following simplified variant of

ESI:

ψ,χ > ¬ψ ⊧ ¬χ > ψ

What we have above is a special instance of ESI derived from substituting a tautology ⊺ for

the first antecedent φ. As a concrete example, (9a) and (9b) together entail (9c):

(9) (a) Alice will come to the party, (b) although she won’t if Bob comes. ⇒ (c) If Bob

doesn’t come, Alice will come to the party.

Here is how this inference can be captured on my account. Suppose our initial hyper-

context Σ⊺, as shown in Figure 2.11, is the set {{{AB,AB̄, ĀB, ĀB̄}}}.20 Updating Σ⊺ with

(9a) eliminates all the ¬A-worlds in Σ⊺ and outputs Σ1.

Since Σ1 does not support ?B, updating with the entertainability presupposition of (9b),

namely [◇B], triggers the weakly persistent refinement with [◇B]r. This refinement is

exactly the same as the one we just saw in Figure 2.10, where the only alternative in Σ1

is split into two contexts: {{AB},{AB̄},{ĀB}}, and {{AB},{AB̄},{ĀB̄}}. The post-

refinement hyper-context is Σ2, upon which the proper update with [◇B]u idles.

19This is commonly known as the update-to-test consequence in the dynamic literature (cf. Veltman,
1996).

20I abbreviate this hyper-context using its set of alternatives.
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AB AB̄

ĀB ĀB̄

Σ⊺:

AB AB̄

Σ1:

AB AB̄ ĀB

AB AB̄ ĀB̄

Σ2:

AB̄ ĀB

AB̄ ĀB̄

Σ3:

[A] [◇B]

[◇B]

[◻(B → ¬A)]

AB̄ ĀB

Σ4:

[◇¬B][◻(¬B → A)][◇¬B]

Figure 2.11: An example showcasing how ESI is vindicated

The next step is to update Σ2 with the asserted content of (9b), namely with [◻(B →

¬A)]. Since Σ2 is already aware of both A and B, the refinement with [◻(B → ¬A)]r idles;

the update with [◻(B → ¬A)]u then eliminates every context in Σ2 that contains the world

AB. The posterior hyper-context is Σ3.

Next, updating with the postsupposition of (9b), namely with [◇B], keeps only the first

alternative {{AB̄},{ĀB}} but eliminates the second alternative {{AB̄},{ĀB̄}}. This is so

because whereas B is a live possibility in the former alternative, it is deemed impossible in

the latter one. Hence, we obtain Σ4 as our posterior hyper-context after the updates with

(9a) and (9b).

Finally, updating Σ4 with the conditional (9c), that is, with the sequential update

[◇¬B][◻(¬B → A)][◇¬B], idles. To elaborate, since Σ4 already actively distinguishes be-

tween B and ¬B, the update with [◇¬B] idles; and since Σ4 does not contain any (¬A∧¬B)-

worlds, the update with [◻(¬B → A)] also idles. What this means is that updating Σ⊺ with

(9a) and (9b) yields a hyper-context that already supports (9c). Hence, ESI holds under the
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current analysis.

Moreover, since Σ4 still contains some B-world, it does not support ¬B, which means the

additional inference from ⊺ > A and (⊺ ∧B) > ¬A to ⊺ > ¬B cannot be drawn. Therefore,

the current framework also manages to avoid the shortcoming of VSA.

2.7 Conclusion

I have argued that the existing dynamic strict account fails to validate the extended Sobel

inference due to a lack of constraints on how the modal center expands. The traditional

variably strict analysis, by directly appealing to a particular ordering, is capable of validat-

ing ESI, but in doing so, it also vindicates an additional unwarranted inference. In response,

I propose a dynamic inquisitive framework which is capable of modeling the operation of

raising a hitherto unentertained possibility to salience without directly relying on any par-

ticular ordering. Within this new framework, we are able to cash out a notion of weak

persistence, which I consider as an important property governing how information evolves

in light of new possibilities. By incorporating a notion of postsuppositions, the modified

dynamic strict analysis of conditionals presented here manages to vindicate ESI without

incurring the drawback associated with the variably strict account.
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2.8 Appendix: Formal Definitions

Definition 2.8.1 (Information states). An information state s is a set of possible worlds

and a subset of the whole logical space s ⊆W .

Definition 2.8.2 (Support). We use “⊫” to denote support, specified as follows:

• s⊫ p iff ∀w ∈ s ∶ p is true at w, where p is atomic;

• s⊫ φ ∧ ψ iff s⊫ φ and s⊫ ψ;

• s⊫ φ ∨ ψ iff s⊫ φ or s⊫ ψ;

• s⊫ φ→ ψ iff ∀t ⊆ s ∶ if t⊫ φ, then t⊫ ψ;

• s⊫ ¬φ iff ∀t ⊆ s ∶ if t ≠ ∅, then t⊯ φ.

Definition 2.8.3 (Downward closed). A set of states S is downward closed iff ∀s∀t ∶ if s ∈ S

and t ⊆ s, then t ∈ S.

Definition 2.8.4 (Contexts). Given a logical spaceW , a context C is a non-empty downward

closed set of information states that can be derived from performing certain general updates

on the initial context C⊺ ∶= ℘{W}.

Definition 2.8.5 (Alternatives in a context). An alternative in a context C is a maximal

element in C (i.e., an information state such that it is not a proper subset of any other states

in C). We use Alt(C) to denote the set of all alternatives in C.

Definition 2.8.6 (Support of modals by a state with respect to a context). Let sc be an

information state that is contained in the context C. Then,21

sc ⊫◇φ iff ∃s′ ∈ Alt(C) ∶ s′ ⊫ φ

sc ⊫ ◻φ iff ∀s′ ∈ Alt(C) ∶ s′ ⊫ φ

Definition 2.8.7 (General updates). C[φ] ∶= C[φ]r[φ]u.

21Alternatively, we could define support of modals directly at contexts instead of at information states
relative to a context. I adopt the above definition so that we can have a uniform definition of proper updates
for both modal and non-modal formulas, as given by Definition 8.
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Definition 2.8.8 (Proper updates). C[φ]u ∶= {s ∈ C ∶ s⊫ φ}.

Definition 2.8.9 (Refinement). We define the refinement operation recursively in terms of

the update operation as follows:

• C[p]r ∶= C[p ∨ ¬p]u, where p is atomic;

• C[¬φ]r ∶= C[φ]r;

• C[φ ∧ ψ]r/[φ ∨ ψ]r/[φ→ ψ]r ∶= C[φ]r[ψ]r.

• C[◇φ]r/[◻φ]r ∶= C[φ]r

Definition 2.8.10 (Context-level support). A context C supports a sentence φ, notated as

C ⊫ φ, iff C[φ] = C.

Definition 2.8.11 (Live and plain possibilities).

• φ is a live possibility in C if C[◇φ] = C;

• φ is a plain possibility in C if C[◇φ] ≠ C and C[◇φ] ≠ C� (viz., C[◇φ] ≠ {∅});

• Otherwise, that is, when C[◇φ] = C�, φ is an impossibility in C.

Definition 2.8.12 (Restrictive downward closed). A set of contexts X is restrictively down-

ward closed iff for all C ∈X and for all x, if x ⊆ C and x is a context, then x ∈ X. For any

given context C, ⇊C denotes the restrictive downward closure of C, i.e., a set of contexts

containing C and every sub-context of C. For any given set of contexts X, we write X⇊ to

denote the restrictive downward closure of X, that is, ⋃
C∈X
⇊C.

Definition 2.8.13 (The initial and absurd hyper-contexts). For any given logical space W ,

• The initial hyper-context Σ⊺ ∶=⇊C⊺, where C⊺ is the initial context w.r.t. W ;

• The absurd hyper-context Σ� ∶= {{∅}}.

Definition 2.8.14 (Hyper-contexts). Given a logical space W , a hyper-context Σ is a non-

empty restrictively downward closed set of contexts that can be derived from performing

certain updates on the initial hyper-context Σ⊺.
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Definition 2.8.15 (Alternatives in a hyper-context). An alternative in a hyper-context Σ

is a maximal element in Σ, and we use Alt(Σ) to denote the set of alternatives in Σ.

Definition 2.8.16 (General updates on hyper-contexts). Σ[φ] = Σ[φ]r[φ]u.

Definition 2.8.17 (Proper updates on hyper-contexts). Σ[φ]u = {C[φ]u ∶ C ∈ Σ}⇊.

Definition 2.8.18 (Strongly persistent refinement on hyper-contexts). As before, we define

refinement recursively in terms of proper updates as follows:

• Σ[p]r ∶= Σ[p ∨ ¬p]u, where p is atomic;

• Σ[¬φ]r ∶= Σ[φ]r;

• Σ[φ ∧ ψ]r/[φ ∨ ψ]r/[φ→ ψ]r ∶= Σ[φ]r[ψ]r;

• Σ[◇φ]r/[◻φ]r ∶= Σ[φ]r.

Definition 2.8.19 (Weakly persistent refinement). Refining Σ with the entertainability pre-

supposition of a conditional [◇φ]r becomes weakly persistent when Σ⊯?φ.22 The refinement

proceeds as follows:

• Σ[◇φ]r ∶= ({C[φ]r ∪ CR[pc]r[φ] ∶ C ∈Alt(Σ)} ∪ {C[φ]r ∪ CR[pc]r[¬φ] ∶ C ∈Alt(Σ)})⇊,

where [pc]r = [p1]r, . . . , [pn]r for every p such that C ⊫?p, and CR is a contextually

provided backup context.

Remark. To unpack this definition, we split every context C belonging to the set of alterna-

tives Alt(Σ) into two separate possibility spaces: C[φ]r∪CR[pc]r[φ] and C[φ]r∪CR[pc]r[¬φ],

each of which represents a way of how past information is preserved. Take the alter-

native C[φ]r ∪ CR[pc]r[φ] as an example. Its first component C[φ]r simply brings φ to

salience in the resulting context. The second component CR[pc]r[φ] then reintroduces

some previously eliminated possibilities from the reservoir context CR. This is achieved

by first refining CR with [pc]r, which looks at every atomic proposition the input con-

text C is actively aware of and then makes CR also come to aware of these propositions.

22Here we restrict attention to weakly persistent refinement induced by the antecedent of a conditional.
I leave exploring other triggering conditions for weakly persistent refinement to future work.
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As such, we do not lose any distinctions the input context C is already making. The

second update with [φ] ensures that all the worlds from CR we are bringing back are

indeed φ-worlds. As a consequence, we preserve past information in all the ¬φ-worlds.

Likewise, for the second alternative C[φ]r ∪ CR[pc]r[¬φ], past information is preserved in

all the φ-worlds. By conjoining the two sets and taking the restrictive downward closure

({C[φ]r ∪CR[pc]r[φ] ∶ C ∈ Alt(Σ)} ∪ {C[φ]r ∪CR[pc]r[¬φ] ∶ C ∈ Alt(Σ)})⇊, we obtain a new

hyper-context such that every alternative in the original hyper-context Σ is split into two:

one wherein past information is preserved in all the φ-worlds, thereby supporting φ → ψ,

and the other wherein past information is preserved in all the ¬φ-worlds, thereby supporting

¬φ→ ψ.

Definition 2.8.20 (Hyper-context support). Σ⊫ φ iff Σ[φ] = Σ.

Definition 2.8.21 (Dynamic consistency). An update sequence [φ1], . . . , [φn] is dynamically

consistent iff there exists a hyper-context Σ such that Σ[φ1], . . . , [φn] ≠ Σ�.

Definition 2.8.22 (Dynamic consequence). φ1, . . . , φn ⊧ ψ iff ∀Σ ∶ Σ[φ1], . . . , [φn] ⊫ ψ.
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Chapter 3

A Questions-Under-Discussion-Based

Account of Redundancy

Hurford (1974) observed that disjunctions where one disjunct entails the other (e.g., #John

was born in Paris or in France) are generally infelicitous. To explain their infelicity, one

common approach is to take Hurford disjunctions as involving a truth-conditionally redun-

dant constituent whose deletion has no effect on the truth-conditional content of the whole

sentence. However, this approach faces difficulty in light of other variants of Hurford dis-

junctions (Marty & Romoli, 2022). Drawing on Simons (2001), I present a new account

of redundancy which utilizes questions under discussion (Roberts, 1996) and discourse trees

(Büring, 2003). By postulating general constraints on the structure of discourse trees, I show

how the (in)felicity of various Hurford sentences can be accounted for.

Keywords: Hurford disjunction, redundancy, question under discussion, discourse tree
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3.1 Introduction

Consider an example of so-called Hurford Disjunctions (HDs):

(1) #John was born in Paris, or he was born in France.

In a context where the interlocutors know that Paris is located in France, “John was born in

Paris” contextually entails “ John was born in France”, and as (1) demonstrates, disjunctions

where one disjunct contextually entails the other sound odd. One explanation pins this

oddness down on the apparent redundancy HDs involve. Since “John was born in Paris”

contextually entails “John was born in France”, (1) is truth-conditionally equivalent to “John

was born in France”. As a result, the first disjunct of (1) comes out as truth-conditionally

redundant: deleting it would have no effect on the sentence’s truth condition. Consequently,

by appealing to Grice’s (1975) maxim of manner—to be more specific, the submaxim of

brevity—we can attribute the oddness of HDs to the presence of apparently redundant

material.

A general notion of redundancy also helps to explain why certain HDs are nonetheless

felicitous. Such examples were first noted by Gazdar (1979). For example, consider (2):

(2) John read some or all of the books .

In (2), although “John read all of the books” entails “John read some of the books”, the

disjunction is nonetheless felicitous. One common explanation as to why disjunctions like (2)

remain unmarked is that the first disjunct is locally exhaustified to receive a strengthened

reading so that it is no longer entailed by the second disjunct (cf. Chierchia et al., 2012).

For example, “John read some of the books” in (2) is exhaustified to mean that John read

some but not all of the books, and as such it is no longer entailed by “John read all of the

books”. Given that the first disjunct is no longer entailed by the second, its deletion would

have an impact on the sentence’s truth condition. Consequently, disjunctions like (2) are no

longer regarded as containing any redundant material and are thus deemed felicitous.

Although the suggestion of invoking redundancy to explain the oddness of HDs appears

promising, working out the details is not an easy task. A general theory of redundancy

needs to capture not only the infelicity of HDs but also the infelicity (or felicity) of other

Hurford sentences in the vicinity. To illustrate, consider an example of what Marty and
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Romoli (2022) call Quasi Hurford Disjunctions (QHDs):

(3) John was born in Paris, or he was born in France but not in Paris.

For some concreteness, let us evaluate (3) against the following constituent-based non-

redundancy account (Katzir & Singh, 2013; Marty & Romoli, 2022).

Constituent-based non-redundancy A sentence S cannot be used in context c if

there is any constituent X in S that is contextually equivalent to one of X’s subcon-

stituents.

On this account, (3) is predicted to be just as infelicitous as (1) because both sentences

contain “John was born in France” as a subconstituent which is contextually equivalent

to the original disjunction. Hence, both (1) and (3) are considered containing redundant

material and thus deemed infelicitous. This prediction is contrary to our intuitive judgment:

unlike (1), (3) sounds perfectly natural. The constituent-based non-redundancy account fails

to distinguish the felicitous QHDs from the infelicitous HDs.

Moreover, as we shall see in §3.2, other accounts on the market also run into trouble in

light of a wide variety of Hurford sentences. In particular, I will draw attention to disjunctions

like (4) which I call Conjunctive Hurford Disjunctions (CHDs):

(4) #John was born in Paris, or he was born in France and Mary was born in London.

Since (4) is not contextually equivalent to any of its subconstituents and nor does it contain

any constituent that is contextually equivalent to any of its subconstituents, it is not ruled

out on the constituent-based non-redundancy account. Thus, it is predicted to be felicitous,

contrary to our intuitive judgement. In fact, as we shall see, CHDs pose a thorny challenge

for almost all existing theories of redundancy.

To account for the (in)felicity of various types of Hurford sentences, I present an anal-

ysis that utilizes the notion of Questions Under Discussion (QUDs) (van Kuppevelt 1995;

Roberts, 1996; Asher and Lascarides, 2003) while still retaining the spirit of the redundancy

account. Under this approach, we understand assertions as responding to some discourse

question. For example, the assertion “John was born in FranceF” with a focus marking on

“France” is normally understood as responding to the question “Where was John born?”.

Given this relation, we can recast the ban against redundant material as a general constraint
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on how one should respond to discourse questions. When a sentence purports to offer multiple

answers to the same question, these answers must be distinct. In fact, an account along this

line has been suggested by Simons (2001). According to her, each disjunct in a disjunction

should provide a distinct answer to the discourse question so that none should “contextually

entail” another. This paper aims to further develop such a QUD-based approach so that the

(in)felicity of various Hurford sentences can be properly captured. In particular, I propose

that the disjuncts in a disjunction are not only taken to provide distinct answers to the

same question—call this the distinctness constraint—but also understood as engaging the

question “in the same way”—call this the uniformity constraint. I will explicate this idea of

answering a question “in the same way” using Büring’s (2003) notion of discourse-trees.

Additionally, my account can be extended to explain why certain particles such as “at

least” appear to repair an otherwise infelicitous HD, as (5) demonstrates:

(5) John was born in Paris, or at least he was born in France.

Past literature (e.g., Singh, 2008) often sets aside disjunctions like (5) as special cases that

do not contain a genuine disjunction and thus falls outside the explananda to be accounted

for. In this paper, I argue for a more unified analysis and show how such an account is

possible under the current QUD-based approach.

This paper proceeds as follows. In §3.2, I review the literature on Hurford disjunction,

lay out the data points I plan to capture, and highlight the difficulties faced by the existing

redundancy accounts. I then offer my QUD-based analysis in §3.3. By postulating general

constraints on the structure of discourse-trees, I shall demonstrate how the (in)felicity of

various Hurford sentences can be properly captured: §3.3.1 focuses on the standard HDs

and other infelicitous variants, §3.3.2 discusses the felicitous ones, namely QHDs, and §3.3.3

extends the analysis to accommodate the repairing effect of scalar particles such as “at least”.

§3.4 briefly discusses one open issue concerning Hurford questions. §3.5 concludes.
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3.2 Empirical Landscape

3.2.1 Quasi Hurford Disjunctions

Recall that according to the constituent-based account of redundancy, a sentence contains

redundant material if it contains a constituent that is contextually equivalent to one of its

subconstituents. This account, though simple and intuitively appealing, fails to explain the

contrast between the infelicitous HD in (1) and the felicitous QHD in (3). Both sentences

contain as a subconstituent “John was born in France” which is contextually equivalent to

the original Hurford sentence. To explain this contrast, Marty and Romoli (2022) develop

a more sophisticated redundancy account which takes a sentence’s exhaustified meaning

into consideration. More specifically, they make use of the exhaustified interpretation a

disjunction “p or q” can receive, namely the exclusive reading “p or q, but not both”. To

explain why QHDs are felicitous with the help of exhausitification, they draw on Mayr and

Romoli’s (2016) explanation as to why a disjunction like (6) is felicitous even though it

also has a seemingly truth-conditionally redundant component and thus could potentially

be blocked by its simplification in (7):

(6) Mary isn’t pregnant, or she is (pregnant) and she is happy.

(7) Mary isn’t pregnant, or she is happy.

According to Mayr and Romoli, in order to determine redundancy, we should also compare

the exhaustified meaning of a sentence containing an allegedly redundant component to that

of its simplification without it, and only when the allegedly redundant component contributes

nothing to altering the sentence’s exhaustified meaning can it be truly deemed redundant.

Since the exhaustified interpretation of a disjunction (A ∨ B) is given by the exclusive

disjunction (A ∨B) ∧ ¬(A ∧B), (6) receives the following strengthened reading:

(8) (Mary isn’t pregnant, or she is pregnant and she is happy) ∧¬(Mary isn’t pregnant,

AND she is pregnant and she is happy) ≈ (6).

Given that the conjunction “Mary isn’t pregnant, AND she is pregnant and she is happy”

is a contradiction and thus its negation a tautology, the exhaustified interpretation given by

(8) turns out to be equivalent to (6). In other words, exhaustification is vacuous in the case
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of (6). By contrast, exhaustifying (7) yields:

(9) (Mary isn’t pregnant, or she is happy) ∧¬(Mary isn’t pregnant, AND she is happy) ≈

Either Mary isn’t pregnant, or she is happy, but not both.

What (9) rules out is the possibility that Mary is happy but not pregnant. This possibility is

not explicitly ruled out by the more complex disjunction in (6). As (6) and (7) differ in their

exhaustified meaning, the constituent “she is (pregnant)” in (6) is deemed non-redundant.

Now, since “Mary isn’t pregnant, or she is and she is happy” shares a similar structure

with the QHD “John was born in Paris, or he was born in France but not in Paris”, Marty

and Romoli contend that we can as well appeal to exhaustification to explain why QHDs are

felicitous. Compare the exhaustified reading of the QHD in (10) to that of its simplification

in (11):

(10) John was born in Paris, or he was born in France but not in Paris.

(11) John was born in Paris, or he was born in France.

As with (6), exhaustifying (10) has no effect since the conjunction “John was born in Paris,

AND he was born in France but not in Paris” is a contradiction. On the other hand, the

exclusive interpretation of (11) is given by (12):

(12) (John was born in Paris, or he was born in France) ∧¬(John was born in Paris, AND

he was born in France) ≈ John was born in France but not in Paris.

Since (10) and (11) differ in their exhaustified meaning, the additional conjunct in (10) is

not redundant, and (10) is predicted to be unmarked.

However, Marty and Romoli’s solution faces several problems. First, unlike “Mary isn’t

pregnant, or she is happy” which can be strengthened to mean “Mary isn’t pregnant, or she

is happy, but not both”, “John was born in Paris, or he was born in France” cannot be taken

to mean “John was born in France but not in Paris”. On one hand, it is highly doubtful that

the strengthened interpretation is empirically attested; on the other hand, the strengthened

interpretation would render the standard HD “John was born in Paris, or he was born in

France” no longer infelicitous on Mayr and Romoli’s modified redundancy account. To see

this latter point, note that if we were to allow “John was born in Paris, or he was born in

France” to mean “John was born in France but not in Paris”, then “John was born in Paris,
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or he was born in France” and its simplification “John was born in France” would differ in

their exhaustified meanings. As a result, “John was born in Paris, or he was born in France”

would no longer be predicted to be defective.

Furthermore, even if we grant that the constituent “but not in Paris” in (10) is not

redundant, we still have not adequately explained why (10) is felicitous. This is so because

even if (10) and (11) differ in their exhaustified meaning, (10) still has the same exhaustified

meaning as the further simplification “John was born in France”. Even after exhaustification,

(10) and “John was born in France” still share the same truth condition, that is, true iff

John was born in France. Hence, Marty and Romoli’s account would still predict (10) to be

infelicitous because of the availability of a simpler truth-conditionally equivalent sentence.

In short, while appealing to exhaustification may offer a solution to the puzzle concerning

why disjunctions such as “Mary isn’t pregnant, or she is (pregnant) and she is happy” do

not involve redundancy, the same strategy cannot be replicated so as to capture the contrast

between felicitous QHDs and infelicitous HDs.

3.2.2 Long Distance Hurford Disjunction

A different way to modify the redundancy account is to check redundancy not at the global

level but at the molecular level (Katzir & Singh, 2013; Ciardelli & Roelofsen, 2017):

Molecular Non-Redundancy: A sentence S is deviant in a context c if S’s logical

form contains a node O(X,Y ) where O is a binary connective and X and Y are its two

arguments such that O(X,Y ) is contextually equivalent to either X or Y .1

On this account, HDs like (1) are still correctly predicted to be deviant: “John was born in

Paris or in France” is contextually equivalent to “John was born in France”. On the other

hand, it also predicts the QHD in (2) to be felicitous as desired: the whole disjunction “John

was born in Paris, or he was born in France but not in Paris” is not contextually equivalent

to either of its disjuncts; likewise, the embedded conjunction “he was born in France but not

in Paris” is not contextually equivalent to either of its conjuncts.

1Here, I follow Ciardelli and Roelofsen (2017) in formulating the constraint at the level of logical forms.
And to further simplify, let us assume that X and Y are both sentential/propositional constituents of S.
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The molecular non-redundancy account, however, fails to explain why (13), which is an

example of what Marty and Romoli call Long Distance Hurford Disjunctions (LDHDs), is

infelicitous.

(13) #John was born in London or in Paris, or he was born in France.

Since none of the binary nodes can be replaced with one of its immediate constituents, the

molecular non-redundancy account incorrectly predicts it to be felicitous. One immediate

response is to introduce n-ary connectives:

Non-Redundancy with n-ary Connectives: A sentence S is deviant in a context c

if S’s logical form contains a node O(X1,X2, . . . ,Xn) where O is an n-ary connective

(n ≥ 2) such that O(X1,X2, . . . ,Xn) is contextually equivalent to a sentence derived

from deleting any constituent from X1,X2, . . . ,Xn.

Under the n-ary version, for example, since (13) is truth-conditionally equivalent to the

simpler “John was born in London, or he was born in France”, the extra disjunct “John

was born in Paris” now becomes redundant. One way to formally realize such an account

is via inquisitive semantics (Ciardelli & Roelofsen, 2017; Anvari, 2021; see also Ciardelli et

al., 2018). In brief, under inquisitive semantics, disjunction introduces a set of alternatives.

The LDHD in (13), when taken as a whole, introduces three alternatives: [John was born

in London], [John was born in Paris], and [John was born in France]. But since “John

was born in Paris” entails “John was born in France”, the alternative [John was born in

Paris] collapses into [John was born in France] and thus becomes redundant. That being

said, simply making disjunction n-ary and adopting inquisitive disjunction is still inadequate

because similar oddness resurfaces in sentences that contain a combination of disjunction and

conjunction, as in the case of conjunctive Hurford disjunctions.

3.2.3 Conjunctive Hurford Disjunctions

Recall the CHD from (4), repeated below as (14):

(14) #John was born in Paris, or he was born in France and Mary was born in London.

The infelicity of CHDs is problematic because, unlike HDs and LDHDs, there does not

appear to be any constituents that are truth-conditionally redundant at first glance. None
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of the constituents in (14) appears deletable without affecting the truth condition of the

whole sentence. Nevertheless, the sentence is still perceived as defective.

To my knowledge, the only existing account that addresses this issue to some degree

comes from Simons (2001). She discusses the following example:

(15) Q: What kind of car does Jane drive?

A: #Either she drives a Subaru station wagon, or George drives a Toyota and she

drives a Subaru.

The answer takes the form of a CHD. According to Simons, although (15A) is not truth-

conditionally equivalent to any of its simplifications, it still in a sense contains redundant

material when viewed as an answer to the question in (15Q). Since the question concerns

the kind of car that Jane drives, the subconstituent “George drives a Toyota” in (15A) con-

tributes nothing to answering this question. Therefore, with respect to the question (15Q),

(15A) is indeed as informative as its simplification “Jane drives a Subaru”.2 Consequently,

(15A) is deemed infelicitous as an answer to (15Q).

To put it another way, what Simons essentially postulates is a distinctness constraint on

disjunctive answers. That is, each disjunct in a disjunction should provide a unique answer

to the topic question. Since the answers provided by the two disjuncts in (15A) with respect

to the question in (15Q) are not non-entailing, infelicity ensues.

However, Simons’s account only partially addresses the challenge posed by CHDs because

it fails to generalize to other discourse questions. For example, suppose that the discourse

question in (15) is “Who drives what?” instead. Then, since “George drives a Toyota” does

contribute as a partial answer to this question, (15A) is no longer as informative as the

simplification “Jane drives a Subaru” with respect to this question. As a result, contrary to

our intuitive judgement, (15A) would be regarded as a perfectly natural answer. Similarly,

on Simons’s account, although the CHD in (14) is deemed infelicitous as an answer to the

question “Where was John born?”, it is again incorrectly predicted as felicitous with respect

to the question “Who was born where?”.

To address this inadequacy, I propose to modify Simons’s account in the following way.

2This is cashed out formally in Simons (2001) using Groenendijk and Stokhof’s (1984) partition semantics.
The detail does not concern us too much here.
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The inability to account for the infelicity of (15A) with respect to the discourse question

“Who drives what?” stems from the fact that, on Simons’s account, the distinctness con-

straint only applies at the level of discourse questions. Given this, one solution is thus to

make the constraint also apply at a more local level. More specifically, “Jane drives a Sub-

aru” and “Jane drives a Subaru station wagon” can still be regarded as responding to the

same QUD (e.g., “What does Jane drive?”) even if this QUD is not the discourse question.

As such, we can still obtain a violation of the distinctness constraint. Moreover, the reason

why distinctness can be checked with respect to the question “What does Jane drive?” even

if the discourse question is “Who drives what?” instead is that, assuming Jane is a rele-

vant individual, the question “What does Jane drive?” is inherently related to the discourse

question given that an answer to the former provides a partial answer to the latter. Hence,

answering the question “What does Jane drive?” can be regarded as part of the inquiry

strategy to address the discourse question “Who drives what?”. On my account, the dis-

tinctness constraint applies not only at the level of the discourse question but also at the

level of subquestions contained in the strategy of inquiry that is used to tackle the discourse

question. To materialize this picture, I will make use of Büring’s (2003) notion of discourse

trees and postulate an additional constraint called uniformity.

To take stock, existing accounts of redundancy fail to capture the whole range of data

concerning Hurford disjunctions. The table below summarizes the relevant data points dis-

cussed so far alongside how well the existing redundancy accounts handle these data.

Types of Hurford Disjunctions Are they felicitous? Constituent Molecular N -ary

Simple Hurford No 3 3 3

Quasi Hurford Yes 7 3 3

Long Distance Hurford No 7 7 3

Conjunctive Hurford No 7 7 7

As the table shows, none of the accounts on the market can adequately handle the full

range of Hurford disjunctions; in particular, they all fail to explain why conjunctive Hurford

disjunctions are infelicitous. Building upon Simons (2001), I devise a more sophisticated

QUD-based account that manages to capture these data. As we shall see in §3.3.1, I explain
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why simple Hurford, long-distance Hurford and conjunctive Hurford disjunctions are all

infelicitous by appealing to two constraints on the structure of discourse trees: uniformity and

distinctness. These two constraints together help to cash out the thought that a disjunction’s

disjuncts should tackle a given QUD in the same way and each provide a distinct answer to

it. The felicity of quasi Hurford disjunctions will be dealt with in §3.3.2 which requires the

postulation of additional constraints.

3.2.4 Hurford Disjunction with a Scalar Particle

I conclude §3.2 by introducing another piece of data that I wish to capture. As mentioned,

it has been observed that certain scalar particles such as “at least” (Singh, 2008) and “even”

(Westera, 2020) can repair an otherwise infelicitous Hurford disjunction:

(16) John was born in Paris, or at least in France.

(17) John was born in France, or even in Paris.

Sentences like (16) and (17) have often been set aside in the literature on Hurford disjunction.

For example, in his brief explanation as to why “at least” fixes an otherwise infelicitous HD,

Singh (2008) comments that the “or” in “or at least” is not a genuine disjunction; rather,

“or at least” should be better viewed as a form of correction: the speaker retracts what had

just been said proceeding it.

I disagree with this diagnosis as I think the “or” in (16), as well as in (17), retains

its disjunctive force. For one thing, note that we can embed (16) in the antecedent of a

conditional and the resulting conditional still licenses the inference commonly known as the

simplification of disjunctive antecedent:

(18) Mary will date John if he was born in Paris or at least in France. ⇒

(19) Mary will date John if he was born in Paris.

(20) Mary will date John if he was born in France.

The inferences from (18) to (19) and (20) seem natural. However, if we were to construe

“or at least” simply as a device of retraction which renders (18) come out expressing the

same as (20), we would have difficulty explaining the inference from (18) to (19). This is so

because conditionals are not monotonic in the antecedent place as attested by the so-called
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Sobel sequences (Lewis, 1973; Stalnaker, 1968; Willer, 2017). For instance, (21) does not

feel inconsistent:

(21) Mary will date John if he was born in France. But she won’t if he was born in Paris.

Since we cannot view (19) as being entailed by (20), the inference from (18) to (19) would

be left unexplained on the retraction account.

A more plausible approach, I think, is to treat the apparent disjunction in “or at least”

as genuine disjunction with its disjunctive force intact. I will provide such an account in

§3.3.3. To explain the reason why the presence of “at least” repairs what would otherwise

be an infelicitous Hurford disjunction, I shall once more invoke QUDs. In a nutshell, scalar

particles such as “at least” and “even” introduce alternative strategies of inquiry such that

the two answers “John was born in Pairs” and “John was born in France” will no longer

respond to the same QUD. Hence, even though “John was born in Paris” entails “John was

born in France”, no violation of the distinctness constraint occurs as they do not answer the

same QUD. Consequently, (16) and (17) are judged as felicitous.

3.3 A New QUD-Based Analysis

3.3.1 D-Trees and Core Constraints

In this section, I will show how the infelicity of HDs, LDHDs, and CHDs can be captured on

a QUD-based account of redundancy. As mentioned in §3.2.3, in order to explain why CHDs

are infelicitous, I will modify Simons’s account by having the distinctness constraint checked

not only at the level of discourse questions but also locally at the level of subquestions.

According to Roberts (2012), discourse participants devise strategies to answer a given topic

question by breaking it down to more specific subquestions. Let us call Q′ a subquestion of

Q iff Q entails Q′, that is, iff every complete answer to Q also provides a complete answer

to Q′.3 A subquestion can be broken down into further subquestions. Thus, QUDs enjoy

a hierarchical structure, and one convenient way to visually represent such a hierarchical

structure is to organize QUDs into a d(iscourse)-tree (Büring, 2003).

3Alternatively, we can view Q′ as a subquestion of Q iff a complete answer to Q′ provides a partial
answer to Q. The detail does not concern us greatly here.
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We define a d-tree as a partially ordered set of nodes, each representing a declarative or

an interrogative sentence. For present purposes, we may simplify by assuming that these

nodes stand in one of the two relations: (a) the question-and-subquestion relation, which

relates two interrogative sentences, and (b) the question-and-answer relation, which relates

an interrogative sentence to a declarative sentence.4 If an interrogative sentence dominates a

declarative sentence, then the latter must answer the former. In other words, we shall enforce

the question-answer congruence constraint as standardly postulated (Roberts, 1996; Onea

& Zimmermann 2019). Next, let us call any sub-tree of a d-tree that consists exclusively

of questions a QUD-tree. A QUD-tree represents a strategy of inquiry which breaks down

a superquestion into more specific subquestions, thereby laying out a particular way of

tackling the superquestion. To predict the infelicity of various Hurford sentences, I posit the

following core constraints (as for capturing the felicity of QHDs, additional constraints are

needed which will be laid out in §3.3.2):

Uniformity: A disjunction’s disjuncts must evoke the same strategy of inquiry with

respect to the QUD answered by the whole disjunction.

Distinctness: Answers to the same question must be distinct in terms of non-entailment.

Consider the uniformity constraint first. It is supposed to capture the idea that the

disjuncts of a disjunction should answer a question in the same way. Given that strategies

of inquiry are represented by QUD-trees, uniformity says that the root question Q of a

disjunction should branch into two identical QUD-trees each of which is dominated by a

copy of Q. To illustrate with a simple example, consider the HD “John was born in Paris,

or he was born in France” in (1). Suppose that this disjunction is uttered as a response

to the question “Where was John born?”. We can then depict its corresponding d-tree as

shown in Figure 3.1. The root question to which the disjunction responds in this case is

“Where was John born?”. By uniformity, it branches into two copies of itself each of which

immediately dominates one disjunct of the whole disjunction. Since the two disjuncts fail

to provide non-entailing answers to the same question, distinctness is violated, and thus we

4Recent work on d-trees have postulated other types of relations such as dependent questions and po-
tential questions (see, e.g., Onea & Zimmermann 2019). It is possible to modify the current framework to
allow for other types of relations between nodes.
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Where was John born?

Where was John born?

John was born in Paris.

Where was John born?

John was born in France.

Figure 3.1: D-tree for the Hurford disjunction in (1).

predict (1) to be infelicitous. In this example, each disjunct does not invoke complex inquiry

strategies; hence, only the root question itself is copied on each branch. In other cases where

complex strategies are evoked as in the case of the CHD shown in Figure 3.4 below, the

entire QUD-tree will be duplicated on each branch to observe uniformity.

To adduce a different example where the uniformity constraint is violated, consider (22A)

which is infelicitous as a response to (22Q).

(22) Q: Where was John born? And where was Mary born?

A: #John was born in Paris or Mary was born in London.

Uniformity straightforwardly explains why (22A) feels odd: since the first disjunct purports

to answer the first question whereas the second disjunct a completely different one, uniformity

is violated.

The current implementation of d-trees also provides a convenient way to tease apart trees

that correspond to disjunction and conjunction. Conjunctions such as (23) and (24) where

the two conjuncts differ in only one dimension are conceived of as generating a d-tree where

the two conjuncts are immediately dominated by the root question.

(23) John likes raspberries and strawberries.

(24) #John likes raspberries and berries.

For example, suppose that (24) is uttered as a response to the discourse question “what fruit

does John like?”; we can then draw the d-tree for (24) as shown in Figure 3.2. Intuitively,

when the two conjuncts of a conjunction differs only in one dimension, they each purport to

provide a partial answer to the QUD answered by the whole conjunction (cf. Roberts, 1996;

Jasinskaja & Zee, 2008; Riester, 2019). But since one conjunct in (24) entails the other, the

two answers fail to be distinct, and thus (24) is regarded as defective. While this simple
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What fruit does John like?

John likes raspberries. John likes berries.

Figure 3.2: D-tree for the Hurford conjunction in (24).

treatment of conjunctive answers is not without any criticism (e.g., Onea, 2019), I shall stick

to it in this paper for it offers an elegant way to reflect the difference between disjunction

and conjunction in d-trees.

One last caveat regarding uniformity is that a disjunction will not always require branch-

ing. When branching is involved, each disjunct is considered as a separate answer to the

QUD addressed by the whole disjunction. But branching does not always occur. For exam-

ple, when the QUD is a polar question such as “Does John like raspberries or strawberries↑?”,

a positive answer “yes” to this question will be immediately dominated by it without the

polar question splitting into further questions.

Now, as for the distinctness constraint, it is modeled after Simons (2001) and requires that

answers to the same question be distinct and non-entailing. The difference is that distinctness

is no longer just a constraint on disjunction with respect to the topic question but intended

as a general constraint on all question-answer pairs in a given d-tree. It dictates that no two

question-answer pairs in a d-tree can share the same question but have two answers where

one entails the other. This includes cases where the two answers are dominated by the same

node as in the tree from Figure 3.2 as well as cases where the two answers are dominated

by two different nodes where the two nodes just happen to denote the same question as in

the tree from Figure 3.1. Since both of them violate distinctness, we correctly predict the

Hurford disjunction in (1) and the Hurford conjunction in (24) to be infelicitous.

A similar story can be told as to why long-distance Hurford disjunctions are infelicitous.

This is where a QUD-based analysis starts to pay off. Consider the LDHD in (13), repeated

below as (25):

(25) #John was born in Paris or in London, or he was born in France.

Since the first disjunct of (25) is itself a disjunction, the question to which it responds will

split once more into two copies of itself. By uniformity, the QUD-tree on the left branch
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Where was John born?

Where was John born?

Where was John born?

John was born in Paris.

Where was John born?

John was born in London.

Where was John born?

Where was John born?

John was born in France.

Where was John born?

Figure 3.3: One tentative d-tree for (25).

is again duplicated on the right, thereby yielding the QUD-tree in Figure 3.3. One small

wrinkle here concerns how we should connect the second disjunct “John was born in France”

to the QUD-tree on the right branch, since there are two question nodes but only one answer

node. A full resolution of this issue is not required for our current purposes as it does not

play a significant role in explaining the infelicity of (25). For example, as Figure 3.3 shows,

we could leave the last question node unanswered, which in turn can be used to signify

that there isn’t a fourth possibility regarding John’s birthplace. Alternatively, if we consider

disjunction as n-ary rather than binary, we can split the root question into three copies of

itself and thereby circumvent the problem. In any case, since “John was born in Paris” and

“John was born in France” respond to the same question, (25) is predicted to be infelicitous

as desired.

Move on to conjunctive Hurford disjunctions. We can associate different d-trees with the

CHD in (26) depending on how the discourse question is construed.

(26) #John was born in Paris, or he was born in France and Mary was born in London.

Suppose that (26) is uttered as a response to the question “Who was born where?”. In regard

to this kind of multiple wh-question, it is natural to treat the second disjunct “John was born

in France and Mary was born in London” where the two conjuncts differ in two dimensions

as invoking contrastive topics. Following Büring’s (2003) analysis of contrastive topics, we

can treat the two conjuncts of “John was born in France and Mary was born in London” as

each responding to a different subquestion of “Who was born where?”. The resulting d-tree

is depicted in Figure 3.4. On the right branch “John was born in France” and “Mary was

born in London” are dominated by two separate subquestions of “Who was born where?”,
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Who was born where?

Who was born where?

Where was John born?

John was born in Paris.

Where was Mary born?

Who was born where?

Where was John born?

John was born in France.

Where was Mary born?

Mary was born in London.

Figure 3.4: A d-tree for (26) with contrastive topics; note that the QUD-tree on the right is copied to the
left branch.

namely “Where was John born?” and “Where was Mary born?” respectively. By uniformity,

the QUD-tree on the right branch is copied to the left. Since the two occurrences of “Where

was John born?” are associated with two answers where one entails the other, distinctness

is violated and (26) is predicted to be infelicitous.

On the other hand, we can also construct an alternative d-tree for (26) that does not

invoke contrastive topics. This is more natural when (26) is used as an answer to a single

wh-question such as “Under what conditions do I win the bet?”. This time, as Figure 3.5

shows, the question node “Under what conditions do I win the bet?” that appears on the

right branch no longer further splits into additional subquestions but instead immediately

dominates the two conjuncts of the conjunctive answer “John was born in France and Mary

was born in London”. Nonetheless, since “John was born in Paris” and “John was born in

France” are still two non-distinct answers to the same question, we correctly predict (26) to

be infelicitous with respect to this new discourse question as well.

Under what conditions do I win the bet?

Under what conditions do I win the bet?

John was born in Paris.

Under what conditions do I win the bet?

John was born in France. Mary was born in London.

Figure 3.5: A d-tree for (26) with a different discourse question.
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3.3.2 Additional Constraints

The QUD-based analysis so far successfully captures the infelicity of simple Hurford disjunc-

tions, long-distance Hurford disjunctions, and conjunctive Hurford disjunctions. However, it

does not immediately explain why quasi Hurford disjunctions are felicitous. Consider again

the felicitous QHD in (3), repeated below as (27):

(27) John was born in Paris, or he was born in France but not in Paris.

To correctly predict (27) as felicitous, we need to block the d-tree depicted in Figure 3.6.

Where was John born?

Where was John born?

John was born in Paris.

Where was John born?

John was born in France. John wasn’t born in Paris.

Figure 3.6: A potential d-tree for (27) that needs to be ruled out.

Since this d-tree violates distinctness, were it to be allowed, we would incorrectly predict (27)

as infelicitous. One way to rule it out as an admissible representation for (27) is to constrain

how implicit QUDs can be reconstructed. Although the issue about how to reconstruct the

implicit QUD for a target sentence remains rather elusive, some headway has been made

(e.g., Riester 2019; Onea 2019). One constraint that I will appeal to in particular is the

following one postulated by Riester (2019):

Maximize-Q-Anaphoricity: Implicit QUDs should contain as much given (or salient)

material as possible.

The relevant notion of givenness is from Schwarzschild (1999) (see also Rochemont, 2016). To

give an example from Riester, among the three candidates QUDs in (29), (29c) is preferred

as the implicit QUD for (28) over (29a) and (29b) because it maximizes the given/salient

material in (28).

(28) He literally suffocated.

(29) (a) What happened?

(b) What about him?
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(c) How bad was his condition?

The underlying intuition behind this constraint is that an implicit QUD reconstructed from

an answer should enjoy a certain degree of specificity with respect to its answer: an implicit

QUD should be maximally specific granted that it does not contain any new non-salient

material. To provide another example, between the two sentences in (31), (31b) seems to

serve as a better answer to (30) than (31a).

(30) John was born in Paris. What about Mary?

(31) (a) She was born in the UK.

(b) She was born in London.

This is so because the implicit QUD answered by “John was born in Paris” can be readily

reconstructed as “Which city was John born in?”. As such, the what-about question will

be interpreted as asking “Which city was Mary born in?”, thereby making (31b) the more

suitable answer. Of course, this is not to say that a suitable answer to (30) will always

specifies a city. When the speaker cannot specify the city or when the city in which Mary

was born is not well-known, an answer that specifies a country would be more appropriate

due to other general Gricean considerations. Setting these cases aside, it does seem that a

proper answer to “What about Mary?” should provide the same degree of specificity as that

of “John was born in Paris”.

Imposing Maximize-Q-Anaphoricity now blocks the problematic d-tree in Figure 3.6 be-

cause “Where was John born?” fails to maximize salient material when taken as an implicit

QUD for “John was born in France” and “John was born in Paris”. As the first answer

mentions a country while the second one a city, a better d-tree that accommodates this is

shown in Figure 3.7. The question “Where was John born” is divided into “Which country?”

and ”Which city?”, and by uniformity, this happens on both branches. As a result, the two

entailing answers “John was born in Paris” and “John was born in France” no longer re-

spond to the same QUD, which means distinctness is no longer violated. Hence, we correctly

predict the QUD in (27) to be felicitous.

One small complication concerns the leftmost answer node in Figure 3.7. It is enclosed in

a pair of parentheses because although the question node that dominates it is not explicitly
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Where was John born?

Where was John born?

Which country?

(John was born in France.)

Which city?

John was born in Paris.

Where was John born?

Which country?

John was born in France.

Which city?

John wasn’t born in Paris.

Figure 3.7: A d-tree for (27). The “John was born in France” on the left is enclosed in parentheses as this
answer is not explicitly given but only contextually entailed by “John was born in Paris”.

answered by the first disjunct of (27), an answer to this question, namely that John was

born in France, is entailed by “John was born in Paris”. We could have alternatively left the

“Which country?” node on the left unanswered without affecting the core prediction of the

current analysis, but enclosing a contextually entailed yet not explicitly mentioned answer

in parentheses enables us to maximize the information embodied by d-trees. Also with this

change, answer nodes that are not explicitly mentioned do not figure into deciding whether

a violation of distinctness has occurred.

It is worth noting that the d-tree in Figure 3.7 is not the only available representation

for (27). For example, this tree can be further refined to be made compatible with existing

accounts regarding the implicit QUDs introduced by negated sentences. According to Tian

et al. (2010, 2016), a simple negated sentence such as “John wasn’t born in Paris” assumes

a QUD that takes the form of a positive polar question, i.e., “Was John born in Paris?”, in

absence of other contextual information. By contrast, a cleft negation sentence such as “It is

John who wasn’t born in Paris” assumes a negative wh-question, i.e., “Who wasn’t born in

Paris”. They appeal to this difference to explain why the positive component of a negative

sentence appears to be represented only for simple negations but not for cleft negations. The

simple negative sentence but not the cleft sentence triggers the representation of the positive

component because only the former evokes a QUD that takes the form of a positive polar

question.

Assuming that a simple negative sentence invokes a positive polar question as its im-

mediate QUD, we can provide a corresponding d-tree as shown in Figure 3.8. Here, the
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Where was John born?

Where was John born?

Was John born in France?

(John was born in France.)

Was John born in Paris?

John was born in Paris.

Where was John born?

Was John born in France?

John was born in France.

Was John born in Paris?

John wasn’t born in Paris.

Figure 3.8: A different d-tree for (27) where the QUD that dominates the negated sentence “John wasn’t
born in Paris” is construed as the polar question “Was John born in Paris”.

QUD that dominates “John wasn’t born in Paris” is now the polar question “Was John born

in Paris?”. The resulting d-tree still observes Maximize-Q-Anaphoricity. Additionally, the

implicit QUDs are made more specific compared to the ones from Figure 3.7. Despite this

difference in details, since “John was born in Paris” and “John was born in France” still

respond to two different QUDs, this new d-tree also predicts (27) to be felicitous.

Now, allowing the superquestion “Where was John born?” to be divided into the sub-

questions “Which country?” and “Which city?” as in Figure 3.7 raises an additional problem.

If such an inquiry strategy is viable, then why doesn’t the vanilla HD “John was born in

Paris or he was born in France” in (1) evoke this strategy? After all, if we were to adopt this

strategy and construct a tree accordingly as in Figure 3.9, we would incorrectly predict (1)

to be felicitous since distinctness would no longer be violated as “John was born in Paris”

and “John was born in France” now respond to different questions.

In order to rule out the d-tree in Figure 3.9 as an admissible representation for (1), I

Where was John born?

Where was John born?

Which country?

(John was born in France.)

Which city?

John was born in Paris.

Where was John born?

Which country?

John was born in France.

Which city?

Figure 3.9: A d-tree for (1) which would incorrectly render the Hurford disjunction felicitous.

62



postulate the following constraint:

Q-Quantity: Implicit QUDs should make the answer(s) appear as informative as pos-

sible. In other words, a d-tree that has fewer unanswered questions is preferable to one

that has more.

Q-quantity is reminiscent of Grice’s (1975) maxim of quantity but is now applied to implicit

QUDs. The maxim of quantity (or to be more precise, its first submaxim) demands con-

versational participants be as informative as possible. But unlike in Grice’s case, given that

we do not begin with an already fixed QUD, we do not infer based on what is not said in

addressing some conversational goal to the conclusion that the speaker is not in a position

to assert it. Rather, according to Q-quantity, assuming that the speaker is being maximally

informative, when we try to select a QUD-tree among its competing alternatives, we will

take the lack of an answer to a particular question to indicate that the question is not part

of the current QUDs. For example, an utterance of “John was at the party last night” in an

out of the blue context will invoke “Was John at the party last night?” rather than “Was

John at the party, and was Mary at the party last night?” as its implicit QUD. The lack of

an answer to Mary’s presence at the party is used to signify that the corresponding question

is not part of the current QUD.

This is not to say that any d-trees that contain an unanswered question are automatically

discarded. Q-quantity helps to select an optimal d-tree from a set of candidates only after

other constraints on d-trees such as those imposed by contrastive topics, negations, and other

discourse markers have been taken into account. For example, the d-tree for “John was born

in Paris, or he was born in France and Mary was born in London” in Figure 3.4 contains

an unanswered question given that the first disjunct does not provide an answer to “Where

was Mary born?”. Nonetheless, this d-tree is deemed admissible since the existence of the

unanswered question is largely due to the use of contrastive topics. By contrast, since the

d-tree in Figure 3.9 has a proper competitor, namely the d-tree in Figure 3.1, which does

not contain any unanswered questions, it is dispreferred.

On the other hand, what indeed are ruled out automatically are cases where the recon-

struction of implicit QUDs includes a question that is left completely unaddressed. To use an

earlier example, with respect to “John was at the party last night”, the QUD “Was John at
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the party, and was Mary at the party last night?” leaves the subquestion “Was Mary at the

party last night?” completely unaddressed. Hence, this QUD is automatically eliminated.

By contrast, the question “Where was Mary born?” in Figure 3.4 does receive an answer—

i.e., “Mary was born in London”—on the right branch. Hence, there is no hard violation of

Q-quantity. For a ban against this type of hard violation of Q-quantity, it is crucial that we

are only concerned with the reconstruction of implicit QUDs. Q-quantity is by no means

intended as a general constraint on explicit discourse questions, since otherwise we would be

prohibited from constructing d-trees where the interlocutor is unable to provide an answer

to some discourse question.

One final comment regarding the two constraints discussed in this section: We can at-

tempt to unify Maximize-Q-anaphoricity and Q-quantity since they can be viewed as placing

an upper and lower bound on how specific implicit QUDs should be:

Q-Specificity: Implicit QUDs should be maximally specific (as per Maximize-Q-anaphoricity)

but not overly specific so that they are left unanswered (as per Q-quantity).

The reconstruction of implicit QUDs can then be viewed as a matter of finding the opti-

mal candidate that manages to balance conflicting constraints. As such, future research

may explore the prospect of further theorizing QUD-reconstruction from the perspective of

Optimality Theory (Prince & Smolensky, 1993; Blutner, 2000, 2013).

3.3.3 Markers of Alternative Strategies of Inquiry

In §3.2.4, I argued in favor of a uniform analysis under which the apparent disjunction

appearing in “or at least” retains its disjunctive force. I shall provide an analysis along

this line here. I submit that scalar particles such as “at least” and ”even” can repair an

otherwise infelicitous HD because they function to evoke alternative inquiry strategies so

that the resulting d-trees no longer violate the distinctness constraint.

For concreteness, let us focus on “at least”. Although the exact lexical entry for “at least”

is still up for debate and I do not intend to settle the issue here, several recent proposals

have argued for the idea that “at least” invokes an ordering on the set of alternative answers

to some current QUD, ranked by the pragmatic strength of the answers (Coppock & Beaver,
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2011, 2013; Biezma, 2013). For instance, consider the following lexical entry taken from

Coppock and Beaver (2011):

• Jat leastK = λp.λw.∃p′ ∈ CQS[p′(w) = 1 ∧ p′ ≥S p].

In words, “at least p” states that there exists an proposition p′ in the set of answers to the

current QUD (abbreviated as CQ) such that p′ is true and is ranked not lower than p in

terms of pragmatic strength. Pragmatic strength subsumes semantic entailment but also

goes beyond it. For example, consider (32), uttered as a response to an inquiry about the

academic position that John holds:

(32) John is at least an assistant professor.

The set of answers to the current QUD includes propositions such as “John is an assistant

professor” and “John is an associate professor”, and they are ordered by pragmatic strength

such that “John is an associate professor” is ranked higher than “John is an assistant pro-

fessor” even though the former does not entail the latter. Given such an ordering, (32) is

true just in case either “John is an assistant professor” is true or a higher-ranked alternative

is true.

Now, when trying to explain the repairing effect of “at least” in HDs, if we were to

similarly treat the ordering induced by “at least” as placed on the set of answers to the

current QUD, we would run into a problem. Consider again the use of “at least” in (33A):

(33) Q: Where was John born?

A: He was born in Paris or at least in France.

What are the stronger alternatives to the prejacent of “at least” in (33A)? Since the prejacent

of “at least” is “John was born in France”, one could plausibly take the stronger alternatives

as consisting of answers such as “John was born in Paris”, “John was born in Marseille”,

and so on. This would in turn force “John was born in France” and “John was born in

Paris” to respond to the same QUD. But this is exactly what renders the standard HD in

(1) infelicitous in the first place. In other words, if “at least” requires the two disjuncts in

(33A) to be viewed as addressing the same QUD, then the reconstructed d-tree for (33A)

will inevitably violate distinctness, and as a result we will incorrectly judge it as infelicitous.

On the other hand, if we choose not to treat answers such as “John was born in Paris”
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and “John was born in Marseille” as stronger alternatives to “John was born in France”, it

becomes rather unclear what other options remain.

In response, I propose that the use of “at least” in (33A) does not invoke an ordering on

the set of alternative answers to the current QUD addressed by the prejacent but instead

on a set of alternative QUDs among which the current QUD belongs. More specifically,

assuming that the set of alternative QUDs is not vacuous in the sense that it contains at

least one QUD that is different from the current QUD, we can treat “at least” as signaling

the existence of at least one alternative QUD in the d-tree such that it is a sister of the

current QUD and is pragmatically stronger than it.

The use of “at least” in (33A) signifies that the QUD answered by the prejacent “John

was born in France” has a sister node that is stronger. This requirement rules out the d-

tree depicted back in Figure 3.1 where the question “Where was John born?” on the right

branch immediately dominates the answer “John was born in France” which is the prejacent

of “at least”. Instead, the question “Where was John born?” on the right should be further

divided into (at least) two subquestions such that one is pragmatically stronger than the

other. One straightforward way to cash out strength for the current purpose is simply to

use the entailment relation. For example, consider the d-tree in Figure 3.10. Assuming that

the name of the country where a given city is located is common ground knowledge, then

the question “Which city?” contextually entails “Which country?” since an answer to the

first question also answers the second question. Hence, “Which city?” serves as a stronger

alternative QUD to “Which country?”, thereby satisfying the demand from the use of “at

Where was John born?

Where was John born?

Which country?

(John was born in France.)

Which city?

John was born in Paris.

Where was John born?

Which country?

John was born in France.

Which city?

Figure 3.10: A d-tree for (33A). The presence of “at least” signals that the QUD “Which country?” on
the right branch has “Which city?” as a stronger sister.
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least”. And by uniformity, the same QUD-tree is duplicated on the left. As a result, “John

was born in Paris” and “John was born in France” now respond to two different QUDs.

Since there is no violation of distinctness, (33A) is judged as felicitous.

Note that the d-tree in Figure 3.10 is in fact identical to the one from Figure 3.9. Recall

that, in §3.3.2, this particular tree is ruled out as an optimal representation for the HD in

(1) because there exists a competing d-tree that does not contain any unanswered question,

namely the one in Figure 3.1 where “John was born in France” on the right branch is

immediately dominated by the discourse question “Where was John born?”. Thus, by Q-

quantity, the d-tree in Figure 3.9 is dispreferred. The situation is different here. The addition

of “at least” signals the need for a more complex inquiry strategy which eliminates the

simpler d-tree as a potential competitor. In addition, although the above d-tree contains

an unanswered question on the right branch, the same question (i.e., “Which city?”) does

receive an answer on the left branch. Hence, there is no hard violation of Q-quantity. As a

result, the d-tree in Figure 3.10 now becomes admissible with respect to (33A).

If the current analysis is on the right track, then we should expect the repairing effect

of “at least” to more or less diminish in cases where it is harder to find a stronger sister of

the QUD that dominates the prejacent of ”at least”. For instance, the answer in (34A) still

sounds odd even with the presence of “at least”.

(34) Q: Where was John born?

A: ??He was born in France, or at least he was born in France or Germany.

Where was John born?

Where was John born?

Which country?

Which country?

France

Which country?

Which city?

Where was John born?

Which country?

Which country?

France

Which country?

Germany

Which city?

Figure 3.11: A potential d-tree for (34A) which is blocked by Q-quantity since “Which city?” does not
receive an answer on either branch.
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What we want to know is whether we can generate an admissible d-tree for (34A) such that

the QUD that dominates the prejacent of “at least” has a stronger sister. One candidate is

given in Figure 3.11, where just like in Figure 3.10, the discourse question is split into “Which

country?” and “Which city?”. The “Which country?” on the right is further divided into

two questions each dominating a disjunct of the prejacent of “at least” in (34A). However,

unlike in Figure 3.10 where the first disjunct of (33A), namely “John was born in Paris”,

supplies an answer to “Which city?”, this question is left completely unaddressed in Figure

3.11: neither of the two nodes representing this question receives an answer. As such, the

d-tree involves a hard violation of Q-quantity and thus is considered inadmissible.

By contrast, the above answer does appear to fit better as a response to the following

alternative question:

(35) Q: Was John born in France, Germany, or Belgium?

A: He was born in France, or at least he was born in France or Germany.

Figure 3.12 shows a possible d-tree for (35A). The QUD that dominates the prejacent of

“at least” is conceived of as the polar question “Was John born in France or Germany?”

this time around. As such, the question “Which country?” constitutes a stronger sister of

it, since a complete answer to the former question also provides an answer to the latter.

Moreover, since none of the questions in Figure 3.12 is left completely unaddressed, there is

no hard violation of Q-quantity. And as there is no violation of distinctness in Figure 3.12,

we predict (35A) to be an unmarked answer to (35Q).

Was John born in France, Germany, or Belgium?

Was John ... or Belgium?

Which country?

France

Was John born in France or Germany?

(Yes)

Was John ... or Belgium?

Which country? Was John born in France or Germany?

He was born in France or Germany.

Figure 3.12: A d-tree for (35A). The prejacent of “at least” on the right branch is dominated by the polar
question “Was John born in France or Germany?” which has “Which country?” as its stronger sister. (A
positive answer to the polar question on the left branch is entailed by the disjunct “He was born in France”).
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To recapitulate the difference between (34) and (35), the reason why (35A) feels more

natural than (34A) is that given the discourse question in (35Q), it is easier to construct a

QUD like “Was John born in France or Germany?”. When the discourse question is simply

“Where was John born?”, it is hard to envision why such a polar question would figure into a

reasonable inquiry strategy. By contrast, when the discourse question has already mentioned

“France”, “Germany”, and “Belgium” as three candidate answers, the question “Was John

born in France or Germany?” can be conceived of as a sensible way to narrow down and

develop the original discourse question.

Besides “at least”, we can explain the repairing effect of “even” along the same lines. A

common recipe for the lexical analysis of “even” is an ordering on the set of focus alternatives

to the prejacent of “even” (see, e.g., Rooth 1992; Chierchia 2013; Greenberg 2016). Roughly,

“even” presupposes that its prejacent should be stronger than any of its alternatives. Since

the focus alternatives of a proposition go hand in hand with the QUD addressed by it, we can

provide a similar analysis by treating “even” as inducing an inquiry strategy which requires

that the QUD immediately dominates the prejacent of “even” has a sister that is weaker

than it (see Figure 3.13). Just as in the case of “at least”, this more complex inquiry strategy

evoked by the use of “even” yields a d-tree where “John was born in France” and “John

was born in Paris” respond to two different QUDs, thereby capturing the repairing effect of

“even”.

Lastly, it is worth noting that not all scalar particles seem capable of fixing HDs. For

example, the following disjunction still sounds odd with the addition of “at most”:

Where was John born?

Where was John born?

Which country?

John was born in France.

Which city?

Where was John born?

Which country?

(John was born in France.)

Which city?

John was born in Paris.

Figure 3.13: A d-tree for “John was born in France or even in Paris”. The QUD “Which city?” on the
right branch which dominates the prejacent of “even” has “Which country?” as its weaker sister.
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(36) #John was born in France or at most in Paris.

This seems to indicate that scalar particles such as “at least” and “even” have a special status.

For one thing, it has been suggested that “at least” is indeed associated with multiple distinct

lexical entries (Kay, 1992; Nakanishi & Rullmann, 2009; Cohen & Krifka, 2011; Coppock &

Brochhagen, 2013). On the other hand, there have also been attempts to provide a uniform

lexical entry for “at least” (see, e.g., Biezma, 2013). How the current observation figures

into this debate is a question to be explored in future research.

3.4 Open Issue

One remaining issue I want to briefly highlight concerns Hurford questions. It has been

observed that Hurford disjunctions can also take the form of an interrogative sentence (Cia-

rdelli & Roelofsen, 2017). For instance, just as its declarative counterpart, the alternative

question in (37) is deemed infelicitous:5

(37) #Was John born in Paris↑, or was he born in France↓?

Ciardelli and Roelofsen (2017) combine a molecular redundancy account with inquisitive

semantics to explain why questions such as (37) are infelicitous. Since (37) introduces two

alternatives such that one entails the other, the alternative question is defective. However,

their account is unable to account for the interrogative variants of conjunctive Hurford

disjunctions. For instance, since the two alternatives introduced by (38) are non-entailing,

resorting to inquisitive semantics alone cannot explain its oddness.

(38) #Was John born in Paris↑, or was he born in France and Mary in London↓?

Neither does my current analysis offer an immediate solution to the puzzle raised by Hur-

ford questions. We could, as a makeshift solution, try to account for the data by examining

the d-tree associated with the assertion that corresponds to the sentence-radical of a given

question. For example, under inquisitive semantics, the alternative question in (38) shares

the same sentence-radical as the assertion “John was born in Paris, or he was born in France

and Mary in London”. As such, we can explain why (38) is bad by appealing to the same

d-tree that explain why the matching CHD is bad.

5The upward and downward arrows are used to indicate intonation.
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Additionally, by taking a simple negative sentence as assuming a positive polar question

as its QUD, we can also explain why Hurford disjunctions are infelicitous when they are

embedded under negation in a similar fashion. For example, the negation in (39) is perceived

as odd because the question it allegedly answers in (40) is defective in the first place.

(39) John wasn’t born in Paris or in France.

(40) #Was John born in Paris or in France↑?

Although this roundabout strategy yields the right predictions, a more preferable ap-

proach would be to give a theory of how implicit QUDs can be reconstructed from explicit

questions. This would enable us to generate a d-tree for the alternative question in (38) in

a more straightforward manner. Such an account is worth exploring in the future.

3.5 Conclusion

This paper presents a QUD-based analysis of informational redundancy that is capable of

capturing the (in)felicity of a wide range of Hurford disjunctions. In particular, it readily

predicts the infelicity of conjunctive Hurford disjunctions, which is left unaccounted for under

existing redundancy theories. To accomplish this, I make use of a notion of discourse trees

and postulate several constraints governing their structures. More specifically, I propose that

the disjuncts of a disjunction should evoke the same inquiry strategy and that answers to

the same question in a d-tree should be distinct and non-entailing; additionally, the implicit

QUDs reconstructed from a target sentence should be maximally but nor overly specific. I

have further illustrated how this analysis can be extended to elucidate the repairing effect

of scalar particles such as “at least”, thereby enabling a uniform analysis of disjunction in

discourse.
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Chapter 4

A Non-Bivalent Approach to

Inquisitive Logic

In this paper, I explore a non-bivalent approach to inquisitiveness and develop a new logic

called the logic of pseudo-complemented propositions (LPP). Standard inquisitive logic, which

takes support as its central notion, rejects the Law of Excluded Middle (LEM) by employ-

ing an intuitionistic negation. Under the current approach, I take support and rejection as

two separate central notions and reject LEM on the ground that the two central notions,

that of support and that of rejection, do not fully complement each other and thus allow

gaps between them. As such, LPP incorporates a negation that does not validate LEM

but does validate Double Negation Elimination. I supply an algebraic semantics for LPP

via the so-called twist-structures. I define a new class of twist-structures, call them pseudo-

complemented twist-structures (PTS), and prove the completeness of LPP with respect to

the class of PTS. The utility of this method of constructing twist-structures will be further

highlighted via exploration of some generalizations of PTS.

Keywords: Inquisitive logic, Law of Excluded Middle, Constructive logic, Algebraic seman-

tics, Twist-structures
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4.1 Introduction

Inquisitive semantics (Groenendijk, 2009; Ciardelli & Roelofsen, 2011; Ciardelli et al., 2015,

2018) offers a unified formal framework for analyzing both declarative and interrogative

sentences. In doing so, it provides a new conception of information exchange that goes beyond

the exchange of truth-conditional content typically associated with declarative sentences.

Under inquisitive semantics, information exchange is construed as a process of raising and

resolving issues: issues are raised by asking a question, which can then be subsequently

resolved by a declarative sentence. As such, asking a question can be viewed as proposing a

set of alternative ways for the common ground information to be updated. For example, a

polar question like “Is Alice at the party?” puts forward two alternatives which correspond

to the positive and negative answer to this question.

The central component of inquisitive semantics is an alternative-based account of dis-

junction: disjunction is interpreted as presenting a set of alternatives. For example, we can

symbolize the aforementioned polar question using the disjunction A∨¬A which introduces

two alternative possibilities, namely, one where Alice is at the party and one where she is

not. Given this treatment of disjunction, the Law of Excluded Middle (LEM) is no longer

valid:

(LEM) φ ∨ ¬φ

The loss of LEM has an intuitive explanation. For a sentence to be valid in inquisitive se-

mantics, it needs to be accepted or evaluated true with respect to every body of information,

which means that the sentence must be informationally trivial. But since φ∨¬φ symbolizes

a question in inquisitive semantics, the sentence is not completely trivial as it raises the

issue of whether φ, thereby making a significant semantic contribution in terms of its update

effect on the conversational context. Given this, LEM is rejected as a validity in inquisitive

semantics.

Now, if we assume a standard semantic clause for disjunction, that is, a disjunction is

evaluated true whenever one of its disjuncts is evaluated true, then we can choose between

two broad strategies to reject LEM: either we abandon valuation bivalence and adopt a non-

bivalent valuation function, or we stick to a bivalent valuation function but instead resort
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to an account of negation (e.g., intuitionistic negation) that does not vindicate LEM.

To elaborate, let us assume a possible world semantics with the following satisfaction

clause for disjunction: w ⊩1 φ ∨ ψ iff w ⊩1 φ or w ⊩1 ψ. That is, φ ∨ ψ is assigned the value

1 at a world w iff either φ is assigned 1 at w or ψ is assigned 1 at w. (We shall come back

to the exact interpretation of the value 1 shortly.) To invalidate LEM, we need to make it

happen that w ⊮1 φ and w ⊮1 ¬φ. Here are the two general strategies mentioned above:

Non-bivalent valuation: w ⊮1 φ /≡ w ⊩0 φ; but w ⊩0 φ ≡ w ⊩1 ¬φ.

Non-classical negation: w ⊮1 φ ≡ w ⊩0 φ; but w ⊩0 φ /≡ w ⊩1 ¬φ.

Both proposals, by rejecting one of the two equivalences, allow w ⊮1 φ and w ⊮1 ¬φ, thereby

invalidating LEM, but they achieve this through different means.1 According to the first

approach where valuation bivalence is abandoned, φ can receive a value that is neither 1 nor

0 (including the possibility of not receiving a value at all in the case of partial valuation

functions); consequently, not assigning 1 to φ is not equivalent to assigning 0 to φ. The

second equivalence w ⊩0 φ ≡ w ⊩1 ¬φ then construes negation as a toggle operation that

connects the two values: ¬φ is assigned 1 at w just in case φ is assigned 0 there. As for

the other option, whereas valuation bivalence is upheld, assigning 1 to ¬φ is not equivalent

to assigning 0 to φ, and thus, in presence of the first equivalence w ⊮1 φ ≡ w ⊩0 φ, not

equivalent to not assigning 1 to φ. As such, this second approach needs to find a suitable

non-classical negation that denies the second equivalence.

Whereas the existing inquisitive semantics, laid out in Ciardelli et al. (2018), chooses

the second route, I will explore the non-bivalent approach in this paper. Generally speaking,

given that there are many reasons why one may want to reject LEM, which of the two

approaches one choose largely comes down to one’s motivation, and more specifically, how

one interprets ⊧1 and ⊧0. This is not to say that given any particular motivation, we must

always settle on one approach. In fact, for some (and perhaps many) cases, we can motivate

both a bivalent and a non-bivalent approach.

1Of course, there could be a third option where we reject both equivalences. Moreover, even if we adopt
a non-bivalent approach, we could still incorporate another negation that does not reinforce the second
equivalence. But for the time being, let us focus on the two minimalist solutions given above.

74



To help illuminate this point, let us consider a different case. Take constructive mathe-

matics as an example. According to constructivism, mathematical objects are mental con-

structs (cf. Iemhoff, 2019). Thus, for any mathematical statement φ to be true, there needs

to be a mental construct that verifies φ via a proof of φ. Likewise, for ¬φ to be true, there

needs to be a proof of not-φ, which under the traditional Brouwer-Heyting-Kolmogorov-

interpretation, is understood as having a way to turn any proof of φ into a proof of a

manifestly false claim such as 1 = 0. Given this interpretation, LEM is rejected on the

ground that there are certain mathematical statements, e.g., Goldbach’s conjecture, that are

neither provably true nor provably false.

Now, depending on how one chooses to interpret ⊧1 and ⊧0, we arrive at different methods

to formally cash out constructivism. By taking proof as the sole central notion—that is, φ

is assigned 1 at w iff there exists a proof of φ at w—and interpreting the other value (i.e.,

0) as derivative of that of the first one, namely, as lack of proof, standard intuitionistic logic

counts as a bivalent account where LEM is rejected via the intuitionistic negation. On the

other hand, we can adopt a non-bivalent approach by bringing in another central notion,

namely counterexample (cf. Nelson, 1949). We can then interpret 0 as standing for the

existence of a counterexample. As such, LEM is rejected on the ground that it is not the

case that for any mathematical statement φ, we can always either construct a proof of φ or

find a counterexample to φ. This change of perspective results in a different logic, Nelson’s

three-valued logic N3, which incorporates a toggle negation ∼ that invalidates LEM while

still vindicating Double Negation Elimination (DNE), viz., ⊧ ∼∼φ → φ.2 It demonstrates

that intuitionistic logic is not the only formalism available for constructivists.

In this paper, I will apply this lesson to inquisitive semantics and explore a non-bivalent

counterpart to inquisitive logic, just as N3 can serve as a non-bivalent counterpart to intu-

itionistic logic. Whereas the existing inquisitive semantics follows a bivalent approach by

taking support as its sole central notion and opting for an intuitionistic negation to account

for the failure of LEM, I entertain a different approach that takes support and rejection as

two central notions that do not necessarily complement each other. I shall leave a more de-

tailed discussion of how the additional notion of rejection can be understood in an inquisitive

2To disambiguate, I will reserve ¬ for the intuitionistic negation and use ∼ for the toggle negation.

75



setting to §4.3, but here is the basic idea. In standard inquisitive semantics (Ciardelli et al.,

2018), supporting a question amounts to possessing enough information to be able to answer

the question. Analogously, we can then understand what it means to reject a question as

having enough information to determine that the question cannot be felicitously asked in the

first place—for example, because the question presupposes something that is already known

to be false. Since it is not the case that for any question, we are able to either answer it or

decide that it cannot be felicitously asked in the first place, the two notions of support and

rejection do not necessarily complement each other.

The resulting logic of the current non-bivalent approach, which I name the Logic of

Pseudo-complemented Propositions (LPP), resembles N3 in the sense that they both invali-

date LEM without simultaneously invalidating DNE. But unlike N3, the rejection conditions

of complex formulas are interpreted non-constructively, and unlike N3 but like the standard

inquisitive logic (Ciardelli & Roelofsen, 2011), LPP is not closed under uniform substitution.

My main objective here is not to argue in favor of LPP over the existing inquisitive logic;

rather the aim is to explore new possibilities by showing that the existing bivalent approach

(e.g., Ciardelli & Roelofsen, 2011) is not the only option for theorizing about inquisitiveness.

I present an algebraic semantics for LPP via the so-called twist-structures. Twist-

structures are algebras whose carrier set consists of ordered pairs which are capable of cod-

ifying two separate bodies of information—for example, information regarding the support

and rejection conditions of a sentence.3 As such, they fit well with logics that adopt a non-

bivalent perspective. This method of constructing twist-structures has been previously used

to devise algebraic semantics for N3 as well as other Nelson’s logics (see, e.g., Vakarelov,

1977; Kracht, 1998; Odintsov, 2004). A second goal of this paper is thus to further popu-

larize this method by showing that by varying certain parameters of the twist-operation, we

can derive a wide range of twist-structures. Among these twist-structures are the pseudo-

complemented twist-structures (PTS) which will supply us with an algebraic semantics for

LPP.

This paper proceeds as follows. In §4.2, I review the basic inquisitive logic and the

3A note on terminology. The name “twist-structure” comes from Kracht (1998); Vakarelov (2005) calls
this method “counterexample-construction”. But since the current paper explores generalizations of this
method beyond constructive mathematics, I will adopt Kracht’s terminology.
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logic N3. Since I intend to extend existing inquisitive logic in the same fashion as how

N3 extends the standard intuitionistic logic—that is, by incorporating a toggle negation—I

shall introduce the algebraic semantics for N3 based on basic twist-structures (BTS) to set

up the stage for my own use of the twist-construction method. In §4.3, I first motivate a non-

bivalent approach to inquisitiveness and then elucidate why the existing logic N3, albeit being

non-bivalent, is unsuitable for this purpose. This prompts us to devise a new non-bivalent

framework along the lines of N3. In §4.4, I present LPP together with an algebraic semantics

for it via PTS and prove completeness. In §4.5, I move on to the aforementioned second

objective by exploring several generalizations of the particular twist-operation proposed in

§4.4. And §4.6 concludes.

4.2 Preliminaries

4.2.1 Basic Inquisitive Semantics and Inquisitive Logic

Let us begin by defining the language for basic inquisitive logic. The language is given as

follows, where p is a member of a countable set of atomic propositional formulas:

Definition 4.2.1 (Logical syntax). φ ∶∶= p∣⊺∣�∣φ ∧ φ∣φ ∨ φ∣φ→ φ∣¬φ∣?φ

The last expression ⌜?φ⌝ abbreviates ⌜φ ∨ ¬φ⌝.

As mentioned previously, under inquisitive semantics, a question proposes alternative

ways to update common ground information. Each alternative introduced by a question is

formally represented as a set of possible worlds that are compatible with the information

embodied by the corresponding answer to the question. For example, the alternative “Alice is

at the party” can be represented as a set of worlds where Alice is at the party. Since a question

introduces multiple alternatives, the propositional content associated with a question is taken

to be a set of sets of possible worlds under inquisitive semantics. To obtain uniformity, we can

then construe the propositional content of any sentence, be it declarative or interrogative, as

a set of sets of possible worlds, that is, as a set of information states. We define information

states, propositions, and alternatives as follows:
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Definition 4.2.2 (Information states). An information state s is a set of possible worlds

and a subset of the total logical space (i.e., the set of all worlds) s ⊆W .

Definition 4.2.3 (Propositions). A proposition P is a non-empty downward closed set of

information states, that is, for all information states s and t, if s ∈ P and t ⊆ s, then t ∈ P .

Definition 4.2.4 (Alternatives in a proposition). The maximal elements of a proposition P

are the alternatives in P . We use Alt(P ) to denote the set of alternatives in P .

An information state is a set of worlds that are compatible with a certain body of information.

The proposition expressed by a sentence is then identified with those information states that

either already accept the assertion of it if the sentence is declarative, or resolve the question

it raises if the sentence is interrogative. And since whenever an information state already

contains enough information to accept an assertion or resolve a question, any subset of it,

which contains more information by excluding certain worlds, must also be capable of doing

so, propositions are construed as downward closed sets of information states.

Figure 4.1 displays some examples of propositions all generated from the same logical

space {AB,AB̄, ĀB, ĀB̄}, where AB stands for a world where Alice and Bob are both at

the party, AB̄ a world where Alice but not Bob is at the party, and so on. I use J K to denote

propositions, and for readability, I will represent a proposition using its alternatives. For

instance, Figure 4.1(a) depicts the proposition JA∨¬AK, which will be abbreviated as J?AK,

and as the figure shows, this proposition is represented by its two alternatives {AB,AB̄} and

{ĀB, ĀB̄}. We call a proposition that contains more than one alternative inquisitive. J?AK

is inquisitive: it raises the question of whether or not A, with each alternative representing a

way to answer the question, that is, by either affirming or denying A. Similarly, the proposi-

tion JA∨BK depicted by 4.1(b) is also inquisitive: it corresponds to the alternative question

AB AB̄

ĀB ĀB̄

(a): J?AK

AB AB̄

ĀB ĀB̄

(b): JA ∨BK

AB AB̄

ĀB ĀB̄

(c): J¬(A ∨B)K

AB AB̄

ĀB ĀB̄

(d): J¬¬(A ∨B)K

Figure 4.1: Some examples of propositions
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“Is Alice at the party↑, or is Bob at the party↓?”.4 By contrast, the propositions depicted

by 4.1(c) and 4.1(d) are not inquisitive as they contain only one alternative. Addition-

ally, there are two special propositions for any given logical space: the minimal proposition

⊺ ∶= ℘(W )—i.e., the power set of the logical space W—and the absurd proposition � ∶= {∅}.

Now, given that propositions under inquisitive semantics are sets of information states, we

can apply basic algebraic operations to them. More specifically, the set of all propositions,

call it Σ, ordered by the subset relation ⊆ forms a complete Heyting algebra ⟨Σ,∩,∪,⇒

,¬,�,⊺⟩, where the set intersection ∩ and the set union ∪ denote its meet and join, re-

spectively, and ⇒ denotes the relative pseudo-complement of this algebra (Roelofsen, 2013;

Ciardelli et al., 2018).5 Propositions are then connected via the following algebraic opera-

tions:

⊺ ∶= ℘(W );

� ∶= {∅};

Jφ ∧ ψK ∶= JφK ∩ JψK;

Jφ ∨ ψK ∶= JφK ∪ JψK;

Jφ→ ψK ∶= JφK⇒ JψK;

J¬φK ∶= JφK⇒ �.

Traditionally, sentences are evaluated at worlds, and a sentence φ is evaluated true at a

world w iff w belongs to the proposition expressed by φ, that is, the set of φ-worlds. Under

inquisitive semantics, sentences are evaluated at information states in terms of support. As

mentioned earlier, to support a sentence is to accept its assertion when the sentence is

declarative or to resolve the issue it raises when the sentence is interrogative. We then define

semantic consequence in terms of preservation of support.

Definition 4.2.5 (Support). An information state s supports φ, notated as s ⊩1 φ, iff

4The upward and downward arrow represent raising and falling intonation, respectively. Varying the
intonation will also vary the type of questions raised by this sentence (cf. Ciardelli et al., 2018).

5We can be more specific. The set of all propositions under inquisitive semantics indeed forms a special
type of Heyting algebras that satisfy certain additional properties (see Bezhanishvili et al., 2020, and §5.1
below).
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s ∈ JφK.6

Definition 4.2.6 (Consequence via support). Γ ⊧ φ iff for all logical spaces W and all

s ⊆W , if s ⊩1 ψ for every ψ ∈ Γ, then s ⊩1 φ.

As an essential feature of inquisitive semantics, LEM is invalid. Figure 4.1(a) provides

a counterexample to the validity of ?A, since, given the setup, it is not the case that all

information states support ?A: the information state {AB,AB̄, ĀB, ĀB̄} does not, as it

does not belong to J?AK. Also, since inquisitive semantics employs an intuitionistic negation,7

neither is DNE valid in general: as Figure 4.1(d) and 4.1(b) demonstrate, the information

state {AB,AB̄, ĀB} belongs to J¬¬(A ∨B)K but does not belong to JA ∨BK. That being

said, DNE does obtain for atomic propositions.

The above semantics gives rise to inquisitive logic which can be axiomatized by a system

that contains the following set of axiom schemas along with the inference rule of modus

ponens (Ciardelli & Roelofsen, 2011; see also Ciardelli, 2016):

IPL. All axiom schemas of intuitionistic propositional logic.

KP. (¬φ→ (ψ ∨ χ)) → ((¬φ→ ψ) ∨ (¬φ→ χ)).8

DNE. ¬¬p→ p, for every atomic proposition p.

As a noteworthy feature of inquisitive logic, since DNE only obtains for atomic propositions,

the logic is not closed under uniform substitution.

Lastly, given that propositions under inquisitive semantics form a complete Heyting

algebra, we can provide an algebraic semantics for inquisitive logic via Heyting algebra

(see Bezhanishvili et al., 2019). Given a Heyting algebra H, let us first consider a spe-

cial class of valuation functions that assign every atomic proposition to an element of

H¬¬ = {¬¬x ∶ x ∈ H}; call such valuations inquisitive valuations. Since, as Johnstone (1982)

6Given the algebraic foundations of inquisitive propositions, this definition coincides with the recursive
definition of support conditions (Ciardelli et al., 2018). Additionally, although inquisitive semantics is not
originally formulated using Kripke models, we can convert it into a Kripke semantics using the following
Kripke frame ⟨℘(W )−{∅},⊇⟩ (Ciardelli & Roelofsen, 2011). Hence, we can use the same Kripkean satisfaction
relation ⊩1 for the support relation.

7The name “intuitionistic negation” might be a slight misnomer in the inquisitive setting. Nonetheless,
due to the lack of a catchier name, I will continue using it to refer to the negation employed in standard
inquisitive semantics.

8KP stands for “Kreisel-Putnam”.
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shows, H¬¬ constitutes a Boolean algebra, it follows that for all y ∈ H¬¬, the operation

¬¬y → y returns the top element. Now, we say that a formula φ is inquisitively valid in H

iff for every inquisitive valuation v on H: v(φ) = 1; and φ is inquisitively valid simpliciter iff

it is inquisitively valid in every Heyting algebra. Hence, given that atomic propositions are

assigned to H¬¬, they come to satisfy DNE. Additionally, if we further require that the class

of Heyting algebras satisfy the KP axiom, we derive the exact set of validities that are valid

in inquisitive logic.

4.2.2 A case study of the non-bivalent approach: N3

In the following two subsections, I will describe the logic N3 in some detail. The reason for

investigating N3 is mainly two-fold. On one hand, it helps us to see why N3, albeit being

a non-bivalent framework, is unsuitable for the current purpose of modeling inquisitiveness,

which I shall further explicate in §4.3.2. On the other hand, since the framework I will

eventually propose employs a toggle negation in the spirit of N3 and comes with an algebraic

semantics via twist-structures, an examination of N3 is conducive to understanding my

proposal.

The logic of N3 originates from considering two different ways of proving the negation

of φ: we can do so by either applying reductio ad absurdum or directly constructing a

counterexample of φ (Nelson, 1949; see also Kapsner, 2014). The former corresponds to the

intuitionistic negation ¬φ, as ¬φ can be defined as φ→ � which conveys that any proof of φ

leads to a proof of absurdity. On the other hand, standard intuitionistic logic is unable to

capture the latter idea of refuting a sentence by constructing a counterexample, as the same

intuitionistic negation cannot fulfill this additional purpose. To elaborate, in intuitionistic

logic, ¬(φ ∧ ψ) does not entail ¬φ ∨ ¬ψ; but if we were to interpret negation as expressing

the presence of a counterexample, we should expect the entailment to hold, since for us to

be able to construct a counterexample of a conjunction, we must be able to construct a

counterexample to one of its conjuncts.

The search for an alternative negation leads us to the aforementioned non-bivalent picture

where we take proof and counterexample as two non-complementary central notions and use

them to interpret ⊧1 and ⊧0, respectively.
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To explain, let us first consider a Kripke semantics for N3. A Kripke model for N3 is

a tuple ⟨W,≤, v⟩, where W is a non-empty set of worlds (or information states), ≤ is as a

partial order (i.e., a binary relation that is reflexive, transitive, and antisymmetric), and v is

a partial function from pairs of an atomic proposition and a world to 1 and 0. Given a Kripke

model, we define two separate satisfaction relations ⊩1 and ⊩0 that extend the valuation v

to every formula in the language:

w ⊩1 p iff v(p,w) = 1, when p is atomic;

w ⊩0 p iff v(p,w) = 0, when p is atomic;

w ⊩1 φ ∧ ψ iff w ⊩1 φ and w ⊩1 ψ;

w ⊩0 φ ∧ ψ iff w ⊩0 φ or w ⊩0 ψ;

w ⊩1 φ ∨ ψ iff w ⊩1 φ or w ⊩1 ψ;

w ⊩0 φ ∨ ψ iff w ⊩0 φ and w ⊩0 ψ;

w ⊩1 φ→ ψ iff ∀w′ ≥ w: if w′ ⊩1 φ then w′ ⊩1 ψ;

w ⊩0 φ→ ψ iff w ⊩1 φ and w ⊩0 ψ;

w ⊩1 ∼φ iff w ⊩0 φ;

w ⊩0 ∼φ iff w ⊩1 φ.

As with the Kripke semantics for intuitionistic logic, we interpret worlds in the set W as

proof stages : w ≤ w′ just in case w′ is a stage no earlier than w in our mathematical inquiry.

Since proofs and counterexamples are supposed to be conclusive, we posit the following two

heredity conditions:

For all w and w′, if w ⊩1 p, where p is atomic, and w ≤ w′, then w′ ⊩1 p

For all w and w′, if w ⊩0 p, where p is atomic, and w ≤ w′, then w′ ⊩0 p

That is, if p is either proved (viz., evaluated as 1) or refuted by a counterexample (viz.,

evaluated as 0) at an earlier stage w, then it must remain proved or refuted and receive the

same value at any later stage w′.9

9The heredity constraints on atomic propositions together with the above satisfaction clauses for complex
formulas ensure that the heredity conditions hold for all formulas (see Priest, 2001).
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Note that since the valuation functions are allowed to be partial, p may receive neither

1 nor 0 at w, and in that case, it means that, at w, we can neither prove p nor construct a

counterexample of p. The satisfaction conditions for complex formulas are defined separately

for 1 and 0. The former very much resemble the satisfaction clauses under intuitionistic logic.

In particular, the satisfaction clause for implication states that for there to be a proof of

φ→ ψ at w, we need to be able to convert any proof of φ into a proof of ψ at any stage w′.

As for the satisfaction conditions for the other value 0, connectives are again defined

constructively. For φ ∧ ψ to receive 0 at w—that is, for there to be a counterexample of

it at w—either φ must receive 0 at w or ψ must receive 0 at w—that is, we must be able

to construct a counterexample to at least one of the conjuncts. And for there to be a

counterexample of φ→ ψ at w, we must be able to obtain, simultaneously, a proof of φ and

a counterexample of ψ at w.

In N3, the negation ∼ toggles between the satisfaction conditions associated with the two

values. For ∼φ to receive 1 at w—that is, for the negation of φ to be provable at w—φ needs

to receive 0 at w—that is, we need to be able to construct a counterexample of φ at w, and

vice versa.

Lastly, we define semantic consequence in terms of preservation of the value 1 at every

world in every model:

Γ ⊧ φ iff for every model M and every world w, if w ⊩1 ψ for every ψ ∈ Γ, then w ⊩1 φ.

And in the case Γ is empty, that is, ⊧ φ, we say φ is valid in N3.

A complete axiomatization of N3 is provided below, which contains the following axiom

schemas complemented with the inference rule modus ponens. The biconditional φ ↔ ψ is

defined as (φ→ ψ) ∧ (ψ → φ) as usual.

AS1. φ→ (ψ → φ)

AS2. (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

AS3. φ→ (φ ∨ ψ)

AS4. ψ → (φ ∨ ψ)

AS5. (φ→ χ) → ((ψ → χ) → (φ ∨ ψ → χ))

AS6. (φ ∧ ψ) → φ
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AS7. (φ ∧ ψ) → ψ

AS8. φ→ (ψ → (φ ∧ ψ))

AS9. ∼∼φ↔ φ

AS10. ∼φ→ (φ→ ψ)

AS11. ∼(φ ∨ ψ) ↔ (∼φ ∧ ∼ψ)

AS12. ∼(φ ∧ ψ) ↔ (∼φ ∨ ∼ψ)

AS13. ∼(φ→ ψ) ↔ (φ ∧ ∼ψ)

The first eight axiom schemas come from the positive fragment of intuitionistic logic. AS9

specifies how proof-construction and counterexample-construction are connected via toggle

negation, that is, constructing a counterexample of ∼φ essentially amounts to having a proof

of φ. Hence, unlike intuitionistic negation, toggle negation vindicates DNE. AS11–13 capture

the constructiveness of counterexample-construction. Lastly, AS10, the principle of ex falso

quodlibet, ensures that a proof of any contradiction leads to explosion.10 Without it, the

resulting logic becomes Nelson’s paraconsistent logic N4. Additionally, given the presence

of ex falso, we can define intuitionistic negation ¬φ in N3 as φ→ ∼φ.11 Defined as such, the

intuitionistic negation ¬φ is entailed by the toggle negation ∼φ.12 This means that in N3,

we can capture the two distinct conceptions of negation delineated above, that is, negation

via proving reductio and negation via constructing a counterexample.

4.2.3 An algebraic semantics for N3 via twist-structures

An algebraic semantic for N3 has been provided by Rasiowa (1958, 1974) using the so-

called N -lattices (i.e., quasi-pseudo-Boolean algebras). An important method to generate

10To disambiguate, I shall use ex falso quodlibet to refer to the principle of explosion stated in the axiom
form while using ex contradictione quodlibet to refer to the inference ∼φ,φ ⊧ ψ. The two are nonetheless
identical in presence of the deduction theorem.

11To spell out, we first define ¬φ as φ→ � as usual. In N3, � can be defined as φ ∧ ∼φ, which means that
¬φ can be defined as φ → (φ ∧ ∼φ). Given that we have φ → φ as a theorem, ¬φ can simply be defined as
φ→ ∼φ.

12Due to the fact that ∼φ entails ¬φ in N3, the toggle negation ∼ is also often termed “strong negation”
(e.g., Rasiowa, 1958; Vakarelov, 1977); another name for this negation is “constructive negation” (e.g., Priest,
2001). However, since neither the entailment to intuitionistic negation nor constructiveness are necessary
features of ∼ (see, e.g., Vakarelov, 2005), I shall stick to the name of “toggle negation” as used by Kapsner
(2014).
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N -lattices is via the so-called twist-structures (Vakarelov, 1977; Kracht, 1998), as twist-

structures provide a much more intuitive account of the meaning of the logical operators

employed in N -lattices, which, as we shall see, is closely related to the interpretation of

these operators given by the above Kripke semantics.

Since this paper will explore different generalizations of twist-structures, I shall call the

particular kind of twist-structures proposed in Vakarelov (1977) basic twist-structures (BTS).

Given a Heyting algebra (i.e., an implicative lattice with a distinguished bottom element)13

H = ⟨H,∧,∨,→,⊺,�⟩, we define a BTS as H& = ⟨H&,∧&,∨&,→&,∼,1,0⟩. Its carrier set is:

H& = {⟨x,x′⟩ ∈ H ×H∣ x ∧ x′ = �}

And we define the operators as follows:

⟨x,x′⟩ ∧& ⟨y, y′⟩ ∶= ⟨x ∧ y, x′ ∨ y′⟩

⟨x,x′⟩ ∨& ⟨y, y′⟩ ∶= ⟨x ∨ y, x′ ∧ y′⟩

⟨x,x′⟩ →& ⟨y, y′⟩ ∶= ⟨x→ y, x ∧ y′⟩

∼⟨x,x′⟩ ∶= ⟨x′, x⟩

1 ∶= ⟨⊺,�⟩

0 ∶= ⟨�,⊺⟩

Alternatively, we can also construct the BTS of a Heyting algebra H induced by the ordering

≤ by first generating the product lattice H×H with the following new ordering: ⟨a, b⟩ ≤ ⟨c, d⟩

iff a ≤ c and d ≤ b, and then restricting the carrier set to H&. It can then be easily shown

that the resulting algebra is closed under the set of operations {∧&,∨&,→&,∼}.

To adduce a concrete example, consider the BTS in Figure 4.2(b), which is generated

from the Heyting algebra ⟨{a, b, c},∧,∨,→,⊺,�⟩ depicted in 2(a). For every pair ⟨x, y⟩ in

the resulting BTS, x ∧ y is always the bottom element in the original Heyting algebra. The

13An implicative lattice is a distributive lattice ordered by “≤”such that for any two elements x and y,
there exists a unique greatest element x→ y such that (x→ y)∧x ≤ y. We call x→ y the pseudo-complement
of x relative to y. And when the implicative lattice comes with a bottom element, we call x → � the
pseudo-complement of x.
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(a)

⟨�,⊺⟩

⟨�, c⟩

⟨�, b⟩ ⟨�, a⟩

⟨�,�⟩⟨a, b⟩ ⟨b, a⟩

⟨b,�⟩⟨a,�⟩

⟨c,�⟩

⟨⊺,�⟩

(b)

Figure 4.2: An example showcasing twist-construction

new meet, join, and weak relative pseudo-complement in the resulting BTS are given by

∧&,∨&, and→&, respectively.

A valuation v in a twist-structure is defined in the standard algebraic way, that is, as a

function from formulas to elements in the carrier of the twist-structure while observing the

definitions of all the logical operators for all complex formulas.

Given this, twist-structures provide an intuitive algebraic semantics for N3. Each pair

from the carrier of BTS can be construed as codifying positive and negative information

about the formula assigned to the given pair.14 In the present case, the positive information

14This interpretation of such order pairs is also common in the literature on bilattices (see, e.g., Fitting,
1989; Gargov, 1999).
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is the formula’s provability condition, and the negative information is its disprovability con-

dition. The definitions of the logical operators, which go hand in hand with the definitions

provided via Kripke semantics, then tell us how the provability and disprovability conditions

of complex formulas are derived from those of their constituents. For instance, let φ denote

the pair ⟨x,x′⟩ and ψ denote the pair ⟨y, y′⟩. The pair denoted by the conditional formula

φ → ψ is ⟨x → y, x ∧ y′⟩. The first coordinate x → y tells us what it means to prove this

formula, that is, by being able to convert any positive information about φ (i.e., a proof of

φ) into positive information about ψ (i.e., a proof of ψ); the second coordinate x ∧ y′ tells

us what it means to disprove it, that is, by being able to obtain both positive information

about φ (i.e., a proof of φ) and negative information about ψ (i.e., a counterexample of ψ).

Lastly, validity and consequence are defined equationally in the usual way. For any given

algebra A, φ is valid in A, notated as ⊧A φ, iff for all valuations v: F →A, v(φ) = 1. And

for any given class of algebras A, ⊧A φ iff ⊧A φ for every A in A.15

For any given algebra A, φ is a semantic consequence of a set of sentences Γ in A, notated

as Γ ⊧A φ, iff for all valuations v: F→A, if v(ψ) = 1 for every ψ ∈ Γ, then v(φ) = 1. And for

any given class of algebras A, Γ ⊧A φ iff Γ ⊧A φ for every A in A.

A distinguishing feature of N3 is that φ↔ ψ alone does not define a congruence relation

(i.e., an equivalence relation that is preserved under all logical operations). Here is a coun-

terexample using the BTS depicted in Figure 4.2(b). Put v(φ) = ⟨b,�⟩ and v(ψ) = ⟨b, a⟩.

Given this, v(φ↔ ψ) = v((φ → ψ) ∧ (ψ → φ)) = (⟨b,�⟩ →& ⟨b, a⟩) ∧& (⟨b, a⟩ →& ⟨b,�⟩) = ⟨⊺,�⟩.

However, v(∼φ↔ ∼ψ) = v((∼φ → ∼ψ) ∧ (∼ψ → ∼φ)) = (⟨�, b⟩ →& ⟨a, b⟩) ∧& (⟨a, b⟩ →& ⟨�, b⟩) =

⟨b,�⟩ ≠ ⟨⊺,�⟩. Instead, in order for φ and ψ to be considered congruent, both φ ↔ ψ and

∼φ↔ ∼ψ should obtain. As we shall see, this feature of N3 is also shared by the logic LPP

to be developed in this paper.

15Hereafter, when the relative class of algebras is clear, I shall omit the subscript “A”.
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4.3 A Non-Bivalent Approach to Inquisitiveness

4.3.1 Support and Rejection

To develop an inquisitive framework that rejects LEM from a non-bivalent perspective, first

we need to spell out what the dual notion of support “⊩1” is. There is one immediate

candidate for the interpretation of “⊩0”, namely, the notion of rejection.

If φ is a declarative sentence, then for an information state s to reject φ is for it to already

contain enough information to settle the sentence false, just as for s to support φ is for it

to already contain enough information to settle the sentence true. Since s may not contain

enough information to either settle φ true or settle it false, the equivalence s ⊮1 φ ≡ s ⊩0 φ

does not hold. And given that the negation ∼ is now interpreted as a toggle operation

between the support and rejection conditions of a sentence—that is, to support ∼φ is to

reject φ, and vice versa—LEM is rejected for the very same reason.

On the other hand, when φ is an interrogative sentence, one natural way to interpret the

rejection of φ by an information state s is to consider φ as making a presupposition that

is already settled false in s. For example, an alternative question such as “is Alice at the

party↑ or is Bob at the party↓?” is often taken to presuppose that either Alice or Bob is at the

party (cf. Karttunen & Peters, 1976; Biezma & Rawlins, 2012). When it is common ground

that neither Alice nor Bob is at the party, the presupposition is already settled false and

thus cannot be accommodated. As a result, the alternative question cannot be felicitously

uttered in this context, which leads to its rejection.16

Now, since it is not the case that every information state must either resolve a question

or directly contradict the presupposition it carries—e.g., the state {AB,AB̄, ĀB} is unable

to answer the question A ∨B but nevertheless satisfies its presupposition—the equivalence

s ⊮1 φ ≡ s ⊩0 φ does not hold. Consequently, LEM is rejected again.

As we have seen with N3, the toggle negation ∼, unlike the intuitionistic negation ¬,

16Alternatively, we may hold a view according to which a question can be justifiably rejected as long
as its presupposition is not settled true. This could happen in cases where accommodating a question’s
presupposition turns out to be difficult or costly. I will consider both interpretations of rejection as available
options. And the difference here will not affect what follows. For example, if we adopt the second view,
then DNE can be motivated on the ground that denying that the presupposition of a question is not already
settled true amounts to affirming that the presupposition is already satisfied.
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vindicates DNE. In N3, the intuitiveness of DNE is explained based on the thought that to

find a counterexample to a counterexample of φ is to prove φ. Under the inquisitive setting,

we can illuminate the validity of DNE in the following way. For declarative sentences, DNE

amounts to saying that to object to a rejection of φ is to support φ. As for interrogative

sentences, as mentioned above, to reject a question can be understood as saying that the

presupposition of the question is already settled false, and when this happens, the question

fails to make an inquiry and does not request future discourse to supply an answer to it.

Given this, to object to the rejection of a question can be understood as rejecting the

claim that the presupposition of the question is already settled false, thereby reinstating the

question alongside its inquisitive content. Hence, after rejecting an objection to a question,

the original question should still solicit an answer to it. As a paradigmatic example of this

dynamics, consider cross examination in court. If the judge rules that the objection to a

question having posed to the witness is “overruled”, then the original question still stands,

and the witness still needs to answer the question.

As such, we can make sense of the rejection of LEM from a non-bivalent perspective as

well as the validity of DNE associated with the toggle negation.

4.3.2 Why N3 is Unsuitable

Since N3 is already a non-bivalent account that employs a constructive disjunction that does

not vindicate LEM, we may wonder whether we can repurpose it to model inquisitiveness.

However, the reason why N3 alongside BTS is unsuitable for this purpose is this. The basic

twist-structure makes the rejection condition of a proposition more stringent than what we

would normally expect. In particular, it requires the rejection of a conjunction to also be

constructive.

For instance, let v(A) = ⟨a, a′⟩ and v(B) = ⟨b, b′⟩. Then, according to BTS, v(A ∧B) =

⟨a ∧ b, a′ ∨ b′⟩. Under the inquisitive setting, we can interpret the two coordinates of a given

pair as codifying positive and negative information about what it takes for the assigned

formula to be supported and rejected. The support condition for A ∧B provided by BTS is

fairly intuitive, since in order to settle “Alice and Bob are both at the party” true, we need

to both know that Alice is at the party and know that Bob is at the party. The rejection
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condition for A ∧B, on the contrary, appears too strong, since it commands that in order

to reject the above assertion, we must either know that Alice is not at the party or know

that Bob is not at the party. But if we know for sure that either Alice or Bob is out of town

but cannot remember exactly who it is, then, arguably, we have already obtained enough

information to reject the conjunction.

The above claim that the rejection condition of a sentence should not be constructive

squares with the existing inquisitive semantics. Although inquisitive semantics does not em-

ploy this notion of rejection, it does construe the negation of a conjunction as non-inquisitive.

Hence, unlike ¬A ∨ ¬B, ¬(A ∧ B) does not introduce any alternatives. Consequently, any

information state that only eliminates all A-and-B-possibilities (e.g., {AB̄, ĀB, ĀB̄}) will

come to support ¬(A ∧B).

To take stock, whereas N3 implements constructivism globally, we want, for the current

purpose of devising a non-bivalent account of inquisitiveness, a framework that binds con-

structiveness more closely to the support condition for disjunction as disjunction uniquely

plays the role of introducing alternatives. In other words, we want to introduce asymmetry

between the support condition and the rejection condition of a sentence in respect of their

constructiveness so as to make the support condition of a disjunction but not the rejection

condition of a conjunction constructive. In the next section, I propose a framework along

this line.

4.4 The Logic of Pseudo-Complemented Propositions

4.4.1 Pseudo-complemented twist-structures

We begin by exploring how we can modify BTS so as to vary the constructiveness of support

and rejection conditions. In devising such a framework, I shall stick to the following two

guiding principles:

Principle 1: The modified twist-structure still employs a toggle negation ∼ that switches

between the support and rejection conditions of a sentence.

Principle 2: The rejection condition of a sentence φ is given, whenever possible, by the
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support condition of its intuitionistic negation ¬φ (viz., φ→ �) as provided in the original

inquisitive semantics.

These two guiding principles together give rise to a class of twist-structures, i.e., pseudo-

complemented twist-structures (PTS), that, on the one hand, incorporate a toggle negation

and thus reject LEM from a non-bivalent standpoint, and on the other hand, by identifying

the rejection condition of a sentence, whenever possible, with the support condition of its

intuitionistic negation, render the rejection conditions of complex formulas non-constructive

in a way that deviates minimally from the original inquisitive semantics. Before giving the

definition for PTS, I want to emphasize that it is not my contention that PTS is the sole

available non-bivalent treatment of inquisitiveness and we must adhere to the aforementioned

two guiding principles. In particular, although Principle 2 affords a convenient way to specify

the rejection conditions of complex formulas, we might have reasons to reject it based on

other empirical motivations. Consequently, we may adopt a less uniform approach when

defining the rejection condition for each connective. Be that as it may, in this paper, let us

explore a framework that fulfills these two principles.

Given a Heyting algebra H = ⟨H,∧,∨,→,⊺,�⟩, we define a PTS, H&∗ = ⟨H&∗,∧∗R,∨∗R,→∗

R

,∼,1,0⟩, as follows:

H&∗ = {⟨x,x′⟩∣ either x′ = x∗,or x = x′∗}

where x∗ abbreviates x→ � for any x, and the logical operators are defined as follows:17

⟨x,x′⟩ ∧∗R ⟨y, y′⟩ ∶= ⟨x ∧ y, (x ∧ y)∗⟩

⟨x,x′⟩ ∨∗R ⟨y, y′⟩ ∶= ⟨x ∨ y, (x ∨ y)∗⟩

⟨x,x′⟩ →∗

R ⟨y, y′⟩ ∶= ⟨x→ y, (x→ y)∗⟩

∼⟨x,x′⟩ ∶= ⟨x′, x⟩

1 ∶= ⟨⊺,�⟩

0 ∶= ⟨�,⊺⟩

17The subscript “R” indicates that the operator yields pairs whose second coordinate is the pseudo-
complement of the first one. This is to be contrasted with a variation of PTS explored in §5.3 below.
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Figure 4.3: An example of PTS.

Again, we define valuation functions inquisitively by mapping every atomic proposition

to an element of H&∗

¬¬
= {(⟨x,x′⟩ →∗

R 0) →∗

R 0 ∣⟨x,x′⟩ ∈ H&∗}. Semantic consequence and

validity are defined in terms of inquisitive valuations as before.

Figure 4.3(b) depicts the PTS generated from the Heyting algebra as shown in 3(a).

For the twist-operations associated with the three binary connectives, the operations are

defined component-wise only for the first coordinate; the second coordinate is instead always

the pseudo-complement of the first one. Defined as such, rejection conditions for complex

formulas come to fulfill Principle 2. The definition for toggle negation remains unchanged,

thereby fulfilling Principle 1. As a consequence, the carrier of PTS consists exclusively of

pairs such that either the first component is the pseudo-complement of the second one, or

the second component is the pseudo-complement of the first one.

As a notable feature of PTS, the two operations ∧∗R and ∨∗R defined above do not always

form the meets and joins of the new algebra. For instance, the meet of the two pairs ⟨a, b⟩

and ⟨b, a⟩ in the PTS as shown in Figure 4.3(b) is ⟨�, c⟩; however, applying the operation

92



⟨a, b⟩ ∧∗R ⟨b, a⟩ gives us ⟨�,⊺⟩. Likewise, the join of ⟨�, c⟩ and itself is itself, whereas ⟨�, c⟩ ∨∗R
⟨�, c⟩ gives us ⟨�,⊺⟩ again.

As it turns out, any two elements in PTS do not always have a greatest lower bound and

a least upper bound; in other words, PTS does not form a lattice. To illustrate, consider the

PTS generated from the Heyting algebra whose carrier set is set of all non-empty downsets

in ℘{AB,AB̄, ĀB, ĀB̄}; in other words, we are considering a concrete Heyting algebra where

each element from its carrier stands for some proposition understood as per inquisitive se-

mantics. Now, let us consider the following two pairs ⟨a, a′⟩ and ⟨b, b′⟩ whose components

are shown in Figure 4.4 (as with Figure 4.1, we represent each proposition using its set of

alternatives). For each pair, the first component is the pseudo-complement of the second

one but not vice versa.

Combining these two pairs via the old operation ∨& from BTS yields ⟨a ∨ b, a′ ∧ b′⟩, that

is, ⟨c, d⟩, which is in fact the join of the two pairs in BTS. However, since neither component

in ⟨c, d⟩ is the pseudo-complement of the other, this pair does not belong to the carrier of

PTS. What we do have in PTS are the two pairs ⟨c, c′⟩ and ⟨d′, d⟩, which are derived from

⟨a, a′⟩ ∨∗R ⟨b, b′⟩ and ∼(∼⟨a, a′⟩ ∧∗R ∼⟨b, b′⟩), respectively.

Recall that PTS, as with BTS, is induced by an ordering such that for any two pairs ⟨x,x′⟩

and ⟨y, y′⟩, ⟨x,x′⟩ ≤ ⟨y, y′⟩ in PTS iff x ≤ x′ and y ≥ y′ in the original Heyting algebra. It

follows that, given the absence of ⟨c, d⟩, the two pairs ⟨c, c′⟩ and ⟨d′, d⟩ are indeed competing

AB AB̄

ĀB ĀB̄

a

AB AB̄

ĀB ĀB̄

a′

AB AB̄

ĀB ĀB̄

b

AB AB̄

ĀB ĀB̄

b′

AB AB̄

ĀB ĀB̄

c

AB AB̄

ĀB ĀB̄

c′

AB AB̄

ĀB ĀB̄

d

AB AB̄

ĀB ĀB̄

d′

Figure 4.4: An illustration of why PTS does not form a lattice.
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for the greatest lower bound of ⟨a, a′⟩ and ⟨b, b′⟩. Hence, ⟨a, a′⟩ and ⟨b, b′⟩ do not have a

unique greatest lower bound. By parity of reasoning, any two elements in PTS also do not

always have a least upper bound.

Algebraically, the two operators ∧∗R and ∨∗R satisfy commutativity (viz., X∧∗RY = Y ∧∗RX,

andX∨∗RY = Y ∨∗RX)18, associativity (viz., X∧∗R(Y ∧∗RZ) = (X∧∗RY )∧∗RZ, andX∨∗R(Y ∨∗RZ) =

(X ∨∗R Y ) ∨∗R Z), and distributivity (viz., X ∧∗R (Y ∨∗R Z) = (X ∧∗R Y ) ∨∗R (X ∧∗R Z), and

X ∨∗R (Y ∧∗RZ) = (X ∨∗RY )∧∗R (X ∨∗RZ))19, but they do not satisfy the principle of absorption

which is characterized by the two equations: X ∧∗R (X ∨∗R Y ) = X, and X ∨∗R (X ∧∗R Y ) = X.

Take the former equation as an example, and let X be a pair wherein the first component is

the pseudo-complement of the second one but not vice versa. Since ∧∗R and ∨∗R necessarily

produce a pair whose second component is the pseudo-complement of the first, the left hand

side and the right hand side of the equation cannot be the same.

For the same reason, idempotence also fails. That is, the following two equations do not

hold in PTS: X ∧∗R X = X, X ∨∗R X = X—specifically, when the second component of X is

not the pseudo-complement of the first one. The loss of idempotence for ∧∗R and ∨∗R may at

first appear problematic. While that being the case, φ and φ ∧ φ, as well as φ and φ ∨ φ,

nonetheless semantically entail each other for any formula φ. This is so because given how

semantic consequence is defined, when the premise—be it φ, φ ∧ φ, or φ ∨ φ—is assumed

to take the top element ⟨⊺,�⟩ as its value, its first and second components are forced to be

the pseudo-complements of each other, thereby forcing the conclusion to also take the top

element as its value. Additionally, both ⊧ (φ ∧ φ) ↔ φ and ⊧ (φ ∨ φ) ↔ φ obtain in PTS.

Therefore, potential negative impact from the loss of idempotence is largely mitigated.20

18Here and hereafter, I will use the uppercase X, Y , and Z to stand for elements from the carrier set of
a twist-structure.

19The proofs of these results follow from the fact that, for each equation, the resulting pairs on each side
are such that their first coordinates are identical given that the Heyting algebra forms a distributive lattice
and thus satisfies commutativity, associativity and distributivity. Given that the second coordinate of each
pair is the pseudo-complement of its first coordinate, which, as we have just said, are identical on both sides
for each equation, these equations hold in PTS.

20What we do lose in PTS are the following: ⊭ ∼(φ∧φ) → ∼φ and ⊭ ∼(φ∨φ) → ∼φ. How troublesome this
is remains to be further investigated.
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4.4.2 The logic of pseudo-complemented propositions

I provide an axiomatization of the corresponding logic of PTS here and prove completeness

in §4.4.3. The logic of pseudo-complemented propositions (LPP) contains, in addition to the

axiom schemas AS1–10 from N3 (viz., all axiom schemas from the positive logic plus ∼∼φ↔ φ

and ∼φ → (φ → ψ)), the axiom schemas listed below complemented with the inference rule

of modus ponens.

AS14. � → ψ

AS15. ((p→ �) → �) → p, where p is an atomic formula.

AS16. (α → φ)∧(α → ∼φ) → ∼α, where α is a non-negated formula, i.e., a formula whose

main connective is not ∼, and φ is any arbitrary formula.

In LPP, we introduce a propositional constant � along with AS14. Together with all axiom

schemas of the positive logic, it follows that LPP is an extension of IPL. The addition of

� turns out to be useful later in characterizing certain formal results and in our proof of

completeness. AS15 amounts to the restricted version of DNE found in inquisitive logic,

where DNE is valid with intuitionistic negation but only for atomic propositions. Since

the operations ∧∗R, ∨∗R, and →∗

R do not define their second coordinates component-wise, the

AS11-AS13 from N3 are not valid. In their place, we have AS16 which embodies a weakened

version of negation introduction found in intuitionistic logic and classical logic with the

additional restriction that α needs to be a formula whose main connective is not ∼. Note

that this restriction does allow negation to appear when embedded as in φ ∧ ∼φ.

As a noteworthy feature of this logic, the validity of AS16 hinges on the fact that given

how logical operators are defined in PTS, operations other than negation (i.e., ∧∗R, ∨∗R, and

→∗

R) will always result in a pair wherein the second component is the pseudo-complement of

the first one; additionally, since valuation functions assign atomic propositions to the regular

elements of PTS, every pair that interprets an atomic formula will again be such that its

second component is the pseudo-complement of the first one.

Given this, we can prove the validity of (α → φ) ∧ (α → ∼φ) → ∼α as follows. Let v be an

arbitrary valuation; put v(α) = ⟨x,x′⟩ and v(φ) = ⟨y, y′⟩. Then v(α → φ) = ⟨x→ y, (x→ y)∗⟩

and v(α → ∼φ) = ⟨x→ y′, (x→ y′)∗⟩. It follows that v((α → φ)∧(α → ∼φ)) = ⟨(x→ y)∧(x→
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y′), ((x → y) ∧ (x → y′))∗⟩ = ⟨x → (y ∧ y′), (x → (y ∧ y′))∗⟩ = ⟨x → �, (x → �)∗⟩. Hence,

v((α → φ)∧(α → ∼φ) → ∼α) = ⟨(x→ �) → x′, ((x→ �) → x′)∗⟩. Now, because the pair ⟨x,x′⟩

that interprets α is such that x′ is the pseudo-complement x, (x → �) → x′ = x′ → x′ = ⊺.

Thus, v((α → φ) ∧ (α → ∼φ) → ∼α) = ⟨⊺,�⟩ = 1.

By contrast, when ⟨x,x′⟩ is such that its first component is the pseudo-complement of

the second component but not vice versa, we only have (x → �) → x′ = ((x′ → �) → �) → x′,

which is not always equal to the top element in a Heyting algebra.

Additionally, note that by replacing AS16 with the stronger negation introduction (NI)

which is just like AS16 but does not contain any additional restriction on the structure of

α, we would turn LPP into classical propositional logic (CPL).21 In order to validate the

unconstrained NI, the second coordinate of any pair that interprets α needs to always be

the pseudo-complement of its first coordinate, even if α is led by a single ∼. To satisfy

this, we would need to make the pseudo-complement relation between x and x′ symmetric.

This would in turn generate a new class of twist-structures, call them complemented twist-

structures (CTS). Indeed, as we shall see in §4.5.2, the class of CTS is isomorphic to the

class of Boolean algebras.

Let me highlight some other properties of LPP which we will come back to later in our

proof of completeness.

Proposition 4.4.1. ⊢LPP (α → φ) → (∼φ→ ∼α), provided that α is a non-negated formula.

Proof. Since we have (α → φ) ∧ (α → ∼φ) → ∼α from AS16 and ⊢LPP ∼φ → (α → ∼φ) from

AS1, we can easily derive ⊢LPP (α → φ) → (∼φ→ ∼α).

Corollary 4.4.1.1. ⊢LPP (α↔ β) → (∼α↔ ∼β), provided that both α and β are non-negated

formulas.

Remark. As with N3, since (α ↔ β) → (∼α ↔ ∼β) does not hold generally, ⊢LPP φ ↔ ψ

alone does not define a congruence relation; instead, in order for φ and ψ to belong to the

same congruence class, we need to have both ⊢LPP φ↔ ψ and ⊢LPP ∼φ↔ ∼ψ.

Proposition 4.4.2. ⊢LPP ∼α↔ (α → �), provided that α is a non-negated formula.
21More specifically, AS1–8 + NI give rise to minimal logic, upon which the addition of DNE yields CPL

(See Odintsov, 2008).
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Proof. Left-to-right follows directly from AS10. Right-to-left follows from AS16 together

with the fact that ⊢LPP α → ∼�, which is derivable from applying contraposition to ⊢LPP

� → ∼α, given that � is a non-negated formula.

Remark. Note that we do not have the contrapositive ⊬LPP α ↔ ∼(α → �) as ∼α is not a

non-negated formula.

Proposition 4.4.3. The following bi-implications are theorems of LPP, provided that α is

a non-negated formula:

⊢LPP (φ ∧ ∼α) ↔ (φ ∧ (α → �))

⊢LPP ∼(φ ∧ ∼α) ↔ ∼(φ ∧ (α → �))

⊢LPP (φ ∨ ∼α) ↔ (φ ∨ (α → �))

⊢LPP ∼(φ ∨ ∼α) ↔ ∼(φ ∨ (α → �))

⊢LPP (φ→ ∼α) ↔ (φ→ (α → �))

⊢LPP ∼(φ→ ∼α) ↔ ∼(φ→ (α → �))

⊢LPP (∼α → φ) ↔ ((α → �) → φ)

⊢LPP ∼(∼α → φ) ↔ ∼((α → �) → φ)

Proof. The four bi-implications where both sides of↔ are non-negated formulas follow easily

from Proposition 4.4.2. As for the four bi-implications of the negative form, they follow from

their respective positive form by Corollary 4.4.1.1.

Remark. What Proposition 4.4.3 amounts to is that whenever a toggle negation appears

alone embedded below a binary connective, it becomes equivalent to the intuitionistic nega-

tion. This allows us to reduce embedded toggle negations to intuitionistic negations. As an

example, we can convert ∼(A ∧ ∼A) to ∼(A ∧ (A→ �)).

Proposition 4.4.4 (Normal form). Formulas of LPP can be converted into either a positive

formula or a positive formula prefixed by a single negation ∼, where a positive formula is

defined as a formula that does not contain any ∼ (but may contain �).
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Proof. We prove this inductively. First, all literals apparently satisfy this condition. Next,

we want to show that for any formulas φ and ψ that satisfy this condition, any complex

formula that contains φ and ψ as its immediate constituents can be transformed into either

a positive formula or a positive formula headed by a single ∼. Consider negation first, given

the inductive hypothesis, φ can take the form of either α or ∼α, where α is a positive formula.

If φ takes the form of α, then ∼φ becomes ∼α, which is a positive formula prefixed by a single

∼; if φ takes the form of ∼α, then ∼φ becomes ∼∼α, which given DNE, is reduced to a positive

formula α. For conjunction, to simplify, let us focus on the structure of φ by granting that

ψ is a positive formula. If φ takes the form of α, then ψ ∧φ is just ψ ∧α, which is a positive

formula; if φ takes the form of ∼α, then ψ∧φ becomes ψ∧∼α, which given Proposition 4.4.3,

can be converted to ψ∧(α → �), which is again a positive formula. The same would apply to

ψ if it was a positive formula prefixed by a single ∼. Hence, conjunction preserves the above

condition. By similar reasoning, disjunction and implication also produce either a positive

formula or one that is prefixed by a single ∼.

Remark. As it turns out, the toggle negation in LPP can only appear in one place where

it makes substantial semantic contribution, that is, at a sentence’s widest scope. As such,

∼ can be viewed as a global rejection operator under LPP. This result appears to fare well

with our previous characterization of ∼ as an operator that toggles between the support and

rejection conditions of a sentence.

Corollary 4.4.4.1. LPP can be axiomatized alternatively by replacing AS16, i.e., (α →

φ) ∧ (α → ∼φ) → ∼α, with an axiom that further restricts α to only positive formulas.

4.4.3 Completeness

Let me first provide a sketch of the proof. We prove completeness by establishing the

following equivalences. (Different notations will be explained immediately afterwards.)

Theorem 4.4.5 (Completeness theorem). The following conditions are equivalent:

1. ⊢LPP φ;

2. ⊧&∗ φ;

3. ⊧L&∗LPP+
φ;
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4. ⊧LLPP
φ.

First, we show that (1) entails (2) (viz., φ is a theorem of LPP only if φ is valid in the

class of PTS) by proving soundness. Second, let LLPP be the Lindenbaum-Tarski algebra

of the language of LPP; we show that (4) entails (1) by proving that LPP is complete with

respect to LLPP . Third, let us define another Lindenbaum-Tarski algebra LLPP+ using the

positive fragment of LPP that does not contain ∼; let L&∗

LPP+ be the PTS generated from the

Lindenbaum-Tarski algebra LLPP+. Since L&∗

LPP+ is a special PTS, (2) entails (3) immedi-

ately. Last, we show that L&∗

LPP+ and LLPP are indeed isomorphic, thereby establishing the

equivalence between (3) and (4). I shall also remind the readers that in (2)-(4), validity is

defined in term of the inquisitive valuation. For any atomic formula p, the valuation will

assign p and (p→ �) → � to the same element.

Lemma 4.4.6 (Soundness lemma). If ⊢LPP φ, then ⊧&∗ φ.

Proof. We can directly show that all the axiom schemas from above are valid with respect

to PTS. The proofs for AS1–8 from the positive fragment are straightforward. Take AS1 as

an example. Let v be an arbitrary valuation on an arbitrary PTS, and put v(φ) = ⟨x,x′⟩

and v(ψ) = ⟨y, y′⟩. Then, it follows that v(φ → (ψ → φ)) = ⟨x,x′⟩ →∗

R (⟨y, y′⟩ →∗

R ⟨x,x′⟩) =

⟨x → (y → x), (x → (y → x))∗⟩. Since x and y are elements from a Heyting algebra,

x → (y → x) = ⊺. Therefore, v(φ → (ψ → φ)) = ⟨⊺,�⟩ = 1. Likewise for AS2–7, since

no negation is involved, we can show that the corresponding formulas hold in the Heyting

algebra.

The validity of AS9 immediately follows from the definition of ∼ in PTS.

To prove the validity of ex falso as stated by AS10, again let v(φ) = ⟨x,x′⟩ and v(ψ) =

⟨y, y′⟩. It follows that v(∼φ → (φ → ψ)) = ∼⟨x,x′⟩ →∗

R (⟨x,x′⟩ →∗

R ⟨y, y′⟩) = ⟨x′, x⟩ →∗

R ⟨x →

y, (x → y)∗⟩ = ⟨x′ → (x → y), (x′ → (x → y))∗⟩. Now, given that, x′ → (x → y) = (x′ ∧ x) →

y = � → y = ⊺, v(∼φ→ (φ→ ψ)) = ⟨⊺,�⟩ = 1. Hence, ⊧&∗ ∼φ→ (φ→ ψ).

The validity of AS15 immediately follows from the fact that valuations on PTS map every

atomic proposition p to an element of H&∗

¬¬
= {(⟨x,x′⟩ →∗

R 0) →∗

R 0 ∣⟨x,x′⟩ ∈ H&∗}.

We have already proven the validity of AS16 in the last subsection.

99



Lastly, to prove that modus ponens holds, again let v(φ) = ⟨x,x′⟩ and v(ψ) = ⟨y, y′⟩.

Assume v(φ) = 1 and v(φ→ ψ) = 1, that is ⟨x,x′⟩ = ⟨⊺,�⟩ and ⟨x→ y, (x→ y)∗⟩ = ⟨⊺,�⟩. We

want to show that v(ψ) = 1, that is, ⟨y, y′⟩ = ⟨⊺,�⟩. This is straightforward because for any

two elements x and y in a Heyting algebra, if x = ⊺ and x→ y = ⊺, it must follow that y = ⊺.

And given that y ∧ y′ = �, it must follow that y′ = �. Thus, ⟨y, y′⟩ = ⟨⊺.�⟩.

Definition 4.4.7 (Equivalence relation ≡). Define ≡ as follows: φ ≡ ψ iff ⊢LPP φ ↔ ψ and

⊢LPP ∼φ↔ ∼ψ.

Proposition 4.4.8. The relation ≡ is a congruence on the propositional formula algebra of

LPP: F = ⟨F ,∧,∨,→,∼,�⟩.

Definition 4.4.9 (Lindenbaum-Tarksi algebra of LPP). Let F /≡ be the set of congruence

classes ∥φ∥ induced by ≡ on the set of formulas F . The Lindenbaum-Tarski algebra of LPP

is defined as follows:

LLPP = ⟨F /≡,∧,∨,→,∼,⊺,�⟩

where ∥φ∥ ∧ ∥ψ∥ ∶= ∥φ ∧ ψ∥, ∥φ∥ ∨ ∥ψ∥ ∶= ∥φ ∨ ψ∥, ∥φ∥ → ∥ψ∥ ∶= ∥φ → ψ∥, ∼∥φ∥ ∶= ∥∼φ∥,

⊺ ∶= ∥φ→ φ∥, and � ∶= ∥�∥.

Lemma 4.4.10 (Completeness of LPP w.r.t. LLPP ). If ⊧LLPP
φ, then ⊢LPP φ .

Proof. We prove its contrapositive. Suppose ⊬LPP φ. Then ∥φ∥ ≠ ⊺. Let us define a canonical

valuation v0 ∶ F → LLPP from the set of formulas to the carrier of LLPP as follows: for

every atomic proposition p, v0(p) = ∥p∥. Note that given the presence of AS15, we have

∥(p → �) → �∥ = ∥p∥ for every atomic proposition p, which in turn ensures that v0 still

qualifies as an inquisitive valuation. Now, it follows that for all formulas ψ, v0(ψ) = ∥ψ∥.

Hence, v0(φ) = ∥φ∥. And since ∥φ∥ ≠ ⊺, v0(φ) ≠ ⊺. Thus, ⊭LLPP
φ.

Definition 4.4.11 (Equivalence relation ≈). Define ≈ as follows: φ ≈ ψ iff ⊢LPP φ↔ ψ.

Proposition 4.4.12. The relation ≈ is a congruence on the propositional formula algebra

of the negation-free fragment of LPP: F+ = ⟨F +,∧,∨,→,�⟩.

Definition 4.4.13 (Lindenbaum-Tarski algebra LLPP+). Let F +/≈ be the set of congruence

classes [φ] induced by ≈ on F +. The Lindenbaum-Tarski algebra LLPP+ of the negation-free
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fragment of LPP is defined as follows:

LLPP+ = ⟨F +/≈,∧,∨,→,⊺,�⟩

where [φ]∧[ψ] ∶= [φ∧ψ], [φ]∨[ψ] ∶= [φ∨ψ], [φ] → [ψ] ∶= [φ→ ψ], ⊺ ∶= [φ→ φ], and � ∶= [�].

Definition 4.4.14 (PTS generated from the Lindenbaum-Tarski algebra LLPP+). We define

the PTS of LLPP+ as follows:

L&∗

LPP+ = ⟨L&∗LPP+,∧∗R,∨∗R,→∗

R,∼,1,0⟩

where L&∗LPP+ = {⟨[φ], [φ]∗⟩∣ [φ] ∈ F +/≈} ∪ {⟨[φ]∗, [φ]⟩∣ [φ] ∈ F +/≈}, and

⟨[φ], [φ′]⟩ ∧∗R ⟨[ψ], [ψ′]⟩ ∶= ⟨[φ] ∧ [ψ], ([φ] ∧ [ψ])∗⟩

⟨[φ], [φ′]⟩ ∨∗R ⟨[ψ], [ψ′]⟩ ∶= ⟨[φ] ∨ [ψ], ([φ] ∨ [ψ])∗⟩

⟨[φ], [φ′]⟩ →∗

R ⟨[ψ], [ψ′]⟩ ∶= ⟨[φ] → [ψ], ([φ] → [ψ])∗⟩

∼⟨[φ], [φ′]⟩ ∶= ⟨[φ′], [φ]⟩

1 ∶= ⟨⊺,�⟩

0 ∶= ⟨�,⊺⟩

Next, we want to show that LLPP and L&∗

LPP+ are indeed isomorphic. To prove this, we

first define two maps between LLPP and L&∗LPP+. We then show that they are homomorphisms

that are also inverses of each other.

Definition 4.4.15. We define a map h ∶ LLPP → L&∗LPP+ from the carrier of LLPP to the

carrier of L&∗

LPP+:

h(∥p∥) = ⟨[p], [p]∗⟩

h(∥φ ∧ ψ∥) = h(∥φ∥) ∧∗R h(∥ψ∥)

h(∥φ ∨ ψ∥) = h(∥φ∥) ∨∗R h(∥ψ∥)

h(∥φ→ ψ∥) = h(∥φ∥) →∗

R h(∥ψ∥)

h(∥∼φ∥) = ∼h(∥φ∥)
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h(⊺) = 1

h(�) = 0

Proposition 4.4.16. h is a homomorphism.

Proof. This is obvious given how h is defined.

Definition 4.4.17. We define a converse map h′ ∶ L&∗LPP+ → LLPP :

h′(⟨[φ], [ψ]⟩) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥φ∥ if [ψ] = [φ]∗

∥∼ψ∥ if [φ] = [ψ]∗

Example 4.4.18. To illustrate, let us consider three examples:

1. h′(⟨[?A], [�]⟩) = ∥?A∥,22 provided that the second coordinate [�] is the pseudo-complement

of the first coordinate [?A]—that is, [�] = [?A→ �]—but not vice versa.

2. h′(⟨[�], [?A]⟩) = ∥∼?A∥, provided that the first coordinate [�] is the pseudo-complement

of the second coordinate [?A], but not vice versa.

3. h′(⟨[A → A], [�]⟩) = ∥A → A∥ = ∥∼�∥, provided that [A → A] and [�] are pseudo-

complement of each other. In other words, we have that h′(1) = ⊺ = ∼�.

Proposition 4.4.19. For any ⟨[φ], [ψ]⟩, if [ψ] = [φ]∗ and [φ] = [ψ]∗, then h′(⟨[φ], [ψ]⟩ =

∥φ∥ = ∥∼ψ∥.

Proof. Recall again that [φ]∗ = [φ→ �]. Since [ψ] = [φ]∗ and [φ] = [ψ]∗, we have ⊢LPP ψ↔

(φ → �), and ⊢LPP φ ↔ (ψ → �). Next, since both φ and ψ appearing in [φ] and [ψ] are

formulas from the negation-free fragment of LPP, they do not contain any ∼. By Proposition

4.4.2 where we establish that for any non-negated formula α, ⊢LPP ∼α ↔ (α → �), it then

follows that ⊢LPP ψ ↔ ∼φ, and ⊢LPP φ ↔ ∼ψ. And given that ⊢LPP ∼∼ψ ↔ ψ, we have

⊢LPP ∼∼ψ ↔ ∼φ. Since we have obtained both ⊢LPP φ ↔ ∼ψ and ⊢LPP ∼∼ψ ↔ ∼φ, by the

definition of the congruence relation on LPP, φ and ∼ψ belong to the same congruence class,

that is, ∥φ∥ = ∥∼ψ∥.

22?A abbreviates A ∨ (A→ �).
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Proposition 4.4.20. h′ is a homomorphism.

Proof. We reason by cases.

1. For negation, we have that h′(∼⟨[φ], [ψ]⟩) = h′(⟨[ψ], [φ]⟩) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥ψ∥ = ∥∼∼ψ∥ = ∼∥∼ψ∥ = ∼h′(⟨[φ], [ψ]⟩) if [φ] = [ψ]∗;

∥∼φ∥ = ∼∥φ∥ = ∼h′(⟨[φ], [ψ]⟩) if [ψ] = [φ]∗.

Hence, regardless of whether the first coordinate is the pseudo-complement of the

second or vice versa, h′(∼⟨[φ], [ψ]⟩) = ∼h′(⟨[φ], [ψ]⟩).

2. For conjunction, we establish the following equivalences first: h′(⟨[φ], [φ′]⟩ ∧∗R
⟨[ψ], [ψ′]⟩) = h′(⟨[φ] ∧ [ψ], ([φ] ∧ [ψ])∗⟩) = h′(⟨[φ ∧ ψ], [φ ∧ ψ]∗⟩) = ∥φ ∧ ψ∥, given

that [φ ∧ ψ]∗ is the pseudo-complement of [φ ∧ ψ].

Next, we show that the following equations hold: ∥φ ∧ ψ∥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥φ ∧ ψ∥ if [φ′] = [φ]∗ and [ψ′] = [ψ]∗;

∥φ ∧ ∼ψ′∥ if [φ′] = [φ]∗ and [ψ] = [ψ′]∗;

∥∼φ′ ∧ ψ∥ if [φ] = [φ′]∗ and [ψ′] = [ψ]∗;

∥∼φ′ ∧ ∼ψ′∥ if [φ] = [φ′]∗ and [ψ] = [ψ′]∗.

The first case is obvious. It then follows that ∥φ ∧ ψ∥ = ∥φ∥ ∧ ∥ψ∥ = h′(⟨[φ], [φ′]⟩) ∧

h′(⟨[ψ], [ψ′]⟩). Therefore, we have that when [φ′] = [φ]∗ and [ψ′] = [ψ]∗,

h′(⟨[φ], [φ′]⟩ ∧∗R ⟨[ψ], [ψ′]⟩) = h′(⟨[φ], [φ′]⟩) ∧ h′(⟨[ψ], [ψ′]⟩).

Consider the second case. We want to show that when [φ′] = [φ]∗ and [ψ] = [ψ′]∗,

that is, when [φ′] = [φ → �] and [ψ] = [ψ′ → �], both ⊢LPP (φ ∧ ψ) ↔ (φ ∧ ∼ψ′) and

⊢LPP ∼(φ∧ψ) ↔ ∼(φ∧∼ψ′) obtain. First, note that since both φ∧ψ and φ∧∼ψ′ are non-

negated formulas, by the restricted contraposition established in Corollary 4.4.1.1, if we

can prove that ⊢LPP (φ∧ψ) ↔ (φ∧∼ψ′), we can prove that ⊢LPP ∼(φ∧ψ) ↔ ∼(φ∧∼ψ′).

Now, consider the proof of ⊢LPP (φ ∧ ψ) ↔ (φ ∧ ∼ψ′). Given that [ψ] = [ψ′ → �], we

have ⊢LPP ψ↔ (ψ′ → �). We can then easily show that ⊢LPP (φ∧ψ) ↔ (φ∧(ψ′ → �)).
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Since ψ′ is a formula from the negation-free fragment of LPP, it does not contain ∼.

Thus, by Proposition 4.4.3 which establishes the equivalence between toggle negation

and intuitionistic negation when they are embedded below a binary connective, it

follows that ⊢LPP (φ ∧ ψ) ↔ (φ ∧ ∼ψ′). And since both φ ∧ ψ and φ ∧ ∼ψ′ are non-

negated formulas, by contraposition, we have ⊢LPP ∼(φ ∧ ψ) ↔ ∼(φ ∧ ∼ψ′).

Because we have established both ⊢LPP (φ ∧ ψ) ↔ (φ ∧ ∼ψ′) and ⊢LPP ∼(φ ∧ ψ) ↔

∼(φ ∧ ∼ψ′), it follows that ∥φ ∧ ψ∥ = ∥φ ∧ ∼ψ′∥. Continuing with the proof that h′ is

a homomorphism, we have ∥φ ∧ ∼ψ′∥ = ∥φ∥ ∧ ∥∼ψ′∥ = h′(⟨[φ], [φ′]⟩) ∧ h′(⟨[ψ], [ψ′]⟩),

provided that [φ′] = [φ]∗ and [ψ] = [ψ′]∗.

We can apply similar reasoning to the last two cases and show that for all four cases,

h′(⟨[φ], [φ′]⟩ ∧∗R ⟨[ψ], [ψ′]⟩) = h′(⟨[φ], [φ′]⟩) ∧ h′(⟨[ψ], [ψ′]⟩).

3. For disjunction, by the same method, we can show that h′(⟨[φ], [φ′]⟩ ∨∗R ⟨[ψ], [ψ′]⟩) =

h′(⟨[φ], [φ′]⟩) ∨ h′(⟨[ψ], [ψ′]⟩).

4. Likewise for implication, we can show h′(⟨[φ], [φ′]⟩ →∗

R ⟨[ψ], [ψ′]⟩) = h′(⟨[φ], [φ′]⟩) →

h′(⟨[ψ], [ψ′]⟩).

5. For the two 0-ary operators, we immediately have h′(1) = ⊺ and h′(0) = �.

This completes our proof that h′ is a homomorphism.

Lemma 4.4.21. LLPP and L&∗

LPP+ are isomorphic.

Proof. Since both h and h′ are homomorphisms, we can show that for all x ∈ LLPP , h′(h(x)) =

x, and for all X ∈ L&∗LPP+, h(h′(X)) =X.

1. We prove that for all x ∈ LLPP , h′(h(x)) = x via an induction.

Base case: for any atomic proposition p, h′(h(∥p∥)) = h′(⟨[p], [p]∗⟩) = ∥p∥.

Inductive step: Suppose h′(h(∥φ∥) = ∥φ∥ and h′(h(∥ψ∥) = ∥ψ∥. Then,

(a) h′(h(∥φ ∧ ψ∥)) = h′(h(∥φ∥) ∧∗R h(∥ψ∥)) = h′(h(∥φ∥)) ∧ h′(h(∥ψ∥)) = ∥φ∥ ∧ ∥ψ∥ =

∥φ ∧ ψ∥;

(b) By similar reasoning, h′(h(∥φ ∨ ψ∥)) = ∥φ ∨ ψ∥, and h′(h(∥φ→ ψ∥)) = ∥φ→ ψ∥;

(c) h′(h(∥∼φ∥) = h′(∼h(∥φ∥) = ∼h′(h(∥φ∥) = ∼∥φ∥ = ∥∼φ∥.
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2. Given we have just established that for all x ∈ LLPP , h′(h(x)) = x, we can show for all

X ∈ L&∗LPP+, h(h′(X)) = X via a reductio. Suppose, on the contrary, that h(h′(X)) ≠

X, and let X = h(x). It follows that h(h′(h(x))) ≠ h(x). But since for all x ∈

LLPP , h′(h(x)) = x, it also follows that h(h′(h(x))) = h(x). Therefore, by reductio,

h(h′(X)) =X.

Given that h and h′ are inverses of each other, LLPP and L&∗

LPP+ are indeed isomorphic.

Corollary 4.4.21.1. ⊧LLPP
φ iff ⊧L&∗LPP+

φ.

We have completed the proof of completeness.

4.5 Generalizations

As stated in the introduction, a second aim of this paper is to further popularize this method

of twist-construction. To this end, I will explore several generalizations of PTS in this last

section. To begin with, let me first make a conceptual remark regarding the use of twist-

construction. As notated at the beginning of this paper, to reject LEM, we could either adopt

a bivalent or a non-bivalent approach. And as we have seen, in both the case of N3 and the

case of LPP, we can transform a bivalent account to a non-bivalent one via twist-operation

which introduces a toggle negation that rejects LEM. Crucially, what twist-operation enables

is to convert a semantic theory that employs only one central notion to one that employs two

independent central notions. This is reflected in the fact that the carrier of a twist-structure

consists of pairs whose components are themselves elements of the carrier of the original

algebra from which the twist-structure is generated. As such, twist-structures are able to

enrich the semantic interpretation a sentence receives by encoding two separate bodies of

information embodied by it—e.g., its acceptance and rejection conditions.

To generalize, we can view PTS as one of the many structures that can be generated from

applying the twist-operation to a certain base algebra. In using this method, we need to

determine three things: first, we fix an algebra that serves as the base of the twist-operation,

then we define the carrier set of the twist-structure by filtering out a subset of elements from

the product algebra, and lastly we define the logical operators of the new algebra. This is not
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to say that these three parameters are fully independent of each other, since, for example,

selecting a base that does not contain a bottom element will also limit how the carrier can

be defined. In what follows, I shall examine one generalization along each dimension to

illustrate the utility of twist-construction.

4.5.1 The base

The base for the twist-operation is the algebra from which the product algebra is derived.

As we have seen, both PTS and BTS can be regarded as derived from Heyting algebras.

Thus, a natural generalization is to explore other algebras that can serve as the base for

twist-construction. One option is to explore algebras weaker than Heyting algebras. In the

existing literature, twist-structures have been defined using weaker bases such as implicative

lattices (Odintsov, 2004; Rivieccio, 2014) and subminimal algebras (Vakarelov, 2005).

For instance, using implicative lattices as the base gives rise to the so-called full twist-

structures (FTS). Note that since, different from a Heyting algebra, an implicative lattice

does not have to come with a unique bottom element, we cannot use the same carrier as

that of BTS; consequently, the carrier of FTS is simply identified with the carrier of the

whole product lattice. FTS have been used to provide an algebraic semantics for Nelson’s

paraconsistent logic N4, especially given that there is no requirement for the meet of the two

coordinates of any given pair in FTS to be the bottom element.

Here, I wish to explore this generalization in the other direction, that is, to consider

taking algebra that is stronger than the Heyting algebra as the base for twist-construction.

In particular, we can consider taking the inquisitive algebra (Bezhanishvili et al., 2019) as

the base of our pseudo-complemented twist-operation.

Definition 4.5.1 (Inquisitive algebra). An inquisitive algebra I is a Heyting algebra H

that is regularly generated, is well-connected, and validates the Kreisel-Putnam axiom, viz.,

(¬φ→ (ψ ∨ χ)) → ((¬φ→ ψ) ∨ (¬φ→ χ)).

Definition 4.5.2 (Regularly generated). A Heyting algebra H is regularly generated if it is

generated by H¬¬ = {¬¬x∣x ∈ H}.
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Definition 4.5.3 (Well-connected). A Heyting algebra H is well-connected if for every x

and y in H, if x ∨ y = 1, then either x = 1 or y = 1.23

Taking inquisitive algebras as the base of the pseudo-complemented twist-operation as

defined in §4.4 produces a new class of twist-structures, call them Inq-PTS. Correspondingly,

we obtain an extension of LPP, call this logic Inq-LPP. In particular, since the base algebra

now satisfies the KP axiom, we add the following axiom to Inq-LPP:

AS17. ((φ→ �) → (ψ ∨ χ)) → ((φ→ �) → ψ) ∨ ((φ→ �) → χ))

What we have above is a version of the KP schema where the relevant negation is intuition-

istic. To elucidate its validity, note that any pair from the carrier of Inq-PTS that comes to

interpret AS17 will be such that the pair’s first coordinate is necessarily identical to the top

element given that the base algebra from which the twist-structure is generated now satisfies

KP. Additionally, whenever φ is a non-negated formula, say α, then given the conversion

between intuitionistic negation and toggle negation, we can derive from AS17 the following

theorem: ⊢Inq−LPP (∼α → (ψ ∨ χ)) → ((∼α → ψ) ∨ (∼α → χ)). Hence, we also obtain a

restricted version of KP schema for toggle negation.

4.5.2 The carrier

A second parameter we can vary is the twist-structure’s carrier set. In the case of FTS, there

is no restriction on the carrier set; hence every element in the product lattice is included in

the carrier of the resulting twist-structure. In the case of BTS, the restriction is that the

two components of each pair need to be such that their meet is the bottom element. And in

the case of PTS, we further restrict the carrier to pairs wherein either the first component

is the pseudo-complement of the other, or vice versa. In general, after we have fixed a base

algebra, we can explore different ways to determine the carrier set of the twist-structure.

23The two properties of being regularly generated and well-connected help us to further delimit the class
of Heyting algebras suitable for modeling inquisitive logic. The property of being regularly generated directly
follows from the fact that, since inquisitive valuations assign every atomic proposition to a member of H¬¬,
all formulas are thus assigned to elements from the subalgebra generated by H¬¬. On the other hand, well-
connectedness follows from the fact that inquisitive logic, just like intuitionistic logic, satisfies the disjunction
property, that is, if φ∨ψ is a theorem of the logic, then either φ must be a theorem or ψ must be a theorem
of the logic.
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In this subsection, I shall explore one immediate generalization of PTS which shares

the same base as PTS but impose a further restriction on the carrier. As I briefly men-

tioned in §4.4.1, we may further curtail the carrier set such that, for any given pair, their

two coordinates are pseudo-complements of each other. Call the resulting twist-structures

complemented twist-structures (CTS), which are generated in the following way.

Given a Heyting algebra H = ⟨H,∧,∨,→,⊺,�⟩, we define a CTS, H&c = ⟨H&c,∧c,∨c,→c

,∼,1,0⟩, as follows:

H&c = {⟨x,x′⟩∣ x′ = x∗ and x = x′∗}

⟨x,x′⟩ ∧c ⟨y, y′⟩ ∶= ⟨(x ∧ y)∗∗, (x ∧ y)∗⟩

⟨x,x′⟩ ∨c ⟨y, y′⟩ ∶= ⟨(x ∨ y)∗∗, (x ∨ y)∗⟩

⟨x,x′⟩ →c ⟨y, y′⟩ ∶= ⟨(x→ y)∗∗, (x→ y)∗⟩

∼⟨x,x′⟩ ∶= ⟨x′, x⟩

1 ∶= ⟨⊺,�⟩

0 ∶= ⟨�,⊺⟩

Complemented twist-structures are closed under the above operations, given that for any x

in a Heyting algebra, x∗∗ and x∗ are necessarily pseudo-complements of each other.

Theorem 4.5.4. Every CTS is a Boolean algebra, and every Boolean algebra is isomorphic

to a suitable CTS.

Proof. we can prove that every CTS is a Boolean algebra by showing that elements of CTS

satisfy the equational definitions of Boolean algebras (cf. Rasiowa 1974). Take the equation

X ∨c ∼X = 1 as an example, where X is any element from the carrier of CTS. Suppose

X = ⟨x,x′⟩. We want to show that if x′ = x∗ and x = x′∗, then ⟨x,x′⟩ ∨c ⟨x′, x⟩ = 1 = ⟨⊺,�⟩.

First, by definition, ⟨x,x′⟩ ∨c ⟨x′, x⟩ = ⟨(x ∨ x′)∗∗, (x ∨ x′)∗⟩. Next, since H is a Heyting

algebra, (x∨x′)∗ = x∗ ∧x′∗. And given that x and x′ are pseudo-complements of each other,

x∗ ∧ x′∗ = x′ ∧ x′∗ = �. Thus, we have ⟨(x ∨ x′)∗∗, (x ∨ x′)∗⟩ = ⟨⊺,�⟩ = 1.

Conversely, every Boolean algebra can also be regarded as coming from a CTS. Since

every Boolean algebra is a Heyting algebra, then given any Boolean algebra B, we can
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generate a CTS based on B and show that B is isomorphic to the resulting CTS. This can

be done by mapping every element x in B to the pair ⟨x,x∗⟩ in the resulting CTS.

4.5.3 The operator

After we have determined a base and a carrier, depending on how we choose to define the

logical operators, we may still derive different twist-structures. Here, I shall examine a

variation of PTS, call them left-pseudo-complemented twist-structures (LPTS), which share

the same base and carrier as PTS but with their operators defined differently.

We have remarked earlier that, under the inquisitive setting, there is an asymmetry

between support and rejection in terms of the amount of information required: support in

general demands more information than rejection. Since disjunction under inquisitive seman-

tics plays the role of introducing alternatives, to support a disjunction, an information state

needs to contain enough information to settle on at least one of the alternatives; by contrast,

a conjunction does not introduce any alternatives, and thus to reject a conjunction, it is not

mandatory for an information state to be able to reject one of the conjuncts. As a conse-

quence, in devising a suitable class of twist-structures for modeling inquisitiveness, we define

the support condition constructively but define the rejection condition non-constructively,

thereby taking binary connectives to produce pairs wherein the second-coordinate is always

the pseudo-complement of the first coordinate.

Now, as we go beyond the quest of modeling inquisitiveness, we may consider the asym-

metry in constructiveness between support and rejection as representing different global

standards for acceptance and rejection of information. Under PTS, we have a relatively

stringent standard on information acceptance, that is, we support fewer things, compared

to our standard on information rejection. In particular, to accept a disjunction, we must be

able to support one of its disjuncts.

As a natural generalization, we may entertain reversing the stringency associated with

information acceptance and rejection. We may adopt a relatively stringent standard on

information rejection, that is, we reject fewer things, compared to our standard on informa-

tion acceptance. In particular, to reject a conjunction, we must be able to reject one of its

conjuncts.
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Formally, we may entertain the converse structures of PTS under which the three binary

connectives produce pairs wherein the first coordinate is always the pseudo-complement of

the second coordinate. Without delving too deep into how the rejection condition of a

conditional should be specified, let us assume that the second coordinates are defined in

accordance with the BTS as devised for the constructive logic N3. Hence, we supply the

following definition for left-pseudo-complemented twist-structures.

Given a Heyting algebra H = ⟨H,∧,∨,→,⊺,�⟩, we define a LPTS, H&∗

L = ⟨H&∗,∧∗L,∨∗L,

→∗

L,∼,1,0⟩, as follows:

H&∗ = {⟨x,x′⟩∣ either x′ = x∗,or x = x′∗}

⟨x,x′⟩ ∧∗L ⟨y, y′⟩ ∶= ⟨(x ∨ y)∗, x ∨ y⟩

⟨x,x′⟩ ∨∗L ⟨y, y′⟩ ∶= ⟨(x ∧ y)∗, x ∧ y⟩

⟨x,x′⟩ →∗

L ⟨y, y′⟩ ∶= ⟨(x ∧ y′)∗, x ∧ y′⟩

∼⟨x,x′⟩ ∶= ⟨x′, x⟩

1 ∶= ⟨⊺,�⟩

0 ∶= ⟨�,⊺⟩

As an abnormality of LPTS, modus ponens is invalid. To illustrate, under LPTS, we

have ⊧ (A ∧ ∼A) → � and ⊧ ((A ∧ ∼A) → �) → ∼(A ∧ ∼A), but ⊭ ∼(A ∧ ∼A). To see this, put

v(A) = ⟨a, a′⟩. Then, v((A ∧ ∼A) → �) = ⟨�, a ∨ a′⟩ →∗

L ⟨�,⊺⟩ = ⟨⊺,�⟩ = 1 and v(((A ∧ ∼A) →

�) → ∼(A ∧ ∼A)) = ⟨⊺,�⟩ →∗

L ⟨a ∨ a′,�⟩ = ⟨⊺,�⟩ = 1, but v(∼(A ∧ ∼A)) = ⟨a ∨ a′,�⟩ ≠ 1.

The failure of modus ponens is often a telling trait of certain non-bivalent paraconsistent

logics. For instance, both Priest’s (1979) Logic of Paradoxes and the paraconsistent variant

of N3 (Kapsner, 2015) fail to vindicate it. The reason why modus ponens fails in these

logics is that semantic consequence is defined not as preservation of truth or support but as

preservation of non-falsity or non-rejection. That is,

Γ ⊧ φ iff in every model and at every w, if w ⊮0 ψ for every ψ in Γ, then w ⊮0 φ.
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Consequently, if the implication → is defined so that φ→ ψ can receive a non-0 value when φ

also receives a non-0 value even if ψ receives 0, then modus ponens fails because the inference

does not preserve non-falsity.

However, for LPTS, the situation is rather different, as semantics consequence in LPTS

is still defined in terms of preservation of support. That is, φ ⊧ ψ iff for all v such that

v(φ) = 1, v(ψ) = 1. As a result, LPTS is in fact not paraconsistent, since it does vindicate

ex contradictione quodlibet, viz., φ,∼φ ⊧ ψ.24 Nevertheless, since the rejection condition for

conjunction is constructive in the sense that to reject a conjunction we must be able to reject

either one of its conjuncts, the Law of Non-Contradiction (LNC), viz., ∼(φ ∧ ∼φ) is in fact

invalid in LPTS. For instance, as we have just seen in the above counterexample to modus

ponens, ⊭ ∼(A ∧ ∼A).

The contrast between the validity of ex contradictione and the invalidity of LNC has

an intuitive explanation. Given that our semantic consequence is defined as preservation of

acceptance. It means if one genuinely accepts both φ and ∼φ, i.e., a contradiction, then one

is expected to accept everything. But this does not equate to saying that for any sentence

φ, we are expected to either reject it or reject its negation. Since we might not have enough

information to countenance either option.

Moreover, since the failure of modus ponens is a direct consequence of how implication is

defined in LPTS, we can retain the constructiveness of the rejection condition for conjunction

while at the same time reinstate modus ponens by replacing →∗

L with a suitable implication.

One immediate candidate for this role is the previous operator →∗

R as employed in PTS, viz.,

⟨x,x′⟩ →∗

R ⟨y, y′⟩ ∶= ⟨x → y, (x → y)∗⟩. Modified in this way, the resulting twist-structure

is essentially identical to the PTS, given that the only difference between the two concerns

the definitions for conjunction and disjunction, and as it turns out, ∧∗L and ∨∗L are already

definable in PTS as follows:

⟨x,x′⟩ ∧∗L ⟨y, y′⟩ ∶= ∼(∼⟨x,x′⟩ ∨∗R ∼⟨y, y′⟩)

24Here is a quick proof of this result. Given how semantic consequence is defined in LPTS, it is impossible
for there to be a valuation v such that both v(φ) = ⟨x,x′⟩ = ⟨⊺,�⟩ and v(∼φ) = ⟨x′, x⟩ = ⟨⊺,�⟩. Consequently,
anything follows.
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⟨x,x′⟩ ∨∗L ⟨y, y′⟩ ∶= ∼(∼⟨x,x′⟩ ∧∗R ∼⟨y, y′⟩)

This means that PTS is already capable of modeling both constructive and non-constructive

acceptance for disjunction as well as both constructive and non-constructive rejection for

conjunction.

4.6 Conclusion

This paper highlighted two ways to reject the Law of Excluded Middle and explored a non-

bivalent approach to inquisitiveness via the construction of a suitable class of twist-structures.

Just as N3 extends the standard intuitionistic logic by introducing a notion of counterexam-

ples in addition to the existing notion of proofs, the logic of pseudo-complemented propo-

sitions (or to be more precise, the logic Inq-LPP) extends the standard inquisitive logic by

introducing a notion of rejection in addition to the existing notion of support. And just like

N3, LPP also incorporates a toggle negation which validates Double Negation Elimination

and functions as a switch that toggles between the support and rejection conditions of a

sentence. However, unlike N3, LPP embodies an asymmetry in constructiveness between

support and rejection: support is interpreted constructively but rejection is not. I have pre-

sented an algebraic semantics for LPP via pseudo-complemented twist-structures and proved

completeness. The general utility of twist-construction—that is, as a way to convert a biva-

lent semantics into a non-bivalent one—has been further highlighted via exploration of some

variations of PTS. By varying twist-construction along three dimensions—i.e., the base al-

gebra, the carrier of the twist-structure, and the definitions of the logical operators—we can

generate a wide range of twist-structures which could potentially serve diverse philosophical

purposes.
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