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In this thesis we report on an investigation of an elastic buckling instability as 

a driving force for the roughening of polystyrene, a model resist, during Ar
+
 plasma 

etching. Polystyrene films etched by pure Ar
+
 plasma with different ion energies were 

characterized using both atomic force microscopy topography and force curve 

measurements. By using height-height correlation function in analyzing the AFM 

measured topography images, we find that surface corrugation of etched polystyrene 

film surfaces all display a dominant wrinkle wavelength (λ), which is a function of 

ion energy. Next, we characterized the mechanical properties of these samples using 

AFM force curve measurements in an controlled ambient environment. We analyzed 

the measured force curves using a systematic algorithm based on statistical fitting 

procedures, and taking into account the adhesive interaction, in order to determine the 

effective elastic modulus of the films. We find that the effective elastic modulus (EBL) 



  

of the etched samples increases monotonically with increasing ion energy, but the 

changes are rather subtle as compared to the elastic modulus (EPS) of the unetched 

one. 

  In order to test the validity of a buckling instability as the mechanism for 

surface roughening in our polystyrene-Ar plasma system, the elastic modulus of 

individual layer (i.e. ion-damaged layer plus unmodified foundation) needs to be 

determined. We present a determination of the damaged layer elastic modulus (EDL) 

from the effective elastic modulus of the damaged layer/polystyrene bilayer structure 

(EBL), based upon a finite element method simulation taking into account the 

thickness and elastic modulus of the damaged layers. We extract the damaged layer 

elastic modulus versus etching ion energy initially within the approximation of a 

spherical tip in contact with a flat sample surface. We next extend our model, by 

considering a periodic corrugated film surface, with its amplitude and wavelength 

determined by AFM, to take into account the effect of roughness induced by plasma 

exposure. The damaged layer elastic modulus extracted from these two 

approximations gives of quantitative agreement, and thus evidence for the correlation 

between buckling instability and plasma-induced roughening. 
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Chapter 1:  

Introduction 

 

1.1 Motivation 

The drive toward ever-smaller dimensions has made controlled patterning of 

materials at the nanometer scale crucial in the fabrication of ultra large scale 

integrated electronics. During the past decades due to breakthroughs in lithographic 

techniques, e.g. e-beam
1.1

, extreme-UV (EUV)
1.2, 1.3

, and nanoimprint
1.4, 1.5

 

lithography, etc., one is now able to define a mask pattern with the minimum feature 

size down to sub-10 nanometers
1.6-1.8

. However, the subsequent pattern transferring 

process, e.g. plasma etching, is ever more challenging, i.e. achieving the same shape 

and dimensions in the underlying material as what was defined by the patterned resist. 

The roughness generated on the surface and sidewall of the resist during the plasma 

etching process is one of the main factors that limit the minimum feature size of the 

transferred pattern, since it is also transferred. Therefore, controlling the roughening 

of resist materials during exposure to a plasma is critical, and only possible if we have 

good understanding of the underlying physical mechanisms. Unfortunately, such an 

understanding has not been established as yet. 

In very recent work
1.9, 1.10

, we found evidence that a previously unexpected 

effect might be responsible for most of the roughening of certain polymeric films: 
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that a large mismatch in the stiffness of a thin damaged layer produced by ion 

etching, and that of the underlying film might drive the film to buckle1.11-1.13. This is 

illustrated schematically in figure 1.1.  In particular, an analysis of the roughness 

produced by Ar
+
 ion etching of polystyrene films over a range of energies showed 

that the dominant wavelength of the corrugation scaled with the thickness of the 

damaged layer, in agreement with what would be expected for a buckling 

instability
1.9

, which predicts 
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where λ is the wavelength of the corrugation, t is the film thickness, Ef, νf , and Es, νs  

are the elastic modulus and Poisson’s ratio of the film and substrate, respectively. A 

striking aspect of the application of this model to our system is that based upon the 

observed dominant wavelengths of approximately 30-80 nm, the damaged layer 

moduli, corresponding to Ef in above equation, are apparently very high indeed: more 

than two orders of magnitude larger than that for underlying polystyrene, 

corresponding to Es in above equation.   

Establishing whether a buckling instability is indeed responsible for the 

roughening of polystyrene and other resist films during plasma etching would be of 

great technological importance, and would be possible if the modulus of the damaged 

layer could be determined directly.  This is challenging, as the effective modulus 

should be dominated by that of the softer underlying film. In this thesis we report on 
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just such a determination, based upon careful atomic force microscopy (AFM) force 

curve measurements, combined with numerical simulations by the finite element 

method to extract the damaged later elastic modulus from the nanomechanical 

response of the combined bilayer system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Schematic of buckling of a damaged layer formed on a polymer film 

exposed to ion bombardment.  
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1.2 Reactive ion etching of polymer thin film 

Plasma is a partially ionized gas, consisting of equal amount of positive and 

negative ions, along with neutrals, electrons, and photons (UV/Vacuum UV). It has 

been widely used in the application of etching for pattern transfer during the 

manufacturing of electronics due to its anisotropy, relatively high transfer fidelity, 

and cleanliness.
1.14

 Reactive ion etching (RIE) is one of the most important and 

widely-used dry etching techniques. In RIE the etching process takes place with both 

the chemical removal by reactive ions/radicals and the physical removal by energetic 

ions. During this process, reactive species can interact with the polymeric mask 

material lying on top of the substrate, altering the properties, chemical 

structures/compositions, and surface morphology of the polymer film, and lead to 

undesired consequences for the electronic devices, e.g. degradation of electrical 

performance
1.15

.  

 

1.2.1 Plasma-polymer surface interaction 

During the exposure of a polymer material to a plasma, the constituents of the 

plasma can interact with the polymer molecules and cause effects in different ways. 

 Ion bombardment can affect the polymer film at near-surface, both physically 

and chemically. Accelerated ions can alter the polymer surface by physical sputtering 

of the material from the surface and chemical modifications of the material structures 

or compositions. Both effects will become more significant at increasing the ion 

energies. Depending on the types of chemical bonds within the polymer material, the 

ions can preferentially break certain types of bonds and selectively remove one 
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constituent over another, causing the local depletion and changing the chemical 

composition at near-surface.1.16-1.18 

Electrons cause much less significant effect on the polymer surface than the 

ions do since the energy of the electrons bombarding the surface is only on the order 

of a few eV, which is unlikely sufficient for bond breakage.
1.19

 

Neutrals affect the polymer surface depending on their reactivity with the 

polymer molecules. In a pure Argon plasma, thermal neutrals are chemically inert and 

exhibiting temperature slightly above room temperature
1.20

 causing little effect on the 

polymer surface. Fast moving neutrals cause similar effects to those of ions, and the 

excited neutrals may assist material removal by potential sputtering. 

Energetic photons generated in a plasma can also modify the polymer material 

in the near-surface, with different levels usually depending on the feed gas used in the 

discharge, polymer structure, and photon energy.
1.10, 1.21-1.23

 The most important are 

the UV and vacuum UV (VUV) photons, which modify the polymer by chain cross-

linking, main-chain scission, or side-chain removal.
1.24-1.26

 The Argon plasma emits 

radiations in the VUV range.
1.10, 1.27

 For hydrocarbon polymers, the absorption 

coefficient for the VUV radiation can be several orders of magnitudes larger than that 

for UV.1.10  

 

1.2.2 Formation of damaged layer 

As mentioned above, the constituents of a plasma can interact with the 

molecules or the atomic constituents in the molecules of the polymer material at near-

surface region, and cause drastic change in the structure or chemical composition 
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within the impacted region. During bombardment with energetic ions, the depth at 

which the polymer near-surface will be affected depends on how deep the incident 

ions can penetrate into the material. This is mainly a function of the ion energy and 

incident angle.
1.10, 1.16

 Within the penetrated region, the scattered energetic ions can 

selectively induce bond breaking and remove certain atomic constituents from the 

molecules depending on the bond type or strength. This will cause a depletion of 

certain constituents of the molecules, and further change the composition within the 

penetration depth of the ions. For Ar
+
 ions with a kinetic energy of about 100eV 

incident upon a polymer surface at a normal incident angle, a densified amorphous 

carbon-rich layer as a result of removal of hydrogen or oxygen atoms is formed to a 

depth of about 2 nm.1.10 This thin ion-induced damaged layer may be a matter of 

concern since the physical properties (e.g. thermal, mechanical, etc.) of the new 

generated layer is quite different from the unmodified underlying polymer. 

UV and VUV photons can also be absorbed by most polymer materials, which 

can cause different level modification at the near-surface of the polymer material. 

Depending on the photon energy and polymer type (which reflects on the absorption 

coefficient of the material at certain wavelength range), the depth influenced by these 

energetic photons can vary from tens to hundreds of nanometers, which is 

significantly much larger than that caused by the ions. The absorption of the photons 

follows the Beer-Lambert law, i.e.  the absorption depth falls off exponentially with 

the absorption coefficient of the material.
1.10, 1.28, 1.29

 This type of absorption, 

occurring during the exposure to a plasma, generally causes the excitation of 

electrons. This is highly molecular-dependent, resulting either in subsequent chain-
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scission or cross-linking reactions of the molecules.
1.10, 1.24-1.26

 In an Ar plasma, the 

radiation is in the VUV range (i.e. 100-200 nm in wavelength), and can be absorbed 

at the near-surface of polystyrene at a penetration depth of about 40 nm.1.10 As 

mentioned above, the effects of this kind of absorption varies from material to 

material. For example, the absorption under the same etching condition (e.g. pure Ar 

plasma) could result in cross-linking in a P4VP , enhanced chain-scission in PαMS, 

while insignificant changes happen in a polystyrene,
1.10, 1.30

 which distinguish the 

subsequent behaviors for those systems. 

These damaged layers are of potential importance since they may exhibit 

much different mechanical nature than that of the underlying unmodified film. 

 

1.2.3 Mechanisms for roughness formation 

Corrugations transferred from a roughened resist polymer to the underlying 

material during a dry etching process have long been a big concern in development of 

nanotechnology. To enhance control of this issue, there have been a number of 

studies attempting to explore the mechanisms for plasma- induced roughening. In 

general, the directions of these studies can be divided into two categories: intrinsic 

and extrinsic.1.10 

 ”Intrinsic roughening” is considered to result from instability of the 

plasma/polymer interface during its propagation which involves mass transport (e.g. 

arrival of the reactive species at the exiting interface, departure of the reaction 

products from the interface) usually driven by the variation in the local chemical 

potential across the interface.
1.10

 This interface propagation is not in equilibrium both 
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vertically and laterally. In the vertical direction, driven by the chemical and electrical 

potential gradient the reactive neutrals and ions move toward the interface where 

there is probability for a reaction to take place. The reaction products may be released 

locally from the interface with some probability, driving the interface moving 

downward locally to form instantaneous atomic or molecular scale roughness. In the 

lateral direction, smoothing of the interface occurs driven by the lateral diffusion of 

the reactants and the relaxation of the polymer molecules. Hence in the steady-state 

the roughness of the surface is a result of the kinetic competition between the vertical 

moving of the interface and the lateral diffusion/relaxation.
1.10

 A number of models 

(e.g. continuum height evolution, flux-remission, scaling theory, etc.)1.17, 1.31-141 have 

been proposed based on this assumption; however, most are based on the studies on 

hard materials, just few are against polymer materials
1.17, 1.38, 1.41

. 

In “extrinsic roughening” of polymers in a plasma environment, is impurity, 

polymer-molecular structure dependent. There are some studies on the role of cross-

linking induced by ion-bombardment or UV/VUV radiation plays in the surface 

roughening of polymers. Sumiya et al. explained the roughening on the polymer film 

by correlating the induced cross-linking to polymer aggregation (usually is considered 

as a state when polymer chains are massed into dense tangled clusters) leading to 

nano-scale inhomogeneities in mass and density at the near-surface.
1.42-1.44

 Some 

studies have shown that surface roughening could be reduced by enhanced cross-

linking, or enhanced by higher degrees of chain-scission and mobility of the polymer 

chains.
1.45, 1.46
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A potential breakthrough in our understanding comes from very recent work 

in which Bruce et al. proposed a buckling instability model for the explanation of 

initial roughening of polymer surface during plasma exposure.1.9, 1.30 In this model, 

ion bombardment during the plasma exposure of polymer films results in the 

formation of a thin, stiff, compressive-stressed damaged layer bound to the much 

softer underlying unmodified film; the large difference in the modulus of the 

damaged layer and that of the underlying film results in a buckling instability, with 

the formation of wrinkles producing surface roughness. We discuss this model in the 

next section, and its investigation forms the major part of this thesis. 

 

1.2.4 Early results for simple model polymers 

Several studies about the plasma-polymer interactions had been done earlier 

by our collaborative works using a number of simple model polymers whose 

degradation mechanisms in the plasma environment are well-known. Examples of 

these model polymers used in these works are shown in figure 1.2. 

To understand the effects of polymer structures on the etching behaviors 

under plasma exposure, Bruce et al. used polystyrene and it’s derivatives whose 

chemical structures are similar to each other except for the position of a side methyl 

group or a different element composition on the side group, e.g. poly-α-methylsturene 

(PαMS), poly-4-methylstyrene (P4MS), and poly-4-vinylpyridine (P4VP), in different 

types of plasma exposure, e.g. Ar, VUV-only, and 10% C4F8/Ar.
1.30, 1.47

 Ellipsometry 

analysis and a bi-layer optical model based on the obtained refractive index and 

extinction coefficient show evidence that an amorphous carbon-rich damaged layer of 
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an ion-energy-dependent thickness, as was confirmed by XPS analysis and molecular 

dynamics (MD) simulations1.16, 1.48, was created by ion bombardment on top of an 

unmodified polymer layer with a thickness decreasing during the plasma exposure. 

What makes the differences is the response of these different structured polymers to 

the UV/VUV radiations. PαMS is known to be prone to chain-scission reactions while 

polystyrene, P4MS, and P4VP are known to undergo cross-linking reactions under 

the UV/VUV irradiations. In addition, PαMS has a relatively low ceiling temperature 

(66
o
C) compared to the other type of polymers, making it a significant character that 

the etch rate increases much faster than the others with elevating substrate 

temperatures. 

To answer a critical question that “What drives the roughening of polymers 

during plasma exposure?”, Bruce et al. proposed that the top ion-damaged layer plays 

a critical role in the evolution of the polymer surface morphology in the plasma 

environment. By assuming that the thin damaged layer is amorphous carbon, using 

the literature values of the mechanical properties in conjunction with the observed 

surface properties, e.g. thickness, dominant wavelength of surface corrugation, a 

“buckling instability” was qualitatively proven as a key mechanism that initiates 

surface roughening during plasma processing. A preliminary result was published for 

a polystyrene-Ar plasma system, which states that the compressive stress, built up 

within the ion-damaged layer as a result of densification and a large difference in the 

elastic modulus between itself and the underlying unmodified layer, drives the surface 

to wrinkle in the small deformation limit when exceeding a critical value.
1.9

 This 

result was also used to explain the difference in the roughening behaviors of other 
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type of polymer-plasma systems.
1.30

 Particularly, the negligible roughening behavior 

of P4VP during either Ar or 10% C4F8/Ar plasmas was attributed to its strong 

response to UV/VUV irradiations, that a significant induced cross-linking region 

under the top ion-damaged layer reduces the difference in the elastic modulus 

between them, resulting in suppression of surface roughening; while an enhanced 

surface roughening was seen on PαMS due to the radiation-induced chain-scission 

region under the ion-damaged layer, increasing the difference in the elastic modulus 

by softening the irradiation-affected region. Polystyrene shows non-extreme 

roughening behavior due to its insensitivity to the UV/VUV radiation. 

The results described above were also confirmed by vacuum beam 

experiments and MD simulations. In the vacuum beam experiment, Nest et al. studied 

the effects of the Ar ion beam and the UV/VUV irradiation on the roughening 

behaviors of 193 nm and 248 nm photoresist polymers respectively
1.49

, shown in 

figure 1.2. The 193 nm resist was found to be roughened more severely than 248nm 

as a result of that the oxygen-containing bonds (C=O and C-O-C) in the 193 nm resist 

are prone to be broke under the exposure to UV/VUV irradiations, while such bond 

breaking is not seen in the hydrocarbon based 248 nm resist. And again, this 

radiation-induced bond breakage results in significant temperature-dependent 

roughening in the case of 193 nm resist, which is similar to the result from the plasma 

etching of PαMS. A further vacuum beam study of PαMS and P4MS as well as the 

role of ceiling temperature show consistent results with that obtained from the plasma 

etching experiment.
1.46
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  In the molecular dynamics (MD) simulations, Végh et al. examined the 

effects of Ar+ ion bombardment on a polystyrene surface.1.16, 1.48 The simulation 

results show that a heavily cross-linked dehydrogenated damaged layer in the near-

surface region forms after some initial ion flux (shown in figure 1.3), which is 

consistent with the results obtained by plasma and vacuum beam experiments. The 

formation of the damaged layer is a result of competition among sputtering, ion-

induced dehydrogenation, and cross-linking. Hydrogen is preferentially removed 

from this region, and once a significant cross-linking has occurred, the hydrogen-

depletion zone rapidly transfers to the final amorphous structure as steady-state etch 

is approached. And this result explains well on the experimentally observed 

significant drop in sputter yield (SY) of polystyrene at flux of Ar+ ion bombardment. 
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Figure 1.2  Schematics of chemical structures of model polymers used in 

plasma etching experiment and vacuum beam experiments done by Bruce et 

al. and Nest et al. respectively. 
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Figure 1.3  Side views of the polystyrene cell for a single MD simulation, 

indicating a transition from the initial surface to a highly modified surface at 

steady state.
1.48

 Corresponding changes in sputter yield and the ratio of 

number of atoms (H:C) at the damaged region from the initial to the final 

state are from ~5.7 to ~0.017 Eq. C/Ar
+
 and from 1.0 to 0.11 respectively. 

The value for the H:C ratio and the damaged layer thickness for the steady-

state surface are averaged over 5 separate surface compositions during the 

last 2500 Ar+ impacts of the simulation (at a interval of 500 impacts), after 

steady state has been established.  
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1.3 Buckling instability 

Mechanical instabilities driven by mechanical stress, externally applied or 

internal strain can take place over an extremely wide range of length scales. They are 

an important issue in the structure and properties of natural and artificial material 

systems. The buckling instability in particular has drawn a great deal of attention both 

in scientific research, and in engineering applications.
1.50-1.58

 From the early 

understanding of the failure of the sandwich structure employed by the aircraft wings, 

there has been continuous efforts in research of this ubiquitous phenomenon at 

multiple length scales and in complex material/structural systems.
1.53, 1.58

 Of the 

diverse systems being studied, perhaps the simplest and most typical is a thin stiff 

layer bonded to a thick compliant base (e.g., a thin metal film deposited on a thick 

polymer substrate). Such a structure generally stores strain energy at the interface 

between the two layers due to external or internal factors (e.g. thermal expansion, 

mechanical stretching), and imposes a stress within the thin stiff layer. In the case of a 

compressive stress, beyond a critical value, then the film starts to buckle, resulting in 

either wrinkling
1.50-1.58

 or delamination
1.59, 1.60

. This is indicated schematically shown 

in figure 1.4. 

Wrinkling driven by a buckling instability is an intriguing phenomenon since 

the resulting surface patterns generally show wavelength selection. For a thin stiff 

film with thickness t and elastic modulus Ef on a thick strained compliant substrate 

with elastic modulus Es, the characteristic wavelength λ
1.9, 1.57

 in the small 

deformation, linear elasticity limit is given by: 
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where νf and νs are the Poisson’s ratios of the film and substrate, respectively. The 

wrinkle amplitude A
1.9, 1.57

 in this same limit is given by: 
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where σ and σc are the compressive stress and the critical compressive stress of the 

film, respectively. Equation 1.1 predicts that λ depends only on the thickness (t) and 

the elastic properties (E and ν) of the film and substrate but not on the stress (σ) 

applied on the film, while equation 1.2 predicts that the amplitude is stress dependent. 
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Figure 1.4  Schematics of buckling instability-driven film wrinkling and 

delamination under a compressive stress.  
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1.4 Nanomechanics for surface characterization 

Nanomechanics is the broad field which deals with the mechanical properties 

of material systems at the nanometer scale. The characterization of nanomechanical 

properties at the surface or near-surface is of significant technological interest as 

many modes of failure (e.g. buckling, fracture, wear, etc.) at surfaces/interfaces at the 

nanometer length scales. The properties of interest include elasticity, hardness, 

adhesion, residual stress, fracture toughness, elastic-plastic deformation, and 

viscoelasticity. A number of techniques are used in investigation of these properties, 

of which the most widely-used are nanoindentation, and AFM-force curve 

measurement. Nanoindentation measures the relation between the load and 

displacement during the indenting process. It provides information of the mechanical 

properties of the material within the small volume being probed. The load resolution 

is typically limited to µN
1.61

. AFM on the other hand provides much higher resolution 

both in load and displacement down to pN and nanoscale,
1.62-1.64

 respectively. This 

makes it ideal for the study of surface force, adhesion, and deformation behavior in 

the regime where elastic behavior is dominant. Several additional techniques have 

been developed for probing nanomechanical properties of materials, e.g. surface force 

apparatus (SFA)1.63, 1.65, some less direct techniques like osmotic stress method1.65 and 

total internal reflection microscopy (TIRM)
1.65

, etc.. Compared to those techniques, 

AFM has the advantages of being easy to use, less material restrictions, and rather 

simple instrumentation. 
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1.5 Contact mechanics 

The expansion of the field surface nanomechanics during past few decades 

has relied not only on the fast growth in measurement techniques (e.g. 

nanoidentation, AFM force measurement, etc.) but also on the development of 

theoretical models for describing the contact between solid objects. From bulk to 

nanometer scales, researchers have applied theories of continuum contact mechanics 

in analyzing tribological data to determine the fundamental properties (e.g. elastic 

modulus, hardness, adhesion force, etc.) of materials with increasing accuracy. A 

number of theories describing contact between two solid bodies have been developed. 

A major difference among them is the role played by surface adhesion forces in the 

system. The pioneering model of contact mechanics was first proposed by Hertz1.66. 

He considered the contact between two elastic spheres, having infinitely steep 

repulsion when in contact, without taking into account long range interactions and 

adhesion. Under these assumptions along with the further assumption of a frictionless 

contact, he was able to derive analytical expressions for the area of contact and 

deformation versus applied compressive load. Since two objects in a Hertzian contact 

do not adhere to each other, they will separate freely at zero or negative load. 

Decades after Hertz, Johnson, Kendall, and Roberts (known as “JKR”)1.67 

extended the understanding of contact mechanics by taking into account the surface 

energies of the contacting objects, resulting a finite contact area even at zero applied 

load. Their model also leads to a greater contact area under a given applied load than 

Hertz’s prediction. In addition, it predicts that there is a finite tensile load required to 

separate the two objects, due to an adhesion force (Fad). This is a function of the 
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surface energy but not of the elastic modulus of the object. Subsequent to JKR, 

Derjaguin, Muller, and Toporov (known as “DMT”)1.68 proposed that any attractive 

interaction force between the solid objects has a finite range, which would cause 

influence in the region just outside the contact zone, i.e. where the surfaces are 

closely spaced. The DMT theory assumes that the deformed shape of the object is 

Hertzian and independent of the adhesion force after contact, i.e. still a finite contact 

area at a zero load due to adhesion force. The influence of adhesion force in the DMT 

theory is to increase the total load the surfaces experience, beyond that externally 

applied. Comparisons of these three theories are summarized in figure 1.5 and table 

1.1. Figure 1.5 shows the interaction force (per unit area) between two objects with 

respect to the distance between them for the Hertz, DMT, JKR models respectively, 

compared to a real case. For Hertzian contact, there is no attractive interaction force, 

only hard wall repulsion at contact. The DMT curve shows a long-range attractive 

interaction force (i.e. the Van der Waal’s force) which acts like an additional load, 

and the profile at contact remains hard wall repulsion as Hertzian. The JKR model 

includes a short-range adhesion force which is basically a delta function of strength 

W, and this force acts only within the contact area. In the realistic force-versus-

distance, the integral of the area enclosed within the attractive region well 

corresponds to the work of adhesion W. Table 1.1 summarizes the relation between 

the contact radius (a), the sample deformation (δ), and the adhesion force (Fad) for the 

contact between a spherical object and a flat surface (radius infinite) according to the 

Hertz, DMT, and JKR models. 
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Figure 1.5  Interaction force (per unit area) as a function of distance for the Hertz, 

DMT, and JKR models, compared to a realistic interaction.
1.69

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1  Relation between the contact radius, a, the sample deformation, δ, and the 

adhesion force, Fad for a spherical tip on a flat surface according to the Hertz, DMT, 

and JKR models.
1.64
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Note that in table 1.1, R is the radius of the sphere, W is the work of adhesion per unit 

area, F is the load applied between the sphere and the flat surface, and Etot is the 

reduced elastic modulus of the contact system which is defined as following: 
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where Et and Es are the elastic moduli of the spherical and the flat objects, and νt and 

νs are the Poisson ratios for these two objects, respectively. 

An intermediate form between the two limiting cases of JKR and DMT 

models was proposed by Maugis and Dugdale (known as “MD”)
1.70

. To approximate 

the actual interaction force-distance relation shown in the bottom right panel in figure 

1.5, he considered a “Dugdale” (square well) potential to describe the attractive 

interaction force between two contacting spheres, see figure 1.6. He describes the 

deformation of a sample by making use of a transition parameter (λ), 

  

                                   

3
1

202 







=

totWE

R

π
σλ ,                                          (1.4) 

 

where σ0 is the minimum attractive interaction force of a Lennard-Jones potential. In 

the intermediate regime 0.1(DMT) ≤ λ ≤ 5(JKR), the MD equations are, 
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where m is the ratio between contact radius (a) and the radius of an annular region at 

which adhesion force starts to be taken into account. In above equations, contact 

radius (a), applied load (F), and sample deformation (δ) are represented in non-

dimension forms, 
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However, it is difficult to utilize the MD equations in analyzing the experimentally 

measured load-distance data since it requires simultaneously solving two equations 

(equation 1.5a and 1.5b) by varying certain parameters between limits which depend 

on λ. Practically, it is rather cumbersome to carry out data analysis by common 

software that using automated statistical fitting procedure. Later on, several user-

friendly approximate general equations based on MD model were presented by 

Carpick, Ogletree, Salmeron (known as “COS”)
1.71

, Piétrement and Troyon (known 
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as “PT”)
1.72

, respectively, which facilitating the study of contact problems toward 

more general form. Note that all of the models described above were developed based 

on the contact between two spheres. Sneddon1.73 extends the application to shape-

dependent contact in which the object shape can be described by smooth functions, 

e.g. cones, flat cylinders, and spheres), which is useful in the application of 

indentation measurement with non-spherical probe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6  Interaction force (per unit area) as a function of distance for the MD 

model. A constant adhesive stress σ0 acts between the surfaces over a distance dt, 

resulting in the work of adhesion W=σ0 × dt. No interaction force acts at distance 

beyond Z0+dt. Z0 is the equilibrium separation of the surfaces.
1.69
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1.6 Outline of thesis 

In this thesis, we present an investigation of the influences of ion energy 

during the exposure to an Ar plasma on the nanomechanical properties of a 

prototypical resist material, polystyrene. AFM force curve measurements were used 

to measure the effective elastic modulus of the bilayer film structure consisting of a 

top ultrathin ion-induced damaged layer and a thick unmodified polystyrene 

underlayer. Using numerical simulations in which we simulated the effective bilayer 

elastic modulus by varying the thickness and stiffness of individual layer, we extract 

the damaged layer’s elastic modulus from the AFM measurements. The so-

determined damaged layers’ elastic moduli, as well as the dominant surface wrinkle 

wavelength characterized by AFM enabled us to test quantitatively the model of a 

buckling instability as a mechanism for roughening of polystyrene during plasma 

exposure. The remainder of thesis is organized as following: 

In chapter 2, we present the results of AFM measurement of force curves 

measured from the polystyrene samples which were either pristine or treated by pure 

Ar plasma with varying ion energies. The surfaces of both types of polystyrene 

samples were characterized by AFM in tapping mode and analyzed by height-height 

correlation function to determine the dominant surface wrinkle wavelength. Next, we 

characterized the mechanical properties of these samples by using the AFM force 

curve measurement technique in an ambient controlled environment. The measured 

force curves were analyzed with an systematic algorithm which using statistical 

fitting procedures in order to determine the effective elastic modulus of the films, 

taking into account the adhesive interaction. 
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In chapter 3, we present a determination of the damaged layer elastic modulus 

from the effective elastic modulus of the damaged layer/polystyrene bilayer structure. 

This is based upon a finite element method simulation which takes into account 

thickness and elastic modulus of the damaged layers. By interpolation within the 

simulated relationship between the effective bilayer elastic modulus and the damaged 

layer elastic modulus, we extract the damaged layer elastic modulus versus etching 

ion energy. We initially approximate the real situation using a model in which a 

spherical tip is in contact with a flat sample surface. We next extend our model, by 

considering a periodic corrugated film surface to take into account the effect of 

roughness induced by plasma exposure. The damaged layer elastic modulus extracted 

from these two approximations gives different results of quantitative evidence for the 

correlation between buckling instability and plasma-induced roughening. We find 

excellent agreement from the corrugated film approximation. 

Chapter 4 summarizes the main conclusions made in chapter 2 and 3. Finally, 

in chapter 5 we will give a brief prospect of what we might do to extend this study in 

the future, based on our approach and the results presented in this thesis.  
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Chapter 2:  

Experiment and Measurement 

 

 

We were motivated by the results of our previous collaborative works to test 

the validity of a buckling instability as the major mechanism for the formation of 

surface roughness of a model photoresist material – polystyrene during exposure to an 

Argon plasma. In this chapter, I will demonstrate how we used Atomic Force 

Microscopy and force curve analysis to determine two critical parameters in 

interpreting the buckling instability theory (equation 1.1) for both pristine and 

plasma-exposed polystyrene samples: the dominant wavelength (λ) of the surface 

corrugation and the elastic modulus (E). I will describe a delicate and systematic 

procedure which accounts for adhesive contact, in analyzing measured force curves. I 

will show that this allows direct determination of the effective elastic modulus (EBL) 

of pristine as well as the Ar-plasma etched polystyrene films with good precision and 

accuracy, and that this allows extraction of the ultrathin damaged layer’s elastic 

modulus (EDL). Finally I will show that this allows a quantitative test of the buckling 

theory as a model for the observed plasma-induced surface roughening. 
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2.1 Sample preparation 

The polystyrene we used in this experiment was synthesized by one of our 

collaborators, Brian Long, from Professor C. G. Willson’s group at University of 

Texas. The degree of polymerization was 201 which results in the polymer of ~21000 

g/mole in the number-average molar mass (Mn) and ~1.5 in polydispersity. 

Polystyrene was spin-coated onto Si wafers and baked at 90
o
C for 1 minute. The 

average starting thickness of the polystyrene films was ~400 nm. The coated wafer 

was diced into similar sized (~ 2.5 cm × 2.5 cm) small pieces for different plasma 

etching conditions. 

The plasma etching was carried out by Robert Bruce, from Professor Gottlieb 

Oehrlein’s group at the University of Maryland. The plasma etcher used in this 

experiment is a special home-built and well-characterized inductively coupled plasma 

(ICP) reactor which is schematically shown in figure 2.1. The plasma is generated 

inductively through the coils situating on top of a quartz window, and is powered 

through a L-type matching network at a frequency of 13.56 MHz with a power supply 

(0-2000 W). The ion bombardment on a substrate of 125 nm in diameter can be 

independently controlled by an additional bias power supply with a frequency of 3.7 

MHz, generating 0-250 W power. The distance between the quartz window and the 

substrate is 14.5 cm. The bottom electrode where the substrate is placed is cooled at a 

temperature of 10
o
C by a chiller. The achievable base pressure is below 1x10

-6
 Torr, 

and the standard operating conditions are 10mTorr of operating pressure and 40 sccm 

of gas flow rate. 
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The bias power was set at a series of values from 0-150W for establishing 

constant substrate biases and comparable Ar+ ion energies bombardment on the 

polystyrene film. The maximum ion energies in each cases were measured by adding 

the plasma potential (-25 V) to the substrate bias voltage (-25 V to -150 V). During 

the plasma exposure, the substrate temperature was kept at ~40
o
C by thermal contact 

with an underlying substrate which in turn was bonded to a chiller. The temperature 

was monitored by use of in-situ ellipsometry, and the fact that the complex index of 

refraction (n-ik) of polystyrene changes with temperature. Our observations of no 

change in the experimentally determined values of n-ik subsequent to extinguishing 

the plasma, indicated that the temperature of the etched polystyrene did not change. 
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Figure 2.1  Cross-sectional view of schematic of the inductively coupled plasma 

(ICP) reactor used in this work2.1. 
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2.2 Topography characterization of etched films 

We used a commercial (Digital Instruments, Dimension 5000) atomic force 

microscopy (AFM) with a regular pyramidal-shaped probe in tapping mode to 

characterize the topography of our polystyrene samples. Example topographic images 

of the pristine and the etched polystyrene surfaces, for a series of different ion 

energies are shown in figure 2.2. From these AFM images, we clearly see that 

exposure of polystyrene film to an Ar plasma indeed causes significant measured 

roughness at the film surface beyond that of the pristine one. As can be seen from 

these images, the amplitude and the characteristic lateral length scale both increase 

with increasing etching ion energy. We summarize the measured RMS roughness in 

table 2.1. The error bars corresponds to the standard deviation in the RMS amplitudes 

based on a number of measurements for at least 5 in each case. 

For each topographic image subsequent to plasma etching, we observe a 

seemingly nearly randomly distributed pattern of protrusions, however in each case 

there seems to be a dominant wavelength. For analyzing the roughness of our surfaces 

statistically we use height-height correlation function in stead of conventional fast 

Fourier transform (FFT) method. This is because we find that the results of FFT tend 

to be noisy for our images, while the correlation function is less so. The functional 

form of the height-height correlation chosen for our statistical analysis is: 
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where h is the local height of the surface, r
v

 and R
v

 are two-dimensional translation 

vectors lying within the average surface plane, and  represents the ensemble 
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average over r
v

. This function measures how the correlation in height between two 

different locations of the surface falls off with distance due to roughness. A perfectly 

flat surface would show a uniform value of zero outside a central spike in the 

correlation map, while a surface with a perfectly periodic array of patterns would 

show a set of peaks spaced with the same unit mesh as the array. A randomly rough 

surface will show a central peak in the correlation map whose height is the square of 

the RMS amplitude and whose width is related to the “correlation length”, ξ, while 

non- randomly rough surface will show a significant peak at the center of the 

correlation map, surrounded by a ring of local maxima whose intensity varies 

depending on the degree of correlation at the corresponding characteristic lateral 

length scale - we will call it “the dominant wavelength” in the remainder of this 

thesis.  

We calculated maps of the correlation function from AFM topographic images 

of unetched polystyrene films and for films etched at a number of Ar ion energies. 

The correlation maps corresponding to the AFM images shown in figure 2.2 are 

presented in figure 2.3. In the correlation map of the pristine polystyrene film, there is 

only one maximum peak located at the center of the correlation map. For the maps 

from etched polystyrene samples (figure 2.3 (b)-(d)) in addition to the central spike 

we see a set of broader local maxima as arranged in a ring around the center of the 

map. The radius of the ring formed by these local maxima increases noticeably and 

monotonically with the Ar ion energy, signifying an increase in the characteristic 

lateral length scale of the corrugation with ion energy. 
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Figure 2.2  AFM topographic images of (a) pristine (unetched) polystyrene and (b)-

(d) polystyrene films after 60 seconds exposure of Ar plasma with varying maximum 

ion energies of (b) 50 eV, (c) 75 eV, and (d) 100 eV. Field of view in each case is 500 

nm.  
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Figure 2.3  Correlation maps corresponding to the AFM images of Fig 2.2, i.e.: (a) 

pristine PS, (b) 50 eV, (c) 75 eV, and (d) 100 eV. For the pristine polystyrene sample, 

there is only one maximum peak locating at the center of the map, (a), reflecting no 

dominant spatial wavelength on the surface. On the Ar-plasma treated samples, a 

second ring appears about the map centers. 
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We use the radius of the secondary ring in our correlation maps, indicated 

schematically in figure 2.4, as a measure of the dominant wavelength (λ) of the 

corrugation of the surface topography. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4  Illustration of the determination of the dominant wrinkle wavelength (λ). 

λ is picked out from the first local maximum peak shows on the azimuthally averaged 

line profile (black solid line). 
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To improve the statistics associated with determining λ, we take line profiles 

across the maps, and average these azimuthally. We determine the position of the first 

local maximum peak based on where the first derivative of the average line profile 

passes through zero. A surface with a well defined near-periodicity typically shows a 

first local maximum at a lateral length scale twice that at which the first local 

minimum occurs. A family of curves of azimuthally-averaged line profiles for 

polystyrene samples etched at different ion energies is shown in figure 2.5. We find 

that for the four cases shown, the first local minima all occur at values approximately 

half that for the first local maxima. In addition we find that the peak (marked with 

colored arrows) moves monotonically to larger length scales with increasing ion 

energy. This latter observation is consistent with the visual impression from 

inspection of AFM topographic images (see figure 2.2). The dominant wrinkle 

wavelength (λ) vs. ion energy is summarized in table 2.1. As the first minimum is 

more pronounced than first maximum, we adopt twice the value of the lateral length 

scale where the first local minimum occurs as our λ. The uncertainties reported 

correspond to the half width at half minimum of the dip corresponding to the first 

local minimum. 

   

 

 

 

 

 



 

 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  (a) Family of curves of azimuthally-averaged line profiles across the 

center of correlation maps calculated from AFM images for polystyrene samples 

etched at a series of ion energies. (b) Same curves as in (a), replotted with reduced 

vertical scale. 
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Table 2.1  The thickness of damaged layer (t) as determined by XPS
2.2, 2.3

; the 

average surface corrugation amplitude (A) as determined by AFM; and the dominant 

wavelength (λ) as determined from height-height correlation analysis, as functions of 

ion energy for plasma-etched polystyrene. 

 

 

 

 

 

 

 

 

 

 

 

50 75 100 150

tttt±△±△±△±△t t t t (nm) 1.08 ± 0.03 1.29 ± 0.03 1.61 ± 0.05 1.98 ± 0.03

A±△±△±△±△A    (nm) 0.95 ± 0.05 1.50 ± 0.04 2.11 ± 0.05 3.32 ± 0.05

λλλλ±△±△±△±△λλλλ(nm) 32 ± 6.8 40 ± 8.3 56 ± 11.6 73 ± 14.6

Max. Ion Energy (eV)
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2.3 AFM force curve analysis 

AFM is capable of acquiring local mechanical and surface chemical properties 

(e.g. elasticity, hardness, adhesion, etc.) by measuring vertical deflection of the free 

end of the cantilever as the vertical displacement of the supported end is varied. This 

allows the determination of a “force curve”. The resulting mechanical property 

determination is superior to that from other conventional nanoindenters, as AFM 

produces force curve measurements with very high spatial resolution (down to several 

tens nanometers), and with very fine control of applied force (in a range of 

nanonewtons to piconewtons). For this reason, AFM force curve measurement has 

been widely and successfully used in studies of polymers2.4-2.6, biological systems2.7, 

interfacial phenomena2.8, 2.9, even single molecules2.10-2.12. To relate a measured force 

curve to that material’s mechanical properties, it is important to apply contact theory 

properly. In the following subsection, I will briefly introduce the determination of 

force curves and review several contact theories commonly used to extract 

mechanical information from them.  

 

2.3.1 General look of a force curve 

A force curve measured using AFM consists of a plot of the deflection of the 

unsupported end of the cantilever with respect to the displacement of the piezoelectric 

scanner controlling the vertical displacement of the supported end of the cantilever. A 

schematic example of such a force curve, with the relative position of the cantilever 

and the sample surface, as well as the response of the cantilever during a cycle of one 

measurement is shown in figure 2.6. At the beginning of the cycle, the separation 
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between the probe and the sample surface is large so that the probe senses nearly zero 

interaction force with the surface, and no deflection is observed (stage (a)). As the 

cantilever continues approaching the sample at a constant velocity, various attractive 

forces (e.g., short- and long-rang force) between the tip and surface, result in a 

deflection of the cantilever toward the sample surface (stage (b)). Once the total force 

gradient acting on the probe exceeds the stiffness of the cantilever, the probe jumps 

into contact with the sample surface (jump-to-contact) at stage (c), causing an abrupt 

change in the cantilever deflection. At stage (d) during approach, the probe and the 

sample are in contact, and the deflection of the cantilever is dominated by the mutual 

electronic repulsion between the overlapping atomic (or molecular) orbital of the 

probe and the sample respectively, bending the cantilever away from the surface. 

After completing a predefined maximum moving distance of the cantilever, the piezo-

scanner begins to move the supported end of the cantilever in the opposite direction. 

During the retraction process, the cantilever bends “backward” due to a decreasing 

applied load. Generally, as the change of bending passes through the zero-deflection 

point (point (e)), the probe does not detach from the sample surface due to an 

adhesion force, resulting, e.g. from bonds formed during contact; this results in the 

cantilever bending downward more (stage (f)). This continues up to some 

displacement beyond the initial contact point (minimum of stage (c)), i.e. that 

occurring during the approaching process. When the spring force of the cantilever 

stored during the retraction process overcomes the adhesion force, the probe jumps 

free from the sample surface abruptly (point (g) to (h)), and the cantilever is back in 

its starting undeflected state. 
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Note that the shape of the curve in the contact region (d) provides information 

on whether the sample is deforming in response to the force applied to the cantilever. 

The slope of the curve at region (d) is a function of the elastic modulus and the 

geometry of the probe and sample surface, and will approach to one for very stiff tip-

sample systems.
2.13, 2.14

 There is no additional information content if the segments of 

the approaching and retraction curves at the contact region are parallel to each other. 

If these two segments are not parallel, the hysteresis indicates that some plastic 

deformation occurs within the tip-sample system.
2.15, 2.16

 

A useful force curve should be represented as a plot of “force vs. probe-

sample surface distance”. The force applied on the cantilever can be simply 

calculated by Hooke’s law, 

 

                                           cckF δ−= ,                                        (2.2) 

 

where kc is the spring constant of the cantilever, and δc is the deflection of the 

cantilever.
2.17
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Figure 2.6  Schematic of the relative position of the cantilever and the sample surface 

during a cycle of force curve measurement. Note that each specific spot on the force 

curve corresponds to different degree of cantilever bending, e.g. the “jump-to-

contact” (c), “zero-deflection point” (e), and the “jump off” (h). 
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2.3.2 Force curve measurement setup 

We carried out force curve measurements using a commercial AFM (DI series 

5000), which we modified for operation in a dry nitrogen atmosphere to eliminate 

meniscus effects due to humidity. To facilitate quantitative analysis of the force 

curves, we employed special probes consisting of a silica sphere of known radius 

(1.75 µm), rigidly bonded to a silicon cantilever, as shown in figure 2.7. We 

investigated the effect of the approach/retraction velocity, the nitrogen purge time, 

and the effect of the overall penetration on the measured force curves, and carried out 

measurements for unetshed and plasma-treated polystyrene samples under conditions 

for which the shape of the force curves was not sensitive to small changes in these 

experimental parameters (see details of the ambient control AFM in Appendix C). 

One should note that what can be obtained directly from measured force 

curves of plasma-etched polystyrene samples is the effective stiffness of a bilayer 

structure (EBL), due to the elastic response of the top damaged layer (EDL) and that of 

the underlying unmodified polystyrene layer (EPS); see the schematic illustration in 

figure 2.8. To extract the elastic modulus of the damaged layer (EDL), it is essential to 

know the relationship between EBL and EDL. To acquire this dependence, we carried 

out a series of numerical simulations using the finite element method. We will 

describe this in detain in chapter 3. 
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Figure 2.7  SEM images of a spherical silica probe used in the force curve 

measurement. The nominal diameter of the sphere is 3.5 µm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8  Schematic illustration of the relation between the effective bilayer 

stiffness (EBL) and the individual components (EDL & EPS). 
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2.3.3 Analysis of measured force curve 

2.3.3.1 Calibration of cantilever response 

The quantities measured directly in a force curve are the photodiode voltage 

(Dpd) versus the diplacement of the piezoelectric scanner (Zpiezo). To interpret this, the 

deflection of cantilever needs to be converted from a voltage into a distance 

(measured, e.g., in nm); one can then calculate the force applied on the cantilever 

knowing its spring constant. In other words, the response of the cantilever to the 

movement of the Z-directional piezoelectric scanner, known as “sensitivity”, needs to 

be determined. In AFM force curve measurements, this parameter must be extracted 

from the force curve itself and not through an independent method. 

As mentioned above, the “sensitivity” describes the ratio of the cantilever 

response to the Z-directional actuation of the piezoelectric scanner. In an ideal case 

the slope of the linear part of the contact region in the Dpd-versus-Zpiezo curve is the 

sensitivity of the cantilever-sample system: this is the case for a very stiff probe-

sample system.
2.18

 Performing a force curve slope determination on a much softer 

sample than the probe material will cause a false interpretation, because not only the 

cantilever deflection but the deformation of the sample must be taken into account to 

reflect the total Z-directional actuation. Therefore, we use a clean silicon substrate to 

calibrate the sensitivity of our cantilever before measuring force curves from our 

polystyrene samples. As the sensitivity is also a function of cantilever geometry (e.g. 

shorter cantilever gives a higher sensitivity as well as the position of the laser spot 

shot on the cantilever
2.18

, we perform a new such calibration for each probe. 
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An example raw force curve for a silicon<100> substrate is shown in figure 

2.9 (a). In the preliminary deflection-versus-displacement plot, no hysteresis is 

observed within the linear part of the contact region, which means that no plastic 

deformation occurred during the measurement. Note that the unit of the vertical axis 

in figure 2.9 (a) is Volt as this corresponds to the signal generated by the split 

photodetector. Once the sensitivity is determined by the slope of the linear part of the 

contact region, between the two red arrows, this voltage is converted to cantilever 

deflection measured in nanometers, see figure 2.9 (b). The force F is determined by 

multiplying the spring constant of the cantilever with its deflection in nanometer, as 

described by equation 2.2. In practice, we take the average of the slopes from 

approach and retraction curve, repeated at multiple positions on the silicon substrate. 

The overall average value is used as the sensitivity for that probe. 
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Figure 2.9  (a) Raw, photodetector voltage versus Zpiezo curve of a Si<100> substrate. 

(b) The corresponding cantilever deflection versus Zpiezo curve of (a) when the 

sensitivity is determined. 
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2.3.3.2 Extraction of elastic modulus from measured force curve 

As mentioned above, information about the elasticity of the material being 

probed is contained in the contact region of the force curve. However, a simple fitting 

of the force-versus-penetration data in this region generally does not result in reliable 

and reproducible results, as it ignores the attractive interaction force between the 

probe and sample, which plays a significant role in determination of the contact point, 

beyond which the force curve can be fitted with an appropriate model of contact 

mechanics.  

Generally not known what the appropriate form of contact mechanics should 

be applied. The two extreme cases are due to Johnson, Kendall and Roberts (JKR)2.19 

and due to Derjaguin, Muller and Torporov (DMT)2.20, corresponding to adhesion 

within an area of contact, and outside an area of contact, respectively. A more general 

model was suggested by Maugis and Dugdale (MD)
2.21

 which allows one to 

interpolate between these two extremes represented by JKR and DMT. Following the 

MD model, several other models were proposed using empirical approach to 

approximate the MD model, transforming it to a more practical form for 

interpretation of measured force curves, among which the Carpick-Ogletree-Salmeron 

(known as “COS” model)2.22 and the Pietrement-Troyon (known as “P-T” model)2.23 

are the most widely used.   

In the work reported in this thesis we followed the algorithm suggested by Lin 

et al.
2.24, 2.25

, in which they used in analyzing their force curve measured on soft 

materials based on Pietrement-Troyon force-penetration relation, 
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,             (2.3) 

 

where a0 is the contact radius at zero load, R is radius of the AFM tip, and F is the 

load, schematically shown in figure 2.10. In equation (2.3), the attractive interaction 

force (or adhesive force) Fad, pre-factor S, and exponent β are all functions of the 

parameter α, which varies between 0 and 1, corresponding to the JKR and DMT 

limits, respectively. We discuss its significant in terms of physical quantities below. 

We note in passing that, a simpler approach, suggested by Sun, et al.
2.26

 was found to 

produce values of the film elastic modulus which were highly sensitive to slight 

variations in the experimental force curves and thus judged unreliable. 

 

 

 

 

 

 

 

 

Figure 2.10  Schematic illustration of a spherical probe (radius of R) penetrating into 

a film with a penetration depth δ (relative to undeformed surface, Z=0). The radius of 

the circular contact area at zero load is a0. 
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We next use a measured force curve, for a pristine polystyrene sample to 

illustrate the implementation of the P-T algorithm; see figure 2.11. In practice we 

carry out the algorithm for the retraction part of the force plot, which is shown in 

figure 2.12. Note that the vertical axis in figure 2.12 has been converted to 

displacement (nm), using the measured sensitivity for the probe, as described above.  

As a first step, the data are replotted with the deflection of the cantilever (Dpd) along 

the vertical axis, and the difference between the displacement of the cantilever’s 

supported end and the deflection of the cantilever, δ = Zpiezo - Dpd, along the 

horizontal axis (figure 2.12(a)). We fit the portion of the curve well before contact to 

a linear dependence and the portion well within the apparent contact regime to a Dpd 

= D
*
 + b×(δ-δ*)

3/2
 power law; the latter form is predicted by Hertzian mechanics for a 

spherical probe, and a semi-infinite slab sample. The “optimum” point (D*, δ*) is 

taken to be that which produces the least total mean-square-error (MSE) in the fit. 

Next the range of the Dpd-versus-δ plot between the initial point of the linear, non-

contact region fit and δ* is fit to a Lennard-Jones (L-J) form.
2.25

 Where the Dpd-

versus-δ curve, in the small separation regime, crosses through the asymptotic (large 

separation) value of the L-J fit is taken to be the point of zero tip-sample force (D1, 

δ1).  

We obtain the adhesive force (Fad) by the product of the cantilever’s force 

constant (as supplied by the manufacturer) and the difference between the minimum 

Dpd and D1. For the example shown in figure 2.12(a) (D1, δ1) = (15.04975 nm, 

49.20005 nm), and Fad = 332.96 nN. 
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Next we plot the deflection of the cantilever (Dpd) versus the displacement of 

the cantilever’s supporting end (Zpiezo), and use this to determine the contact point 

(D0, Z0).  To do this we fit the contact region to the Pietrement-Troyon (P-T) relation, 

expressed in the AMF-specific form which presents a relation between the 

displacement of the cantilever’s supported end and the deflection of the cantilever, as 

shown in the following equation, 
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                                                                                                                                  (2.4) 

 

where Z is the displacement of the cantilever’s supporting end, D is the deflection of 

the cantilever, a0 is the contact radius at zero applied force, R is the radius of the 

probe, kc is the sprint constant of the cantilever, and α is an adjustable fitting 

parameter. In this rearranged form of the P-T equation, Z0, D0, Fad, a0, S, and β are all 

functions of α.  

According to the MD model, α = 0 corresponds to the DMT limit, while α = 1 

corresponds to the JKR limit. We treat α, as a fitting parameter, with the best value 

corresponding to  the least mean-square difference between the data and the fit; 

physically it can be regarded as an interpolation between the DMT and JKR limits. In 

the example shown, for pristine polystyrene, we find α = 0.999999977648, which is 
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essentially the JKR limit. Therefore in the example shown in figure 2.11(b), we 

determined that (D0, Z0) = (6.183 nm, 53.147 nm).  

Figure 2.13 shows the force-versus-penetration curve derived from the 

retraction curve of figure 2.12; the inset shows a fit of the curve in the apparent 

contact regime to the JKR equation. We find that the fit to this model is excellent. 

 Next we consider the significance of the parameter α. It is related to a second 

nondimendional parameter λ in the MD theory, 
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by the approximate relation, 

 

                  ( ) ( )ααλ 02.11ln924.0 −×−≈ ,            (2.6) 

 

where σ0 is the maximum value of the attractive force in the Lennard-Jones potential 

and the Dugdale approximation, R is the radius of the tip, γ is the tip-sample interface 

energy, which is determined from the adhesive force (Fad) via equations 2.7 and 

2.8
2.25

,  
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where adF  is the non-dimensionalized form defined in MD model, and K is the 

elastic constant of the sample. 

With the P-T algorithm applied in the example shown in figure 2.12, we 

obtained a value of adhesive force (Fad) of 332.9627 nN, allowing us to further 

calculate γ = 0.01996145 N/m. Using the calculated γ and taking 1750 nm as the 

radius of the probe, we obtain an effective sample stiffness of K = 3.5528 GPa, based 

on equations 2.5 and 2.6.  

Finally we calculate the elastic modulus of the film, Ef from: 

 

                       ( )213

4

ν−
=

fE
K                         (2.9) 

 

where Ef and ν are the Young’s modulus and the Poisson ratio of the sample  

respectively. Taking 0.33 as the Poisson’s ratio2.2, 2.27, we obtain the elastic modulus 

of the pristine polystyrene film of this example, equal to 2.37 GPa. 

To streamline the implementation of this sophisticated procedure, we 

developed a FORTRAN code which applies the algorithm described above to 

measured force curves in collaboration with Dr. Hung-Chih Kan, National Chung 

Cheng University, Taiwan. The details of the FORTRAN program are provided in 

Appendix D. 
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Figure 2.11  The measured force curve of an pristine polystyrene sample, where Dpd 

denotes the deflection of the cantilever detected by the photodiode sensor. The range 

in which the indentation process takes place is 70 nm, with a scan rate of 1 Hz. 
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Figure 2.12 Illustration of procedures for extraction of sample elastic modulus from a 

measured force curve following the method of Lin et al.
2.24, 2.25

: (a) Determination of 

zero force point (D1,δ1); (b) Determination of contact point (D0, Z0). Note that this 

example is a retraction force curve measured on a ~400 nm thick pristine polystyrene 

film. 
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Figure 2.13  Plot of tip-sample force vs. penetration for the retraction curve 

illustrated in figure 2.11. In the inset, the repulsive part of the force–penetration curve 

is fitted to the JKR form, corresponding to α = 1. 
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2.3.4 Analysis result of pristine and etched polystyrene sample 

In this section we discuss the results of the application of the procedures 

described above in section 2.3.3.2 in analyzing our force curves measured at multiple 

positions across the surfaces of unetched and Ar-plasma etched polystyrene samples. 

Figure 2.14 shows example measured force curves with the vertical scale set to allow 

visibility of variations in the contact region. Figure 2.14 (a)-(e) are for (a) unetched 

polystyrene, (b) etched at 50 eV, (c) etched at 75 eV, (d) etched at 100 eV, and (e) 

etched at 150 eV. The deflection of the cantilever (Dpd) is plotted as a function of the 

displacement of the cantilever’s supporting end (Zpiezo), and in the panel on the left it 

is plotted versus the difference between the displacement of the cantilever’s 

supported end and the deflection of the cantilever (δ = Zpiezo - Dpd). In each panel no 

significant hysteresis occurrs within the contact region. Based on this observation we 

can assume the response of the cantilever to the sample surface within this region is 

dominated by elastic response, i.e. no significant plastic deformation takes place 

during our force curve measurements. For the plots of Dpd-versus-δ (left panels), the 

dashed curves show the fits to the power plus linear functions as described above, 

while solid curves show the fits to the Lennard-Jones (L-J) form. We find that it is 

possible to fit the data to the latter form for both approaching and retraction curves. 

After determination of the zero-tip-sample-force point, we employed the Pietrement-

Troyon (P-T) algorithm for each Dpd-versus-Zpiezo plot to determine the contact point 

and parameter α, as shown in the right panel of each plot. The contact region of each 

force curve is well fit by this form.  
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The α parameters resulting in the best P-T fit for different conditions samples 

respectively are summarized in table 2.2. These were used in calculation of the 

effective elastic modulus of the pristine and Ar-plasma exposed polystyrene films. 

We summarize these calculated effective elastic moduli in figure 2.15. The quoted 

uncertainties come from variations in the values determined from approaching and 

retraction curves, and from multiple measurements at different positions on the 

sample surfaces. Figure 2.15 shows a monotonic increase in the effective bilayer 

elastic modulus (EBL) with respect to the maximum Ar
+
-ion energies. However, it is 

apparent that the values for the etched samples are close to that for the pristine one. 

As we will show below, this shows that the effect of the effective modulus of the 

damaged layer is small, even though they are much stiffer than their underlying films. 

A major conclusion of what follows is that to pick out the slight difference in the 

effective elastic modulus for a bilayer film structure with a much thinner and stiffer 

top layer than the underlying, one needs to carry out both measurement and analysis 

using an extremely careful and systematic approach. 
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Figure 2.14  AFM-measured force curves showing the cantilever deflection (Dpd) as a 

function of the displacement of the cantilever’s supported end (Zpiezo), at right, and as 

a function of δ = Zpiezo – Dpd, at left, for polystyrene samples treated by different Ar
+
 

ion energies: (a) pristine, (b) 50 eV, (c) 75 eV, (d) 100 eV, and (e) 150 eV. The solid 

and dashed curves in each plot on the left are the minimum least-square-error fits to 

L-J forms, and power law+linear function, respectively; the solid curves on the right 

are minimum least-square-error fits to the P-T algorithm.  
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Table 2.2  The α parameters resulting in the best P-T fit for different conditioned 

polystyrene films. The errors come from the standard deviations by averaging of 

multiple force curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15  Extracted elastic modulus of pristine polystyrene film and effective 

bilayer elastic moduli (EBL) for polystyrene films exposed to Ar plasma with different 

ion energies, versus Ar
+
 ion energy, as determined from measured AFM-force curves. 
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2.4 Summary 

We summarize our results in this chapter as following. 

First, by using height-height correlation function analysis, we found that for 

the Ar-plasma etched polystyrene samples, there is a pronunced dominant surface 

wavelength (λ) on each sample etched with different Ar
+
-ion energies. The λ and the 

measured RMS roughness were both found to increase with increasing Ar
+
-ion 

energy, which qualitatively agrees with what could be visually observed from the 

AMF topography images. 

Second, we described a reliable and reproducible quantitative analysis of the 

effective modulus of unetched and plasma-etched polystyrene thin films using AFM 

force curves measured in a controlled atmosphere using spherical AFM probes with 

well-known tip radii. We described a systematic procedure of stepwise algorithm 

based on an intermediate adhesive contact model (i.e. MD model) in treating our 

AFM measured force curves, giving us the elastic modulus of the pristine polystyrene 

(EPS) within the reasonable range compared to literature values. 

Third, we presented force curve measurements and data analysis results for 

Ar-plasma etched polystyrene thin films. We found that the effective bilayer elastic 

modulus (EBL) increases monotonically with increasing Ar+-ion energy imposed on 

the sample during plasma exposure. Comparison between the measured effective 

elastic modulus of the pristine polystyrene sample and those of the etched samples 

shows that the impact on the overall film stiffness with the introduction of the top 

ultrathin damaged layer is subtle. 
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Chapter 3:  

Extraction of Damaged Layer Elastic Modulus 

 

 

In the last chapter, we showed that the effective elastic modulus (EBL) of 

etched polystyrene films can be extracted based upon a model of the contact 

mechanics which includes adhesive forces. In this chapter, we consider how the 

elastic modulus of the ultrathin damaged layer can be extracted from the effective 

elastic modulus for the damaged layer plus underlying unmodified film, using a linear 

elasticity approach to describe the response of a model bilayer plus spherical probe 

system to an applied force in the absence of adhesion. I will discuss how the bilayer 

filmis response to a loaded spherical probe in our simulation based on two 

simplifying assumptions for the film surface morphology: (1) the “flat surface 

approximation” and (2) the “corrugated surface approximation”. In the last, I will 

describe how we use our simulations along with the experimental results presented in 

the last chapter to test the validity of a buckling instability as the mechanism for 

roughening of polystyrene during exposure to an Ar plasma. We begin with a brief 

review of the underlying concepts. 
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3.1 Linear elasticity 

The subject of linear elasticity3.1 is concerned with the determination of the 

stress and displacements in an object as a result of an external applied load (e.g. 

mechanical or thermal), for those cases in which the object recovers its original state 

upon the removal of the load. The fundamental equations of linear elasticity consist 

of: 

     (1) A generalization of Newton’s second law, which is the equation of motion: 

 

                                             uF
r
&&

rtr
ρσ =+•∇ ,                                           (3.1) 

 

     (2) The strain vs. displacement relation: 

 

                                         ( )[ ]T

uu
rrrrt

∇+∇=
2

1
ε , and                                     (3.2) 

 

     (3) Hook’s law which can be expressed as: 

 

                                                    εσ
ttt

:C= ,                                                (3.3) 

 

where σ
t

 is the stress tensor, ε
t

 is the infinitesimal strain tensor, u
r

 is the 

displacement, C
t

 is the stiffness tensor, and F
r

 is the body force per volume. 

Generally, the experiments which we are attempting to analyze are carried out 

in a quasistatic (“elastostatic”) manner, so that the time derivatives of the 
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displacement ( u
r
&& ) are close to zero, and the first of these equations can be written 

approximately as: 

 

                                          0≈+•∇ F
rtr

σ .                                        (3.4) 

 

In addition, for isotropic materials, Hook’s law can be written as: 

 

                               ( )[ ]
kkijijij

E
σνδνσε −+= 1

1
,                             (3.5) 

 

where E is the bulk modulus, ν  is Poisson’s ratio, 332211 σσσσ ++=kk , and δij is 

the Kronecker delta function, in Cartesian coordinates this gives: 
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3.2 Hertzian Theory 

We next review the results of the theory developed by Hertz3.2 for the case of 

a sphere loaded against an isotropic elastic infinite half slab in the absence of 

adhesion. Further assumptions in this theory are: 

(1) The strains are small so that all deformations are within elastic limit. 

(2) The area of contact is much smaller than the characteristic radius of each 

body in contact, i.e. each body can be considered as an elastic half-space. 

(3) The surfaces in contact are frictionless. 

(4) The surfaces are continuous and non-conforming. 

Violation of any of the assumptions above will raise the complexity of the contact 

problem, hence classified as “non-Hertzian”. 

In this case, the sphere and slab make contact over an area whose radius (a), 

projected into the plane of the undeformed slab of  
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where R is the radius of the undeformed sphere, F is the loading force, E is the system 

moduli related to the elastic modulus and Poisson’s ratios of the sphere and slab as 

following: 
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where Esph and Eslb are the modulus of the sphere and slab, and νslb and νsph are the 

Poisson ratios for the slab and sphere, respectively. The penetration (δ) of the apex of 

the sphere below the plane of the surface of the undeformed slab in the Hertzian 

model is:  

 

                                               
Ea

F

R

a
==

2

δ .                                         (3.9) 

 

Combining equations 3.7 and 3.9 yields the Hertzian relation between the loading 

force (F) and the penetration (δ), 
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To go beyond this simple model, it is generally required to use a numerical 

approach. In the next section, we present the results of such an approach, based upon 

a Finite Element Method (FEM) solution of the equations of elastostatics (i.e. 

equations 3.1-3.3) for the case of interest in this thesis: that of a spherical probe 

loaded against an ultrathin stiff damaged layer on a film of finite thickness. 
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3.3 Simulation of penetration on unetched polystyrene 

In this section we describe the results of numerical simulations for the 

response of an unetched polystyrene film to a loaded spherical silica probe during the 

penetration as a function of applied load. We assume the Hertzian case, as described 

in section 3.2, in the elastostaticlimit. We approximate the film surface is flat in this 

simplest model. A more advanced treatment, taking into account the fact that surface 

roughness on the spherical probe and the film affects the result of penetration when 

compared to that from two perfectly smooth surfaces will be described later. The 

geometry for this simulation is shown schematically in figure 3.1(a), for a spherical 

probe in point-contact with a film under zero applied load. Examples of the results are 

presented in figure 3.2(a) for loads of 19 nN and 38 nN. The colors represent the 

calculated local vertical displacements of volume elements within the tip and the 

polystyrene film. The film thickness of 400 nm was determined by ellipsometry
3.3

. 

The elastic modulus is determined for an AFM force curve measurement to be 2.24 

GPa. (The detailed parameters and boundary conditions are presented in Appendix F). 

As expected, under the larger loading force, there is larger area of greater vertical 

displacement around the apex of the tip than the smaller one.  
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Figure 3.1  Schematic illustration of a spherical probe in point-contact with two 

conformations of film under a zero applied load: (a) a single layer film, (b) a bilayer 

film. 
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The penetration (δ) is taken to be the vertical displacement at the position of 

the apex of the hemispherical tip. Figure 3.2(b) summarizes the value of penetration 

(δ) versus applied load (F) for this case as open circles. The solid curve shows a fit of 

the force-vs.-penetration data to a 3/2-power law dependence, as predicted by the 

Hertz model. From this we estimate the effective elastic modulus of the sphere plus 

slab, Etot. The least mean-square-error fit for the set of data points on the plot in figure 

3.2(b) is presented as the solid line in the same plot, and we find that the fit is quite 

good. 

However, we find that the elastic modulus determined by this method for the 

unetched polystyrene (EPS) is approximately 8% larger than accepted value: 2.43 

GPa, compared to 2.24 GPa. We note that the Hertzian model is for a semi-infinite 

slab, while our film has a finite thickness. To determine whether the finite film 

thickness causes the apparent increase in the simulated elastic modulus for the 

unetched film, we carried out a series of simulations for the penetration on different 

thick unetched films. We followed the geometry and boundary conditions shown in 

figure F.1(a) (presented in Appendix F) for these series of simulations. Values of the 

material properties (i.e. elastic modulus (E), Poisson’s ratio (ν), and density (ρ)) of the 

silica spherical probe and the polystyrene film used in the simulations are 

summarized in table 3.1.  
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Table 3.1  Values of materials properties of the silica probe and polystyrene slab used 

in the simulations: elastic modulus (E), Poisson’s ratio (ν), and density (ρ). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Simulated local vertical displacement maps for a silica sphere loaded 

against an unetched polystyrene film whose thickness is 400 nm. (a) The vertical (z-

directional) displacement maps when the applied load is 19 nN and 38 nN 

respectively. (b) Simulated load-penetration relation (open circle) and the fit to a 3/2-

power law dependence (solid curve).  
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Figure 3.3 shows the simulated local vertical displacement of volume 

elements within the tip and the polystyrene film. From this figure we can visually 

determine an increase in penetration depth at the vicinity of the apex of the probe 

with increasing film thickness for the same applied load. Figure 3.4(a) summarizes 

the simulated penetration depth at the probe’s apex position as a function of applied 

load, along with the corresponding least mean-square-error fits to a 3/2-power law fit, 

for a range of different thickness of the polystyrene film. Figure 3.4(b) shows residual 

curves for each case. We see there is a systematic error in the fit to the form for the 

semi-infinite slab model, but that the thicker the film is, the better the fit. Finally we 

calculated the apparent elastic modulus of the film for each case from the best-fit pre-

factor of the penetration term to the form of equation 3.10, followed by equation 3.8. 

The results are summarized in figure 3.5. We find that the apparent elastic modulus of 

the film approaches the actual value as the film thickness increases well beyond the 

radius of the sphere. This result is in agreement with recent calculations of the effect 

of a finite thickness of a compliant film on a rigid substrate by Sburlati
3.4

. This 

explains the ~8% difference in the apparent, finite thickness film modulus and the 

actual value which observed previously. With this result, we can anticipate that the 

simulated elastic modulus of the single layer film is the same as the input which is 

supposed to be the bulk value when the film being simulated is infinitely thick.  
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Figure 3.3  Simulated vertical displacement maps of penetration on a unetched 

polystyrene film with different film thickness: (a) 100 nm; (b) 200 nm; (c) 400 nm; 

(d) 800 nm; (e)1600 nm; (f) 3200 nm. The applied load is 38 nN for all cases. 
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Figure 3.4  (a) Simulated load-penetration relations (open circle) and the 3/2-power 

law fits (solid line) for different thickness polystyrene films; (b) residual curves for 

corresponding fits in (a).  
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Figure 3.5  Apparent elastic modulus (EPS) of a polystyrene thin film as a function of 

film thickness based upon Hertz formula for a sphere loaded against a semi-infinite 

slab (equation 3.10). The dashed line marks the value input in this series of 

simulation, which is 2.24GPa. 
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3.4 Simulation of penetration on etched polystyrene 

Now we turn our focus to how a model bilayer,made up of a thin damaged 

layer and underlying unmodified polystyrene film responds to contact with a 

spherical silica probe within a Hertzian model. The geometry is illustrated in figure 

3.1(b). Below we consider the apparent modulus for initially flat layers. In section 

3.4.2, I will present results of simulations for an initially corrugated film surface with 

a simple structure.  

 

3.4.1 Flat surface approximation 

Using finite element method, we carried out a series of simulations of the 

elastostatic response of bilayer structures consisting of model damaged layers of 

varying thickness on an underlying polystyrene film whose initial thickness is fixed at 

400 nm. We use the geometry and boundary conditions illustrated in figure F.1(b) 

(presented in Appendix F), and we use a value of the elastic modulus of 2.24 GPa for 

the unmodified polystyrene film. Figures 3.6 and 3.7 show example results for a trial 

value of the damaged layer elastic modulus equal to 400 GPa, within the range 

determined indirectly3.3, and a density of 2.36 g/cm3 3.3.  

The calculated local vertical displacement of volume elements within the 

probe and the film are shown in figure 3.6 for a load of 38 nN and a series of 

damaged layer thickness. We see that a thicker damaged layer results in smaller 

vertical deflection beneath the probe apex, as expected from simple considerations. 

Figure 3.7 summarizes the simulated load-vs.-penetration plotted as open circles for 

the same set of damaged layer thicknesses. We see that thicker damaged layers result 
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in curves with larger curvature corresponding to stiffer bilayer films, again as 

expected. Fits to a 3/2-power law dependence are shown by the solid curves. The 

goodness of fit is increasingly poor as the damaged layer thickness increases from 

1nm to 10 nm, but seems to saturate beyond this, as evidenced by the residual curves 

for each fit, presented in figure 3.8. To quantify the effect of the damaged layer 

thickness, we calculated the apparent effective bilayer elastic modulus (EBL) based 

upon these fits. This is plotted as a function of damaged layer thickness in figure 3.9. 

We see that EBL increases monotonically with increasing thickness of the damaged 

layer, as expected. 
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Figure 3.6  Simulated vertical displacement maps of penetration on a damaged layer 

(DL)/polystyrene film with different DL thickness: (a) 0.25 nm; (b) 0.5 nm; (c) 1 nm; 

(d) 1.29 nm; (e)1.98 nm; (f) 2.5 nm; (g) 5 nm; (h) 10 nm; (i) 20 nm. For all cases, the 

underlying polystyrene layer is 400 nm, and the applied load is 38 nN. 
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Figure 3.7  The simulated load-penetration relations (open circle) and the 3/2-power 

law fits (solid line) for different thick damaged layers on top of a fixed thickness (400 

nm) polystyrene film. 
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Figure 3.8  (a) Residual curves for 3/2-power law fits of the simulated load-

penetration data in figure 3.7; (b) zoomed-in residuals of the highlight in (a).  
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Figure 3.9  Apparent effective elastic modulus (EBL) for a damaged layer/polystyrene 

bilayer structure as a function of damaged layer thickness. The values within the area 

highlighted by red dashed rectangle are replotted with a different vertical scale in the 

inset, with the green solid line indicating the simulated elastic modulus for a 400 nm 

thick unetched polystyrene film. 
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We next carried out simulations for bilayer films of the etched polystyrene 

terminated by damaged layers whose thicknesses were determined based on previous 

x-ray photoelectron spectroscopy (XPS) analysis subsequent to etching of polystyrene 

by Ar-plasma at different ion-energies. These thicknesses (energies) are 1.08 nm (50 

eV), 1.29 nm (75 eV), 1.61 nm (100 eV), and 1.98 nm (150 eV).
3.3

 

Figure 3.10 shows examples of the calculated local vertical displacement of 

volume elements for model damaged layers of these thicknesses, again under a load 

of 38 nN, and for a trial damaged layer elastic modulus (EDL) of 400 GPa. Summary 

plots of the simulated load-vs.-penetration plots are shown in figure 3.11. Once again 

the open circles are the simulated values, and the least mean-square-error fits of these 

simulated data points to a 3/2-power law are presented as solid curves. The apparent 

effective elastic modulus (EBL) extracted from the pre-factor of best fits for the four 

cases are 2.61, 2.64, 2.68, and 2.73 GPa in the sequence of the thickness of the 

damaged layers. We note that in spite of the very large trial damaged-layer modulus, 

that the simulated effective bilayer moduli are very close to that of the unetched 

polystyrene (2.43 GPa). Thus the effect of the damaged layer resulting from our 

etching conditions is rather subtle compared to the huge difference between the 

damaged layer elastic modulus (EDL) and the elastic modulus of the underlying 

unmodified polystyrene (EPS).  
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Figure 3.10  Simulated vertical displacement maps for a load of 38 nN between a 

spherical silica probe and a bilayer film structure with damaged layer thicknesses of: 

(a) 1.08 nm, (b) 1.29 nm, (c) 1.61 nm, and (d) 1.98 nm. EDL is 400 GPa and the 

underlying polystyrene thickness is 400 nm for all cases. 
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Figure 3.11  Simulated Force-versus-Penetration curves for a bilayer film structure 

with damaged layer thicknesses of: (a) 1.08 nm, (b) 1.29 nm, (c) 1.61 nm, and (d) 

1.98 nm. The open circles represent the simulated values, and the fits to a 3/2-power 

law are shown as the solid lines. EDL is 400 GPa and the underlying polystyrene 

thickness is 400 nm for all cases.  
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We carried out additional simulations for model flat bilayer film structures for 

each of the top layer thicknesses given above, varying the damaged layer modulus 

over a range spanning 2 orders of magnitude. Plots of the resulting apparent effective 

bilayer film modulus (EBL), normalized to the elastic modulus of the polystyrene film 

(2.43 GPa) from the same simulation, versus damaged layer modulus (EDL) for each 

top layer thickness are plotted as solid curves in figure 3.12. The difference between 

the vertical and horizontal scales is notable. EDL varies by over two orders of 

magnitude while the EBL varies in only about 15%. This again reflects that only a 

small change in the effective bilayer elastic modulus results from a very large change 

in the damaged layer elastic modulus. A correlary of this is that relatively small errors 

in the effective bilayer modulus would generate large uncertainties in the derived 

damaged layer modulus. We conclude that good statistics, and careful systematic 

determination of the bilayer moduli, as described above, are required to achieve high 

precision in the determination of the damage layer moduli.  

We next used interpolation within the calculated curves shown in figure 3.12 

to determine the damaged layer modulus corresponding to each effective bilayer film 

values determined from our force curve analysis; these are shown by the open circles 

in each case. The so-determined effective bilayer elastic moduli (EBL) were 

normalized to that for the unetched polystyrene film (2.24 GPa). This normalization 

allows us to eliminate the difference in the resulting EBL due to the finite thickness 

effect. In figure 3.13, we summarize the extracted damaged layer elastic moduli (EDL) 

as a function of ion energy. We find that indeed EDL increases monotonically with the 

ion energy, as reported earlier, based upon our indirect determination
3.3
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Figure 3.12  Simulated effective bilayer elastic modulus (EBL) vs. damaged layer 

elastic modulus (EDL) for a 400 nm thick polystyrene layer, covered with thin model 

damaged layers. Each solid curve corresponds to a measured damaged layer 

thickness, as indicated. The open circles are interpolated from the AFM-measured 

effective bilayer moduli. All values of EBL are normalized to the elastic modulus of 

unetched polystyrene film. The normalization factor was obtained by force curve 

measurement (2.24 GPa) and finite element simulation (2.43 GPa), for the measured, 

and calculated cases, respectively. 
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Figure 3.13  Value of the elastic modulus of the damaged layer (EDL) determined by 

interpolation in figure 3.12 as a function of Ar-ion energy. The uncertainty for each 

value corresponds to the uncertainties of the measured effective bilayer elastic moduli 

(EBL) on each curve in figure 3.12.  
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We now use our experimental and numerical results to test the accuracy of the 

buckling instability model we proposed earlier3.3 as a mechanism for roughening of 

our polystyrene film surfaces during exposure to an Ar-ion plasma. We use the elastic 

modulus of the damaged layers (EDL), derived above, to calculate the corresponding 

value of the ratio of the dominant wrinkle wavelength to the thickness of the damaged 

layer (λ/t) using equation 1.1. For this calculation we used literature values for the 

remaining elastic constants, i.e. EPS=2.24 GPa, νPS=0.33
3.3

, and νDL=0.30
3.3

. We 

compare the resulting calculated ratios to the values determined by the dominant 

wrinkle wavelength (λ) measured by AFM and the damaged layer thickness (t) 

measured by XPS (see table 2.1). A comparison of the values of λ/t determined by the 

two different approaches is summarized in figure 3.14. We see that the form of the 

dependence on ion energy for these two is similar. However, there is an obvious 

systematic deviation between them. The values of λ/t determined by force curve 

measurement are consistently higher by ~30% than those determined using the 

buckling model; the difference is outside the uncertainties in the determinations.  

We now consider what might cause this deviation. One possibility is our 

neglect of the effect of the surface corrugations in our numerical simulations. This 

might be expected to result in a more contact within the contact of a flat surface than 

a rough one. Qualitatively this might explain an over-estimation of the simulated 

effective bilayer elastic modulus (EBL), and thus a larger apparent damaged layer 

elastic modulus (EDL). In the next section, I will test this possibility, carrying out 

finite element method simulations for corrugated films. 
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Figure 3.14  The ratio of the dominant wrinkle wavelength (λ) to the damaged layer’s 

thickness (t), plotted as a function of damaged layer’s elastic modulus (EDL) 

determined by two methods. The results from calculation based on the buckling 

instability theory, with EDL determined from force curve analysis are shown as open 

circles; the ratios of the measured dominant wavelength to the thickness determined 

from XPS are shown by open circles (see table 2.1).  
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3.4.2 Corrugated surface approximation 

In last section, we demonstrated that with the flat surface assumption, the 

apparent damaged layer elastic modulus derived from the simulations results in good 

qualitative but not quantitative agreement in the values of λ/t predicted by buckling 

theory and those measured directly. To test whether the quantitative discrepancy 

might be due to film corrugation, we carried out simulations in which corrugation is 

included in an approximate manner. In this section, I discuss the results of these 

simulations.  

In this investigation we approximate the corrugation as radially symmetric 

about the axis of the sphere perpendicular to the average surface plane, with a 

sinusoidal corrugation radially, i.e. at right angles to this axis. We use the dominant 

wrinkle wavelength (λ) and amplitude determined from our AFM measurements and 

height-height correlation analysis is chapter 2. The use of 2D cylindrical coordinates 

(schematically shown in figure 3.15) reduces the memory required, and makes the 

calculations practical. In these simulations, the radial position of the apex of the tip 

with respect to the corrugated surface is important. This is because the initial contact 

area depends on this lateral position. A larger contact area results in stiffer contact in 

the initial stage than a small one. In our simulations we consider two extreme cases, 

with the apex of the spherical tip either centered above a crest or above a trough. 

These are illustrated schematically, including the meshes used in the FEM 

simulations, in figure 3.16.  
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Figure 3.15  Schematic geometry and the boundary conditions for simulation of local 

vertical strain for a spherical probe loaded against a corrugated surface. The 

corrugation is assumed axially symmetric (axis shown in red) and radially sinusoidal, 

with the wavelength and amplitude determined experimentally by AFM and height-

height correlation analysis.  
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Figure 3.16  Meshed geometries for FEM simulations of the contact systems for two 

extreme cases, with the apex of the probe centered above: (a) a crest, and (b) a trough. 

The red dashed arrows denote the 2D symmetry axis. 
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In this section we investigate how the apparent effective elastic modulus of 

the bilayer film (EBL) is affected by two parameters describing the corrugations: the 

amplitude and the wavelength. On the former case, we vary the amplitude of the sine 

corrugation keeping the other geometrical parameters and materials properties 

constant. For the example illustrated in figure 3.17: the damaged layer thickness is 

fixed at 1.29 nm, the damaged layer elastic modulus (EDL) at 400 GPa, the damaged 

layer density at 2.36 g/cm
3
, the polystyrene thickness at 400 nm, the polystyrene 

elastic modulus (EPS) at 2.24 GPa, and the corrugation wavelength at 40 nm. For 

these parameters we simulated two extreme cases of contact with the apex of the 

probe centered above a crest or a trough of the corrugated surface. We analyze the 

simulated load-vs.-penetration curves for these two extremes. 

Figure 3.17 shows examples of the calculated local vertical displacement of 

volume elements within the tip and the film for the two extreme cases, and for 

different corrugation amplitudes at a fixed wavelength of 40 nm under an applied 

load of 38 nN. The results show that the apex-above-trough cases show stiffer 

behavior than the apex-above-crest ones for all amplitudes. These results also show 

that the larger the amplitude the stiffer the film behaves. Experimentally, we used 

force curves determined from several positions across the surface in our 

determination of the effective bilayer modulus, taking an average. To compare with 

this we take a simple average of the simulated load vs. penetration curves for the two 

cases illustrated schematically in figure 3.16.  The average load-penetration curves 

for the two extremes are found to be well fitted by a 3/2-power law relation, shown in 

figure 3.18 and 3.19. Again the effective bilayer moduli (EBLs) were calculated from 
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these fits. They are summarized versus amplitude in figure 3.20. We find an 

increasing trend of EBL with increasing amplitude crossing through the flat film value 

at a certain point, ~4 nm. We interpret the initial drop from the zero-amplitude due to 

a sudden decrease of contact area between the probe and the surface, while the 

eventual increase is due to the increase in the effective damaged layer thickness 

projected along the vertical axis averaged over a sinusoidal period. 
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Figure 3.17  FEM-simulated vertical displacement for the probe apex centered above 

a crest (left) or a trough (right) of a corrugated bilayer film, for corrugation 

amplitudes of: (a) 6 nm; (b) 4.5 nm; (c) 3 nm; (d) 1.5 nm; (e) 0.75 nm; (f) 0.35 nm; 

(g) 0 nm. The thickness of the damaged layer and the underlying polystyrene layer 

are 1.29 nm and 400 nm respectively, and the applied load is 38 nN. 
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Figure 3.18  Summary of simulated load-penetration relations for a spherical probe 

loaded against cylindrically corrugated surfaces. In each case the variation for the 

sphere apex centered above a crest is shown by open squares, apex above a trough is 

shown by closed diamonds, and the average by close circles. The solid curves show 

best fits of the average to a 3/2-power law. The individual panels are for different 

corrugation amplitudes: (a) 0.35 nm; (b) 0.75 nm; (c) 1.5 nm; (d) 3 nm; (e) 4.5 nm; (f) 

6 nm. 
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Figure 3.19  (a) FEM-simulated average load-penetration curves and 3/2-power law 

fits for the example shown in figure 3.18; (b) residual curves for corresponding fits in 

(a). 
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Figure 3.20  Simulated average effective bilayer elastic modulus (EBL) for a 

corrugated bilayer film structure as a function of corrugation amplitude. The elastic 

modulus and thickness of the damaged layer used in the series of simulation are 400 

GPa and 1.29 nm respectively, while the underlying polystyrene layer was fixed at 

400nm thick. The wavelength is fixed at 40 nm for all cases. 
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Next we investigated the dependence of the effective bilayer modulus on the 

corrugation wavelength. We adopted the same geometry design, boundary conditions, 

the dimensions, and materials properties as those used for the study of amplitude 

dependence, except that we fixed the corrugation amplitude at 1.5 nm for all these 

simulations. 

 Figure 3.21 shows the calculated local vertical displacement of volume 

elements within the tip and the film, again for the two extreme cases of apex-above-

crest and apex-above-trough for different corrugation wavelengths under the same 

applied load. Similar to the results of amplitude dependence, the apex-above-trough 

cases show stiffer behavior than the apex-above-crest in all cases. The simulated 

load-penetration curves for the crest and trough positions, and the average of these are 

plotted in figure 3.22 for a series of different wavelengths. Fits of the average of the 

two curves to a 3/2-power law are shown for each as solid curves in each case. We 

find the fits are good except for some wavelength due to kinks on the plot. By 

checking corresponding displacement map for the simulated penetration, we find that 

these kinks show up as a result of subsequent contact between the probe and the 

adjacent crests on the corrugated surface. We summarize the calculated effective 

average bilayer moduli as a function of corrugation wavelength in figure 3.24. Once 

again we see evidence for competing effects, with an initial decrease with wavelength 

beneath ~100 nm, and an increase above this. This is seemingly associated with the 

variation of the number of crests contacted with wavelength over the range of 

penetration explored.  
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Figure 3.21  Simulated vertical displacement maps for a spherical probe centered 

above a crest (left) or a trough (right) on corrugated bilayer films with different 

wavelengths: (a) 40 nm; (b) 60 nm; (c) 80 nm; (d) 100 nm; (e) 120 nm; (f) 140 nm; 

(g) 160 nm. The thickness of the damaged layer and the underlying polystyrene film 

are 1.29 nm and 400 nm respectively, and the applied load is 38 nN. 
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Figure 3.22  Summary of simulated load-penetration relations for a spherical probe 

loaded against a model cylindrically corrugated surface. The dependence for the apex 

above the crest is shown by open squares, above the trough by solid diamonds, the 

average by solid circles. The solid curves show a fit of the average to a 3/2-power 

law. The corrugation wavelengths varying as follows: (a) 40 nm; (b) 60 nm; (c) 100 

nm; (d) 120 nm; (e) 140 nm; (f) 160 nm. 
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Figure 3.23  (a) Summary of simulated average load-penetration curves and fits to a 

3/2-power law for the example for the wavelength dependence shown in figure 3.22; 

(b) the corresponding residual curves for the fits shown in (a). 

400400400400

300300300300

200200200200

100100100100

0000

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

2.52.52.52.52.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.50.00.00.00.0
Penetration (nm)Penetration (nm)Penetration (nm)Penetration (nm)

WL 40nm   WL 40nm   WL 40nm   WL 40nm   HertzianHertzianHertzianHertzianWL 60nm   WL 60nm   WL 60nm   WL 60nm   HertzianHertzianHertzianHertzianWL 80nm   WL 80nm   WL 80nm   WL 80nm   HertzianHertzianHertzianHertzianWL 100nm  WL 100nm  WL 100nm  WL 100nm  HertzianHertzianHertzianHertzianWL 120nm  WL 120nm  WL 120nm  WL 120nm  HertzianHertzianHertzianHertzianWL 140nm  WL 140nm  WL 140nm  WL 140nm  HertzianHertzianHertzianHertzianWL 160nm  WL 160nm  WL 160nm  WL 160nm  HertzianHertzianHertzianHertzian     flat            flat            flat            flat       HertzianHertzianHertzianHertzian    
400400400400

300300300300

200200200200

100100100100

0000

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

2.52.52.52.52.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.50.00.00.00.0
Penetration (nm)Penetration (nm)Penetration (nm)Penetration (nm)

WL 40nm   WL 40nm   WL 40nm   WL 40nm   HertzianHertzianHertzianHertzianWL 60nm   WL 60nm   WL 60nm   WL 60nm   HertzianHertzianHertzianHertzianWL 80nm   WL 80nm   WL 80nm   WL 80nm   HertzianHertzianHertzianHertzianWL 100nm  WL 100nm  WL 100nm  WL 100nm  HertzianHertzianHertzianHertzianWL 120nm  WL 120nm  WL 120nm  WL 120nm  HertzianHertzianHertzianHertzianWL 140nm  WL 140nm  WL 140nm  WL 140nm  HertzianHertzianHertzianHertzianWL 160nm  WL 160nm  WL 160nm  WL 160nm  HertzianHertzianHertzianHertzian     flat            flat            flat            flat       HertzianHertzianHertzianHertzian    

-40-40-40-40

-20-20-20-20

0000

20202020

40404040

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

1616161612121212888844440000
nnnn
thththth
 point point point point

WL 40nm  WL 40nm  WL 40nm  WL 40nm  WL 120nmWL 120nmWL 120nmWL 120nmWL 60nm  WL 60nm  WL 60nm  WL 60nm  WL 140nmWL 140nmWL 140nmWL 140nmWL 80nm  WL 80nm  WL 80nm  WL 80nm  WL 160nmWL 160nmWL 160nmWL 160nmWL 100nm WL 100nm WL 100nm WL 100nm     flat    flat    flat    flat
(a)

(b)

400400400400

300300300300

200200200200

100100100100

0000

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

2.52.52.52.52.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.50.00.00.00.0
Penetration (nm)Penetration (nm)Penetration (nm)Penetration (nm)

WL 40nm   WL 40nm   WL 40nm   WL 40nm   HertzianHertzianHertzianHertzianWL 60nm   WL 60nm   WL 60nm   WL 60nm   HertzianHertzianHertzianHertzianWL 80nm   WL 80nm   WL 80nm   WL 80nm   HertzianHertzianHertzianHertzianWL 100nm  WL 100nm  WL 100nm  WL 100nm  HertzianHertzianHertzianHertzianWL 120nm  WL 120nm  WL 120nm  WL 120nm  HertzianHertzianHertzianHertzianWL 140nm  WL 140nm  WL 140nm  WL 140nm  HertzianHertzianHertzianHertzianWL 160nm  WL 160nm  WL 160nm  WL 160nm  HertzianHertzianHertzianHertzian     flat            flat            flat            flat       HertzianHertzianHertzianHertzian    
400400400400

300300300300

200200200200

100100100100

0000

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

2.52.52.52.52.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.50.00.00.00.0
Penetration (nm)Penetration (nm)Penetration (nm)Penetration (nm)

WL 40nm   WL 40nm   WL 40nm   WL 40nm   HertzianHertzianHertzianHertzianWL 60nm   WL 60nm   WL 60nm   WL 60nm   HertzianHertzianHertzianHertzianWL 80nm   WL 80nm   WL 80nm   WL 80nm   HertzianHertzianHertzianHertzianWL 100nm  WL 100nm  WL 100nm  WL 100nm  HertzianHertzianHertzianHertzianWL 120nm  WL 120nm  WL 120nm  WL 120nm  HertzianHertzianHertzianHertzianWL 140nm  WL 140nm  WL 140nm  WL 140nm  HertzianHertzianHertzianHertzianWL 160nm  WL 160nm  WL 160nm  WL 160nm  HertzianHertzianHertzianHertzian     flat            flat            flat            flat       HertzianHertzianHertzianHertzian    

-40-40-40-40

-20-20-20-20

0000

20202020

40404040

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

1616161612121212888844440000
nnnn
thththth
 point point point point

WL 40nm  WL 40nm  WL 40nm  WL 40nm  WL 120nmWL 120nmWL 120nmWL 120nmWL 60nm  WL 60nm  WL 60nm  WL 60nm  WL 140nmWL 140nmWL 140nmWL 140nmWL 80nm  WL 80nm  WL 80nm  WL 80nm  WL 160nmWL 160nmWL 160nmWL 160nmWL 100nm WL 100nm WL 100nm WL 100nm     flat    flat    flat    flat

400400400400

300300300300

200200200200

100100100100

0000

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

2.52.52.52.52.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.50.00.00.00.0
Penetration (nm)Penetration (nm)Penetration (nm)Penetration (nm)

WL 40nm   WL 40nm   WL 40nm   WL 40nm   HertzianHertzianHertzianHertzianWL 60nm   WL 60nm   WL 60nm   WL 60nm   HertzianHertzianHertzianHertzianWL 80nm   WL 80nm   WL 80nm   WL 80nm   HertzianHertzianHertzianHertzianWL 100nm  WL 100nm  WL 100nm  WL 100nm  HertzianHertzianHertzianHertzianWL 120nm  WL 120nm  WL 120nm  WL 120nm  HertzianHertzianHertzianHertzianWL 140nm  WL 140nm  WL 140nm  WL 140nm  HertzianHertzianHertzianHertzianWL 160nm  WL 160nm  WL 160nm  WL 160nm  HertzianHertzianHertzianHertzian     flat            flat            flat            flat       HertzianHertzianHertzianHertzian    
400400400400

300300300300

200200200200

100100100100

0000

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

F
o
rc

e 
(n

N
)

2.52.52.52.52.02.02.02.01.51.51.51.51.01.01.01.00.50.50.50.50.00.00.00.0
Penetration (nm)Penetration (nm)Penetration (nm)Penetration (nm)

WL 40nm   WL 40nm   WL 40nm   WL 40nm   HertzianHertzianHertzianHertzianWL 60nm   WL 60nm   WL 60nm   WL 60nm   HertzianHertzianHertzianHertzianWL 80nm   WL 80nm   WL 80nm   WL 80nm   HertzianHertzianHertzianHertzianWL 100nm  WL 100nm  WL 100nm  WL 100nm  HertzianHertzianHertzianHertzianWL 120nm  WL 120nm  WL 120nm  WL 120nm  HertzianHertzianHertzianHertzianWL 140nm  WL 140nm  WL 140nm  WL 140nm  HertzianHertzianHertzianHertzianWL 160nm  WL 160nm  WL 160nm  WL 160nm  HertzianHertzianHertzianHertzian     flat            flat            flat            flat       HertzianHertzianHertzianHertzian    

-40-40-40-40

-20-20-20-20

0000

20202020

40404040

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

R
es

id
u
al

s 
(n

N
)

1616161612121212888844440000
nnnn
thththth
 point point point point

WL 40nm  WL 40nm  WL 40nm  WL 40nm  WL 120nmWL 120nmWL 120nmWL 120nmWL 60nm  WL 60nm  WL 60nm  WL 60nm  WL 140nmWL 140nmWL 140nmWL 140nmWL 80nm  WL 80nm  WL 80nm  WL 80nm  WL 160nmWL 160nmWL 160nmWL 160nmWL 100nm WL 100nm WL 100nm WL 100nm     flat    flat    flat    flat
(a)

(b)

(a)

(b)



 

 104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24  Simulated average effective bilayer elastic modulus (EBL) of a 

corrugated bilayer film as a function of corrugation wavelength. The elastic modulus 

and thickness of the damaged layer used in the series of simulation are 400 GPa and 

1.29 nm respectively, while the thickness of the underlying polystyrene film is fixed 

at 400 nm thick. The amplitude is fixed at 1.5 nm for all cases. 
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Next we use the dominant wavelength and RMS roughness measured by AFM 

(and summarized in table 2.1) to construct model corrugated surfaces corresponding 

to each of the plasma-etched polystyrene films modeled above in the flat surface 

approximation (figure 3.10-3.14). Example calculations of the local vertical 

displacements within the probe and etched polystyrene film with the damaged layers 

of different thicknesses, both for the apex-above-crest and apex-above-trough are 

shown in figure 3.25. Similar to the example result discussed above, we find that 

loading the probe apex above the trough results in shallower penetration depth at the 

film surface than above the crest, reflecting the fact that contact of the spherical probe 

at the position of a trough of the corrugated surface results in larger contact area than 

at the position of a crest. 

Summary plots of the simulated load-vs.-penetration for the model corrugated 

bilayer films of etched polystyrene with different thickness damaged layers for the 

apex-above-crest and apex-above-trough cases and their average are shown in figure 

3.26. In each case, we again find that the load required to cause a certain penetration 

depth is larger when the probe is centered at a trough position than at a crest. The 

average load-vs.-penetration curves for the different ion energies resulting 

polystyrene films are all well fitted by a 3/2-power law load-penetration relation 

(equation 3.10), as seen by the solid curves in each plot in figure 3.26.  
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Figure 3.25  Simulated vertical displacement maps for a spherical silica probe loaded 

against a cylindrically corrugated surface for the apex centered above a crest (left) 

and above a trough (right) for damaged layers of thickness: (a) 1.08 nm (b) 1.29 nm. 

EDL is 400 GPa, and the load is 38 nN for all cases in the example. 
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Figure 3.25  Simulated vertical displacement maps for a spherical silica probe loaded 

against a cylindrically corrugated surface for the apex centered above a crest (left) 

and above a trough (right) for damaged layers of thickness: (c) 1.61 nm (d) 1.98 nm. 

EDL is 400 GPa, and the load is 38 nN for all cases in the example. 
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Figure 3.26  Simulated load-vs.-Penetration curves for a spherical silica probe-

bilayer film system. The case for the apex of the probe centered above the crest is 

plotted as open squares; the case for the apex centered above the trough is plotted as 

close diamonds. The average of these two cases is plotted as closed circles; the solid 

curves best fits to a 3/2-power law. The damaged layer thicknesses are (a) 1.08 nm, 

(b) 1.29 nm, (c) 1.61 nm, and (d) 1.98 nm. EDL is 400 GPa for all cases.  
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We summarize the simulated effective average bilayer elastic modulus (EBL) 

as a function of damaged layer elastic modulus (EDL) for damaged layers of 

thicknesses determined by XPS 3.3 in figure 3.27. In a similar manner as our analysis 

for the flat surface approximation, we normalized the values of EBL to the simulated 

elastic modulus of the unetched polystyrene film (2.43 GPa) obtained from our 

previous flat surface approximation, as described in section 3.3. In addition, the 

values for the open squares in figure 3.27 are also normalized, to the value of the 

measured elastic modulus for unetched polystyrene (2.24 GPa) by AFM force curve 

analysis, for polystyrene films treated by Ar plasma at the corresponding ion energies, 

as described and summarized in chapter 2. Finally, the damaged layer moduli 

corresponding to the effective bilayer moduli determined by force curve analysis 

were extracted by interpolation from the simulated EBL-vs.-EDL relations shown in 

figure 3.27. These values are summarized as a function of Ar
+
 ion energy in figure 

3.28. As was the case for the flat surface approximation, we find that the corrugated 

surface approximation yields values of the damaged layer elastic modulus which 

increases monotonically with Ar
+
 ion energy. with the values however, are a factor of 

between 2 to 3 larger than those which were simulated on a flat surface (compare to 

figure 3.13).  
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Figure 3.27  Simulated effective bilayer elastic modulus (EBL) as a function of 

damaged layer elastic modulus (EDL) for a 400 nm thick polystyrene layer, covered 

with thin corrugated damaged layers, with thicknesses as indicated (solid lines). The 

open squares are the interpolated values using the effective bilayer moduli determined 

by force curve analysis. The interpolated and the simulated values are normalized to 

the elastic modulus of the unetched polystyrene film, obtained by force curve 

measurement (2.24 GPa), and finite element simulation (2.43 GPa) respectively. 
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Figure 3.28  The interpolated elastic modulus of the damaged layer (EDL) as a 

function of Ar+ ion energy. The uncertainty for each value comes from the 

uncertainties of the measured effective bilayer elastic moduli (EBL). 
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Finally, we used the values of the damaged layer modulus obtained based on 

the corrugated surface approximation to calculate the ratio of λ/t using equation 1.1. 

The values of remaining elastic constants were again taken from the literature: 

EPS=2.24 GPa, νPS=0.33
3.3

, and νDL=0.30
3.3

. These values are compared to those 

measured by AFM and XPS (see table 2.1), in the right panel of figure 3.29. 

Compared to the result from a rather simple flat surface approximation, shown in the 

left panel in figure 3.29, we see not only qualitative agreement between the 

theoretical prediction and experimental measurement, but good quantitative 

agreement for the corrugated surface, with all the values predicted by buckling theory 

within the uncertainties set by the experimental measurement.  
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Figure 3.29  The ratio of the dominant wrinkle wavelength (λ) to the damaged layer 

thickness (t), plotted as a function of damaged layer elastic modulus (EDL), based on 

buckling theory (open circles), and experimentally measured closed circles). 

Comparison based on the flat surface approximation is shown on the left; that based 

on the approximation with consideration of surface roughness is shown on the right.  
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3.5 Summary 

In this chapter, we demonstrated how the effective elastic modulus of the 

etched polystyrene films changes with geometrical parameters including film 

thickness, corrugation amplitude, and wavelength. To do this we used finite element 

method simulations of the load-vs.-penetration relations for a model spherical AFM 

probe loaded against finite thickness films of various types. 

First, we simulated the penetration versus load for an unetched initially flat 

polystyrene film. We found that the apparent elastic modulus of a 400 nm thick 

polystyrene film (Eps), based upon a simple 3/2-power law fit, is ~8% higher than the 

nominal value (input) extracted by AFM force curve measurement (2.43 GPa 

compared to 2.24 GPa). We carried out further simulations for the thickness 

dependence, demonstrating that the accepted value is approached in the limit of very 

thick films.  

Second, we carried out finite element method simulations for a spherical 

probe loaded against initially flat bilayer structured etched polystyrene films. We 

found that: (1) the thickness of a stiff (EDL=400 GPa) damaged layer thickness affects 

the effective bilayer elastic modulus (EBL) at different levels. EBL is dominated by the 

modulus of thick underlying unmodified polystyrene for a thin damaged layer, while 

it is dominated by that of the damaged layer as it becomes thick; (2) the damaged 

layer elastic modulus (EDL) extracted from the simulations in which the layer 

thicknesses are set at values measured after etching polystyrene films at different ion 

energies are all found to be two orders of magnitude larger than the elastic modulus 

of the underlying polystyrene (EPS), increasing monotonically with Ar
+
 ion energy. A 
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comparison with predictions of the buckling model revealed a ~30% systematic 

difference in the ratio of surface dominant wrinkle wavelength to the damaged layer 

thickness (λ/t).  

Third, we included surface corrugation in our simulations in an approximate 

way. We first determined how the apparent corrugated bilayer films response to 

changes as the corrugation amplitude and wavelength are varied. We find that these 

two parameters affect the effective elastic modulus (EBL) in different ways: (1) EBL 

initially decreases with amplitude, then begins to increase, surpassing the flat film 

value. We attribute this to a competition between an initial decrease in contact area, 

followed by eventual contact with additional crests; (2) wavelength affects EBL with 

an initial decrease in EBL with increasing wavelength followed by an increase with 

wavelength. This is also attributed to competing effects of area of contact and number 

of contacts. The values of the damaged layer elastic moduli (EDLs) for the Ar plasma 

etched polystyrene films determined for thicknesses corresponding to different ion 

energies are found to be much greater (~2×) than those obtained by the simulations 

based on flat surface approximation. This is result of the decrease in the simulated 

effective elastic modulus (EBL) for the same damaged layer elastic modulus (EDL). It 

results in much improved agreement with λ/t ratios predicted by a buckling instability 

model. The good quantitative agreement supports our model of the buckling 

instability as the mechanism for the major contribution to roughening of a polystyrene 

film during exposure to an Ar plasma.  
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Chapter 4:  

Summary and Conclusions 

 

In this chapter, we summarize our conclusions from the major work presented 

in this thesis. We have performed investigations of the influence of ion kinetic energy 

on the surface morphology and nanomechanical properties of a fundamental resist 

material (polystyrene) during exposure to an Ar plasma. We used AFM topographical 

characterization along with height-height correlation analysis to determine the 

dominant wavelength and amplitude of the surface roughness. We in addition used 

AFM force curve measurement to determine the effective elastic modulus of the 

bilayer films consisting of a top ultrathin (< 2 nm) ion-induced damaged layer and a 

thick, unmodified polystyrene underlayer. We next employed finite element method 

simulations to determine the effective bilayer elastic modulus for various model 

systems, varying the thickness and elastic modulus of individual layers, considering 

either a flat or a rough (corrugated) surfaces. From these simulations we determined 

the damaged layer elastic moduli corresponding to the values of the effective bilayer 

modulus determined by AFM force curves for each model geometry. This in turn 

allowed for a quantitative test of the predictions of the buckling model.  

In chapter 2, we presented measurements of the surface roughness of unetched 

and Ar-plasma etched polystyrene samples using AFM, as well as the height-height 
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correlation function analysis to determine the dominant wavelength, λ. The λ and the 

measured RMS roughness were both found to increase with increasing Ar+-ion 

energy, which qualitatively agrees with what could be visually observed from the 

AMF topography images.  

Upon the determination of the effective elastic modulus of the plasma etched 

sample, we demonstrated that reliability and reproducibility can be achieved by well-

controlled measurement setup (e.g. utilization of spherical AFM probe, measurement 

performed in dry nitrogen ambient, etc.) and systematic data analyzing procedures in 

which an intermediate adhesive contact was considered. Our force curve 

measurement and analysis show directly that the effective bilayer elastic modulus 

(EBL) increases monotonically with increasing Ar+-ion energy imposed on the sample 

during plasma exposure.  

A comparison between the measured elastic modulus of an unetched 

polystyrene film and those for plasma etched samples shows that the impact on the 

overall film stiffness with the introduction of the top ultrathin damaged layer is 

subtle, but consistent with damaged layer moduli orders of magnitude larger than that 

of the underlying unmodified layer. 

In chapter 3, we present results of a numerical approach, based on the finite 

element method simulations of Hertzian mechanics to determine the elastic modulus 

of the ultrathin damaged layers. Here we present the main results of this thesis, i.e. an 

examination of the applicability of a buckling instability model in explaining the 

roughening of polystyrene during the plasma exposure. By simulating the penetration 

of a spherical probe into a single layer pristine polystyrene film or a damaged 
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layer/polystyrene bilayer structured film under varying load applied on the probe 

without taking into account the adhesive interaction, we were able to extract the 

effective elastic modulus of the film with given elastic modulus of individual layer 

fitting the results to a 3/2-power law Hertzian load-penetration relation. Using a series 

of models with different damaged layer thicknesses and moduli, we produced curves 

giving the relationship between the effective elastic modulus (EBL) and the damaged 

layer elastic modulus (EDL). Thus we extracted the EDLs of the corresponding plasma 

etched samples by interpolating the AFM measured EBL from the simulated EBL-EDL 

relationship. 

From simulations of the penetration of a model sphere into an unetched 

polystyrene film (single-layer film structure), we found that the apparent extracted 

elastic modulus of a 400 nm thick polystyrene film (Eps) , based upon a fit to a 3/2-

power law, is ~8% higher than the actual value (2.43 GPa compared to 2.24 GPa). 

We confirmed this to be a finite thickness effect. This difference must be taken into 

account, when the experimentally measured EBL is compared to the simulated EBL, by 

normalization respectively. 

We next presented simulations for bilayer films based on a flat surface 

approximation. These supported our earlier, indirect determination4.1 that the EDL are 

about two orders of magnitude larger than the elastic modulus of the underlying 

polystyrene (EPS), and increase monotonically with Ar ion-energies. A quantitative 

comparison between the predictions of a buckling instability model for the surface 

roughening and the results of our measurements yielded good quantitative agreement, 
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but a ~30% quantitative difference in the ratio of surface dominant wrinkle 

wavelength to the damaged layer thickness (λ/t).  

We then used a simplified corrugated surface model to carry out additional 

simulations, obtaining ~2 times greater values for the apparent damaged moduli than 

those obtained from the flat surface approximation. These simulations improve the 

agreement between the λ/t ratios resulting from the buckling instability model and our 

experimental measurement. The resulting qualitative and quantitative agreement 

supports a buckling instability as the dominant mechanism for the roughening of a 

polystyrene film during exposure to an Ar plasma. 

We note that the value of the modulus is comparable to that of graphene.4.2-4.4 

It is interesting to further note that the instability requires a stress greater than a 

critical value for the buckling to occur.
4.5

 Although it had been claimed in our 

previous publications
1.9, 1.10, 1.30

 that the stress comes from the large differences in 

either density or elastic modulus, we speculate that if indeed the damaged layer is 

graphene-like, this stress might result from a relatively small amount of heating 

during the etching, given the relatively large coefficient of thermal expansion of 

polymers, and the extremely small coefficient for graphene.4.6, 4.7 If so, then avoiding 

roughening will only be possible etching under conditions of good thermal contact, 

and extremely low ion power density. 
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Chapter 5:  

Future Work 

 

In this chapter, I mention possible future work which would extend our 

current understanding of the scientific and technical issues dealt with in earlier 

chapters of this thesis. 

In this thesis work we tested the applicability of a buckling instability model 

in describing resulting roughening of a rather simple resist-plasma system, i.e. 

polystyrene in Ar plasma, by using height-height correlation analysis for surface 

topography, AFM force curve measurement, and finite element method, and found 

quantitative agreement between the theoretical prediction and measured result. 

However, a remaining question concerns the generality of this phenomenon. A deeper 

understanding for the plasma induced roughening of resist surface would be achieved 

if the same investigation approach were extended to different combinations of the 

resist materials and plasmas. 

For the resist-plasma system reported on in this thesis, we have shown that the 

buckling instability is applicable within the range set for Ar ion bombardment. 

However, to what extent that this theory would fail would be an interesting topic to 

understand the limit at which it can be applied. We could extend this investigation by 

increasing the Ar ion energy in causing more surface heating, and thus a more highly 
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stressed interface between the damaged layer and the underlying unmodified 

polystyrene film. An interesting possibility would be that local delamination might 

occur once exceeding a certain, higher level of stress.   

As to the other model resist materials, it would be interesting to extend these 

studies to resists with lower coefficients of thermal expansion, and higher thermal 

conductivity to determine if the stress which drives the instability is due to local 

surface heating, followed by differential expansion on cooling. 

Another issue which might be investigated in future work is that both an ion-

damaged layer and a significant VUV-modified layer can be formed during exposure 

to plasmas. It would be useful to extend this investigation by using the same 

instrumental measurements, analysis, as well as the similar numerical simulations but 

with a trilayer film structure (i.e. unmodified resist\VUV-modified layer\ion-damaged 

layer). In other words, this would require an extra thorough work in characterizing the 

VUV modified layer. 

It would also be of considerable interest to carry out similar investigations on 

rather complicated plasma (i.e. C4F8/Ar plasma) etching for these model resist 

materials, since a layer of fluorocarbon (F-C) film is deposited on the surface as well. 

Such investigation would be important to understand the role of buckling instability 

plays under the presence of more complex plasma chemistry. 

Finally one might perform simulations of the nano-penetration on a randomly 

rough surface, i.e. 3D simulation. We expect that this might improve the agreement 

between the model and experiment. This would involve importing the measured 
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topography to the platform of simulation, and would for sure require sophisticated 

computing system. 
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Appendix A: Nanolithography with AFM 

A.1 Introduction 

As we mentioned in section 1.1, the resist line-edge roughness (LER) which 

occurs during pattern transfer by plasma etching is one of the key issues limiting 

device performance. Present technology widely uses resists during the process of 

pattern transferring, motivating interests in understanding the response of resist 

materials to different ambient treatments, e.g. heat and plasma. Previously, Kwon et 

al.
A.1

 observed evidence for spatial-period selection during plasma etching-induced 

roughening of poly(alpha-methylstyrene) (PαMS) which is one of the prototype resist 

materials. To extend our understanding of this spontaneous pattern formation from 

the studies of blank sample surfaces, we decided to perform a more controlled study 

in which we pre-pattern the resist surface with periodic grooves of nanometer scale. 

These we created using an AFM-based nano-scratching technique. We then studied 

the persistence of these nano-grooves during thermal annealing. As a starting point, 

we chose PαMS (the same as in Kwon’s study) as our sample for patterning. 

  

A.2 Experiment 

The PαMS we used in this experiment was synthesized by one of our 

collaborators, Professor C. G. Willson’s group at University of Texas, with a number-

average molar mass (Mn) of 30000 g/mole, a polydispersity of 1.5, and a bulk glass 

transition temperature (Tg) of ~160
o
C. The synthesized PαMS solution was spin-

coated onto Si wafers and baked at 90
o
C for 1 minute. The average starting thickness 
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of the polystyrene films was ~400 nm. The coated wafer was diced into similar sized 

(~ 1 inch × 1 inch) small pieces for further nanolithography and an annealing 

experiment. 

A.2.1 Nano-scratching 

We initiated the patterning by using an AFM-based “nano-scratching” 

technique, rather than e-beam lithography, due to the limit set by the proximity effect 

of our e-beam facility when the feature size goes down to ~100 nm. Another 

motivation for AFM-based lithography in our consideration for patterning is that 

AFM is capable of performing both patterning and characterization on non-

conducting materials, e.g. polymers, which simplifies the process of the experiment. 

We performed nanolithography using a commercial AFM system (DI 5000 

series) along with the NanoScript
TM

 macro language 
A.2

. Lithography was executed 

by manipulating the tip, scratching over the sample surface using a C
++

 language 

coded program including NanoScript
TM

 macro Litho functions.  For the patterning of 

our polymer samples, we used commercial “standard” AFM probes (tip radius of 10 

nm, cantilever length of 125 µm, force constant of 40 N/m, and resonant frequency of 

300 kHz), and conducted patterning at room temperature in air. For more effective 

and practical patterning, we used our previously developed C++ code along with a 

commercial standard compiler supplied by Veeco, so that we could make arrays of 

patterns continuously and quickly. 

A.2.2 Annealing of nano grooves 

The patterned PαMS samples were used for the annealing experiment 

described below to investigate the relaxation of the nano-patterns. The annealing 
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experiment was performed on a custom-built setup including two aluminum-topped 

commercial, programmable hot plates as well as a homemade stage with a rotatable 

sample holder and a quench table, schematically shown in figure A.1. Before the 

annealing experiment, the programmable hot plates were calibrated at the freezing 

point and boiling point of water (DI water was used for this calibration). The sample 

holder and quench table were both made of aluminum for efficient heat transfer. The 

temperature at the surface of the aluminum sample stage was measured with an 

external thermometer when being placed on the hot plate with a nominal temperature, 

hence, we can determine the proper setting value of the hot plate to ensure the sample 

stage is at the desired temperature. To control the annealing time at temperature 

effectively, the sample heating was performed in two steps. We first pre-heated the 

sample on a hot plate at temperature approximately 150
o
C, which is 10 degrees below 

the glass transition temperature (Tg-10
o
C). Once the sample temperature equilibrated, 

it was immediately transferred to a second hot plate with temperature of 170
o
C 

(Tg+10
o
C). Since the relaxation below Tg is expected to be negligible, we further 

expect that the relaxation is dominated by the annealing time at temperature above Tg. 

This procedure significantly reduces the time (from minutes to seconds) required to 

reach thermal equilibrium between the sample and the hot plate surface with the 

expected annealing temperature. The topographic characterization of the as-patterned 

and the annealed nano-patterns was carried out using commercial carbon nanotube-

terminated (CNT-terminated) probes (tip radius of 10-30 nm according to 

manufacturer) for reducing the tip shape effect on the scanned topographic images. 
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Figure A.1  Schematic of the experimental setup for the annealing of the  patterned 

PaMS sample. 

 

 

 

 

 

 

 

 

170℃℃℃℃
150℃℃℃℃

sample holder

sample

programmable hot plate

rotational units

quench table

stage

170℃℃℃℃
150℃℃℃℃

sample holder

sample

programmable hot plate

rotational units

quench table

stage



 

 127 

 

A.3 Results 

We first established a procedure to make arrays of grooves. We began it by a 

trial of making a single groove. Controlled by the NanoScriptTM code, the piezo 

scanner drives the AFM probe scribing the sample surface in a zigzag route which is 

schematically shown in figure A.2. The length and depth of the groove are defined by 

the values in the unit of length (e.g. µm), while the width is defined by the number of 

passes for the scribing including a single scratch along the set length and a single 

scratch in between two adjacent equal-length scratches. Figure A.3 shows a single 

groove scribed with 100 passes of 2 µm long, 0.003 µm/spacing, and 0.07 µm deep 

scratches. We see significant accumulation of the film material along the sides where 

the ends of the plowing of the probe are. The asymmetric shoulders are not desirable 

since it makes analysis of the relaxation in terms of Fourier components more 

complicated. An intuitive way to generate symmetric shoulders is to repeat the 

plowing at the doubling depth but in the opposite direction, which is expected to 

cause an equal amount of accumulations at the other shoulder, schematically shown 

in figure A.4. However, during several trials of this approach, we found that we need 

to triple the depth in the backward plowing to obtain a comparably equal size 

shoulder at the other side. This however resulted in a wilder groove, as shown in 

figure A.5. We followed this approach to make arrays of the same sort of grooves. 

Figure A.6 shows a 5×1 array of 2 µm long grooves (scribed with 50 passes for each 

single groove and 1µm spacing between each groove). We found those grooves 

appearing with good fidelity to each other, except that we see small increasing in 

period due to creep in the lateral displacement of the piezotube scanner. 
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Figure A.2  Schematic of a zigzag path scribing by an AFM probe. Individual 

segments are along the direction perpendicular to the long side of the groove. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3  Topographic AFM image and the averaged cross-sectional profile of a 

section (marked red) for a groove scribed by 100 passes, as illustrated in figure A.2. 
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Figure A.4  Schematics of a 2-step zigzag scribing of an AFM probe to make 

symmetric shoulders for a single groove. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5  Topographic AFM image and the averaged cross-sectional profile of a 

section (marked in red) for a groove scribed by 100 passes as illustrated in figure A.4. 
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Figure A.6  Topographic AFM image and the averaged cross-sectional profile of a 

section (marked in red) for a 5×1 array of 2 µm long grooves scribed by 2-step zigzag 

scratching with 50 passes for each single groove. 
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Following this procedure, we made smaller sized arrays of grooves by 

defining fewer numbers in passes of scratch for each single groove. One thing to note 

is that the shoulders of the grooves would squeeze to each other if the spacing 

between them is small so that the overall structure of the array would be degraded. To 

avoid this, we set the center-to-center groove spacing to be multiple times of the 

groove width, and we found a minimum pitch/width ratio of ~6 is required for a 

single groove scribed by just one pass. We kept this ratio of 6 for following patterning 

of varying sized arrays of grooves, and then we annealed the patterned PαMS sample 

at ~170
o
C.  

Figure A.7 shows results as a series of AFM images, for annealing of different 

sized arrays of grooves at different amounts of total annealing time. Note that the 

center-to-center spacing between each groove was set at 6 times of the product of the 

number of passes for a single groove and the spacing between each pass. We found, 

however, that the resulting pitch/width ratio does not follow the nominal value (i.e. 

6). This might be attributed to creep of the piezo scanner. We observe different 

degrees of relaxation for these nano-grooves after annealing for times up to 43200 

seconds. We can qualitatively distinguish from the image contrast that the smaller 

sized array of grooves relaxed faster than the larger one, with disappearance of ridges 

in all cases. This difference in relaxation behavior is evidence for a length scale 

dependence of relaxation for the nano-grooves. In the following sections, I will 

present our preliminarily results from analysis of experimental data with theoretical 

modeling. 
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Figure A.7  Topographic AFM images of the as-patterned and thermally-annealed (at 

~170oC) nanogroove patterned PαMS. Grooves are 2µm long. Panels left to right 

show effect of increasing amount of annealing time. Rows are for various average-

groove widths/periodicities: row (a) 35.2 nm / 86.3 nm, row (b) 41.0 nm / 307.6 nm, 

row (c) 57.4 nm / 448.8 nm, row (d) 62.5 nm / 617.2 nm. Note that the image field of 

view for each case shown is 6 µm × 6 µm. 
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A.4 Theoretical model and simulation 

To further understand the evolution of these nano-grooves, we analyze the 

average cross-sectional line profiles across the middle sections of each array of 

grooves for different amounts total annealing time, presented as solid lines in figure 

A.8. Generally, morphological evolution of solid surfaces is driven by one or more of 

the following mass transport mechanisms: viscous flow, evaporation/condensation, 

volume diffusion, and surface diffusion.
A.3

 We first compared our result to a model 

for pattern reflow of polymers proposed by Leveder et al.
A.4

. In their model, the 

reflow of patterns on a polymer surface is a result of minimization of surface free 

energy slowed by viscous behavior of the polymer. The surface equation for a 2D 

pattern with its surface topography in small angle regime, based on the Navier-Stokes 

and continuity equations with considering both Laplace and disjoining pressure but 

slip length,
A.4

 can be written as 
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where h is the height of any point on the surface, η is the dynamic viscosity, σ is the 

surface tension, and A is the Hamaker constant. The dashed lines shown in figure A.8 

are the calculated line profiles as functions of total annealing time by using the 

average line profiles measured from as-patterned AFM images. The Hamaker 

constant (A) and surface tension (σ) used in our calculations are 10
-19

 J
A.5

 and 39 

mN/m
A.6

 respectively. As we do not know the value of the dynamic viscosity (η) for 
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our PαMS at temperatures near Tg, we calculate the time-dependent profile with 

varying η to seek the best fit to the measured line profiles corresponding to each 

annealing time. The calculated profiles shown in figure A.8 were determined by the η 

which results in the least difference between the maximum and minimum height 

within the surface, shown in figure A.9. We find it requires a value in an order of 

~10
12

 Pa-s to match the calculated result to the measured one; we note however, that 

this value is much larger than the typical range (10
2
-10

5 
Pa-s or even less) for 

polymers at a temperature near Tg. This might indicate that the surface evolution of 

our patterned PαMS at a temperature slightly above Tg is not simply driven by just 

one mechanism only. Hence, we extend our investigation to see if other possible 

mechanisms are involved. 

We start this extended investigation by determining if there is mass loss from 

our patterned samples during annealing. This would be an indication of concurrent 

sublimation occurring during thermal annealing at this temperature. The way we △account for mass loss is to calculate the difference ( h) between the average height 

of the entire topography image and that of the unpatterned area in the same image, i.e. △the mass loss is the variation in the product of h and the area of the whole image 

with respect to total annealing time, schematically illustrated in figure A.10. We plot 

the value of difference in average height for those images taken after each annealing 

step as a function of total annealing time, presented in figure A.11. We indeed find a 

decrease of this value with increasing annealing time, suggesting a mass loss due to 

sublimation during thermal annealing at a temperature slightly above Tg. 
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Figure A.8  Average cross-sectional line profiles (solid lines) within a section around 

the middle of the array of grooves; results for groove width/periodicity: (a) 35.2 nm / 

86.3 nm, (b) 41.0 nm / 307.6 nm, (c) 57.4 nm / 448.8 nm, (d) 62.5 nm / 617.2 nm, are 

presented for different total annealing time as indicated. The dashed curves are 

calculated line profiles based on equation A.1 with µ=4×10
12

 Pa-s for each total 

annealing time. 
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Figure A.9  The difference in the height between the highest (hmax) and the lowest 

(hmin) points on the measured and calculated line profile for different µ as a function 

of total annealing time, for two cases with groove width/periodicity: (a) 35.2 nm / 

86.3 nm, (b) 62.5 nm / 617.2 nm.  
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Figure A.10  Graphical illustration for the calculation of mass loss from AFM 

measured topographic image. The mass loss is the variation in the product of the area 

of the scanned image and the value of the difference between the average height over 

the whole image and that over the unpatterened area (     ) in the same image with 

respect to total annealing time. 

 

 

 



 

 138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.11  The difference between the average height over the whole AFM image 

(hall) and that of the unpatterned area (hunpat) plotted as functions of total annealing 

time for groove arrays with groove width/periodicity: (a) 35.2 nm / 86.3 nm, (b) 41.0 

nm / 307.6 nm, (c) 57.4 nm / 448.8 nm, (d) 62.5 nm / 617.2 nm. Note that all cases 

were calculated from 6 µm × 6 µm AFM images. 
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A.5 Discussion 

To further understand the relaxation quantitatively, we analyzed these average 

cross-sectional line profiles (shown in figure A.8) using Fast Fourier Transform 

(FFT). The dashed lines shown in figure A.12 are composed of the fundamental and 

first few harmonic components obtained from the FFT of some of the corresponding 

AFM images measured average cross-sectional line profiles (solid lines shown in 

figure A.12). We see a good agreement between them.  

Next we examine the relaxation of the coefficients of these Fourier 

components. These are plotted as a function of total annealing time in figure A.13, 

where the error bars come from the standard deviation from from individual profiles. 

We calculated the relaxation times (τ) for the exponentially-like and monotonically 

decreased curves in figure A.13 by fitting them with simple exponential function. 

These fits are shown as solid curves in the same figure. For solids with surface 

morphology under the small slope assumption, the mechanisms responsible for 

exponential relaxation of surface features can be related to a power dependence of the 

relaxation time (τ) on corresponding surface wavelength (λ), where the power of 1, 2, 

3, and 4 correspond to a transport mechanism of viscous flow, 

sublimation/condensation, volume diffusion, and surface diffusion respectively.A.3 

Hence we check the relation between τ and λ, as our first attempt to use that theory in 

correlating the responding mechanism for pattern relaxation in our soft material 

system. We plot τ as a function of λ in a log-log fashion, which is shown in figure 

A.14, where the error bars come from the deviation from each simple exponential 

fitting. A straight line fitting for these points results in a best fit with a slope of ~1.3, 
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suggesting a value between those for viscous flow (1) and for sublimation (2).This 

result does not indicate the dominant mechanism responsible for the pattern 

relaxation of our PaMS nano-grooves at the temperature slightly above Tg, but we can 

see a clue of a complex mechanism involving viscous flow and sublimation, at least 

agreeing with our observation of mass loss. 

This result suggests that the model (equation A.1) to describe the evolution of 

height of our PαMS nano-grooves needs to be modified since sublimation takes part 

as well. We expect that a precise profile of the shape of each groove is important 

since the evolution rate of height is sensitive to the curvature of the surface. 

Unfortunately in our measured profiles from the nano-grooves, there is only one data 

point at the bottom of each groove, which is likely due to the finite size and the 

orientation of the carbon nanotube probe. We expect to obtain more reasonable 

results from such simulation if a faithful line profile could be extracted by 

deconvolution of the measured one with the function of the probe shape, as well as 

the addition of the sublimation term.  

Further refinements would be to reduce the complexity of the features (ridges 

around each groove) and the non-consistent periodicity induced by the piezo creep. 

These might be reduced by an alternative patterning technique, such as imprint 

lithography. 

 

 

 

 



 

 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.12  The functions of the Fourier series composed by the coefficients and 

wavelengths of the first few Fourier components obtained from the FFT of the 

corresponding AFM measured average cross-sectional line profiles for different 

arrays of grooves with groove width/periodicity of: (a) 35.2 nm / 86.3 nm, (b) 41.0 

nm / 307.6 nm, (c) 57.4 nm / 448.8 nm, (d) 62.5 nm / 617.2 nm, presented for 

different total annealing time respectively.  
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Figure A.13  Relaxation of the amplitudes for corresponding Fourier components 

obtained by FFT from the average cross-sectional AFM line profiles, as functions of 

total annealing time, for different arrays of grooves with groove width/periodicity of: 

(a) 35.2 nm / 86.3 nm, (b) 41.0 nm / 307.6 nm, (c) 57.4 nm / 448.8 nm, (d) 62.5 nm / 

617.2 nm. 
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Figure A.14  Plot of logarithm of the relaxation time (τ) obtained from the simple 

exponential fit of some of the relaxation curves shown in figure A.13 plotted versus 

logarithm of the wavelength (λ) for corresponding Fourier components obtained by 

FFT from the AFM measured average cross-sectional line profiles. The overall data 

points shown in this plot were well fitted by a straight line with a slope of 

1.31±0.166. 
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Appendix B: X-ray Photoelectron Spectroscopy 

                      (XPS) 

 
X-ray photoelectron spectroscopy (XPS, or known as “ESCA” standing for 

“Electron Spectroscopy for Chemical Analysis”) is a surface analysis technique 

which provides information such as elemental composition, empirical formula, 

chemical state, and electronic state of the elements that exist within a material. The 

spectra are obtained by irradiating a material with a beam of X-rays while 

simultaneously measuring kinetic energy and number of core-level electrons escaping 

from the near-surface (i.e. < 10 nm under the surface) of the spot being analyzed. 

XPS requires working under ultra-high vacuum (UHV) conditions in order to provide 

long enough mean-free-path for photoelectron to reach the detector.   

The principle of XPS is based on the photoelectric effect where the concept of 

the photon was used to describe the ejection of electrons from the surface when 

photon impinging upon it, schematic shown in figure B.1. This process can be 

expressed as following equation, 

 

                                       φν −−= KB EhE  

 

where EB is the binding energy of the electron in the atom, hν is the photon energy 

(typically from 200 to 2000 eV) of the X-ray source, EK is the kinetic energy of the 

ejected electron that is detected by the spectrometer, and ψ is the spectrometer work 

function.
B.1

 Al Kα source (1486.5 eV) or Mg Kα source (1253.6 eV) is the common 

choice of photon energy.  
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The XPS technique is highly surface specific due to the short range of photo-

electrons that are excited from the material. The energy of the photoelectrons leaving 

the sample is determined using an analyzer and this gives a spectrum with a series of 

photoelectron peaks. The binding energies of the peaks are characteristic of each 

element. With appropriate sensitivity factors, the peak areas can be used to determine 

the composition of the sample surface. The shape of each peak and the binding 

energy can be altered by the chemical state of the irradiated atom, which allows XPS 

to provide chemical bonding information as well. Normally, in the outmost 10 nm of 

the sample surface, XPS can detect all elements (present at concentration > 0.1 atom 

%) except hydrogen (H) and helium (He).B.1 

One of the important applications of XPS in material analysis is compositional 

depth profiling which detects the variation of elemental composition with depth. The 

depth profiling analysis can be categorized by destructive and non-destructive. 

For the non-destructive depth profiling, the escape depth of a photoelectron 

increases with its kinetic energy in the energy range higher than 50 eV. By observing 

the dependence of peak intensity on the photoelectron kinetic energy, one can deduce 

the escape depth via either varying photoelectron take-off angleB.2 or varying energy 

of source photon at a given take-off angleB.3. Such analysis gives very precise 

measurement in thickness for ultra thin films (e.g. the precision is ± 0.1 nm for film 

thickness < 2 nm). 

The destructive depth profiling is achieved by bombardment of the material 

surface with Ar
+
 ions at controlled power and timing.

B.4
 After certain amount of time 

of such “bombardment erosion”, the composition is analyzed before next 
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bombardment starts. Thus a composition depth profiling is obtained. This provides 

the benefit for measuring thin film thickness larger than 10 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1  Schematic of the principle of X-ray photoelectron spectroscopy (XPS). A 

core level electron is ejected with kinetic energy (EK) by an incident photon with 

energy (hν) higher than the sum of binding energy (EB) and instrumental work 

function (ψ). 
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Appendix C: Ambient-controlled AFM 

When an AFM is operated under ambient condition, water, which is present in 

the air and on the substrate, forms a meniscus between the apex of the probe and the 

substrate surface. The resulting attractive capillary force can both cause deformation, 

and move particles with comparable size on the substrate surface. Moreover, the 

change of the capillary force can lead to unstable and uncontrollable scanning 

conditions during the force curve measurement, which can trigger additional elastic or 

even plastic deformations on both the probe and sample surface.
C.1, C.2

 

 To reduce the effect caused by the water meniscus during our force curve 

measurement, we performed our experiments in an ambient-controlled AFM in which 

we purge the AFM chamber with dry nitrogen for certain amount of time. Figure C.1 

shows a schematic drawing as well as photographs of this modified AFM setup. 

Between the housing bottom and the surface of the vibration-isolating table, we added 

a homemade half-inch thick aluminum gasket which allows us to introduce dry 

nitrogen into the chamber. An additional outlet on the gasket is set with connection to 

a flow meter in order to let us to monitor the nitrogen flow inside the chamber. For 

better sealing, we placed rubber strips between the housing bottom and the gasket top, 

between the gasket bottom and the isolation table surface, and at the edges of the 

front lid. In addition, the opening on the back of the housing for the AFM electronic 

system wiring is sealed using room-temperature-curing silicone rubber putty (Alley 

Goop). 
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Figure C.1  Schematic drawing and corresponding pictures of the modified AFM 

with the function of ambient controlling. 
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Before carrying out force curve measurements on plasma-etched polystyrene 

films by using our modified ambient-controlled AFM, we determined the proper 

conditions. We investigated how force curves are affected by varying following 

parameters during measurement: the purging time of dry nitrogen, the scan rate of 

cantilever during force curve acquisition, and the z-directional offset of initial 

position of cantilever where the cycles of measurements begin. In these investigations 

we used poly(methyl methacryate) (PMMA) films whose elastic properties are well 

known. We fixed the range of the cantilever motion during force curve measurements 

at 70 nm. We checked the variation in the elastic modulus (E) extracted from the 

measured force curves, utilizing the procedure proposed by Lin et al.C.3, C.4, and 

described in section 2.3.3.2.  

Figure C.2(a)-(d) shows the measured elastic modulus as a function of Z-

directional scan rate with different dry nitrogen purging time. Note that the Z-

directional scan offset which is determined with respect to the zero-deflection point, 

in the part of repulsive regime of the force curve, was maintained at 4.5 nm. We see 

that the values of extracted elastic modulus from the approach and retraction curves 

are more consistent, and close to the literature valueC.5 with a wider range of Z-

directional scan rate, when measurements were done after 4-hour dry nitrogen 

purging, while we see more scattered results when done in the air or after longer 

purging time.  

In figure C.3(a)-(c), the effects of dry nitrogen purging time and Z-directional 

scan offset on the values of extracted elastic modulus from approach and retraction 

curves respectively are presented. Note that during this series of tests we kept the Z-
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directional scan rate at 1 Hz. We found that keeping the offset below 5 nm results in 

consistent and close-to-literature-values of the elastic modulus, both for approach and 

retraction curves under a wide range of dry nitrogen purging time.  

  Based on these investigations, we conclude force curve measurement under 

dry nitrogen ambient is essential. In the study case of PMMA, we found that the best 

conditions for measuring the force curve which resulting in consistent elastic modulus 

compared to literature values in our modified AFM system is summarized as 

following: first, purge with dry nitrogen before measurement for at least 4 hours; 

second, keep the Z-directional scan rate at or below 1 Hz; and third, move the 

cantilever toward the sample surface for 4.5 nm beyond the zero-deflection point in 

the repulsive part of the force curve.  
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Figure C.2  Extracted elastic modulus (E) of PMMA from approach and retraction 

force curves as a function of Z-directional scan rate, under various amount of dry 

nitrogen purging time: (a) in air; (b) 4 hours; (c) 26 hours; (d) 49 hours. 
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Figure C.3  Extracted elastic modulus (E) of PMMA from approach and retraction 

force curves as a function of Z-directional scan offset, under various amount of dry 

nitrogen purging time: (a) 4 hours; (b) 26 hours; (c) 49 hours. 
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Appendix D: FORTRAN program code for 

analyzing measured force curves 

 
AFM-measured force curves were analyzed with the approach suggested by 

Lin et al., and we used the program coded by FORTRAN to perform the overall 

algorithm. Figure D.1 shows a schematic process flow of using this program. Before 

using this program, the measured force curve data are saved in ASCII format. In the 

example in figure D.1, we rename the saved ASCII raw data file as “pri_polystyrene”, 

and placed this file and the FORTRAN program related files in the same file folder 

before executing the program, see the top left part in figure D.1. Next we execute the 

program by clicking the .exe file (marked blue dashed line). Input the ASCII raw data 

file name, then follow the instruction to input the materials constants (e.g. tip radius, 

elastic modulus of tip material, etc.). In addition, the range and the number of data 

points can be defined by input the initial (N1) and destination (N2) point for range 

and an integer value (idata) for the number of data points to be treated. 

 

     
idata

ptsdataofnumberTotal
treatedbetoptsdataofNumber =  

 

After inputting all the values required, the program begins to run the 

algorithm, and generates a set of DAT files named beginning with the input ASCII 

file name for the analyzed results, see the example files shown in the bottom left part 

of figure D.1. 
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The generated DAT files, except for the one named XXX_RECORD, are all 

able to be loaded and plotted by Igor data analysis package. The numbers 1 and 2 in 

some file names stand for “approach” and “retract” respectively. The meanings of 

some of the generated DAT files in the example shown in figure D.1 are summarized 

as following: 

“XXX_D-P” – the raw Dpd-versus-δ data (both approach and retract curves) 

“XXX_D-Z” – the raw Dpd-versus-Zpiezo data (both approach and retract curves) 

“XXX_D-P-Z1” – the selected Dpd-versus-δ-versus- Zpiezo data points in the approach 

force curve by determining N1, N2, and idata 

“XXX_LJfit_Cur1” – the data of the L-J fit for the selected approach Dpd-versus-δ 

data points 

“XXX_LJfit_SUM1” – the lease MSE of “XXX_LJfit_Cur1” 

“XXX_PWfit_Cur1” – the data of the “power + linear” function fit for the selected 

approach Dpd-versus-δ data points 

“XXX_PWfit_SUM1” – the least MSE of “XXX_PWfit_Cur1” 

“XXX_PTfit_Cur1” – the data of the P-T fit for the selected approach Dpd-versus-

Zpiezo data points 

“XXX_PTfit_SUM1” – the α values used in the P-T fitting for “XXX_PTfit_Cur1”, 

and the corresponding Z0, D0, and a which result in the least 

MSE 

“XXX_RECORD” – a summary of the fitting result of the lease MSE, including (D*, 

δ*), (D1, δ1), (D0, Z0), α, γ, Fad, and elastic modulus of sample (E), etc..  

Figure D.2 shows the FORTRAN code of the whole algorithm. 
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Figure D.1  Schematic illustration of the execution and resulting files generated by 

the FORTRAN program code for the algorithm of the analysis of the raw data of the 

AFM measured force curve. 
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 C     Last change:  MD   16 Feb 2012   12:20 pm 

!     Last change:  HCK   7 Dec 2010   10:54 am 

program ForceCurve 

!Input 

CHARACTER ::  fn*80,line*80 

DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:):: Zin,Din,Zout,Dout,Fin,PENin,Fout,PENout 

DOUBLE PRECISION :: Kc, R, nu,Etip,Ytip,nutip 

!general 

INTEGER :: istat,i1,i2,i,j,k1,k2,j1,j2 ,IP,idot,idata 

INTEGER :: Nt,Nt0 

INTEGER,DIMENSION(1)::Dum1 

DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:) :: Qz1,Qz2,Qd1,Qd2,Qp1,Qp2 

DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:) :: Z,D,F,P 

DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:):: m,B 

DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:):: MSE1,MSE2,c 

DOUBLE PRECISION, DIMENSION (100):: MSE3, Qz0,Qa0 

DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:):: df 

DOUBLE PRECISION :: pi 

DOUBLE PRECISION :: Bpw,mpw 

DOUBLE PRECISION :: D1,P1,Dp,Pp 

DOUBLE PRECISION :: a0,Z0,D0,Fad 

DOUBLE PRECISION :: Q0,Q1,Q2,Q3,QX,QY,QXX,QXY,QA,QB 

DOUBLE PRECISION :: a,bt,S,Fn0 

double precision :: a0bar,Fadbar, Gamma 

INTEGER :: kpw,kLJ,kad,keq,kmin 

INTEGER :: N1,N2 

! Force curve key parameter 

!DOUBLE PRECISION, ALLOCATABLE, DIMENSION (:):: m1,m2,B1,B2 

!DOUBLE PRECISION :: Bin,Bout,m_in,m_out 

!DOUBLE PRECISION :: D1in,P1in,D1out,P1out,Dpin,Dpout,Ppin,Ppout 

!DOUBLE PRECISION :: a0in,a0out,Z0in,Z0out,D0in,D0out,Fadin,Fadout 

INTEGER :: Isin,Isout 

 

pi = ATAN(1.0)*4.0 

 

PRINT *,'Enter the file name for Di AFM force curve: ' 

read *,fn 

OPEN(101,FILE=fn) 

i1=0 ; i2=0  ; j = 0 

do 

  READ(101,FMT='(A80)',IOSTAT=istat) line 

!PRINT *,line 

  if (istat <0) exit 

  if (TRIM(line)=='Extend Data') j=1 

  if (TRIM(line)=='Retract Data')j=2 

  if (TRIM(line)=='')j=0 

!read (line), 

  if (j==1) i1=i1+1 

  if (j==2) i2=i2+1 

end do 

CLOSE(101) 

PRINT *,'End of file' 

i1=i1-1;i2=i2-1 

PRINT *,i1,i2 

ALLOCATE (Zin(i1),Din(i1),Zout(i2),Dout(i2),Fin(i1),PENin(i1),Fout(i2),PENout(i2)) 

OPEN(101,FILE=fn) 

do 

  READ(101,FMT='(A80)',IOSTAT=istat) line 

!PRINT *,line 

  if (istat <0) exit 

  if (TRIM(line)=='Extend Data') then 

      do i=1,i1 
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          READ(101,*) Zin(i),Din(i) 

         !PRINT *,i, Zin(i),Din(i) 

     end do 

  else if (TRIM(line)=='Retract Data') then 

      do i=i1,1,-1 

         READ(101,*) Zout(i),Dout(i) 

        !print *,i, Zout(i),Dout(i) 

      end do 

  end if 

!read (line), 

end do 

CLOSE(101) 

 

!Zin=Zin/1d9 

!Din=Din/1d9 

!Zout=Zout/1d9 

!Dout=Dout/1d9 

 

PRINT *,'Enter the spring constant of the cantilever [N/m] ' 

read *, Kc 

 

PRINT *,'Enter the tip radius [nm] ' 

read *, R  !; R = R/1d9 

 

PRINT *,'Enter the poission ratio for the substrate material ' 

read *,nu 

 

PRINT *,'Enter the Young',"'",'s modulus for the tip.(GPa) ' 

read *,Etip   ; Etip = Etip*1d9 

 

PRINT *,'Enter the Poission ratio of the tip material. ' 

read *,nutip 

!*************************************************************************! 

!                                                                                                                                                  ! 

! Convert Delfection vs Tip translation into Delfection vs Penetration.                                   ! 

!                                                                                                                                                  ! 

!*************************************************************************! 

Zout = Zout(1)-Zout 

PENin=Zin-Din!*COS(15.0/180.0*pi) 

PENout=Zout-Dout!*COS(15.0/180.0*pi) 

 

idot=INDEX(fn,'.')-1 

if (idot<=0) idot = LEN(TRIM(fn)) 

 

OPEN(110,FILE=fn(1:idot)//'_RECORD.dat') 

WRITE(110,*)'DATA FIEL : ',fn 

WRITE(110,*)'Spring constant = ',Kc,' N/M' 

WRITE(110,*)'Tip Radius = ', R, ' nm' 

WRITE(110,*)'Tip Young''''s modulus = ',Etip/1d9, ' GPa' 

WRITE(110,*)'Tip Poission ration = ',nutip 

WRITE(110,*)'Poisson Ratio of the substance under test = ',nu 

 

 

Nt0 = i1 

 

OPEN(102,FILE=fn(1:idot)//'_D-P.dat') 

WRITE(102,'(4(2x,A22))')'PENin','Din','PENout','Dout' 

do i = 1,Nt0 

  WRITE(102,'(5(2x,E22.10))') PENin(i),Din(i),PENout(i),Dout(i) 

end do 

CLOSE(102) 
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OPEN(102,FILE=fn(1:idot)//'_D-Z.dat') 

WRITE(102,'(5(2x,A22))')'Zin','Din','Zout','Dout' 

do i = 1,Nt0 

  WRITE(102,'(4(2x,E22.10))') Zin(i),Din(i),Zout(i),Dout(i) 

end do 

CLOSE(102) 

 

!****************************************************! 

!                                                                                                        ! 

!  Select a portion of the data for analysis.                                      ! 

!                                                                                                        ! 

!****************************************************! 

PRINT *,'Reduction of the data for the anaylis.' 

PRINT *,'Enter 3 integers : N1,N2, and idata.' 

PRINT *,'N2> N1, and (N2-N1) > idata.' 

print *,'The program with choose every idata-th data point between ' 

PRINT *,'the N1-th and N2-th data point for analysis. ' 

PRINT *,'Enter N1 :',Nt0,'>= N1 >= 1' 

PRINT *,'' 

read *,  N1 

PRINT *,'Enter N2 : ',Nt0,'>= N2 >= ',N1 

PRINT *,'' 

read *, N2 

PRINT *,'Enter idata: 1<= idata <= ',N2-N1 

PRINT *,'' 

read *,idata 

 

   Nt = (N2-N1)/idata+1 

PRINT *,'Nt = ',Nt 

ALLOCATE (Z(Nt), D(Nt),F(Nt), P(Nt)) 

!ALLOCATE (m1(i1),m2(i2),b1(i1),b2(i2)) 

!ALLOCATE (MSE1(i1),MSE2(i2),df1(i1),df2(i2),c1(i1),c2(i2)) 

ALLOCATE (m(Nt),b(Nt)) 

ALLOCATE (MSE1(Nt),MSE2(Nt),df(Nt),c(Nt)) 

 

 

do  IP=1,2 

  Q0=REAL(idata,8) 

  if (IP == 1) then 

    do i=N1,N2 

       if (MOD(i-N1,idata)==0) then 

        Z((i-N1)/idata+1)=Zin(i) 

        P((i-N1)/idata+1)=PENin(i) 

        D((i-N1)/idata+1)=Din(i) 

 

       end if 

    end do 

 

    WRITE(110,*) '************************** Approach *************************** ' 

  else 

     do i=N1,N2 

       if (MOD(i-N1,idata)==0) then 

         Z((i-N1)/idata+1)=Zout(i) 

         P((i-N1)/idata+1)=PENout(i) 

         D((i-N1)/idata+1)=Dout(i) 

       end if 

     end do 

    WRITE(110,*) '************************** Retract  *************************** ' 

  end if 

 

  OPEN(102,FILE=fn(1:idot)//'_D-P-Z'//CHAR(48+IP)//'.dat') 
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   WRITE(102,'(3(2x,A22))')'Z_R'//CHAR(48+IP),'P_R'//CHAR(48+IP),'D_R'//CHAR(48+IP) 

  do i = 1,Nt 

    WRITE(102,'(3(2x,E22.10))')Z(i), P(i),D(i) 

  end do 

  CLOSE(102) 

 

! ******************************************************************************! 

!                                                                                                                                                             ! 

!   Overall Fit: for i = 2 to i2-20, divide the data into two parts.                                                          ! 

!   for j = 1 to i  fit the data to a linear function y=a*x+c                                                                     ! 

!   for j = i, i1   fit the data to a power law y = d(i)+(x-PENin(i))**1.5                                               ! 

!                                                                                                                                                             ! 

! ******************************************************************************! 

 

  MSE1=-1.0; MSE2=-1.0 

  OPEN(103,file = fn(1:idot)//'_PWfit_Sum'//CHAR(48+IP)//'.dat') 

  WRITE(103,'(7(A22,2x))') 

'PW_PEN'//CHAR(48+IP),'PW_MSE_Total'//CHAR(48+IP),'PW_MSE_linear'//CHAR(48+IP)      & 

                         , 

'Pw_MSE_Power'//CHAR(48+IP),'Pw_m'//CHAR(48+IP),'PW_c'//CHAR(48+IP),'PW_b'//CHAR(48+IP) 

 

  PRINT *,' Linear + 2/3 Power Law fit of the D-P curve......' 

 

  Do i=2,Nt-2 

    QX = SUM(P(1:i)) 

    QY = SUM(D(1:i)) 

    QXX = SUM(P(1:i)**2d0) 

    QXY = SUM(P(1:i)*D(1:i)) 

 

    m(i)= (REAL(i,8)*QXY-QX*QY )/(REAL(i,8)*QXX-QX**2d0) 

    c(i)= (QY-m(i)*QX)/REAL(i,8) 

    MSE1(i)=SUM((m(i)*P(1:i)+c(i)-D(1:i))**2)/REAL(i,8) 

 

    call PowerLaw(Nt,i,D,P,B(i),MSE2(i)) 

 

    write (103,'(7(E22.10,2x))')P(i),MSE1(i)+MSE2(i),MSE1(i),MSE2(i),m(i),c(i),B(i) 

  !PRINT *, P(i),MSE1(i)+MSE2(i),MSE1(i),MSE2(i),m(i),c(i),B(i) 

    if (MOD(i,100)==0) PRINT *,' data point ',i 

  END DO 

  CLOSE(103) 

  MSE1 = MSE1+MSE2 

  dum1 = MINLOC(MSE1,mask=MSE1>0);kpw=dum1(1) 

  mpw = m(kpw) 

  Bpw  = b(kpw) 

  Q0   = C(kpw) 

 

  PRINT *,'kpw = ',kpw 

  PRINT *,'P*,D* = ',P(kpw),D(kpw) 

  WRITE(110,*)'P*,D* = ',P(kpw),D(kpw) 

 

 

 

 

!******************************************************************! 

!                                                                                                                                    ! 

!   Export the optimum fit curve to file 'PowerLawfit_Cur.dat'                                   ! 

!                                                                                                                                    ! 

!******************************************************************! 

 

   OPEN(103,FILE=fn(1:idot)//'_PW_Cur'//CHAR(48+IP)//'.dat') 

   WRITE(103,'(2(A22,2x))') 'Pwx'//CHAR(48+IP),'Pwy'//CHAR(48+IP) 

   DO i=1,kpw 



 

 160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      WRITE(103,'(2(E22.10,2x))') P(i),mpw*P(i)+Q0 

   END DO 

 

   do i=kpw+1,Nt 

     Q1 = (MAX(P(i)-P(kpw),0))**(1.5) 

     WRITE(103,'(2(E22.10,2x))') P(i),D(kpw)+Bpw*Q1 

   end do 

   CLOSE(103) 

 

  PRINT *,' Linear + 2/3 Power Law fit of the D-P curve finished.' 

 

!**************************************! 

!                                                                            ! 

!  Find Minimum D for approch curve                ! 

!                                                                            ! 

!**************************************! 

 

   Dum1=MINLOC(D);kmin=Dum1(1) !; PRINT *,kmin,D(kmin) 

 

!*******************************************************************************************! 

!                                                                                                                                                                                     ! 

!  Routine to fit data between (PENin(1),Din(1)) and (PENin(i),Din(i)) with y = Din(i), and                                     ! 

!  Data between (PENin(i),Din(i)) and (PENin(k1),Din(k1)) with Lennard-Jones potentail like                                 ! 

!  curve : y = A*((B/r)**12+(B/r)**6)+Dref.                                                                                                                ! 

!                                                                                                                                                                                      ! 

!*******************************************************************************************! 

  PRINT *,' Linear + Lennard-Jones fit of the D-P curve......' 

 

  df=-1 

  c=-1 

  Q0= MAXVAL(D(1:kmin)) 

  MSE1=-1; MSE2=-1 

  OPEN(103,FILE=fn(1:idot)//'_LJfit_SUM'//CHAR(48+IP)//'.dat') 

  

WRITE(103,'(6(A22,2x))')'LJ_PEN'//CHAR(48+IP),'LJ_MSE_total'//CHAR(48+IP),'LJ_MSE_Linear'//CHAR(48

+IP) & 

                          ,'LJ_MSE_LJ'//CHAR(48+IP),'LJ_Dref'//CHAR(48+IP),'LC_c'//CHAR(48+IP) 

  do i=2,kmin-2 

    ! Linera fit data point from 1 to i , to d = df(i), a constant but vary with the choice of i 

    df(i)=D(i) 

    MSE1(i)=SUM((D(1:i)-df(i))**2)!/REAL(i,8) 

    call LJfit(Nt,i,kmin,Q0,D,P,C(i),MSE2(i)) 

    !MSE1(i)=MSE1(i)+Q1*10 

    !print *, i,PENin(i),MSE1(i),MSE2(i),df(i),c(i) 

    ! Fit the data points from i to k1 with a Lennard-Johes like relation 

    WRITE(103,'(6(E22.10,2x))') P(i),MSE1(i)+10000.0*MSE2(i),MSE1(i),MSE2(i),df(i),c(i) 

    IF(MOD(i,50)==0)PRINT *,'data point ',i 

  end do 

  CLOSE(103) 

  MSE1=MSE1+2.0*MSE2 

  Dum1=MINLOC(MSE1,mask = MSE1>0); kLJ = Dum1(1) 

 

 

!*******************************************************! 

!                                                                                                             ! 

!  Export optimum fit to file 'LJfit_cur.dat'                                           ! 

!                                                                                                              ! 

!*******************************************************! 

 

  open (103,FILE=fn(1:idot)//'_LJfit_cur'//CHAR(48+IP)//'.dat') 

  WRITE(103,'(2(A22,2x))') 'LJx'//CHAR(48+IP),'LJy'//CHAR(48+IP) 

  do j= 1,kLJ 
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     WRITE(103,*) P(j),df(kLJ) 

  end do 

 

  QA = -4*(D(kmin)-Q0) 

  QB =  (1d0/2d0)**(1d0/6d0) 

  do j=kLJ+1,kmin 

    Q1 = 1.0-P(j)/P(kmin) ; !PRINT *,Q1 

    Q1 = QB/(1.0+C(kLJ)*Q1)  ; !PRINT *,Q1 /QB ,'a',Q1**12-Q1**6 

    Q1 = QA*(Q1**12 - Q1**6 ) + Q0 

    WRITE(103,*) P(j), Q1 

  end do 

  CLOSE(103) 

 

  PRINT *,' Linear + Lennard-Jones fit of the D-P curve finished.' 

 

  !PRINT *,QB,Q1,Q0,Din(k1) 

 

!*************************************************! 

!                                                                                                 ! 

! Search for (D1,W1) the zero deflection point                        ! 

!                                                                                                 ! 

!*************************************************! 

 

  D1=Df(kLJ) 

  do i=kmin,Nt-1 

     if ((D(i)-D1)*(D(i+1)-D1) <0 ) then 

        P1 = (D1-D(i))/ ( (D(i+1)-D(i))/(P(i+1)-P(i)) ) + P(i) 

        keq=i 

        !PRINT *,P(i),D(i) 

        !PRINT *,P1,D1 

        !PRINT *,P(i+1),D(i+1) 

     else 

        if (D(i)==D1) P1 = P(i) 

     end if 

  end do 

 

  PRINT *,'P1, D1 = ',P1, D1 

  write (110,*) 'P1, D1 = ',P1, D1 

!****************************************************************************! 

!                                                                                                                                                       ! 

!  Search for (Dprime,Wprime) where the maximum adhersive force Fad occur                          ! 

!                                                                                                                                                       ! 

!****************************************************************************! 

 

  dum1 = MINLOC(D(kpw:keq)); kad = dum1(1)-1+kpw 

  Dp = D(kad) 

  Pp = P(kad) 

  Fad= -Kc*(D1-DP) 

!PRINT *,kpw,kad,keq 

!PRINT *, MINVAL(D(kpw:keq)),D(kad) 

  PRINT *,'Pp, Dp = ', Pp, Dp 

  PRINT *,'Fad =',Fad 

  write (110,*) 'Pp, Dp = ', Pp, Dp 

  write (110,*) 'Fad =',Fad 

!*************************************************************************! 

!                                                                                                                                                 ! 

!   Fit the data between kpw and i1 to PT (Pietrement - Troyon) model                                  ! 

!                                                                                                                                                 ! 

!*************************************************************************! 

  i=1 

  open (104,FILE=fn(1:idot)//'_PTfit_SUM'//CHAR(48+IP)//'.dat') 

  WRITE (104,'(5(A22,2x))')'PT_Alpha'//CHAR(48+IP), 'PT_Z0'//CHAR(48+IP), 'PT_D0'//CHAR(48+IP) & 
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                           ,'PT_a0'//CHAR(48+IP)   , 'PT_MSE'//CHAR(48+IP) 

  do a = 0.01, 1.0, 0.01 

    S   = (-2.16d0)*a**(1.9d-2) + (2.7531d0)*a**(6.4d-2) + (7.3d-2)*a**(1.919d0) 

    bt  = (0.516d0)*a**(4d0) - (0.683d0)*a**(3d0) + (0.235d0)*a**(2d0) + (0.429d0)*a 

    Fn0 = (( (1d0 + a)*S**(3.0/(4d0-2d0*Bt)) - a )**2d0 - 1d0 )*(-Fad) 

    d0  = Fn0/Kc + D1 

    CALL PTfit(Nt,kpw,Nt,Z,D,R,Kc,-Fad,a,Bt,S,d0,D1,Qz0(i),Qa0(i),MSE3(i)) 

    !PRINT *,'P0,D0 ',(Qz0(i)-D0) ,D0 

    write (104,'(5(E22.10,2x))') a, Qz0(i),d0,Qa0(i),MSE3(i) 

    i=i+1 

  end do 

  CLOSE(104) 

 

  dum1=MINLOC(MSE3); j1 = dum1(1) 

 

  a = REAL(j1,8)*0.01 

  S   = (-2.16d0)*a**(1.9d-2) + (2.7531d0)*a**(6.4d-2) + (7.3d-2)*a**(1.919d0) 

  bt  = (0.516d0)*a**(4d0) - (0.683d0)*a**(3d0) + (0.235d0)*a**(2d0) + (0.429d0)*a 

  Fn0 = (( (1d0 + a)*S**(3.0/(4d0-2d0*Bt)) - a )**2d0 - 1d0 )*(-Fad) 

  d0  = Fn0/Kc + D1 

  z0  = Qz0(j1) 

  a0  = Qa0(j1) 

  OPEN(105,FILE=fn(1:idot)//'_PTfit_Cur'//CHAR(48+IP)//'.dat') 

  WRITE(105,'(2(A22,2x))') 'PTx'//CHAR(48+IP),  'PTy'//CHAR(48+IP) 

  do i = kpw, Nt 

    Q0 = ( a + sqrt(1d0 + Kc*(D(i)-d1)/(-Fad) ) )/(1 + a) 

    Q1 = z0 + d(i) - d0 + a0**2.0/R*( Q0**(4.0/3.0) - S* Q0**(2.0/3.0*Bt) ) 

    WRITE(105,'(2(E22.10,2x))')  Q1, D(i) 

  end do 

 

  a0bar  = -0.451*a**4.0 + 1.417*a**3.0 -1.365*a**2.0 + 0.950*a + 1.264 

  Fadbar =  0.267*a**2.0 - 0.767*a + 2.0 

  Gamma  = -Fad/(R*Fadbar*pi) 

  Y = pi*Gamma*R*R*(a0bar/a0)**3.0 

  Ytip = 4.0*Etip/(1.0-nutip**2.0)/3.0 

  Y = 1.0/(1.0/Y-1.0/Ytip) 

  E = 3.0*(1-nu**2.0)*Y/4.0 

 

  PRINT *,'alpha = ', a 

  PRINT *,'p0, D0= ', (z0-d0), d0 

  PRINT *,'a0bar = ',a0bar 

  PRINT *,'a0    = ',a0,'nm' 

  PRINT *,'Gamma = ',Gamma,'nN/nm' 

  PRINT *,'E = ',E,'nN/nm**2' 

  PRINT *,'Y = ',Y,'GPa' 

 

  write (110,*) 'alpha = ', a 

  write (110,*) 'p0, D0=', (z0-d0), d0 

  write (110,*) 'a0bar = ',a0bar 

  write (110,*) 'a0    = ',a0,'nm' 

  write (110,*) 'Gamma = ',Gamma,'nN/nm' 

  write (110,*) 'Substrate Spring Constant K = ',Y,'nN/nm**2' 

  write (110,*) 'Substrate Young',"'",' Modulus E = ',E,'GPa' 

end do 

CLOSE(110) 

 

contains 
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 !**********************************************! 

!                                                                                            ! 

!    subroutine PowerLaw(N,K,D,P,B,MSE)                       ! 

!                                                                                            ! 

!**********************************************! 

 

 

subroutine PowerLaw(N,K,D,P,B,MSE) 

DOUBLE PRECISION,INTENT(IN),DIMENSION(N)::D,P 

INTEGER, INTENT(IN) :: N,K 

DOUBLE PRECISION, INTENT(OUT) :: B,MSE 

 

DOUBLE PRECISION, DIMENSION(N-K+1) :: Z,F 

DOUBLE PRECISION :: di,zi 

double precision :: f1,f2,f3,b1,b2,b3 

di = D(k); zi = P(k) 

 

b1 = 0d0; b2=1d0 

!Z=(P(K:N)-zi) 

Z=(MAX(P(K:N)-zi,0.0))**(1.5) 

!PRINT *,k,z(1) 

do 

  F=2*(di+b1*Z-D(K:N))*Z 

  f1=SUM(F) 

 

  F=2*(di+b2*Z-D(K:N))*Z 

  f2=SUM(F) 

  if (K>490) then 

    !PRINT *,k 

    !PRINT *,b1,b2 

    !PRINT *,f1,f2 

  end if 

 

  if (f1*f2<0) exit 

  b1=b1-0.1 

  b2=b2+0.1 

 

end do 

 

do 

  b3=(b1+b2)/2 

  F=2*(di+b3*Z-D(K:N))*Z 

  f3=SUM(F) 

  if (f3*f1<0) then 

    b2=b3 

    f2=f3 

  else if (f3*f2<0) then 

    b1=b3 

    f1=f3 

  end if 

  if (ABS(f3)<1e-8) exit 

  if (K>490) then 

    !PRINT *,k 

    !PRINT *,b1,b3,b2 

    !PRINT *,f1,f3,f2 

  end if 

end do 

  !PRINT *,k 

  !PRINT *,b1,b3,b2 

  !PRINT *,f1,f3,f2 

 B=b3 

 F=di+b3*Z 
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 MSE = SUM((F-D(K:N))**2)/REAL(N-K+1,8) 

end subroutine 

 

 

!***********************************************! 

!                                                                                              ! 

!   Subroutine LJfit(N,L,K,Dref,D,PEN,C,MSE)                  ! 

!                                                                                              ! 

!***********************************************! 

 

subroutine LJfit(N,L,K,Dref,D,PEN,C,MSE) 

INTEGER, INTENT (IN):: N,L,K 

DOUBLE PRECISION , INTENT(IN)::Dref 

DOUBLE PRECISION , intent (IN), DIMENSION(i1):: D(N),PEN(N) 

DOUBLE PRECISION,INTENT (OUT) :: MSE,C 

 

DOUBLE PRECISION,DIMENSION(K-L+1)::x,x1,DD,DD1,DD0 

DOUBLE PRECISION :: A,B, F0,Wk,F1,F2,F3 

DOUBLE PRECISION :: C1,C2,C3 

INTEGER :: i,j 

Wk= PEN(K) 

A =-4*(D(K)-Dref) 

B=(1d0/2d0)**(1d0/6d0) 

DD0=D(L:K) 

F0=2*SUM(D(L:K)) 

c=-1 

C1=1;C2=10 

X1 = 1.0-PEN(L:K)/Wk 

do 

  X=B/(1.0+C1*X1) 

  DD = A*(X**12d0 - X**6d0 ) + Dref 

  DD1 = 6*A/B*(-2*X**13d0 + X**7d0)*X1 

  F1= 2d0*SUM(DD1*(DD-DD0)) 

  X=B/(1d0+C2*X1) 

  DD = A*(X**12d0 - X**6d0 ) + Dref 

  DD1 = 6*A/B*(-2d0*X**13d0 + X**7d0)*X1 

  F2= 2*SUM(DD1*(DD-DD0)) 

  !PRINT*,C1,C2 

  !PRINT*,F1,F2 

 if (F2*F1<0) exit 

  C2=C2+0.1 

  C1=C1-0.01 

end do 

 

do 

  C3 = (C1+C2)/2d0 

  X  = B/(1d0+C3*X1) 

  DD = A*(X**12d0 - X**6d0 ) + Dref 

  DD1 = 6*A/B*(-2d0*X**13d0 + X**7d0)*X1 

  F3= 2d0*SUM(DD1*(DD-DD0)) 

  if (F1*F3<0) then 

    C2=C3 

    F2=F3 

  else IF(F2*F3<0) then 

    C1=C3 

    F1=F3 

  else if (F3==0) then 

    C=C3 

    exit 

  else 

  end if 

  !print *,C1,C2,C3 
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Figure D.2  FORTRAN program code for the algorithm of analysis of the AFM 

measured force curve. 

   !print *,F1,F2,F3 

 

  if ((ABS(F3) <1e-8)) exit 

 

  !PRINT *,L 

end do 

  C=C3 

  X  = B/(1d0+C3*X1) 

  DD = A*(X**12d0 - X**6d0 ) + Dref 

MSE=SUM((DD-DD0)**2d0)!/REAL(K-L+1) 

end subroutine 

 

!************************! 

!                                                ! 

!  Subroutine PTfit                   ! 

!                                                ! 

!************************! 

 

 

SUBROUTINE PTfit(N,k1,k2,Z,D,R,kc,Fad,a,Bt,S,d0,d1,z0,a0,MSE) 

INTEGER, INTENT (IN) :: N, k1,k2 

DOUBLE PRECISION , INTENT (IN), DIMENSION (N):: Z , D 

DOUBLE PRECISION , INTENT (IN) :: R, Kc,Fad, a,Bt, S, d0, d1 

DOUBLE PRECISION , INTENT (OUT) :: z0, a0, MSE 

 

DOUBLE PRECISION, DIMENSION (K2-K1+1) :: X, Y, W 

DOUBLE PRECISION :: a02, dk, Q11,Q12,Q13,Q21,Q22,Q23 

 

!PRINT *,a,S,Bt!,d0,z0,a02 

 

X = ( a + sqrt(1d0 + Kc*(D(k1:k2)-d1)/Fad ) )/(1 + a) 

!do i=1,k2-k1+1 

!PRINT *,X(i) 

!end do 

Y = ( X**(4d0/3d0) - S*X**(2d0/3.0*Bt) )/R 

W = D(k1:k2) - d0 - Z(k1:k2) 

dk =REAL( k2-k1+1,8) 

Q11 = dk 

Q12 = SUM(Y) 

Q13 = -SUM(W) 

Q21 = Q12 

Q22 = SUM(Y**2.0) 

Q23 = -SUM(Y*W) 

z0  = (Q13*Q22-Q23*Q12)/(Q22*Q11-Q12*Q21) 

a02 = (Q13-Q11*z0)/Q12 

 

MSE = SUM((z0+a02*Y+W)**2.0) 

a0=SQRT(a02) 

END SUBROUTINE 

 

END program 
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Appendix E: Finite element method with 

COMSOL 

 
Finite element method (FEM) is one of several numerical methods that can be 

used to solve complex problems, and has became a dominant tool in solving scientific 

and engineering problems nowadays. As its name states, it takes a complex problem 

and breaks it down into a finite number of simple problems. For example, a 

continuous structure theoretically has an infinite number of simple problems, but 

FEM approximates the behavior of the continuous structure by analyzing a finite 

number of simple problems. Each element in the finite element method is one of these 

simple problems. Each element (usually called “mesh”) in a finite element model has 

a fixed number of nodes that define the element boundaries to which loads and 

boundary conditions can be applied. In general, the smaller the element, the closer we 

can approximate the geometry of the structure, the applied load, as well as the stress 

and the strain gradients. However, it’s not always true. In fact, there is a tradeoff that 

the smaller the element, the more computational power, e.g. computer memories and 

speed, is required to solve the problem. Thus, a good strategy of optimizing the 

element size can greatly reduce the time needed for computation without 

compromising of the quality of analyzed result. 

In general, a finite element method consists of three principle steps:
E.1

 

1. Preprocessing: 

One constructs a model of the structure to be analyzed in which the 

geometry of the structure is divided into a number of elements connected at 

discrete points called “nodes". Certain of these nodes will have fixed 
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displacements, while others will have prescribed loads. Generally, the model 

includes the physics to be applied, material properties (e.g., density and elastic 

modulus), coordinate system, and boundary conditions, etc.  

2. Analysis: 

The structure geometry and corresponding parameters preset by the 

preprocessing step are used as input to the FEM program (or code) itself, which 

constructs and solves a system of linear or nonlinear algebraic equations. During 

the analyzing process, the governing equations are assembled into matrix form 

and solved numerically. This step is normally a batch process, and is the most 

consuming part of the computation resource. 

3. Postprocessing: 

The postprocessing process generally begins with a checking process of 

numerical error, or this checking step is sometime occurring during the analysis 

step depending on how the procedure is defined. Once the solution is verified to 

be within the acceptable numerical error, the quantities of interest can be further 

examined. Numbers of options are available for displaying the quantities, the 

choice of which depends on the mathematical form of the quantity as well as its 

physical meaning. 

In the three principle steps for a finite element method analysis, the 

preprocessing and the post processing are usually time-consuming, while the process 

of analysis is highly demanding on computation resource. Which FEM package to use 

is the subject of choices involving personal preferences as well as package 

functionality. Where to run the FEM package depends on the type of analysis being 
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performed. Typically, a finite element solution requires a fast, modern computation 

system for acceptable performance. Memory requirements are normally dependent on 

the code, but in the interest of performance of computation, undoubtedly the more the 

better, with a typical range measured in gigabytes per user. Several key factors for 

processing power, e.g., clock speed, cache memory, pipelining and multi-processing, 

all contribute to the bottom line for the acceptable performance. These analyses can 

run for hours even on the fastest systems, thus computing power is of great 

importance to conduct a efficient finite element method analysis. 

We use COMSOL Multiphysics FEM package for our numerical simulation of 

the nano-indentation system, with interactive graphical user interfacial (GUI) 

environment and built-in fundamental physics models which facilitate the massive 

works needed for pre- and post-processing in the FEM analysis (see the example in 

figure E.1 for the operating environment of COMSOL for pre- and post-processing). 

The FEM analysis is operated on a Dell Studio XPS 8100 machine with an Intel 

Core™ i7 CPU of maximum clock speed of 2.80 GHz and a RAM of 8.00 GB, which 

is operated on a Windows 7 Home Premium 64-bit operating platform. 

We use the structural mechanics module of COMSOL to simulate the 

penetration depth of a spherical probe at the apex position with respect to varying 

load applied on the sphere, see the example geometry in figure E.1.  
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Figure E.1  Examples of the operating environment of COMSOL Multiphysics FEM 

package in a 2D axial-symmetric coordinate system: (a) CAD drawing mode, (b) 

Mesh mode (zoomed-in), and (c) Post-processing mode (zoomed-in Z-direction 

displacement map). 

(a)

(b)

(c)

(a)

(b)

(c)
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E.1 Theory background of stress-strain relationship in COMSOL 

We use the 2D Axial Symmetry Stress-Strain Application mode of the 

COMSOL Structure Mechanics Module for our simulation. In this section, I will give 

a brief introduction to the theory that COMSOL’s calculation is based on. 

Consider a point of an object which deforms following the small-displacement 

assumption in a 3D Cartesian coordinate space, the strain components at that point are 

given as following,
E.2
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where ε and γ denote normal and shear strains, while u, υ, w are the displacement 

components in x, y, z directions respectively. In general, these strain components can 

be represented in a form of symmetric strain tensor, 
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The same as the strain, the corresponding stress components can be described by the 

symmetric stress tensor, 

 

                           

















=

zzyzx

yzyyx

xzxyx

σττ

τστ

ττσ

σ                   

zyyz

zxxz

yxxy

ττ

ττ

ττ

=

=

=

  ,             (E.3) 

 

where σ and τ are normal and shear stress respectively. In the linear elastic limit, the 

stress and the strain follow the relationship, 

 

                                                  εσ D=  ,                                                    (E.4) 

 

where D is a 6×6 elasticity matrix, and the stress and strain components are 

represented in vector form with the six stress and strain components in column 

vectors defined as, 
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For an isotropic material, the elasticity matrix D is defined as,  
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where E is the elastic modulus (known as “Young’s modulus”), and ν is Poisson’s 

ratio of the material. The equilibrium equations expressed in the stresses for 3D are, 
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where F denotes the volume force (body force). The stress-force relation can be 

expressed using a compact notation, 

 

                                                   F=⋅∇− σ   ,                                               (E.8) 

 

where σ is the stress tensor. By substituting the stress-strain and strain-displacement 

relationships using the above equations results in the equation for force-displacement 

relationship. 
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As mentioned in the beginning of this section, we set up the model in a 2D 

axial symmetry mode which uses the cylindrical coordinates, r, φ, and z. This 

application solves the equations for the global (3D) displacement (u, w) in the r and z 

directions. The displacement υ in the φ direction together with the τrφ, τφz, γrφ, and γψz 

components of stresses and strains are assumed to be zero. In this mode, loads are 

independent of φ, and it allows them only in the r and z directions. Therefore the 

strain-displacement relationships are,
E.2
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The equilibrium equations are described by, 
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To avoid infinite occurring at r=0 (symmetry axis), this application mode transforms 

the equations by multiplies the first equation by r
2
 and the second by r, which is 

common in the principle of virtual work. 
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E.2 Step by step procedure for COMSOL simulation  

1. Start COMSOL by double-clicking the COMSOL Multiphysics 3.5a icon. 

 

 

 

2. When COMSOL Multiphysics starts, the Model Navigator window appears: 

 

 

 

 

 

 

 

 

 

 

 

 

Choose “Axial Symmetry (2D)” as the space dimension, then pick the “Axial 

Symmetry, Stress-Strain” under the “Structural Mechanics Module”. Then click 

“OK”. 

3. After the Model Navigator setting, COMSOL jumps to the “Drawing Mode” 

for creating geometry of the object of interest. 
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Use the highlighted tool bar to draw the objects. Due to cylindrical symmetry, we just 

draw a semi-circle for the probe and a rectangle for the film, with these two 

coinciding at the origin, show below. 
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film
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4. This step is to set up for the physics modeling which basically includes three 

types of setting in our case: “Subdomain Settings”, “Boundary Settings”, and 

“Contact Pairs”. 

 

 

 

 

 

 

 

 

 

 

“Subdomain Settings” – We mainly specify the materials properties here. In 

addition, one can implement some specific constraints, e.g. initial stress/strain, body 

force, etc., by using the setting dialog box. 

“Boundary Settings” – Here we specify the load and constraints on the edges of the 

specified obgect. 

“Contact Pairs” – For efficiently solving contact problem, this setting allows us to 

define a “master” and a “slave” for the stiffer and softer boundaries respectively when 

they actually contact each other during the calculation. 
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Subdomain Settings 

Choose Physics>”Subdomain Settings” to enter the setting windows. In the 

“Subdomain Settings”>Subdomains>Material dialog box, choose “Isotropic” and 

“Global coordinate system” for the Material model and Coordinate system 

respectively. Then input the value of the elastic modulus (E), Poisson’s ratio (ν), and 

density (ρ) for each specified geometric object. In this example, we input E=2.24e9 

Pa, ν=0.33, and ρ=1050 kg/m
3
 for the polystyrene film material (subdomain 1, pink-

highlighted object). Repeat the same procedure to input these values for the probe 

material (subdomain 2, the hemi-circle object). 

 

 

 

 

 

 

 

 

 

Then click “OK” to complete the “Subdomain Settings”. 
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Boundary Settings 

Choose Physics>”Boundary Settings” to enter the setting window. In the 

“Boundary Settings”>Boundaries>Constraints dialog window, specify the 

constraint type for each boundary of the geometry based the box shown below. Note 

that each boundary is numbered by COMSOL when the geometry is drawn, specified 

in the bottom figure. We applied load on the boundary 5, so choose “Boundary 

Settings”>Boundaries>5>load. Choose “distributed load”, and input “Fz” for Fz. 

“Fz” will be specified in the “Solving Parameter” later. 

 

 

 

 

 

 

 

 

 

 

Then click “OK” to complete the “Boundary Settings”. 
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Contact Pair 

Choose Physics>”Contact Pairs” to enter the setting window. In the 

“Contact Pairs”>Boundaries dialog box, create a contact pair by clicking “New”, 

then select the boundaries that contact each other. Choose the boundaries of the stiffer 

object for the “Master boundaries” and those of the softer material for the “Slave 

boundaries”. 

 

 

 

 

 

 

 

 

Then click “OK” to complete the “Contact Pairs” setting. Back to “Boundary 

Settings”>Pairs>Contact Advanced, choose “Direct” as the Search Method. Click 

“OK” to complete the physics modeling settings. 
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5. After the physics modeling setting, next step is to generate meshes. Choose 

Mesh>”Initialize Mesh” (or Mesh>”Free Mesh Parameters” for detailed 

setting) to generate meshes by default setting. If finer meshes are needed, one 

can choose Mesh>”Refine Mesh” several times after “Initialize Mesh” being 

chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Initialized mesh”“Initialized mesh”
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6. Before solving, choose Solve>”Solver Parameters” to select solver. In the 

“Solver Parameters” dialog box, select “Parametric” for both “Analysis types” 

and “Solver”. In the “Solver Parameters”>General, input “Fz” for the 

“Parameter name” and a set of values of load in the unit (N/m
2
) the same as 

that in the “Boundary Settings”>Boundaries>Load. Click “OK” to 

complete setting. 
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7. Click “=” on the tool bar to start solving the problem. During solving, one can 

monitor the progress by the prompted progress window on the screen. 

 

 

 

 

 

 

 

 

 

When COMSOL completes the calculation, a resulted plot presented based on user’s 

setting of postprocessing plot replaces the meshed geometric object. In the example 

shown below is the calculated local vertical displacement of volume elements within 

the probe and the film under certain value of load (Fz=4000).   
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8. After the problem being solved, we can extract the data that we are interested. 

In this example, we are interested in the indentation depth at the position of 

the probe apex, then we can choose Postprocessing>”Point Evaluation” to 

obtain the displacement of that point (apex). 

 

 

 

 

 

 

 

 

 

In the “Point Evaluation” dialog box. We select “2” which is the point of the probe 

apex (red dot on the geometry) under the “Point selection”, then we choose “z-

displacement” for the “Preferred quantities”. If one clicks “OK”, the value of the z-

displacement of point 2, corresponding to a certain load parameter (-4000N/m2 in this 

case), will display in the message window at the bottom of the COMSOL parent 

window. If one clicks “Plot”, one will obtain a window of a plot of z-displacement as 

a function of applied load (Fz) used in this simulation. In the newly generated plot, 

click the “ASCII” bottom on the toolbar, and COMSOL will generate a DAT file 

which can be used for further analysis. 
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By clicking “Plot”, a window of the plot of “z-displacement vs. Fz” is generated. 

 

 

 

 

 

 

 

 

 

This example of step-by-step guide of using COMSOL is presented for the 

purpose of helping first-time user to have a general understanding of how to perform 

a simulation with COMSOL. One should check the user’s guide
E.2, E.3

 for more 

functions for specific needs in the simulation. 
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Appendix F: Model geometry design and 

boundary conditions 

 
Instead of a rather complicated 3D geometry which involves the deflection of 

cantilever with a spherical tip when being pressed upon a film underlying it, we 

simplified it by using a much simpler geometry set in which a sphere if pressed 

against the film with varying prescribed loads. To efficiently use the processing 

power in our calculation, we use a cylindrically (2D) symmetric configuration in 

which a hemi-spherical probe is pressed onto a disc-shaped single-layer or bilayer 

films. The radius of the hemi-sphere is set the same as that of the probe used in the 

AFM force curve measurement, which is 1750 nm, and the thickness of the films 

(single polystyrene film, representing a pristine polystyrene film, and a polystyrene 

film with a damaged layer on top, representing a Ar-plasma exposed polystyrene 

film) are set according to the measurement result by ellipsometry and XPS
3.2

, which 

had been detailed in chapter 2. The schematic geometry design of the simulation for 

the case penetration on an unetched polystyrene film and that on a damaged layer plus 

underlying unmodified polystyrene film are shown in figure F.1 (a) and (b) 

respectively. Note that the scales of the films and the probe in figure F.1 are 

represented in an exaggerated way in order to clearly show the whole scene. In real 

geometry design, the thickness of the single polystyrene film (film and film 1 in 

figure F.1) is 400 nm (approximately 1/4 of the probe radius), the thickness of the 

damaged layer (film 2 in figure F.1) is under 2 nm (almost three orders of magnitudes 

smaller than the probe radius), and the length of the films are set to be double of the 

radius of the probe, which is 3500 nm. In addition, we made an approximation which 
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is that we neglect the surface roughness of the film. This approximation is more 

proper for the unetched polystyrene film than the Ar-plasma exposed ones, since no 

significant dominant wavelength (λ) is observed in the former one.  

To decide the elastic constants corresponding to each part of the geometry 

shown in figure F.1 for the simulation, we use values from both our experimental 

measurement and literatures. The elastic moduli are 2.24 GPa (from force curve 

measurement in Chapter 2) for the unetched polystyrene (Eps), 75 GPa
F.1

 for silica 

probe (Etip), while we vary that (EDL) for the damaged layer. The Poisson’s ratios are 

0.33
3.2

 for polystyrene (νps), 0.17
F.2

 for silica probe (νtip), and 0.3
3.2

 for all damaged 

layers (νDL). The densities are 1.05 g/cm3 F.3 for polystyrene (ρps), 2.2 g/cm3 F.4 for 

silica probe (ρtip), and 2.36 g/cm3, 2.61 g/cm3, 2.68 g/cm3, as well as 2.84 g/cm3 for 

damaged layers (ρDL) produced by Ar-plasma with ion energies of 50 eV, 75 eV, 100 

eV, 150 eV, respectively
3.2

.  

The boundary conditions are shown schematically in figure F.1. The boundary 

with green color is where a uniformally-distributed load is prescribed, and the range 

of applied load was determined by varying the load so that the load-penetration data 

can be fit by a 3/2-power law relation (equation 3.10) with the minimum error of 

fitting, i.e. deformed within elastic range. 
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Figure F.1  Schematic geometry and the boundary conditions for finite element 

analysis simulation of the penetration for two cases, (a) penetration on a single-layer 

film (PS only); (b) penetration on a bilayer film structure (polystyrene film plus 

damaged layer). 

  

probe

film

F

axial symmetry

fixed

free

load
probe

film

F

probe

film

probe

film

F

axial symmetry

fixed

free

load

axial symmetry

fixed

free

load

film 1

film 2

probe

F

film 1

film 2

probe

F

(a)

(b)

probe

film

F

axial symmetry

fixed

free

load
probe

film

F

probe

film

probe

film

F

axial symmetry

fixed

free

load

axial symmetry

fixed

free

load

film 1

film 2

probe

F

film 1

film 2

probe

F

(a)

(b)



 

 188 

 

Bibliography 

 

Chapter 1 

1.1      A. A. Tseng, K Chen, C. D. Chen, and K. J. Ma, IEEE Transactions on 

Electronics Packaging Manufacturing 26, 141 (2003). 

1.2      A. M. Hawryluk and L. G. Seppala, Journal of Vacuum Science and 

Technology B 6, 2162 (1988). 

1.3      B. Wu and A. Kumar, Journal of Vacuum Science and Technology B 25, 1743 

(2007). 

1.4      S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Applied Physics Letters 67, 3114 

(1995). 

1.5      D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. 

Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. 

Shumaker, Journal of Vacuum Science and Technology B 21, 2624 (2003). 

1.6      W. Hu, K. Sarveswaran, M. Lieberman, and G. H. Bernstein, Journal of 

Vacuum Science and Technology B 22, 1711 (2004). 

1.7      B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, Nanotechnology 

22, 375302 (2011). 

1.8      S. Y. Chou and P. R. Krauss, Microelectronic Engineering 35, 237 (1997). 



 

 189 

 

1.9      R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G. S. Oehrlein, B. K. Long, 

C. G. Willson, J. J. Vegh, D. Nest, and D. B. Graves , Journal of  Applied 

Physics 107, 084310 (2010). 

1.10 G. S. Oehrlein, R. J. Phaneuf and D. B. Graves, Journal of Vacuum Science 

and. Technology B 29, 010801 (2011). 

1.11 H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, 

Proceedings of the National Academy of Sciences U.S.A. 104, 15607 (2007). 

1.12 C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. 

Vanlandingham, H.-C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, 

Nature Materials 3, 545 (2004). 

1.13 P. J. Yoo and H. H. Lee, Macromolecules 38, 2820 (2005). 

1.14 H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, and J. Fluitman, 

Journal of Micromechanics and Microengineering 6, 14 (1996). 

1.15 Y. Hsu, T. E. F. M. Standaert, G. S. Oehrlein, T. S. Kuan, E. Sayre, K. Rose, 

K. Y. Lee, and S. M. Rossnagel, Journal of Vacuum Science and Technology 

B 16, 3344 (1998). 

1.16 J. J. Végh, D. Nest, D. B. Graves, R. Bruce, S. Engelmann, T. Kwon, R. J. 

Phaneuf, G. S. Oehrlein, B. K. Long, and C. G. Willson, Applied Physics 

Letters 91, 233113 (2007). 

1.17 Y. Koval, Journal of Vacuum Science and Technology B 22, 843 (2004). 

1.18 K. J. Orvek and C. Huffman, Nuclear Instruments and Methods in Physics 

Research B 7-8, 501 (1985). 



 

 190 

 

1.19 T. Hori, M. D. Bowden, K. Uchino, K. Muraoka, and M. Maeda, Journal of 

Vacuum Science and Technology A 14, 144 (1996). 

1.20 X. Li, G. S. Oehrlein, M. Schaepkens, R. E. Ellefson, and L. C. Frees, Journal 

of Vacuum Science and Technology A 21, 1971 (2003). 

1.21 C. M. Chan, T. M. Ko, and H. Hiraoka, Surface Science Reports 24, 1 (1996). 

1.22 H. Kawahira et al., Proc. SPIE 6153, 615319 (2006). 

1.23 F. Weilnboeck, R. L. Bruce, S. Engelmann, G. S. Oehrlein, D. Nest, T.-Y. 

Chung, D. B. Graves, M. Li, D. Wang, C. Andes, and E. A. Hudson, Journal 

of Vacuum Science and Technology B 28, 993 (2010). 

1.24 L. A. Wall, Journal of Polymer Science Part B 17, 141 (1955). 

1.25 K. Dawes and L. C. Glover, Physical Properties of Polymers Handbook, 

edited by J. E. Mark (AIP Press, NY, 1996), p. 557. 

1.26 J. Zekonyte, V. Zaporojtchenko, and F. Faupel, Nuclear Instruments and 

Methods in Physics Research B 236, 241 (2005). 

1.27 J. R. Woodworth, M. E. Riley, V. A. Arnatucci, T. W. Hamilton, and B. P. 

Aragon, Journal of Vacuum Science and Technology A 19, 45 (2001). 

1.28 J. F. Rabek, Mechanisms of Photophysical Processes and Photochemical 

Reactions in Polymers: Theory and Applications (Wiley, Chichester, NY, 

1987), p. 5. 

1.29 J. F. Rabek, Photodegradation of Polymers: Physical Characteristics and 

Applications (Springer, New York, 1996), p. 4. 



 

 191 

 

1.30 R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G.S. Oehrlein, B. K. Long, 

C. G. Willson, and A. Alizadeh, Journal of Vacuum Science and Technology 

B 29, 0416041 (2011). 

1.31 A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth 

(Cambridge University Press, New York, 1995). 

1.32 Y.-P. Zhao, J. T. Drotar, G.-C. Wang, and T.-M. Lu, Physical Review Letters 

87, 136102 (2001). 

1.33 J. T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, Physical Review B 61, 

3012 (2000). 

1.34 S. Park, B. Kahng, H. Jeong, and A.-L. Barabási, Physical Review Letters 83, 

3486 (1999). 

1.35 E. Chason and M. J. Aziz, Scripta Materialia 49, 953 (2003). 

1.36 D. G. Cahill, Journal of Vacuum Science and Technology A 21, S110 (2003). 

1.37 Z. X. Jiang and P. F. A. Alkemade, Applied Physics Letters 73, 315 (1998). 

1.38 E. Pargon, D. Nest, and D. B. Graves, Journal of Vacuum Science and 

Technology B 25, 1236 (2007). 

1.39 V. K. Singh, E. S. G. Shaqfeh, and J. P. McVittie, Journal of Vacuum Science 

and Technology B 10, 1091 (1992). 

1.40 V. K. Singh, E. S. G. Shaqfeh, and J. P. McVittie, Journal of Vacuum Science 

and Technology B 12, 2952 (1994). 



 

 192 

 

1.41 T. Kwon, PhD Thesis, Department of Materials Science and Engineering, 

University of Maryland, College Park, MD (2007). 

1.42 M. Sumiya, R. L. Bruce, S. Engelmann, F. Weilnboeck, and G. S. Oehrlein, 

Journal of Vacuum Science and Technology B 26, 1637 (2008). 

1.43 M. Sumiya, R. L. Bruce, S. Engelmann, F. Weilnboeck, and G. S. Oehrlein, 

Journal of Vacuum Science and Technology B 26, 1647 (2008). 

1.44 M. Sumiya, R. L. Bruce, S. Engelmann, F. Weilnboeck, and G. S. Oehrlein, 

Journal of Vacuum Science and Technology B 26, 1978 (2008). 

1.45 T.-Y. Chung, D. Nest, D. B. Graves, F. Weilnboeck, R. L. Bruce, G. S. 

Oehrlein, D. Wang, M. Li, E. A. Hudson, Journal of Physics D 43, 272001 

(2010). 

1.46 D. Nest, T.-Y. Chung, J. J. Végh, D. B. Graves, R. L. Bruce, T. Lin, R. J. 

Phaneuf, G. S. Oehrlein, B. K. Long, and C. G. Willson, Journal of Physics D 

43, 085204 (2010). 

1.47 R. L. Bruce, S. Engelmann, T. Lin, T. Kwon, R. J. Phaneuf, G.S. Oehrlein, B. 

K. Long, C. G. Willson, J. J. Végh, D. Nest, D. B. Graves, and A. Alizadeh, 

Journal of Vacuum Science and Technology B 27, 1142 (2009). 

1.48 J. J. Végh, D. Nest, D. B. Graves, R. L. Bruce, S. Engelmann, T. Kwon, R. J. 

Phaneuf, G. S. Oehrlein, B. K. Long, and C. G. Willson, Journal of Applied 

Physics 104, 034308 (2008). 

1.49 D. Nest, PhD thesis, University of California, Berkeley, CA (2009). 

1.50 J. Genzer and J. Groenewold, Soft Matter 2, 310 (2006). 



 

 193 

 

1.51 S. Singamaneni and V. V. Tsukruk, Soft Matter 6, 5681 (2010). 

1.52 R. Huang and S. H. Im, Physical Review E 74, 026214 (2006). 

1.53 N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, 

Nature 393, 146 (1998). 

1.54 Y. Q. Fu, S. Sanjabi, Z. H. Barber, T. W. Clyne, W. M. Huang, M. Cai, J. K. 

Luo, A. J. Flewitt, and W. I. Milne, Applied Physics Letters 89, 171922 

(2006). 

1.55 D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, Science 311, 208 (2006). 

1.56 C. Harrison, C. M. Stafford, W. H. Zhang, and A. Karim, Applied Physics 

Letters 85, 4016 (2004). 

1.57 H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, 

Proceedings of the National Academy of Sciences U.S.A. 104, 15607 (2007). 

1.58 K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, J. 

A. Rogers, and R. G. Nuzzo, Advanced Materials 17, 2332 (2005). 

1.59 H.-H. Yu and J. W. Hutchinson, International Journal of Fracture 113, 39 

(2002). 

1.60 B. Cotterell and Z. Chen, International Journal of Fracture 104, 169 (2000). 

1.61 B. Bhushan and X. Li, International Materials Reviews 48, 125 (2003). 

1.62 C. Ortiz and G. Hadziioannou, Macromolecules 32, 780 (1999). 

1.63 B. Bhushan, Philosophical Transactions of the Royal Society A 366, 1351 

(2008). 



 

 194 

 

1.64 H.-J. Butt, B. Cappella, and M. Kappl, Surface Science Report 59, 1 (2005). 

1.65 J. N. Israelachvili, Intermolecular and Surface Forces 3
rd

 edition (Academic 

Press, Burlington MA, 2011). 

1.66 H. Hertz, Journal für die Reine und Angewandte Mathematik 92, 156 (1882). 

1.67 K. L. Johnson, K. Kendall, and A. D. Roberts, Proceedings of the Royal 

Society of London A 324, 301 (1971). 

1.68 B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Journal of Colloid 

Interface Science 53, 314 (1975). 

1.69 D. S. Grierson, E. E. Flater, and R. W. Carpick, Atomic Force Microscopy in 

Adhesion Studies, edited by J. Drelich and K. L. Mittal (VSP, Leiden-Boston, 

2005), p. 75. 

1.70 D. Maugis, Journal of Colloid Interface Science 150, 243 (1992). 

1.71 R. W. Carpick, D. F. Ogletree, and M. Salmeron, Journal of Colloid Interface 

Science 211, 395 (1999). 

1.72 O. Piétrement and M. Troyon, Journal of Colloid Interface Science 226, 166 

(2000). 

1.73 I. N. Sneddon, International Journal of Engineering Science 3, 47 (1965). 

 

Chapter 2 

2.1      R. L. Bruce, PhD Thesis, Department of Materials Science and Engineering, 

University of Maryland, College Park, MD (2010). 



 

 195 

 

2.2      R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G.S. Oehrlein, B. K. Long, 

C. G. Willson, J. J. Végh, D. Nest, and D. B. Graves, Journal of Applied 

Physics 107, 084310 (2010). 

2.3      J. J. Végh, D. Nest, D. B. Graves, R. Bruce, S. Engelmann, T. Kwon, R. J. 

Phaneuf, G. S. Oehrlein, B. K. Long, and C. G. Willson, Applied Physics 

Letters 91, 233113 (2007). 

2.4      J. P. Aimé, Z. Elkaakour, C. Odin, T. Bouhacina, D. Michel, J. Curély, and A. 

Dautant, Journal of Applied Physics 76, 754 (1994). 

2.5      V. N. Blisnyuk, H. E. Assender, and G. A. D. Briggs, Macromolecules 35, 

6613 (2002). 

2.6      D. Tranchida, Z. Kiflie, S. Acierno, and S. Piccarolo, Measurement Science 

and Technology 20, 095702 (2009). 

2.7      J. K. Gimzewski, Science 283, 1683 (1999). 

2.8      F. Mugele, T. Becker, R. Nikopoulos, M. Kohonen, and S. Herminghaus, 

Journal of Adhesion Science and Technology 16, 951 (2002). 

2.9      I. T. S. Li and G. C. Walker, Journal of American Chemical Society 132, 6530 

(2010). 

2.10 M. Rief, F. Oesterhelt, B. Heymann, and H. E. Gaub, Science 275, 1295 

(1997). 

2.11 H. Li, B. Liu, X. Zhang, C. Gao, J. Shen, and G. Zou, Langmuir 15, 2120 

(1999). 



 

 196 

 

2.12 I. T. S. Li and G. C. Walker, PNAS 108, 16527 (2011). 

2.13 N. A. Burnham, D. D. Dominguez, R. L. Mowery, and R. J. Colton, Physical 

Review Letters 64, 1931 (1990). 

2.14 N. A. Burnham and R. J. Colton, Journal of Vacuum Science and Technology 

A7, 2906 (1989). 

2.15 D. H. Gracias and G. A. Somorja, Macromolecules 31, 1269 (1998). 

2.16 H.-J. Butt, B. Cappella, and M. Kappl, Surface Science Reports 59, 1 (2005). 

2.17 F. L. Leite and P. S. P. Herrmann, Atomic Force Microscopy in Adhesion 

Studies, edited by J. Drelich and K. L. Mittal (VSP, Leiden-Boston, 2005), p3. 

2.18 Veeco Metrology Group, Force Measurement (Support Note No. 228). 

2.19 K. L. Johnson, K. Kendall, and A. D. Roberts, Proceedings of the Royal 

Society of London A 324, 301 (1971). 

2.20 B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Journal of Colloid 

Interface Science 53, 314 (1975). 

2.21 D. Maugis, Journal of Colloid Interface Science 150, 243 (1992). 

2.22 R. W. Carpick, D. F. Ogletree, and M. Salmeron, Journal of Colloid Interface 

Science 211, 395 (1999). 

2.23 O. Piétrement and M. Troyon, Journal of Colloid Interface Science 226, 166 

(2000). 

2.24 D. C. Lin, E. K. Dimitriadis, and F. Horkay, Transactions of the ASME 129, 

430 (2007). 



 

 197 

 

2.25 D. C. Lin, E. K. Dimitriadis, and F. Horkay, Transactions of the ASME 129, 

904 (2007). 

2.26 Y. Sun, B. Akhremitchev, and G. C. Walker, Langmuir 20, 5837 (2004). 

2.27 I. W. Gilmour, A. Trainor, and R. N. Haward, Journal of Applied Polymer 

Science 23, 3123 (1979). 

 

Chapter 3 

3.1     P. L. Gould, Introduction to Linear Elasticity (Springer-Verlag, New York, 

1983). 

3.2     H. Hertz, Journal für die Reine und Angewandte Mathematik 92, 156 (1882). 

3.3      R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G.S. Oehrlein, B. K. Long, 

C. G. Willson, J. J. Végh, D. Nest, and D. B. Graves, Journal of Applied 

Physics 107, 084310 (2010). 

3.4      R. Sburlati, International Journal of Solids and Structures 46, 975 (2009). 

 

Chapter 4 

4.1     R. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G.S. Oehrlein, B. K. Long, 

C. G. Willson, J. J. Végh, D. Nest, and D. B. Graves, Journal of Applied 

Physics 107, 084310 (2010). 

4.2     C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008). 



 

 198 

 

4.3     J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, 

H. G. Craighead, and P. L. McEuen, Nano Letters 8, 2458 (2008). 

4.4     J.-W. Jiang, J.-S. Wang, and B. Li, Physical Review B 80, 113405 (2009). 

4.5     H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, 

Proceedings of the National Academy of Sciences U.S.A. 104, 15607 (2007). 

4.6     W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C. N. Lau, 

Nature Nanotechnology 4, 562 (2009). 

4.7     J.-W. Jiang, J.-S. Wang, and B. Li, Physical Review B 80, 205429 (2009). 

 

Appendix A 

A.1    T. Kwon, PhD Thesis, Department of Materials Science and Engineering, 

University of Maryland, College Park, MD (2007). 

A.2    Veeco, Digital Instruments User Manual: Nanolithography Software Version 

5.12. 

A.3    W. W. Mullins, Journal of Applied Physics 30, 77 (1959). 

A.4    T. Leveder, S. Landis, and L. Davoust, Applied Physics Letters 92, 013107 

(2008). 

A.5    D. C. Blackley, Polymer Lattices: Science and Technology: Volume 1 – 

Fundamental Principles 2
nd

 edition (Springer, 1997), p.90. 

A.6    T. Hata, Kobunshi 17, 594 (1968). 

 



 

 199 

 

Appendix B 

B.1    J. C. Vickerman, Surface Analysis – The Principle Techniques (John Wiley & 

Sons, 1997). 

B.2    M. F. Hochella Jr. and A. H. Carim, Surface Science 197, L260 (1988). 

B.3    H. Yamamoto, Y. Baba, and T. A. Sasaki, Surface Science 349, L133 (1996). 

B.4    H. Maiwa and N. Ichinose, Journal of the European Ceramic Society 21, 1573 

(2001). 

 

Appendix C 

C.1    J. Grobelny, N. Pradeep, D.-I. Kim, and Z. C. Ying, Applied Physics Letters 88,  

091906 (2006). 

C.2    E.-S. Yoon, S. H. Yang, H.-G. Han, and H. Kong, Wear 254, 974 (2003). 

C.3    D. C. Lin, E. K. Dimitriadis, and F. Horkay, Transactions of the ASME 129, 

430 (2007). 

C.4    D. C. Lin, E. K. Dimitriadis, and F. Horkay, Transactions of the ASME 129, 

904 (2007). 

C.5    S. L. Hsu, Polymer Data Handbook (Oxford University Press, 1999), p656. 

 

Appendix E 

E.1    W. B. Bickford, A First Course in the Finite Element Method/2nd edition 

(McGraw-Hill Higher Education, 1994). 



 

 200 

 

E.2    COMSOL AB, Structural Mechanics Module User’s Guide/Version 3.5a 

(2008). 

E.3    COMSOL AB, COMSOL Multiphysics User’s Guide/Version 3.5a (2008). 

 

Appendix F 

F.1    B. Hälg, Micro Electro Mechanical Systems, 1990 Proceedings – An 

Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. 

IEEE , 172 (1990). 

F.2    M. T. Kim, Thin Solid Films 283, 12 (1996). 

F.3    Z. Pu, Polymer Data Handbook (Oxford University Press, 1999), p830. 

F.4    T. Leveder, S. Landis, and L. Davoust, Applied Physics Letters 92, 013107 

(2008). 


